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ABSTRACT 

 

 The use of body armor and combat helmets has reduced fatalities from 

explosions and ballistic attacks. However, frequent use of improvised explosive devices 

and continuing efforts to reduce the weight of each combat helmet have increased the 

risk of ballistic-impact and blast-induced traumatic brain injuries among soldiers. The 

objective of this dissertation research project is to develop predictive constitutive and 

computational models to be used in head injury diagnosis and to aid in the development 

of new combat helmets that can mitigate non-penetrating head injuries.  

A transversely isotropic visco-hyperelastic constitutive model is provided for soft 

tissues, which accounts for large deformations, high strain rates, and short-memory 

effects.  The presented model is tested for a range of strain rates and for multiple loading 

scenarios based on available experimental data for porcine and human brain tissues.  

Using this constitutive relation, a finite element model of a helmet/head assembly 

is developed to study non-penetrating TBI. The effects of constitutive models and blast 

directions on finite elements simulations of blast induced TBI are investigated. Further, 

the effectiveness of combat helmets against non-penetrating TBI induced by blast and 

ballistic impacts is studied. Two types of combat helmets are considered: the advanced 

combat helmet (ACH) and the enhanced combat helmet (ECH). Spatial distributions and 

temporal variations of the intracranial pressure and stress components obtained in the 

simulations reveal significant differences in brain tissue responses to different 

constitutive models and blast directions. It is found that these combat helmets provide 
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some level of protection against non-penetrating TBI and that the level of protection is 

higher for the ECH than the ACH.  
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CHAPTER I 

 INTRODUCTION 

 

1.1  Background 

 Helmets have been used for head protection for centuries.  The French Adrian 

helmet was the first modern steel combat helmet. Steel helmets similar to the French 

Adrian helmet were soon adopted by other warring nations. The original World War I 

French and British helmet designs were adapted by the U.S. Army to form the Hadfield 

steel helmet. The Hadfield helmet was eventually re-designed for lower weight, better 

comfort, and higher protection to produce the famous World War II M1 steel helmet 

(Walsh et al., 2005). In the early 1960s, the U.S. Army embarked on a program to 

replace the M1 steel helmet design with a single-walled, lighter, and more protective 

configuration. After considerable research and development efforts, the improved 

Personnel Armor System for Ground Troops (PASGT) combat helmet (made using 

Kevlar
®

 fibers) replaced the steel M1 helmet. Since the PASGT helmet, the U.S. Army 

has introduced two more kinds of combat helmets. The first is the Advanced Combat 

Helmet (ACH), and the second is the lightweight helmet (LWH) of the U.S. Marine 

Corps (see Fig. 1). These modern-era helmets have saved many lives and received great 

praise. Since their successful implementation, the trend for helmet development has been 

mainly towards weight reduction, and the concept of “a soldier as effective as a tank” 

(e.g., Carey et al., 2000) has become appealing to the Army. It has been envisioned that 

an advanced helmet should have a remote sight, a night vision device, a GPS, and a laser 
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range finder to make an individual soldier a more effective fighter. Incorporating all 

these desired features in the helmet would require a radical change in the functionality 

and helmet design.  

 

Figure 1. Changing designs and materials of the U.S. Army helmet from World War I to 

the latest headgear system (Walsh et al., 2006). 

Traumatic brain injury (TBI), also known as intra-cranial injury, is damage to the 

brain induced by external mechanical forces, resulting in permanent or temporary 

impairment of the brain functions. Because of its high economic impact on the society 

and families of the affected, TBI is also an important social problem. Brain injuries can 

result from direct impact on the skull, leading to skull fracture and subsequent damage to 

the brain tissue. Such injuries are penetrating TBIs, which are mainly caused by motor 

vehicle accidents, sports and work related accidents, and falls. TBI can also be induced 

by sudden indirect motion applied to the skull or passage of shockwaves into the 

intracranial cavity. Such brain injuries may not be accompanied by visible damage to the 

skull and are therefore non-penetrating TBIs. Ballistic protection has been the primary 

function of a combat helmet. The performance of a combat helmet has always been 

measured in terms of its ability to defeat a bullet travelling at certain velocity, thus 
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preventing penetrating trauma to the user.  Modern combat helmets have been quite 

successful in preventing penetrating traumatic brain injuries. 

  However, frequent use of improvised explosive devices, increase in available 

energy of bullets, and reduction in weight of a combat helmet have exacerbated 

occurrence of non-penetrating TBIs. Blast induced traumatic brain injury is one such 

non-penetrating TBI caused by ingress and reflection of blast-induced shock-waves in 

the intra-cranial cavity (Cernak and Haeusslein, 2010). Ballistic impact induced behind 

helmet blunt trauma (Cannon, 2001; Prat et al., 2012) is another type of non-penetrating 

injury resulting from projectile impacts on combat helmets. Although the combat helmet 

may stop the projectile, part of the energy of the projectile absorbed by the helmet shell 

is transferred to the skull and intracranial cavity because of rapid deformations of the 

helmet shell. If this energy transferred to the brain tissue is sufficiently large enough it 

may lead to non-penetrating type of TBI’s. Fig. 2 outlines the various causes and 

biological symptoms of TBI. 

1.2 Motivation 

Numerous experimental and computational studies have been conducted to 

determine brain responses to blast events and ballistic impacts (e.g., El Sayed et al., 

2008; Moore et al., 2009; Grujicic et al., 2009; Chafi et al., 2009; Nyein et al., 2010; 

Ganpule et al., 2010, 2011). Several causes have been identified for blast-induced 

traumatic brain injury.  Regarding the effectiveness of the current helmets against blast 

waves, the limited studies available in the literature present contradictory results. There 

has been no consensus about whether the current helmet designs are effective for 
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preventing blast induced TBI. The existing studies on ballistic impacts mainly focus on 

evaluating the helmet shell response. The coupling between the head-helmet and the 

intracranial response to a ballistic impact is not studied in detail. In addition, the material 

models used in the published TBI simulations tend to be overly simplified. The 

suitability of available constitutive relations for representing experimentally observed 

brain tissue behaviors has not been verified. Any constitutive model developed to 

capture brain tissue responses in blast/ballistic events should be able to represent 

different mechanical behaviors (and loading regimes) in one general framework and 

should be validated for large strains and high strain rates.  

1.3 Organization 

The rest of the dissertation is organized as follows.  

In Chapter II, a comprehensive review and a comparative study of various issues 

involved in TBI and combat helmet design is presented.  

In Chapter III, a transversely isotropic visco-hyperelastic constitutive model is 

developed for brain tissues based on continuum mechanics.  

In Chapter IV, a computational model for predicting blast induced traumatic brain 

injury is provided.  

In Chapter V, the effectiveness of combat helmets in mitigating TBI induced by blast 

and ballistic impacts is investigated.  

In Chapter VI, a summary is given and some conclusions are drawn based on the 

studies reported in Chapters II – V.     
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Figure 2. Causes of TBI. 
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CHAPTER II 

 BALLISTIC HELMETS – THEIR DESIGN, MATERIALS, AND 

PERFORMANCE AGAINST TRAUMATIC BRAIN INJURY 

 

2.1 Introduction 

This Chapter provides a comparative study on the design, materials, and ballistic 

and blast performance of the combat helmets used by the U.S. Army based on a 

comprehensive and critical review of existing studies. Mechanisms of ballistic energy 

absorption, effects of helmet curvatures on ballistic performance, and performance 

measures of helmets are discussed. Properties of current helmet materials (including 

Kevlar
®

 K29, K129 fibers and thermoset resins) and future candidate materials for 

helmets (such as nano-composites and thermoplastic polymers) are elaborated. Also, 

available experimental and computational studies on blast-induced TBI are examined, 

and constitutive models developed for brain tissues are reviewed.  

2.2 Ballistic Helmets  

2.2.1 Mechanisms of Ballistic Energy Absorption  

The basic function of a combat helmet is to provide protection against shrapnel 

and ballistic threats. The ballistic performance of a material can be measured using the 

ballistic limit (e.g., David et al., 2009a). For a given projectile, the ballistic limit is 

defined as the projectile velocity at which the projectile is expected to penetrate the 

armor/helmet 50% of the time. Also, when a bullet strikes a helmet, a cone is formed on 
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the back face of the helmet. The depth of this back-face signature (a conical bulge) is 

required not to exceed a critical value. If the depth exceeds this value, the helmet shell 

can strike the skull, resulting in behind armor blunt trauma (BABT) (e.g., Carroll and 

Soderstrom, 1978; Sarron, et al., 2000; Cannon, 2001; Hisley et al., 2011; Prat et al., 

2012). 

Impact events are of three types (e.g., Naik and Shrirao, 2004): lower velocity 

impact, high velocity impact, and hyper-velocity impact. Low velocity impact is defined 

as an impact event where the time for the projectile in contact with the helmet exceeds 

the period of the lowest vibrational mode. In a low velocity impact event, the boundary 

conditions of the structural component are important in order to accurately describe the 

impact response. In a high velocity impact (ballistic or blast impact) event, the local 

material behavior in the impacted zone governs the impact response of the structure. In a 

hyper-velocity impact event, the locally impacted material behaves like a fluid and very 

high stresses are induced. 

The PASGT and the ACH are made from ballistic fabrics (Kevlar
®

). Most 

ballistic fabrics exhibit a weave pattern formed by warp and weft yarns (e.g., Gao and 

Mall, 2000; David et al., 2009a; Nilakantan et al., 2011). When a woven fabric is 

impacted by a projectile, transverse and longitudinal waves are generated (e.g., 

Bazhenov, 1997). These longitudinal and transverse waves travel along the yarns until 

they encounter an obstacle like a fabric edge or a fiber cross-over point. The waves are 

reflected at the obstacles and collide with the outward travelling waves. The kinetic 

energy carried by these stress waves is dissipated through a number of mechanisms, 
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including cone formation on the helmet back face, deformation of secondary yarns, 

primary yarn breakage, inter-yarn friction, and friction between the projectile and the 

fabric (e.g., Gogineni et al., 2012). Shear plugging has also been observed as one energy 

dissipating mechanism (Naik and Shrirao, 2004). As the strain within a fiber exceeds a 

critical value (called the dynamic tensile strain), the fiber fails. Each successive fabric 

layer absorbs the un-dissipated energy until the projectile is defeated. Failure of all 

fabric layers results in complete perforation. If the projectile velocity becomes zero 

before complete penetration, then the projectile has been successfully defeated. 

2.3 Conventional Material Systems 

2.3.1 Personal Armor System for Ground Troops 

 The first combat helmet was the French Adrian steel helmet. This was adopted 

by other nations including the U.S. to form the Hadfield helmet, which was used during 

the First World War. The Hadfield helmet was re-designed for better comfort and 

protection to produce the M1 helmet. The M1 helmet was the longest serving helmet. 

The M1 helmet could defeat a pistol shot fired at a certain velocity, as required by the 

ballistic criterion imposed then (Carey et al., 2000). However, the M1 helmet was 

manufactured in only one size (e.g., Laible, 1980). In addition, it retained heat, did not 

protect the temporal area, and had to be removed before using tele-communication 

devices. To mitigate these difficulties, the New Helmet Design Program was initiated in 

1972. Composites had already been developed by that time, with the Kevlar
®

 fibers 

developed in 1965. This program led to the development of the new Kevlar
®

 fiber-based 

Personal Armor System for Ground Troops (PASGT) helmet (Walsh et al., 2005), which 
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overcame the drawbacks of the M1 helmet and replaced the M1 steel helmet in the 

1980s. The PASGT helmet was manufactured in four sizes, had improved ventilation, 

and covered a larger part of the head. The shell was made of layers of Kevlar
®

 K29 

fibers and offered protection against 0.22 caliber, Type 2 fragment simulating projectile. 

The V50 ballistic limit for the PASGT helmet was required to be not less than 610 m/s 

(Tham et al., 2007). The PASGT helmet was in service for 20 years and demonstrated 

great field durability. However, with its standard 9 mm thickness shell, it barely met the 

operational needs. The PASGT helmet also had fitting problems.  

2.3.2  Modular Integrated Communications Helmet and Advanced Combat Helmet  

 With an aim to reduce the weight of the PASGT helmet, the U.S. Army launched 

a new helmet development program. Two new helmets were introduced, namely the 

Modular Integrated Communications Helmet (MICH) and the Advanced Combat Helmet 

(ACH). 

The MICH utilizes Kevlar® fibers and provides less coverage than the PASGT 

helmet. However, this causes less vision obstruction for the wearer and combines well 

with the interceptor body armor. For the PASGT helmet, the high collar of the 

interceptor body armor pushed the helmet forward, thus obstructing vision in prone 

position. 

The ACH, derived from the MICH, is made from the Kevlar
®

 K129 fiber. The 

Kevlar
®

 K129 fiber has an areal density of around 185 g/m
2
 compared to 270 g/m

2
 for 

the Kevlar
®

 K29 fiber, but has a strength which is 40% higher than that of the Kevlar
®

 

K29 fiber (used for the PASGT helmet). The Kevlar
®

 K129 fiber also has a higher 
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energy absorption capacity than the Kevlar
®

 K29 fiber (Bilisik and Turhan, 2009). The 

ACH thus has a higher ballistic and impact protection capability than the PASGT helmet 

at a smaller weight. 

The ACH also has a pad system inside the helmet, replacing the nylon cord 

suspension system used in the PASGT helmet. This provides a better fit to the wearer 

and can give a higher protection against blunt trauma in case of ballistic impact (e.g., 

Aare and Kleiven, 2005; Moss et al., 2009).  Recently, a survey on soldiers’ satisfaction 

with ballistic helmets was conducted by Ivins et al. (2007). The survey indicated a strong 

preference of the soldiers for the ACH over the PASGT helmet. The survey also 

identified some problems with the ACH. Table 1 lists a brief summary of the survey. 

Table 1 Comparison of the ACH helmet with the PASGT helmet (Ivins et al., 2007)  

Problem Type 

Percentage of all 

ACH users 

(n = 535) 

Percentage of all 

PASGT users 

(n = 570) 

Loose Screws 11 1.8 

Loose/Broken Straps 5.8 3.7 

Hard/Loose pads 4.1 No padding 

Heat Retention 1.5 0.9 

Poor Fit 0.6 4 

Falls from Head 0.6 0.7 

Weight Satisfaction 84.7 6.4 

Other 1.1 1.8 

 

2.4 Modern Material Systems 

2.4.1 Polymers 

 There are many factors that control the response of a material to ballistic impact. 

However, the main source of kinetic energy absorption is the straining and breakage of 
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primary and secondary fibers. Therefore, the stress-strain curve and the fiber tensile 

strength play a major role in predicting the impact response of a ballistic fiber. Table 2 

shows the tensile properties for various armor-grade fibers. Kevlar
®

 fibers, variants of a 

rigid rod liquid crystalline synthetic polymer fiber developed by DuPont in 1965, have 

been used in most modern body armor systems. The PASGT helmet uses the Kevlar
®

 

K29 fiber. The ACH, which was fielded in 2003 to replace the PASGT helmet, uses the 

Kevlar
®

 K129 fiber and provides an improvement in ballistic performance and user 

interface. The new padding system inside the ACH affords better comfort and higher 

protection. Like the PASGT helmet, the ACH utilizes a thermoset resin shell (as the 

matrix material) bonded to Kevlar
®

 K129 fibers. 

Thermoplastic resin shells have been considered as an alternative to thermoset 

resin shells. Thermoplastic resins are sufficiently tough and chemical resistant. 

Thermoplastics are also melt-processable. It has been shown that the elasticity of a 

matrix greatly affects the energy absorption capacity of a composite. A rigid matrix 

reduces the ballistic performance as compared to a flexible matrix (Faur-Csukat, 2006). 

However, thermoplastics have lower tensile strength than thermoset resins. This has an 

adverse effect on the structural stability and the transient deformation characteristics of 

the helmet. Thermoplastics (as matrix materials) are therefore used with fibers having a 

higher tensile modulus than the Kevlar
® 

fibers to augment the matrix stiffness. 
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Table 2 Tensile properties for various fibers (Bilisik and Turhan, 2009; David et al., 

2009a; Song, 1986) 

Material Properties 

 Density 

 

(g/cm
3
) 

Breaking 

Strain 

(%) 

Tensile 

Strength 

(MPa) 

Tensile 

Modulus 

(GPa) 

Nylon 66 1.14 18.2 1006 5 

Kevlar
®

 K29 1.44 3.5 2794 67 

Kevlar
® 

K129 1.44 3.3 3429 96 

PBO 1.58 3.8 7386 195 

Spectra 1000 0.97 2.7 2995 172 

Dyneema
®

 0.97 3.8 2500 120 
 

 

Thermoplastics for ballistic applications have been studied extensively (Bilisik 

and Turhan, 2009; Walsh et al., 2005; Walsh et al., 2006). Both manufacturing and 

design aspects of thermoplastics were investigated in Walsh et al. (2005, 2006), where 

various Kevlar
®

 fiber-thermoplastic matrix systems were explored. The weight was the 

primary consideration in preparing the samples. An increase in ballistic resistance was 

obtained at a much lower weight. However, the depth of the back-face signature 

increased considerably compared to that for a thermoset resin based helmet, thus 

increasing the possibility of blunt trauma injury. A detailed study of thermoplastics for 

ballistic applications was conducted in Song (1986), where semi-crystalline and 

amorphous polymer matrices were examined. The materials used for the samples were 

Kevlar
®

 K29 fiber/nylon 66 matrix laminates, Kevlar
®

 K29 fiber/polyetheretherketone 

(PEEK) matrix laminates, Kevlar
®

 K29 fiber/polycarbonate matrix laminates, Kevlar
®

 

K29 fiber/polysulfone matrix laminates, Kevlar
®

 KM2 fiber/polysulfone matrix 

laminates, and Kevlar
®

 KM2 fiber/linear low-density polyethylene (LLDPE) matrix 
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laminates. The effects of processing temperature, cooling rate, polymer morphology, 

fiber-wetting characteristics, reinforcing fabric configuration, and composite stiffness on 

the ballistic impact resistance of thermoplastic-based composites were investigated in 

Song (1986). The main energy absorbing mechanisms identified for the laminated 

composites were fiber failure in tension, matrix cracking, and delamination. Processing 

temperature had a significant effect on the ballistic performance of amorphous and low 

crystalline polymer composites. Increasing processing temperature improved the wet-

ability, leading to dense packing of the matrix molecules. This resulted in a stiffer 

matrix, diminishing the energy absorption capacity. For semi-crystalline polymer 

composites, processing temperature changes the nature of the crystals formed. However, 

this was found to have very little effects on ballistic properties.  

 Fabric configuration also has a significant influence on ballistic properties (e.g., 

Cheng and Chen, 2010; David et al., 2009a). 

 The Enhanced Combat Helmet (ECH), which has been under development since 

2007 for the U.S. Marine Corps and U.S. Army, makes use of the Dyneema
®

 HB80 

unidirectional composite material, which consists of a matrix of ultra high molecular 

weight polyethylene (UHMWPE) reinforced by carbon fibers (e.g., Xiong, 2004). The 

values of the ballistic limit for UHMWPE and several other materials are shown in Fig. 

3.  
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Figure 3. Ballistic limits for various materials (e.g., Song, 1986; David et al., 2009a). 

The value for the CNT was based on molecular dynamics simulations (Mylvaganam and 

Zhang, 2007). 

2.5 Traumatic Brain Injury 

2.5.1 Numerical Simulations 

 A number of injury models have been proposed to capture brain responses to 

blast waves. Finite element methods have been widely used to model the damage to the 

body induced by blast waves.  To model the motion and response of the body and its 

internal elements, the simulations usually begin with generating geometric models of 

varying complexity.  

Three-dimensional (3-D) imaging data obtained from magnetic resonance 

imaging (MRI) or computed tomography (CT) techniques can be utilized to generate 

geometric models of various parts of a human head. In such image-based geometric 

modeling, suitably smooth surfaces representing brain tissues can be extracted from 3-D 

MRI or CT imaging data. Once the geometric model is created, standard tetrahedral or 
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hexahedral meshing algorithms can be implemented for finite element (FE) mesh 

generation. Image based geometric modeling has been used by Ganpule et al. (2010) for 

generating geometric models of skull, facial bones, neck bones, and brain tissues needed 

in their study on blast induced TBI.  

Another popular approach is voxel meshing (Keyak et al., 1990). This method 

combines the surface detection and mesh creation stages in one process.  In this 

approach, volumetric pixels (voxels) are divided into different regions using various 

segmentation techniques. These regions are then exported as hex elements. This 

algorithm is easy to implement, produces all hex mesh, and leads to conformity of mesh 

at interfaces. A 3-D FE human head model for studying brain trauma was proposed in 

Chen and Ostoja–Starzewski (2010) using the voxel meshing technique. The FE mesh of 

their head model, consisting entirely of hexahedral elements, was developed from MRI 

data sets using a custom developed C++ code. Five different tissue types – scalp, skull, 

CSF, grey mater, and white mater – were identified from the MRI imaging data using a 

segmentation procedure. Voxel meshing was also employed by Taylor and Ford (2009) 

to construct a head model based on the segmentation of high resolution photographic 

data using a pattern recognition algorithm.  

A few commercial software packages that provide image based meshing 

capabilities are currently available, which include Amira (Mercury Systems, MA, USA), 

Mimics (Materialise, NJ, USA), Simpleware (Simpleware Ltd., UK), and Scan23D 

(Dassault Systèmes Solidworks Corp, Velizy, France). Mimics was used by El Sayed et 

al. (2008) to reconstruct FE mesh from MRI data. The resulting mesh consisted of 9 
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components – skull without facial bones, cerebrospinal fluid (CSF) in the form of a 3-

mm thick layer, gray matter, white matter, cerebellum, corpus callosum, telencephalic 

nuclei, brain stem, and ventricles.  

The effect of primary blast waves on the skull has been studied by Moore et al. 

(2009). The Bowen curve (Bowen et al., 1968) was used to obtain a threshold of 5.2 atm 

for lung injury, a lethal dose of 18.6 atm for 50% lung injury was adopted, and the upper 

and lower bounds for survivable blast brain injury were established. In Nyein et al. 

(2010), a FE model for an unprotected head was proposed using a mesh containing 

808,766 elements (see Fig 4). The computational model distinguished different parts of 

the head: ventricle, glia, white matter, gray matter, eyes, venous sinus, cerebrospinal 

fluid (CSF), air sinus, muscle, skin and fat. The volumetric response of the brain tissue 

was described by the Tait equation of state, the deviatoric response by the neo-Hookean 

elasticity model, and the skull response by the Mie-Gruneisen/Hugoniot equation of 

state. Significantly different strain distributions were observed in different parts of the 

tissue material and brain. Based on the maximum compressive/tensile stress and von 

Mises stress in the brain, it was concluded that the blast intensity corresponding to 50% 

of the lethal lung injury caused mild traumatic brain injury (mTBI). In addition, direct 

blast propagation into the brain occurred with the skull absorbing very little or no 

pressure intensity. 
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Figure 4. A detailed head model (Nyein et al., 2010). 

A similar study was carried out by Grujicic et al. (2009). The comparison of the 

von Mises stress for three blast intensities showed that the stress values were not high 

enough to cause mTBI. However, direct passage of longitudinal and transverse pressure 

waves within the intra cranial cavity could lead to mTBI.  

The effectiveness of the skull in protecting the brain from blast waves was 

studied by Teland (2010). A pig head model consisting of the skull, brain, and CSF was 

used. The material was assumed to be linearly elastic. It was found that the hard skull 

does not protect the brain from the blast waves. The pressure waves were not absorbed 

by the skull material but traveled through the skull to the brain.  

Comparisons of brain responses to front and lateral impacts (see Fig. 5) have 

been studied by El Sayed et al. (2008). In their study, the load on the head was applied as 

a pressure wave rather than a direct blast. The pressure was applied as a semi-sinusoidal 

time distribution for six milliseconds (ms), with a peak magnitude of 7.90 kN. For the 

frontal impact, peak positive pressures were observed beneath the impact site, while 

negative pressures were observed in the area opposite to the impact site. Irreversible 

cavitation damage was also observed. However, no permanent shear damage was found.  
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For the lateral impact simulations, the magnitudes of the coup and countercoup pressures 

developed were much higher. In addition, the magnitude of the shear stress developed 

was ten times higher than that in the frontal impact case, causing shear yielding. This 

showed that a lateral impact had a more damaging effect on the brain than a direct 

frontal impact.  

 

Figure 5.  Head model used by El-Sayed et al. (2008). 

