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ABSTRACT

Data security is of such paramount importance that security measures have been

implemented across all layers of a communication network. One layer at which secu-

rity has not been fully developed and studied is the physical layer, the lowest layer

of the protocol stack. Towards establishing fundamental limits of secure communica-

tions at the physical layer, we address in this dissertation two main problems. First,

we study secure communication in the wide-band regime, and second we study the

role of known interference in secure communication.

The concept of channel capacity per unit cost was introduced by Verdú in 1990

to study the limits of cost-efficient wide-band communication. It was shown that

orthogonal signaling can achieve the channel capacity per unit cost of memoryless

stationary channels with a zero-cost input letter. The first part of this dissertation

introduces the concept of secrecy capacity per unit cost to study cost-efficient wide-

band secrecy communication. For degraded memoryless stationary wiretap channels,

it is shown that an orthogonal coding scheme with randomized pulse position and

constant pulse shape achieves the secrecy capacity per unit cost with a zero-cost

input letter. For general memoryless stationary wiretap channels, the performance

of orthogonal codes is studied, and the benefit of further randomizing the pulse

shape is demonstrated via a simple example. Furthermore, the problem of secure

communication in a MIMO setting is considered, and a single-letter expression for

the secrecy capacity per unit cost is obtained for the MIMO wiretap channel.

Recently there has been a lot of success in using the deterministic approach to

provide approximate characterization of Gaussian network capacity. The second part
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of this dissertation takes a deterministic view and revisits the problem of wiretap

channel with side information. A precise characterization of the secrecy capacity is

obtained for a linear deterministic model, which naturally suggests a coding scheme

which we show to achieve the secrecy capacity of the degraded Gaussian model

(dubbed as “secret writing on dirty paper”) to within half a bit. The success of

this approach allowed its application to the problem of “secret key agreement via

dirty paper coding”, where also a suggested coding scheme achieves the secret-key

capacity to within half a bit.
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1. INTRODUCTION

Today, wireless networks continue to play an increasingly prominent role. The

ubiquitous and pervasive use of internet services, along with the inherent openness of

wireless communication channels, present inexhaustible reasons that call for serious

interventions on the security level. The interception of data and the malicious use

of wiretapped information induce harmful effects that lead to tremendous societal

costs, and hence the continuous quest for effective solutions.

The importance of data security has called for implementing security measures

at all layers of the standard network stack. However, the lowest layer, the physical-

layer, where the information bits get modulated into signals, remained neglected

when it comes to securing it. Several results from information theory suggest that

the imperfections of communications channels (noise, fading, interference) can be

harnessed with appropriate code designs to not only offer error correction for legiti-

mate parties, but also provide provable confidentiality against passive eavesdroppers

without the need for shared secret keys. With the advent of wireless networks and

the growing concern for data confidentiality, the idea of exploiting the imperfections

of the physical-layer as a first layer of defense has attracted much interest and is now

colloquially known as physical-layer security.

Throughout this dissertation, I will be concerned with studying security tech-

nologies that are embedded at the physical-layer of the protocol architecture, a part

of the communication system where little security exists today.

There exist fundamental differences between cryptography, based on computa-

tional complexities at the higher layers of the protocol stack, and physical-layer

security which is based on information-theoretic principles. Hence, it is necessary to

1
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Figure 1.1: Cryptography versus physical layer security

understand the differences between both technologies, in order to assess which one

to recur to, given a certain practical scenario. See Fig. 1.1.

A secure communication scenario basically involves three parties: a transmitter,

a receiver and an eavesdropper; traditionally referred to as Alice, Bob and Eve,

respectively. Alice is interested in confidentially sending a message to Bob with

high efficiency and reliability through a channel, while keeping the message ideally

unknown to Eve. The utmost goal of secrecy is to design an algorithm or a coding

strategy that enable the optimal tradeoff between these objectives.

In 1948, Shannon [1] set the foundation of modern cryptography by introducing

the idea of entropy as a measure of the amount of information associated with a

message. By providing precise connections between provable security and the size of

the key, plaintext, and ciphertext spaces, the first proofs of security using probability

theory were established. It was shown [1] that the number of different keys must be
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at least as large as the number of messages to achieve perfect secrecy. A classical

way to accomplish this objective is through the use of the well-known one-time-pad

algorithm, which requires that the length of the key must be at least as large as

the length of the message. Despite the impracticality of this requirement, it would

still serve as an upper bound on the secrecy level, quantified by the equivocation, a

measure of the eavesdropper’s uncertainty about the message and the key.

