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ABSTRACT 

 

This study is focused on the chemical composition and cloud nucleation ability of 

marine aerosol based on two cruise researches over Pacific Ocean and North Atlantic Ocean 

respectively. Implications of CLAW hypothesis and the factors influencing its validity are 

analyzed for the contemporary era with ever-increasing pollution. 

The pacific cruise started from Punta Arenas, Chile and ended in Seattle, WA during 

March-April of 2010. Raman microspectroscopy (RMS) was employed to identify the chemical 

composition and mixing conditions of single particles collected. By analyzing multiple particles 

in a collected ensemble, the degree of external/internal mixing of particles was also determined. 

Atmospheric aerosol concentration, cloud condensation nuclei (CCN) concentration, and 

chlorophyll a concentration in the underlying water (a metric for phytoplankton biomass in the 

ocean), were also measured. Our results indicate that long chain organic molecules were 

prevalent in the marine aerosol samples throughout the cruise. Long chain organic compounds 

tended to stay mixed with other organic and inorganic components. The influence of marine 

organic aerosols on cloud nucleation ability is analyzed.  

The North Atlantic cruise started from Woods Hole, MA and returned back to the same 

location during June-July 2011. The cruise passed through a wide range of conditions, including 

areas of high phytoplankton biomasses and extremely high DMS levels (over 1800 pptv). 

Aerosol concentration, cloud condensation nuclei (CCN) concentration, particle size distribution, 

as well as surface seawater and atmospheric DMS concentrations were performed 

simultaneously during the cruise. HYSPLIT back trajectories were used to classify air mass 

origins. Even though continental sources increased the total aerosol population, it depressed the 



 
 

iii 

 

effective CCN concentrations possibly due to the competition in particle growth. Continuous 

high CCN and elevated DMS concentrations over the open ocean occur concurrently, which can 

be explained by enhanced nucleation and condensational growth of aerosols in marine boundary 

layer (MBL) resulting from the DMS oxidation or primary aerosols from the sea surface. Our 

data also indicated that uncertainties remain in sea spray aerosol production flux function, 

especially for particles with dry diameter smaller than 200 nm.  
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Basic concepts and definition 

Aerosol, a term which officially means liquid or solid particles suspended in an air 

(Poschl 2005), is used interchangeably with particle in this manuscript. Aerosol can be generated 

in an experimental system or present in the ambient air. The ambient aerosol is a focus of 

environmental and climate researches. Ambient aerosols can be distinguished by the original 

locations of their sources, including marine aerosols, urban aerosols, rural continental aerosols, 

remote continental aerosols, free troposphere aerosols, polar aerosols, desert aerosols, and so on 

(Seinfeld and Pandis, 2006). This dissertation is primarily concerned with marine aerosols. 

Aerosol can also be classified by their chemical composition, such as sulfate aerosol, nitrate 

aerosol, ammonium aerosol, organic aerosol, sea salt aerosol, and so forth (Seinfeld and Pandis, 

2006). Aerosols can also be identified by their mixing state, i.e., internally mixed or externally 

mixed, which will be discussed further in this chapter. When using the singular form “aerosol” it 

denotes a general type of aerosol; when using the plurals form “aerosols” it represent many 

particles or a subgroup of aerosol types based on other categorization method in the primary 

group. For example, there are sea salt aerosol, sulfate aerosol, organic aerosol and other types of 

aerosol in marine aerosols.  

With the possible exception of chemical composition, aerosol size is the most important 

characteristic in understanding their influence in direct and indirect radiative effects (Dusek et al., 

2006; Twohy and Anderson, 2008). Different “modes” are used to describe marine aerosol sizes, 

including nucleation mode, Aitken mode, accumulation mode, ultrafine mode, fine mode, and 

coarse mode (Seinfeld and Pandis, 2006). Based on the distribution functions of aerosol 
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population, different modes were defined. However, there are various distinctions about the 

ranges of these modes. Table 1.1 summarized a few of these classifications. 

 

Table 1.1 Different definitions of size ranges of aerosol modes. 

Sources Modes    
     

     

Junge 1956   Small SSA: 

0.1μm ≤r80≤1 μm 

Giant SSA: r80≥1 μm 

     

Whitby 1978   Fine particles: 

 r<1 μm 

Coarse particles: 

 r>1 μm 

     

Lewis and Schwartz, 2004   Small SSA: 

r80≤1 μm 

Medium SSA: 

1 μm ≤r80≤25 μm 

Giant SSA: r80≥25 μm 

 

Kulmala et al., 2004b Nucleation: 

3-20nm 

Aitken: 

20-90nm 

Accumulation: 

90-1000nm 

Coarse: 

>1000nm 

Seinfeld and Pandis, 2006 Nucleation:  

    < 10nm 

Aitken:  

10-~100nm 

Ultrafine:  

    <100nm 

Accumulation:  

  ~ 0.1 - ~2μm  

Fine: < 2.5 μm 

Coarse:  2.5 - ~50μm 

     

Leck and Bigg, 2007 Nucleation:  

    < 10nm 

Ultrafine:  

10-25nm 

Aitken:  

25-80nm 

Accumulation:  

~ 80nm-1μm 

 

Coarse:  >1μm 

     
All sizes unspecified are referred to as aerodynamic diameter; r represent radius; r80 represent radius at 80% RH. 

 

1.2 Marine aerosol sources and composition 

Marine aerosol is one of the most important groups of aerosols since more than 70% of 

the earth surface is covered by ocean. Marine aerosol is composed of sea salt or sea spray 

aerosols (de Leeuw et al., 2011), non-sea-salt (nss) sulfate aerosol (Charlson et al., 1987), 

secondary organic aerosols (Meskhidze and Nenes, 2006), and iodine-mediated coastal particles 

(McFiggans et al., 2010), as well as species from continental sources and anthropogenic 
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activities (Mochida et al., 2007). An overview of the sources and categories of marine aerosol is 

summarized by the author of this dissertation in Figure 1.1. 

 

 

Figure 1.1 Diagram summarizing marine aerosol formation and transportation. DMS, DMSO, 

MSA, BVOC, POA, SOA, NPF, MBL, FT, SML stand for dimethyl sulfide, dimethyl sulfoxide, 

methanesulphonic acid, biogenic volatile organic carbon, primary organic aerosol, secondary 

organic aerosol, new particle formation, marine boundary layer, free troposphere, and sea surface 

microlayer, respectively. 

 

Sea salt or sea spray aerosol is the primary aerosol produced during the air-sea 

interactions. Sea salt aerosol is composed of inorganic particles produced through bubble 

bursting processes (Blanchard 1963). Organic species were reported more and more frequently 

in primary marine aerosol over the past decade (Gantt and Meskhidze, 2013). Sea spray aerosol 
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(SSA) is the term used to represent the combinations of sea salt and primary organic aerosols (or 

simply primary marine aerosols), mixed either internally or externally (de Leeuw et al., 2011). 

“SSA” will be used equivalently with “sea spray aerosol” in the remaining part of this 

manuscript, even though it is also often used as the acronym of sea salt aerosol in the literature 

before the importance of organics was realized. SSA constitutes the majority of marine aerosol 

mass production flux and is comparable in mass load to continental dust aerosol (Andreae and 

Rosenfeld, 2008).  

Non-sea-salt sulfate aerosol in marine aerosols refers to the portion of sulfate in excess 

of that present in seawater. Nss-sulfate over the oceans is mainly emitted from phytoplankton 

synthesized dimethylsulfoniopropionate (DMSP), a precursor to dimethyl sulfide (DMS), 

especially over remote marine regions (Charlson et al., 1987). DMS can be oxidized by a number 

of oxidants in marine atmosphere into sulfur dioxide (SO2) and further into gaseous phase 

sulfuric acid (H2SO4) which can trigger nucleation of new particles (Andreae et al., 1995). In 

addition, SO2 emitted from anthropogenic activities and volcanic eruptions can also be 

transported over the ocean and lead to nss-sulfate. In additional to gaseous phase oxidation, 

DMS can be oxidized in aqueous phase and contribute to the growth of the newly formed 

particles and other pre-existing particles (Barnes et al., 2006). The scattering and reflection 

effects of these DMS-evolved aerosols as well as their ability to serve as cloud condensation 

nuclei (CCN) were hypothesized to be enhanced with the increase of phytoplankton biomass. 

Surface water chlorophyll a concentration is one metric for phytoplankton biomass. The biomass 

itself is enhanced by increased temperature and sunlight, in the seminal paper prosed by 

Charlson, Lovelock, Andreae, and Warren in 1987. This phytoplankton-DMS-aerosol-cloud 

climate feedback was recognized as a negative feedback and was then commonly referred to as 

“CLAW hypothesis” (Ayers and Cainey, 2007).  Although there have been investigations 
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showing no strong feedback mechanisms and doubting the validity of CLAW (Woodhouse et al., 

2010; Quinn and Bates, 2011), there also have been many studies supporting the original 

biosphere-mediated climate feedback and indicating the necessity of further researches (Cropp et 

al., 2005, 2007; Liss and Lovelock, 2007; Ayers and Cainey, 2007; Vallina and Simo, 2007). 

Secondary organic aerosol (SOA) in the marine atmosphere is formed through new 

particle formation (NPF) from biogenic volatile organic compounds (BVOC) and their oxidation 

products (Rinaldi et al., 2010). BVOCs and their oxidation products can also be the condensable 

vapors to condense onto the preexisting aerosols and contribute to particle growth (Rinaldi et al., 

2010). Examples of VOCs include isoprene (Meskhidze and Nenes, 2006), amines (Facchini et 

al., 2008a), dicarboxylic acid (Kawamura and Sakaguchi, 1999), etc. Methanesulfonic acid 

(MSA), an oxidation product of DMS, is also an important type of SOA (Facchini et al., 2008a). 

An additional mechanism, iodine-mediated coastal particle formation has been found in 

multiple locations (McFiggans et al., 2010). Reactive halogen species (RHS) such as iodine 

monoxide (IO) and atomic iodine (I) derived from macroalgae can react with oxidants (e.g. O3, 

HO2, and NO2) to form condensable products which are able to form new particles and facilitate 

particle growth (McFiggans et al., 2010). All the above discussed marine aerosol types could be 

present over the world oceans, independently or synergistically, mixing internally or externally. 

1.3 Direct and indirect effect of marine aerosol 

Aerosols exert their influence on the earth mainly by deteriorating air quality and 

complicating climate change (Poschl 2005). Due to the maritime origin and the relatively smaller 

amounts transportable to populated areas, the adverse impact of marine aerosol on human health 

by deteriorating air quality is overshadowed by its terrestrial counterparts (Poschl 2005; 
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Darquenne 2012). Therefore, the main focus of current researches about marine aerosol is to 

unravel its function in climate change. Marine aerosol can influence global climate by interacting 

with incoming solar radiation and outgoing terrestrial radiation, defined as direct climate forcing, 

and by serving as CCN to modify cloud albedo and lifetime, referred to as indirect climate 

forcing (IPCC 2007). The direct radiative forcing (radiative forcing, or RF, is the difference on 

radiative balance at the top of the atmosphere due to the addition of an atmospheric component, 

e.g., aerosol) due to sea salt aerosol mass load was estimated to range from -0.5 W m
-2

 to -6.0 W 

m
-2

 (Satheesh and Moorthy, 2005), compared to the overall direct radiative forcing due to all 

aerosol types being 0.5 ± 0.4 W m
-2

 and that due to mineral dust being 0.1 ± 0.2 W m
-2

 (IPCC 

2007: 204). The large range in the estimation of the direct RF due to sea salt is mainly resulted 

from its uncertainty in production flux, especially for large particles and at very high wind 

speeds (de Leeuw et al., 2011). The global average indirect RF due to sea salt aerosols was 

estimated to be -2.9 W m
-2

 (within the range of -10 to 2 W m
-2

), considering only particles with 

radii between 0.8 micron and 25 micron (at 80% relative humidity) (Ma et al., 2008). If the 

potential abundance of SSA particles smaller than 0.8 micron is considered, the indirect forcing 

due to marine aerosols is subjected to even larger uncertainty than what has been shown in Ma et 

al. (2008). This is because the indirect effect depends much more on particle number 

concentration than its mass concentration (Fan and Toon, 2011). Identification of the major 

sources of marine particles which are most important for indirect RF, i.e. those smaller than 200 

nm, is currently a controversial topic (Prather et al., 2013). Bigg (2007) report that only a 

negligible amount of sea salt particles are present in marine aerosol at sizes smaller than 200 nm, 

while others reported that significant amounts of sea salts could be detected, either in laboratory 

or in field samples (O’Dowd and Smith, 1993; Martensson et al., 2003; Clarke et al., 2006). The 

uncertain sources of marine particles have undoubtedly complicated the evaluation of indirect 
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RF due to sea salt aerosol or marine aerosol. To reiterate, the aerosol direct and indirect RFs can 

both counteract the warming effects inflicted upon the earth by anthropogenic greenhouse gases 

(GHG), and both of them are still subjected to large uncertainties (IPCC 2007; Mahowald et al., 

2011). 

1.4 Emerging importance of primary organic aerosol in marine atmosphere 

It has been known for several decades that organic matter is a component of primary 

marine aerosols, especially submicron SSA (Blanchard 1964). However, organic contributions to 

marine aerosol have only gained much attention during the past decade or so (Tervahattu et al., 

2002; O’Dowd et al., 2004; Facchini et al., 2008b; Rinaldi et al., 2010; Ovadnevaite et al., 2011a, 

b; Gantt and Meskhidze, 2013). Primary organic aerosols (POA) are injected into lower marine 

atmosphere from the sea surface microlayer (SML) which is the topmost tens to hundreds of 

micron of the ocean surface and enriched with particulate matter, polysaccharides, proteins, 

surface active materials, bacteria and viruses, debris of phytoplankton, and so on (Sellegri et al., 

2006; Cunliffe et al., 2013). The organic species present in SML can be further enriched in 

aerosols which are formed during the wave breaking and bubble bursting processes. The 

properties of POA detected in marine atmosphere depend on the locations of sample collection 

and observations. Fragments and debris of marine organisms, exopolymeric secretions (EPS) of 

bacteria and viruses, and gel-like substances of uncertain origin have been frequently detected in 

individual particles with sizes of tens to hundreds of nm in Arctic oceanic area (Leck and Bigg, 

2005a, b, 2007; Bigg 2007; Bigg and Leck, 2008; Karl et al., 2012, 2013). It is likely that these 

microgels and nanogels are capable of serving as CCN, though rigorous measurements of their 

cloud nucleation abilities have not been performed to date (Leck and Bigg, 2008, 2010). Water 

insoluble organic compounds (WIOC), including organic colloids and aggregates, have been 
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found in marine aerosols generated over Northeastern Atlantic Ocean (Cavalli et al., 2004; 

Ceburnis et al., 2008; Facchini et al., 2008b; Ceburnis et al., 2011; Ovadnevaite et al., 2011a, b). 

Predicting the hygroscopicity of these insoluble organic materials can be complicated, in part 

because different growth potentials under different levels of water vapor saturation (Irwin et al., 

2010; Ovadnevaite et al., 2011a). A prominent feature of these WIOC is their increasing organic 

mass fractions in aerosols with decreasing size (O’Dowd et al., 2004; Cavalli et al., 2004; Keene 

et al., 2007; Facchini et al., 2008b; Vignati et al., 2010; Ault et al., 2013). Water soluble organic 

carbon (WSOC), including aliphatic substances, humic like substances, and surface active 

materials, were also detected in marine aerosols as a component of POA (O’Dowd et al., 2004; 

Decesari et al., 2007; Yoon et al., 2007; Miyazaki et al., 2010; Facchini et al., 2008a; Ceburnis et 

al., 2008, 2011;). However, it needs to be noted that these detected WSOC also include SOA, 

which could  be dominant sometimes (Decesari et al., 2007; Yoon et al., 2007; Ceburnis et al., 

2008; Miyazaki et al., 2010; Rinaldi et al., 2010). Organic compounds (WSOC and WIOC) have 

been found to be enriched in biologically active regions and seasons (Cavalli et al., 2004; Yoon 

et al., 2007; Miyazaki et al., 2010). The combined effects of the presence of both WSOC and 

WIOC on cloud nucleation ability of aerosols could be a dichotomy since some of the surface 

active organics will reduce the surface tension of the particle but some insoluble organics may 

hinder the adsorption of water onto the particle (Wex et al., 2010a, b; Westervelt et al., 2012; 

Cunliffe et al., 2013). For the time being, the overall enhancement effect of the primary organic 

aerosol on cloud nucleation ability has found to be small (Westervelt et al., 2012; Prather et al., 

2013). 
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1.5 Secondary aerosol formation by photochemical oxidation and nucleation 

The most important secondary aerosol in marine atmosphere is nss-sulfate. Nss-sulfate 

aerosol forms through the oxidation of DMS, followed by new particle formation processes 

(Andreae and Rosenfeld, 2008). DMS can be oxidized in both gaseous phase and aqueous phase 

in the atmosphere (Barnes et al., 2006). It is oxidized by OH, NO3 and halogen radicals into 

series of compounds in gaseous phase in both MBL and upper troposphere (Barnes et al., 2006; 

Stark et al., 2007). The oxidation mechanism of DMS oxidation in gaseous phase in summarized 

in Figure 1.2.  

 

 

 

Figure 1.2 Schematic of DMS oxidation mechanism in the gaseous phase (Revised from Barnes 

et al., 2006 and Stark et al., 2007). 
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As shown in Figure 1.2, DMS is mainly oxidized by the three oxidants through two 

mechanisms, H-abstraction and OH-addition. These oxidation reactions result in a sequence of 

products which can play their parts during the new particle formation and particle growth 

(Andreae et al., 1999). A distinct feature of the oxidation mechanism is that, the closest step 

leading to sulfuric acid (SA) involves hydroxyl radical so that SA can only be produced with the 

presence of OH. It has been taken that OH production in the atmosphere is predominantly 

initiated by photolyzing O3 (Stark et al., 2007). However, field measurements have detected both 

gaseous (Eisele and Tanner, 1993; Zheng et al., 2011) H2SO4 and OH radical during nighttime 

when sunlight is obviously unavailable (Khan et al., 2008), indicating either a missing OH 

source or a different DMS oxidation mechanism or both. Other products resulting from DMS 

oxidation, such as dimethyl sulfoxide (CH3S(O)CH3, DMSO), dimethyl sulfone (CH3S(O)2CH3, 

DMSO2), methanesulphonyl peroxynitrate (CH3S(O)2OONO2, MSPN), methanesulphinic acid 

(CH3S(O)OH, MSIA), and methanesulphonic acid (CH3S(O)2OH, MSA), can be involved in the 

condensational growth of particles (Kulmala et al., 2004b; Arsene et al., 2005a).  

In addition to gaseous phase oxidation, significant concentrations of DMS can be 

oxidized by O3 in the aqueous phase (Gershenzon et al., 2001; Barnes et al., 2006). In contrast, 

oxidation by O3 in gaseous phase is six orders of magnitude slower than in aqueous phase (Du et 

al., 2007). As a consequence, the oxidation of DMS by ozone in the aqueous phase leads to 

DMSO at an efficiency of unity (Barnes et al., 2006). In addition to oxidation by ozone, DMS 

can also be oxidized by hydrogen peroxide (H2O2) in aqueous phase and result in DMSO. 

Aqueous phase oxidation rates are dependent on pH (Barnes et al., 2006). Furthermore, the 

intermediate oxidation products, including DMSO, DMSO2, MSI
-
 (methanesulphonic ion), MS

-
 

(methanesulphonic ion), can also be oxidized by OH, H2O2, Cl, and other oxidants in aqueous 

phase (Barnes et al., 2006). The oxidation of DMS and its intermediate oxidation products will 
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contribute to particle growth and should be treated as important additional steps in the overall 

formation of secondary particles. 

Other types of secondary aerosols include those containing WSOC which has been 

oxidized from emissions of marine biota and anthropogenic VOCs (O’Dowd et al., 2004; Cavalli 

et al., 2004; Decessari et al., 2007). These WSOC contain aliphatic and aromatic substances, 

saturated and unsaturated hydrocarbons, oxygenated and nonoxygenated groups, and hydroxyl 

group (Cavalli et al., 2004; Yoon et al., 2007; Miyazaki et al., 2010). Specific compounds of 

WSOC include aliphatic alcohols, ethers, esters, oxalic acid, levoglucosan, succinic acid, adipic 

acid, pinonic acid, glutaric acid, nonanoic acid, diacids, and azelaic acid (Cavalli et al., 2004; 

Decessari et al, 2007; Miyazaki et al., 2010).  

1.6 Uncertainty in primary marine aerosol production flux 

SSA particles, which include inorganic sea salt and primary organics, are generated by 

bubble bursting due to breaking waves which are shown as whitecaps in the sea surface 

(Blanchard 1963, 1983), and by directly tearing wave crests when wind is strong (Monahan 

1983). Two types of drops, film drops and jet drops, can be produced by bubble busting. 

Submicron SSA particles generated by bubble bursting are usually film drops and supermicron 

SSA ones are jet drops, with the former dominating in numbers. Large bubbles produce film 

drops by disintegrating their caps or films (Spiel 1998), while small bubbles produce jet drops by 

forming a vertically cylindrical jet at the space left by the bubble (Blanchard and Woodcock, 

1957). A bubble can generate up to 1000 film drops dominating submicrometer SSA (size 

ranging from 10 nm to hundreds of micrometer possible), while only up to 10 jet drops can be 

formed through a jet with their size roughly 1/10 of their parent bubbles (Martensson et al., 2003; 

Lewis and Schwartz, 2004; de Leeuw et al., 2011).  
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The production flux of SSA is usually parameterized by wind speed at 10 meters above 

sea surface, in a power law or exponential form (Lewis and Schwartz, 2004). Most of the 

production fluxes are parameterized from a scheme between whitecap coverage and wind speed 

and an assumed production rate per whitecap area and there is an inherent cutoff of sizes smaller 

than 0.5 micron (Monahan et al., 1986; de Leeuw et al., 2011). SSA mass production flux would 

suffer only small uncertainty from the size cutoff at the lower side since larger particles 

dominate aerosol mass. However, SSA number flux is subject to large uncertainty from the size 

cutoff since Aitken mode particles and accumulation mode particles (<0.5 micron) dominate 

SSA number concentration (Geever et al., 2005). Parameterizing SSA source functions in the 

small size end correctly is vital for characterizing marine aerosol properly in global climate 

models. 

The key of the problem in estimating number source function is to find out if the 

majority of particles smaller than 200 nm are nss-sulfate resulting from DMS or SSA particles 

produced during the sea-air interactions (Prather et al., 2013). Many investigations have 

observed SSA particles down to tens of nm in both laboratory and field measurements (O’Dowd 

and Smith, 1993; Nilsson et al., 2001; Martensson et al., 2003; Clarke et al., 2006; O’Dowd et al., 

2008). However, others have detected no sea salt component during their sampling in several 

years (Bigg 2007; Bigg and Leck, 2008). It is unequivocal that POAs are present in this size 

range.  However, whether or not POA production can be parameterized by the same way as 

inorganic sea salt particles production is unknown. In addition, even though SSA can be 

parameterized similarly as inorganic sea salt particles, it is hard to distinguish the relative 

abundance of small SSA and nss-sulfate aerosol or other secondary aerosols since the latter ones 

are also present in this size range. Due to the difficulty of unraveling the chemical composition 

and mixing states of single particles smaller than 200 nm, the understanding of marine particles 
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in this range needs significant efforts. Recent lab studies simulating wave processes have 

produced particles <200nm with NaCl cores (Ault et al., 2013; Prather et al., 2013), which is a 

significant progress toward understanding these particles better.  

1.7 Mixing states of marine aerosol 

Mixing state of aerosols is vital for understanding direct and indirect radiative effects 

due to its influence on optical property and hygroscopicity (Lohmann et al., 2007; Khan et al., 

2008; Swietlicki et al, 2008; Ghan et al., 2012). Two simplified mixing states are used to 

describe aerosols, i.e., externally mixed and internally mixed. For an aerosol population to be 

externally mixed, every particle in the population has to be pure and uniform in chemical 

composition, even though composition may differ among particles. On the other hand, for an 

aerosol population to be internally mixed, individual particles must have multiple components. 