A detailed head model was used in Chafi et al. (2009) to predict the pressure 

distribution, shear stress distribution, and principal strain distribution in a brain subjected 

to a blast wave. The isotropic Mooney-Rivlin model was used to describe the hyper-

elastic constitutive relation of the brain tissue material. The viscoelastic response is 

represented in terms of a convolution integral, and the relaxation modulus is described 

by a standard Prony series. The Jones-Wilkins-Lee equation of state (EOS) was used to 

model explosives, and the material parameters used in the EOS were those of 

trinitrotoluene (TNT). Three blast intensities corresponding to 0.0838, 0.205, and 0.5 lbs 

of TNT were used at a fixed standoff distance.  In the simulations, no uniform pressure 
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gradient was observed across the brain tissue. In addition, the classical coup and 

countercoup pattern was not observed (unlike in other studies). Both positive and 

negative pressures were observed at the impact site as well as at the opposite side. Based 

on the Ward criterion (Ward et al., 1980), for the blast scenarios generated by 0.205 lb 

and 0.5 lb TNT, the average peak positive pressure exceeded the established thresholds. 

The brainstem, white matter, and corpus callosum experienced maximum shear stresses. 

At early stages of impact, the pressure intensities were higher than shear stress 

magnitudes. However, the stress magnitudes elevated after these early stages. The 

maximum principle strains were observed in the brainstem. According to the criterion of 

Bain and Meaney (1998), for a blast scenario of 0.5 lb explosive, the principal strain 

values exceeded the established threshold. 

2.5.2  Ballistic Helmet and Traumatic Brain Injury 

Traditionally, combat helmet design has been focused on providing protection 

against ballistic impact from projectiles.  The Advanced Combat Helmet (ACH) made 

from the Kevlar
®
 fibers was designed to protect against shrapnel, fragmentation, and 9 

mm bullet shots (see Fig. 6).  
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Figure 6. ACH and its parts.  

The response of a Kevlar
®
 helmet to ballistic impacts was studied in Tham et al. 

(2007). It was found that a Kevlar
®

 helmet could defeat a high-velocity 9 mm bullet and 

a 1.1 gram fragment-simulating projectile (FSP).  

There has been a recent interest in testing the effectiveness of the helmet against 

blast events and blunt trauma injuries. The response of a combat helmet to blast waves 

was studied by Moss et al. (2009) by modeling the skull as a hollow elastic ellipsoid 

containing viscoelastic CSF and using a simplified face, neck and body system with no 

lower jaw. The head was subjected to a shock wave with an overpressure of one bar over 

the ambient pressure and a 450m/s blast wind. For an unprotected head, the skull wall 

deforms and collides with the brain. This develops large positive and negative pressure 

spikes in the cranial cavity. It also creates damaging shear strains. For a head protected 

with a helmet, the 1.3 cm gap between the helmet and the head creates an “underwash” 

effect. The gap allows the blast wave to wash in between the helmet and the head. This 
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causes more pressure on the skull than in an unprotected head. For a helmet with 

padding, the helmet is coupled to the head and the underwash effect is mitigated. It 

should be mentioned that without including lower jaw and anatomical details (such as 

skull thickness variations, grey or white matter, and ventricles), the model adopted by 

Moss et al. (2009) is overly simplified and needs to be validated, as also noted in Nyein 

et al. (2010). 

In a recent study (Ganpule et al., 2010, 2011), it was observed that tight foam 

pads between a head and a helmet can eliminate the underwash effect and thus provide a 

better protection from blast. 

The effect of an ACH and a conceptual face shield on stress wave propagation 

within the brain tissue following a blast has been studied in Nyein et al. (2010). A 

human head model was used along with a model of the ACH provided by the Natick 

Soldier Research Development and Engineering Center. The material models were the 

same as those used earlier in Moore et al. (2009). Simulations were carried out for an 

unprotected head, a head with a helmet, and a head with a helmet and a face shield. It 

was found that the main transmission pathway of the blast waves to the brain was 

through the soft tissues of the face.  Tissue cavitation was also observed as a possible 

mechanism of brain damage. The simulation of a helmeted head with the current variant 

of the ACH showed that the helmet provides no mitigation of blast effects on the brain 

tissue, as it does not protect the face. The third simulation was carried out for a head 

with the ACH and with a conceptual face shield attached to it. It was observed that the 
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presence of the face shield significantly contributed to reducing the stress intensity in the 

brain. 

A similar study was carried out in Grujicic et al. (2009). The blast intensity and 

material models were taken to be the same as those used in Moore et al. (2009). Their 

simulations revealed that the blast wave propagates through the skull. It travels faster in 

the intra cranial cavity, and multiple reflections occur. Maximum compressive stresses 

were found on the impacted side, while the maximum tensile stresses were seen on the 

side opposite to the point of impact. Intra cranial shear stress values were substantially 

lower than those of the principle stresses. The maximum shear stresses were located in 

the brain stem. For both 5.2 atm and 18.6 atm blast intensities, no shear-induced mTBI 

was observed, while there was a possibility of contusion type TBI. For a head protected 

by a helmet, the findings obtained by Grujicic et al. (2010a) were contradictory to those 

reported in Moore et al. (2009) and Nyein et al. (2010). For the helmeted head, the load 

transfer path to the skull was found to be different. The underwash effect observed in 

other simulations was also seen. However, for the helmeted head a 40% reduction in the 

maximum principal stress magnitude and an 8% reduction in the maximum shear stress 

magnitude were obtained. No mention was made regarding the propagation of blast 

waves through the soft tissue of the face. This is in contrast to the simulations reported 

by others (e.g., Moore et al., 2009; Ganpule et al., 2011), where the helmet either 

produced an increase in the pressure intensity on the skull or produced no significant 

reduction.  
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A comparative study on the blast wave mitigation capability of suspension pad 

materials has been conducted by Grujicic et al. (2010b). The effects of blast waves on an 

unprotected head and a head protected with an ACH with polyurea as the suspension pad 

material were studied. In the absence of information about the currently used suspension 

pad material in the ACH, Ethylene-Vinyl-Acetate (EVA) was chosen as a second 

material (other than polyurea). The material models and the pressure intensities were 

taken to be the same as those used in their earlier study (Grujicic et al., 2010a). High 

peak axial stresses and peak particle velocities were chosen as parameters for 

comparison. It was found that polyurea lowered the peak stresses and peak velocities 

transferred to the skull (and hence to the brain). Because these two are primary TBI 

causing mechanisms, it was concluded that polyurea was a better suspension pad 

material than EVA. 

The Department of Defense’s blast injury research program (Stuhmiller, 2008) 

and the non-lethal weapons human effects program under the guidance of the Air Force 

Research Laboratory (Simonds, 2008) were initiated to conduct biomedical research in 

order to improve the current understanding of blast injuries. The goal of these programs 

is to characterize the complete hazard caused by the blast waves. The thoracic human 

body models used to study ballistic impact of armor and the human head models 

employed to investigate the physical effects of blast were combined to form the 

Advanced Total Body Model (Simonds, 2008; Stuhmiller, 2008). An integrated finite 

element model consisting of head, neck, thorax, and abdominal regions was employed to 

understand the mechanisms for BTBI.  
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A study on the effect of facial protective devices on injury mitigation in BTBI 

was conducted by Jason (2010). The head and material models employed in this study 

were the same as the ones used in Nyein et al. (2010), and simulations were carried out 

for both the ACH and the ECH. The blast wave was generated by an explosion of 3.16 g 

of TNT in a free air explosion at a 0.12 m standoff distance. The model validation was 

carried out by comparing the simulated results for a side blast explosion with the 

experimental results obtained at the Naval Sea Systems Command Warfare Center (with 

experiments carried out on a series of mannequins) (Nyein et al., 2010). In order to 

reduce the effect of the blast waves travelling through the soft tissues of the face into the 

intra cranial cavity, a face shield (see Fig. 7) was added to the helmet. The material of 

the face shield was the same as that of the helmet shell. The following simulations were 

carried out on: a) an ACH with a face shield, b) an ECH with a face shield, c) an ACH 

with a pair of ski goggles, and d) an ECH with a pair of ski goggles. The material model 

of the goggles was the same as that of the helmet shell. It was observed that the face 

shield prevents the direct transmission of the negative and positive pressure waves 

through the soft tissue of the face to the brain. The transfer of the pressure waves occurs 

through the foam padding. An undesirable effect of the face shield was also observed. 

There is a late increase in the pressure imposed on the surface of the face because of the 

air trapped between the face shield and the face. It was also observed that the 

unprotected region in the rear of the head causes an increase in the pressure exerted on 

the soft tissues of the face. It was proposed to extend the helmet shell to cover the neck. 

For the simulation with the goggles, it was observed that the goggles protect the soft 
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tissue of the face. However, physical interaction between the goggles and the head offers 

a new pathway for pressure transmission. It was also observed that this secondary 

pathway reduces the pressure transmitted to the head through the padding, i.e., it reduces 

the underwash effect. For the ECH, similar phenomena were observed.  

The use of sandwich structures in helmet liners of the ACH for pressure wave 

attenuation was studied by Goel (2011). The author proposed to drill channels in the 

helmet liners, and fill these channels with an incompressible material, either fluid or 

solid, as shown in Fig. 8. Experimental and computational analyses were carried out on 

specially prepared samples but not on an actual helmet. Both solid (glass beads, aerogel, 

or solid foam) and liquid (glycerin, water, or AgileZorb) filler materials were tested. 

Glycerin was found to have the highest pressure attenuation ability among all filler 

materials tested. It was revealed that lower-porosity materials (such as glycerin and glass 

beads) showed lower energy transmission than high-density materials (such as aerogel). 

The use of glycerin resulted in a 50% reduction in the peak pressure. However, the use 

of glycerin led to a considerable increase in the weight of the liners.  

 

Figure 7. Face shield and goggles suggested to improve blast mitigation capabilities of 

combat helmets (Jason, 2010). 
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Figure 8. Drilling channels in the liner of an ACH filled with an incompressible material 

(Goel, 2011). 

 

2.5.3  Damage Criteria for Brain 

Damage criteria are useful for predicting the probability of TBI under mechanical 

loading. The currently used injury criterion is the head injury criterion (HIC) adopted by 

the National Highway Traffic Safety Administration (NHTSA) based on the work of 

Gadd (1966). The HIC is an empirical criterion mainly used in the automobile industry 

and is based on the probability of injury due to a global translational head acceleration. 

While the HIC is useful for predicting injury in automobile accidents, it may not be 

applicable for predicting blast induced TBI. This is because the HIC is based on global 

kinematics data to predict injury, whereas the blast-induced TBI is caused by intra 

cranial mechanical responses. Further, the HIC is based on experimental data, for which 

only external impact loading is applied. In addition, rotational head accelerations have 

not been taken into account in developing the HIC. In order to overcome these 

drawbacks, Newman proposed the Head Impact Power (HIP) criterion (Newman et al., 
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2000). This criterion is based on angular and linear accelerations. However, both these 

criteria are proposed for impact loading rather than blast loading. The two main known 

causes of BTBI are penetration of pressure waves into the skull and rotational 

acceleration. 

In the past decade, many 3-D finite element head models have been used to 

develop injury criteria for the brain. The Wayne State University (WSU) head model 

(e.g., Zhang et al., 2009), MIT DVBIC head model (Nyein et al., 2010), SIMon head 

model (Takhounts et al., 2003a), and University of Louis Pasteur (ULP) head model 

(Willinger and Baumgartner, 2001) are some of the popular 3-D head models used in 

finite element analyses. Recent experimental validation (Marjoux et al., 2006) has shown 

that the SIMon head model gives rather inaccurate results for predicting TBI compared 

to the ULP model. This has been attributed to the fact that the head model used in the 

ULP criterion is closer to the real anatomy of a human head than the SIMon model.  

Various injury criteria based on stress, strain, strain rate, intra-cranial pressure 

gradient, and type of explosives are summarized in Table 3. Except for the criterion 

reported in Chafi et al. (2009), none of the criteria listed in Table 3 have been developed 

for blast events. All the criteria have been developed for direct impact loading, which is 

minimal for blast events.  

Even though a lot of efforts have been made to understand the mechanisms of 

TBI, injury thresholds for BTBI remain undetermined. Protective equipment designed 

using the existing injury criteria may be inadequate. The environment created by a shock 

wave is quite complex. In addition, pressure waves are initiated inside the intra cranial 
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cavity. The intensity of a blast, nature of explosives used, and standoff distance all affect 

the brain tissue’s response to loading. Superimposing tolerance curves for each kind of 

head injury and defining the lowest curve as a head injury tolerance criterion might be 

one way of going forward. 

Table 3 Various local injury criteria based on pressure gradients, strains, stresses and 

strain rates 
 

Criterion Threshold 
Location of 

Injury 
Probability Application Reference 

Stress 

von Mises 

6-11 kPa 
Corpus 

Callosum 
50% 

Rat 

brain/Car 

crash 

injuries 

Shreiber et 

al. (1997) 

8.4 kPa 
Corpus 

Callosum 
50% 

Footballers 

(FEM) 

Kleiven 

(2008) 

> 30 kPa 

Brain 

Neurological 

Lesions 

100% 

Motorcyclis

ts/ 

Footballers 
Willinger 

and 

Baumgartner 

(2001) > 16 kPa 

Brain 

Neurological 

Lesions 
50% 

Motorcyclis

ts/ 

Footballers 

(FEM) 

Shear 

8-16 kPa 

Diffuse 

Axonal 

Injuries 

100% Sheep Brain 
Anderson et 

al. (1999) 

11-16.5 

kPa 

Diffuse 

Axonal 

Injuries 

100% 

Motorcycle 

Accidents 
Claessens et 

al. (1997) 

> 10 kPa Mild TBI 80% 
Footballers 

(FEM) 

Zhang et al. 

(2004) 
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Table 3 Continued 
 

Criterion Threshold 
Location of 

Injury 

Probabilit

y 
Application Reference 

Strain 

ε ε
•

 30/s 
Gray 

Matter 
50% 

Multiple 

specimens 

Viano and 

Lovsund 

(1999) 

ε ε
•

 10.1/s 
Gray 

Matter 
50% 

Footballers 

(FEM) 

Kleiven 

(2008) 

,ε ε
•

 

ε > 0.2 

ε
•

> 10/s 

White 

Matter 
100% 

Tissue 

culture 

Morrison et 

al. (2003) 

Shear 

Strain 
> 0.24 Mild TBI 80% 

Footballers 

(FEM) 

Zhang et al. 

(2004) 

Lagrangia

n 

Principal 

Strain 

> 0.21 

 

> 0.181 

Morphologica

l injury 
Electrophysiolog

ical 

Impairment 

50% 
Guinea 

Pigs 

Bain and 

Meaney 

(1998) 

Cumulativ

e Strain  
0.55≥  

White 

Matter 
50% FEM 

Takhounts et 

al. (2003a) 

Intra Cranial Pressure (ICP) 

ICP 
< 173 kPa 

> 235 kPa 
Concussion 

0% 

100% 

Animal/Hu

man 

Cadavers 

(FEM) 

Ward et al. 

(1980) 

 
> 90 kPa 

> −76 kPa 

Injury (coup 

side) 
Injury (counter 

coup side) 

50% 
Footballers 

(FEM) 

Zhang et al. 

(2004) 

Amount of Explosives 

0.205 lb 

TNT 

(Standoff 

distance  

160 cm) 

ICP > 235 

kPa 

Coup/Counter 

Coup side 

100% FEM 
Chafi et al. 

(2009) 

Shear 

stress > 

16.5 kPa 
Brain stem 

Principal 

strain > 

0.22 
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2.6 Constitutive Modeling 

As has been mentioned, experiments for studying blast-induced traumatic brain 

injury are mainly carried out on specially prepared models of human skulls and tissues, 

mannequins or dolls, and different animals. Numerical simulations are performed on 

geometrical models of skull and other brain components, with or without a helmet. All 

these experiments and simulations require constitutive modeling in order to assign 

appropriate properties to the constructed models to obtain accurate results.  

In an experimental study on human brain tissues, Donnelly and Medige (1997) 

investigated shear properties at different strain rates. Brain tissues were obtained from 

fresh human cadavers. The brain specimens consisted of samples cut from brain 

cerebrum. The majority of the tests were performed at strain rates of 0, 30, 60, and 90/s, 

with some additional tests performed at 120 and 180/s. Thirty tests were performed at 

each strain rate, and all the samples were tested up to a shear strain of 100%. The stress-

strain curves were fitted with a two-parameter power-law function of the form σ = Aε
B
. 

A common value of 1.28 was used for the exponent B, while the amplitude of A varied 

with the strain rate. It was found that rate effects were predominant between 0 to 60/s, 

while no rate effect was observed beyond 60/s. Shafieian et al. (2011) performed shear 

deformation tests on bovine brain tissues at strain rates of 100~750/s. The average shear 

modulus varied from 11.17 kPa at 100/s to 22.44 kPa at 750/s. These results validated 

the hypothesis of Donnelly and Medige (1997) that the response of a brain tissue in shear 

at strain rates higher than 100/s is independent of the strain rate.  
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Table 4 Properties of Some Materials Used for the U.S. Army Helmets (e.g., Song, 

1986; Hearle, 2001; Bilisik and Turhan, 2009; Czechowski et al., 2012) 

Helmet Material 

(Shell/Fabric) 

Properties Shell 

(Matrix) 

Fiber 

(Reinforcement) 

Hadfield Steel 

Tensile Strength 

(MPa) 
250 

- 

Tensile Modulus 

(GPa) 
183 

- 

Breaking Strain  

(%) 
10 

- 

 PASGT 

Thermoset resin/ 

Kevlar
®

 K29 

composite 

Tensile Strength 

(MPa) 
7,386 2,794 

Tensile Modulus 

(GPa) 
195 67 

Breaking Strain 

(%) 
3.8 

3.5 

ACH 

Thermoset resin/ 

Kevlar
®

 K129 

composite 

Tensile Strength 

(MPa) 
7,386 3,429 

Tensile Modulus 

(GPa) 
195 96 

Breaking Strain 

(%) 
3.8 3.3 

ECH 
Dyneema

®
 HB80 

composite 

Tensile Strength 

(MPa) 

Not 

available 
2,500 

Tensile Modulus 

(GPa) 

Not 

available 
120 

Breaking Strain 

(%) 

Not 

available 
3.5~3.7 

 

More discussions on mechanical testing of brain tissues can be found in a comprehensive 

review paper by Chatelin et al. (2010).  The material properties for the helmet are 

standard, depending upon the helmet type. The properties of some materials used for 

helmets are given in Table 4. 

Development of material models for biological brain tissues is an area of on-

going research (e.g., Hrapko et al., 2009; Clayton et al., 2012). From the biomechanical 

perspective, brain is a very complex organ involving many sub-structures including 
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brain stem, cerebral cortex, and thalamus. Understanding how the loading and kinematic 

boundary conditions applied to the skull/organ translate into the stress-strain relation of 

the brain tissue is challenging because of the interplay among a number of factors such 

as non-linear visco-elasticity, anisotropy, rate dependency, hysteresis behavior in cyclic 

tension-compression tests, and sensitivity. Many biomechanical, experimental, and 

numerical studies have been carried out to develop constitutive models for the brain 

material. The constitutive models developed can be divided into three main categories, 

as listed below. 

2.6.1  Linear Viscoelastic Models 

Linear viscoelastic models (e.g., Gefen  et al., 2003; Nicolle et al., 2004) describe the 

creep and relaxation responses. Standard viscoelastic models or some variants of them 

are used to model tissue responses. The number of material constants needed in such a 

model depends on how many springs and dashpots are used (e.g., David et al., 2009b, 

2010, 2011, 2012). However, linear viscoelastic models are suitable only over a small 

strain regime and are not adequate to describe tissue responses under blast loading. 

2.6.2  Large Strain Hyper-Elastic Models 

The Helmholtz free energy function is ordinarily used to define a hyper-elastic 

material or Green elastic material. Fung (Fung, 1967) proposed such a function, called a 

pseudo-strain energy function, to describe a particular aspect of an inelastic material. 

One approach in hyper-elastic modeling is to use polynomial strain energy functions to 

describe the material response (Fung, 1967; Velardi et al., 2006). The material 

parameters used in a polynomial function are numerous and may not have any physical 
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meaning. These models tend to be numerically unstable at high strains (Balzani et al., 

2006), and may violate convexity conditions. Another approach is to use the invariants 

of the deformation gradient tensor (e.g., Holzapfel et al., 2000; Merodio and Ogden, 

2003; Dorfmann et al., 2007). This approach can be used to describe the anisotropic 

behavior of soft tissues by decoupling a strain energy density function into contributions 

from fiber and matrix phases. This is the most often used approach. However, hyper-

elastic models represent only elastic or quasi-static deformations. These models alone 

cannot capture the complexities of the tissue response such as permanent deformations 

and memory effects. In the decoupled framework, the energy contribution from the 

matrix depends on the first and second invariants of the Cauchy-Green strain tensor, 

while the fibers are considered as non-linear springs with the energy contribution 

depending on the fourth invariant of the Cauchy-Green strain tensor. An extensive 

literature review has shown that almost all current phenomenological models use this 

approach (e.g., Wright and Ramesh, 2012; Chatelin et al., 2012). However, a strain 

energy density function depending only on the fourth invariant is inadequate to describe 

the brain tissue behavior at medium to high strains, especially for shear loading. This is 

particularly important for simulating blast injuries, as shearing failures (such as diffuse 

axonal injuries) are a primary cause of TBI. In addition, the bulk modulus of the brain 

tissue is considerably higher than the shear modulus (Stalnaker, 1969; McElhaney et al., 

1976). Therefore, it is necessary that a constitutive model developed to simulate TBI 

mechanisms accurately characterize the shear as well as the tension/compression 

behavior of the brain tissue.  
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2.6.3  Large Strain Hyper-Viscoelastic Models 

Hyper-viscoelastic constitutive modeling combines the methodologies of linear 

viscoelasticity and hyper-elasticity.  

The Mooney-Rivlin hyper-elastic model and the Neo-Hookean material model are 

the most commonly used constitutive equations to represent quasi-static responses of 

brain tissues. For example, Mendis (1992) used hyper-viscoelastic modeling to 

characterize large deformations of brain tissues. The quasi-static deformation (hyper-

elastic part) was represented by an incompressible two parameter Mooney-Rivlin model. 

The material parameters for the viscoelastic model were determined by fitting with 

experimental data from rate-dependent compression tests. Wang and Wineman (1972) 

constructed a continuum mechanics model for the probe test of Fallenstein and Hulce 

(1969) by treating the brain tissue as a homogenous, isotropic, linear, viscoelastic 

material. They assumed that the skull is entirely filled by the brain and the skull is rigid 

with zero deformation. Also, the shear effects at the brain-skull interface are ignored in 

their model. A numerical method was implemented to solve for the shear stress 

relaxation functions in terms of measured displacements and forces by the probe. 

Darvish and Crandall (2001) proposed a third-order non-linear Green-Rivlin 

viscoelastic model and compared it with a third-order quasi-linear viscoelastic model. 

For both the models, the elastic response was represented by a second-order Rivlin strain 

energy density function. They also tested bovine brain tissues in simple shear using 

forced vibrations from 0.5 to 200 Hz up to a Lagrangian shear strain of 20%.  The third-

order non-linear properties were characterized by applying simple, double, and triple 
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harmonic inputs. The fully non-linear Green–Rivlin model also contains inter-modular 

distortions: frequency combinations of the fundamental frequencies and their integer 

harmonics. This study was continued by Takhounts et al. (2003b), where bovine and 

human brain tissues were compared. A linear viscoelastic shear strain limit of 17.5% was 

established for the brain tissues. The quasi-linear viscoelastic model was found to be 

suitable up to a strain value of 50%, while the Green-Rivlin non-linear model was seen 

to work for any shear strain range.  

Hyper-viscoelastic models also use a decoupled representation of the Helmholtz free 

energy function. One way is to decompose the total deformation gradient tensor into an 

elastic part and a viscoelastic part. El Sayed et al. (2008) and Prevost et al. (2011) 

developed two non-linear models based on this decomposition technique. El Sayed et al. 

(2008) proposed a generalized framework where a number of Maxwell-type relaxation 

viscoelastic networks were considered in parallel with viscoplastic networks. The 

number of material constants adopted varied with the number of networks used. By 

utilizing this model, they were able to capture the hysteretic and dissipative 

characteristics of soft tissues in tension up to a strain of 50%. Prevost et al. (2011) used 

an elastic network to represent instantaneous deformations and a viscoelastic network for 

dissipative responses. Hrapko et al. (2008) used a Mooney-Rivlin viscoelastic network 

along with a non-linear hyper-elastic spring to model shear and compressive responses 

up to a strain rate of 1/s. This methodology of decomposing the deformation gradient 

tensor into an elastic part and a viscoelastic part is based on the theory developed by Lee 

(1969). However, this decomposition is built upon the assumptions that the body is 
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isotropic in the reference configuration and the origin in the stress space always lies 

inside the body (Green and Naghdi, 1971). Therefore, this method cannot be extended to 

model the anisotropic response of a soft tissue. Another way of implementing hyper-

viscoelastic models is to decompose the deformation gradient tensor into a dilatational 

part and a volume-preserving part. This method, unlike the one by Lee (1969), is not 

restricted to isotropy. This volume preserving and volume changing decomposition 

technique has been used to develop constitutive models for knee ligaments and tendons 

(Pioletti, 1997), musculoaponeurotic system and facial skin tissue (Rubin and Bodner, 

2001), bovine liver tissue (Roan and Vemaganti, 2010), porcine brain tissue (Hrapko et 

al., 2008), arteries (Holzapfel and Gasser, 2000), and caterpillar muscle (Dorfmann et 

al., 2007). All these models have been developed to capture tissue responses in a 

uniaxial tension and have been validated for a limited range of loading regimes and low 

strain rates. Several studies have been conducted to determine the range of strains and 

strain rates associated with TBI.  Strains greater than 10% and strain rates greater than 

10/s have been observed to cause severe damage to brain tissues (Rashid et al., 2012).  
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CHAPTER III 

 A TRANSVERSELY ISOTROPIC VISCO-HYPERELASTIC 

CONSTITUTIVE MODEL FOR SOFT TISSUES 

 

3.1 Introduction 

 Soft tissues represent body tissues that envelope, bind, connect and support other 

body parts. Mechanical behavior of a soft tissue can be characterized by non-linear 

elastic deformations, strain rate sensitivity, hysteresis, viscoelastic responses (relaxation 

and creep), and permanent strains. Soft tissues have been extensively studied using 

continuum mechanics and non-linear elasticity (e.g., Humphrey, 2003; Holzapfel and 

Ogden, 2010).  