Knowing that the exchange of the secret key has to be done publicly and some-

times through an insecure channel, one question that comes into play is how can this

secret key be established. The answer to this question is provided by numerical tech-

niques pertaining to cryptography, mainly through the use of public-key encryption

algorithms

For a large number of applications, using famous algorithms such as (RSA and

AES) has proved to be efficient, as no attacks succeeded in the past, and the al-

gorithms which were compromised were consistently replaced by new ones. The

technology is readily available and inexpensive. However, the computational model

still suffers from a number of drawbacks. As the computational power keeps on in-

creasing, some brute-force attacks, which were once considered as infeasible in the

past, can be made possible in the near future. Also, the perfect security of public-

key cryptographic techniques is still unproven from a mathematical point of view.

Moreover, the strength of different ciphers can not be rigorously compared due to

the lack of precise metrics.

As shown in the work of Shannon [1] and Wyner [2], the used cryptographic

techniques fail to provide information-theoretic security, as the channel between the

eavesdropper and the users is mostly noiseless and the secrecy capacity is thus null.

In addition, most key-distribution schemes rely on the existence of a trusted third

party and key management creates complexities due to the system architecture.
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The main advantages of information-theoretic security over computational secu-

rity come from the fact that no computational constraints are assumed in advance,

and the fact that the information leaked to the adversaries can be quantified as a

function of the channel quality. On the other hand, some disadvantages come into

play, as information-theoretic security is based on average information measures, and

confidentiality cannot be guaranteed with probability one. Also, some assumptions

are made concerning the communication channels, which may not be accurate in

practice. Physical-layer security has been deployed for some optical communication

applications; however, the technology is still an early bloomer and relatively expen-

sive. Also, it has been used in practice through quantum key distribution and, in

theory, suitably long codes can come exponentially close to perfect secrecy. The

system architecture for security is basically the same as the one for communication.

Instead of distributing keys, it is possible to generate on-the-fly as many secret keys

as desired.

Based on the comparison above, it is more likely that the incorporation of physical-

layer security in classical communication systems will be part of a layered security

solution rather than as a standalone solution. As a consequence, authentication and

confidentiality will be provided at different layers, each with a targeted goal. Hence,

physical-layer security provides an additional layer of security that does not yet exist

in communication networks.

1.1 The Wiretap Channel

Let us consider an early example for the three-party network shown in Fig. 1.2

as a means of introducing some key concepts. Suppose Alice wants to communicate

a secret message M to Bob, with the knowledge that another network participant

Eve may be able to overhear the transmission. The channel that links the two

4
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Figure 1.2: The wiretap channel model has three players. Alice is attempting to
transmit a message to Bob over the main channel, while Eve is trying to eavesdrop
on the transmitted data over a separate channel known as the eavesdropper’s channel.

friendly parties is called the main channel, and Eve listens to the transmission via

a parallel channel called the eavesdropper’s channel. Alice transmits X, which she

obtains by passing M through a prescribed encoder. Bob receives Y through the

main channel, while Eve receives Z through the eavesdropper’s channel. Bob and

Eve then form their respective estimates of the message using a specified decoder or

attack algorithm. This model for communication in an unreliable network is called

the wiretap channel model [2].

1.2 Security Metrics

In this section, we review some of the standard metrics used to measure the se-

crecy guaranteed by error-control codes. Historically, the first metric was introduced

by Claude Shannon together with the notion of perfect secrecy [1]. A system is

said to operate with perfect secrecy if the message M and its corresponding encoder

output Xn are statistically independent, so that revealing Xn does not provide any

extra information to an attacker about M . In information-theoretic terms, this can

be expressed as I(M ;Xn) = 0, i.e., the mutual information between M and Xn is ex-

actly zero. Unfortunately, Shannon also showed that perfect secrecy requires the use

of a secret key at least as long as the message M , which limits the application of this

result. Instead of requiring exact statistical independence, Aaron Wyner suggested
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the use of a weaker requirement for secrecy, as well as a new idea in channel mod-

eling that allowed physical-layer security to take shape [2]. Specifically, the message