Aerosol populations containing internally mixed particles may or may not have the same number 

of components and do not have to be uniform within the particle (Lewis and Schwartz, 2004; 

Seinfeld and Pandis, 2006). The idealized case in which every particle in a population has the 

same number of chemical components and relative abundances is termed as “fully internally 

mixed”. In a fully internal mixture, the mixing in each particle of the same number of species 

could be either homogeneous or nonhomogeneous in the molecular level, even though it is more 

realistic to be homogeneous since it requires equal relative abundance in each particle. On the 

other extreme side, an aerosol population composed of particles formed by one single pure 

species is a pure aerosol. The actual state of mixing of the majority of ambient aerosols is 

between fully internally mixed and pure aerosol. However, both of these scenarios possibly 

happen in some special conditions and certainly in experimental systems. Recently a mixing 

index χ with a scale from 0 to 1 was proposed to express the mixing state of ambient aerosol, 
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with the fully internally mixed particles to be 1 and the totally externally mixed particles (every 

particle being a pure species) to be 0 (Riemer and West, 2013). The intent of this mixing index is 

to express the mixing state of an actual ambient aerosol. However, implementation of the index 

may only be feasible in models and impossible to be obtained based on experimental results for 

the time being. 

To summarize, marine aerosols can be internally mixed, externally mixed, or both 

(Lewis and Schwartz, 2004; de Leeuw et al., 2011; Prather et al., 2013). Large supermicrometer 

marine aerosols are usually dominated by sea salt particles, with soluble organic matter a 

possible coating layer (O’Dowd and de Leeuw, 2007). Small submicrometer marine aerosols 

(actually SSA) were found to be enriched in WIOC (O’Dowd et al., 2004; Cavalli et al., 2004; 

Facchini et al., 2008b) and WSOC (Keene et al., 2007; Rinaldi et al., 2010). 

1.8 The scope of the dissertation 

This study is purported to understand the chemical and physical properties of marine 

aerosol in all possible respects, including its organic component, cloud formation potential and 

influence on global climate, its source function parameterized by wind speed, as well as its role 

played in CLAW hypothesis.  

The dissertation will discuss organic components measured by Raman 

microspectroscopy, most probably with primary origins, for samples collected during a 10,000 

km cruise across the Pacific Ocean from Punta Arenas, Chile to Seattle, WA. It will also analyze 

the mixing state of individual particles sampled during the cruise as well as the mixing tendency 

of organic species.  
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The dissertation will discuss about the cloud nucleation ability as well as the CCN 

concentration of aerosols measured during a cruise in pursuit of phytoplankton blooms over the 

North Atlantic Ocean. The oxidation of DMS by different oxidants is also analyzed in this study. 

Nucleation and condensational growth of particles resulting from the oxidation of DMS is also 

discussed. Therefore, validity of CLAW hypothesis in an increasingly polluted environment is 

evaluated.  

Last but not least, SSA production mechanism is also discussed based on the 

relationships between the concentration of particles at varying sizes and the wind speed.  
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2. USING RAMAN MICROSPECTROSCOPY TO DETERMINE CHEMICAL 

COMPOSITION AND MIXING STATE OF AIRBORNE MARINE AEROSOLS 

OVER THE PACIFIC OCEAN* 

 

2.1 Introduction 

Airborne particles play an important role in climate both directly, by scattering and 

absorbing solar radiation, and indirectly by serving as cloud condensation nuclei (CCN) on 

which clouds form (Poschl 2005). The combined effects of aerosols on climate have been 

identified by the Intergovernmental Panel on Climate Change (IPCC) as the greatest uncertainty 

in evaluating overall radiative forcing (IPCC 2007). To understand aerosol effects, the major 

components of the aerosol, including sea salts, sulfates, and organics must be known (Menon et 

al., 2002; Kirkevag et al., 2008; and Ghan et al., 2012). In addition, the magnitude of direct 

radiative forcing is uncertain in part due to uncertainties in the mixing state of various 

components within aerosol particles (Ocko et al., 2012).   

The ocean covers 71% of the Earth’s surface and it is an important source of aerosol. 

However, marine sources of aerosol are poorly understood compared with sources of terrestrial 

origin. The marine biosphere has long been considered a source of aerosol, primarily because 

phytoplankton emits dimethyl sulfide (DMS), which is oxidized in the atmosphere, forming 

sulfate aerosol (Charlson et al., 1987). This process is the basis of the CLAW hypothesis, named 

after scientists Charlson, Lovelock, Andreae, and Warren (Charlson et al., 1987).  According to 

the CLAW hypothesis, DMS-derived sulfate comprises the majority of aerosols acting as CCN 

                                                           
*
 Reprinted with permission from “Using Raman Microspectroscopy to Determine Chemical 

Composition and Mixing State of Airborne Marine Aerosols over the Pacific Ocean” by Deng et 

al., 2014. Aerosol Science and Technology, in press, DOI: 10.1080/02786826.2013.867297 

Copyright [2014] by American Association for Aerosol Research. 
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in the pristine marine boundary layer. However, in light of more recent information regarding 

composition and sources of marine aerosols, changes ranging from modification to outright 

rejection of the CLAW hypothesis have been proposed (Leck and Bigg 2005b, 2007; Quinn and 

Bates, 2011). It has been hypothesized that CCN production may be connected to marine biota 

through pathways other than the products of DMS oxidation, including direct injection of 

organic particulate matter from the ocean surface into the atmosphere (Leck and Bigg, 2007). 

Consistent with this hypothesis, high concentrations of organic compounds have been observed 

in marine aerosols (O’Dowd et al., 2004; Russell et al., 2010). In fact, organic microgels have 

recently been observed in aerosols and cloud droplets over the Arctic Ocean, an indication that 

they are potentially a source of CCN (Orellana et al., 2011). Assuming that these organics 

activate as cloud condensation nuclei at relatively low humidity, they may represent a significant 

and overlooked global contribution to cloud formation and climate change. 

Organic matter found in marine aerosols may be emitted directly from the ocean through 

the bubble bursting mechanism (Verdugo et al., 2004; Verdugo 2012). Most organic carbon in 

the ocean is in the form of dissolved organic carbon, which has an estimated inventory of 662 Pg 

C in the global ocean (Hansell et al., 2009). Organic matter is generally concentrated in the sea 

surface microlayer (SML) relative to the bulk seawater and further concentrated in atmospheric 

aerosols generated during bubble bursting (Blanchard and Syzdek 1970, 1982; Aller et al., 2005). 

However, the ocean biota of the SML is highly complex and the relationship between ocean 

biology and atmospheric aerosols is currently poorly understood (Prather et al., 2013). The SML 

contains whole organisms, high molecular weight surfactants and colloids, such as proteins and 

transparent exopolymer particles (TEP), and smaller organic molecules (Aller et al., 2005; Wurl 

and Holmes, 2008; Cunliffe et al., 2009, 2010). Organic particles of marine origin as large as one 

micrometer or more in diameter have been observed in atmospheric samples in several locations 
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(Leck and Bigg 2005a, 2010; Bigg 2007; Orellana et al., 2011). The majority of gelatinous 

organic particles found in cloud water in the Arctic were fairly large, with diameters in the range 

of 200 to 700 nm (Orellana et al., 2011).   

Field studies have shown that surface-active organic compounds may be found in 

atmospheric aerosols from marine (Mochida et al., 2003) and continental sources (Zappoli et al., 

1999; Facchini et al., 2000).  Laboratory measurements report reduced surface tension of 

solutions containing atmospherically relevant organic compounds relative to pure water 

(Svenningsson et al., 2006; Hyvarinen et al., 2006; Brooks et al., 2009).  Traditional Köhler 

theory predicts that reduction in surface tension causes a reduction in the critical supersaturation 

required for cloud droplet activation (Facchini et al., 2000).  CCN measurements confirm that for 

simple two-component systems, the addition of the surface-active component does indeed reduce 

the critical supersaturation as predicted in many, but not all cases (Abbatt et al., 2005; 

Svenningsson et al., 2006). In other studies, only minor reductions in critical supersaturation 

were observed (Wex et al., 2010a; King et al., 2009; Asa-Awuku et al., 2010).  Since surface 

tension of tiny droplets is inferred, not measured in CCN experiments, the optimal theoretical 

treatment of the data, including constraints on surface partitioning and kinetic effects, is 

debatable (Prisle 2010; Ruehl et al., 2012). Calculations show that the CCN activities of surface-

active organics are overestimated unless surface partitioning is taken into account (Li 1998; 

Sorjamaa et al., 2004; Prisle 2010).  Differences in both experimental results and modeling 

approaches may arise from the fact that surface tension reduction does in deed occur, but only 

when there is enough surface active material to form a thick layer on the droplet (Abbatt et al., 

2005; Ruehl et al., 2012).  Hence, increased CCN activity in ambient populations may only be 

observed when the mixing ratios of surface active materials are high. 
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Recent studies have highlighted the importance of mixing state in assessing the impacts 

of marine aerosols on climate (Wex et al., 2010b; Gaston et al., 2011; Meskhidze et al., 2011; 

Gantt et al., 2012). Gaston et al. (2011) observed that large marine organic aerosol (0.5 to 2.5 μm 

in diameter) measured over Indian Ocean were often found in external mixtures with sea salt 

aerosols.  Assuming all emitted organic material is internally mixed with sea salts could result in 

an underestimation of the marine CCN concentration at supersaturation of 0.2% by up to 20% 

(Meskhidze et al., 2011). Treating all marine CCN as internally mixed with hygroscopicity 

assigned the value of their most hygroscopic component could result in an overestimation of 

activated CCN concentration by as much as 100% (Wex et al., 2010b). Since modeling studies 

typically constrain mixing state based on assumptions rather than measurements, estimations of 

aerosol-cloud interactions and their role in climate may be inaccurate.  

Bulk measurements of aerosol composition provide no information on mixing state and 

to date, direct measurements of individual marine airborne particles are few (Hawkins and 

Russell, 2010; Gaston 2011; Sobanska et al., 2012). Hawkins and Russell (2010) used Near-

Edge Absorption X-ray Fine Structure (NEXAFS) spectroscopy to identify polysaccharides, 

proteins, and fragments of phytoplankton in marine aerosol.  While NEXFAS offers the highest 

resolution spectral information available at this time, it is also extremely labor and resource 

intensive.  In that study, only 28 particles were analyzed, and the statistical representativeness of 

these particles is debatable.  Single particle mass spectroscopy measurements collected at three 

marine locations have shown that particles of organic carbon in mixtures with Mg
2+

, Ca
2+

 and K
+
 

were observed in marine environments during periods of elevated chlorophyll a (Chl-a) 

concentration. Interestingly, sea salt was not observed in these mixed particles (Gaston et al., 

2011).  In a separate study, particles collected at M’Bour (Senegal) included mineral dust 
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particles coated with marine compounds (Deboudt et al., 2010). Additional measurements of 

marine aerosol mixing state are clearly needed.  

The Raman microspectroscopy (RMS) is a technique developed to probe single particles 

collected in the field  and identify the components of individual particles including multiple 

components in internal mixtures (Ivleva et al., 2007; Deboudt et al., 2010; Hiranuma et al., 2011; 

Baustian et al., 2012; Sobanska et al., 2012). As in other Raman applications, an excitation laser 

is used to excite molecular transitions. While the majority of electrons excited to higher energy 

levels return to the ground state by Rayleigh (elastic) scattering, a fraction of the excited 

molecules instead undergo inelastic scattering, emitting radiation with an energy offset from the 

Rayleigh scattering by the difference between the first vibrational energy level of the ground 

state and the original ground state (Raman 1929). The associated frequency shift, referred to as 

Raman shift, corresponds to a specific transition within molecules and thus can be used to 

identify the compounds in which they occur. RMS has advantages over other techniques.  First, 

it is non-destructive, provided that low excitation energy is employed (Nakamoto 2009; Barletta 

2012).  Second, since spectra of single aerosol particles can be collected, RMS can be used to 

assess the mixing state of individual particles found in ensembles of atmospheric particles 

(Hiranuma et al., 2011). Raman spectroscopy is sensitive to key components present in 

atmospheric aerosols including organic compounds, inorganic aerosol components such as 

(NH4)2SO4 and NH4NO3,  and soot and humic-like substances (HULIS) (Sadezky et al., 2005; 

Ivleva et al., 2007; Hiranuma et al., 2011; Baustian et al., 2012; Avzianova and Brooks 2013).  

Sadezky et al., (2005) and Ivleva et al., (2007) reported that laboratory-generated soot particles 

can be differentiated from HULIS using RMS. However, Moon showed additional varieties of 

HULIS and reported that the spectra of certain varieties of HULIS are indiscernible from those 

of soot (Moon 2011). Using RMS in combination with SEM-EDX, Deboudt et al. (2010) found 
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that marine aerosol particles sampled at M’Bour, Senegal, were predominantly internally mixed 

with dust or carbonaceous materials.  In another study, traditional Raman spectroscopy was 

combined with electron probe X-ray microanalysis (EPMA) to categorize chemical composition 

and mixing state of aerosols collected in a coastal site in Korea (Sobanska et al., 2012). Results 

indicated that more than half of the particles were internally mixed species and that humic-like 

substances were mixed with sea salt in the particles. In cases when more than one peak with a 

Raman intensity of 20 cps or greater was present (and the peaks were not multiple features of the 

same molecule), the particle was classified as multicomponent or internally mixed aerosol.  Here 

we illustrate the utility of Raman microspectroscopy in determining variations in chemical 

composition and mixing state of marine aerosols sampled along an 11,000 km cruise track in the 

Pacific Ocean during the Halocarbon Air Sea Transect – Pacific (HaloCAST) cruise. 

2.2 Experimental section 

2.2.1 Field measurements 

During HaloCAST, all in-situ aerosol instrumentation was located in a lab van situated 

on the upper front deck of the research vessel R/V Thomas G. Thompson. Continuous aerosol 

sampling was conducted during the transit from Punta Arenas, Chile (53°17’S, 70°54’W) to 

Seattle, WA (47°36’N, 122°19’W) from March 30 to April 27, 2010. Sample air was drawn 

through conductive tubing of three meter length and 1/2 inch inner diameter, extending above 

the top of the lab van. The sampling inlet was equipped with a rotating cone-shaped nozzle and a 

weather vane to direct the inlet into the relative wind. The sample flow passed through a heater 

and a desiccant dryer to maintain relative humidity (RH) below 50% throughout the project, and 

to the suite of instruments shown in Figure 2.1. The ship's exhaust stack was located behind the 

laboratory van and our sampling inlet. Therefore, all data collected when the relative wind was 
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blowing from the back of the laboratory sampling van (90° to 270° relative to the bow of the 

ship) were eliminated to preclude potential contamination from the ship stack (Shank et al., 

2012).  

 

 

Figure 2.1 Schematic of instrumentation for measurements and sample collection. CCN 

represents cloud condensation nuclei counter; CPC is condensation particle counter (CN counter); 

Streaker is the sampler for particle collection; PAS stands for portable aerosol spectrometer 

which is used to make particle size distribution scanning for particles between 0.3 and 20 μm in 

diameter. 

 

Aerosol collection for Raman microspectroscopy analysis was conducted using a PIXE 

Streaker sampler. Aluminum foil was chosen as the impaction substrate since it causes no 

interference in the Raman spectra (Ivleva et al., 2007).  Prior to sampling, the foil was cleaned 

by rinsing first with acetone (Sigma Aldrich, ≥99.5% purity) and then with ultrapure water 

(≥18.2 MΩ·cm) and dried at room temperature in a clean container covered by plastic wrap. The 

PIXE Streaker was operated with an air flow of 1 L min
-1

. The Streaker was advanced (rotated 
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by eight degrees) every 4 hours, which results in an intentionally low coverage of particles in 

each distinct sample area or "streak" on the 82 mm aluminum foil which is ideally suited for the 

single particle RMS analysis.  Samples were replaced by a new filter daily, stored in a freezer at 

-20 °C, and transported in a refrigerated cooler to Texas A&M University and stored frozen until 

Raman spectral analysis could be completed. While nominal size range of the Streaker sampler 

is 2.5 to 10 μm in aerodynamic diameter (Kavouras and Koutrakis, 2001), we observed some 

particles on the filters out of the specified size range, as we have previously observed in other 

projects (Hiranuma et al., 2011). Several factors including turbulence, inconsistent flow rate, and 

irregular shape and density of particles may have contributed to the lack of a distinct size cut-off 

point in the sampling. 

Supporting atmospheric measurements include the concentration of aerosols (0.0045 to 3 

µm diameter) by a condensation particle counter (CPC) Model 5.400 from GRIMM 

Technologies, concentration and size distribution of large aerosols by a GRIMM Model 1.1.08 

Portable Aerosol Spectrometer (PAS), and concentration of activated cloud condensation nuclei 

(CCN) by a Droplet Measurement Technologies CCN counter (DMT CCN). The PAS is an 

optical particle counter with fifteen bin sizes between 0.3 and 20 µm.  Here we use the PAS to 

determine the total number of aerosols in these bins, and the super-micron aerosol concentration 

obtained by summing the concentrations in the larger bins. The CCN instrument was stepped 

through five sequential water vapor supersaturation levels (1.2, 0.9, 0.5, 0.25, and 0.15%) 

repeatedly, such that an average critical supersaturation can be calculated for every 27 minute 

segment of the cruise track. 

In addition, chlorophyll a (Chl-a) concentrations along the cruise track were retrieved 

from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite. Oceanic surface Chl-a 
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concentration is used as a proxy for marine phytoplankton biomass (Ohde and Siegel 2010; 

Fauchereau et al., 2011).  SeaWiFS data with a resolution of 9 km was downloaded from 

Giovanni data system (http://daac.gsfc.nasa.gov) developed and maintained by the NASA GES–

DISC (Goddard Earth Sciences Data and Information Services Center). The data contains Chl-a 

concentration obtained from an ocean color empirical algorithm OC4V4 by taking the ratio of 

blue light to green light signals (Dierssen 2010).  

2.2.2 Raman microspectroscopy 

The Thermo Scientific DXR Raman Spectrometer was equipped with an Olympus BX 

20 microscope and a charge-coupled device (CCD) camera. A frequency doubled Neodymium-

doped Yttrium orthovanadate (Nd:YVO4) diode pumped solid state laser was used for excitation 

at a wavelength of 532 nm. For this work, an excitation laser power of 4 mW (variable from 1 to 

10 mW), a sample collection time of 5 s, a 50× magnification objective, and a 25 μm confocal 

aperture were chosen for all measurements. Spectra of the marine aerosol samples were recorded 

over the range of 50 to 3500 cm
−1

. The Raman apparatus also featured a motorized stage that 

moved automatically across the Streaker sample to map out composition in 2-dimensional area 

in the horizontal plane.  

For RMS analysis, the daily Streaker samples were sectioned so that each 4 hour 

"streak" could be analyzed independently. Samples collected during potential contamination 

conditions (i.e. when the wind direction was between 90° to 270° relative to the bow of the ship) 

were removed.  All other samples collected along the ship track were analyzed by RMS. The 

standard operating procedure employed in this work was to use RMS to automatically advance in 

5 μm step increments, taking a spectrum at each step. A single map was collected over a 45 × 45 

μm area (10 points × 10 points). Three to six maps were collected for each impactor stage 

http://daac.gsfc.nasa.gov/
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depending on the particle coverage on the sample. Most spectra signify a single independent 

particle, while occasionally some agglomerates could generate multiple spectra. In addition to 

the standard mapping procedure, additional spectra were occasionally collected using a smaller 

step size to manually survey variability within aggregates of particles. Due to the fairly low 

coverage of particles on the filter, approximately two thirds of the spectra (~77,000 out of a total 

of 108,000) contained no peaks. It was assumed that these spectra were taken between particles 

on the stage, and hence they were discarded. A summary of the results of single particle 

composition are presented below. 

2.3 Results and discussion  

2.3.1 Selection of marine segments according to chlorophyll a concentration in the ocean 

Raman analysis was conducted on samples collected along the HaloCAST transect 

shown on the map in Figure 2.2. The color scale in the figure indicates the Chl-a concentration 

along the track as retrieved from SeaWiFS observations. It is well known that elevated Chl-a 

levels often occur near the coasts, due to coastal upwelling which brings nutrients from deep 

waters to the sunlit surface waters, as well as nutrients carried by runoff from the land (Thornton 

2012). In addition, upwelling in the equatorial regions also increases biological activity. Since 

observations of Chl-a concentration are often used as a proxy for phytoplankton biomass (Ohde 

and Siegel 2010; Fauchereau et al., 2011; Thornton 2012), we used observed variations in Chl-a 

concentrations to identify the transition points between segments passing through different 

regions along the ship track, including Southern Coast, Southern Open Ocean, Tropical Open 

Ocean, Northern Open Ocean and Northern Coast segments as shown on Figure 2.2. 

Comparisons of aerosol properties were made between the different segments. Sampling 
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throughout the full HaloCAST transect provided the opportunity to investigate how differences 

in season, hemisphere, and coastal/open ocean scenarios may modulate air-sea interactions. 

 

 

Figure 2.2 Variation of SeaWiFS retrieved chlorophyll a (Chl-a) concentration along the cruise 

track. The values are capped with a value of 0.3 mg m
-3

 to better display variation in the open 

ocean. Roman numerals are the segments divided based on Chl-a levels. Centers of open circles 

are the positions to divide segments. 

 

In the Southern and Northern Coast segments, i.e. Segments I and V, we observed 

average Chl-a concentrations of 0.55 and 0.93 mg m
-3

 respectively, compared to the average 

open ocean concentration of 0.11 mg m
-3

. To a lesser extent, biological activity was also 

enhanced in the equatorial region, which we attribute to upwelling.  We observed that the 

average Chl-a concentration in the Tropical Open Ocean segment (Segment III) was 0.12 mg m
-3

, 
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significantly higher than in either the Southern (Segment II) or Northern Open Ocean (Segments 

IV) segments.  

2.3.2 Classification of aerosol composition 

Raman spectra were used to determine the chemical composition of individual particles 

in the collected samples. Each individual spectrum was placed into one of the main composition 

categories based on peak assignment of the highest peak in the spectra and any secondary peaks 

of an intensity of 20 cps or higher, based on the instrumental signal to noise ratio. Figure 2.3 

shows examples of spectra from each of the main categories observed in the samples.   

 

 

Figure 2.3 Representative spectra of the main chemical composition categories: (a) Long chain 

organic compounds; (b) Humic-like substances (HULIS) and/or soot identified by the graphitic 

and irregular/graphic defect peaks; (c) NaNO3, a member of the water soluble inorganics category; 

(d) TiO2 in anatase form, a member of the "Unclassified" category. The ν symbol signifies a 

stretching mode and δ signifies a bending mode. 2
nd

 coupling indicates an overtone of a primary 

tone or a sum tone of primary overtones. G band and D band represents ideal graphitic lattice 

stretching mode and disordered graphitic lattices, respectively. 
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The first category of compounds identified through Raman spectroscopy was pure long 

chain organics (Figure 2.3a). All spectra of long chain organic compounds have a prominent 

doublet with peaks positioned at ~2880 and ~2850 cm
-1

 arising from C-H stretching modes. 

Presence of this doublet at an intensity greater than other peaks (and greater that the nominal 

baseline value, 20 cps) was the criteria for placing a spectra in the long chain organic class 

(Snyder and Schachtschneider, 1963; Sebek et al., 2011; Schumacher et al., 2011).  The 

spectrum in Figure 2.3a closely matches the standard spectrum of octadecanoic acid in the 

Omnic Spectral Reference Library, which contains -(CH2)16- as its skeleton chain. In addition, 

the spectrum in 3a contains a small peak at low wavenumber, 150 cm
-1

. Interestingly, there is a 

simple approximate relationship between the length of saturated hydrocarbon chains and Raman 

peak position, as shown: 

x = 2400/Nc                                                                                                                         (2.1) 

where x is the band position (in cm
-1

), and Nc is the methylene group number in the chain 

(Schaufel and Shimanouch 1967; Hasegawa 2004).  According to this formula, the compound 

shown in Figure 2.3a contains a -(CH2)16- structural backbone. While the value of Nc may vary 

for unsaturated hydrocarbon chains and branched structures, it provides further indication of the 

presence of long hydrocarbon chains of some type. The small peak at 150 cm
-1 

was common in 

many of the spectra classified as long chain organics in this study (Miyazaki et al., 2010). 