 Brain tissues (e.g., Prange and Margulies, 2002; Velardi et al., 2006; Ning et al., 

2006; Pervin and Chen, 2010), spinal cord tissues (e.g., Sacks and Sun, 2003; Peng et al., 

2006), and ligaments (e.g., Zhurov et al., 2007) have been found to be transversely 

isotropic. Body tissues exhibiting orthotropic material symmetry include cardiac tissues 

(e.g., Dokos et al., 2002; Holzapfel and Ogden, 2009) and arteries (e.g., Holzapfel and 

Ogden, 2010).  The current study is focused on the constitutive modeling of transversely 

isotropic soft tissues, which can be treated as hyperelastic or visco-hyperelastic 

materials.  

 For a hyperelastic or Green elastic material, a strain energy density function can 

be used to determine all stress components. One approach is to use a polynomial strain 

energy density function to describe the material response (e.g., Vaishnav et al., 1972; 
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Fung et al., 1979). The material parameters involved in such a polynomial function are 

numerous and often do not have any physical meaning. These models tend to be 

numerically unstable at high strains and violate convexity conditions (e.g., Holzapfel et 

al., 2000). Another approach is to work with a strain energy density function that 

contains two terms – one for the matrix and the other for the reinforcing fibers 

(e.g.,Holzapfel et al., 2000; Ciarletta et al., 2010). The matrix is often modeled as a neo-

Hookean material, a compressible Blatz-Ko material, or a Mooney-Rivlin solid. The 

most commonly used reinforcing model is the “standard reinforcing model” (e.g., 

Horgan and Saccomandi, 2005; Holzapfel and Ogden, 2010). In this model, the strain 

energy density function for the isotropic matrix is augmented by a term for the 

reinforcing fibers, which is a function (usually exponential or power) of a fourth 

invariant of the right Cauchy-Green deformation tensor. It is assumed that the fibers 

have no influence on the mechanical behavior of a soft tissue in compression, for its 

along-fiber shear deformation, or when it is stretched perpendicular to the fiber 

orientation. 

 Constitutive modeling of soft tissues as hyperelastic materials can also be 

conducted by using separate strain energy density functions for the matrix, fibers, and 

fiber-matrix interaction zone (e.g., Wu and Yao, 1976; Criscione et al., 2001;  Lu et al., 

2012).  This additive decomposition of the total strain energy into three separateterms is 

based on the experimental finding that intralamellar fiber-fiber and fiber-matrix 

interactions make a significant contribution to soft tissue stiffness. To describe the 

interaction energy, Criscione et al. (2001) proposed five physically based invariants. A 
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phenomenological model was developed by Peng et al. (2006) for human annulus 

fibrosus by providing a new strain energy density function to account for the fiber-

matrix shearing interaction. Guo et al. (2006) explained the shear interaction based on 

mechanics of composites, which was also verified numerically (Guo et al., 2007). 

 The effect of strain rate on soft tissues is important, particularly for blast-induced 

traumatic brain injuries. Experiments have demonstrated that brain tissues are sensitive 

to the time scale of loading. A brain tissue responds immediately to loading, is sensitive 

to load variations, and remembers the history of loading (e.g., Prevost et al., 2011). It has 

been experimentally observed that shear responses of human brain tissues are rate-

dependent (Shuck and Advani, 1972; Hrapko et al., 2008; Donnelly and Medige, 1997). 

Changes in strain rate generate additional amounts of stress in the soft tissue. 

Tensile/compressive responses of brain tissues are also found to be rate-dependent 

(Tamura et al., 2007, 2008). Brain tissue responses under tension/compression loading 

stiffen considerably as the rate of loading increases (Rashid et al., 2012). Unlike shear 

responses, tensile/compressive responses are explicitly more sensitive at higher strain 

rates (Tamura et al., 2007, 2008). This is of particular importance in modeling traumatic 

brain injuries(TBI)induced by blast events, where the duration of impact is on the order 

of milliseconds. Explicit modeling of strain rate responses will help characterize tissue 

properties near impact sites (particularly useful in modeling TBI) over the expected 

range of loading rate.  

 In this Chapter, a new strain energy density function is proposed for soft tissues 

by modeling a soft tissue as a transversely isotropic composite consisting of a matrix 
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(base) material and reinforcing fibers. The matrix (elastin is regarded as isotropic and 

described by using the neo-Hookean strain energy density function. Another function is 

used to represent the contributions from both fiber stretching and fiber-matrix 

interaction. The rest of this paper is organized as follows. In section 3.2, elements of 

continuum mechanics essential for the formulation are presented. In section 3.3, a new 

strain energy density function for describing quasi-static responses of soft tissues is 

proposed and examined, and its predictions are compared with those by a standard 

reinforcing model. Relevant issues on the polyconvexity of the strain energy density 

function and the ellipticity of the elasticity tensor are also briefly addressed. In section 

3.4, a viscous potential is proposed for simulating rate-dependent responses of soft 

tissues (treating as transversely isotropic visco-hyperelastic materials). In addition, 

explicit expressions for the fourth-order elasticity and viscosity tensors are provided in 

general forms for transversely isotropic visco-hyperelastic materials, which can be 

implemented infinite element models for soft tissues. 

3.2  Elements of Continuum Mechanics 

3.2.1  Kinematics 

Let X be the position vector of a material point in the undeformed (reference) 

configuration, and x be the corresponding position vector in the deformed configuration. 

The latter is related to the former through the equation of motion: 

 ( , ),tχ=x X  (3.1) 

where χ is a function describing the motion. The deformation gradient tensor, F, is given 

by  
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 ,
∂

=
∂

x
F

X
 (3.2) 

which is a two-point tensor mapping the vector dX in the reference configuration to the 

vector dx in the deformed configuration (i.e., dx = FdX). It is required that F satisfy 

 det 0,J = >F  (3.3) 

where J is the Jacobian representing the ratio of the deformed volume dv to the 

undeformed volume dV (i.e., dv = JdV).  

The right and left Cauchy-Green deformation tensors are, respectively, given by 

 , ,
T T= =C F F B FF  (3.4a,b) 

where the superscript T denotes the transpose of the tensor.  

The three principal invariants of C are defined as 

 2 2

1 2 3

1
, ( ) ( ) , det ,

2
I tr I tr tr I = = − = C C C C  (3.5) 

which are the identical to those of B. For an incompressible material, I3 = J
2 

= 1. For an 

isotropic hyperelastic material, the strain energy density function can be constructed 

using these three invariants, which forms an integrity basis (e.g., Spencer, 1971; 

Boehler, 1987; Zheng et al., 1994).  

For a transversely isotropic hyperelastic material with a preferred direction 

described by the unit vector a0 in the reference configuration, two additional invariants 

defined by 

 2

4 0 0 5 0 0,I I= =C Ci ia a a a  (3.6) 
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are needed in the invariant formulation of the constitutive equations (Spencer, 1972). If 

the reinforcing fibers are considered inextensible, then I4 = 1. 

 It should be mentioned that the number of invariants (i.e., five) required in the 

invariant formulation corresponds to the number of independent stiffness or compliance 

constants needed for characterizing a transversely isotropic linearly elastic material (e.g., 

Ding et al., 2006; Gao and Mao, 2013).A general discussion on the link between the 

invariant formulation and the linearized elastic moduli of a transversely isotropic 

material has been provided by Schröder and Neff (2003).   

Note that among the five invariants defined in Eqs. (3.5) and (3.6) only I3 and I4 

can be physically interpreted, with 
3I and 

4I being, respectively, the volume ratio 

and the stretch in the fiber direction a0. This motivated the efforts in developing 

physically-based invariants, as alternatives to I1~I5 defined in Eqs. (3.5) and (3.6),for 

describing mechanical responses of transversely isotropic hyperelastic materials (e.g., 

Criscione at al., 2001; Lu and Zhang, 2005; Shariff, 2008).
 

The rate of deformation tensor is given by 

 ( )1
,

2

T= +D L L  (3.7) 

where L = ∇v is the velocity gradient. It can be readily shown that 

  ,= -1
L FF�  (3.8) 

where the overhead dot represents the total time derivative, and the superscript “−” 

denotes the inverse. It follows from Eqs. (3.4a), (3.7) and (3.8) that the total material 

derivative of C is given by 
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 2 .TD

Dt
≡ =

C
C F DF�  (3.9) 

3.2.1  Stress Tensors 

 For hyperelastic materials, the use of the principle of material frame indifference 

and the first and second laws of thermodynamics gives  

 2 ,
W∂

=
∂

S
C

 (3.10) 

where S is the second Piola-Kirchhoff (P-K) stress tensor (measuring the force per unit 

undeformed area), and W (= W(C)) is the strain energy density function (measuring the 

strain energy per unit undeformed volume). The Cauchy stress (measuring the force per 

unit deformed area) can be computed from S in Eq. (3.10) as 

 12 .TW
J

− ∂
=

∂
F F

C
σσσσ  (3.11) 

Equations (3.10) and (3.11) are compressible materials. 

 For incompressible materials with J = 1, Eqs. (3.10) and (3.11) become 

 12 , 2 ,TW W
p p

−∂ ∂
= − = −

∂ ∂
S C F F I

C C
σσσσ  (3.12a,b) 

where p is the hydrostatic pressure acting as a Lagrange multiplier (associated with the 

kinematic constraint detC = 1), and I is the second-order identity tensor. 

For a transversely isotropic hyperelastic material, the strain energy density 

function can be constructed using the five invariants I1 – I5  (Spencer, 1972), i.e., 

 1 2 3 4 5( , , , , ),W W I I I I I=  (3.13) 
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where Ii (i ∈ {1, 2, 3, 4, 5}) are functions of C defined in Eqs. (3.4) and (3.5). It then 

follows from Eqs. (3.12a) and (3.13), with the help of the chain rule, that 

 
5

1

1

2 ,
j

j j

IW
p

I

−

=

∂∂
= −

∂ ∂
∑ CS

C
 (3.14) 

where 

13 51 2 4
1 3 0 0 0 0 0 0, , , , ,TI II I I

I I
−∂ ∂∂ ∂ ∂

= = − = = ⊗ = ⊗ + ⊗
∂ ∂ ∂ ∂ ∂

I I C C a a a Ca C a a
C C C C C

 (3.15) 

which are directly obtained from Eqs. (3.5) and (3.6).  

 

 Using Eq. (3.15) in Eq. (3.14) gives the second Piola-Kirchhoff stress as 

( )1 0 0 0 0 0 0

1 2 2 4 5

1

2

,

TW W W W W
I

I I I I I

p
−

  ∂ ∂ ∂ ∂ ∂
= + − + ⊗ + ⊗ + ⊗  

∂ ∂ ∂ ∂ ∂  

−

S I C a a a Ca C a a

C

 (3.16) 

Similarly, substituting Eqs. (3.13) and (3.15) into Eq. (3.12b) results in, with the 

help of the Cayley-Hamilton theorem,  

 ( )1

4 4

1 2 4 5

2 TW W W W
I I p

I I I I

− ∂ ∂ ∂ ∂
= − + ⊗ + ⊗ + ⊗ − 

∂ ∂ ∂ ∂ 
B B a a a Ba B a a Iσσσσ  (3.17) 

as the Cauchy stress, where the ∂W/∂I3term and one term containing ∂W/∂I2 have been 

consolidated with the hydrostatic pressure term. 

3.2.1  Constitutive Laws 

 A constitutive law is required to describe the stress-strain relation of a material. 

Any constitutive law must satisfy the principle of determinism, the principle of local 

action, and the principle of material frame indifference (Truesdell et al., 2004). It has 
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been shown that the following constitutive law satisfies all these three principles (e.g., 

Pioletti and Rakotomanana, 2000): 

 0( ) ( ( )) [ ( ); ( )],e st t t s t
∞

== + ℑ −S S C G C  (3.18) 

where S is the second Piola-Kirchhoff stress tensor,Se(C(t)) is an equilibrium term 

representing the elastic response, C is the right Cauchy-Green deformation tensor, t is 

the present time, s is the elapsed time, and ℑ is a functional describing the history of G(t 

−s) = C(t −s) −C(t).  

Equation (3.18) gives a general constitutive equation for a simple material. It says 

that the stress at the present time t depends on the values of the right Cauchy-Green 

deformation tensor at all times 0s ≥ . It may happen that only a small part of the 

deformation history has an influence on the stress. That is, only values of C at s close to 

zero affect the value of S. Hence, C may be approximated by a Taylor series near s = 0 

up to some order.  As a result, the stress depends only on a finite number of time 

derivatives of C. Such a material is called a material of differential type (Truesdell et al., 

2004). In particular, if only the first time derivative is considered as s→ 0, Eq. (3.18) can 

be rewritten as 

 
0

( ) ( ( )) [ ( ); ( )]+ [ ( ); ( )]

( ( )) ( ( ); ( )) + [ ( ); ( )],

e s s

e v s

t t t s t t s t

t t t t s t

δ
δ

δ

∞

= =

∞

=

= + ℑ − ℑ −

+ ℑ −

S S C G C G C

= S C S C C G C�
 (3.19) 

where δ → 0
+
.  Note that the response functional ℑ in Eq. (3.19) can be expressed in 

terms of an integral to obtain 
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 ( ) ( ( )) S ( ( ); ( )) ( ( ), ; ( )) .
e v

Equilibrium Short term
memory responseresponse Long term

memory response

t t t t t s s t ds
δ

∞•

−
−

∑= + + −∫S S C C C G C
����� �������

�����������

 (3.20) 

Equation (3.20) is a general constitutive law for a material of integral type. 

When only short term effects is included, Eq. (3.20) reduces to 

 ( ) ( ( )) ( ( ); ( )),e vt t t t= +S S C S C C�  (3.21) 

where the first term is the elastic (equilibrium state) stress, and the second term is the 

rate-dependent viscous (non-equilibrium state)stress. 

3.3  Quasi-static Response 

 A quasi-static response represents an equilibrium response of a soft tissue 

as t → ∞ .  

 For transversely isotropic hyperelastic materials, it has been shown (Spencer, 

1972) that in addition to the principal invariants I1, I2, I3 for isotropic materials, two 

quasi-invariants I4 and I5 are required to fully describe the material response, which are 

defined in Eqs. (3.6). Note that the invariant I4 is directly linked to the fiber stretch, and 

the invariant I5 is related to the fiber stretch and registers the fiber matrix shear 

interaction.  

 The invariant I4 has been extensively used to model soft tissues (e.g., Holzapfel 

et al., 2000; Horgan and Saccomandi, 2004; Holzapfel and Ogden, 2010; Chatelin et al., 

2012; Wright and Ramesh, 2012). As an example, a strain energy density function of the 

following decoupled form has been proposed: 

 ( ) ( ) ( )1 2 4 1 2 4, , , ,matrix fiberW I I I W I I W I= +  (3.22) 
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where Wfiber(I4), called the standard reinforcing model, is a convex function of I4 (e.g., 

Holzapfel et al., 2000; Dorfmann et al., 2007). 

 However, the invariant I5 has rarely been used due to a lack of understanding of 

the energy contribution from the fiber-matrix interaction. By analogy with Eq. (3.22), a 

strain energy function involving I5 can be defined to have the form: 

 ( ) ( ) ( )1 2 5 1 2 5, , , .matrix fiberW I I I W I I W I= +  (3.23) 

 Merodio and Ogden (2002, 2003, 2004) studied models involving the invariant I5 

and compared the resulting predictions with those by models containing the invariant I4. 

They found that the constitutive models employing the strain energy density function of 

the form in Eq. (3.23) are considerably stiffer than those models based on the strain 

energy density function of the form in Eq. (3.22). They also showed that the models 

based on Eq. (3.23) are numerically unstable, as I5 can have multiple minima with 

respect to C. 

Schröder and Neff (2003) proposed a variety of strain energy density functions 

for modeling transversely isotropic soft tissues based on the five invariants I1~I5defined 

in Eqs. (3.5) and (3.6). Some of their functions are summarized in Table 5 along with 

several other commonly used invariants for modeling transversely isotropic materials. 

Balzani et al. (2006) suggested a strain energy density function for biological soft 

tissues by using the mixed invariant K3 listed in Table 5, which contains three or more 

material parameters and has been used to fit experimental data obtained under uniaxial 

tensile loading. 
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Table 5 Invariant terms for transversely isotropic soft tissues 

Invariant term Shortening  

(compressive 

loading) 

Elongation 

(tensile 

loading) 

Suitability for 

modeling soft 

tissues 
2

2 1 1
1 1 1/3 1/3

3 3

, , ,
I I

I I
I I

 Increase Increase 
Isotropic 

invariants. Suitable 

for modeling 

isotropic non-

collagenous matrix 

2
2 2 2

2 2 1/3 1/3

3 2

, , ,
I I

I I
I I

 Increase Increase 

2

4 4 1 4, ,I I I I  Decrease Increase 

Suitable for 

embedded collagen 

fibers 

5I  Increase or decrease 
Increase or 

decrease 
Not Polyconvex 

1 2 5 1 4K I I I I= + −  Increase Decrease 
Unsuitable for 

collagen fibers 

2 1 4K I I= −  Increase Increase 
Unsuitable for 

collagen fibers. 

3 1 4 5K I I I= −  Decrease Increase 
Suitable for 

collagen fibers 

2

1 1 4I I I+  Increase Increase 
Unsuitable for 

collagen fibers 

2

1 1 43I I I−  Increase Increase 
Unsuitable for 

collagen fibers 

1 43 2I I−  Increase Decrease 
Unsuitable for 

collagen fibers 

2

2 2 5 1 2 42I I I I I I+ −  Increase Increase 
Unsuitable for 

collagen fibers 

2

2 1 2 4 2 52I I I I I I+ −  Increase Increase 
Unsuitable for 

collagen fibers 

4 2 5 1 42 2K I I I I= − +  Decrease Increase 
Suitable for 

collagen fibers 

   

Following the studies of Schröder and Neff (2003) and Balzani et al. (2006) and 

based on the observations that fibers have negligible compression stiffness (thereby not 

contributing to the strain energy when under contraction) and the fiber-matrix interaction 

affects the mechanical response of a soft tissue, two strain energy density functions 
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listed in Table 6 are proposed in the current study, each of which contains only two 

material parameters.   

Table 6 The strain energy density functions proposed in the current study 

Strain Energy Density Function Model No. 

1 4
1

( 1)
( 3) ln 1

2 2

n
I

e m

m

I
W I J

J

µµ  −
= − − − 

 
 I 

1 1 4

4 2 1 4 5

( 3) ( 7) ,
2

2 2

II q

e
W I K

K I I I I

µ
µ= − + −

= + −  

II 

 

In Table 6, µ  is the shear modulus for infinitesimal deformations, µ1 is a material 

constant, n  and q are two constants, and Jm is the limiting value of (I1−3) accounting for 

the polymeric chain extensibility (Horgan and Saccomandi, 2005). Model I in Table 6 is 

a generalized version of one strain energy density function considered by Horgan and 

Saccomandi (2005) and can be identified as a standard reinforcing model (see Eq. 

(3.22)). On the other hand, Model II in Table 6 is newly proposed and has not been used 

before for constitutive modeling. It makes use of the mixed invariant K4 provided in 

Shroder and Neff (2003) and listed in Table 5. The feasibility of Model II for describing 

constitutive behavior of soft tissues will be studied for various loading conditions along 

with that of Model I in the remaining part of this section.  

It is required that the strain energy density function and the second P-K stress be 

zero-valued in the reference configuration, where there is no deformation such that F = 

I, C = I, I1 = 3, I2 = 3,  I3 = 1, I4 = 1, and I5 = 1. Upon using Eqs. (3.13)-(3.15), these 

requirements become 
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1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

3, 3, 1, 1, 1

0
1 2 3, 3, 1, 1, 1

4 5 3, 3, 1, 1, 1

0,

( 2 ) ,
2

( 2 ) 0,

I I I I I

I I I I I

I I I I I

W

p
W W

W W

= = = = =

= = = = =

= = = = =

=

+ =

+ =

 (3.24) 

where Wj ≡ ∂W/∂Ij ( j = 1,2,3,4,5), and p0 is the value of the hydrostatic pressure in the 

reference configuration.  It can be readily shown that Eq. (3.24) can be identically 

satisfied by both 
I

eW and 
II

eW  listed in Table 6 as long as µ  = p0. That is, the two strain 

energy density functions 
I

eW and 
II

eW satisfy the vanishing stress and energy conditions 

in the reference configuration. 

Also, 
I

eW and 
II

eW can be shown to be polyconvex for µ  > 0, µ1 >0, n > 1, I4 

<
1/ n

mJ +1 and µ  > 0, µ1 >0, q > 1, respectively, since I1, I4 and K4 involved are 

polyconvex (Shroder and Neff, 2003; Steigmann, 2003). The polyconvexity of each of 

these two strain energy density functions ensures the ellipticity of the corresponding 

acoustic tensor for all deformations (Shroder and Neff, 2003; Shroder, 2010), thereby 

leading to numerically stable constitutive models.  

In order to be physically admissible, the strain energy density functions 
I

eW and 

II

eW will be further tested below by fitting the experimental stress-strain curves obtained 

under different loading conditions.  

3.2.1  Uniaxial Loading 

 The stress responses to uniaxial loading along the X1-direction predicted using 

I

eW and II

eW are examined here. The reinforcing fibers are oriented at an angle θ relative 
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to the X1 axis, as shown in Fig. 9.   

 

Figure 9. Uniaxial tension of a composite specimen with fibers making an angle θ 

relative to the X1 axis. 

For uniaxial loading in the X1-direction, the deformation gradient tensor F, the 

left Cauchy-Green deformation tensor B, and the inverse of B are given by 

 

2

1 1

2

2 2

2

3 3

2

1

1 2

2

2

3

0 0 0 0

0 0 , 0 0 ,

0 0 0 0

1/ 0 0

0 1/ 0 ,

0 0 1/

ij ij

ij

F B

B

λ λ

λ λ

λ λ

λ

λ

λ

−

  
     = =      
     

 
 

  =   
 
 

 (3.25a-c) 

where λ1, λ2 and λ3, satisfying the incompressibility condition λ1λ2λ3 = 1, are the 

principal stretches along the X1-, X2 and X3-directions, respectively.   

The unit vector representing the fiber orientation in the reference and deformed 

configurations reads 
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 0 1 2 1 1 2 2cos sin , cos sin .θ θ λ θ λ θ= + = +e e e ea a  (3.26a,b)  

It then follows from Eqs. (3.5), (3.6), (3.25a-c) and (3.26a,b) that the five 

invariants in this case are 

 

2 2 2 2 2 2 2 2 2

1 1 2 3 2 1 2 2 3 1 3 3

2 2 2 2 4 2 4 2

4 1 2 5 1 2

, , 1,

cos sin , cos sin .

I I I

I I

λ λ λ λ λ λ λ λ λ

λ θ λ θ λ θ λ θ

= + + = + + =

= + = +
 (3.27) 

For the strain energy density functions 
I

eW and 
II

eW presented in Table 6, Eq. 

(3.17) gives 

 

( )

( )

( )

1

0 4
11 11 11

4

1 1 1

11 1 4 4 11 1 4 11

1

1 1 4 11

1

1 4 11

2 ( 1)
,

( 1)
1

2 2 ( 7) 2 ( 7)
2

4 ( 7)

4 ( 7) .

n
I I

e n

m

II n n

e

n

n T II

I
B p

I

J

nI K B n K B

nI K

n K p

µ
σ µ

µ
σ µ µ

µ

µ

−

− − −

−

−

−
= + ⊗ −

−
−

 
= + − − −  

+ − ⊗

− − ⊗ ⊗ −

a a

a a

a Ba + B a a

 (3.28) 

The deformation defined in Eq. (3.25a-c) is homogeneous. Hence, the 

equilibrium equations in the absence of body forces will be satisfied if the hydrostatic 

pressure p is a constant.  