M is encoded into a codeword Xn, of which the eavesdropper observes a possibly

noisy version denoted by Zn. A system is said to operate with weak secrecy if the

rate of information leaked about the message M to the eavesdropper observing Zn

is asymptotically zero in the codeword length n, i.e.,

lim
n→∞

1

n
I(M ;Zn) = 0

Weak secrecy, however, does not prevent a few bits of M to be leaked through Zn;

to combat this shortcoming of weak secrecy, it has been advocated to use a stronger

secrecy metric. A system is said to operate with strong secrecy if the total amount of

information leaked about M through observing Zn goes to zero as n goes to infinity,

that is,

lim
n→∞

I(M ;Zn) = 0

By definition, note that: perfect secrecy=⇒strong secrecy=⇒weak secrecy. Se-

crecy code designs that seek to obtain strong secrecy are different in nature from

those that are designed for weak secrecy only. Although in theory, we should be

able to attain the same coding rates under both secrecy constraints, current designs

tend to obtain strong secrecy at a cost of coding rate, and therefore, at a cost of

information throughput in a communication system. Also, notice that these security

measures require our code’s blocklength n to go to infinity, and thus, implementation

favors large blocklength in terms of secrecy. Although one should certainly strive to

design schemes that provide strong or weak secrecy, the finite blocklength secrecy

performance is often particularly hard to analyze. This issue can be circumvented
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by adopting other metrics that relate to the quality of the received messages and are

easier to study. For instance, one could measure the eavesdropper’s error rate with a

prescribed decoder. Although there are possible pitfalls when only considering error

rate as a measure of secrecy, as high error rate by itself does not guarantee secrecy,

the error rate is a pointer to the performance of a particular code that may indicate

good secrecy results, even in the information-theoretic sense.

Building on the notion of perfect secrecy, the information-theoretic foundations

for a physical-layer approach to security were first laid by Wyner [2] and later by

Csiszár and Körner [3], who proved in seminal papers that there exist channel codes

guaranteeing robustness to transmission errors with a prescribed degree of data con-

fidentiality. A single letter characterization of the secrecy capacity was attained

through the use of two main techniques; random binning followed by prefix coding.

In this work, we first explore secrecy in the wideband regime, where to the se-

crecy constraint we add limitations on the power availability, but not on the band-

width.The communication limits in wideband were investigated by Verdú [4], and

the special case of a zero-cost input letter at the transmitter’s end was considered,

to give the name capacity per unit cost for the optimal limit of communication under

such restrictions. Applying Verdú’s formulation to the wiretap problem, a complete

characterization for the maximum achievable secrecy rate per unit cost, mainly the

secrecy capacity per unit cost, was presented in [5] for the degraded wiretap chan-

nel. Afterward, and due to the recent success of using the deterministic approach

to provide approximate characterization of Gaussian network capacity, we take a

deterministic view and revisit the problem of wiretap channel with side information.

A precise characterization of the secrecy capacity is obtained for a linear determin-

istic model, which naturally suggests a coding scheme which we show to achieve the

secrecy capacity of the Gaussian model (dubbed as “secret writing on dirty paper”)
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to within 1/2 a bits [6]. However, our method is somewhat different from most of

the practices along this line of research. In literature, a common practice has been to

first gain “insight” from the capacity-achieving scheme for the linear deterministic

model and then translate the success to the Gaussian model at the scheme level.

To the best of our understanding, this translation is more art than science. For the

problems that we considered in this paper, the translation of success from the lin-

ear deterministic model to the Gaussian model was done at the level of single-letter

descriptions of network capacity and hence was much more systematic.

8



2. SECURE COMMUNICATION IN THE WIDE-BAND REGIME

2.1 Introduction

In classical Shannon theory [1], communication over a noisy medium is modeled

as a communication channel with discrete-time input and output. An important

objective is to understand the channel capacity, which is defined as the maximum

number of bits that can be reliably transmitted per channel use for a given constraint

on the average transmission cost per input symbol. This formulation is suited for

studying band-limited communication, where spectrum is the most valuable resource.