             Additional features frequently observed in the long chain hydrocarbons spectra include -

CH2- scissoring, -CH2- twisting, C-C symmetric stretching, and C-C asymmetric stretching at 

1440 and 1458, 1295, 1128, 1062 cm
-1

, respectively (Snyder and Schachtschneider 1963; Snyder 

et al., 1982). Many long chain organic spectra contained a peak at 1650 cm
-1 

indicative of a C=C 

stretching mode in straight chain aliphatic acids. These are consistent with alkenones and 
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alkenoic acids identified by NEXFAS spectra of marine aerosol collected off the coast of Chile 

(Hawkins and Russell, 2010). In addition, some of the spectra identified as long chain organic 

species contained hydroxyl groups. In general, our results imply that that the samples we 

collected contain a combination of multiple chemical species, with a common trait of a long 

chain aliphatic molecular framework. 

             Interestingly, aromatic rings characterized by C-H stretch modes in the range of 3200-

3000 cm
-1 

and a C=C sharp double peak at 1580 to 1600 cm
-1

 (signatures of carbonaceous urban 

pollutant particles) were notably absent from nearly all samples, with the exception of a few 

collected near the coast (Mayo et al., 2003).  While long chain organic molecules have been 

reported by others (O'Dowd et al., 2004; Russell et al., 2010, 2011), our study is the first to 

illustrate the vast geographic area and a wide range of conditions over which high concentrations 

of long chain organics are present in marine aerosol.  

             Figure 2.3b shows representative spectra in the second category, identified as HULIS 

and/or soot species. Spectra in this group were identified by an apparent doublet at about 1350 

cm
-1 

and 1580 cm
-1

.  While this feature looks like two broad peaks, it has been modeled as a 

combination of five graphitic peaks present in both humic acids and soot spectra (Ivleva et al., 

2007). While it has been reported in the literature that at least one type of humic acid is 

discernible from soot (Ivleva et al., 2007), our own research group has found that when a broader 

range of humic acids were surveyed humic acids and soot could not be definitely distinguished 

from one another due to spectral variability depending on acid type and overlapping peaks 

(Moon 2011). Thus, HULIS and soot are combined into one class in this work.  

            The source of the HULIS in marine atmospheric particles is uncertain. These large acids 

are products of decomposition which may originate from marine organisms in seawater which 
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are transferred to the atmosphere by bubble busting (Krivacsy et al., 2008). Alternatively humic-

like substances may form in the atmosphere through chemical reactions through oxidation of 

smaller gas phase organic molecules (Krivacsy et al., 2008; Limbeck et al., 2003). HULIS has 

been observed by others in both submicron and supermicron mode particles (Cavalli et al., 2004; 

O’Dowd et al., 2004).  Finally, the possibility that some of these spectra contain soot cannot be 

ruled out. The ship stack was a potential source of soot.  However, since we have employed a 

strict filter; removing all samples collected when the wind direction was from the back to the 

laboratory van as described above, we assume that all potential contamination from the stack has 

been removed. From this point forward, we denote the group of HULIS/soot simply as HULIS.  

            The third spectral group, as shown in Figure 2.3c, is water soluble inorganic species 

(WSIO), including typical inorganic species of atmospheric aerosols such as NaNO3 (identified 

in Figure 2.3c by the primary sharp peak at 1067 cm
-1

) and Na2SO4 (sharp peak at 995 cm
-1

) or 

carbonate salts (1086 cm
-1

). Unfortunately, NaCl, a major component of sea spray (Mamane and 

Gottlieb 1992; Krueger et al., 2003; Ciuraru et al., 2011), is not Raman active and will be 

undercounted by Raman analysis (Oliveira et al., 1981; Sobanska et al., 2012).  The inorganic 

species in this category may contain various cations such as Na
+
, K

+
, Ca

2+
, and Mg

2+
, though the 

Raman cannot be used to determine which cations are present. Figure 2.3d shows the spectra of 

titanium dioxide (TiO2) in anatase form, observed in less than 1% of the aerosol particles. 

Spectra containing TiO2 in either anatase or rutile form, silicon species, and spectra of unknown 

composition were placed in the "Unclassified" category.  

             Spectra of an additional type (not shown) that were characterized by a sharp peak at 

about 520 cm
-1

 were occasionally observed (~10% of the spectra). This peak matches that of 

crystalline silicon. A possible source of the silicon component in marine aerosol is diatom cell 
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wall fragments (Lara and Thomas 1995). Mineral dusts contain silicon oxide (Gallavardin et al., 

2008). However, silicon dioxide has unique and different spectral features, which were not 

detected in any of our samples (Popovic et al., 2011). Reports about tiny silicon/silicon dioxide 

particles in ambient aerosol samples are not widespread but have been reported from field 

measurements in the urban Houston area (Phares et al., 2003; Glagolenko and Phares 2004).  

Silicon species were believed to be the oxidation product of industrial gas compound silane, 

which is widely used in the electronic industry for silicon oxide film production (Azatyan et al., 

1980). In our own samples, a fraction of spectra may be placed in this category due to 

background noise arising from the aluminum foil substrate, which contains trace amounts of 

silicon.  Al foil is the preferred substrate because in the vast majority of spectra it produces no 

signal interferences. However, less than 2 percent of the spectra collected on clean aluminum foil 

produced a peak at around 520 cm
-1

. Thus, a small fraction of sample spectra in this category 

may arise due to background.  

2.3.3 Observations of mixing state: internally mixed aerosols 

An advantage of Raman microspectroscopy is that it provides spectra of single particles 

and thus information on aerosol mixing state. Examples of observed multicomponent aerosol 

particles are shown in Figure 2.4.  In the majority of multicomponent spectra, two or three 

components were identified.  For example, Figure 2.4a shows a spectrum of particles containing 

long chain organic and HULIS, as well as a soluble inorganic species Na2SO4. A large number of 

spectra contained a combination of long chain organics and HULIS and soluble inorganic 

species such as Na2SO4 and NaNO3, as exemplified by Figure 2.4a. Figure 2.4b shows a 

spectrum of particles containing HULIS and long chain organic species. Figure 2.4c shows an 

example of a mixture of CaSO4, long chain organic species, HULIS and CaCO3. The most 
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frequently observed combination was mixtures of the two predominant species, long chain 

organic species and HULIS, as shown in Figure 2.4b. On rare occasions, as many as five 

components were identified in a single spectrum, as exemplified by Figure 2.4d. Figure 2.4d 

shows an example of mixture of long chain organic species, HULIS, CaCO3, silicon and the rare 

observation of rutile TiO2. Since RMS is unusually sensitive to TiO2 due to its large Raman 

cross-section, our measurements suggest the occasional presence of a low concentration of this 

compound (Sobanska et al., 2012).  

 

 

Figure 2.4 Examples of collected spectra of multi-component aerosols: (a) Long chain organics,  

HULIS, and inorganic species; (b) HULIS, long chain organics, and inorganic species; (c) 

Inorganic species, long chain organic species, and HULIS; (d) Si crystal, long chain organic 

species, HULIS, inorganic species, and a form (rutile) of rare species TiO2. 
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Figure 2.5 Particle composition pie charts representing the occurrence of peaks identifying the 

given components in the Raman spectra. Each pie chart shows the average information of a 

specific segment.  Abbreviations: “HULIS” -- Humic-like substances; LC -- Long Chain 

Organics; “Unclassified” -- All other species not categorized, including TiO2. 

 

Beyond classification according to primary component, spectra were further categorized 

based on secondary components they contain in lesser quantities (Figure 2.5).  We include in this 

analysis only secondary peaks with intensities of 20 Raman cps or greater. Multicomponent 

aerosol classified as “long chain organic dominated” in Figure 2.5 may also contain HULIS, 

water soluble inorganics, metallic or silicon components, or any combination of them. Further 

categorization of the long chain organic dominated group is not possible due to the overlapping 

spectral regions between multiple minor peaks of primary species and major peaks of secondary 

species which may be present.  HULIS dominated spectra were subdivided into those containing 

long chain organics, soluble inorganics, or both. Water soluble inorganics-dominated spectra 

include those containing a single soluble inorganic species (labeled Single Inorganic in Figure 

2.5), species containing two or more different soluble inorganic species (labeled Multiple 

Inorganics in the figure), and others dominated by inorganics but containing other species, i.e., 
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long chain organics, HULIS, or TiO2 (labeled Inorganic dominated multi-components).  Finally, 

the “Unclassified” category includes all spectral types which do not fit in the categories above, 

including TiO2 spectra and some other species which have not been identified.   

2.3.4 Aerosol composition throughout the Pacific Ocean  

In looking for variations in aerosol composition under different oceanic conditions, the 

RMS data was divided into five segments of the cruise transect based on location and changes in 

surface seawater Chl-a concentrations, as shown in Figure 2.2. In Figure 2.5, the percentages of 

particles classified into each category are reported for each of the five segments. Samples were 

collected continuously. However, persistent winds from the rear of the ship made it necessary to 

remove significant sections of data along the coast of South America and the Tropical Open 

Ocean to eliminate potentially contaminated samples.  

As can be seen in Figure 2.5, the purely long chain organic species and those dominated 

by long chain organics comprised a significant fraction of spectra during the entire cruise. The 

highest percentage of purely long chain organic aerosols, 37%, was detected in the Southern 

Coast segment.  Combining these pure organic aerosols with those containing the long chain 

organics found in internal mixtures yields a total fraction of aerosol containing long chain 

organics aerosol fraction of 67% in the Southern Coast Segment. These organics are present in 

coastal waters and the open ocean, in the Southern and Northern Hemispheres, and in the autumn 

(Southern Hemisphere) and in the spring (Northern Hemisphere). Throughout the entire cruise 

track, more than 50% of the sampled particles contained long chain organics.  

Our initial hypothesis was that if biological activity in the ocean was the primary source 

of long chain organic aerosol in the atmosphere, then increased concentrations of organic 
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aerosols would be observed over regions of elevated Chl-a. Unlike Chl-a concentration, which 

was highest along both coasts, the fraction of pure long chain organic particles was highest near 

the coast of South America, but lower near the North American coast than in all other segments 

except in the tropical open ocean. Since coastal samples may be influenced by continental 

sources of organic compounds, we draw no conclusions based on the lack of relationship 

between Chl-a and long chain organics in coastal samples.  Among the open ocean segments, 

Chl-a was highest in the Tropical Open Ocean segment, but the fraction of pure long chain 

organics was lowest. The fraction of pure long chain organics was not correlated with Chl-a, 

even in open ocean segments under little or no influence of continental aerosol.  There are 

several possible reasons for the lack of correlation.  Organics in the SML may become internally 

mixed prior to arrival in the atmosphere. This is possible, although no correlation between either 

the combined pure and internally mixed organic fractions or the organic mixtures and Chl-a 

concentration was observed. In addition, no significant correlation between wind speed and long 

chain organic fraction was found in the study. Sea state, boundary layer height or other 

undetermined variables may exert strong influences over the concentration of marine aerosol in 

the lower atmosphere as well. Finally, observed variations in Chl-a in the open ocean were 0.04 

to 0.27 mg m
-3

. It is possible that the long chain organic fraction in atmospheric aerosol is not 

sensitive to changes of this magnitude.  

HULIS-containing aerosols also occupied a significant fraction of all aerosols.  For the 

open-ocean segments, the percentage of spectra classified as long chain organics, HULIS, or 

both were higher in the Southern and Tropical Open Ocean Segments than in the Northern Open 

Ocean. While our results corroborate the surprising recent reports of high concentrations of 

organic materials observed in both the Atlantic and Pacific Oceans (Mochida et al., 2003; Cavalli 

et al., 2004; O'Dowd et al., 2004; Russell et al., 2011, 2010), these data are significant since they 
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show the consistent prevalence of long chain organics across broad sampling conditions in the 

Pacific Ocean.  

Considering homogeneous and internally mixed particles together, inorganic compounds 

were only observed in an average of 7 to 19% of the Raman spectra during the entire cruise track. 

A few exceptions to the low inorganic fraction were observed in episodes (4 hr samples) 

throughout the cruise track.  During these episodes, the percentage of spectra classified in 

inorganic spectra spiked to greater than 50%. Silicon species were present in as many as 12% of 

the spectra in a sample in the middle of the Tropical Open Ocean segment. The silicon species 

were a more common occurrence in samples collected in the northern hemisphere than in the 

southern hemisphere.  One possible explanation is the elevated industrial activity involving with 

silicon production in northern hemisphere (Azatyan et al., 1980; Phares et al., 2003).  

Overall, less that 7% of the particles were categorized as “Unclassified”.  One brief 

exceptional episode to this occurred in the middle of the Tropical Open Ocean Segment. In the 4 

hour filter sample collected during the episode, 27% of the spectra were identified as rutile type 

TiO2. TiO2 is a common component of paint. It is possible that the occasional detection of TiO2 

was due to shipboard contamination occurring times when HaloCAST crew painted the aging 

wood on the deck during the cruise.  

2.3.5 Marine aerosol mixing state and cloud formation  

According to a recent modeling study, variations in mixing state cause larger changes in 

cloud activation potential than any other marine aerosol property, including composition and 

hygroscopicity (Gantt et al., 2011).  Because the presence of long chain organic particles will 

have effects on both the optical properties and cloud formation properties of aerosols depending 
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on whether they exist as pure single component particles or as internal mixtures, we are 

particularly interested in the mixing state of marine long chain organic molecules (Meskhidze et 

al., 2011; Baustian et al., 2012). According to a recent modeling study, the influence of marine 

primary organic aerosols on near-surface concentrations of CCN depends on mixing state, with 

the highest increases in CCN concentration, up to 20%, occurring when primary organics were 

assumed to be externally mixed with sea salt  (Meskhidze et al., 2011). 

By analyzing multiple particles of a collected ensemble with RMS, the degree of 

external mixing of particles of different composition can also be assessed.  During no segment of 

the cruise did the aerosol population contain only one type of single component aerosol 

exclusively.  We classified those spectra in which peaks arising from multiple components as 

internally mixed. Single particle spectra containing a single component were either externally 

mixed or pure aerosol, depending on the composition of other aerosols in a sampled ensemble. In 

Figure 2.6, the degree of internal mixing (reported here as the percentage of spectra which 

contained peaks arising from multiple components) is summarized. Since some components of 

aerosol (including sodium chloride) were either Raman inactive or simply not identified in our 

analysis, the degree of internal mixing of organic species reported here should be considered a 

lower limit.  Shown in Figure 2.6 are the percentages of all aerosol spectra in a sampling 

segment containing: 1. a pure long chain organic  species, 2. those containing mixtures 

dominated by long chain organic species, 3. mixtures containing long chain organic and at least 

one more species in any proportions, and 4. the internally mixed species containing many 

components.  
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Figure 2.6 Mixing state of sampled marine particles according to Raman analysis. The fractions 

of analyzed particles identified as pure long chain organics, internally mixed particles in which 

long chain organics are the dominant species, mixtures in which long chain organics are present 

in lesser proportions than other compounds, and the overall fraction of particles which are multi-

component mixtures, are shown in cross hatched, right-slanted, left-slanted, and dotted pattern, 

respectively. 

 

Assuming only one spectrum was collected for each particle, the majority of particles 

collected throughout the entire project were internal mixtures. Based on Figure 2.6, long chain 

organics were present as single component aerosol 19% of the time on average (ranging from 8% 

to 29% during different segments). Since not all compounds present may be identified by RMS, 

we consider the degree of internal mixing reported here to be a lower limit on the actual percent 

of particles containing long chain organics mixed with other compounds.  The percent of 

particles dominated by long chain organics is 32% on average (ranging from 28% to 37% during 

various segments). The long chain organics were most often found in internally mixed particles, 



 
 

39 

 

with percentage of long chain organics in internally mixed particles ranging from highest (71%) 

in the Tropical Open Ocean Segment to lowest (53%) in the North Coast segment. Total internal 

mixing was also high, which percentages of internal mixtures in all particles ranging from 57 to 

72% for all segments. Like the trend for organics, the highest overall mixing occurred in the 

Tropical Open Ocean. A high degree of mixing is plausible given the lack of local pollutant 

sources near the Equator. This is consistent with a population of aerosol components which have 

had time to mix either within the SML prior to ejection or through atmosphere aging processes. 

From the entire ship track, only three daily samples did not contain a majority of internally 

mixed particles. 

While our observations suggest that at least 60% of marine aerosol particles in the 

Pacific Ocean are internally mixed, aerosol composition and mixing state vary spatially and 

temporally. Spatial variations may in part explain why these results are not in agreement with a 

previous study which reported that large marine organic aerosol (0.5 to 2.5 μm) measured in 

Indian Ocean were often found in external mixtures with sea salt aerosols (Gaston et al., 2011).  

It has been reported that internal mixing can either increase or decrease aerosols’ ability to act as 

CCN, depending on the competing effects of increased mass and reduced hygroscopicity at the 

location of interest. For regions of high marine biological activity, CCN concentrations are 

underestimated, according to that study (Meskhidze et al., 2011).  Thus, for the most accurate 

modeling of aerosol-cloud interactions, the observed mixing state must be included. 
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2.4 Supporting measurements: concentration of aerosols and CCN  

2.4.1 Particle concentration 

Consistent with the Raman sampling, all aerosol data collected when the relative wind 

was blowing from the back of the laboratory sampling van (90° to 270° relative to the bow of the 

ship) were removed from the data set to avoid over-counting of particles due to ship 

contamination. The average aerosol concentrations observed during each sampling segment are 

summarized in Table 2.1. In general, particle concentrations were higher in Northern Open 

Ocean than in Southern Open Ocean segment in the size ranges sampled by the CPC (0.0045 μm 

to 3 μm diameter), the total PAS (0.3 μm to 20 μm diameter) and the supermicron aerosols 

(determined by summing the concentrations of the largest 10 size bins of the PAS data were 

summed together.   

 

Table 2.1 Average aerosol number concentrations, Chl-a concentrations, and CCN critical 

supersaturations in different segments along the cruise track (numbers in parenthesis are 1δ 

standard deviation). 

          Segments 

 

Parameters 

Southern 

Coast (I) 

Southern 

Open Ocean 

(II) 

Tropical 

Open Ocean 

(III) 

Northern 

Open Ocean 

(IV) 

Northern 

Coast (V)  

CPC (0.0045 to 3.0 

µm) concentration 

(cm
-3

) 

573 (1146) 147 (29) 227 (100) 274 (181) 455 (652) 

PAS (0.3 to 20 µm) 

concentration (cm
-3

) 

17.4 (27.3) 

 

2.6 (3.8) 17.8 (24.6) 

 

14.2 (5.2) 

 

24.0 (16.0) 

Super-micron 

particle (> 1 µm) 

conc. (cm
-3

) 

1.05 (1.70) 0.09 (0.06) 0.65 (0.52) 0.50 (0.32) 1.19 (0.63) 

Chl-a (mg m
-3

) 0.93 (0.03) 0.05 (0.03) 0.12 (0.04) 0.07 (0.02) 0.55 (0.35) 

CCN (1.2%) (cm
-3

) 175 (90) 115 (42) 214 (69) 173 (95) 189 (74) 

CCN (0.15%) (cm
-3

) 63 (49) 45 (48) 150 (46) 119 (72) 114 (74) 

Scrit (%) 1.4 (1.2) 0.7 (0.3) 0.1 (0.3) 1.2 (0.8) 0.2 (1.1) 
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Aerosol number concentration determined by the CPC was measured in the range from 

below 200 cm
-3

 in the southern hemisphere to ~10
3
 cm

-3
 in the northern hemisphere. Average 

aerosol concentration measured by the CPC along the entire cruise track is shown in Figure 2.7A. 

(For direct comparison with the CCN data included in Figure 2.7B-D below, the CPC data 

included in these average concentrations was filtered to include only data collected during time 

which coincide with stable CCN data collection.)  The concentration dropped by a factor of 3 or 

more times as the ship traveled from the southern coast waters to the southern open ocean. In the 

Southern Pacific Ocean, changes in concentrations were gradual, with the exception of a region 

between 14.5 to 10.5°S latitude.  During the 8-hour period when the ship remained in this region, 

aerosol concentrations of 400 cm
-3

 and higher were observed. Elevated concentrations occurred 

during part of the ship track through the region of equatorial upwelling, as indicated its position 

(Tropical Open Ocean Segment III) and by increased Chl-a concentration relative to the open 

ocean.    
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Figure 2.7 Average concentrations (27-minute averages) of aerosol concentration measured by 

the CPC, the concentration of aerosols activated at 1.2% SS, the concentration of aerosols 

activated at 0.15%, and the critical supersaturation determined by the CCN instrument are shown 

in (a-d), respectively. 

 

Once the ship crossed into the Northern Hemisphere, spikes in concentration by up to 10 

times were observed, with concentrations between 500 and 2000 cm
-3

 observed for a few miles. 

Despite the spikes, average concentrations remained rather low during all three open ocean 

segments. The spikes coincide with greater ship traffic was encountered in the northern 

hemisphere. In the absence of traffic, the open ocean aerosol concentrations in the northern 

hemisphere are very similar to those in the southern hemisphere.  This suggests that any 
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influence of marine biology as indicated by changes in Chl-a did not produce dramatic variations 

in aerosols comparable to anthropogenic contributions. Aerosol concentration increased by a 

factor of two when the ship entered the Northern Coast Segment.  Aerosol loadings above 4000 

cm
-3

 were measured close to the North American coast.  The northern hemisphere is subject to 

larger aerosol emissions and variability in aerosol concentration due to greater landmass, higher 

population, and more commercial shipping routes than in the Southern hemisphere.  These facts 

can likely explain the measured high aerosol loads and variability.   

The concentration of supermicron aerosol particles measured by PAS in Tropical Open 

Ocean was slightly higher than in Northern Open Ocean, probably due to enhanced primary 

aerosol generation in equatorial regions (Ohde and Siegel 2010). As for the coastal segments, we 

observed a higher number concentration for small particles (CPC measurement) in Southern 

Coast than in Northern Coast, which is most probably due to the closer sampling location to the 

continent in the southern segment. However, we observed a slightly higher particle number 

concentration from PAS measurement in the Northern Coast than in the Southern Coast segment. 

Overall, the average number concentrations in these segments varied increasingly in this order: 

Segment II (Southern Open Ocean Segment) < Segment III (Tropical Open Ocean Segment) < 

Segment IV (Northern Open Ocean Segment) < Segment V (Northern Coast Segment) < 

Segment I (Southern Coast Segment).  

2.4.2 CCN concentration 

Each CCN cycle included measurement of the concentration of aerosols activated as 

CCN at five set points, 1.2%, 0.9%, 0.5%, 0.25%, and 0.15% supersaturation with respect to 

water. In each 27 min cycle, instrumental conditions were held at each supersaturation level for 

five minutes, with the exception of the starting level, 1.2%, which was maintained an additional 
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two minutes to ensure stabilization after the larger change in supersaturation. The CPC 

measurements were carried out in parallel with CCN measurements. For each supersaturation 

level, only the last two minutes of data collected at each set point was used in analysis. CCN data 

collected at the highest (1.2%) and lowest (0.15%) set points throughout the duration of the ship 

track are included in Figure 2.7B and C, respectively.  

The CCN data collected at all five set points can also be used to determine a single 

parameter, the critical supersaturation, Scrit, the supersaturation required for 50% of the particles 

in a population to activate. While useful for comparing the cloud-nucleating ability of aerosols in 

different locations, one caveat of examining critical supersaturation is that changes may occur 

due to changes in either aerosol size or composition.  While observed reductions in Scrit may 

result from the high aerosol concentrations of surface-active components, the cause of variations 

in Scrit cannot be determined for certain.   