For uniaxial loading along the X1 direction, σ33 = 0. This gives, from 
I

eW and 

II

eW in Table 6 and Eqs. (3.17) and (3.26b), 

 
33

1 1 1

1 4 4 33 1 4 33

,

4 ( 7) 2 ( 7) .

I

II n n

p B

p nI K B n K B

µ

µ µ µ− − −

=

 = + − − − 
 (3.29) 

Using Eqs. (3.29), (3.25b,c) and (3.26b) in Eq. (3.28) then yields  
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1
2 2 2 211 0 4

1 3 1

4

1 2 2 1 2 211
4 4 1 3 4 1 3

1 2 2 1 4 2

1 4 1 4 1

( 1)
cos ,

( 1)
1

1
2 ( 7) ( ) ( 7) ( )

2

2 ( 7) cos 4 ( 7) cos ,

I n

e

n

m

II
n ne

n n

I

I

J

nI K n K

nI K n K

σ γ
λ λ λ θ

µ

σ
γ λ λ γ λ λ

µ

γ λ θ γ λ θ

−

− − − −

− −

−
= − +

−
−

 
= + − − − − −  

+ − − −

 (3.30) 

where 

 0 1
0

2 2
,

µ µ
γ γ

µ µ
= =  (3.31) 

is a dimensionless parameter. 

For uniaxial loading along the fiber direction with θ = 0 and λ2 = λ3, Eq. (3.27) and 

Table 6 give 

 2 2 4

1 1 2 1 3 4 1 5 1 4 12 2

1 1 1

2 1 1
, 2 , 1, , , 6 .I I I I I Kλ λ λ λ λ

λ λ λ
= + = + = = = = +  (3.32) 

The normal stress in the X1-direction, 
11

I

eσ , induced by the uniaxial tensile loading in 

the fiber direction (with θ = 0 and λ2 = λ3) is plotted in Figs. 10 and 11. The numerical 

values of 
11

I

eσ and 
11

II

eσ shown in Figs. 10 and 11 are obtained from Eqs. (3.30) and 

(3.32). For illustration purposes, in the calculations, n in I

eW and q in II

eW  vary from 1.5 

to 5. Also, Jm in I

eW  is selected to be 4.3. This value has been used by Destrade et al. 

(2008) to study soft tissues and is based on fitting experimental data for porcine 

brainstems (Ning et al., 2006).  
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            (a)                                                                                               (b) 

Figure 10. σ11e/µ  vs. λ1 in the fiber direction: (a) Model I with Jm = 4.3, γ0 = 10; (b) Model II with γ = 10. 
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                (a)                                                                                                 (b) 

Figure 11. σ11e/µ  vs. λ1 in the fiber direction: (a) Model I with γ0 = 10, 25, 50, 100, Jm = 4.3, n = 3; (b) Model II with γ = 10, 

25, 50, 100, q = 3. 
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Figures 10(a) and 10(b) illustrate the influence of the parameters n and q, 

respectively. Clearly, increasing the value of n in Model I reduces the stress contribution 

from the reinforcing fibers (see Fig. 10(a)), while increasing the value of q in Model II 

increases the stress contribution from the reinforcing fibers (see Fig. 10(b)). Also, it is 

seen that the effect of the parameter q is significant only when λ1 is large. For small 

extensions, the curves with different values of n (for n > 3) or q are almost coincident. In 

particular, the stress response stiffens considerably at higher values of q.   

Figures 11(a) and 11(b) show the effect of the parameters γ0 and γ, respectively, 

on the stress response predicted by the two models. It is observed that the stress σ11e is a 

monotonically increasing function of the stretch for any value of γ0 or γ considered. 

To illustrate the efficacy of the two models, the stress-stretch responses predicted 

by the two models are compared with the experimental data of porcine brain tissues 

obtained in the uniaxial tensile tests by Tamura et al. (2008), as shown in Figs. (12a) and 

(12b). The values of the optimized data fitting parameters are listed in Table 7. It is seen 

from Figs. (12a) and (12b) and Table 7 that the predictions by the two models agree well 

with the experimental data.  
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                                                         (a)                                                                                                 (b) 

Figure 12.  Comparison of the current predictions with the experimental data of Tamura et al. (2008) at strain rate of 25/s : a) 

predictions by Model I  for n = 3.63, γ0 = 0.6349,  µ = 5640.176 Pa, µ0 = 1790.57 Pa, Jm = 4.3;  b) predictions by Model II for  

q = 4.5 , γ = 0.008, µ = 2944.66 Pa, µ1 = 11.694 Pa
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Table 7 Data fitting parameters for the Models I and II under uniaxial tensile loading. 

Data Strain rate Model No. First Order 

Optimality 

Measure 

Error 

(Infinity 

norm) 

Tamura et al. 

(2008) 

25/s I 6.773e-4 0.02745 

II 0.10753 0.02704 

 

3.2.2  Bi-axial Loading 

For a planar bi-axial deformation (see Fig. 9), the deformation gradient tensor F 

and the left Cauchy-Green deformation tensor B are given by  

 

2 2

11 12 11 12 11 21 22 12

2 2

21 22 11 21 22 12 21 22

2

33 33

0 0

0 , 0 ,

0 0 0 0

ij ij

F F F F F F F F

F F F B F F F F F F

F F

 + + 
     = = + +     
     

 (3.33) 

where 

 
( )33 3

11 22 12 21

1
.F

F F F F
λ= =

−
 (3.34) 

It then follows from Eqs. (3.5), (3.6) and Eq. (3.34) that the fiber direction in the 

deformed configuration and the five invariants are 

 

0 11 12 1 21 22 2

2

1 11 22 33 2 11 22 11 33 22 33 12 3

2 2 2 2

4 1 2 5 11 1 12 1 2 22 2

( cos sin ) ( cos sin ) ,

, , 1

, 2 .

F F F F

I B B B I B B B B B B B I

I a a I B a B a a B a

θ θ θ θ= = + + +

= + + = + + − =

= + = + +

a Fa e e

 (3.35) 

Note that in reaching the first expression in Eq. (3.35) it has been assumed that the fibers 

are inextensible.  

Upon using the plane stress approximation (σ33 = 0), the expression for the 

hydrostatic pressure p can be obtained from Eq. (3.17) as, with I4 = 1 for inextensible 

fibers,   
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 ( ) ( )1

33 33 33 33
1 2 4 5

2 2 2 2 .TW W W W
p B B

I I I I

−∂ ∂ ∂ ∂
= − + ⊗ + ⊗ + ⊗

∂ ∂ ∂ ∂
a a a Ba B a a  (3.36) 

Using Eq. (3.36) in Eq. (3.17) gives the non-zero components of the Cauchy stress σσσσ as 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1

11 11 33 33 11 11 33
1 2 4

11 33
5

1 1

22 22 33 33 22 22 33
1 2 4

22 33
5

12

2 2 2

2 ,

2 2 2

2 ,

2

e

T T

e

T T

e

W W W
B B B B

I I I

W

I

W W W
B B B B

I I I

W

I

W

I

σ

σ

σ

− −

− −

∂ ∂ ∂
 = − + − + ⊗ − ⊗ ∂ ∂ ∂

∂  + ⊗ + ⊗ − ⊗ + ⊗ ∂

∂ ∂ ∂
 = − + − + ⊗ − ⊗ ∂ ∂ ∂

∂  + ⊗ + ⊗ − ⊗ + ⊗ ∂

∂
=

∂

a a a a

a Ba B a a a Ba B a a

a a a a

a Ba B a a a Ba B a a

( ) ( )1

12 12 12 12
1 2 4 5

2 2 2 ,
TW W W

B B
I I I

−∂ ∂ ∂
− + ⊗ + ⊗ + ⊗

∂ ∂ ∂
a a a Ba B a a

 (3.37a-c) 

where 

 

( )

( )
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

2

1 1 2

2

2 1 2

1 11 1 12 2 1 12 1 22 2

2 11 1 12 2 2 12 1 22 2

1 11 1 12 2 2 12 1 22 2

1 11 1 12 2 2 12 1 22 2

0

0 ,

0 0 0

0

0 ,

0 0 0

0

0

0 0 0

ij

ij

T

ij

a a a

a a a

a B a B a a B a B a

a B a B a a B a B a

a B a B a a B a B a

a B a B a a B a B a

 
  ⊗ =   
 
 

+ + 
  ⊗ = + +  
  

+ + 
  ⊗ = + +   
  

a a

a Ba

B a a .

 (3.38) 

If there is no shear, then the deformation gradient tensor is a diagonal matrix of 

the form diag [λ1  λ2  λ3], with λ3 = 1/λ1λ2 (due to incompressibility). For this special 

case, W is a function of only two independent stretches, λ1 and λ2, in addition to the fiber 

angle θ.  However, if the symmetry axis of the transversely isotropic material is not 

aligned with one loading direction, then a shear stress is required to maintain a 
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homogeneous deformation in the specimen. In such a case the deformation gradient 

tensor will have the form given in Eq. (3.33).  

Figures 13 and 14 show the tensile stress-stretch curves for σ11e and σ22e in a 

specimen with the fiber direction along the X1 axis subjected to equi-biaxial tension 

(with zero shear), which are obtained from Eqs. (3.37a,b) with θ = 0 (i.e., the fiber 

orientation in this case is taken to be along the X1 axis.  

It is seen from Figs. 13(a) and 13(b) that the axial normal stress-stretch curves 

predicted by both models for the biaxial loading are similar to those predicted for 

uniaxial loading (see Figs 10(a) and 10(b)).  

However, the transverse-direction normal stress responses predicted by Model I 

are significantly different from those predicted by Model II, as shown in Figs. (14a) and 

(14b). Model II predicts σ22e–λ1 curves exhibiting stiffening behavior (similar to those 

exhibited by the σ11e–λ1 curves (see Figs. (13b) and (14b)), which is typical of the strain-

hardening behavior experimentally displayed by soft tissues (e.g., Velardi et al., 2006). 

On the other hand, Model I predicts an increasing extensibility with increasing stress, 

with no stiffening effect observed (see Fig 14(a)). 



 

61 

 

 

 

 

              

                                                        (a)                                                                                                 (b) 

Figure 13. σ11e vs. λ1 in a specimen with the fiber direction along the X1 axis subjected to equi-biaxial tension: (a) Predictions 

by Model I with Jm = 4.3, γ0 = 10; (b) Predictions by Model II with γ = 10. 
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                                                 (a)                                                                                                  (b)                                                                       

Figure 14. σ22e/µ vs. λ2 (=λ1) in a specimen with the fiber direction along the X1 axis subjected to equi-biaxial tension: (a) 

Predictions by Model I with Jm = 4.3, γ0 = 10; (b) Predictions by Model II with γ = 10. 
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What is shown in Fig. 14(a) can be explained as follows. For the fiber orientation 

along the x1 axis, θ = 0 and F12 = F21 = 0. It then follows from Eqs. (3.33) and (3.35) that 

for the equi-biaxial deformation considered,  

 

2

1 1

2

2 2

1 1 2 2

1 2 1 2

1 1

2 2 2 2 2 2 2 2 2 4

1 1 2 1 2 2 1 2 2 1 3 4 1 5 1

0 0 0 0

0 0 , 0 0 ,

0 0 0 0

,

, , 1, , .

ij ijF B

I I I I I

λ λ

λ λ

λ λ λ λ

λ

λ λ λ λ λ λ λ λ λ λ

− − − −

− − − −

  
     = =      
     

=

= + + = + + = = =

a e  (3.39) 

Using Eq. (3.39) and the expressions of
 

I

eW and
 

II

eW  (see Table 6) in Eqs. (3.37b) yields 

 

( )

( ) ( )

22 22 33

1 1 1 1

22 1 4 4 22 33 1 4 33 22

,

2 2 ( 7) 2 ( 7) .
2

I

e

II n n

e

B B

nI K B B n K B B

σ µ

µ
σ µ µ− − − −

= −

 
= + − − + − −  

 (3.40a,b) 

It can be seen from Eq. (3.40a) that σ22e predicted by Model I contains no contribution 

from the reinforcing fibers (represented by Wfiber( I4 )), unlike that predicted by Model II 

(see Eq. (3.40b)).   Therefore, the σ22e–λ1 curves in Fig. 14(a) are essentially those of a 

neo – Hookean solid based on Eq. (3.40a) that is derived from the first (neo-Hookean) 

term of term of I

eW given in Table 6.    

Next, the predictions by both Model I and Model II are tested by comparing with 

the experimental data obtained by Zemanek et al. (2009) for equi-biaxial testing of soft 

tissues of artery. It has been shown (Sacks and Sun, 2003; Bass et al., 2004) that material 

parameters determined only from uniaxial tension tests may not correctly describe 

biaxial deformation responses. Hence, the experimental data of Zemanek et al. (2009) 

from equi-biaxial tensile tests are simultaneously fitted to σ11e and σ22e predicted by 
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Model I and Model II, respectively. The predicted and experimental σ11e–λ1 and σ22e–λ1 

curves are shown in Figs. 15(a) and 15(b) (for Model I) and Figs. 16(a) and 16(b) (for 

Model II). It is seen from Figs. 16(a) and 16(b) that there is an excellent agreement 

between the predictions by Model II and the experimental data. In contrast, the 

predictions by Model I do not agree very well with the experimental data, as shown in 

Figs. 15(a) and 15(b). 

For a general biaxial deformation with the deformation gradient tensor given in 

Eq. (3.33), the non-zero components of the Cauchy stress are σ11e, σ22e, σ33e, σ12e, and 

σ21e (=σ12e). Using a thin sheet approximation for soft tissues allows σ33e to be set to 

zero, which then leads to the determination of the hydrostatic pressure p from Eq. (3.36). 

For Model II, the resulting three expressions for the non-zero stress components σ11e, 

σ22e and σ12e (=σ21e) involve four independent constitutive functions, namely, ∂W/∂I1, 

∂W/∂I2, ∂W/∂I4, and ∂W/∂I5, for the incompressible material (see Eqs. (3.37a-c)). In 

order to fully characterize the transversely isotropic material properties, the minimum 

experimental tests required include: (a) planar biaxial tests with in-plane shear, and (b) 

through thickness shear tests. However, for membrane tissues (like brain tissues) where 

thin sections can be prepared, planar biaxial tests with an in-plane shear stress 

component would be sufficient for full characterization of the material properties. To the 

best of our knowledge, the current multi-axial experimental data available for 

transversely isotopic soft tissues are limited to equi-biaxial tests only.  
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        (a)                                                                                                  (b)                                                              

Figure 15. Comparison of the predictions by Model I with the equi-biaxial tension test data of Zemanek et al. (2009) for 

arterial wall tissues: (a) σ11e; (b) σ22e. The parameter values used are n =15.35, γ0 =  10.3985, µ = 87939.09 Pa, µ0 =  457220.08 

Pa, Jm = 4.3. 
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         (a)                                                                                                  (b) 

Figure 16. Comparison of the predictions by Model II with the equi-biaxial tension test data of Zemanek et al. (2009) for 

arterial wall tissues: (a) σ11e; (b) σ22e. The parameter values used are q = 2.256, γ = 0.018734, µ = 26978.84 Pa, µ1 = 252.72 Pa. 
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3.2.3 Shearing Deformation 

Consider a simple shear deformation. When the simple shear of the amount k is applied 

in the X1-direction, as shown in Fig. 17, the deformation gradient tensor F, the left 

Cauchy-Green deformation tensor B, and the inverse of B are given by 

 

2

1 2

1 0 1 0 1 0

0 1 0 , 1 0 , 1 0 .

0 0 1 0 0 1 0 0 1

ij ij ij

k k k k

F B k B k k−

 + −   
        = = = − +         
        

 (3.41) 

 

Figure 17. Simple shearing deformation. 

It follows from Eqs. (3.5), (3.6) and (3.41) that 

 

2

1 2 3

2 2

4

2 2 2 2

5

3 , 1

1 sin 2 cos sin ,

3 sin 4 cos sin (cos sin ) 1.

I I k I

I k k

I k k k k

θ θ θ

θ θ θ θ θ

= = + =

= + +

= + + + +

 (3.42) 

Using Eq. (3.42) and the expressions of
 

I

eW and
 

II

eW given in Table 6 in Eq. (3.17) then 

gives 
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 (3.43) 

It follows from Eq. (3.42) that for the shear loading along the fiber direction (i.e., 

θ = 0), I4 = 1 and K4 = k 
2
 + 7, and for the shear loading perpendicular to the fiber 

direction (i.e., θ = π/2), I4 = k 
2
 + 1 and K4 = 3k 

2
 + 7. When θ = 0, I4 = 1 and from Eq. 

(3.42) and Model I reduces to the neo-Hookean model, while Model II contains the 

second term depending on the shear strain k. For all other fiber directions (with θ ≠ 0 or 

π/2), K4 can be obtained from Eq. (3.42) as 2 2

4 7 (1 2sin ) 4 cos sin .K k kθ θ θ= + + +   

Table 8 shows the values of the strain energy density functions of the two models 

for shear deformations. The values in column two are determined from the experimental 

stress-strain curves of Hrapko et al. (2008) and Donnelly and Medige (1997) (for simple 

shear loading). It can be seen from Table 8 that there is a very good agreement between 

II

eW and the experimental data.  Therefore, even though the fibers are not stretched, the 

fiber-matrix and fiber-fiber interactions contribute to the tissue response. This may be 

the reason for the stiffer behavior predicted by Model II.  
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Table 8 Strain energy density function values for shear loading along the fiber direction 

at different loading rates. 

Strain 

Rate 

(/s) 

Trapezoidal 

Integration 

(J/m
3
) 

Strain energy function 

for model I 

(J/m
3
) 

Strain energy function 

for model II 

(J/m
3
) 

 Wtot Wfiber Wmatrix    Wtot 

 

Wfiber Wmatrix    Wtot 

 

0.01 4.15 0 3.92 3.92 0 3.92 3.92 

0.1 5.72 0 5.49 5.49 0 5.49 5.49 

1 7.92 0 7.56 7.56 0 7.56 7.56 

15 648.5 0 682.9 682.9 100.32 556.8 657.1 

60 1274.6 0 1310.9 1310.9 106.58 1178 1284.6 

90 1444.2 0 1508.2 1508.2 173.1 1282.1 1455.3 

 

For simple shear in a direction φ relative to the X1 axis in the X1X2 plane, the 

coordinate system with the following base vectors: 

 
1 1 2 2 1 2 3 3

cos sin , sin cos ,φ φ φ φ= + = − + =e i i e i i e i  (3.44) 

is adopted such that the shear loading is along the e1 direction.  In Eq. (3.44), i1, i2 and i3 

are the base vectors associated with the coordinate system (X1, X2, X3). The deformation 

gradient tensor is then given by 

 

( )

( ) ( )
( )

1 2 1 2 1 1

2 2

1 2 2 1

2 2 3 3

1 sin cos

cos sin

1 sin cos .

k k k

k k

k

φ φ

φ φ

φ φ

= + ⊗ = = + ⊗ = − ⊗

+ ⊗ − ⊗

+ + ⊗ ⊗

F I e e F I e e i i

i i i i

i i + i i

 (3.45) 

The corresponding components of right Cauchy Green tensor are, 

 

2
2 2

2
2 2

1 sin 2 sin cos 2 sin 2 0
2

cos 2 sin 2 1 sin 2 cos 0
2

0 0 1

ij

k
k k k

k
k k k

φ φ φ φ

φ φ φ φ

 
− + − 

 
 

= − + + 
 
 
 
 

C  (3.46) 
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It follows from Eqs. (3.5), (3.6), and (3.46) that 

 

( )
( )

2

1

2

2

2 2

4

2 2 2 2

5

2

1 2

3

3

1 sin(2 ) sin ,

1 2 sin(2 ) sin ,

1 sin cos sin .

I k

I k

I k k

I k k k k

k k

φ φ

φ φ

φ φ φ

= +

= +

= − +

 = + + + − + 

− −i ia =

 (3.47) 

Also, for the fibers along the X1-direction in the reference configuration (i.e., a0 = i1) and 

being inextensible,  

 ( ) 2

0 1 21 sin cos (sin ) ,k kφ φ φ= − −F i ia = a  (3.48) 

where use has been made of Eq. (3.45). 

Figures 18, 19 and 20 show the variation of σ12/µ with k predicted by both the 

models.  Figures (18a), (19a) and (20a) are for Model I, and Figs. (18b), (19b) and (20b) 

are for Model II.  From Figs. (18a) and (19a), it is seen that for Model I (as a standard 

reinforcing model) predicts unstable stress-strain behavior (decreasing stress for 

increasing strain) at higher strains, while Model II predicts the stress-strain response that 

is commonly observed in soft tissues under shear loading (e.g., Donnelly and Medige, 

1997; Dokos et al., 2000).  

According to Model II, the shear stress acting on planes parallel and 

perpendicular to the shearing direction has the form: 

 ( ) ( )
1

2 2 2 2

12 2 sin 2 sin 2 2 4 sin 2sin 2
2

q
II

s k q k k k k k
γ

σ φ φ φ φ
−

= + + − + −  (3.49) 

The shear stress given in Eq. (3.49) is plotted in Figs. 21 and 22. A similar analysis 

based on a standard reinforcing model was conducted in Qiu and Pence (1997). It can be 
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seen from Figs 21(a), 21(b), 22(a), and 22(b) that model II exhibits monotonically 

increasing stress at higher strains unlike a standard reinforcing model (Qiu and 

Pence,1997). To test the efficacy of the two models in fitting experimental data, the 

predicted shear stress-strain curves are compared with the experimental curves provided 

in Donnelly and Medige (1997) for human brain tissues and Hrapko et al. (2008) for 

porcine brain tissues, as shown in Figs. 23 and 24. Both sets of data are for the shear 

loading along the fiber direction at different strain rates. Clearly, the predicted curves by 

Model II better capture the experimental curves for the brain tissues at both the strain 

rates.    

 

 

 



 

72 

 

 

 

 

 

 

             

                                                    a)                                                                                                     b) 

Figure 18. σ12/µ versus k for φ = π/8, and γ0 = γ = 20, n = 2, q = 2, Jm = 4.3:a)Model I; b)Model II
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                                                       (a)                                                                                                  (b) 

Figure 19.  σ12/µ versus k for φ = π/4, and γ0 = γ = 20, n = 2, q = 2, Jm = 4.3:a)Model I; b)Model II
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                                                    (a)                                                                                                     (b) 

Figure 20. σ12/µ versus k for φ = π/2, and γ0 = γ = 20, n = 2, q = 2, Jm = 4.3:a)Model I; b)Model II
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                                                      (a)                                                                                                   (b) 

Figure 21. 12

II

sσ /µ  versus the shear strain for φ = 0 [a)], π/4 [b)], and γ = 20, q = 4. 
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                                                      (a)                                                                                                   (b) 

Figure 22.  12

II

sσ /µ  versus the shear strain for φ = 3π/8  [a)], π/2 [b)], and γ = 20, q = 4. 
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 In this section, the two models are proposed and compared for various 

homogenous deformations. It is seen that Model II better describes the experimentally 

observed behavior of soft tissues than Model I (a standard reinforcing model).  

Experiments on soft tissues are generally restricted to uniaxial 

extension/compression or simple shear. There is no testing data available for general 

plane shear or general plane deformations, which can help characterize the nature of the 

interaction energy between fibers and matrix. In the absence of such data, it is difficult to 

prove that any particular functional form of W accurately represents the interaction. The 

newly proposed strain energy density function in Model II contains the mixed invariant 

K4, which can represent the fiber stretch and fiber-matrix interaction, in addition to a 

neo-Hookean term that can describe the incompressible matrix. Hence, it is selected to 

be a new strain energy density function. 
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                                                    (a)                                                                                                  (b)      

                                                                     

Figure 23. Comparison of the predictions by Models I and II with the experimental data of Hrapko et al. (2008) at the strain 

rate of 1/s: (a) Model I for n =1, γ0 = 0.0283, µ = 704.80 Pa, µ0 = 10 Pa; b) Model II for q = 0.6892, γ = 8.1008, µ = 524.61 Pa, 

µ1 = 32.38 Pa. 
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                                                       (a)                                                                                                  (b)   

Figure 24. Comparison of the predictions by Models I and II with the experimental data of Donnelly and Medige (1997) at the 

strain rate of 60/s: (a) Model I for n =1, γ0 = 0.00283, µ = 10623.8 Pa, µ0 = 10 Pa; (b) Model II for q =1.1, γ = 9.5870, µ = 

2001.71 Pa, µ1 = 4796.9181 Pa. 
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3.4  Rate-dependent Materials 

Hyper-viscoelastic constitutive modeling combines the methodologies of 

viscoelasticity and hyperelasticity. One approach is to multiplicatively decompose the 

total deformation gradient tensor into an elastic part and a viscoelastic part (e.g., Prevost 

et al., 2011) following the work of Lee (1969). The decomposition method of Lee (1969) 

is based on the assumption that the body is isotropic in the reference configuration, and 

the origin in the stress-temperature space always lies inside the loading surface (Green 

and Naghdi, 1971). As a result, this approach cannot be directly used to model 

anisotropic responses of soft tissues. Another approach to implementing hyper-

viscoelastic models is to decompose the deformation gradient tensor into a dilatational 

part and a volume-preserving part. This alternative approach is not restricted to any 

particular configuration.  