A different scenario emerges in the context of deep-space communication, where

there are virtually no limitations on the available bandwidth. Instead, energy be-

comes the most valuable resource considering the prohibitively high cost for replacing

satellite batteries. This communication scenario was abstracted by Verdú [4] using

the concept of channel capacity per unit cost, which is defined as the maximum num-

ber of bits that can be reliably transmitted per transmission cost. Since there are no

limitations on the number of channel uses, this formulation is tailored for wide-band

communication.

Verdú’s formulation of channel capacity per unit cost [4] can be viewed as a relaxed

setting of the classical Shannon formulation of channel capacity, in the sense that

there are no limitations imposed on the number of channel uses for communication.

Therefore, it is not surprising that the channel capacity per unit cost of a memoryless

stationary channel can be derived from its capacity-cost function. For the special

case where there is a zero-cost letter in the input alphabet, however, Verdú provided

an alternative characterization of the channel capacity per unit cost which does not

depend on the notion of channel capacity. There are two main advantages for this

9



new characterization:

1) Compared with the classical single-letter characterization of channel capacity,

Verdú’s characterization of channel capacity per unit cost is much easier to

compute as it only involves an optimization over the input letters as opposed

to the input distributions for channel capacity [1].

2) Even though structured codes that can achieve the channel capacity are difficult

to construct, Verdú’s characterization is strongly tied to the fact that with a

zero-cost input letter, the channel capacity per unit cost can be achieved by

highly structured orthogonal codes.

The above results were later extended by Liu and Viswanath [7] to memoryless sta-

tionary state-dependent channels, where the channel states are non-causally known

at the transmitter as side information.

The main aim of this section is to extend Verdú’s formulation of channel capac-

ity per unit cost from regular communication (without any secrecy constraints) to

secrecy communication, and to understand to what extent Verdú’s results [4] can

be extended to memoryless stationary wiretap channels. We note here that in the

spirit of the classical Shannon formulation [1], the secrecy capacity of memoryless

stationary wiretap channels was characterized by Wyner [2] for the degraded case

and by Csiszár and Körner [3] for the general case.

2.2 Model, Notations and Definitions

As illustrated in Fig 2.1, a memoryless stationary wiretap channel consists of an

input alphabet X , two output alphabets Y and Z at the legitimate receiver and

the eavesdropper respectively, and a conditional probability distribution PY,Z|X . An

(n,w0, ν, εd, εe) secrecy code consists of:

10



• a message W uniformly drawn from {1, . . . , w0};

• a stochastic encoder which maps the message W to a length-n codeword Xn =

(X1, . . . , Xn) ∈ X n such that

n∑
i=1

b(Xi) ≤ ν (2.1)

where b : X → R+ = [0,+∞) is a function that assigns a nonnegative cost to

each letter in the input alphabet X . Also, the encoder must be designed such

that the mutual information between the message W and the received vector

Zn at the eavesdropper

I(W ;Zn) < εe (2.2)

• a decoder which maps the received vector Y n ∈ Yn at the legitimate receiver

to an estimated message Ŵ ∈ {1, . . . , w0} such that the average probability of

error

Pr(Ŵ 6= W ) < εd. (2.3)

Following the classical Shannon formulation [1], the secrecy capacity of a memo-

ryless stationary wiretap channel can be defined as follows.

Definition 1 (Secrecy capacity [2, 3]). Given 0 < ε < 1 and β > 0, a nonnegative

real Rs is an ε-achievable secrecy rate with cost per symbol not exceeding β if there

exists a positive integer n0 such that for any integer n ≥ n0 an (n,w0, nβ, ε, nε) code

11
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Figure 2.1: Memoryless stationary wiretap channel.

can be found for which

logw0

n
> Rs − δ (2.4)

for any δ > 0. Furthermore, Rs is said to be achievable if it is ε-achievable for all

0 < ε < 1. The supreme of all achievable secrecy rates with cost per symbol not

exceeding β is the secrecy capacity denoted by Cs(β). The secrecy capacity Cs(β) as a

function of the cost per symbol β is formally referred to as the secrecy capacity-cost

function.