To determine the critical supersaturation, the CCN concentrations were divided by their 

simultaneous aerosol concentration determined by the Grimm CPC (usually regarded as total 

condensation nuclei or CN concentrations) to produce a CCN/CN ratio spectrum every 27 

minutes. Following the method of Rose et al. (2008), each CCN/CN ratio spectrum was fitted 

with a cumulative Gaussian (normal) by a distribution function using a non-linear least-squares 

fitting routine: 
















 
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2
1



crit
CNCCN

SSS
erfaf                                                                                             (2.2) 

where erf is the error function (also called Gauss error function), a is the half maximum value of 

fCCN/CN, Scrit is the supersaturation when fCCN/CN  is equal to the half maximum value (a), and σ is 
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the standard deviation of the cumulative Gaussian distribution function.  The operational critical 

supersaturation (Scrit) is defined as the supersaturation (SS) at which fCCN/CN equals 0.5, i.e., 50% 

particle activation.  Values of Scrit obtained once every 27 minute CCN cycle are reported in 

Figure 2.7D.  The average critical supersaturations of droplet activation for each segment of the 

ship track are shown in Table 2.1.  

Spikes in aerosol concentrations along the ship track resulted in weaker increases in the 

concentrations of aerosols activated at 1.2% and very little increase in the concentration 

activated at 0.15%. This is consistent with an injection of aerosols characterized by poor or no 

CCN activation.  Possible sources include soot particles emitted during incomplete combustion 

from passing ships and other anthropogenic activities which have low CCN activities (Tritscher 

et al., 2011). Short-term variability in concentrations is less significant in the segment-averaged 

concentrations. Higher concentrations of CCN activating at 1.2% or less are observed in the 

Tropical and Northern Open Ocean Segments than in the Southern Open Ocean. Concentrations 

of more effective CCN (activating at 0.15% or less) were also higher in the northern section of 

the Open Ocean.  Interestingly, while the concentration of CCN active at 1.2% in the Southern 

Coast segment was 93% of the North Coast Concentration, the concentration of more effective 

CCN (active at 0.15%) in the Southern Coast segment was only 55%.  

  As seen in the table, the lowest average Scrit, 0.1 ± 0.3%, was observed during the 

Tropical Open Ocean Segment. The lowest critical supersaturation corresponds to aerosols, 

which require the least water vapor to activate as cloud droplets, and thus have the greatest 

propensity to facilitate cloud formation.  The segment with the next lowest average Scrit, 0.2 ± 1.0% 

was the Northern Coast Segment. While the Northern and Southern Coast Segments have 

comparable high aerosol concentrations, the Scrit observed in the Southern Coast, 1.4 ± 1.2% is 



 
 

46 

 

much higher. Reason for difference in observed cloud activation potential among the segments is 

not clear.  Many factors can influence the cloud nucleation ability of aerosols even in the open 

ocean segments away from anthropogenic influences.  In the northern hemisphere, values of Scrit 

(aerosols with reduced CCN ability) tended to increase in parallel to increased values in total 

aerosol concentration, an additional indication that injections of fresh aerosol which were not 

efficient CCN.  In contrast, high Scrit values occur for a period of sampling centered at 30 °S, 

during a period of relatively low aerosol concentration.  In general, most observed deviations 

from average conditions involved increased  aerosol concentrations and higher values of  Scrit, 

rather than reduced Scrit values which could potentially indicative of surface active species. 

Temporally, variations in CCN concentrations coincide with brief spikes in aerosol concentration, 

not with changes on the time scale of the ship's traverse through segments of differing Chl-a. 

Overall, no correlation between the presence of long chain organics and the cloud activation 

potential was observed in this study.  This may be due in part to the fact that Raman analysis was 

performed primarily on particles in the larger end of the size range of those expected to activate 

as CCN.  Given that aerosol composition may vary with aerosol size, the aerosol compositions 

measured here may not represent those available to act as CCN.    

2.5 Conclusions and atmospheric implications 

Here we successfully employed Raman microspectroscopy to determine that long chain 

organic compounds were consistently a major component in Pacific marine aerosol. Analysis of 

aerosol composition on the ~11,000 km HaloCAST cruise indicated that long chain organic 

species were the most common aerosol composition observed.  This result corroborates previous 

reports of high concentrations of organics in marine aerosol, and extends previous knowledge in 

several significant ways.  Our data include the aerosol composition, concentration and CCN-
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ability in the marine boundary layer over understudied areas in the Pacific Ocean. While most 

previous reports have focused on organics found in submicron aerosols, our collection technique 

included coarse mode aerosol (>1.0 µm diameter). The percentage of particles containing pure 

and predominately long chain organics were 8% or more and 28% or more for all conditions in 

both the Northern and Southern Hemispheres. The prevalence of organics observed in samples 

far removed from continental anthropogenic effects strongly suggests a marine source.  Also, 

these organic components were detected in autumn (in the Southern Hemisphere) and in spring 

(in the Northern hemisphere), suggesting that organics may be present throughout much of the 

annual cycle. While marine biological activity has commonly been considered as a source of 

large hydrocarbons in the atmosphere (Russell et al., 2010, O’Dowd et al., 2004), elevated levels 

of organics observed along the cruise track did not always occur with elevated concentrations of 

Chl-a.  This lack of correlation may be due to the fact that variation in Chl-a was fairly subtle, 

and overall aerosol composition may only be sensitive to major changes in Chl-a. Also, 

transported air masses may have modified the locally generated aerosol substantially.  

Alternatively, the long chain organics observed may come from another source.  

Water soluble inorganic species such as sulfate and nitrate were observed in higher 

frequency in the northern segments of the open ocean cruise track, possibly suggesting a stronger 

influence from anthropogenic activity in the northern hemisphere.  

Despite the insensitivity of Raman to some compounds, the majority of particles collect 

in this Pacific cruise were classified as internally mixed. Long chain organics were found in 

mixtures with other compounds 57 to 72% of the time. Based on our observations, long chain 

organic species tended to be mixed most often with HULIS, and frequently with other organic 

and inorganic species.   
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Both the consistent prevalence of long chain organic species throughout the wide range 

of conditions and locations sampled during this cruise indicate that organics must be considered 

in modeling studies of marine aerosol. Furthermore, the variable composition and mixing states 

observed here suggest a need to treat marine organic aerosol in a more detailed manner for 

accurate modeling of the role of marine aerosols in cloud formation and climate. The complex 

marine aerosol composition and prevalence of organic aerosols must be considered in 

assessments of marine aerosol direct and indirect effects on climate.  
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3. CLOUD CONDENSATION NUCLEI AND AEROSOL CONCENTRATIONS 

UNDER EXTREMELY HIGH DMS LEVELS OVER THE NORTH ATLANTIC 

OCEAN 

 

3.1 Introduction 

According to the CLAW hypothesis (named after Charlson, Lovelock, Andreae, and 

Warren), dimethyl sulfide (DMS)-derived sulfate comprises the majority of aerosols acting as 

CCN in the pristine marine boundary layer (Charlson et al., 1987).  Phytoplankton blooms lead 

to or enhance marine clouds through the emission of dimethyl sulfide (CH3SCH3, DMS) 

followed by the nucleation of new particles and their condensational growth by its oxidation 

products, which will serve as cloud condensation nuclei (CCN) (Liss and Lovelock, 2007). 

However, the extent to which algal growth and its DMS emission contribute to marine cloud 

formation is still under discussion, especially in light of increasing anthropogenic activities 

(Ayers and Cainey, 2007; Quinn and Bates, 2011).  Further, marine biology may contribute to 

CCN production through pathways other than DMS oxidation, including direct injection of 

organic particulate matter from the ocean surface into the atmosphere (Leck and Bigg, 2005a, 

2007).   

Most studies aimed at unraveling the relationship between DMS and CCN were carried 

out in the Southern Oceans, where the atmosphere is less influenced by anthropogenic activities 

and continental sources than in the Northern Oceans (Cropp et al., 2005; Deng et al., 2013a). Air 

masses from continental regions differ from those stayed over the open ocean for 120 hr in their 

composition and concentrations, as well as their cloud nucleation abilities (Dall’Osto et al., 

2010).  The conversion of DMS to sulfate aerosol is influenced by anthropogenic air masses, 
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which provide OH and NOx and oxidizing agents to the marine atmosphere (Stark et al., 2007). 

Therefore, field measurements over the Northern Oceans are needed to evaluate the combined 

influences of DMS and anthropogenic emissions on CCN.  

Attempts to find correlations between Chl-a and CCN, and between DMS and CCN 

have led to mixed results in different oceanic regions even in the seasonally averaged data (Hegg 

et al., 1991; Putaud et al., 1993; Andreae et al., 1995;  Vallina et al., 2006; Vallina and Simo 

2007; Lana et al., 2012). Under some conditions, e.g., in the Sargasso Sea during summer, those 

correlations can even become significantly inversed, causing doubts about the validity of the 

original proposal of CLAW hypothesis (Simo and Pedros-Ali, 1999; Quinn and Bates, 2011).  

DMS emitted into marine atmosphere can be oxidized to form sulfur dioxide (SO2), 

dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2) and methanesulphonyl peroxynitrate 

(MSPN) and further into sulfuric acid (H2SO4) and methanesulphonic acid (MSA) which 

contribute to CCN (Liss et al., 1997; Arsene et al., 2005b; Barnes et al., 2006). The major 

oxidants are OH, halogens (Cl and BrO), and nitrate (NO3) radicals (Chin et al., 1996; Barnes et 

al., 2006; Stark et al., 2007). Though there have been few experiments on the topic, DMS 

oxidation by O3 in the gaseous phase is thought to be unimportant (Martinez and Herron, 1978; 

Stark et al., 2007). Among the three important DMS oxidants in gaseous phase, nitrate is the sole 

important oxidant of DMS during nighttime, while OH and halogens are the dominant oxidants 

during the daytime. The reasons are following. First, NO3 is formed in the oxidation of NO2 by 

O3 during nighttime and NOx is mostly transported from continental sources due to 

anthropogenic activities (Stark et al., 2007; Osthoff et al., 2009). However, Nitrate radical is 

photolyzed by light between 420 and 630 nm in early morning before OH radical formation 

(Stark et al., 2007). Second, OH is formed by reaction of water vapor with O(
1
D) which is in turn 
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produced in the photolysis of O3 by light between 290 and 330 nm (Seinfeld and Pandis, 2006). 

Third, halogen species are considered to have a similar diurnal pattern to OH radical (Sander et 

al., 2003). It is estimated by a model study that globally DMS oxidation by nitrate radical 

amounts to one third of that by OH radical when assuming OH as the single daytime oxidant 

(Chin et al., 1996). It is then of practical importance to evaluate the relative magnitude of nitrate 

(nighttime) and OH (daytime) oxidations of DMS when air masses are under various influences. 

This is an important approach to evaluating the impact of anthropogenic activities on marine 

atmosphere in the contemporary era.   

Sulfuric acid, one of the most important oxidation products of DMS, and water vapor, 

are responsible for the new particle formation in marine atmosphere, with the presence of 

ammonia and organics being a facilitating factor (Kulmala et al., 2004a; Kulmala and Kerminen, 

2008). The nucleation of sulfuric acid and condensation of other oxidation products of DMS was 

once considered as the predominant source of marine CCN (Charlson et al., 1987). However, the 

binary nucleation of sulfuric acid and water vapor is only considered as common and realistic in 

the upper troposphere (UT) where DMS are transported upwards, which in turn will be 

transported back to the underlying marine boundary layer (MBL) to serve as cloud condensation 

nuclei, being accompanied with condensational growth by sulfuric acid and other DMS 

oxidation products (Korhonen et al., 2008; Kulmala and Kerminen, 2008). For MBL nucleation 

to happen DMS level has to be over 400 pptv and the total aerosol surface (available 

condensational sites) has to be very small (Pirjola et al., 2000). Since nucleation tends to happen 

in marine UT, nanometer-sized particle (nucleation mode, 3-25 nm) number concentrations are 

significantly (orders of magnitude) higher there than in MBL (Clarke 1993; Raes 1995; Clarke et 

al., 1997). Therefore, entrainment of air masses from UT could be the predominant process 

governing the total particle concentration in MBL (Katoshevski et al., 1999). The net 
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entrainment from UT to MBL will signify a particle concentration enhancement in MBL, and 

vice versa. In brief, except the influence of different air masses with varying origins, 

meteorological parameters like pressure signifying the vertical transport of air masses are also 

significant in modification of the nucleation mode aerosol concentration. 

In addition to sulfate aerosol derived from DMS, particles composed of sea salt and 

organics also need to be considered as the possible sources of CCN in marine boundary layer 

(Andreae and Crutzen, 1997; Leck and Bigg, 2008). Microgels originated from the sea surface 

microlayer (SML) may also be important primary source of marine aerosol and CCN 

(Ovadnevaite et al., 2011b; Orellana et al., 2011; Verdugo 2012; Cunliffe 2013). Alternatively, a 

new mechanism in which marine microgels arrive in the atmosphere from evaporating fog and 

cloud water is supported by recent observations in the polar marine boundary (Orellana et al., 

2011; Karl et al., 2012, 2013). 

This cruise aboard the R/V Knorr over the North Atlantic during June - July 2011 was 

intended to pursue phytoplankton blooms signified by elevated chlorophyll a (Chl-a) 

concentrations to evaluate the linkage between marine biota and CCN concentrations for pristine 

marine air and polluted conditions. The ship passed through a wide range of conditions, 

including areas of high phytoplankton biomasses and extremely high DMS levels (over 1800 

pptv).  To the best of our knowledge, in situ CCN measurements have never been collected in 

DMS conditions as high as these. Coincident aerosol, CCN and DMS data will used to evaluate 

the contributions of ocean biology, specifically DMS oxidation, on aerosol concentration and 

cloud nucleating ability in the present and absence of anthropogenic influence.  
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3.2 Experimental section 

3.2.1 Observations 

This study, referred to as “Bloomcruise”, was a three-week cruise from June 23rd to July 

17th, 2011 aboard the R/V Knorr. The ship track spanned the area of 40°N to 60°N and 70°W to 

35°W, as shown in Figure 3.1. The general goal of Bloomcruise was to characterize surface 

water, and the marine boundary layer, and fluxes between them and in zones of phytoplankton 

blooms, typically defined by elevated Chl-a concentrations relative to their surrounding surface 

seawater.  Chl-a concentrations measured by shipboard fluorometer are also plotted along the 

cruise track.  The ship stopped every two days to collect 24 hours or more of data at a fixed 

station, and to carry out multiple CTD (conductivity, temperature and depth) measurements. The 

stations are marked in Figure 3.1. In addition to the long stations, numerous half-hour stops were 

allowed every several hours for a CTD measurement in each stop. CCN and DMS (seawater and 

atmospheric) concentration measurements were carried out simultaneously. 

 

 

Figure 3.1 Cruise track of the Bloomcruise indicated by in-situ fluorometer-retrieved 

chlorophyll a concentration and long duration (≥ 1 day) stations. The truncation of data in the 

returning trip is due to the restriction of data publication. 
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A CCN counter (Droplet Measurement Technologies) was used to measure CCN 

concentration. A condensation particle counter (or CPC) from Grimm Technologies was used to 

count total particles between 4.5 nm and 3 μm, which we regard as CN (condensation nuclei) 

concentration. A portable aerosol spectrometer (PAS) from Grimm Technologies was used to 

measure particle size distribution from 0.3 μm to 20 μm. CCN and aerosol concentration 

measurement were carried out by sampling through an inlet (15 m above sea level) extending 3.5 

meters over the lab van situated on the bow of the ship, constantly facing the incoming wind 

(Deng et al., 2013a). The sample flow passed through a heater and two dryers (a Nafion
®
 dryer 

and a desiccant dryer) in order to maintain relative humidity (RH) below 50% throughout the 

project, to a suite of instruments shown in Figure 3.2. Beyond the desiccant dryer, the flow was 

distributed among samplings by the CCN counter, CPC and the PAS instruments. A cyclone 

impactor in front of the CCN and CN was installed to remove particles larger than 1.5 μm in 

aerodynamic diameter. The ship's exhaust stack was located behind the laboratory van and the 

sampling inlet. Therefore, all data collected when wind was from behind (the relative wind 

direction from 90° to 270°) were eliminated to preclude potential contamination from the ship 

stack (Deng et al, 2013a; Shank et al., 2012). CCN concentrations were measured at a series of 

five supersaturation levels. The five supersaturation (SS) levels of 1.2%, 0.9%, 0.5%, 0.25% and 

0.15% were allowed 7min, 5min, 5min, 5min and 5min respectively in a single cycle, dividing 

the whole cruise as a series of 27-min cycles in terms of CCN measurements. 
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Figure 3.2 Schematic of particulate phase measurements. 

 

Since the CCN counter takes a few minutes to stabilize after switching to a new SS level, 

only data collected in the last two minutes at each SS level were used to determine the average 

CCN concentration value at that level during a 27 min cycle. Aerosol concentrations reported for 

each cycle are the averages of the 10 min data, concurrent with the discontinuous CCN data at 

five SS levels. In each cycle, five CCN/CN ratios (also called CCN activation ratios) can then be 

calculated for five SS levels. 

3.2.2 Critical supersaturation calibration  

Calibration of CCN and CN instruments were performed both before and after the cruise 

research using 0.01% (NH4)2SO4 (ammonium sulfate, or AS) solution (Baumgardner et al., 2001) 

to generate aerosol particles which will be size-selected by a dynamic mobility analyzer (DMA) 

to supply AS aerosol with mono-disperse size distribution. Experimental setup in calibration was 

similar to that shown in Figure 3.2 except that the inlet was connected to the aerosol generation 

apparatus and cyclone impactor is replaced by a DMA. Singly sized particles selected by DMA 

were directed to the CCN counter and CPC in parallel. CCN measurement was cycled in the five 
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SS levels and an activation spectrum (CCN/CN ratio) can be plotted against the SS levels for 

each dry particle size, as shown in Figure 3.3. The CCN activation data collected at all five SS 

points can also be used to determine a single parameter, the critical supersaturation, Scrit, the 

supersaturation required for 50% of the particles in a population to activate into CCN.  Each 

activation spectrum can be fitted with an accumulated Gaussian curve based on the least-squares 

fitting principle. On each curve, the SS at which the activation ratio equals 0.5 is the critical SS 

required for particle population to activate and grow to cloud droplets. The critical SS (Scrit) 

values for each particle size were plotted against the corresponding dry sizes. The smaller the 

Scrit is, the more effective the aerosols are as cloud condensation nuclei.  

 

 
Figure 3.3 Calibration of CCN and CN instrument measurements using (NH4)2SO4 with 

different dry particle sizes. Activation ratios of different sizes with varying supersaturation (SS) 

levels and their least-squares (LS) fitted activation spectrum are shown together. The black lines 

show an example of critical SS is determined.  The critical SS for 30 nm aerosol is marked by 

the black dot. 
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For an activation spectrum of ambient air sample measured at five SS levels (1.2, 0.9, 

0.5, 0.25, and 0.15%) the scattered points can be fitted similarly with an accumulated Gaussian 

curve. While useful for comparing the cloud nucleation ability of aerosols in different locations, 

one caveat of examining critical supersaturation of ambient particle populations is that changes 

may occur due to changes in either size or composition.  While observed reductions in Scrit may 

result from the high aerosol concentrations of surface-active components, the cause of variations 

in Scrit cannot be determined for certain. For the data impossible to fit into an accumulated curve 

when there is a point of inflection in the curve, the Scrit is not pursued. Otherwise, one Scrit is 

obtainable for each 27 min CCN cycle unless the data is rejected due to ship stack contamination 

possibility. This operational Scrit differs from theoretical critical supersaturation (sc) in that sc 

describes the SS level required for a 50% activation of dry particles with a certain size, e.g. 50 

nm dry ammonium sulfate aerosol with a sc of about 0.65% based on Köhler theory (Seinfeld 

and Pandis, 2006). The operational Scrit is used to denote the cloud nucleation ability of mixed 

size particles measured during an interval (27 min for this research). 

3.2.3 DMS measurement 

Atmospheric pressure chemical ionization mass spectrometry (API-CIMS) was used to 

measure DMS concentrations, following the method of Marandino et al. (2007). Water samples 

were pumped from a depth of 5 m below sea surface and atmospheric samples are sucked from a 

few  meters above sea surface DMS concentrations in the surface seawater and atmosphere were 

measured every 5 and 10 minutes, respectively. DMS data is included here to lend context to the 

aerosol and CCN measurements by providing a quantitative characterization of ocean biology 

during atmospheric measurements.   
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3.2.4 Supporting measurements  

Shipboard measurement from meteorological sensors on different positions of the ships 

(main mast, forward mast port side and starboard side) were carried out continuously and data 

were recorded every minute. These parameters include air temperature (three sensors), 

barometric pressure (three sensors), shortwave irradiance (one sensor), rain intensity (two 

sensors) and rain accumulation (two sensors), wind speed and direction (three sensors). The 

values from different sensors were averaged for each meteorological parameter in the 

Bloomcuise cruise for use. The navigation direction and speed of the ship were also logged to 

derive the true wind direction and speed based on the measured relative wind direction and speed. 

Sea surface temperature (two sensors) and salinity (two sensors) of seawater were measured by 

sensors located in the bow chamber outboard of the surface water pump. A fluorometer sensor 

was aboard the research vessel. The reading was used to derive Chl-a concentration along the 

cruise track. However, the Chl-a concentration maps used to decide the navigation direction in 

the pursuit of phytoplankton blooms are retrieved form MODIS (or Moderate Resolution 

Imaging Spectroradiometer) satellite data, which were downloaded from Giovanni data system 

(http://daac.gsfc.nasa.gov) developed and maintained by the NASA GES–DISC (Goddard Earth 

Sciences Data and Information Services Center).    

3.2.5 HYSPLIT back trajectories 

Using the HYSPLIT back trajectory retrievals were carried out for every hour along the 

cruise track using (Draxler and Rolph, 2013).  GDAS (global data assimilation system) data was 

used for meteorology input data. Vertical velocity was modeled based on meteorological data. 

500m, 200m and 10m were chosen as the three starting point elevations. The total run time was 

set to be 48 hours for every back trajectory. The back trajectories were used to classify all air 
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mass origins into one of three scenarios: those had passed through continent in the previous 48 

hours, those influenced by North American or Greenland coastal atmosphere in the preceding 48 

hours, and those were completely in the open hour in the past 48 hours, as shown in Figure 3.4. 

 

 
Figure 3.4 Examples of 48-hr back trajectories. Red, green and blue colors are for starting point 

at 500 m, 200 m and 10 m above sea level respectively. Panel a) shows an example of air masses 

completely over the open ocean in the previous 48 hours; panel b) shows an example of air 

masses ever influenced by coastal air in the past 48 hours; and panel c) shows an example for air 

masses passed through the continent in the preceding 48 hours. 

 

3.3 Results and discussion 

3.3.1 Overview of measurement results 

The time series of aerosol (CN) concentration and CCN concentrations at each of the 

five supersaturation settings observed throughout the cruise are shown in Figure 3.5a. Particle 

size distribution (15 bins in 0.3 to 20 micron) was also recorded every 6 s during the cruise, as 

detailed in Deng et al. (2013b, in preparation). Among the five CCN concentrations, the ones at 
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0.15% and 0.25% have a practical importance because they are in the range of the SS levels most 

commonly achievable in marine stratocumulus clouds and stratiform clouds (Katoshevski et al., 

1999; Russell et al., 1999). The highest SS of 1.2% exemplifies an upper limit of meaningful 

CCN at an achievable SS level in marine atmosphere while the other two (0.5% and 0.9%) are 

less frequent but achievable SS levels in marine atmosphere.  The colored lines in the top of 

Figure 3.5a delineate the classification of the air mass sampled at that time, according to the 

HYSPLIT 48-hr back trajectories described above. To inspect the possible connection between 

aerosol concentration and cloud nucleation ability, DMS concentration in the atmosphere and in 

the surface ocean waters, and Chl-a are plotted in Figure 3.5B and 5C, respectively. For 

reference, periods during which the vessel was anchored at a station location for one day or 

longer are marked in 5B and atmospheric pressure is included in 5C.   
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Figure 3.5 Time series presentation of measurements during the cruise research with time 

aligned with each other.  Panel a) shows the variation of CN concentration and CCN 

concentration at five different supersaturation levels. Bold lines with blue, green and red colors 

in this panel show segments when their air masses passed through the open ocean, coast, and 

continent in the past 48 hours respectively. The three segments which are marked with “Ocean”, 

“Coast”, and “Continent” are three special cases with longest continuous duration for each 

category; Panel b) shows variation of DMS concentration in both atmosphere and seawater. 