For an isothermal deformation, the Clausius-Duhem inequality has the form (e.g., 

Coleman and Noll, 1963; Limbert and Middleton, 2004; Gurtin et al., 2010): 

 
int

1
: 0

2
eD W

• •

= − ≥S C  (3.50) 

where Dint is the internal dissipation, S is 2
nd

 P-K stress, 
•

C is the total material derivative 

of C defined in Eq. (3.9) and We is a hyperelastic strain energy and 
eW

•

 is the total time 

derivative of We. For We = We (C), equation (3.50) can be written as, 

 int

1
2 : 0

2

eW
D

•∂ 
= − ≥ 

∂ 
S C

C
 (3.51) 
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for any C and 
•

C . 

For hyperelastic materials, the satisfaction of Eq. (51) for any 
•

C  requires that  

 2 e
W∂

∂
S =

C
 (3.52) 

For materials with only the short-term memory effect, the second P-K stress S 

has the form given in Eq. (3.21). In order to account for the rate-dependent viscous 

effects observed in soft tissues, a viscous (or dissipative) potential of the following form 

can be introduced (e.g., Pioletti and Rakotomanana, 2000; Limbert and Middleton, 

2004): 

 ( ; ),
v v

W W
•

= C C  (3.53) 

where 
•

C is the variable and C is acting as a parameter. Since both C and 
•

Care objective, 

Eq. (3.53) satisfies the material frame indifference principle. From Eq. (3.53), the 

internal dissipation Dint due to the viscous effects can be computed as 

 
1

: :
2

v
int v

W
D

• •

•

∂
= ≡

∂

C S C

C

 (3.54) 

for any C and 
•

C . 

            Combining Eqs. (3.51), (3.52) and (3.54) yields 

 ,
e v

+S = S S   (3.55) 

where Se, as the elastic part of the second Piola-Kirchhoff stress S, is given in Eq. (3.52), 

and 
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 2 ,v
v

W
•

∂
=

∂

S

C

  (3.56) 

is the viscous part of S. 

For incompressible materials, Eq. (3.55) can be modified to give 

 12 2 ,e v
W W

p −

•

∂ ∂
+ −

∂ ∂

S = C
C

C

 (3.57) 

where p is a hydrostatic pressure. Equation (3.57) provides a visco-hyperelastic 

constitutive law for incompressible materials with short term memory effects. 

In order to describe the short-term memory response of brain tissues, the 

following viscous potential is proposed: 

 1 2

3 2 1 4 5 4

1
( 3) ( 7) ,

2

n n

v
W J I J Kµ µ= − + −  (3.58) 

where µ3 and µ4 are material constants, n3 and n4 are fitting exponents, and 

 ( )2 5 0 0

1
, ( ) :

2
J tr J= = ⊗2 2

C C� �a a  (3.59) 

are two invariants of 
•

C (Boehler, 1987; Limbert and Middleton, 2004).  

Using Eq. (3.58) in Eq. (3.56) gives 

 1 2

2 1 3 0 0 0 0 4( 3) 2 ( 7) .
n n

v I Kµ µ
• • • 

= − + ⊗ + ⊗ −  
S C a Ca Ca a  (3.60) 

It is clear from Eq. (3.60) that Sv = 0 in the reference configuration where F = I and 
•

C = 

0 for any values of µ3 and µ4. Also, it follows from Eq. (3.60) that 

 1 2

2 1 3 4 0 0 0 0( 3) : 2 ( 7) : 0.
n n

v I Kµ µ
• • • • • 

= − + − ⊗ + ⊗ ≥  
S C C a Ca Ca a C  (3.61) 
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for any µ2 ≥ 0 and µ3 ≥ 0. That is, the viscous potential in Eq. (3.58) is 

thermodynamically admissible if µ2 ≥ 0 and µ3 ≥ 0.   

To evaluate the newly proposed viscous potential, predictions based on Eq. 

(3.60) (for Sv) along with Model II given in Table 6 (for Se) are compared with the rate-

dependent experimental data of Donnelly and Medige (1997), Tamura et al. (2008), 

Shafieian and Darvish (2009), and Prevost et al. (2011). The material constants for 

Model II (describing the quasi-static response) are listed in Table 9. The rate-dependent 

viscous stress Sv computed using Eq. (3.60) is added to the quasi-static stress Se = 

2∂ II

eW /∂C–pC
–1

 (see Eq. (3.12a)) to obtain the total stress S = Se + Sv in the material. 

The parameters involved in Eq. (3.60) and used for computing Sv are listed in Tables 10 

and 11. 

Table 9 Fitting parameters in Model II for quasi-static responses in tension and shear 

 

Parameters Tensile response Shear response 

µ 279.41 Pa 359.74 Pa 

µ1 0.3315 Pa 0 Pa 

q 6.7 1 

 

Figures 25 and 26 shows the material response to uniaxial tensile loading at 

strain rates ranging from 0.1/s to 25/s. Figures 27, 28, 29 and 30 displays the response to 

simple shear loading at strain rates between 0.1/s and 90/s. The error in data fitting and 

success of minimization as indicated by the first order optimality measure are displayed 

in Table 10 (for tensile loading) and Table 11 (for shear loading).   
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Table 10 Values of the parameters in Wv for computing the viscous stress at different 

strain rates: uniaxial tension. 

Strain 

rate 

(/s) 

µ2 
(Pa⋅s2

) 

µ3 
(Pa⋅s2

) 
n1 n2 

First order 

optimality 

measure 

Error Data 

0.1 4676.07 15.665 1 4.85 0.00121 0.0278 Prevost 

et al. 

(2011) 
1 4367.78 119.665 1 0.30 0.04273 0.0262 

4.3 0 95.29 1 0.823 0.1955 0.0597 Tamura 

et al. 

(2008) 
25 0 30.45 1 0.95 0.03202 0.04507 

 

Table 11 Values of the parameters in Wv for computing the viscous stress at different 

strain rates: along-fiber simple shear. 

Strain 

rate 

(/s) 

µ2 
(Pa⋅s2

) 

µ3 
(Pa⋅s2

) 
n1 n2 

First order 

optimality 

measure 

Maximum 

Error 
Data 

0.1 19.971 170.79 1 0.19 2.667e-7 0.0201 Hrapko et 

al. (2008) 1 302.72 50.7275 1 0.25 8.10e-6 0.0235 

15 0 209.46 1 0.52 0.00869 0.0472 

Donnelly 

and Medige 

(1997) 

30 0 146.37 1 0.55 0.04608 0.0388 

45 0 125.85 1 0.55 2.065 0.0662 

60 0 57.585 1 0.43 0.54419 0.0581 

90 0 46.05 1 0.463 0.3086 0.04980 

100 0 49.249 1 0.40 0.0172 0.03262 

Shafieian 

and Darvish 

(2009) 
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                                                       (a)                                                                                        (b) 

Figure 25. S11 (=S11e + S11v) vs. λ1: a) for 0.1/s loading rate b) 1/s loading rate
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                                                        (a)                                                                                              (b) 

Figure 26. S11 (=S11e + S11v)  vs. λ1: a) for 4.3/s loading rate b) 25/s loading rate
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                                                    (a)                                                                                               (b) 

Figure 27. S12 (=S12e + S12v) vs. k for porcine brain tissues under simple shear loading at different strain rates: a) 0.1/s b) 1/s  
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                                                        (a)                                                                                               (b) 

Figure 28. S12 (=S12e + S12v) vs. k for human brain tissues under simple shear loading at high strain rates: a) 15/s b) 30/s  
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                                                       (a)                                                                                                (b) 

Figure 29. S12 (=S12e + S12v) vs. k for human brain tissues under simple shear loading at strain rates of: a) 45/s b) 60/s 
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                                                      (a)                                                                                                 (b) 

Figure 30. S12 (=S12e + S12v) vs. k for human brain tissues under simple shear loading at strain rates of: a) 90/s b) 100/s 
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Clearly, Figs. 25-30 show that the normal and shear stresses predicted by the 

current visco-hyperelastic model agree well with the experimental data available for the 

uniaxial and simple shear loading. 

3.4.1 Elasticity and Viscosity Tensors 

Elasticity tensors, which are also known as linearized tangent moduli, are 

fundamental for finite element implementation of any material model.  

Note that from Eq. (3.55) that the second Piola-Kirchhoff stress S is a function of 

C and 
•

C . One can then write (e.g., Limbert and Middleton, 2004) 

 : : ,
e v

•

= +S E C E C  (3.62) 

where  

 , 2 ,e v
e v •

∂ ∂
≡ 2 ≡

∂ ∂

S S
E E

C C

 (3.63a,b) 

are the fourth-order elastic and viscous, parts, respectively. Using Eqs. (3.52) and (3.56) 

in Eqs. (3.63a,b) gives 

 , 4 .e v
e v

W W
• •

∂ ∂
= 4 =

∂ ∂ ∂ ∂

E E
C C C C

 (3.64a,b) 

For transversely isotropic materials, We(C) = We(I1,I2,I3,I4,I5) (Spencer, 1972). 

Using Eq. (3.64a) then gives the elasticity tensor as 
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  (3.65) 

where I4 is the fourth-order identity tensor and use has been made of Eq. (3.15). For 

incompressible materials, the dependence of We on I3 is suppressed, and Eq. (3.65) 

reduces to that provided in Weiss et al. (1996) (without the last 10 tensorial terms).  
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For transversely isotropic materials, Wv (
•

C ) = Wv(J1,J2,J3,J4,J5,J6,J7,J8,J9,J10,J11,J12) 

(Boehler, 1987; Limbert and Middleton, 2004), where J2 and J5 are defined in Eq. (3.59), 

and the other 10 invariants are given by 
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 (3.66) 

It then follows from Eq. (3.56), (3.59) and (3.66) that 
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where use has been made of the following results: 
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Substituting Eq. (3.67) into Eq. (3.63b) will lead to the general expression of the 

viscosity tensor involving all 12 invariants J1~J12. This expression would be very long. 

A compact form for the viscosity tensor was provided in Limbert and Middleton (2004) 

using a different notation. 

When only the first five invariants of 
•

Care considered in the viscous potential 

Wv, i.e., Wv = Wv(J1,J2,J3,J4,J5), which includes the viscous potential proposed in the 

current study (see Eq. (3.58)) as a special case, the viscosity tensor can be explicitly 

obtained from Eq. (3.64b), (3.59), (3.66) and (3.68) as 
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  (3.69) 

Note that Eqs. (3.65) and (3.69) are in the material description. The elasticity tensor Ee 

and viscosity tensor Ev in the spatial description can be respectively obtained from the 

Piola transformation of the corresponding tensor in the material description (e.g., 

Holzapfel, 2000).  

For the strain energy density function II

eW (see Table 6) and the viscous potential 

function Wv (see Eq. (3.58)) proposed in the current study, the elasticity tensor Ee and the 

viscosity tensor Ev can be obtained by directly using Eqs. (3.65) and (3.69). 
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CHAPTER IV 

 MODELING OF BLAST-INDUCED TRAUMATIC BRAIN INJURY: 

EFFECTS OF THE BRAIN TISSUE CONSTITUTIVE RELATION 

AND BLAST DIRECTION 

 

4.1 Introduction 

 Traumatic brain injury (TBI) can result from external mechanical loading such as 

blunt impact, sudden accelerations, ballistic impact, and blast loading. Injuries to the 

brain tend to have a greater long term- effect than injuries to extremities. 

 A review of literature shows that impact – induced TBI has been extensively 

studied (Zhang et al., 2001; Brands, 2002; Kleiven and Hardy, 2002; Hardy et al., 2007; 

El Sayed et al., 2008; Chen and Ostoja-Starzewski, 2010). Finite element (FE) modeling 

is widely used in such kind of studies. The internal dynamics of the human head under 

direct impact or impulse loading has been well understood, and has been linked to 

certain measurable parameters such as acceleration, pressure, and shear strain in the 

brain. Damage criteria have also been established for impact induced TBI to provide 

guidelines as to what type and level of external loads would produce head injuries. 

Frequent use of improvised explosive devices (IED’s) in recent conflicts has 

increased the occurrence of blast and ballistic induced TBI amongst military personnel. 

Because of the limitations of conducting blast or ballistic studies on human subjects, 

computational models are often used as tools to investigate the physical processes 
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causing blast/ballistic induced traumatic brain injury. The fidelity of such models 

depends on structural details incorporated in the geometric models of skull and brain, the 

constitutive models used to represent the material behavior, the nature of contact 

algorithms implemented, and the use of an appropriate measure of injury. In recent years 

the complexity of head models in terms of geometry has progressively increased 

(Willinger and Baumgartner, 2001; Takhounts et al., 2003a; Zhang et al., 2009; Chen 

and Ostoja-Starzewski, 2010). However, constitutive laws used in simulations, 

especially those for brain, have received very little attention. The mechanical behavior of 

brain tissues has been well studied in laboratory settings. Inspite of this research, the 

material models used in published blast induced TBI simulations tend to be 

oversimplified. Continuum mechanics based approach is often used for representing 

brain tissue behavior in simulations. The tissue response is additively decomposed into 

dilatational and deviatoric parts. The dilatational behavior is most often assumed to be 

linearly elastic (Taylor and Ford, 2009; Ganpule et al., 2011; Zhang et al., 2011). In 

some simulations complete incompressibility is assumed, and the dilatational model used 

in simulations is not mentioned (Mendis, 1992). The deviatoric response is commonly 

modeled using linear elastic (Ganpule et al., 2011), or isotropic hyperelastic (Taylor and 

Ford, 2009; Nyein et al., 2010; Grujicic et al., 2010; Zhang et al., 2011) constitutive 

relations. Time dependent material behavior is either ignored (Moore et al., 2009; 

Grujicic et al., 2011) or represented by linear viscoelastic models (Chafi et al., 2010; 

Nyein et al., 2010; Ganpule et al., 2011; Zhang et al., 2011). These differences in the 

material models affect the stress responses obtained in an analysis. This in turn 
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influences the threshold magnitudes of field variables chosen for establishing damage 

criteria. Furthermore, variations in boundary conditions, amount of explosive used, 

distance of the subject from the source of the explosion, and the contact algorithms 

implemented limits the comparability of results amongst different simulations.  

The main goal of this Chapter is to develop an improved of finite element head 

model for predicting the mechanical response of a human head to blast/ballistic loading. 

The specific objectives are: 

a) Evaluating and comparing the performance of different constitutive relations 

for describing the response of brain tissues to blast/ballistic events. 

b) Consolidating results from existing impact and blast induced TBI simulations. 

c) Investigating directional sensitivity of a human head to blast loading. 

To this end, three different material models have been implemented in simulations. The 

rest of the article is organized as follows. A detailed description of the geometric and 

meshed models for a human skull/brain is presented in section 4.2. Sections 4.3 and 4.4 

provide a comprehensive account of the constitutive relations selected for comparison. 

The material relations for skull and cerebrospinal fluid (CSF) are also described. In 

section 4.5 validation results for the setup of the transient nonlinear dynamics problem 

using Abaqus/Explicit are given. The main results obtained in this work are presented 

and discussed in section 4.6.  
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4.2  Geometric and Meshed Models 

The model of the skull-brain assembly used in this paper has a total mass of 2.94 

kg, and a volume of 2550 cm
3
. The polygonal model (see Fig. 31) used was provided by 

TurboSquid
®

. Polygonal modeling (or mesh modeling) is an approach for modeling 

objects by approximating their surfaces using polygons. Quadrilaterals and triangles are 

the most common shapes used in such modeling. This mesh cloud (or polygonal model) 

was uploaded into Solidworks
®

 and converted into a solid model (surface 

representation) using the Solidworks
®

 functionality of ScanTo3D. Figure 32 shows the 

resultant solid model of skull and brain. The brain model includes the main brain 

(cerebrum), small brain (cerebellum), colossal commissure (corpus callosum), pituitary 

glands (glandula pituitaria), brainstem (truncus encephali), and cerebrospinal fluid 

(liquor cerebrospinalis). The brain model approximately weighs 1.46 kg, and has a 

volume of 1410 cm
3
.  The adult human brain weighs around 1.5 kg with a volume of 

around 1410 cm
3 

(Thompson,
 
2000). This solid model was then meshed using the 

general purpose pre-processing program HyperMesh
®

 (Altair Engineering Inc, Troy, 

Michigan). The entire assembly is discretized using quadratic ten-node tetrahedral solid 

elements (the C3D10M element in ABAQUS/Explicit
®

). To study mesh convergence 

three different mesh models were created consisting of 452483, 552162, and 647936 

elements respectively. The use of these three mesh led to somewhat different numerical 

results. The mesh model with 552162 elements was found to be a good compromise 

between accuracy and computational efficiency for capturing the shock wave 
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phenomenon (e.g., Brands, 2002). For such a mesh, a typical element length of 4.5 mm 

was used for the skull, 3 mm for the CSF, and 1 to 3 mm for the brain components. 

Figure 33 shows the meshed geometry. It can be seen from Fig. 33 that convolutions of 

the cerebral cortex (surface of the cerebrum) are well captured by the selected mesh size. 

The CSF is modeled as a solid body with water-like properties. The finite element model 

in the simulations is oriented in such a way that the positive x-axis points forward, y-axis 

points from left to right, and z-axis upward. In addition, local orientations have been 

defined in the finite element model for parts considered as transversely isotropic with the 

preferred direction along the local x-axis. The blast simulations are carried out using 

ABAQUS/Explicit
®

. The air blast wave is generated using the conventional weapons 

(CONWEP
®

) module. The CONWEP
®

 functionality allows the modeling of incident 

wave loading in air without having to explicitly model the Eulerian domain.  
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Two air-blast wave cases are considered in this paper: 

a) An air-blast wave characterized by a 0.66 MPa peak overpressure that 

corresponds to 0.85 kg of trinitrotoluene (TNT) at a distance of 1.06 m from the 

head. 

b) An air-blast wave associated with a peak overpressure of 0.5268 MPa. This is 

equivalent to a free – air    explosion of 0.0698 kg of TNT at a standoff distance 

of 0.6 m.  

The effects of the constitutive models for the brain are investigated for the frontal blast 

loading case (a), while brain tissue response to frontal and lateral blasts are studied using 

case (b). A typical blast simulation took 25 hours using 6-8 processors of the Texas 

A&M Supercomputing Facility EOS IBM iDataplex Cluster for the blast event with a 

duration of 1 ms for the mesh model with 552162 quadratic tetrahedral elements. 
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Figure 31. Polygonal model for human brain.
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Figure 32. Surface model for skull and various parts of a human brain generated from polygonal model. 
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Figure 33. Finite element mesh of a human head. 
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4.3  Material Models for Skull and CSF 

Modeling of the response of a human head to air blast requires the knowledge of 

the constitutive behavior of various parts of the human brain.  Most materials behave 

quite differently in bulk and under shear.  Therefore, it is beneficial to split the 

deformation of a material locally into volumetric (or dilatational) response and the 

isochoric (or distortional) responses. A dilatational model defines the pressure – volume 

(density) response of the material. A strength model is used to define the deviatoric 

(shape changing) response of the material. Strength models can also be modified to 

include short term or long term memory effects.  

The skull of a human brain is a bony structure and has higher hydrostatic and 

deviatoric stiffness values compared to other brain tissue materials. The volumetric 

response of the skull can be described using the linear Hogoniot equation of state (EOS) 

(e.g., Constantinescu et al., 2011)    The most common form of the EOS is the Mie- 

Gruneisen equation of state (EOS) is as below (Constantinescu et al., 2011): 

 
( )

2

0 0 0
0 02

1
21

m

c
p E

s

ρ η η
ρ

η

Γ 
= − + Γ 

 −
 (4.1) 

where p is the current pressure, Em is the internal energy per unit mass of the fluid, , Γ0 is 

a material constant, ρ0 is the initial density, η  is the nominal volumetric strain and c0 and 

s are two material constants which are involved in the following relation:  

 
0s p

U c sU= +  (4.2) 
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where Us is the shock velocity and Up is the particle velocity (Meyers, 1994). The 

deviatoric response for the skull is modeled as linearly elastic, which satisfies the stress 

strain relation 

 2G ,=S e  (4.3) 

where S is the deviatoric stress, e is the deviatoric elastic strain, and G is the shear 

modulus. The values of Γ0, s, ρ0, c0, and Poisson’s ratio (ν) for the skull are listed in 

Table 12.   

Table 12 Material parameters for the skull (Chafi et al., 2010).  

Material 
Density 

(kg/m
3
) 

K 

(GPa) 

G 

(GPa) 

E 

(GPa) 
ν 

c0 

(m/s) 
Γ0 s 

Skull 1800 8.928 6.1475 15 0.22 1850 0 0.94 

 

CSF is a clear, colorless liquid that occupies the subarachnoid space and the ventricular 

system around the brain and spinal cord. It acts as a shock absorber for the cortex, 

provides a chemically stable environment, distributes nutrients, and removes waste from 

the nervous tissue (Thompson, 2000).  CSF is a biological fluid with Newtonian 

characteristics (Ommaya, 1968) and viscosity (also density) similar to that of water. The 

shock response of the CSF is implemented using linear Hugoniot EOS (given in Eq. 

(4.1)), with parameters being those of water. The strength model for the CSF is defined 

using the classical Newtonian fluid model given by 

 2κ
•

= γγγγττττ  (4.4) 



 

107 

 

 

In the above equation, τ is the deviatoric stress, κ  is the viscosity, and 
•

γγγγ  is the rate of 

deformation tensor. The material parameters for the CSF are listed in Table 13.   

Table 13 Material constants for CSF (Constantinescu et al., 2011). 

Material 
Density 

(kg/m
3
) 

K 

(GPa) 
κ  

kg/ms 

c0 

(m/s) 
Γ0 s 

CSF 1000 2.19 0.001 1425 6.15 1.75 

 

4.4  Material Models for Brain Tissue 

Brain is a very complex organ involving many sub-structures. The head model 

considered in this study includes the following seven sections: cerebrum (main brain), 

cerebellum (small brain), brainstem, cerebrospinal fluid (CSF), corpus callosum, 

pituitary glands, and skull (see Fig. 32). The cerebral cortex is the outer layer of the 

brain (Thompson, 2000). It covers the cerebellum and cerebrum. Cerebral cortex is a 

sheet of neural tissue, and is called gray matter (because of its gray color).  The inner 

layer of the brain is made of a different type of nerve fibers called white matter 

(Thompson, 2000). The cerebrum is divided into left and right hemispheres, which are 

connected by a mass of nerve fibers known as the corpus callosum. The corpus callosum 

is the largest white matter structure in the brain. Previously, brain tissue was 

hypothesized as an isotropic material. However experiments have shown that while gray 

matter has an isotropic structure, white matter has a transversely isotropic nature (Prange 

and Margulies, 2002) because of the oriented neural tracts. The brainstem has also been 

found to be a transversely isotropic material (Arbogast and Margulies, 1999). 
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Understanding how the loading and kinematic boundary conditions applied to the head 

(skull) induce the stress response of the tissue is challenging because of the interplay 

among a number of factors.  In this paper, three different constitutive models are 

considered to represent mechanical responses of brain tissues.  

4.4.1  Material Set 1 (MS 1) – Linearly Elastic Material Model 

For this material set, the volumetric response of the brain tissue is modeled using 

the linear  Hogoniot EOS given in Eq. (4.1).  The deviatoric portion of the tissue 

response has is modeled as linearly elastic using Eq. (4.3).  Time independent deviatoric 

deformation has been assumed by Grujicic et al., (2010 ,2011) in their simulations of 

blast-induced TBI. This can justified by considering the fact that instantaneous to long-

term shear modulus relaxation time is on the order of hundreds of milliseconds, which is 

several orders of magnitude longer than the blast wave- human head interaction time. 

Thus, time - dependent deviatoric deformations are considered to play a secondary role 

in the early time response of the head to a blast wave, and can therefore be ignored. For 

this material set the brain tissue is considered homogeneous. The material parameters 

describing this constitutive model are provided in Table 14. 

Table 14 EOS and strength model parameters for material set 1(Grujicic et al., 2010; 

Taylor and Ford, 2007) 

Material 
Density 

(kg/m
3
) 

G 

(KPa) 

c0 

(m/s) 
Γ0 s 

Brain 

Tissue 
1040 22.53 1510 1.41 1 
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4.4.2  Material Set 2 (MS 2) - Isotropic Hyperelastic and Linearly Viscoelastic 

Material Model  

For Material Set 2 (MS 2), the compressible Mooney – Rivlin model was used to 

represent the hyper-elastic constitutive behavior of the brain. The strain energy density 

function for the Mooney – Rivlin material is defined as (Chafi et al., 2010): 

 ( ) ( )
2

10 1 01 2

1

1
( 3) 3 1W C I C I J

D
= − + − + −  (4.5) 

where I1, I2 are the first and second invariants of the left Cauchy-Green deformation 

tensor B, J (= det F) is the Jacobian, and C10, C01, and D1 are three constants. 