For the case where the memoryless stationary wiretap channel (X , (Y ,Z), PY,Z|X)

is degraded, i.e, X → Y → Z forms a Markov chain in that order, Wyner [2] showed

that the secrecy capacity-cost function Cs(β) is given by

Cs(β) = sup
E[b(X)]≤β

(I(X;Y )− I(X;Z)) . (2.5)

The secrecy capacity-cost function of a general memoryless stationary wiretap chan-

nel (X , (Y ,Z), PY,Z|X) was characterized by Csiszár and Körner [3] and can be written

12



as

Cs(β) = sup
E[b(X)]≤β

(I(V ;Y |U)− I(V ;Z|U)) (2.6)

where U and V are auxiliary random variables satisfying the Markov chain U →

V → X → (Y, Z).

2.3 Secrecy Capacity per Unit Cost

We use the following definition for secrecy capacity per unit cost.

Definition 2 (Secrecy capacity per unit cost). Given 0 < ε < 1, a nonnegative real

Rs is an ε-achievable secrecy rate per unit cost if there exists a positive real ν0 such

that for any ν ≥ ν0 an (n,w0, ν, ε, νε) code can be found for which

lnw0

ν
> Rs − δ (2.7)

for any δ > 0. Furthermore, Rs is an achievable secrecy rate per unit cost if it is ε-

achievable for all 0 < ε < 1, and the secrecy capacity per unit cost Cs is the supreme

of all achievable secrecy rates per unit cost.

Remark 1. Note that in Definition 2, the secrecy requirement at the eavesdropper

is that the mutual information I(W ;Zn) normalized by the total transmission cost ν

can be made arbitrarily small for sufficiently large ν. Unlike for secrecy capacity, the

length of the codewords n does not play a fundamental role in the definition of secrecy

capacity per unit cost. Therefore, normalizing the mutual information I(W ;Zn) by

the block-length n, instead of the total transmission cost ν, will only trivialize the

secrecy constraint.

Remark 2. By Definition 2, to show that that Rs is an ε-achievable secrecy rate per

13



unit cost, one has to consider all real ν ≥ ν0. From the proof viewpoint, however, it

is sufficient to consider νk = kβ for some β > 0 and show that there exists a positive

integer k0 such that for any integer k ≥ k0 an (n,w0, νk, ε, νkε) code can be found for

which

lnw0

νk
> Rs −

δ

2
(2.8)

for any δ > 0.

For completeness, a short proof of Remark 2 is provided in Appendix A. Similar

to that between the Shannon capacity-cost function and Verdú’s channel capacity

per unit cost [4, Th. 2], we have the following simple relationship between the secrecy

capacity-cost function and the secrecy capacity per unit cost.

Theorem 1. The secrecy capacity per unit cost Cs of the memoryless stationary

wiretap channel (X , (Y ,Z), PY,Z|X) is given by

Cs = sup
β>0

Cs(β)

β
(2.9)

where Cs(β) is the secrecy capacity-cost function of the channel.

Proof. Let us first show that for any given β > 0, Cs(β)/β is an ε-achievable secrecy

rate per unit cost for any 0 < ε < 1. Fix δ > 0 and let ε′ = min(1, β)ε. Since Cs(β)

is the secrecy capacity-cost function, there exists a positive integer n0 such that for

any integer n ≥ n0 an (n,w0, nβ, ε
′, nε′) code can be found for which

lnw0

n
> Cs(β)− βδ

2
. (2.10)
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This immediately gives an (n,w0, nβ, ε, nβε) code for which

lnw0

nβ
>

Cs(β)

β
− δ

2
. (2.11)

Per Remark 2, this proves that Cs(β)/β is an ε-achievable secrecy rate per unit cost.

To prove the converse part of the theorem, let Rs be an achievable secrecy rate

per unit cost. By definition, for any 0 < ε < 1 there exists a positive real ν0 such

that for any ν ≥ ν0 an (n,w0, ν, ε, νε) code can be found for which

lnw0

ν
> Rs − δ (2.12)

for any δ > 0. By Fano’s inequality, we have

H(W |Y n) ≤ εH(W ) + ln 2. (2.13)

It follows that

(1− ε)H(W ) ≤ I(W ;Y n) + ln 2 (2.14)

and hence

Rs − δ

<
lnw0

ν
=
H(W )

ν
(2.15)

≤ 1

1− ε

(
I(W ;Y n)

ν
+

ln 2

ν

)
(2.16)

≤ 1

1− ε

(
I(W ;Y n)− I(W ;Zn)

ν
+ ε+

ln 2

ν

)
. (2.17)
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For memoryless stationary wiretap channels, Csiszár and Körner [3] showed that