Stations marked by bold black lines and marked with segment numbers are the periods with no 

spatial variation; Panel c) shows fluorometer measured chlorophyll a concentration ship-board 

barometric reading. The two segments delineated with bold black line and marked underneath 

with “Pressure change” are the phases with apparent sea surface pressure change. 

 

The raw data in Figure 3.5 illustrates the combined and at times opposing influences of 

continental air mass, ocean biology, and meteorological conditions on aerosol concentration and 

characteristics. Each of these influences is discussed in greater detail in the sections that follow.  

We first discuss the general trends made clear by 5A.  Air masses passed over continental 

regions had the highest aerosol concentrations, followed by coastal and open ocean segments. 

Secondly, the continental air mass produced aerosols with lower cloud nucleating ability. Under 
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continental influence, there is a wide spread in the CCN concentration depending on the 

supersaturation set point. In general, variations in concentration of aerosols and CCN at the three 

highest SS levels (0.5 to 1.2% SS) follow the trend of sea surface pressure for air masses under 

continental influence.  However, concentrations of CCN at lower SS (0.15%) are on average 74% 

lower than those at 1.2% for continental air mass, while the CCN (0.15%) for coastal and open 

ocean air masses are only 57% and 48% lower than their CCN (1.2%), respectively. Although 

there are more aerosols present under continental conditions, if the ambient supersaturation is 

low, the number of aerosols activating as CCN may be even lower than those in unpolluted air 

masses. For example, in the “Ocean” segment, while the aerosol concentration is on average 40% 

lower than the average in the “Continental” segment prior to it, the concentration of those 

aerosols activating as CCN at 0.15% SS is 70% higher.  

Within the “Ocean” segment, variations do occur, including two peaks at the middle 

between July 6
th
 and July 7

th
 and the middle between July 7

th
 and July 8

th 
in which aerosol 

concentration rose by 50% and 13 folds separately, and a trough just before July 7
th 

in which 

aerosol concentration plummeted to 70% of the average. The CCN concentrations behaved 

similarly as aerosol concentration in this segment, with a variable enhancement factor of 64% to 

84% at the first peak and 1.6 to 2.7 folds at the second peak, and a drop of 22% to 29% at the 

trough, for the five SS levels. A similar trend was observable in the variation of atmospheric 

DMS concentration, with the first peak of DMS (120% increases) a few hours earlier than the 

first peak of aerosol and CCN, but the second peak (220% increases) and the trough (45% 

decrease) happened at similar times. The observations suggest a possible link between aerosol 

concentration and atmospheric DMS. The peaks and troughs of seawater (SW) DMS 

concentration are less visible during this segment and therefore the link between aerosol and SW 

DMS is believed to be weaker. Overall, in the “Ocean” segment aerosol and CCN concentrations 
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are consistently high and less variable than any other segments (verifiable from the standard 

deviations in Table 3.1) when DMS concentration is significantly elevated, possibly due to the 

abundance of condensable vapors when DMS concentration is extremely high. 

 

Table 3.1 Summary of CN and CCN concentrations influenced by three different scenarios of air 

masses. The concentrations during the special “Ocean” segment which is the longest continuous 

period of open ocean air mass are shown in the last column. The bottom row shows the 

approximate average sizes in each segment by assuming ammonium sulfate (AS) particles. All 

values are shown in arithmetic mean ± 1 δ (one standard deviation). 

Time 
segments 

Aerosol of 
all air 
masses 

Aerosol of 
open ocean 
air mass 

Aerosol of 
coastal air 
mass 

Aerosol of 
continental air 
mass 

“Ocean” 
segment 

 CN, in unit of cm-3, corresponding to AS particles with diameter > 4.5 nm 
Day and 
night 

708±560 445±421  639±517  956±575  580±597  

Night only 543±567 364±177 584±218 933±484 407±55 
Day only  492±589 493±509 647±547 966±608 615±649 
 CN (1.2%), in unit of cm-3, corresponding to AS particles with diameter > 26 

nm 
Day and 
night 

329±208 269±130  263±122  422±262  356±92  

Night only 221±166 224±108 281±87 440±262 305±26 
Day only  232±238 297±135 261±127 414±263 370±99 
 CN (0.9%), in unit of cm-3, corresponding to AS particles with diameter > 32 

nm 
Day and 
night 

293±182 255±125 233±113  364±229  340±70  

Night only 199±150 208±104 255±82 383±226 296±24 
Day only  205±210 285±129 230±117 356±230 353±74 
 CN (0.5%), in unit of cm-3, corresponding to AS particles with diameter > 48 

nm 
Day and 
night 

231±145 216±110  189±111  273±178  290±53  

Night only 159±126 180±108 199±78 296±179 261±15 
Day only  161±167 238±105 188±115 263±177 297±56 
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Table 3.1 Continued 

Time 
segments 

Aerosol of 
all air 
masses 

Aerosol of 
open ocean 
air mass 

Aerosol of 
coastal air 
mass 

Aerosol of 
continental air 
mass 

“Ocean” 
segment 

 CN (0.25%), in unit of cm-3, corresponding to AS particles with diameter > 
75 nm 

Day and 
night 

163±97 166±87  145±82  173±111  221±36  

Night only 116±92 139±91 155±72 174±102 215±14 
Day only  115±114 182±81 143±84 172±115 222±39 
 CN (0.15%), in unit of cm-3, corresponding to AS particles with diameter > 

105 nm 
Day and 
night 

122±70 139±78  114±61  113±66  192±27  

Night only 89±73 119±85 118±54 109±66 194±10 
Day only  86±82 153±70 113±62 115±66 192±31 

Avg. size  
Day and 
night 
Night only 
Day only 

nm 
58±48 

 
55±46 
59±51 

nm 
85±54 

 
88±110 
84±45 

nm 
57±50 

 
64±69 
56±42 

nm 
50±50 

 
51±57 
49±49 

nm 
88±27 

 
115±60 

84±27 

Note: Values are calculated based on various amounts of 27 min cycles. Calculation of average size is 
achieved by assuming all particles are composed of ammonium sulfate (AS). Particles with the differential 
concentrations of CN and CCN (1.2%), of CCN (1.2%) and CCN (0.9%), of CCN (0.9%) and CCN (0.5%), of 
CCN (0.5) and CCN (0.25%), as well as of CCN (0.25%) and CCN (0.15%) are assumed to have an average 
size of 15 nm, 30 nm, 40 nm, 60 nm, and 90 nm respectively. Particles detected as CCN (0.15%) are 
assumed to have an average size of 200 nm. Standard deviation of average sizes is calculated from the 
standard deviation of differential concentrations. 

 

It should be noted that changes in aerosol concentration and cloud nucleating abilities 

coincide with variations in DMS emission, rather than changes in Chl-a. For open ocean air mass, 

The correlations of atmospheric DMS with the aerosol (CN) and CCN concentrations are 

presented are presented in the supplementary material, Figure 3.11, while those of surface 

seawater DMS concentration and the sea-to-air flux with CN and CCNs are also shown in 

supplementary material, Figure 3.12 and Figure 3.13, respectively. Comparatively, the 

correlations of fluorometer-measured and satellite-retrieved Chl-a concentration with CN and 
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CCNs are presented in Figure 3.14 and 3.16, respectively. Comparing the results of Figures 3.11-

3.14, it is clear that the correlations between DMS and particles are visible while those between 

Chl-a and particles are not. In Figure 3.15, the correlations of both MODIS-retrieved (satellite) 

and fluorometer-retrieved (Ship) Chl-a with atmospheric and seawater DMS concentrations are 

presented. It is obvious that the correlations of fluorometer Chl-a with both DMS concentrations 

are better than those of satellite Chl-a (as also shown in Figure 3.16 that there is even negative 

correlation between Chl-a and CCN), indicated the issue of poor resolution inherent in satellite 

data retrieval. The visible correlation in Figure 3.11-3.13 and 3.15 are generally consistent with 

the CLAW hypothesis that nonlinear processes involved in both the reflection of DMS in 

response to primary production (Chl-a) changes and the reflection of CCN in response to DMS 

changes (Charlson et al., 1987; Andreae et al., 1995; Andreae and Crutzen, 1997;). Therefore, 

the absence of correlation as shown in Figure 3.14 reflected that the additive effects of multiple 

nonlinear processes may result in an invisible causal relationship between the start-up factor 

(enhanced phytoplankton growth) and the end result (CCN increase), if evaluated locally (Quinn 

and Bates, 2011). 

Additional parameters are presented in Figure 3.6. From the plot, we can see that no 

measurements showed apparent diurnal cycles except the short wave irradiance. Not any two 

variables showed a similar time-series pattern either. Comparing the variations in Figure 3.5 and 

3.6, we can notice that CN and CCN concentrations seem to be insensitive to the extremely 

heavy precipitation events during station I, corroborating with the previous finding that the 

horizontal mixing after precipitation is very fast after the wet deposition of submicron particles 

(Clarke et al., 1997; Katoshevski et al., 1999). Concentrations of large particles were also 

increased during precipitation events.  The possibility of overcounting some large drops entering 

the sampling system during rain period cannot be rule out. Also during the “Continent” segment 
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CN and CCN concentrations are mostly correlated inversely with wind speed since pressure and 

wind speed are generally negatively correlated. 

 

 

Figure 3.6 Overview of meteorological parameters during the cruise with the same time axes of 

the previous plot. “WS” stands for true wind speed calculated from measured relative wind 

speed and navigation speed; “WD” means true wind direction corrected from relative wind 

direction and navigation direction; “SST” represents sea surface temperature; “RH” is relative 

humidity in percent; Dew point is calculated based on relative humidity and air temperature. 

 

3.3.2 Comparison of CCNs and CN influenced by different air masses 

To further evaluate the cloud nucleation abilities of aerosols influenced by the open 

ocean, coastal and continental air mass, the average CCN/CN ratios at the five SS levels for the 

three air mass scenarios are plotted in Figure 3.7a. For comparison, ammonium sulfate 

calibration data is also plotted. Specific numbers of aerosol and CCN concentrations under 

different air mass scenarios are presented in Table 3.1. Averagely, the number concentrations of 

aerosols influenced by continental air mass which activate at SS levels ranging from 0.15% to 
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1.2% are 92.8% to 128.3% compared to the whole cruise. Similarly, those by coastal air mass 

and open ocean air mass range from 93.4% to 79.4% and from 114.3% to -81.7%, respectively. 

Based on the segment distinction in Figure 3.5a marked by colored bold lines, periods in which 

the influences of continental air mass on marine aerosol are widespread but highly variable and 

unpredictable. Aerosol influenced by continental air mass will have lower activation ratios (for 

all five SS levels) than those by coastal air mass, which are in turn have lower activations than 

that only influenced by pristine ocean air. By comparing the measured activation ratios with the 

activation curves of ammonium sulfate with different sizes, it is clear that the aerosol influenced 

by oceanic air masses has a larger effective average size than that influenced by coastal air mass, 

which is in turn larger than that influenced by continental air mass.  This finding probably shows 

that more foreign aerosols will compete with the pristine marine aerosols (e.g. newly formed 

particles) for condensational vapors in growth. In addition, the invasion of more nonhygroscopic 

particles (such as black carbon) from the transported continental or coastal sources will decrease 

the cloud nucleation ability of marine aerosol. 
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Figure 3.7 Spectrum of average activation ratios (a) and CCN concentrations (b) of aerosols at 

five supersaturation levels under the influence of three different air masses. Together shown in (a) 

are the activation curves of ammonium sulfate aerosols with different dry particle sizes and their 

fitted curves. 

 

In addition to CCN/CN ratio, the CCN absolute concentration is also important in 

quantifying   cloud formation potential of aerosol, which is compared for three different air 

masses in Figure 3.7b. Similar with the comparison for the single “Ocean” segment, all the 

segments influenced only by open ocean air mass has lower CCN than continental air mass when 

SS is equal or larger than 0.5%. The CCN concentration at SS 0.15% is higher for all open ocean 

air mass segments than all continental air mass segments, while their CCNs at SS 0.25% are 

similar. The CCNs for all coastal air mass segments are lower than or similar to the other two at 

all five SS levels. The orders of CCN concentrations in the three air mass scenarios are different 

from those of the CCN/CN activation ratios. However, it verified with the results that cloud 

formation potential at the lowest measured SS (0.15%) is the highest for open ocean air mass 

segments, which is the SS for common marine clouds. Therefore, continental air mass has a 
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potential to depress cloud activation of marine atmosphere even though they enhance total 

aerosol concentration. 

Both the trends of CCN/CN ratios and CCN concentrations are similar to those of 

Northeast Atlantic aerosols in a field measurement carried out in Mace Head in 2008 (Dall’Osto 

et al., 2010). The Mace Head measurement also showed an increasing CCN concentration and a 

decreasing CCN activation ratio with the increasing of air mass pollution levels. However, the 

absolute CCN concentrations at the same or similar SS levels in the Mace Head measurement (as 

high as 1600 cm
-3

 for continental air mass) are much higher than this study, even though the 

activation ratios of both studies are close. The reason of the difference in CCN concentration is 

that the pollution in the Mace Head project is mainly from European continents while the 

pollution in this study is mainly from the Greenland and North Canadian continents, 

guaranteeing a much higher background aerosol and oxidants levels for the Mace Head project.   

To compare the links among Chl-a, DMS, and CCN concentrations for different air mass 

influences, the correlations of atmospheric DMS, seawater DMS, and sea-to-air DMS flux with 

aerosol (CN) and CCN concentrations are presented in Table 3.3-3.5 respectively. It is obvious 

from the results that the correlations between DMS and CCN for the open ocean air mass are 

larger than those for coastal air mass, which is in turn larger than those for the continental air 

mass. This shows that the influence of continental and coastal air masses can weaken the 

response of CCN to DMS change in situ in a short period of time (half an hour). This also 

implies that the validating of CLAW hypothesis in an ever-increasingly polluted atmosphere 

becomes more difficult and requires more sophisticated measurement (Doraiswamy and Hogrefe, 

2009). 
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In addition to differentiating aerosol and CCN concentrations between different air mass 

influences, differentiation between daytime and nighttime within each segment was also 

summarized in Table 3.1 to verify with the coming calculation of DMS oxidation rate. For 

instance, without differentiating between day and night, the CN concentration has an 

enhancement of 115% and 44% for continental and coastal air masses compared to open ocean 

air mass, respectively. If differentiating between night and day, the enhancements are 156% and 

60% for continental and coastal air masses respectively during nighttime, and are 96% and 31% 

respectively during daytime. Comparatively, without differentiating day and night, continental 

and coastal air masses decrease CCN by 18% and 19% respectively compared to open ocean air 

mass at the SS level of 0.15%, which is a typical SS level of marine stratiform clouds. However, 

the relative CCN concentration at that level in nighttime to that in daytime is about 77% for open 

ocean air mass and the day and night CCNs are similar for the coastal and continental air masses. 

This may have to do with the increased amount of oxidant during nighttime under the influence 

of coastal and continental air masses, as will also discussed in the following section. 

3.3.3 Oxidation of DMS in the atmosphere   

There have been numerous laboratory and theoretical investigations of the mechanism 

for gas phase DMS oxidation, establishing OH and NO3 as the main oxidants and leading to 

various products (Barnes et al., 2006; Stark et al., 2007 and references therein). In the marine 

atmosphere, DMS is mainly oxidized by OH and halogens (Cl atoms and BrO radicals) during 

daytime and NO3 (nitrate) radicals during nighttime in the gaseous phase (Stark et al., 2007). The 

mechanisms responsible for atmospheric DMS oxidation during daytime and that during 

nighttime are almost mutually exclusive (Stark et al., 2007; Osthoff et al., 2009).  During the day, 

OH is resultant from the photolysis of O3, which will generate O(
1
D) to react with water vapors 
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as shown in the following reactions (Vaughan et al, 2012). 

O3 + hν (< 340 nm) --> O(
1
D) + O2                                                                                          R(3.1)                                         

O(
1
D) + H2O  --> 2OH                                                                                                              R(3.2) 

Ozone could come from polluted air masses and local ship traffic (Dibb et al., 2004; 

Eyring et al., 2010) through photochemical reactions and can be entrained from the ozone-rich 

stratosphere (Ayers et al., 1992; Parrish et al., 2009). Another category of daytime oxidants, 

halogens, have a marine origin (Oum et al., 1998; Knipping et al., 2000; Saiz-Lopez et al., 2004; 

Breider et al., 2010). Comparatively, nitrate radicals, the nighttime oxidant, are evolved from 

NOx in MBL which are mainly from anthropogenic origins over the North Atlantic (Jacob et al., 

1996; Heard et al., 2006). Therefore, high nighttime oxidation rate is a clean sign of 

anthropogenic influence on DMS oxidation.  Further, by comparing the oxidation rates during 

daytime and nighttime, it is possible to estimate the lower limit contribution of anthropogenic 

influence on total DMS oxidation (This is a lower limit since daytime oxidation occurs by both 

marine and anthropogenic oxidants). In addition, comparing the measured aerosol and CCN 

concentrations may provide insight in the relationship between DMS and cloud nucleation ability 

of aerosols.  

Stark et al. (2007) measured NO3 and DMS concentrations during a cruise research in 

the New England Coast. Assuming a constant DMS sea-to-air flux, it was found that 65%-90% 

DMS oxidation was due to NO3. Later on in a study over the same region, Osthoff et al. (2009) 

showed that nitrate oxidation rates during nighttime were higher and more variable than OH 

oxidation rates. Both studies assumed a constantly low marine atmospheric boundary layer 

(MBL) height of 100 m. Even though multiple assumptions seriously undermined the accuracy 
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of their results, the analyses in their papers have effectively demonstrated the importance of NO3 

in DMS oxidation in marine atmosphere. 

Adopting a mass balance approach, the variation of DMS concentration and its oxidation 

can be expressed as follows (Katoshevski et al., 1999): 

      

  
 

    

 
       [  ][   ]      

[   ][   ]  
  

 
 [   ]   [   ]               (3.1) 

where [DMS] and [DMS]FT are atmospheric DMS concentration in MBL and FT respectively, H 

is the height of MBL. kOH, Cl  is the effective reaction coefficient of OH (+ halogen) and DMS. To 

obtain this coefficient, Cl concentration is assumed to be linearly proportional to that of OH 

(Stark et al., 2007).     
 is the effective reaction coefficient between NO3 and DMS, and    is 

the entrainment velocity. The fourth term demonstrates the exchange of air masses between 

MBL and FT. Note that air mass entrainment in the MBL from the FT is usually accompanied by 

the same amount of air mass flowing in the opposite direction (Katoshevski et al., 1999). 

Since oxidation of DMS during daytime and that during nighttime are mutually 

exclusive. In addition, DMS concentration in FT is usually much lower than that in MBL (Ferek 

et al., 1986). Therefore, the equation can be rewritten as follows: 

 [   ]

  
 

    

 
 

  

 
[   ]      [        ][   ]                                                                 (3.2) 

where [oxidants] stands for OH and halogen radical (mainly Cl) concentration during daytime, 

and represents NO3 concentration alone during nighttime. The reaction coefficient koxi changes 

accordingly. H is the MBL height.  
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The sea-to-air flux of DMS can be calculated based on Liss and Merlivat (1986) 

mechanism: 

        [   ]  
[   ]

 
                                                                                                     (3.3)  

where    (cm hr
-1

) is the overall transfer velocity, [   ]  is the measured bulk water DMS 

concentration, and α is the dimensionless solubility based on Henry’s law. The second term in 

the parenthesis is usually much smaller than the first term and can be dropped during the 

calculation. 

Schmidt number (Sch), a measure of the ratio of momentum diffusivity (viscosity) 

and mass diffusivity, can be approximated practically as follows (Saltzman et al., 1993): 

                                                                                                          (3.4) 

where t is the atmospheric temperature in °C.  

The transfer velocity at Schmidt number 660 can be calculated based on the following 

scheme (Goddijn-Murphy et al., 2012): 

                                                                                                                                  (3.5) 

where U10 is the wind speed at 10 m above sea level, which is represented by the shipboard 

measurement of true wind speed (the height of wind sensors is very close to 10 m and the 

correction required is very small). Next, the actual overall transfer velocity can be related with 

the transfer velocity at Schmidt number of 660 by the following relationship: 

  

      
  

   

   
                                                                                                                              (3.6) 

http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Momentum_diffusion
http://en.wikipedia.org/wiki/Viscosity
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where Sch is Schmidt number,  kw and kw, 660 are actual transfer velocity and transfer velocity at 

Schmidt number of 660 respectively. 

During Bloomcruise, DMS concentration in atmosphere and seawater were measured at 

10 min and 5 min intervals, respectively. Wind speed and air temperature were recorded every 

minute. Therefore the time-series oxidation rates of DMS every 10 min can be calculated by 

combining equation (3.3 – 3.6) and omit negligible terms in equation (3.4): 

 [   ]   
  

     [        ][   ]   

          (
   

                              
)

 

 [   ] 

 
 

  

 
[   ]  

 [   ]

  
                             (3.7) 

Kritz (1983) obtained an entrainment velocity of 0.3-0.4 cm s
-1

. Boers and Betts (1988) 

reported a velocity of 1 cm s
-1

 in a stratus cloud capped situation. Raes et al. (1995) reported that 

a range of 0.3-0.6 cm s
-1

 is proper for both clear and cloudy situations in their own study. Stark 

et al. (2007) adopted a value of 0.25 cm s
-1

 for their model calculation. Osthoff et al. (2009) 

evaluated 0.4 cm s
-1

 as the best value for their study. Here, we set an entrainment velocity 

constant in each day proportional to the maximum short wave radiation in each day (a coarse 

indicator of cloudiness, reversely) measured aboard the cruise vessel. Daily values throughout 

the cruise were within the range of 0.3-0.6 cm s
-1

, inversely. 

MBL height (H) was not measured in this study. Following the work of Stark et al. 

(2007) and Osthoff et al. (2009), we chose a MBL of 100 m.  

The average oxidation rates during different segments are presented in Table 3.2, 

together shown are the ratios of nighttime to daytime oxidation rates. Overall, the average 
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oxidation rate of DMS during nighttime is 85% of that during daytime. The ratios during Station 

II, III, and IV are smaller than that of the cruise average, from 0.26 to 0.57, whereas the ratio 

during Station V is almost equal to unity. The lowest oxidation rate during Station II, 39 pptv hr
-1

, 

is much smaller than any other segments.  This is apparently related to the low DMS flux 

resulting from low wind speed in this segment. Comparing the results in Table 3.2 and Figure 

3.5b, magnitudes of oxidations rates during various segments are not proportional to the absolute 

atmospheric DMS concentrations, but to the differences between flux and concentration 

variation.  Considering the three cases (“Ocean”, “Coast” and “Continent”), the ratio of DMS 

nighttime to daytime oxidation is larger for the continental air mass than coastal air mass, which 

in turn is larger than the open ocean air mass. That result is consistent with previous reports in 

that air masses more influenced by continental sources contain more NOx pollution (Stark et al., 

2007; Osthoff et al., 2009). However, this result is also unique because here direct DMS 

measurements and back trajectories are used to arrive at this conclusion.  

 

Table 3.2 Average oxidation rate of DMS during nighttime to that during daytime and the ratio 

between the two over different periods (four stations and three cases). 