The time dependent deviatoric deformations are described using linear viscoelasticity. 

The shear viscoelastic behavior is defined by a second order Prony series expansion of 

the dimensionless relaxation modulus as (Chafi et al., 2010): 

 ( )
10

( )
( ) 1 1 i

N
tR

R i

i

G t
g t g e

G

τ−

=

= = − −∑  (4.6) 

where GR(t) is the long term shear relaxation modulus, G0 is the instantaneous shear 

relaxation modulus.  As in Material Set 1 all parts of the brain tissue are represented by 

the same material parameters. The material constants in Eqs. (4.5) and (4.6) are listed in 

Table 15. Material Set 2 has been widely used (e.g., Mendis, 1992; Zhang et al., 2004; 

Taylor and Ford, 2009; Chafi et al., 2010; Chen and Ostoja-Starzewski, 2010; Nyein et 

al., 2010) for computational modeling of brain trauma.     

Both material set 1 and material set 2 are available in commercial finite element 

softwares like ABAQUS/Explicit
®

. 
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Table 15 Material constants for Material Set 2 (Mendis, 1992) 

 

Material 
C10 

(Pa) 

C01 

(Pa) 

1/D1 

(GPa) 
g1 g2 

τ1 

s
-1

 

τ2 

s
-1

 

Density 

(kg/m
3
) 

Brain 3102.5 3447.2 1.095 0.52826 0.3019 0.008 0.1499 1040 

 

4.4.3  Material Set 3 (MS 3) - Anisotropic Hyper-elastic and Viscous Material Model 

Following analyses carried out in Chapter 3 the strength model of the brain tissue is 

defined using a self-developed transversely isotropic viscous hyperelastic model. Strain 

rate has is regarded as an explicit variable. We briefly describe this model here. The 

deformation gradient tensor F and the right Cauchy-Green deformation tensor C (=F
T
F) 

can be multiplicatively decomposed into a volume-changing and a volume-preserving 

part as follows (e.g., Holzapfel, 2000): 

 
( )

( ) ( )

1/3

2/3 T 2/3

=

= =

J

J J

F F

C F F C
 (4.7) 

where F is the deformation gradient tensor, C is the right Cauchy – Green deformation 

tensor, and F and C = TF F  are distortional parts, which are called modified F and C. 

Clearly it follows from Eq. (4.7) that detF  = ( )
3

1/3 detJ
−

F = 1, det C  = ( )
3

2/3 detJ
−

C  = 

1, and 

 
i1/3

1
= λiλ

J
 (4.8) 

where iλ  are the principal stretches associated with F and iλ are the principal stretches 

for the distortional deformations associated with F . 
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The strain energy density function can be written as: 

 ( , ) ( ) ( , ),vol isoW W J W
• •

= +C C C C  (4.9) 

where Wvol is the part of the strain energy density function describing the volumetric 

response of the material, Wiso is the part of the strain energy density function describing 

the isochoric response of the material, and 
•

C  is the tensor defining the total material 

time derivative of C. 

This leads to an additive decomposition of the Second Piola-Kirchhoff stress S into a 

volumetric part Svol and an and isochoric part Siso as: 

 ,vol iso= +S S S  (4.10) 

where: 

 1 2/3,vol isoJP J Dev
− −= =S C S S  (4.11) 

with 

 
( ) ( )

, 2 ,vol isodW J W
P

dJ

∂
= =

∂

C
S

C
 (4.12) 

with P as the hydrostatic pressure, and S  as the modified (fictitious) second P-K stress 

and 

 ( )1 1

4

1
( ) : = 1 3 :

3
Dev

− − 
 = − ⊗ −   

 
S I C C S S C S C  (4.13) 

as the deviatoric operator in the Lagrangian description where I4 is the fourth-order 

identity tensor. 
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The incompressible material model developed in Chapter 3 is used to describe the 

isochoric response of the compressible brain tissue with short-term memory effects. The 

isochoric stress ( )2/3 1

iso J p
− −= −S S C  can be expressed as, 

 1( ) ( ( )) ( ( ); ( )) ,iso isoe isov

Equilibrium Short term
memory responseresponse

t t t t p
•

−

−

= + −S S C S C C C
����� �������

 (4.14) 

where 

 2 , 2 ,isoe isov
isoe isov

W W
•

∂ ∂
= =

∂ ∂

S S
C

C

 (4.15a,b) 

are, respectively, the elastic and viscous parts of the isochoric stress tensor. 

Based on the strain energy density function proposed in Chapter 3, the total isochoric 

stress is given as, 
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where, 
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 (4.17) 

This strength model is described by 4 material parameters µ, µ1, µ2, and µ3 and three 

exponents q, n1 ,n2, which can be determined from fitting experimental data. As the brain 
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tissue exhibits different behaviors in tension and shear, separate parameters are obtained 

for each loading type. For Material Set 3 the brain tissue is considered as 

inhomogeneous for the quasi-static response. The material parameters used for different 

structures are listed in Tables 16 and 17. 

Table 16 Parameters of the brain tissue for the quasi-static response (0.01/s) in tension 

and shear. 

Constants(Model II) 
Quasi-static 

tensile response 

Quasi-static 

shear response 
Structure 

µ 279.41 Pa 359.74 Pa 

 

Cerebrum 

µ1 0.3315 Pa 0 Pa 

q 6.7 1 

   

µ 279.41 Pa 359.74 Pa 

 

Cerebellum 

µ1 0 Pa 0 Pa 

q 0 0 

   

µ 558.82 Pa 719.48 Pa 

 

Brainstem 

µ1 0.6315 Pa 0 Pa 

q 6.7 1 

   

µ 307.351 Pa 395.714 Pa 
Corpus Callosum, 

Pituitary Glands 

 

µ1 0.36465 Pa 0 Pa 

q 6.7 1 

   

 

Table 17 Parameters representing brain tissue viscous response in tension and shear. 

Constants(Model II) Viscous tensile response Viscous shear response 

µ2 2260.9625 Pa 161.44875 Pa 

µ3 60.9 Pa 15395 Pa 

n1 1 1 

n2 0.95 0.6 
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For the Material Set 3 the volumetric response (P) is represented by the Tait EOS. The 

Tait EOS is commonly used to model fluids under large pressure variations, which is the 

case for blast/ballistic loading. The pressure P is given as (e.g. Moore et al., 2009): 

 ( )0 1
1P B J

− Γ + = − 
 (4.18) 

where B and Γ0 are constants. The value of Γ0 is taken to be 6.15, which is the value for 

water. The constant B is computed using the relation, 

 
0

1

K
B

 
=  

Γ − 
 (4.19) 

where K is taken as 2.19 GPa, which is the bulk modulus of the brain tissue (Stalnaker, 

1969).  

 A VUMAT code is compiled to implement the Material Set 3 in ABAQUS/Explicit. 

Table 18 summarizes all the constitutive relations used in this study. 
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     Table 18 Summary of the material models used for blast simulations. 

Name Deviatoric Relation 
Time Dependent 

Relation 

Volumetric 

Relation 

MS 1 Linear elastic Ignored Linear elastic 

MS 2 
( )

10 1

01 2

( 3)

3

elastic
W C I

C I

= −

+ −
 

( )

0

1

( )
( )

1 1 i

R
R

N
t

i

i

G t
g t

G

g e
τ−

=

=

= − −∑
 

( )
2

1

1
1volW J

D
= −  

MS 3 
1

1 4

( 3)
2

( 7)

isoe

q

W I

K

µ

µ

= −

+ −

 
1

2

2 2 1

3 5 4

1
( 3)

2

( 7)

n

isov

n

W J I

J K

µ

µ

= −

+ −

 
( )0 1

1P B J
− Γ + = − 

 

 

4.5  Validation of Finite Element Model Setup 
 

Neuberger et al., (2007) studied the dynamic behavior of blast loaded rolled 

homogeneous Armor (RHA) circular steel plates subjected to TNT air blast loading. In 

their experiment, the target plate was supported between two thick armor steel plates. 

The spherical TNT charges were hung in air at a specified distance from the plate 

surface. The charges were ignited from the center, and the maximum deflection at the 

plate center was measured using a custom-made comb-like device. To validate our 

model setup for simulating air blast loading, a finite element analysis of the experiment 

of Neuberger et al., (2007) is performed using ABAQUS/Explicit
®

.  In order to 

represent the dynamic mechanical behavior of the RHA plates, Johnson – Cook (J-C) 
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constitutive model was implemented. The J-C model is given by (e.g. Neuberger et al., 

2007): 

 ( ) ( )1
1 ln 1n m

y p
A B c Tσ ε ε

• 
= + + − 

 
 (4.20) 

where, A, B1, n, c, and m are material constants, whose values are listed in Table 19, εp is 

the effective plastic strain, ε
•

 is the effective plastic strain rate for the RHA plates 

normalized by a reference strain rate 0
ε

•

(with 0
ε

•

= 1/s in this case) and T is the non-

dimensional temperature given by, 

 ( ) ( )/
room melt room

T T T T T′ ′ ′ ′= − −  (4.21) 

where T ′  is the current material temperature, 
room

T ′ is the room temperature, and 
melt

T ′ is 

the  melting temperature of the material. The blast loading was defined using the 

CONWEP
®

 function in Abaqus/Explicit
®

. By using the CONWEP
®

 function, both air 

and surface blasts can be simulated.  For CONWEP air blast loading, the explosive 

charge is not in contact with the ground surface. It is assumed that the observer is close 

to the source of explosion, and will be subjected to the incident wave loading only, with 

no interaction between the incident waves and the waves reflected from the ground. In 

surface blast loading, the explosive charge is located on the ground.  As a result, the 

incident and the reflected waves merge instantly. For ideal (rigid) reflecting surface, 

characteristics of the reflected waves such as velocity, acceleration, and overpressure are 

assumed to be the same as that of incident waves. However, because of instant merging 
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of the reflected and incident waves the energy yield for the surface blast is assumed to be 

twice as large as air burst for the same amount of explosive.   

Table 19 Material parameters for the J-C model (Neuberger et al., 2007). 

Material A (MPa) B1 (MPa) n c m 

RHA plate 1000 500 0.26 0.014 1 

 

Two different boundary conditions were used for simulations – free and fixed. 

For case 1(see Table 20) the following parameters were taken: plate thickness t = 0.05m, 

plate diameter D = 2m, charge weight W = 50 kg of TNT, and distance from the charge 

center to the plate surface R = 0.5 m. Figure 34(a) shows the normalized mid-point 

deflection changing with time predicted by the current model. In Figure 34(b) the results 

of Neuberger et al. (2007) are displayed. Figures 35(a) and 35(b) show normalized 

effective stress predicted by the current model and its comparison with that provided in 

Neuberger et al. (2007). The normalized midpoint deflection values for the other cases 

are listed in Table 20. From Table 20 and the Figs. 34 and 35 it is seen that the 

experimental data (Neuberger et al., 2007) and predicted results by the current model are 

in good agreement for plate under air blast loading.  This agreement validates numerical 

algorithm and model setup in ABAQUS/Explicit
®

. It can also be seen from Table 20 

that the CONWEP
®

 surface blast values for the normalized midpoint deflection are 

much higher than the experimental values.  Hence, for further simulations of the 

skull/brain assembly the CONWEP
®

 air blast function is used. The CONWEP
®

 air burst 
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module in ABAQUS/Explicit
®

 does permit specification of the distance of the explosive 

charge from the ground surface. It is assumed that the charge is located far enough above 

the ground so as to avoid interactions between incident and reflected waves.  

Table 20 Comparison of the experimental results of Neuberger et al. (2007) and the 

computational results in the present study. 

t (m) D (m) 
W (kg, 

TNT) 
R (m) 

δ/t 

Experimental 

δ/t 

CONWEP 

Air Blast 

δ/t 

CONWEP 

Surface 

Blast 

0.05 2 50 0.5 1.84 1.837 4.05158 

0.04 2 30 0.4 2.7 2.788 5.1872 

0.01 0.5 0.468 0.1 2.60 2.45 4.41 

0.04 2 70 0.26 7.45 7.38 12.99 

0.02 1 8.75 0.13 8.25 7.92 12.56 

0.01 0.5 1.094 0.065 7.45 7.21948 12.4418 
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                                                       (a)                                                                                             (b) 

Figure 34. Midpoint normalised deflection vs. time under free and constrained boundary conditions: a) the curent simulation 

results b) experimental results of Neuberger et al. (2007)
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                                                       (a)                                                                                                      (b) 

Figure 35. Normalized stresses vs. time under constrained boundary conditions: a) the curent simulation results b) 

experimental results of Neuberger et al. (2007)  
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4.6  Numerical Results and Discussions 

In this section, the main simulation results obtained in this study are presented 

and discussed. All the simulations were run to a time of 1 millisecond in order to study 

the early time response of the head. The most common types of non-penetrating 

traumatic brain injury are diffuse axonal injury, contusion and subdural hemorrhage 

(Taber et al., 2006). Diffuse axonal injuries are caused by shearing, stretching, and/or 

rotational forces pulling on axons and small vessels. Contusion occurs if the brain 

undergoes large relative motion with respect to the skull leading to brain – skull 

collision. This can cause bruising of brain parenchyma. Subdural hemorrhage occurs 

because of inertia difference between the skull and brain. If the surface layers of the 

brain undergo severe distortions it can result in tearing of tributary surface veins.  In line 

with these observations, the following mechanical quantities are examined: the temporal 

and spatial distributions of intracranial pressure, principal stress, von Mises stress, 

maximum principal strain, and maximum shear strain.    

4.6.1 Dilatational Response 

The pressure time history for the skull is shown in Figure 36. This graph is obtained for 

a blast loading of 0.85 kg of TNT at a stand-off distance of 1.06 m, giving a maximum 

skull front pressure of 18.45 MPa. Figure 37 displays the snapshots of the pressure fields 

over the frontal bone of the skull. At t = 0.7 ms the blast wave impinges on the frontal 

bone of the skull, causing an instantaneous rise from atmospheric pressure to a peak 

overpressure (see Figure 36). As the shock front expands, the pressure decays and the 

negative pressure (volumetric tension) phase occurs at t = 0.9 ms. 
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Figure 36. Pressure time history of the skull in response to frontal blast loading of 0.85 

kg TNT at distance of 1.06 m distance. 

 

 

Figure 37. Spatial distribution of blast pressure over the frontal bone of the skull. Red 

spots are regions of positive pressure, while blue spots are regions of negative pressure. 

 



 

123 

 

 

The negative pressure phase is longer in duration than the positive phase, and is usually 

less important in design of blast resistant structures. The duration of the positive phase 

experienced by a structure can be measured in milliseconds (about 0.1 ms in this case) 

and  can change, depending on the nature of explosive, amount of the explosive, and the 

distance of the structure from the point of detonation.  Figures 38a and 38b show the 

temporal pressure profiles for the brain tissue at coup and contrecoup sites respectively. 

The TAIT EOS (the Material Set 3) generates highest amounts of coup and contrecoup 

pressures ranging from −246.8 to 443.5 KPa. Pressure values for the Material Set 2 

range from −78.71 to 352.5 KPa, while those for the Material Set 1 fall within −272.5 to 

88.8 KPa. The TAIT EOS produces the highest fluctuations in the pressure field with 

occasional spikes resulting from the interaction of the waves reflected from the inner 

surface of the skull to the intracranial cavity (see Fig. 40). In Fig. 40 light blue spots are 

regions of positive pressure, while dark areas are regions of negative pressure. The 

pressure response for the Material Set 3 is biphasic in nature on both the coup side and 

the posterior side.  In contrast for the Material Set 1 and the Material Set 2 the pressure 

response follows a typical coup – contrecoup pattern: positive pressures on the impact 

site are accompanied by negative pressures on the side opposite to the area of impact. 

For all the three material sets considered, the pressure becomes negative in some 

locations attaining values that far exceed the pressure values produced by the negative 

phase of the blast wave.   
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                                                     (a)                                                                                                (b) 

Figure 38. Pressure response of the cerebrum based on different constitutive relations:  a) coup Pressure b) contrecoup 

pressure
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Figure 39. Pressure gradients for the brain in the anterior-posterior direction. 

One possible cause of the head injury is the development of pressure gradients 

upon ingress of pressure the wave into the intracranial cavity. Pressure gradients create 

shear stresses that result in local deformations of the brain tissue. Figure 39 shows the 

pressure gradients in the anterior – posterior direction of the brain tissue based on all the 

three constitutive relations.  It can be seen that the Material Set 3 produces very large 

pressure gradients that fluctuate rapidly as the blast wave undergoes multiple reflection 

in the intra-cranial cavity. For the Material Set 1 and Material Set 2, only two significant 

pressure spikes are observed corresponding to the positive and negative (suction) phases 

of the blast wave over the 1 ms duration. 

For blunt trauma injuries the duration of characteristic loading time 

approximately equals 8 ms (Brands, 2002), which is long compared to the natural period 

of oscillation of the human head. In such cases the volumetric response of the brain 
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tissue can be explained on the basis of the elastic wave propagation theory.  For elastic 

waves, the pressure and shear wave speeds are related to the bulk and the shear modulus 

by the equations (e.g., Chen and Ostoja-Starzewski, 2010),  

 

4

3
p

s

K G

c

G
c

ρ

ρ

+
=

=

 (4.22a,b) 

where cp is the pressure wave velocity, cs is the shear wave velocity, K is the bulk 

modulus of material, G is the shear modulus, and ρ is the density of the material. 

Typically for soft tissues cp = 1450 m/s, while cs = 6.3 m/s (Chen and Ostoja-Starzewski, 

2010). Because of very high pressure wave velocities blunt trauma is typically assumed 

to be a quasi-static event rather than a dynamic one (Brands, 2002; Chen and Ostoja-

Starzewski, 2010). Therefore, the volumetric response of the brain tissue for long 

duration impacts is considered to be independent of the material constitutive relation 

(Bradshaw and Morfey, 2001; Brands, 2002). 

However, the situation is different for blast and ballistic loading. The interaction of a 

detonating explosive with a material in contact with it (or in the proximity) is complex 

and involves detonation waves, shock waves, expanding gases, and their 

interrelationships. When a detonation front encounters a structure, the pressure pulse is 

transferred to the structure. Shock wave propagation in a material is described by five 

variables: pressure, particle velocity, shock velocity, specific volume, density, and 

energy (Meyers, 1994). The equations of conservation of the mass, momentum, and 
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energy give three relations amongst these five variables. An additional fourth equation is 

needed to describe all the parameters in terms of one parameters (out of the five). This 

fourth equation is the equation of state (EOS). Some brain injury simulations in the 

literature assumed the brain tissue volumetric behavior as linearly elastic as done in 

Material Set 1 for the current simulations (e.g., Ganpule et al., 2011) or use a 

compressible material with high bulk modulus for representing brain tissue volumetric 

behavior as done in Material Set 2 (e.g., Chafi et al., 2010; Zhang et al., 2011). However, 

as can be seen from Figures 38 this leads to underestimation of “shock pressures” 

compared to the non-linear Tait EOS (the Material Set 3).  Also, brain tissue volumetric 

response is similar to water. Therefore, rather than the actual pressure magnitudes, rapid 

pressure fluctuations and steep pressure gradients generate high dynamic stresses in the 

intra-cranial cavity. As can be seen from Fig. 39 the non-linear Tait EOS generates the 

higher pressure gradients compared to Material Sets 1 and 2. Such assumptions or 

simplifications about the dilatational response of the brain tissue can lead to artificial 

attenuation of shock waves and uniform pressure gradients (see Figs. 40 and 41).  The 

bulk modulus of the brain tissue is considered to be similar to that of water. This value 

was calculated to be approximately 2 GPa by Stalnaker (1969), 2.10 GPa by McElhaney 

et al. (1976), while Lin et al. (1997) measured the values of 2.28 GPa for the lamb brain 

gray matter, and 2.41 GPa for the white matter. The most common value used for impact 

simulations is 2.19 GPa. However, El Sayed et al.(2008) used a much smaller value of 

2.19 MPa for impact simulations, while Zhang et al. (2001) reported that the reduction of 

bulk modulus by an order of magnitude had no significant effect on the model response. 
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Figure 40. Pressure distribution predicted using the TAIT EOS at the mid-saggital section of the brain. 

t = 0.5 ms t = 0.9 ms 
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Figure 41. Intracranial pressure distribution based on compressible Mooney-Rivlin constitutive relation (the MS 2) at the mid-

saggital section of the brain. 

t = 0.5 ms t = 0.9 ms 
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Figure 42. Effect of change in bulk modulus on brain tissue volumetric response a) coup Pressure b) contrecoup pressure 
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For the explicit dynamic analysis procedure commonly used to solve blast or impact 

problems, the stable time increment size can be approximated by the following formula 

(e.g., Brands, 2002): 

 min

p

L
t

c
∆ ≈  (4.23) 

where Lmin is the smallest element dimension in mesh, and cp is the dilatational wave 

speed (see Eq. 4.22a).  From Eqs. (4.22) and (4.23) it is clear that for sufficiently fine 

meshes, higher values of the bulk modulus require excessively small time increments, 

thus increasing the computational time and the cost. In our simulations it is observed that 

for a mesh of 552162 elements, a bulk modulus of 11 MPa requires a timestep of 15.5 

nano-seconds, while a bulk modulus of 2.19 GPa requires 6 nano-seconds. Figure 14 and 

Table 21 show the effect of changing (reducing) the bulk modulus on the blast response 

of the brain tissue. From Fig. 42 it can be seen that even though the response is 

qualitatively the same for different values of K, lowering the dilatational modulus 

increases the intra-cranial peak pressure and pressure gradient by approximately 50%. It 

also has an effect on the deviatoric response (see Table 21) causing an 80% increase in 

the shear and von Mises stress values. Even though the volumetric and the deviatoric 

responses are decoupled, change in the bulk modulus is seen to affect the deviatoric 

response possibly because of the change in the pressure gradients. Therefore, unlike 

longer duration impacts (blunt trauma), the blast response of the brain tissue is sensitive 

to changes in the bulk modulus. It is advisable to use the value of 2.19 GPa for the bulk 

modulus in simulations despite high computational costs.  
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Table 21 Effect of change in bulk modulus on deviatoric stress values in brain tissue 

 

Brain Tissue 

Peak Values 

MS 2 
MS 2-smaller bulk 

modulus 

Bulk Modulus (MPa) 1100 11 

σprincipal (KPa) −85.3 to 59.4 −52.2 to 27.84 

εprincipal 0.0361 0.0638 

τ (KPa) −1.07 to 3.18 −5.58 to 5.77 

τvon Mises (KPa) 8.24 15.14 

p (KPa) −78.71 to 352.5 −109.3 to 529 

γ −0.00196 to 0.0392 −0.00995 to 0.0753 

 

4.6.2 Deviatoric Response 

The deviatoric responses of the brain tissue predicted by using different material sets are 

shown in Figure 44. It should be noted that the time history as shown in figures 36, 38, 

39, and 44 displays the temporal variation of peak quantities.  Peak intracranial pressure 

values are observed at the coup and contre-coup sites in the cerebrum, while peak 

principal and von Mises stress values are found to occur in the brainstem and corpus 

callosum regions. Table 22 shows the field values based on three material sets.  The 

principal stress and von Mises stress values obtained using the rate dependent viscous 

model (the Material Set 3) are considerably higher than the other two material sets 

(Material Set 1 and Material Set 2). Ignoring the time dependent deviatoric deformation 

(the Material Set 1) generates higher stresses compared to the linear viscoelastic model 

(Material Set 2). Intra-cranial shear stress magnitudes are substantially lower than the 
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principal stress and von Mises stress levels. Because of the short duration of the shock 

loading, the principal strain and shear strain are found to be very small. The values up to 

0.2 for the principal strain, and 0.2 for the shear strain are obtained for Material Set 1, 

while least values (see Table 22) were obtained using the Material Set 2.     

Explicit modeling of the rate effects and the inclusion of anisotropy have 

important implications for prediction of BTBI based on damage criteria. For a blast 

loading of a 0.85 kg of TNT at stand-off distance of 1.06 m,  the Material Set 3 predicts 

failure by the von Mises stress criterion (Shreiber et al., 1997; Kleiven, 2008), the intra 

cranial pressure criterion (Ward et al., 1980; Zhang et al., 2004), and the strain-strain 

rate criterion (Viano and Lovsund, 1999; Morrison et al., 2003; Kleiven, 2008). The 

Material Set 2 and Material Set 1 do not predict failure at all. 