Oxidation Overall Station II Station III Station IV Station V 

 
 
“Ocean” 

 
 
“Coast” 

 
 
“Continent” 

Unit: pptv hr-1 
Day and night    146±117 39±40 105±68 150±61 220±84 200±108 103±51 207±100 
Nighttime 130±116 26±15 32±19 89±23 219±105 160±118 111±53 219±123 
Daytime 153±117 45±46 123±64 164±59 221±75 210±103 101±50 200±84 

Night-to-day 
ratio 0.85±0.76 0.57±0.33 0.26±0.16 0.54±0.14 0.99±0.48 0.76±0.56 1.09±0.53 1.09±0.62 

Note: The standard deviation of night-to-day ratio is calculated by the dividing the standard deviation of 

nighttime oxidation rate by the average of daytime oxidation rate. 

 

Referring to the CN and CCN concentrations shown in Table 3.1, it can be seen that 

overall aerosol and CCN concentrations are similar during day and night. We note that daytime 
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aerosol and CCN concentrations are higher than those during nighttime for the open ocean air 

mass, possibly indicating less oxidation and less particulate products during nighttime than 

during daytime. For the coastal air mass, CCN concentrations are slightly higher during night 

than during day, with CN concentration in the opposite trend. Furthermore, CN and CCN 

concentrations during nighttime are either larger than or similar to those during daytime for the 

continental air mass. These results are also consistent with the fact that continental air mass 

bringing more oxidants (especially NOx) to MBL than coastal air mass and further more than the 

open ocean air mass. For the case of “Ocean” segment which is the majority of all ocean open 

ocean air mass, the nighttime CN and CCN are less populous than those of daytime, consistent 

with the smaller oxidation rates during nighttime than during time for the same segment as 

shown in Table 3.2. Therefore, the calculation of oxidation rates has verified with the observed 

CCN concentrations concerning the influences of anthropogenic activities on marine aerosol. 

3.3.4 Contribution of condensational growth to CCN activation 

Condensational growth of DMS oxidation products may change the cloud activation 

potential of the aerosol population.  To investigate their potential influence, the CCN activation 

ratio (CCN/CN) at five SS levels and critical supersaturation are plotted against atmospheric 

DMS concentration as shown in Figure 3.8. Data for air masses influenced by continental and 

coastal regions are included because condensational growth may modify all types of aerosols. 

The data points with DMS higher than 1000 pptv all occurred during the “Ocean” segment. 

These data will be further discussed in the nucleation event section following this section. The 

data fall into a triangular shaped pattern (when DMS is lower than 1000 pptv) of the scatter plots 

of CCN/CN ratios (Figure 3.8a-e) against DMS indicated the nonlinear response of CCN 

activation to increasing DMS. For a chosen DMS level, the activation ratio at an SS level can be 
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variable and at least higher than a level bounded by the hypotenuse of the triangle. The variation 

is believed to be due to variation in both nucleation and condensational growth.  

 

 

Figure 3.8 Scattered plots of cloud activation ability of aerosol against atmospheric DMS 

concentration. Panels (a-e) show the CCN/CN activation ratios at five supersaturation (SS) levels 

against DMS, while panel (f) shows the derived (operational) critical SS against DMS. Color bar 

shows the total CN concentration which is capped at 1000 cm
-3

. The black lines are the least-

squares linear regressions and the correlation coefficients of each plot are shown in the plots. 

 

Figure 3.8f presents the Scrit against DMS level, which is a one-parameter indicator for 

cloud nucleation ability as introduced in the calibration section. Under high DMS conditions, 

aerosols have improved cloud nucleation abilities (signified by small Scrit). However, this trend is 

clearer when the DMS is lower than 1000 pptv. If DMS is higher than that, MBL nucleation 

might be easily achievable. When nucleation events in MBL are triggered, the CCN/CN 

activation ratio could become significantly lower because the bursts of nucleation mode (3-25 
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nm) particles are available, as shown by the CN and CCN at high SS levels in Figure 3.5a and 

Table 3.1. But with proper condensational growth, the effective CCN under these high DMS 

conditions are efficiently enhanced compared with other conditions. 

Low volatility vapors responsible for condensation and those for nucleation could be 

different, but those for condensational growth are mainly derived from DMS (or SO2) oxidation 

(Kulmala et al., 2004b). Also, the condensational growth rate of particles by vapors is similar in 

various environments since large vapor sources are usually accompanied by large condensational 

sinks (Kulmala et al., 2005). Therefore, it is not straightforward to view the influence of DMS 

amount on condensational growth of particles from Figure 3.8.  

There are occasions that nucleation mode particle concentrations (majority of total 

aerosol concentration) are very high when DMS is both low and high. When DMS is high, the 

high CN concentration can be resultant from nucleation events. When DMS is very low, the high 

CN concentration can be transported from elsewhere, e.g. continental sources. In terms of the 

cloud nucleation ability, when DMS is very high, the activation ratios are usually low when 

nucleation mode particle concentration is too high, which suggests than condensational vapors 

are relatively insufficient or the condensational growth is relatively slower. The newly formed 

particles will need several hours to grow into sizes which can be counted as a CCN at the SS 

levels which we adopted in measurements (Kulmala et al., 2004a). So the activation of aerosol is 

still limited by time during the nucleation event even though there are enough condensational 

vapors. However, when DMS is low, the low activation at low DMS concentration could be 

simply due to lack of condensing vapors. Therefore, the low activation ratios in different 

conditions are due to different reasons. 
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Under high DMS conditions, one of the evidences of new nucleation events is the 

relative abundance of nucleation mode particles, which is embodied in the CN concentration 

since nucleation mode particles usually dominate CN numbers. In nucleation events, a higher 

fraction of the aerosol population is present as nucleation mode particles relative to non-

nucleation time periods (Kulmala et al., 2004b; Ahlm et al., 2012). Hypothetically, the activation 

ratio of the aerosol will be increased by condensational growth and coagulation of small particles 

as aerosol transported along.  The results shown in Figure 3.8 also verified that nucleation and 

condensation are not a coupled phenomenon (Kulmala et al., 2001). 

The difference between new nucleation events and that after apparent growth under high 

DMS conditions is the relative abundance of nucleation mode particles, which is embodied in the 

CN concentration since nucleation mode particles usually dominate CN numbers. In the former 

case there should be a much higher concentration of nucleation mode particles than the latter 

since it has been grown to larger sizes or lost during coalescence with other particles during the 

process of evolution (Kulmala et al., 2004b; Ahlm et al., 2012). There is a good chance for the 

activation ratio of the aerosol to be enhanced along the route of transportation by condensational 

growth and coagulation between small particles. It is then true that higher DMS concentration 

will increase CCN unambiguously even though the CCN/CN could be low due to the happening 

of in situ nucleation.  

3.3.5 Case study: extremely high DMS and CCN 

As introduced in the introduction, nucleation in MBL could happen when DMS is higher 

than 400 pptv and the total aerosol surface area is lower than 60 μm
2
 cm

-3
 (Pirjola et al., 2000). 

The total aerosol surface area measured by PAS (0.3 to 20 micron in aerodynamic diameter) is 

presented together with aerosol concentration in in the supplementary materials, Figure 3.17. 
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During the “Ocean” segment the total aerosol surface area is low (<10 μm
2
 cm

-3
), which is a 

favorable condition for nucleation to happen. However, not all segments with low aerosol 

surface area have initiated such nucleation events, perhaps due to the low DMS concentrations 

observed along these segments. Since the “Ocean” segment is accompanied by both high DMS 

(more than 80% measurements are higher than 400 pptv) and low aerosol surface, it is 

worthwhile to take a deeper look at periods of high CN and CCNs to evaluate what is the most 

possible mechanism to lead to these enhancements. Multiple nucleation mechanisms, including 

classical binary nucleation of H2SO4-H2O (Doyle 1961), ternary nucleation of H2SO4-H2O-

ammonia /amine /organics (Kulmala et al., 2004a), ion-mediated nucleation of H2SO4-H2O (Yu 

and Turco, 2000), iodine-enhanced nucleation (McFiggans et al., 2010), kinetic nucleation of 

H2SO4 and organic vapor(s) (Karl et al., 2012), as well as nanogel emission (Karl et al., 2013), 

have all been suggested to be responsible for new particle formation observed in ambient 

atmosphere at different locations.  Suggested mechanisms vary with locations of these studies 

including the free troposphere (FT) (Clarke 1993; Weber et al., 1999, 2001), marine boundary 

layer (MBL) (Covert et al., 1992; Hoppel et al., 1994; Clarke et al., 1998a), arctic polar areas 

(Pirjola et al., 1998; Chang et al., 2011; Karl et al., 2012, 2013), coastal sites (O’Dowd et al., 

1999; McFiggans et al., 2010), heavily polluted locations (Kerminen et al., 1996; Zheng et al., 

2011), and boreal forest regions (Makela et al., 1997; Kulmala et al., 1998). 
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Figure 3.9 Various measurements for nucleation events during the segment with high DMS, 

including the special “Ocean” segment which has the least continental influence. Panel a) shows 

particle concentrations and short wave radiation levels; Panel b) shows DMS concentrations in 

both atmosphere and seawater; panel c) shows relative wind direction (an indication to preclude 

ship contamination) and the calculated condensation sink capped at 0.016 s
-1

. 

 

In Figure 3.9 aerosol and CCN concentrations, DMS levels, as well as radiation and 

aerosol condensation sinks for the segment with significantly enhanced DMS are shown. 

Constantly high CN and CCNs occur when the DMS is high. In Figure 3.9a, CN and CCN 

concentrations coinciding with the DMS bloom were shown, including both the “Ocean” case 

segment and a period following it. It is noticeable that during the “Ocean” segment the particle 

concentrations are generally more stable and higher than any other segments. The atmospheric 

DMS concentration peaks around 12 pm of July 7
th
 (UTC), which is in the early morning. A 

peak in aerosol concentration and coincident shallower peaks in CCN concentrations occurred 3-

4 hours later than the DMS peak. The trough of CN and CCNs that happened before 22:00 of 

July 6
th
 was coincident with the DMS trough and the sunset, a time frame for lower oxidant 

concentration (Stark et al., 2007). This significant lowering of both CN and CCNs can possibly 
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be ascribed to the drop of DMS oxidation products, i.e. the vapors for condensation and 

nucleation, though the offset in timing makes this conclusion uncertain. In summary, significant 

enhancement of CN and CCNs occur when the DMS is high. 

The original criterion for filtering the data for stack contamination was 90 to 270° 

relative wind speed, based on previous studies (Deng et al. 2013a). If we put a more stringent 

criterion on the stack contamination (e.g. exclude data when relative wind direction is between 

60° and 300°), then many peaks of CN concentration during this segment disappeared. So, we 

chose not to treat the CN peaks from 1:00 to 8:00 of July 7
th
 as newly formed particles. Then the 

peaks at the morning and afternoon of July 7
th
 happened concurrently with high DMS 

concentration and moderate solar radiation, which is also part of the reason for the presence of 

the highest DMS (over 1800 pptv) detected during the cruise. Five hours after the highest DMS 

peak, there is a period of DMS trough accompanied by decreasing solar radiation, the aerosol 

and CCN concentrations also dropped several hours later than DMS. 

The condensational sink was low during the whole segment in Figure 3.9 except the 

parts influenced by nucleation episodes and continental air mass. The peaks of condensation sink 

during nucleation episode proved the statement from Kulmala et al. (2005) that large vapor 

sources are usually accompanied by large condensational sinks. 

The beginning segment marked by blue bold line (marked by “Ocean” in Figure 3.5a) 

could be influenced by both nucleation and condensational growth. Loss of particles possibly 

due to either reduced nucleation or increased coagulation happened at the sunset when OH 

production is switched off and NO3 concentration is still low. None of the observed nucleation 

episodes happened during nighttime. Note that our earlier conclusion showed that DMS 

oxidation rate during nighttime (prodominantly by NO3) was at most 85% of that during daytime 
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(predominantly by OH+Cl) in the whole cruise and 76% in the “Ocean” segment. Therefore, a 

seemingly small difference at oxidation rates could make a big difference in nucleation results. 

DMS and aerosol and CCN data collected during Bloomcruise may result from both 

nucleation and condensational grwoth mechanism, although we have no way to determine the 

contribution  from each, based on the available data. An alternative way to explain is to evaluate 

whether or not the H2SO4 mass evolved from DMS oxidation could explain the measured aerosol 

mass after treating all nucleation and condensation vapors as H2SO4 (as a surrogate). There are 

two steps to do this. The first step is to utilize the empirical relationship between gaseous phase 

concentration of H2SO4 and DMS to evaluate if gaseous H2SO4 concentration is adequate to 

sustain a critical nuceation rate. The second step is to evaulate if the calculated oxidant amount is 

sufficient to explain particle growth based on the oxidation rates derived in section 3.3.2. 

Mikkonen et al. (2011) reported a statisical relationship between gaseous H2SO4 and SO2 

concentrations: 

[     ]                         [   ]
                                                      (3.8) 

where k is a temperature dependent reaction constant and ranges from 0.8959 to 1.1740, 

Irradiance is the short wave irradiance (W m
-2

), CS is condensational sink, and RH is relative 

humidity (%). 

Condensation sink can be calculated based on Mikkonen et al. (2011): 

      ∫              
 

 
       ∑                                                                    (3.9) 

where D is the diffusional coefficient (0.1 cm
2
 s

-1
), βM is a transitional correction factor and can 

be expressed as: 
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                                                                                               (3.10)  

where α is the sticking coefficient (≈1), Kn is the Knudsen number which can be expressed as: 

   
  

 
                                                                                                                                      (3.11) 

where r is particle size (radius), λυ is the mean free path of vapor molecules (sulfuric acid 

molecules) and is expressed as: 

     √
   

   
                                                                                                                                         (3.12)  

where D is the diffusional coefficient as used in Eq. (3.9),    is the molecular mass of sulfuric 

acid vapor, k is the Boltzmann constant, and T is the temperature in Kelvin. 

To establish a scheme from DMS to H2SO4, a scheme from DMS to SO2 should be first 

established. SO2 yield from consumed DMS was reported to increase with increasing 

temperature within the range of 84.3%-99% under the temperature of 284 K to 306 K based on 

laboratory studies (Arsene et al., 1999). Barnes et al. (1996) reported a SO2 yield of about 70% 

in chamber studies under low NOx conditions, similar to the yields obtained in several field 

projects (Putaud et al., 1992; Bandy et al., 1996). Since the yield of SO2 from DMS oxidation is 

stable, the variations of DMS and SO2 will be anti-phased if DMS production is constant. Sciare 

et al. (2001) reported the ratio of DMS to SO2 within a range of 0.08-0.59 (mean 0.23±0.17) at 

Amsterdam Island during January of 1998.  De Bruyn et al. (1998) reported an observed average 

ratio between DMS and SO2 at 13±9 and a modeled DMS to SO2 conversion efficiency of 30%-

50% over the oceans southeast of Austrialia in November and December of 1995. The same 

group later also reported a similar measured mixing ratios of DMS relative to SO2 and modeled 
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DMS to SO2 yield of 85% at Oahu, Hawayii during April and May of 2000 (De Bruyn et al., 

2006). Bandy et al. (1996) reported that 62% of DMS was converted to SO2 in Christmas islands 

during July and August of 1994. Other studies reported DMS-to-SO2 conversion efficiency of 

60-73% as well (Gray et al., 2011; Bandy et al., 2011). Ayers et al. (1997) reported the average 

summer time SO2 to DMS ratio of 0.1 at Cape Grim, compared to a value of 0.2 reported by 

Putaud et al. (1992). Putaud et al. (1993) also reported a regressed relationship of [SO2] = 

0.3*[DMS] + 0.2 when expressed in nmol m
-3

 (1 nmol m
-3

 corresponds to 22.4 pptv at standard 

temperature and pressure).  Since the precise time series data of DMS oxidation rate is lacking, 

we choose to assume a reasonably higher limit ratio for SO2/DMS in pptv: 

[   ]      [   ]  + 10                                                                                                        (3.13) 

Combining Eqs. (3.8) to (3.13) and assigning unity to k, we can get: 

[     ]                            [   ]                                        (3.14)  

Eq. (3.14) predicts daytime generation of sulfuric acid. However, multiple ambient 

phase measurement had shown that H2SO4 centration during nighttime is above the dection limit. 

The measurement showed the concentration at a magnitude of 10
6
 molecules cm

-3
 is achievable 

during night when OH is not expected to result from by ozone photolysis (Eisele and Tanner, 

1993; Zheng et al., 2011). The missing source of OH is beyond the scope of this research. 

Instead we set a lower limit of H2SO4 concentration at 10
6
 molecules cm

-3
. 

The calculated gas phase H2SO4 concentration can be compared with a critical 

concentration, which is defined by the concentration required to achieve a critical nucleation rate 

of 1 cm
-3

 s
-1

 by sulfuric acid vapors. The critical nucleation rate is the minium rate to witness a 
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nucleation event. The critical concentration is given empirically by Seinfeld and Pandis (2006) 

as: 

                                                in μg m
-3

                                         (3.15-a) 

Here T is air temperature in Kelvin. RH is relative humidity in fraction (0-1). To convert 

the unit of gas phase sulfuric concentration to molecules cm
-3

, Eq. (3.15-a) is transformed to: 

                                                 in molecules cm
-3

                      (3.15-b)       

Then we can compare the derived sulfuric acid concentration in gasous phase with the 

required concentration for a nucleation rate of 1 cm
-3

 s
-1

, shown in the supplementary material, 

Figure 3.18. From the figure we can notice that the calculated sulfuric acid based on DMS 

concentration during daytime is adequate for a significant nucleation, and insufficient during 

nighttime. Even though the estimate of sulfuric acid during nighttime is short of accuracy, we 

still find the result is consistent with our observation. In Figure 3.9 there are nucleation episodes 

happening during daytime but not during nighttime.  

Next, we estimate the growth rate of the existing particles based on the oxidation rate 

calculated in the previous section. The daytime and nighttime average oxidation rate of DMS 

during the “Ocean” segment is 0.05 pptv s
-1

 by referring to Table 3.2. The average particle 

diamater in this special segment is 88 nm assuming an inorganic chemical composition, which 

constitute good cloud nucleation ability. Assuming a sulfur molar yield of sulfuric acid from 

DMS oxidation at 1% (Chen and Jang, 2012), it will contribute to a growth rate of 2.2 nm hr
-1

 of 

the aerosol, within the typical range of growth rate of 1-20 nm hr
-1

 for nucleation events 

(Kulmala et al., 2004a). One caveat is that this calcuation does not include the surface of 
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supermicrometer particles lost in the sampling process, which could be a major sink of 

condensable vapors and is comparable or even larger than that of the submicron particles.  

Therefore, during the “Ocean” segment the amount of sulfuric acid derived from DMS 

concentration is sufficient to sustain  significant nucleation events even by the binary nucleation 

mechanism. Also, based on the calculated oxidation rate of DMS, the oxidation products can 

supply enough condensational vapors for aerosol to grow to effective CCN under achievable SS 

levels in the MBL. Thus, we regard this segment as a segment of nucleation which has due 

possibility of sulfuric acid-involved nucleation, and sure probability of consensational growth.  

It should be noted that the contribution of marine primary organics, especially 

biologically derived nanogels which may contribute significantly to atmospheric aerosol number 

concentrations (Karl et al., 2012, 2013). As shown in Supplement Materials, Figure 3.12, 

seawater DMS is better correlated with CCN than atmospheric DMS with CCN (Figure 3.11.), 

possibly because seawater DMS could be a reasonable metric for those biologically derived 

organics (Bates et al., 2012; Gaston et al., 2011). 

To reiterate, the constant CCN enhancement in this section has lasted for multiple days 

and it may have a bigger importance than have been treated previously (as unimportant), 

especially during summer time when phytoplankton blooms are frequent.  

3.3.6 Influence of meteorological parameters on CN and CCN 

To evaluate relationships between main meteorological parameters (pressure and wind 

speed) and the aerosol concentration (CN), we plot wind speed, sea surface pressure and CN 

concentration against each other in 27 min averages, as shown in Figure 3.10. From Figure 3.10a 

and 10b we can verify that wind speed and sea surface pressure are generally correlated 
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negatively, which is taken as a common meteorological rule to evaluate weather conditions 

based on pressure contour plots. It is noticeable from Figure 3.5 that CN and CCN 

concentrations dropped dramatically when both pressure and wind speed (refer to Figure 3.6a for 

wind speed) are low during “Station III”. However, in this segment the minor peaks of particle 

concentrations are not concurrent with pressure peak but with small peaks of atmospheric DMS. 

By comparing Figure 3.5a with 3.5c, we can see the similar trend of sea surface pressure and CN 

concentration which are more pronounced during the segments marked with “pressure change”. 

Therefore the scatter plot in Figure 3.10c indicates that there is a coarse proportionality between 

the logarithmic value of CN concentration and sea surface pressure. 

 

 

Figure 3.10 Relationship between sea surface pressure and wind speed and the correlation of 

them with CN in log scale during significant pressure change periods. a) shows the correlation 

between wind speed and pressure in 27-minute averages; b) shows the same correlations with 

data pairs binned into 10 ranges based on gradually increasing pressure values; c) shows CN in 

log scale in correlation with pressure during obvious pressure change period; d) shows CN in log 

scale in correlation with wind speed during obvious pressure change period. In c) and d), red 

color shows pressure increasing and blue shows decreasing. 
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The reason of the correlation could be interpreted by the vertical movement of air 

masses signified by sea surface pressure, as Katoshevski et al. (1999) reported that entrainment 

of air from free troposphere was found to be indicative for aerosol number concentration. When 

sea surface pressure is high there must be more air sinking from upper atmosphere to surface 

layer than air ventilated from surface layer to upper atmosphere, and vice versa. There are plenty 

of evidences that ultrafine particle concentration in upper troposphere is much higher (orders of 

magnitude) than surface layer over global oceans (Clarke 1993; Spracklen et al., 2005; Mann et 

al., 2012). Friedlander (1977) proposed the self-preserving theory of ultrafine particles in upper 

troposphere resulting from new particle formation by binary homogeneous nucleation and a 

balance between coagulation and nucleation. There are measurements showing that the ultrafine 

CN concentration in free troposphere is not constant though (Peter et al., 2010). Nevertheless, 

even though the CN concentration in free troposphere cannot be treated as constant, there is still 

a good chance for CN to be signified by the pressure level since it is significantly higher in UT 

than in MBL.  However, the influence of vertical movement to marine CN and CCNs relative to 

that of continental transport is not evaluated quantitatively here due to lack of data.  Qualitatively, 

vertical downward entrainment tends to increase CCN as shown in Figure 3.5, whereas transport 

from continental sources tends to decrease CCN as analyzed in section 3.3.2. 

3.4 Conclusions 

Aerosol and CCN concentrations under a wide range of conditions, including extremely 

high DMS levels (1800 pptv), were measured during the Bloomcruise research.Our data show 

that, atmospheric aerosol in the North Atlantic were signicantly influenced by continental air 

mass, even over remote regions. The average aerosol number concentration influenced by 

continental air mass was 115% higher than pristine marine aerosols, while that by coastal air 
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mass has an enhancement of 44% compared with pristine air. On the contrary, in continental and 

coastal air masses, CCN concentrations are decreased by 18% and 19% compared with open 

ocean air mass, at the SS level of 0.15%, a SS level typical of marine stratiform clouds. While 

total aerosol concentrations for continental air mass are elevated due to continental polluation, 

the number of aersosol capabile of forming cloud drops is not nesseaily increased and in some 

instances, is lower than open ocean air mass. Esimated oxidation rates based on measured DMS 

concentrations illustrated influence of anthropogenic acitivities on marine atmosphere. Overall, 

the oxidation rate of DMS during nighttime is 85% of that during daytime. Therefore, 

continental or anthropogenic sources generally provide aerosols of decreased cloud activation 

potential in MBL over the North Atlantic Ocean during summer. 

In the Bloomcuirse research which is the first to report the aerosol and CCN 

concentration during such a high DMS level as 1800 pptv. The highest DMS was observed when 

the atmospehre is not influenced by continental air mass. In the two-day sustained nucleation 

event, we estimated that the sulfuric acid concentration derived from  DMS concentration was 

adequate to explain the observed particle concentration due to nucleation. Therefore, the 

importance of contributions from marine biota to atmospheric aerosols are significant, at least 

over the North Atlantic and during summer season when phytoplankton blooms are frequent.  

In addition, our measurements indicate that meteorological parameters play an important 

role in the modificaiton of cloud nucleation ability of marine aerosols. Increases in sea surface 

pressure may correspond to downward vertical air movement which bring increases in total 

aerosol concentrations due to the much higher nucleation mode particle concentration in UT than 

in MBL.  
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3.5 Supplementary materials 

 

 

Figure 3.11 Condensation nuclei (CN, or total aerosol) and cloud condensation nuclei (CCN) at 

five supersaturation levels plotted against atmospheric DMS concentration for data pairs when 

air masses stayed over the open ocean during the past 48-hr. Black straight lines are least-squares 

fit between data pairs and R value is correlation coefficient. Extremely high CN and CCN (1.2%) 

concentrations are due to nucleation episodes and are capped at 2000 and 1000 cm
-3

 respectively. 

Dashed lines in panel a) are imagined linear fit for different DMS ranges. Data pairs when CN is 

larger than 1000 cm
-3

 are excluded from linear regression. 

 

Table 3.3 Correlation coefficients between particle concentrations and atmospheric DMS 

concentration under three air mass scenarios. 

particle 

concentrations 

open ocean air 

mass 

coastal air mass continental air 

mass 

all air masses 

Aerosol (CN) 0.51 0.18 -0.27 0.14 
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Table 3.3 Continued 

CCN (1.2%) 0.46 0.30 -0.27 0.23 

CCN (0.9%) 0.44 0.32 -0.21 0.25 

CCN (0.5%) 0.44 0.30 -0.04 0.30 

CCN (0.25%) 0.39 0.31 -0.07 0.29 

CCN (0.15%) 0.44 0.28 -0.05 0.36 

 

 

 

Figure 3.12 Condensation nuclei (CN, or total aerosol) and cloud condensation nuclei (CCN) at 

five supersaturation levels plotted against seawater DMS concentration when air masses stayed 

over the open ocean during the past 48-hr. Black straight lines are least-squares fit between data 

pairs and R value is correlation coefficients. Extremely high CN and CCN (1.2%) concentrations 

are due to nucleation episodes and are capped at 2000 and 1000 cm
-3

 respectively. Data pairs 

when CN is larger than 1000 cm
-3

 are excluded from linear regression. 
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Table 3.4 Correlation coefficients between particle concentrations and seawater DMS 

concentration under three air mass scenarios. 

particle 

concentrations 

open ocean air 

mass 

coastal air mass continental air 

mass 

all air masses 

Aerosol (CN) 0.53 0.23 -0.19 0.18 

CCN (1.2%) 0.55 0.41 -0.01 0.34 

CCN (0.9%) 0.54 0.45 -0.02 0.36 

CCN (0.5%) 0.54 0.46 -0.01 0.39 

CCN (0.25%) 0.50 0.44 -0.06 0.37 

CCN (0.15%) 0.57 0.40 -0.10 0.44 

 

 

 

Figure 3.13 Scatter plot of CN (or CCNs) against DMS flux for the pristine marine air masses 

(DMS flux is calculated based on the scheme proposed by Goddijn-Murphy et al. (2012)). 

0 20 40 60
0

500

1000

1500

2000

R = 0.39

Y = 5.90 * X + 324.53

a)

C
N

 C
o

n
c
e
n

tr
a

ti
o

n
 (

c
m

-3
)

0 20 40 60
0

500

1000

R = 0.36

Y = 3.55 * X + 211.55

b)

C
C

N
 (

1
.2

%
) 

C
o

n
c
. 

(c
m

-3
)

0 20 40 60
0

200

400

600

800

R = 0.33

Y = 3.39 * X + 201.57

c)

C
C

N
 (

0
.9

%
) 

C
o

n
c
. 

(c
m

-3
)

0 20 40 60
0

200

400

600

R = 0.32

Y = 2.94 * X + 171.38

d)

DMS flux (  mol m
-2

 day
-1

)

C
C

N
 (

0
.5

%
) 

C
o

n
c
. 

(c
m

-3
)

0 20 40 60
0

200

400

600

R = 0.30

Y = 2.19 * X + 132.66

e)

DMS flux (  mol m
-2

 day
-1

)

C
C

N
 (

0
.2

5
%

) 
C

o
n

c
. 

(c
m

-3
)

0 20 40 60
0

200

400

600

R = 0.36

Y = 2.20 * X + 104.66

f)

DMS flux (  mol m
-2

 day
-1

)

C
C

N
 (

0
.1

5
%

) 
C

o
n

c
. 

(c
m

-3
)



 
 

94 

 

Table 3.5 Correlation coefficients between particle concentrations and DMS sea-to-air flux 

under three air mass scenarios. 

particle 

concentrations 

open ocean air 

mass 

coastal air mass continental air 

mass 

all air masses 

Aerosol (CN) 0.39 0.23 -0.23 0.15 

CCN (1.2%) 0.36 0.45 -0.16 0.21 

CCN (0.9%) 0.33 0.45 -0.22 0.18 

CCN (0.5%) 0.32 0.40 -0.23 0.17 

CCN (0.25%) 0.30 0.37 -0.23 0.16 

CCN (0.15%) 0.36 0.35 -0.25 0.20 

 

 

 

Figure 3.14 Scatter plot of CN (and CCNs) against ship-aboard fluorometer measured 

chlorophyll a for the open ocean air mass. 
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Table 3.6 Correlation coefficients between particle concentrations and fluorometer measured 

chlorophyll a concentration under three air mass scenarios. 

particle 

concentrations 

open ocean air 

mass 

coastal air mass continental air 

mass 

all air masses 

Aerosol (CN) 0.02 0.23 0.31 0.24 

CCN (1.2%) 0.05 0.54 0.34 0.30 

CCN (0.9%) 0.04 0.55 0.23 0.25 

CCN (0.5%) 0.06 0.51 0.07 0.19 

CCN (0.25%) 0.05 0.47 -0.12 0.11 

CCN (0.15%) 0.14 0.45 -0.26 0.07 

 

 

 

Figure 3.15 Correlation of Chlorophyll a and DMS concentrations. Ship Chl-a is calculated 

from ship-board fluorometer reading. Satellite Chl-a (Sat. Chl-a) is retrieved from MODIS 

satellite. Scattered open circles are measurements and lines are fitted linear relationship. 

Correlations coefficients are shown in the plot. Values are averages of 27 min required for a 

CCN cycle measurement. 
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Table 3.7 Correlation coefficients between chlorophyll a (Chl-a) and DMS. 

 Ship Chl-a Sat. Chl-a Ship Chl-a × 

Irradiance 

Sat. Chl-a × 

Irradiance 

Atm. DMS 0.26 -0.09 0.12 -0.06 

SW DMS 0.45 0.18 0.19 0.05 

 

 

 

Figure 3.16 Scatter plot of CN (or CCNs) against MODIS retrieved Chl-a for the open ocean air 

mass. 
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Figure 3.17 Observed PAS derived aerosol surface area (0.3 – 20 micron) in comparison with 

measured CN and CCNs concentration. 

 

 

Figure 3.18 Comparison of supply sulfuric acid concentration and the concentration required for 

a significant nucleation to occur. 
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4. AN ANALYSIS OF SMALL SEA SPRAY PARTICLE PRODUCTION OVER THE 

NORTH ATLANTIC OCEAN 

 

4.1 Introduction 

Constraining marine aerosol concentration is vital for understanding the direct and 

indirect effects of aerosol on the global climate since ocean covers over 70% of the earth surface 

(Bigg 2007). Marine aerosols in the marine boundary layer (MBL) over pristine oceanic areas 

comprise mainly of sea salts, primary organic aerosols with biological origins, as well as the 

non-sea-salt (nss-) sulfate derived from phytoplankton-excreted DMS (Charlson et al., 1987; 

Lewis and Schwartz, 2004).  

The production flux of SSA is usually parameterized by wind speed at 10 m above sea 

level and is termed as its source function or production flux (Lewis and Schwartz, 2004; 

Martensson et al., 2003). The production flux of SSA can be parameterized in terms of its 

number, surface area, volume, as well as its mass (de Leeuw et al., 2011). One of the earliest and 

most commonly used source (or flux) functions of sea salt aerosol is proposed by Monahan and 

colleagues (Monahan and Muircheartaigh, 1980; Monahan et al., 1986). Monahan and fitted the 

relationship of whitecap (white areas of the sea surface resulting from breaking waves) coverage 

and wind speed at the power law relationship of Wcap=3.84×10
-6

 U10
3.41

 (Monahan and 

Muircheartaigh, 1980). The source function of sea salt aerosol per whitecap area is usually 

determined in laboratory and assumed to be independent of wind speed (Lewis and Schwartz, 

2004; de Leeuw et al., 2011). Monahan et al. (1986) incorporated the laboratory results of 

aerosol flux versus whitecap area and field data fitting of whitecap coverage versus wind speed 

and obtained the source function as Eq. (4.1):  
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 ]}             (4.1) 

This source function is applicable for particles of radius at 80% RH from 0.8 μm to 8 μm. 

In addition to the whitecap method, other methods can also be used to derive the  SSA source 

function, including steady state dry deposition method, concentration buildup method, statistical 

wet deposition method, micrometeorological method, bubble method, along-wind flux method, 

direct observation method, etc. (Lewis and Schwartz, 2004; de Leeuw et al., 2011). Exponential 

dependence on wind speed was also obtained by these methods during source function derivation 

(Petelski 2005; de Leeuw et al., 2011). 

It is widely accepted that SSA comprised the majority of the marine aerosol mass due to 

the dominance of coarse particles in mass and its undeniable source function in coarse size mode 

(Bates et al., 2006; Prather et al., 2013). Source functions of SSA mass or volume has been 

parameterized with wind speed at 10 m height as power law or exponential relationships within 

an uncertainty of two orders of magnitude due to the different dependence on wind and the 

different upper size cut (Monahan et al., 1986; Lewis and Schwartz, 2004; de Leeuw et al., 2011). 

Furthermore, the number source function of SSA is subjected to even larger uncertainties 

because SSA number concentration is dominated by small particles which may be composed of 

many constituents other than sea salt (Geever et al., 2005). In fact, presence of sea salt particles 

smaller than 200 nm in marine atmosphere is still debatable (Clarke et al., 2006; Bigg 2007). 

Bigg (2007) contended that essentially no sea salt particles smaller than 200 nm are existent in 

MBL, while others reported that significant fluxes of sea salt particles down to 10 nm were 

detected (O’Dowd and Smith, 1993; Nilsson et al., 2001; Geever et al., 2005; Clarke et al., 2006; 

O’Dowd et al., 2008). One distinction is that those submicrometer SSA fluxes were detected at a 

fixed station rather than during a cruise, making it not universally convincing. Recent researches 
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have detected NaCl from SSA generated from real seawater in an experimental system 

simulating the ambient wave processes but excluding possible terrestrial contamination (Prather 

et al., 2013; Ault et al., 2013). The same groups also verified that the presence of NaCl in SSA 

smaller than 200 nm and that organic species in SSA has an increasing contribution with 

decreasing sizes, which is consistent with the findings of previous studies (O’Dowd et al., 2004; 

Keene et al., 2007). Tiny particles are very important for cloud formation and climate (Russell 

and Singh, 2006). Given all the complexities in aerosol properties and source functions, there is 

urgent need of further theoretical and experimental investigations to unveil the chemical 

composition and mixing state of SSA smaller than 200 nm. 

The uncertain source function of sea salt particles smaller than 200 nm causes 

uncertainties in assessing both the direct aerosol radiative forcing (Kahn 2012) and the indirect 

aerosol radiative forcing (Ma et al., 2008). However, both the magnitude (negative) and the 

uncertainty of indirect forcing due to sea salt aerosols are much larger than their direct forcing 

(Satheesh and Moorthy, 2005).  In addition, the total aerosol forcing due to sea salt particles is 

much larger in both magnitude (negative) and uncertainty than anthropogenic aerosols (Satheesh 

and Moorthy, 2005; IPCC 2007). Therefore, the chance to narrow the gap in understanding the 

total aerosol forcing lies well in quantitatively understanding the indirect effect of sea salt 

aerosols.  Size-resolved hygroscopicity of pure NaCl is known unambiguously. Hence, its ability 

of serving as cloud condensation nuclei (CCN) can be well quantified. However, the 

composition of SSA is unknown. Therefore, the uncertainty of sea salt aerosol’s indirect effect 

originates from its size-resolved and composition-dependent source function, as well as the 

poorly understood physical processes that regulate cloud droplet numbers (Ma et al., 2008).  
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An additional difficulty arises from complex nature of organic species which contribute 

to differences in aerosol properties including CCN activation potential. In addition, the 

likelihood of particles to act as sites for heterogeneous oxidation of trace gases depends, in part, 

on their compositions and uptake coefficients (Quinn et al., 2002; Bigg 2007). An array of 

organic species have been found in sea spray aerosols with various solubilities and 

hygroscopicities (O’Dowd et al., 2004; Bigg and Leck, 2008; Deng et al., 2013a). Some organics 

(especially gel-like organics) can serve as CCN by themselves (Leck and Bigg, 2005a, b, 2007), 

while others are water insoluble and reduce the cloud nucleation ability of SSA by reducing its 

hygroscopicity (Wex et al., 2010b; Fuentes et al., 2011). Variation in mixing states of sea salts 

and organics is also a large barrier in evaluating the indirect effect of sea spray aerosols (Gaston 

et al., 2011; Ault et al., 2013).  

Previous SSA source functions all have an important restriction of only applicable to 

particles larger than 0.5 μm in dry diameter, with most of them only applicable to 1.0 μm 

(Martensson et al., 2003; de Leeuw et al., 2011). Martensson et al. (2003) measured fluxes for 

particles with sizes down to 20 nm by bubbling simulated seawater using a sintered glass filter in 

laboratory. More recently, Fuentes et al. (2010) extended the primary particle (number) source 

function down to 3 nm with the differentiation of phytoplankton levels in the water which is used 

to generate particles. However, the extended lab-generated source functions were proved to have 

overestimated the real world source flux significantly (Ovadnevaite et al., 2012). Therefore, 

models (Spracklen et al., 2007; Pierce and Adams, 2006) using the Martensson et al. (2003) and 

Gong (2003) source functions have overestimated the contribution of SSA to marine aerosol 

number concentration. Regardless of the various source functions, if SSA smaller than 200 nm 

dominates the number concentration of marine aerosol in the same size range, a positive 

correlation should exist between wind speed and total aerosol number concentration.  
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The extent to which sea spray aerosol contributes to marine CCN has been studies for 

over 130 years and no conclusive implication has been derived (Aitken 1880; Kohler 1936). 

Here we do an analysis based on our measured data to shed a little light on the above mentioned 

enigmatic question. 

4.2 Experimental section 

4.2.1 CCN and CN measurement 

The purpose of this chapter was to understand the relationship of aerosol concentrations 

and meteorological parameters. The details of the Bloomcruise were elaborated in the previous 

chapter and only necessary details are repeated here. CCN number concentrations were 

measured at five SS levels in rotation by a CCN counter (DMT technologies) continuously. The 

five SS levels of 1.2%, 0.9%, 0.5%, 0.25% and 0.15% were allowed 7 min, 5 min, 5 min, 5 min 

and 5 min respectively in a single cycle, constituting the whole cruise as a series of 27 min 

cycles in terms of CCN measurements. By bifurcating the main inlet after removing the excess 

humid by dryers and large particles by a cyclone impactor (remove particles larger than 1.5 

micron), CN (total particle from 4.5 nm to 3000 nm) measurement was made by a GRIMM CPC 

instrument, in parallel with CCN.  

Calibration of CCN and CPC instruments using lab-generated ammonium sulfate aerosol 

particles were carried out both before and after the cruise. Details of the calibration were 

presented in the previous chapter. 
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4.2.2 Approximation of particle size derived from CCN measurement 

Cloud nucleation ability of soluble inorganic aerosol particles is well understood based 

on Köhler theory (Seinfeld and Pandis, 2006). For a species with known chemical composition, 

the critical SS at which 50% of the particle populations activate as CCN can be calculated for 

different dry particle sizes. For pure inorganic aerosol particles with mono-disperse size 

distribution, their activation at varying SS levels can be fitted with an accumulated Gaussian 

curve to compute the SS required for 50% activation. The details of those fittings were shown in 

the CCN and CN calibration in the previous chapter. Similarly, we can derive the critical dry 

diameter of inorganic aerosol particles with different mono-disperse sizes at which 50% of the 

particle population achieves activation at an SS level. Therefore, for single component aerosol, 

we can use the CCN concentration measured at an SS level to determine its critical dry particle 

diameter. For a single component aerosol with polydisperse size distribution, the CCN 

concentration measured at one SS level corresponds to the number concentration of particles 

larger than the critical dry diameter at that SS level. 

Sodium chloride (NaCl) is the main component of sea salt aerosols (Lewis and Schwartz, 

2004). Ammonium sulfate ((NH4)2SO4) is a common secondary aerosol species (Seinfeld and 

Pandis, 2006). Sulfuric acid (H2SO4) is the most important species for new particle formation 

resulting from oxidation products of DMS (Clarke et al., 1998b). Here we employ the highly 

idealized cases to examine differences in CCN activation of three hypothetical types of single 

component aerosol.  In the first case, we assume that all the marine aerosols encountered during 

Bloomcruise were composed of pure sodium chloride particles. In the second and third cases, we 

assume all particles were pure ammonium sulfate particles, and pure sulfuric acid particles, 
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respectively. In reality marine aerosol has much more complex composition and should not 

substitute those simplified sizes as its real size. 

In Table 4.1, we reported the results of the critical dry diameters of three inorganic 

aerosols (Row 2 to 4) at the five SS levels that we have adopted to measure CCN concentration. 

Therefore, each CCN concentration is labeled as number concentration of particles larger than its 

critical dry diameter. Also important to note is that the CPC instrument used in the measurement 

has a lower limit of 4.5 nm. In the last row of the table, the values assumed for a mixture of the 

three inorganic aerosols were reported. 

 

Table 4.1 Particle size (dry diameter) ranges of assumed inorganic aerosols detectable at 

measurements. 

        Meas. 

Species 

CN (by 

CPC) 

CCN 

(1.2%) 

CCN 

(0.9%) 

CCN 

(0.5%) 

CCN 

(0.25%) 

CCN 

(0.15%) 

NaCl >4.5 nm > 20 nm > 25 nm > 36 nm > 58 nm > 82 nm 

(NH4)2SO4 >4.5 nm > 26 nm > 32 nm > 48 nm > 75 nm > 105 nm 

H2SO4 >4.5 nm > 24 nm > 29 nm > 43 nm > 69 nm > 97 nm 

Assumed 

mixture 

>4.5 nm > 25 nm > 30 nm > 45 nm > 70 nm > 100 nm 

 

If marine ambient aerosol measured is a mixture of the above three species and the 

mixing ratios of each component were known, then the critical sizes of aerosol population 

measured by CCN counter would correspond to particles of the size shown in the last row. In 

reality, the addition of marine primary organic aerosol has complicated the problem (Prather et 

al., 2013). Multiple studies have showed only minor reduction in cloud nucleation ability of 
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primary inorganic aerosol per the addition of organic species unless the organic species are 

exudates from nanoplankton (Wex et al., 2010b; Fuentes et al., 2011). Therefore, the real critical 

diameter of ambient marine aerosol may differ a lot from that of the assumed mixture of three 

inorganic species as shown in the last row of Table 4.1. 

4.2.3 PAS measurement 

Meanwhile, particle size distribution for particles with aerodynamic diameter between 

0.3 and 20 micron were recorded every six seconds with 15 bins by a portable aerosol 

spectrometer (PAS) from GRIMM technologies.  

4.2.4 Shipboard measurements 

Shipboard measurement from meteorological sensors on different positions of the ships 

(main mast, forward mast port side and starboard side) were carried out continuously and data 

were recorded every minute. These parameters include air temperature (three sensors), 

barometric pressure (three sensors), shortwave irradiance (one sensor), rain intensity (two 

sensors) and rain accumulation (two sensors), wind speed and direction (three sensors). The 

values from different sensors were averaged for each meteorological parameter in this study for 

use. The navigation direction and speed of the ship were also logged to derive the true wind 

direction and speed based on the measured relative wind direction and speed. Sea surface 

temperature (two sensors) and salinity (two sensors) of seawater were measured by sensors 

located in the bow chamber outboard of the surface water pump. A fluorometer sensor was 

aboard the research vessel. The reading was used to derive chlorophyll a (Chl-a) concentration 

along the cruise track. 
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4.3 Results and discussion 

4.3.1 An overview of measurement results 

The overview of the variation of multiple measurements and parameters are presented in 

Figure 4.1. Figure 4.1a shows the particle concentrations in averages of 27 min. Figure 4.1b 

presents the variations of wind speed and rain intensity. Figure 4.1c reveals the change of sea 

surface pressure and chlorophyll a concentration derived from fluorometer reading. We note that 

unfortunately the most recent calibration of the fluorometer occurred two years before 

Bloomcruise. While absolute values are uncertain, the fluorometer does provide a measure of 

relative changes in the fluorometer measurements throughout the cruise, and an indication of the 

relative highs and lows in Chl-a conditions measured throughout the cruise. In general, particle 

concentrations did not vary in the same direction with wind speed. An exception occurs during 

the abrupt change in particle concentrations can be attributed in part to the wind speed during 

“Station III” and “Station V”. It is also interesting to notice that precipitation does not lower 

particle concentrations as expected. No simple correlation between particle concentrations and 

phytoplankton amount signified by Chl-a level is traceable in the figure.  

 



 
 

107 

 

 

Figure 4.1 Time series measurements during the cruise.  Panel a) shows the variation of 27 min 

averages of CN concentration and CCN concentrations at five different SS levels, as well as the 

total concentration from PAS. Bold line with blue, green and red colors in the panel show 

segments when their air masses passed through the open ocean, coasts, and continents in the past 

48 hours respectively; Panel b) shows variation of true wind speed and rain intensity. Segments 

marked by bold black lines and marked with segment numbers are the periods with no spatial 

variation; Panel c) shows the fluorometer-measured chlorophyll a concentration and shipboard 

barometric reading. The two segments marked with bold black line and marked underneath with 

“Pressure change” are the phases with apparent sea surface pressure change. 

 

4.3.2 Relationship between wind speed and particle concentration 

The correlational analyses between wind speed and particle concentrations with different 

sizes derived from various measurements are carried out in this section. Prior to making any 

correlation analysis, it is necessary to clarify relationships between the parameters used in 

previous literature and those measured by us during the cruise. It is the wind speed at a height of 

10 m above sea surface (referred to as U10) that has been widely used to parameterize SSA 

source functions, especially for field data (O’Dowd and Smith, 1993; Clarke et al., 2006; de 
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Leeuw et al., 2011). The wind speed in the marine boundary layer is only weakly dependent on 

measured height under neutrally stable conditions and the measurement uncertainty usually 

overwhelms the height dependence (Lewis and Schwartz, 2004). The deployed heights of wind 

sensors in the cruise are very close to the height of 10 m (within a range of ±2 m). Therefore, it 

is unambiguous that our measured wind speed is a valid surrogate for U10, adding to the 

confidence is the fact that the wind speed values we adopted are the averages of three sensors. So 

wind speed and U10 are used equivalently in this manuscript. 

In source function parameterization, the size of SSA is usually expressed as the radius of 

particles measured when the relative humidity (RH) is at 80%, expressed as r80 (Lewis and 

Schwartz, 2004). The RH at which SSA is formed at sea surface is very close to saturation (close 

to 98% for most of the oceans) and the radius at formation is usually termed as rform, practically 

approximated by r98. The particle concentration or size distribution is usually measured at a dry 

condition (corresponding radius termed as rdry), as we did for our measurement. In our case, 

ambient samples were passed through a heater and dryers prior to measurement. The 

hygroscopicity of NaCl is well-known (Seinfeld and Pandis, 2006). If we assume the marine 

particles are single-component NaCl particles, a relationship between particle size and the RH 

can be explicitly expressed as r98 = 2r80 = 4rdry (Lewis and Schwartz, 2004). The measurement of 

particle concentrations for each size range, either by CPC or PAS, is distinguished by the 

aerodynamic diameter (dP). Therefore the diameter at dry condition is equal to the radius at 80% 

RH and they are used interchangeably in this manuscript, dP = r80.  