Thus the anisotropic viscous hyperelastic constitutive relation gives the stiffest 

deviatoric response that is for same amount of explosive and the same detonation 

distance it generates the highest stresses. This stiffer response is due to explicit 

dependence on the loading rate.  The isotropic hyperelastic (Mooney Rivlin or neo-

Hookean) linear viscoelastic relation (the Material Set 2) is most often used for BTBI 

simulations as it is readily available in commercial finite element packages. However, 

the time scale parameter values for viscoelastic models are two orders of magnitude 

higher than the duration of a blast. Thus, viscoelastic models only provide the decaying 

response of soft tissues – either relaxation or creep. Under loading conditions applicable 

to blast induced TBI, the brain tissue is subjected to a wide range of strain rates and 

rapid changes in the loading rate of loading.  Experiments on brain tissue have also 
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shown that strain rate effects are prominent in brain tissue response to loading (Donnelly 

and Medige, 1997; LaPlaca et al., 2005; Elkin and Morrison, 2007). 

Diffuse axonal injuries (DAI) are caused by elongation of axons (axonal strain) or blood 

vessels and are characterized by white mater lesions (Mendis, 1992).  Corpus callosum 

(see Fig. 43) is the largest white matter structure in the brain, and connects the left and 

the right cerebral hemisphere. Under rotational accelerations the corpus callosum is 

especially susceptible to lesions and hematomas (Mendis, 1992). The intensity of DAI is 

found to be proportional to the lesions in the corpus callosum region. 

   

Figure 43. Orientation of axonal fibers in corpus callosum (Gray, 1858) 

The axonal bundles in the corpus callosum and white matter of the cerebrum are oriented 

in the lateral direction (see Fig 43). The axonal strain produced in the corpus callosum 

might also extend into the cerebrum white mater region to cause DAI. In order to 



 

135 

 

 

accurately model the progression and location of DAI in computational models it is 

necessary to measure the axonal strain (normal strain in same direction as axons).  Hence 

it is important to consider the orientation (transversely isotropic) of the axonal bundles in 

white matter region. 

Table 22 Dilatational and deviatoric peak response limits for the selected material 

models. 

 

Brain Tissue 

Peak Values 

MS 1 MS 2 MS 3 

Bulk Modulus 

(GPa) 
2.19 2.19 2.19 

σprincipal (KPa) −94.1 to 144.3 −85.3 to 59.4 −390.5 to 374.1 

εprincipal 0.1955 0.0361 0.04971 

τ (KPa) −0.2 to 0.37 −1.07 to 3.18 −0.1306 to 2.118 

τvon Mises (KPa) 11.8 8.24 142.5 

p (KPa) −272.5 to 88.8 −78.71 to 352.5 −246.8 to 443.5 

σxx (KPa) −100 to 138.1 −98.23 to 46.27 −392 to 373.2 

σyy (KPa) −104.2 to 133. −91.52 to 41.4 −391 to 374 

εxx −0.163 to 0.118 
−0.00627 to 

0.0162 

−0.0158 to 

0.00970 

εyy 
−0.0367 to 

0.0209 

−0.00852 to 

0.00342 

−0.00684 to 

0.0438 

γ 
−0.0543 to 

0.2017 

−0.00196 to 

0.0392 

−0.04124 to 

0.01733 

strain rate (/s) 8378 412.8 1655 
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                                                     (a)                                                                                                     (b) 

Figure 44. Deviatoric responses based on different constitutive relations: a) maximum principal stress b) von Mises stress
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4.6.3 Lateral and Frontal Blasts 

In this sub-section the differences in the brain response to lateral and frontal blasts are 

studied. The simulations are carried out for a blast loading of 0.0698 kg of TNT at a 

stand-off distance of 0.6 m using the Material Set 2. For the lateral detonation, the blast 

was directed at the right (from the perspective of an observer facing the subject) 

temporal region of the skull.   

 

Figure 45. Skull pressure response for frontal and lateral blasts. 

The lateral blast generates substantially higher skull pressures compared to the frontal 

detonation as shown in Fig. 45.The maximum skull deflection for the frontal blast at the 

point of impact is about 0.30171 mm at t = 0.7 ms (see  Fig. 46a). The corresponding 

deflection in the CSF (modeled as a solid body) is around 1.1 mm (see Fig. 46b), and in 

the cerebrum is 0.07218 mm (see Fig. 46c).For a lateral blast, the maximum skull 

deflection is 3.71 mm at t = 0.7 ms (see Fig. 47a). The corresponding deflections in CSF 



 

138 

 

 

and cerebrum is 2.569 mm and 0.55mm (see Figs. 47b and 47c). For the lateral blast 

loading the skull deflection has increased about 10 times compared to frontal loading, 

while the brain deflection has increased around 7 times. Therefore, a lateral blast has a 

higher possibility of contusion type of injuries (see Figs. 46c and 47c). The pressure 

spikes in the intracranial cavity associated with the positive pulse of the blast wave are 

much higher for the lateral blast than the frontal detonation (see Fig. 48). The pressure 

gradients in the lateral direction are stronger than in the anterior – posterior direction. 

Figure 48 also shows the deviatoric stress envelopes for both the blast loading cases. 

One can observe that markedly higher shear and von Mises are induced for the lateral 

blast loading. The shear strain values under the lateral blast loading are up to 5 times 

higher than those predicted under the frontal detonation. For both types of blasts, the 

highest shear and von Mises stresses predicted by the current model are in the brainstem 

and the corpus callosum region. 
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Figure 46. Maximum deflections under the frontal blast loading: a) skull deflection of 0.30 mm, b) CSF deflection of 1.1 mm, 

c) cerebrum deflection of 0.07218 mm with no contusion type injuries. 

a) 

b) 

c) 
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Figure 47. Maximum deflections under the lateral blast loading: a) skull deflection of 3.71 mm, b) CSF deflection of 2.569 

mm, c) contusion type injury on the cerebrum. 

a) b) 

c) 
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                                               (a)                                                                                                            (b) 

Figure 48. Comparative response of the brain tissue for frontal and lateral blasts: a) CSF/Cerebrum pressure; b) Brainstem 

shear stress. 
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The geometry of the human head and the inhomogeneity of the skull bones can be one 

possible explanation for the difference in the skull deformation induced by lateral and 

frontal blasts respectively. The anterior – posterior span of the human skull is 

approximately 212 mm, compared to a width (left- right temporal span) of about 150 

mm.  This longer length from the front to the back of the head provides a greater surface 

area for the blast wave in the lateral detonation. The frontal blast predominantly exerts 

linear translation on the human head, while the lateral detonation exerts greater angular 

accelerations. The deviatoric and dilatational response of the brain tissue is related to the 

head motion and skull deformation. Higher skull flexure under the lateral blast loading 

produces higher mechanical loads in the brain. The inability of the human brain to rotate 

freely under angular accelerations would cause high deviatoric stresses and strains for 

the lateral blast loading, as observed in the current simulations. 
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CHAPTER V 

 MODELING OF THE EFFECTIVENESS OF COMBAT HELMETS 

AGAINST NON-PENETRATING TRAUMATIC BRAIN INJURIES 

INDUCED BY BLAST AND BALLISTIC IMPACT 

 

5.1 Introduction 

Helmets have been used for head protection for centuries. A comprehensive 

review on the development of combat helmets since World War II has been provided in 

Chapter 1. Two helmet designs are currently being used by the U.S. Army. The first one 

is the Advanced Combat Helmet (ACH), which has been in use since 2003. The ACH is 

made from a Kevlar
®

 K129 fiber/ Phenolic resin composite material and has a higher 

ballistic and impact protection capability than the previous (PASGT) helmet at a lighter 

weight. In order to further reduce the helmet weight, the Enhanced Combat Helmet 

(ECH) has been under development since 2007 for the U.S. Army. The ECH makes use 

of the Dyneema
®

 HB80 unidirectional composite material and has been fielded on a trial 

basis. Ballistic protection has been the primary function of a combat helmet. The 

performance of a combat helmet has always been measured in terms of its ability to 

defeat a bullet travelling at certain velocity, thus preventing penetrating trauma to the 

user.  Modern combat helmets have been quite successful in preventing penetrating 

traumatic brain injuries. 
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However frequent use of improvised explosive devices, increase in available 

energy of bullets, and reduction in weight of the combat helmets have exacerbated 

occurrence of non-penetrating traumatic brain injuries. Blast-induced traumatic brain 

injury is one such non-penetrating TBI caused by ingress and reflection of blast-induced 

shock-waves in the intra-cranial cavity (see Chapter 2). Ballistic impact induced behind 

helmet blunt trauma (Cannon, 2001; Prat et al., 2012) is another type of non-penetrating 

injury resulting from projectile impacts on combat helmets. Although the combat helmet 

may stop the projectile, part of the energy of the projectile absorbed by the helmet shell 

is transferred to the skull and intracranial cavity because of rapid deformations of the 

helmet shell. If this energy transferred to the brain tissue is sufficiently large enough it 

may lead to non-penetrating type of TBI’s.  

The main objective of this chapter is to evaluate the effectiveness of current 

combat helmets (ACH and ECH) in preventing non-penetrating TBI for both blast and 

ballistic events. The constitutive relation previously proposed in Chapter 3 will be 

employed here to understand how a helmeted head responds to transient dynamic 

loading. In section 5.2 the geometric and finite element models are described. The 

material relations for helmet shell and foam pads are discussed in section 5.3. In sections 

5.4 and 5.6 the observations for blast and ballistic impact simulations are presented 

respectively, while behind helmet blunt trauma for the ACH is studied in section 5.7. 

5.2 Geometric and Meshed Models 

The geometric model of the human head developed in Chapter 4 is combined 

with a combat helmet CAD model and meshed using the general purpose pre-processing 
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program HyperMesh
®

 (Altair Engineering Inc, Troy, Michigan). The combat helmet 

model consists of a helmet shell and seven foam pads.  The helmet is fitted such that the 

crown pad just touched the top of the head and the front rim was no more than 0.5’’ 

above the eyebrows (Operators Manual for the ACH). The skull-CSF-brain assembly 

and the helmet pads are discretized using quadratic ten node tetrahedral solid elements 

(the C3D10M element in ABAQUS/Explicit
®

) while the helmet shell was meshed using 

8 node linear hexahedral elements (the C3D8 element in ABAQUS/Explicit
®

).  The 

head-helmet FE model has a total of 1032905 elements including 997747 quadratic 

tetrahedral elements and 35158 linear hexahedral elements. The use of finer meshes for 

the helmet shell (90000 elements) did not show much difference in the numerical values 

of key field quantities. The helmet components and a typical finite element mesh used in 

the current simulations are displayed in Fig. 49. 
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Figure 49. Geometric model and finite element meshes of a head-helmet assembly. 

Combat Helmet Suspension Pads Helmet Shell 

Finite Element Model  
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5.3 Material Models 

5.3.1  Material Model for Helmet Shell 

The ACH shell is made from Kevlar
® 

K129 fiber/Phenolic resin composite 

material while the ECH shell is made from Dyneema
®

 HB80 unidirectional composite. 

Following the model presented in Tham et al. ( 2008) the volumetric response of the 

combat helmet shell is modeled using an orthotropic EOS, in which the pressure (P) is 

defined by 
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− + +

 (5.1) 

where 
vol

ε  is the volumetric strain (with 
11 22 33vol

ε ε ε ε= + + ) , Cij are the components 

of the elastic stiffness matrix, K is the bulk modulus, and the last three terms represent 

the contributions of the deviatoric components of the strain ( )ij devε  to the pressure. For 

an isotropic material, the deviatoric strain terms are zero. The orthotropic strength model 

for the helmet shell is defined using generalized Hooke’s law as  
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 (5.2) 

The components of the elasticity stiffness matrix, Cij, can be expressed in terms of the 

engineering constants (Eij, νij) (e.g., Jones, 1999; Gao, 2001). The model parameters for 

the helmet shell are provided in Table 23, where E is the Young’s modulus, ν is 

Poisson’s ratio, G is the shear modulus, ρ is the density, and K is the bulk modulus.  The 

material properties for the ECH listed in Table 23 are provided by DSM Dyneema
®. 

Table 23 Material parameters for the ACH (Lee and Gong, 2010) and the ECH. 

Combat 

Helmet 

E11 

(GPa) 

E22 

(GPa) 

E33 

(GPa) 
ν21 ν23/ν31 

G12 

(GPa) 

G23/G31 

(GPa) 

ρ 

(kg/m
3
) 

K 

(GPa) 

ACH 18.5 18.5 6 0.25 0.33 0.77 2.715 1230 50 

ECH 60 60 5.5 0.1 0.2 5 5 980 50 

 

It has been verified that the values of the  material parameters given in Table 23 satisfy 

the following conditions (Lai et al. 2010):  
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These conditions ensure that the stiffness matrix is positive definite for an elastic 

material (Lai et al., 2010). 

5.3.2  Damage Model for Helmet Shell (Ballistic Impact) 

 Ballistic impact on a composite structure is a complex process involving different 

damage and energy absorption mechanisms. Some of the possible energy absorption 

mechanisms that have been identified (Naik and Shrirao, 2004) are cone formation on 

the back face of the target, primary and secondary yarn breakage, inter-ply delamination, 

matrix cracking, formation of shear plugs, and fabric-projectile friction. In the current 

simulations a progressive damage model has been is implemented in four stages:  

damage initiation, damage evolution, material degradation, and element deletion. 

Damage initiation is the onset of degradation at a material point. Hashin’s (1980) failure 

criterion is adopted as the damage initiation criterion for primary and secondary yarns. 

Hashin’s (1980) failure criterion considers four different failure modes: fiber tension 

(FT), fiber compression (FC), matrix compression (MC), and matrix tension (MT). For 

the current ballistic impact simulations, fiber and matrix failures in compression are not 

considered as a criterion for element deletion because the fibers continue to resist the 

projectile as long as tensile failure does not occur. The failure indices for FT and MT are 

defined as follows: 

First failure index: Tensile fiber mode in X (or “1”) direction for 
11dev

σ > 0, 

 

 

22 2

11 12 13
11

11 12 13

1FT T S S
X X X

σ τ τ
φ

    
= + + ≥    
     

 (5.4) 

 

Second failure index: Tensile fiber mode in Y (or “2”) direction for  
22dev

σ  > 0, 
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 (5.5) 

 

Third failure index: Tensile matrix mode in Z (or “3”) direction for  
33dev

σ  > 0, 

 

 

2 2 22
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33
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= + + + ≥      

      
 (5.6) 

 

In the above expressions, ( )ij I
φ   are the failure indices in the direction ij for the failure 

mode I, 11

TX  and 22

TX  denote respectively, the in plane tensile strengths in the 11 and 22 

directions, while 
S

ijX  are the shear strengths.  Damage initiation (i.e. onset of material 

degradation) is assumed any of the failure indices in Eqs. (5.4)-(5.6) becomes equal to or 

greater than one. After the initiation of damage, the numerical solution greatly depends 

on the mesh refinement (element size). In order to reduce this mesh dependence, crack 

band models have been developed (Bazant and Oh, 1983; Fang et al., 2011; Lapczyk and 

Hurtado, 2007; Maimi et al., 2007) to establish damage indicators, which depend on the 

characteristic element length used in the finite element mesh. In this study, the crack 

band theory developed by Maimi et al., (2007) is adopted as the damage evolution model 

for the helmet shell. The damage evolution equation for each failure mode is expressed 

as follows (e.g. Fang et al., 2011): 
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where dij is the damage indicator , ijY  is the equivalent displacement at a material point, 

initial

ijY is  the damage initiation equivalent displacement, and 
final

ijY  is the full damage 

equivalent displacement, for the failure mode “I”.  For the failure indices defined in Eqs. 

(5.4) – (5.6), ijIY  can be determined as: 
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 (5.10) 

where l is the characteristic length of an element in the finite element mesh. 
initial

ijIY  and 

final

ijIY  in Eq. (5.7) are evaluated as 

 
,, ,

ijIinitial final

ijI ijI I f

ijI

Y
Y Y lε

φ
= =  (5.11a,b) 

where ,I fε  is the failure strain for the mode “I”.  After the initiation of damage the 

response of the material is computed from the damaged stiffness matrix, which is given 

by, 
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where Cij are components of undamaged stiffness matrix, and,  

 ( )11 11
1 ,

FT
D d= −  (5.13) 

 ( )22 22
1 ,

FT
D d= −  (5.14) 

 ( )33 33
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FT
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are the material degradation constants. 

When any of the damage indicators
11FT

d ,
22 FT

d  and 
33FT

d  becomes equal to or greater 

than one, the corresponding element is deleted from the finite element mesh.  The failure 
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properties of the ACH and ECH have been listed in Table 24. The failure properties for 

the ECH listed in Table 24 are provided by DSM Dyneema
®. 

Table 24 Failure properties for the ACH (Lee and Gong, 2010) and the ECH. 

Properties 
Combat Helmets 

ACH ECH 

T

11X  (MPa) 555 1200 

C

11X (MPa) 555 25 

T

22X (MPa) 555 1200 

C

22X (MPa) 555 25 

T

33X (MPa) 1050 8.3 

C

33X (MPa) 1050 1500 

S

12X (MPa) 77 43 

S

13X (MPa) 1060 9 

S

23X (MPa) 1086 9 

ε I, f  1.9 2.6 

 

5.3.3  Material Model for the Helmet Foam Pads 

The current ACH/ECH padding system uses Zorbium
®

 Action Pad (ZAP™) NSN 

System manufactured by Team Wendy, which is a polyurethane based foam material 

(Zhang et al., 2011). The foam material was modeled using the Ogden hyperfoam model 

(Ogden, 1972) described by the following strain energy density function: 

 ( )( )1 2 32
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3 1

i i
i i i
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where N is the number of terms used in data fiting, µi, αi, and βi are material parameters, 

λj (j = 1 ,2, 3) are the principal stretches, and  J
el
 is the determinant of the deformation 

gradient tensor. In the current simulations, N = 2 is used, and the relevant material 

constants are provided in Table 25.  

Table 25 Material constants for the Ogden hyperfoam model (Briody et al., 2011; 

Grujicic et al., 2010). 

N µ (Pa) α β 

1 12740.4 7.2810 0 

2 2.7459 −5.7311 0 

 

The time dependent deviatoric response of the polyurethane foam is represented using 

eight parameter Prony series expansion of the dimensionless shear modulus ( )
R

g t  as  

 ( )
10

( )
( ) 1 1 ,i

N
tR

R i

i

G t
g t g e

G

τ−

=

= = − −∑  (5.20) 

In Eq. (5.20), N is the number of terms, gi is the relaxation modulus, τi is the relaxation 

time, GR(t) is the “long term shear relaxation modulus”, and G0 is the instantaneous 

shear relaxation modulus. The Prony series parameters for Eq. (5.20) are given in Table 

26. 
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Table 26 Prony series parameters (Briody et al., 2011). 

N 
gi 

 

τi 

 

1 -46.17×10  
31.01 10−×  

2 31.27 10−− ×  
31.89 10−×  

3 28.99 10−×  0.2928 

4 11.15 10−×  4.7441 

5 28.30 10−×  55.234 

6 27.72 10−×  629.87 

7 26.86 10−×  8656 

8 23.01 10−− ×  
81.74 10×  

 

5.4  BTBI Mitigation Performance of Combat Helmets 

5.4.1 Results and Observations 

The effectiveness of current combat helmets to attenuate the effects of shock 

waves on the human head following a blast is evaluated in this section. The simulations 

are carried out for a blast with an overpressure of 5.2 atm (lung injury threshold), which 

is equivalent to a free air explosion of 0.0698 kg TNT at a stand-off distance of 0.6 m. 

The blast wave is incident on the right (from the perspective of an observer facing the 

subject) temporal region of the skull. In order to mimic the skull-spinal cord joint the 

nodes at the bottom of the brainstem have been kinematically constrained to allow only 

rotation.  

The most obvious effect of the helmet is to prevent direct impact of the air-borne blast 

wave on the surface of the skull. For a helmet protected head, the skull is loaded 

indirectly through the foam pads. This limits the magnitude of the blast overpressure 

(and underpressure) transmitted to the skull surface (see Fig. 50(a)). 
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                                                (a)                                                                                             (b) 

Figure 50. Progression of blast wave as it interacts with the skull: a) helmet protected and unprotected head; b) ECH 

and ACH 
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The maximum skull pressure observed on the coup side for an unprotected head is 217.1 

MPa at t = 0.66 ms, while the maximum negative pressure (hydrostatic tension) 

magnitude is −173.8 MPa at t = 0.83 ms. In contrast, for an ACH protected head, the 

maximum skull pressure is limited to 0.09278 MPa at t = 0.91 ms, while the maximum 

negative pressure is −0.00124 MPa at t = 0.8333 ms.  The use of the ECH is associated 

with a greater reduction in the pressure loading experienced by the skull relative to the 

ACH (see Fig. 50(b)). As shown in Fig. 50(b), the peak positive pressure experienced by 

an ACH protected skull is almost twice as large as the peak positive pressure 

experienced by an ECH protected skull. The reduction of the skull pressure for a helmet 

protected head results in a much lower skull deformation and rapid damping of the skull 

oscillations. This can be seen in Figs. 51 and 52. For an unprotected head, the maximum 

skull deformation ranges from −5.514 mm to 1.3 mm. In contrast, an ACH protected 

skull deforms only about 0.01776 mm, which remains more or less constant in the 

duration of the current simulations (1 ms). This observation is in contrast to what has 

been reported for frontal explosions, wherein the skull front pressure and deformation 

increase for a helmet protected head (Nyein et al., 2010). 
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Figure 51. Uniform deformation on the inner surface of the skull for a helmet protected 

head at different times.  

 

Figs. 53(a) and 53(b) show the particle velocity and acceleration profiles in the brain. It 

can be seen that the presence of the helmet results in increase in the velocity and 

acceleration transferred to the brain. This increase is smaller for the ECH protected head 

than for the ACH protected head. The change in the velocity is an indication of the 

impulse (i.e., the area under pressure time curve) transmitted to the brain. Therefore, the 

specific impulse transmitted to the brain is much higher in a helmeted head than in an 

unprotected head. This is due to the extra amount of impulse transmitted through the 

helmet shell and foam pads and an increase in the overall weight supported by the neck. 

 

 

 

t = 0.583, 0.66, 0.75, 0.83 ms 
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Figure 52. Rapid oscillations of the inner surface of the skull for an unprotected head at different times. Blue regions indicate 

the inward deformation, and red spots are for the outward deformation

t = 0.583 ms t = 0.666 ms 

t = 0.75 ms t = 0.83 ms 
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                                                   (a)                                                                                                     (b) 

Figure 53. Particle velocity (a) and acceleration (b) profiles in the brain 
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                                                   (a)                                                                                                     (b) 

Figure 54. Pressure-time histories predicted for the main brain at the cerebrum/CSF interface: (a) coup pressure b) contrecoup 

pressure.  
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Figure 55. Pressure gradients histories predicted for the main brain at the cerebrum/CSF 

interface. 

 

Although the specific impulse transmitted to the brain is higher for the helmet head, the 

presence of the helmet is seen to cause a reduction in the magnitude of the intracranial 

pressures on the coup side of the main brain (see Fig. 54(a)). The helmet also delays the 

arrival of the blast wave into the intracranial cavity. The ACH only slightly reduces the 

magnitudes of positive pressure peaks, while the mitigating effect of the ECH is more 

pronounced. It can also be seen from Fig. 54(a) that the presence of the helmet avoids 

the underpressure (i.e., large negative pressures) in the CSF. For an unprotected head the 

CSF experiences a peak negative pressure of −2828 KPa, which reduces to −575.6 KPa 

for an ACH protected head and −550.2 KPa for an ECH protected head. Large negative 

pressures observed at the coup site for an unprotected head can lead to fluid cavitation in 

the CSF (Hardy et al., 1993). This is shown in Fig. 57, where increasing distortion of the 

elements of the CSF can be seen clearly. This element distortion is not observed in the 
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CSF at the coup site for a helmet protected head (see Fig. 56). Thus the presence of the 

helmet (ACH or ECH) helps in avoiding head injuries of the fluid cavitation type.  

 

Figure 56. Absence of the fluid cavitation on the coup side in the CSF for a helmet 

protected head 

 

In contrast to the dilatational response at the coup site, the negative pressure magnitudes 

at the contrecoup site do not show any significant difference between the helmet 

protected head and the unprotected head (see Fig. 54(b)). The maximum overpressure 

and underpressure values at the contrecoup site for the unprotected head are 1311 KPa 

(at t = 0.75 ms) and −361.7 KPa (at t = 0.91667),  respectively. The corresponding 

values for the ACH  protected head are 1362 KPa (at t = 0.75 ms) and −575.6 KPa (at t = 

0.66 ms), while for an ECH protected head the pressure values ranged from 370.8 KPa 

to −550.2 KPa. For the unprotected head, strong pressure gradients are developed in the 

brain (CSF/cerebrum) in contrast to a helmet protected head (see Fig. 55). 

t = 0.5, 0.583, 0.66, 0.833 ms 
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Figure 57. Fluid cavitation damage observed on the coup side in the CSF for an unprotected head 

t = 0.5 ms t = 0.583 ms 

t = 0.66 ms t = 0.916 ms 
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                                                   (a)                                                                                                     (b) 

Figure 58. Temporal evolution of principal stresses: (a) brainstem and (b) corpus callosum 
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The maximum values of the deviatoric stress values occur in the brainstem, 

which is followed by the corpus callosum region (see Table 27 and Fig. 58) for all the 

three cases studied.  The values of the shear stress are two orders of magnitude lower 

than the values of the principal and von Mises stresses. The peak values of the deviatoric 

stress in the brainstem reduce for the helmet protected head (see Table 27). The principal 

stress envelopes for the corpus callosum are shown in Fig. 58(b).  It can be seen that the 

helmet does not significantly mitigate the stresses in the corpus callosum region. On the 

contrary, at t = 1 ms the magnitude of the shear and von Mises stresses in the corpus 

callosum are higher in a helmet protected head (ACH or ECH) than in the unprotected 

head. The increases in the peak values of shear and von Mises peak stresses are higher in 

the ACH protected head than in the ECH protected head (see Table 27). There is also a 

probability that the magnitude of the deviatoric stresses will continue to increase 1 ms 

(the simulation period used here) after the blast takes place. 