Since the relation between size-resolved SSA (number) source function and the wind 

speed at 10 m above sea surface (U10) is well confined to a power law relationship (Martensson 

et al., 2003; Fuentes et al., 2010), there should be a discernible positive correlation coefficient 
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between the size-segregated number concentration of aerosols at lower atmosphere and U10 if 

SSA possess an appreciable portion of the marine aerosol number concentration. The correlation 

plots between small particle number concentrations measured by CPC or CCN counter and the 

wind speed is shown in Figure 4.2. From the figure we can see that they are barely correlated 

(correlation coefficients vary from -0.16 to 0.07). Precluding data with air masses influenced by 

continental and coastal air masses results in no better correlation either. Conversely, the 

correlations between large particle concentrations derived from CPC measurement and U10, as 

shown in Figure 4.3, are significant (correlation coefficients vary from 0.38 to 0.57) for either 

submicron particles (0.3 to 1 micron), or supermicron particles (1 - 20 micron), or the sum of the 

two. In addition, the correlations between large particles and wind speed were evaluated for the 

number concentration, the surface area concentration, as well as the volume concentration.  

Therefore, it is reasonable to speculate that SSA comprises a significant fraction of large 

particles (>0.3 micron) in marine boundary layer, whereas it constitutes a lesser fraction of 

smaller particles (<0.3 micron). Previous investigations have tried to separate source function 

parameterizations for particles down to 10 nm into several functions based on the ranges of wind 

speed (Martensson et al., 2003) as well as the trend of wind change, i.e., wind increasing or 

decreasing (Ovadnevaite et al., 2012). However, these parameterizations only differ slightly in 

the constants, not in the types of the function. Particle concentrations and wind speed are plotted 

in Figure 4.2.  The data appear to follow two different separate trends for wind speeds smaller 

and larger than 8 m s
-1

. Then, if we were to fit the data at different ranges of wind speed, one 

positive and one negative value will be obtained for the wind speed smaller than and larger than 

8 m s
-1

 separately. Since no previous studies have suggested opposite trends based on different 

wind speed range, the separate retrieval of correlation coefficients is not well-founded even 

though reasonable correlation coefficients can be resulted in. 
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Figure 4.2 Scatterplots of particle concentrations measured by CPC (CN concentration) and 

CCN counter against wind speed. Solid lines are fitted by least-squares method. Correlation 

coefficients (R values) are shown for each plot. Each data point is derived from a 27 minute 

cycle. 
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Figure 4.3 Scatterplots of particle concentrations measured by PAS against wind speed. Panels 

(a-c) show the correlations of aerosol number concentration with wind speed; Panels (d-f) show 

those between aerosol surface concentration and wind speed; Panels (g-i) show those between 

aerosol volume concentration and wind speed. Panels (a, d and g) present correlations for 

submicron particles (diameter between 0.3 and 1 micron); Panels (b, e and h) present correlations 

for supermicron particles (diameter between 1 and 20 micron); and panels (c, f and i) present 

correlations for all PAS particles (diameter between 0.3 and 20 micron). Solid lines are fitted by 

least-squares method. Correlation coefficients (R values) are shown for each plot. Data points 

are the averages of 27 min’s measurement. 
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absence of NaCl for particles in a size range is to compare the size-dependent correlation 

coefficients between particle number concentrations and wind speed, as shown in Figure 4.4. It 

is noticeable that for particles smaller than 0.5 micron, the aerosol number concentration and 

wind speed is barely correlated (R value ranges from -0.2 to 0.2). The correlation between 

number concentration and wind speed improves with the increasing particle size when r80 > 0.5, 

leveled off at 1 micron and then dropped sharply after 3 micron. The increasing and plateauing 

of R values are attributable to the increasing dominance of SSA aerosol in marine aerosol 

particles with increasing size. However, the decease after 3 micron is likely to be a result of 

particle losses during the sampling system resulting in undercounting large particles by the PAS. 

We have no intention of corroborating the importance of SSA to marine aerosol >3 micron so the 

size-dependent particle loss rate is not discussed further. However, the increasing trend of SSA 

contribution to marine aerosol <3 micron is clearly shown in the figure. We hypothesize two 

possibilities to explain why the measured number concentration of aerosols < 0.5 micron are not 

correlated with wind speed. First, the SSA particles are not a significant component of marine 

aerosols smaller than 0.5 micron but meanwhile the source function of SSA <0.5 micron can be 

similarly parameterized by wind speed as that of larger SSA particles (0.5 to 10 micron). Second, 

the SSA particles contribute significantly to marine aerosols <0.5 micron but meanwhile those 

small SSA particles have a different production process from larger SSA particles (0.5 to 10 

micron). Either of the two hypotheses will result in similar correlational results as shown by our 

results. 
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Figure 4.4 Correlation coefficients between particle concentrations with different sizes (as 

shown in abscissa) and derivatives of wind speed (as shown in the legend). 

 

Also shown in Figure 4.4 are the comparison of various different parameterizations of 

wind speed, including power-law and exponential relationships. The size-differentiated 

correlation coefficients between particle number concentration and four different 

parameterizations of wind speed are compared. It is visible that for particles between 0.5 and 3 

micron the best correlations exist between particle concentration and wind speed itself, which is 

better than its squared and cubic values, and further better than its exponential value. As shown 

in Eq. (4.1), the most cited source function initiated from the mechanism proposed by Monahan 

and Muircheartaigh (1980) between wind speed and the oceanic whitecap fraction which itself 

suffered from an uncertainty of an order of magnitude due to different ways of measurement (de 

Leeuw et al., 2011).  
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The SSA flux function and its contained size distribution per whitecap area, which are 

dependent on a number of factors including bubble generation methods, salinity, water 

temperature, surfactant amount (de Leeuw et al., 2011), are independent of wind speed and can 

be as detailed as presented in Martensson et al. (2003). Therefore, the source function should 

also correlate with the same raised power of wind speed as shown in Eq. (4.2). For those size 

ranges that SSA makes a significant contribution to aerosol populations, the aerosol number 

concentration should be well correlated to the 3
rd

 power of wind speed based on Eq. (4.2). Other 

than that, there is also an energy flux consideration from wind to the waves, as pointed out by 

Wu (1982) in defending a slightly different form of whitecap function from Eq. (4.2). Energy 

carried by the wind is proportional to the cube of the wind speed. However, that is the total 

energy available carried by the wind. The extent to which the wind energy is utilized in 

generating whitecaps and whether or not a fixed fraction of wind energy can be used in 

generating whitecaps are both unknown.  Nevertheless, a correlation between particle number 

concentration and cube of wind speed is expected to corroborate any source function evolved 

from Eq. (4.2). Based on our data, the correlation of the cube of wind speed and particles are not 

better than the wind itself. The random variations of a number of environmental parameters such 

as temperature and salinity may have caused this behavior (Martensson et al., 2003).  

To reiterate, using our data we were unable to verify the actual dependence of source 

function of small particles on wind speed. This lack of details is also reflected in the similar 

correlation coefficients achieved between wind speed and the number, surface area and volume 

concentrations, as shown in Figure 4.3. Another reason of this inconsistence is that the particle 

loss rate of the sampling system dependent on its size may have a bearing on the relationship of 

wind speed and particle concentration. 
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4.3.3 Relationship between precipitation and particle concentration 

The concentration of small particles and large particles are plotted against precipitation 

intensity are presented in Figure 4.5 and Figure 4.6, respectively. From Figure 4.5 we can 

conclude that smaller particles (<100 nm) are not correlated in any way with rain intensity, 

implying either a nonexistence of linear relationship or a lack of causal relationship. It is also 

possible that small particles are replenished from surrounding regions (horizontal and vertical) 

without precipitation (Clarke et al., 1997; Katoshevshi et al., 1999). However, from Figure 4.6 

we can see that the number concentrations of large particles are significantly correlated with rain 

intensity positively, implying that precipitation is overall a source of SSA rather than a sink. 

Rain can generate SSA when they impinge the sea surface and remove SSA from MBL by direct 

scavenging (de Leeuw et al., 2011). Indirectly, raindrops can also influence SSA production by 

entraining bubbles, lowering the seawater salinity, changing the seawater temperature, as well as 

by interrupting the sea surface organic microlayer (Lewis and Schwartz, 2004). The positive 

correlation coefficients between particle concentrations measured by PAS and the rain intensity 

indicated that precipitation promote more SSA generation than removing it from MBL. 
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Figure 4.5 Scatterplots of particle concentrations measured by CPC (CN concentration) and 

CCN counter against rain intensity. Solid lines are fitted by least-squares method. Correlation 

coefficients are shown for each plot. Data points are averages of 27 min. 

 

 

Figure 4.6 Scatterplots of particle concentrations measured by PAS against rain intensity. Panels 

(a-c) show the correlations of number concentration with rain intensity; Panels (d-f) show those 

between surface concentration and rain intensity; Panels (g-i) show those between volume 

concentration and rain intensity. Panels (a, d and g) present correlations for submicron particles 

(diameter between 0.3 and 1 micron); Panels (b, e and h) present correlations for supermicron 

particles (diameter between 1 and 20 micron); and panels (c, f and i) present correlations for all 

PAS particles (diameter between 0.3 and 20 micron). Solid lines are fitted by least-squares 

method. Correlation coefficients are shown for each plot. Data points are averages of 27 min 

data. 
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The correlation levels of size-segregated particle number concentration and rain intensity 

are presented in Figure 4.7. Particle concentration and precipitation rate become significantly 

correlated with each other when particle sizes increase to larger than 0.2 micron. The 

correlations are relatively constant between 0.2 and 3 micron. There are a few ways we can 

hypothesize the SSA production mechanisms due to precipitation. First, SSA production 

resulting from precipitation does not contain a significant fraction of particles smaller than 0.2 

micron. Second, it is possible that SSA particles smaller than 0.2 micron produced by 

precipitation are significant but SSA production and removal by precipitation in the size range 

are comparable in magnitude and opposite in sign. Third, it is possible that precipitation 

produces SSA particles <0.2 micron but they only comprise a negligible fraction of marine 

aerosol in that range.  

 

 

Figure 4.7 Correlation coefficients between particle concentrations with different sizes (as 

shown in abscissa) and rain intensity. 
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4.3.4 Relationship between sea surface pressure and particle concentration 

Plots of the number concentrations of small particles (measured by CPC and CCN 

counter) and larger particles (measured by PAS) versus pressure are presented in Figure 4.8 and 

Figure 4.9, respectively. As shown in the previous chapter, the correlation between small 

particles and pressure is significant (R value of logarithm of CN vs. pressure is 0.78) when there 

is an apparent pressure change (about 2% change within one day). We attribute such change to 

the much higher concentration of small particles in upper troposphere than in MBL (entrainment 

from UT to MBL indicated by pressure level). However, the correlation evades when apply to all 

the dataset. That is understandable because other factors overwhelm the influence of entrainment 

on concentration of small particles. This also implies the inadequacy of representing particle 

concentration of small particles by sea surface pressure alone. On the contrary, the correlations 

between particle concentration of large particles and pressure are weak but sometimes visible (R 

value -0.06 to -0.3). The negative correlation between them is due to the combined effect of 

positive correlation between particle and wind speed, and the inherent negative correlation 

between wind speed and pressure (Deng et al., 2013b). 
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Figure 4.8 Scatterplots of particle concentrations measured by CPC (CN concentration) and 

CCN counter against sea surface pressure. Solid lines are fitted by least squares method. 

Correlation coefficients are shown for each plot. 
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Figure 4.9 Scatterplots of particle concentrations measured by PAS against sea surface pressure. 

Panels (a-c) show the correlations of number concentration with pressure; Panels (d-f) show 

those between aerosol surface area concentration and pressure; Panels (g-i) show those between 

volume concentration and pressure. Panels (a, d and g) present correlations for submicron 

particles (diameter between 0.3 and 1 micron); Panels (b, e and h) present correlations for 

supermicron particles (diameter between 1 and 20 micron); and panels (c, f and i) present 

correlations for all PAS particles (diameter between 0.3 and 20 micron). Solid lines are fitted by 

least squares method. Correlation coefficients are shown for each plot. 
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correlated (as shown in the previous chapter), while pressure and wind speed is positively 

correlated. However, there is no physical basis to explain the negative correlation between 

pressure and number concentration of small aerosols directly. We can also notice that the 

magnitude of the negative correlation is decreasing with increasing particle size (decreasing SS 

level from CCN data, as shown in Table 4.1). This reinforces the above evidence that pressure 

has a larger influence on smaller particles, and that wind speed has larger impact on larger 

particles.  

 

 

Figure 4.10 Scatterplots of number concentration of small particles against wind speed during 

station V, a period with significant pressure change. 
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possibility of a limited fraction small SSA particles in marine aerosol or a different source 

function of small SSA aerosols from large aerosols, over the North Atlantic open ocean. 

However, multiple investigations support the presence of primary marine aerosols smaller than 

0.2 micron using sophisticated single particle detection techniques in both field and laboratory 

(O’Dowd and Smith, 1993; Martensson et al., 2003; O’Dowd et al., 2004; Clarke et al., 2006; 

Bigg 2007; Bigg and Leck, 2008; Prather et al., 2013; Ault et al., 2013). Among them, O’Dowd 

and Smith (1993) found a significant correlation between primary marine particles down to 0.05 

micron and wind speed for air masses over the Northeast Atlantic. Clarke et al. (2006) were able 

to derive a sea salt flux parameterized on wind speed for particles down to 0.01 micron from 

open ocean air masses measured in a Hawaii station. They also reported a contribution of 5-90% 

to marine CCN by those small sea salt particles, with the remaining part mainly from UT 

entrainment of particles resulting from new particle formation. On the contrary, Bigg (2007) 

found no sea salt particles smaller than 200 nm during their 6 years of sampling in Cape Grim. 

Instead, they found the particles smaller than 200 nm are microgels resulting from marine 

microorganisms and their fraction without any association with sea salts (Bigg and Leck, 2008), 

while Prather and colleagues found mixtures of sea salt and organic carbon in particles smaller 

than 200 nm (Prather et al., 2013; Ault et al., 2013). Therefore, the clear understanding of 

production and characteristics of SSA smaller than 200 nm requires more sophisticated studies. 

The contribution of sea salt particles to the local marine aerosol for sizes < 200 nm is determined 

by a number of factors, including the production mechanism of these small SSA aerosols 

(Martensson et al., 2003), local primary production level (Bigg 2007), surfactant levels (Sellegri 

et al., 2006), sea surface salinity and temperature (Martensson et al., 2003), entrainment levels 

(Raes 1995; Deng et al., 2013b), influences from continental and anthropogenic sources, and 

wind conditions.  
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Among the above mentioned factors, the production mechanisms of primary marine 

particles need to be understood with first priority. The question should be answered from three 

aspects. First, since these small sea salt particles are much less frequently observed than larger 

ones over the open ocean, are the small sea salt particles generated the same way as large sea salt 

particles from bubble bursting processes? For the first question, Martensson et al. (2003) 

indicated the possibility that the droplet formation process of sea salt particles smaller than 200 

nm are different from those large than that size, based on different influence of salinity on them. 

Second, are those organic aerosols, which have an increasing and overwhelming fraction with 

decreasing sizes, produced the same way as the large sea salt particles from bubble bursting 

processes? For the second question, Bigg (2007) indicated that the gel-like organic particles 

smaller than 200 nm could also be injected from the oceanic surface microlayer in the bubbling 

process. Third, are the small SSA, i.e., mixtures of sea salts and organics, produced the same 

way as large sea salt particles? For the third question, recent laboratory studies indicated the high 

possibility of different production processes of mixed sea salt and organic particles, with shapes 

of those particles changed from more cubic to more rounded with decreasing sizes (Ault et al., 

2013), accompanying with an increasing fraction of organic species (O’Dowd et al., 2004; Ault 

et al., 2013).  

Therefore, investigations should be carried out in the following directions: (1) Using 

microscopic techniques to monitor SSA particle evolution processes in laboratory environments, 

for both small and large particles, as well as for both pure sea salt particles and those containing 

organic components. (2) Investigate if there are chemical processes other than physical processes 

(e.g. crystallization) responsible for small SSA evolution after bubbles burst. (3) Using an atomic 

structure detection technique such as x-ray diffraction (XRD) to determine the atomic 

arrangement of small sea salt particles mixed with organic species. Sea salt particles (mainly 
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composed by NaCl) are cubic since the NaCl crystals possess a face centered cubic (fcc) 

structure. Since the small SSA particles containing organic species present themselves as a 

rounded shape, the crystallization of NaCl must have be altered significantly and it would be 

worthwhile to investigate how it is changed. 

4.4 Summary and atmospheric implication 

Through the analysis of marine aerosol concentrations within different size ranges and 

several meteorological parameters, a set of hypotheses are presented and several suggestions for 

future relevant researches were proposed. Based on our data, it is either that small SSA particles 

(<200 nm) do not contribute significantly to marine aerosol number concentration or that small 

SSA particles are produced in a different way from large SSA particles so that their number 

concentrations is not correlated with wind speed, at least over the North Atlantic open ocean 

during summer. Identification of the formation processes of these small SSA particles is 

important for assessments of the direct and indirect effect of aerosols on climate. It is also 

important to understand how organic species are transferred from oceanic surface to the marine 

atmosphere in addition to understanding their hygroscopic properties. Not until we understand 

their production processes could we represent their flux from sea to air correctly. Small particles 

tend to dominate marine aerosol number concentration. Since CCN property could be influenced 

more by particle number than mass, understanding the factors which control small SSA particle 

concentration is key to determining indirect radiative forcing on global climate.  
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

 

Two cruise researches were carried out to study the chemical composition and cloud 

nucleation ability of marine aerosol, one carried out over Pacific Ocean during March to April of 

2010 and another over North Atlantic Ocean during June to July of 2011. The purpose of the 

HaloCAST cruise over the Pacific Ocean was to study the chemical composition and mixing 

state of marine aerosol. The Atlantic cruise was mainly used to study the cloud nucleation ability 

of marine aerosol under a wide range of DMS concentrations. An additional goal of the Atlantic 

cruise was to analyze the sea spray aerosol production under various meteorological conditions. 

5.1 Chemical composition and mixing states of Pacific marine aerosol 

Raman microspectroscopy was utilized to determine that long chain organic compounds 

were consistently a major component in Pacific marine aerosol. Analysis of aerosol composition 

on the ~11,000 km HaloCAST cruise indicated that long chain organic species were the most 

common aerosol composition observed.  This result corroborates previous reports of high 

concentrations of organics in marine aerosol, and extends previous knowledge in several 

significant ways.  Our data include the aerosol composition, concentration and cloud nucleation 

ability in the marine boundary layer over understudied areas in the Pacific Ocean. While most 

previous reports have focused on organics found in submicron aerosols, our collection technique 

included coarse mode aerosol (>1.0 µm diameter). The percentage of particles containing pure 

and predominately long chain organics were 8% or more and 28% or more for all conditions in 

both the Northern and Southern Hemispheres. The prevalence of organics observed in samples 

far removed from continental anthropogenic effects strongly suggests a marine source.  Also, 

these organic components were detected in autumn (in the Southern Hemisphere) and in spring 
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(in the Northern hemisphere), suggesting that organics may be present throughout much of the 

annual cycle.  

Water soluble inorganic species such as sulfate and nitrate were observed in higher 

frequency in the northern segments of the open ocean cruise track, possibly suggesting a stronger 

influence from anthropogenic activity in the northern hemisphere.  

Despite the insensitivity of Raman to some compounds, the majority of particles collect 

in this Pacific cruise were classified as internally mixed. Long chain organics were found in 

mixtures with other compounds 57 to 72% of the time. Based on our observations, long chain 

organic species tended to be mixed most often with HULIS, and frequently with other organic 

and inorganic species.   

Both the consistent prevalence of long chain organic species throughout the wide range 

of conditions and locations sampled during this cruise indicate that organics must be considered 

in modeling studies of marine aerosol. Furthermore, the variable composition and mixing states 

observed here suggest a need to treat marine organic aerosol in a more detailed manner for 

accurate modeling of the role of marine aerosols in cloud formation and climate. The complex 

marine aerosol composition and prevalence of organic aerosols must be considered in 

assessments of marine aerosol direct and indirect effects on climate.  

5.2 Aerosol and CCN concentration under high DMS concentrations 

Aerosol and CCN concentrations under a wide range of conditions, including extremely 

high DMS levels (1800 pptv), were measured during the Bloomcruise research. Our data shows 

that, atmospheric aerosol in the North Atlantic were signicantly influenced by continental air 

mass, even over remote regions. The average aerosol number concentration influenced by 
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continental air mass was 115% higher than pristine marine aerosols, while that by coastal air 

mass has an enhancement of 44% compared with pristine air. On the contrary, in continental and 

coastal air masses, CCN concentrations are decreased by 18% and 19%, at the SS level of 0.15%, 

a SS level typical of marine stratiform clouds. While total aerosol concentrations are elevated 

due to continental polluation, the number of aersosol capabile of forming cloud drops is not 

nesseaily increased and in some instances, is lower than in marine air. Esimated oxidation rates 

based on measured DMS concentrations illustrated influence of anthropogenic acitivities on 

marine atmosphere. Overall, the oxidation rate of DMS during nighttime is 85% of that during 

daytime. Therefore, continental or anthropogenical sources generally provide aerosols of 

decreased cloud activation potential in marine boundary layer over the North Atlantic Ocean 

during summer. 

In the Bloomcruise research which is the first to report the aerosol and CCN 

concentration during such a high DMS level as 1800 pptv. The highest DMS was observed when 

the atmospehre is not influenced by continental air mass. In the two-day sustained nucleation 

event, we estimate that the sulfuric acid concentration derived from  DMS concentration is 

adequate to explain the observed particle concentration by nucleation. Therefore, the importance 

of contributions from marine biota to atmospheric aerosols are significant, at least over the North 

Atlantic and during summer season when phytoplankton blooms are frequent.  

In addition, our measurements indicate that meteorological parameters play an important 

role in the modificaiton of cloud nucleation ability of marine aerosols. Increases in sea surface 

pressure may correspond to downward vertical air movement which bring increases in total 

aerosol concentrations due to the much higher nucleation mode particle concentration in upper 

troposphere than in marine boundary layer.  
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5.3 Sea spray aerosol production by wind and precipitation 

Through the analysis of marine aerosol concentrations within different size ranges and 

several meteorological parameters, a set of hypotheses are presented and several suggestions for 

future relevant researches were proposed. Based on our data, either small sea spray aerosol (SSA) 

particles (<200 nm) do not contribute significantly to marine aerosol number concentration or 

small SSA particles are produced in a different way from large SSA particles so that their 

number concentrations is not correlated with wind speed, at least over the North Atlantic open 

ocean during summer. Identification of the formation processes of these small SSA particles is 

important for assessments of the direct and indirect effect of aerosols on climate. In addition, 

until we understand the production processes of sea spray aerosol, we cannot parameterize their 

flux from sea to air correctly. Small particles tend to dominate marine aerosol number 

concentration. Since CCN property is influenced more by particle number than mass, 

understanding the factors which control small SSA particle concentration is key to determining 

indirect radiative forcing on global climate.  

5.4 Future research directions 

Field studies covering more meteorological and environmental conditions will be 

complementary to Bloomcruise and HaloCAST cruise researches. More CCN measurements are 

also wanted to understand cloud nucleation ability of marine aerosol in deeper extent, especially 

under an ever-increasingly polluted world. 

The uncertainty of the generation and mixing state of sea spray aerosol with dry 

diameter smaller than 200 nm is vital to better evaluate the direct radiative forcing on global 

climate, in both its accuracy and precision. In spite of significant progress made in recent years, 



 
 

129 

 

more laboratory and filed studies are required to understand those small SSA particles and their 

generation mechanism.  
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