5.5  Discussions 

The observations in this subsection suggest that for a lateral blast the presence of 

the combat helmet provides mixed results in mitigating the blast effects on the brain 

tissue. For a helmet protected head the blast waves do not directly impact the skull 

resulting in reduction of the skull deformation and oscillation of the skull and in the 

amplitude of the pressure waves entering the intracranial cavity. This reduces the 

pressure fluctuations in the intracranial cavity at the coup site thereby mitigating the of 

brain collision with the skull and the fluid cavitation. 
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Table 27 Peak values of the intracranial deviatoric stress  

Region 

Unprotected Head Head with ACH Head with ECH 

Shear Stress 

(Pa) 

von  

Mises 

Stress 

(Pa) 

Shear 

Stress 

(Pa) 

von  

Mises 

Stress 

(Pa 

Shear 

Stress 

(Pa) 

von  

Mises 

Stress 

(Pa) 

Brainstem 
−927.1 to 

2163 
26410 −1.34 to 

1.34 

 

79.1 

−1.09 

to 

2.674 

50.26 

Corpus 

Callosum 

−2.56 to 

1.621 48.49 
−2.89 to 

6.335 
140 

−3.60 

to 

4.384 

95.7 

 

However, at the contrecoup site the pressure response is more likely to be associated 

with wave reflections from the inner surface of the skull. As a reflected wave possesses a 

greater strength than an incident wave, this might explain the negligible reduction in the 

pressure values at the contrecoup site. The ECH was found to be more efficient in 

mitigating the effects of a blast wave on the human head than the ACH. Figures 59 and 

60 show the spatial distribution of pressure in the helmet shell for the ECH and ACH, 

respectively. The early time response of the ACH shell displays fewer variations in the 

spatial pressure distribution (see Fig. 60), while large bands of high negative and 

positive pressures are seen to develop in the ECH (Fig. 59).  The maximum positive 

pressure (red color bands in Fig. 59) in the ECH is found to peak at a post blast time of 

0.58 ms with a value of 16.43 MPa, while the maximum negative pressure (blue color 

bands in Fig. 59) of −15.8 MPa occurs at t = 1 ms after the blast. The corresponding  

pressure limits for the ACH shell are −6.6 MPa (at t = 0.91 ms) to 12.69 MPa (at t = 

0.5833 ms). When a blast wave interacts with a structure it delivers the blast energy into 
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the structure. The nature and extent of the deformation of the structure depends on the 

strength of the blast wave and properties of the structure. The ECH is made from the 

Dyneema
®

 HB80 unidirectional composite, which is lighter but stiffer (see Table 23) 

than the Kevlar
®

 fiber Phenolic resin composite used to make the ACH. Because of its 

higher stiffness the ECH can reach stress levels higher than the ACH, and owing to its 

lighter weight the ECH can react faster to pressure variations than the ACH. These allow 

the ECH shell to absorb a higher amount of blast loading than to the ACH shell thereby 

reducing the intensity of a blast wave transferred to the skull (and subsequently to the 

intracranial cavity) through the foam padding system (see fig. 50(b)). 

The brainstem and corpus callosum are stiffer than the main brain, leading to higher 

values of the deviatoric stress components. The presence of the helmet lowers the 

deviatoric stress in the brainstem. However, an opposite trend is observed in the corpus 

callosum region for both the ECH and ACH protected heads. The corpus callosum forms 

a link between the left and right cerebral hemispheres. Rotational acceleration in lateral 

direction is conducive to axonal stretching in the white matter region of the cerebrum via 

the corpus callosum (Mendis, 1992). Therefore, the corpus callosum is more susceptible 

to diffuse axonal injuries, which are induced by acceleration and deceleration forces 

acting on the brain. As can be seen in Fig. 54(b) the rotational acceleration for an helmet 

protected head is higher than that for an unprotected head. This might be a probable 

cause for the increase in shear stresses that has been observed in the corpus callosum 

region for a helmet protected head as compared to an unprotected head. This increase is 
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less for a head protected by an ECH, which is lighter than an ACH. Based on the 

findings presented herein it can be said that for a lateral blast the intracranial wave 

reflection and the head/helmet weight control the levels of the deviatoric stress and 

pressure generated inside the brain. Several causes have been identified for BTBI. The 

primary blast injury is induced by ingress of the blast wave into the intracranial cavity. 

The secondary blast injuries are caused by flying debris, and the tertiary blast injuries are 

predominantly caused due to the rotational acceleration exerted on the skull and brain by 

the blast wind.  The ECH provides a better protection against the primary, secondary and 

tertiary blast injuries than the ACH. The helmet development so far has been mainly 

focused on modifying to the helmet shell (e.g., using new materials or face shield). In 

addition to these improvements, research on the role of foam pads in shock wave 

absorption and on the development of new materials for foam pads that can further 

reduce the strength of blast waves entering the intracranial cavity should help in 

enhancing the blast impact mitigation capabilities of combat helmets.   
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Figure 59. High positive (red/orange bands) and negative (blue bands) pressure regions developed in the ECH shell. The 

pressure values range from −15.48 MPa to 16.43 MPa. 

t = 0.5 ms t = 0.66 ms 
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Figure 60. Pressure distribution in the ACH shell. The pressure values range from  

−6.6 MPa to 12.60 MPa. 

t = 0.5 ms t = 0.66 ms 
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5.6  Ballistic Impact 

5.6.1  Experimental Validation 

Ballistic impact induced behind helmet blunt trauma occurs as a result of rapid 

deformations of the combat helmet shell subjected to a projectile impact. In this section 

the helmet shell deformation for two different projectiles and two different helmet shell 

materials are evaluated.  

5.6.1.1 Ballistic Impact of a Spherical Steel Projectile on the ACH 

Experiments involving frontal and lateral ballistic impacts of a spherical steel projectile 

on an ACH were performed by Tan et al. (2012).  In these tests, the ACH with an 

interior foam cushioning system was placed on a Hybrid III headform. The projectiles 

used were 14.2 mm diameter spherical steel balls. A ballistic gas gun was used to launch 

these projectiles to strike the front and left side of the helmet at velocities of 205 m/s and 

220 m/s respectively. These shooting tests are simulated in our study in order to 

ascertain the accuracy of our finite element predictions. For the purpose of validation, 

the skull was assumed to be made of magnesium alloy as specified by the National 

Institute of Justice Standard for ballistic testing of combat helmets (NILECJ-STD-

0106.00) with a Young’s modulus 45 GPa, and a Poisson’s ratio of 0.35. Table 28 

provides a comparison of the current simulation results with the shooting test data of Tan 

et al. (2012). It is seen that the simulation values for the rebound velocity of the 

projectile, energy absorbed by the helmet, and dynamic deflection radius correlate well 

with the experimental results.  
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Table 28 Comparison of the simulation results with the experimental data of Tan et al. 

(2012). 

 

Measured 

Quantity 

Frontal Impact at 205 m/s Lateral Impact at 220 m/s 

Experimental 

data 

Current 

simulation 

results 

Experimental 

data 

Current 

simulation 

results 

Rebound 

velocity of 

projectile 

(m/s) 

15 15.11 10 14.33 

Energy 

absorbed by 

helmet (J) 

248.4 248.69 288.6 286.758 

Dynamic 

deflection 

radius (mm) 

21.5 19.453 32.3 34.43 

Helmet dent 

depth (mm) 
12.6 9.364 13.1 10.68 

Permanent 

dent region 

diameter 

46 44.534 42 22.772 

 

5.6.1.2 Ballistic Impact of a Full Metal Jacket Bullet (FMJ) on the ACH and ECH 

The NIJ Standard for Ballistic Helmets (NILECJ – STD – 0106.00) specifies a 

9mm full metal jacket bullet (FMJ) with velocities of 358±15 m/s for high velocity 

ballistic testing of combat helmets. The FMJ bullet consists of a soft core enclosed in a 

hard metal shell. Ballistic tests using the FMJ bullets were performed by Hisley et al. 

(2011). In their experiments the helmet was mounted on a skull fixture (of thickness 

6.8mm) and a total of fifteen 9 mm shots were fired at the front, back, and crown 

locations of the helmet. Helmets of different sizes (large, X-large) with standoff 

distances of 12.7mm and 19.1mm, respectively were used for the experiments. The 

bullet velocities were in the range of 370±15 m/s. However, the type of helmet used 
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(ECH or ACH), kind of helmet padding system, and helmet shell thickness has were not 

provided in Hisley et al. (2011). The current simulations results for the FMJ bullet strike 

are compared with the experimental data of Hisley et al. (2011).  In the simulations the 

skull (of thickness 8.09 mm) is taken to be made of a magnesium alloy (with its material 

properties provided in Section 5.6.1.1) and the helmet standoff distance is 19.9 mm. The 

FMJ bullet consists of two parts – a brass cartridge surrounding a lead core. The average 

helmet shell thickness is 8.85 mm and a seven foam padding system (shown in Fig. 49) 

is used.  

Table 29 Comparison between the current simulation results and the experiment data of 

Hisley et al. (2011).  

 

Measured 

Quantity 

Right impact at 377.6 m/s 

Experimental 

Results  

Simulation results 

ACH ECH 

Skull Thickness 

(mm) 
6.8 8.09 8.09 

Helmet standoff 

distance (mm) 19.1 19.9 19.9 

Helmet size Large Large Large 

Shell thickness Not mentioned 8.85 8.85 

Maximum 

helmet shell 

velocity at time 

of impact (m/s) 

 

167.7 

 

167.2 

 

111.8 

Rebound 

velocity of the 

projectile 
- 83.72 52.92 

Dent depth 

impact (mm) ≈10 9.803 9.77 



 

175 

 

 

Table 29 continued 

 

Measured 

Quantity 

Right impact at 377.6 m/s 

Experimental 

Results  

Simulation results 

ACH ECH 

Maximum 

Helmet back 

face 

deformation 

(mm) 

38.3 18.27 11.64 

Diameter of dent 

(mm) 
43 41.06 114.76 

 

A comparison of the FE results for the right lateral impact and the experimental 

measurements (of test number 18) from Hisley et al. (2011) is given in Table 29. Fig. 61 

shows the helmet shell velocity vs. time and the deformation vs. time graphs for the right 

lateral impact. It is seen from Fig. 61 that the simulation results for the ACH correlates 

well with the graph shown in Hisley et al. (2011). The back face deformation (BFD) of 

the helmet shell is shown in Figs. 64 and 65. The shape of the deformed helmet shell 

matches well with the experimental observation of Hisley et al. (2011). For the ACH the 

calculated values of the maximum shell velocity at the time of impact, diameter of dent, 

and helmet BFD at the time of impact show good agreement with the experimental 

results. The results for the front FMJ bullet impact are provided in Table 30 and Fig. 62.  

These results are qualitatively similar to their counterparts for the right lateral impact 

presented above. 

The simulations underestimate the maximum helmet deformation at the point of 

impact. This trend can also be seen in the simulation results of Tan et al. (2012) for a 

spherical projectile. However, the peak helmet shell velocity occurs just after initial 
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impact, as can be seen from Figs. 61 and 62. Therefore, the most important period when 

the probability of ballistic impact induced behind helmet blunt trauma is highest is right 

after the initial impact. The velocity and kinetic energy decrease well before the 

maximum helmet shell deformation is reached (at about 0.15 ms). As a result there is a 

very small possibility of occurrence of additional injury after the maximum deformation.  

This has also been noted by Hisley et al. (2011) based on the velocity vs. time and 

energy vs. time graphs obtained from their experiments.  Good correlation between the 

numerical and experimental values of the immediate post impact velocity, diameter of 

dent and helmet shell BFD for the ACH demonstrate that the FE model can give 

reasonable predictions regarding the amount of energy (or force) transmitted to the head 

that might cause ballistic impact induced behind helmet blunt trauma. 

Table 30 Simulation results for the front impact. 

Measured  

Quantity 

Simulation results for the front impact at 377.6 m/s 

ACH ECH 

Maximum helmet shell 

velocity at time of impact 

(m/s) 
148.8 94.27 

Helmet shell velocity at 

maximum back face 

deformation (m/s) 
85.74 58.79 

Rebound velocity of the 

projectile 105.6 93.61 

Dent depth at time of 

impact (mm) 13.13 13.05 

Maximum Helmet back 

face deformation (mm) 14.32 10.33 

Diameter of dent (mm) 41.98 156.48 
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                                                   (a)                                                                                                     (b) 

Figure 61. Helmet shell deformation and velocity time history for the right lateral ballistic impact 
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                                                   (a)                                                                                                     (b) 

Figure 62. Helmet shell deformation and velocity time histories for the front ballistic impact. 
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Figure 63. Shear stress and pressure time envelopes for the helmet shell for the front ballistic impact. 
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Figure 64. Helmet shell BFD for the FMJ bullet strike at 377.6 m/s at three post impact times: a) 0 ms, b) 0.035 ms, c) 0.07 ms 

 

 

 

 

 

a) b) c) 
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Figure 65. Helmet shell BFD for the FMJ bullet strike at 377.6 m/s at three post impact times: a) 0.1 ms, b) 0.14 ms and c) 

0.175 ms. 

a) b) c) 
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The finite element simulation results for the ECH show some differences from those for 

the ACH. The damaged area for the ECH as calculated from the diameter of dent (see 

Tables 29 and 30) is much larger than the ACH. Based on the rebound velocities of the 

projectile (see Table 29 and 30) it can be said that the ECH absorbs more of the 

projectile energy than the ACH, but has a smaller back face deformation (BFD). This 

difference in response to the high velocity impact is related to the change in material of 

the helmet shell.  As mentioned earlier some of the mechanisms that absorb the energy 

of the projectile are tensile straining (and failure) of the primary yarns, deformations of 

the secondary yarns, and matrix cracking and delamination (Naik and Shrirao, 2004). 

The ECH shell is made from the Dyneema
®

 HB80 unidirectional composite, which has 

a very soft matrix compared to that of the Kevlar
® 

fiber/Phenolic-resin composite used 

to make the ACH shell (see Table 23).Therefore, matrix cracking and delamination 

occur at much lower values for the ECH leading to an increase in the damaged area. 

Even after the matrix fails the UHMWPE fibers in the Dyneema
®

 HB80 composite 

continue to resist loads. The Dyneema
® 

fibers have a higher tensile stiffness (and failure 

strength) than Kevlar
® 

K129 fibers (see Table 23 and 24). As a result, the ECH shell 

absorbs more energy and yet has a smaller BFD than the ACH.  The results presented in 

this subsection have shown that the ECH can offer better protection against ballistic 

impact induced behind helmet blunt trauma than ACH. In order to have a better 

understanding of this observation, the pressure and stress histories for the helmet shell 
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are extracted and compared for both the ECH and ACH.  These curves for the front 

impact are displayed in Fig. 63. The trends for the lateral impact are similar, and the 

corresponding curves are therefore not presented here. It can be seen from Fig. 63 that 

the shear stress and pressure in the ECH shell are higher than those in ACH shell. 

Therefore, the lighter and stiffer ECH absorbs more energy of the projectile but 

dissipates it in the form of higher stress and pressure variations. This can be one possible 

explanation for the increase in the energy absorption but reduction in the BFD for the 

ECH. 

5.7  Behind Helmet Blunt Trauma for the ACH 

Figure 66 shows snapshots of the ballistic impact event. The FMJ bullet 

travelling at 365 m/s impacts the helmet shell at 0.075 milliseconds. The actual impact 

event lasts about 0.075 ms, and the bullet rebounds at 0.15 milliseconds with a rebound 

velocity of 61.61 m/s. The total energy delivered to the helmet shell was 517.716 J. The 

projectile impact transmits a strong pressure wave to the skull at t = 0.175 milliseconds. 

The maximum overpressure in the skull at this time is 31.51 MPa. The rapid deformation 

of the helmet shell and compression of the polyurethane pads causes the front of the 

helmet shell to impact the skull at t = 0.25 milliseconds (see Fig. 66). This blunt impact 

generates secondary pressure waves in the skull that are of higher intensity than the 

waves generated by the projectile impact. The peak pressure in the skull reaches its 

maximum value of 380.2 MPa at t = 0.25 milliseconds (see Fig. 67). The temporal 

evolution of the von Mises stress in the skull is qualitatively similar to the pressure 

versus time curve with a peak value of 674.6 MPa occurring at t = 0.25 ms (see Fig. 67).  
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Figure 66. Ballistic impact of the FMJ bullet with head/helmet assembly.

t = 0.15 ms t = 0.225 ms t = 0.25 ms 

t = 0 ms t = 0.075 ms t = 0.125 ms 
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Figure 67. Pressure and von Mises stress profiles for the skull. 
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                                                        a)                                                                                              b) 

Figure 68. Temporal evolution of the pressure and stress in the intracranial cavity: a) the cerebrum/CSF pressure; b) the von 

Mises stress in the brainstem. 
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Stress thresholds for skull fracture have been obtained in McElhaney et al. (1970), 

Robbins and Wood (1969), and Wood (1971). According to these studies, the tensile 

strength for the skull bone is between 48 – 128 MPa, and the compressive strength is 

between 32 – 74 MPa.  Comparing the results from the present study to these values it 

can be said that the actual ballistic impact and helmet shell deformation do not induce 

skull fractures. However, the secondary blunt impact between the shell and the skull 

(occurring at t = 0.25 ms) is likely to induce skull fracture. 

The peak intracranial pressure occurs at the CSF-cerebrum interface directly underneath 

the point of impact and decreases away from point of impact. In the finite element 

simulations a high stress (pressure) concentration is seen at places where tissue damage 

has occurred. Damage criteria are useful for predicting the probability of TBI under 

mechanical loading. The currently used injury criterion is the head injury criterion (HIC) 

adopted by the National Highway Traffic Safety Administration (NHTSA) based on the 

work of Gadd (1966). The HIC is an empirical criterion mainly used in the automobile 

industry and is based on the probability of injury due to a global translational head 

acceleration. The HIC criterion does not take into account the intracranial mechanical 

response and hence cannot distinguish between various types of traumatic brain injuries. 

In the past decade, many 3-D finite element based head models have been used to 

develop injury criteria for the brain. Various injury criteria based on stress, strain, strain 

rate, intra-cranial pressure gradient, and type of explosives are summarized in Chapter 2. 

The criterion developed by Ward (1980) uses the intracranial pressure values as an 

indicator for brain contusion type injuries. The intracranial pressure values obtained in 
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the current simulations at the cerebrum/CSF interface (see Fig. 68(a)) exceed the 

threshold for brain injury. Therefore, there is a possibility of brain contusion injury for a 

FMJ bullet frontal impact on an ACH. However, the peak deviatoric stress (strain) 

values in the brainstem and corpus callosum (see Fig 68(b)) do not exceed the thresholds 

for diffuse axonal injuries. Even though the probability of occurrence of contusion type 

injuries can be predicted with some degree of confidence, it is difficult to quantify the 

extent  and severity of brain injury based on this effort alone. 
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CHAPTER VI 

 SUMMARY AND CONCLUSIONS 

 

6.1 Summary and Conclusions 

 A transversely isotropic visco-hyperelastic constitutive model is provided for soft 

tissues based on continuum mechanics. A new form of the strain energy density function 

based on five invariants of the right Cauchy-Green deformation tensor C is proposed to 

model quasi-static responses, and a rate-dependent viscous potential involving two 

invariants of 
•

C (the total material time derivative of C) additionally is suggested to 

account for short-term memory effects. The predicted stress responses by the newly 

proposed constitutive model compare well with available experimental data for porcine 

and human brain tissues at different strain rates and under multiple loading conditions. 

The model can be applied to other soft tissues by using different values of material and 

fitting parameters. The elasticity and viscosity tensors are explicitly derived using the 

general form of the strain energy density function of the five invariants of C and the 

viscous potential of the first five invariants of 
•

C , which can be directly used in finite 

element simulations of blast-induced traumatic brain injury.  

 Using this constitutive relation a finite element model is established to study non-

penetrating traumatic brain injuries. The geometric model of human head consists of the 

skull and several intra-cranial brain sections. The effects of the constitutive models and 

blast direction on the finite element simulations of BTBI are investigated. Further, this 
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human head model is combined with a geometric model of combat helmet and the 

effectiveness of combat helmets on the propagation of pressure/stress waves within the 

brain tissue following blast and ballistic impacts is investigated. Blast and ballistic 

impact simulations have been validated against available experimental data. Two helmet 

designs are considered: the Advanced Combat Helmet, which is the current helmet of the 

U.S. Army and the Enhanced Combat Helmet, which is under development since 2007. 

Based on the simulation results obtained in this work, the following conclusions are 

derived: 

• In a blunt impact (such as traffic accidents or a sports collision) the head 

experiences a quasi-static load. The pressure varies very slowly, has a long rise 

time, and can be approximated by an average constant value.  In such a case, 

choosing a different constitutive relation for the volumetric response or reducing 

values of the bulk modulus has very little effect on the intracranial pressure 

response. As strain rate effects are negligible, hyper-viscoelastic models can be 

used to capture the deviatoric and decaying responses of the tissue.   

• Blast and ballistic impacts involve interactions between detonation waves and 

shock waves. Shock waves are defined by abrupt changes in the characteristics of 

the medium such as pressure, velocity, density, and loading rate. The meshing 

and material modeling requirements for shock waves are higher than modeling a 

structural dynamic quasi-static event like blunt impact. 

• Unlike blunt impacts, the volumetric response of the brain tissue to blast events 

is sensitive to change in the constitutive relations and the values of bulk modulus. 
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A non-linear EOS is essential to describe the shock response of the brain tissue. 

Simplifying assumptions can save computational cost, but they underestimate 

pressure and strain gradients.  

• Including the strain rate effects (short-term memory) leads to deviatoric response 

that is substantially stiffer than that predicted using a linear elastic or hyper-

viscoelastic material relation. A linear elastic model generates higher stresses 

than a hyper-viscoelastic one. 

• Inclusion of anisotropy in the constitutive relation can have an effect on the 

nature and location of injury.  

• Brain tissue constitutive relations validated against low velocity impact 

experiments (cadaver impact experiments) may not necessarily provide accurate 

results for shock wave dominated events. In the absence of experimental data for 

validating BTBI simulations, numerical modelers can do little more than ensure 

that the constitutive relations implemented are accurate. 

• Localized skull deformations, coup and contrecoup pressures, and deviatoric 

stresses are larger under a lateral blast than those under a frontal blast.  

• For a lateral blast loading the presence of the combat helmet significantly 

reduces the skull deformation and oscillation. The helmet decreases the 

underpressure in the CSF on the coup side by absorbing some of the incident 

blast loading. Thus, the combat helmets provide some degrees of protection 

against contusion and fluid cavitation. In contrast to the dilatational response at 

the coup site, the negative pressure magnitudes at the contrecoup site do not 
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show any significant difference between a helmet protected head and an 

unprotected head under blast loading.  

• For a blast impact the velocity and acceleration transferred to the brain is higher 

for a helmet protected head than for an unprotected head. 

• The deviatoric stress values in the brainstem region are smaller in a helmet 

protected head than in an unprotected head. However, the presence of a helmet is 

seen to cause an increase in the shear and von Mises stress values in the corpus 

callosum region. This increase is smaller for the ECH than for the ACH.  

• The Dyneema
®

 HB80 unidirectional composite based ECH provides higher 

protection against BTBI than the Kevlar
® 

fiber/Phenolic-resin based ACH. The 

ECH is lighter but stiffer than the ACH and is able to absorb larger amount of 

blast loading.   

• For a FMJ bullet ballistic impact, the ECH absorbs more of the projectile energy 

than the ACH, but has a smaller back face deformation (BFD) and a smaller 

helmet shell velocity. As a result, the ECH reduces the risk of ballistic impact 

induced behind armor blunt trauma injuries even though it is lighter than the 

ACH.  

• A FMJ bullet front impact at 365 m/s on an ACH is likely to cause skull fracture 

and brain contusion. However, the peak deviatoric stress (strain) values are not 

large enough to cause any permanent damage in the white matter regions or the 

brainstem.  
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• In addition to developing new materials for the helmet shell, research into the 

behavior of foam pad material under blast or ballistic loading can help in 

mitigating non-penetrating TBI’s. 
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