I(W ;Y n)− I(W ;Zn) ≤

n sup
E[b(X)]≤ν/n

(I(V ;Y |U)− I(V ;Z|U)) (2.18)

where U and V are auxiliary random variables satisfying the Markov chain U →

V → X → (Y, Z). Substituting (2.18) into (2.17) gives

(1−ε)(Rs − δ)−
(
ε+

ln 2

ν

)
<
n

ν
sup

E[b(X)]≤ν/n
(I(V ;Y |U)− I(V ;Z|U)) (2.19)

≤ sup
β>0

(
1

β
sup

E[b(X)]≤β
(I(V ;Y |U)− I(V ;Z|U))

)
(2.20)

= sup
β>0

Cs(β)

β
. (2.21)

Letting δ and ε go to zero and ν go to infinity, we conclude that Rs ≤ supβ>0
Cs(β)
β

for any achievable secrecy rate per unit cost Rs. This completes the proof of the

converse part and hence the entire theorem.

From Theorem 1 we see that at least in theory, the secrecy capacity per unit

cost can be calculated from the secrecy capacity-cost function. However, as shown in

(2.5) and (2.6), calculating the secrecy capacity-cost function usually involves finding

an optimal distribution for the input/auxiliary random variables and hence is highly

nontrivial in general. Next, following [4], we shall focus on the case where there is a

zero-cost letter in the input alphabet X (labeled as “0” throughout the rest of the

paper, i.e., b(0) = 0) and look for a more direct way to calculate the secrecy capacity

per unit cost without resorting to the secrecy capacity-cost function.
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2.3.1 Degraded Wiretap Channel

When there is a zero-cost letter in the input alphabet X , the secrecy capacity per

unit cost of a degraded wiretap channel can be calculated without resorting to the

secrecy capacity-cost function. The result is summarized in the following theorem.

Theorem 2. The secrecy capacity per unit cost Cs of the memoryless stationary

wiretap channel (X , (Y ,Z), PY,Z|X) under the degradedness assumption X → Y → Z

and with a zero-cost input letter “0” is given by

Cs = sup
x∈X

N(x)

b(x)
(2.22)

where

N(x) := D(PY |X=x‖PY |X=0)−D(PZ|X=x‖PZ|X=0) (2.23)

and D(P‖Q) denotes the (Kullback-Leibler) divergence between two generic proba-

bility distributions P and Q. Furthermore, the secrecy capacity per unit cost of the

channel can be achieved by an orthogonal coding scheme.

Proof. Let us first prove (2.22). The fact that

Cs ≥ sup
x∈X

N(x)

b(x)
(2.24)

does not depend on the assumption that the channel is degraded and can be inferred

from a stronger lower bound on the secrecy capacity per unit cost of the general

wiretap channel provided in Sec. 2.3.2. Next, we show that for degraded wiretap
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channels, we also have the reversed inequality

Cs ≤ sup
x∈X

N(x)

b(x)
. (2.25)

By the degradedness assumption X → Y → Z, the probability distributions

PZ|X=x, PZ|X=0 and PZ can be obtained from PY |X=x, PY |X=0 and PY respectively

via the same “processing” PZ|Y . By the data-processing inequality for divergence [8],

we have

D(PY |X=x‖PY |X=0) ≥ D(PZ|X=x‖PZ|X=0) (2.26)

D(PY ‖PY |X=0) ≥ D(PZ‖PZ|X=0). (2.27)

By (2.26), we have N(x) ≥ 0 for any x ∈ X . Let

X ′ := {x ∈ X : b(x) > 0}. (2.28)

If there exists an x ∈ X \ X ′ such that N(x) > 0, then N(x)/b(x) = ∞ and there

is nothing to prove from the converse point of view. Therefore, without loss of

generality we may assume that N(x) = 0 for all x ∈ X \ X ′.

Now consider the following relations between mutual information and divergence:

I(X;Y ) =

∫
X
D(PY |X=x‖PY |X=0)dPX(x)−

D(PY ‖PY |X=0) (2.29)

I(X;Z) =

∫
X
D(PZ|X=x‖PZ|X=0)dPX(x)−

D(PZ‖PZ|X=0). (2.30)
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We thus have

I(X;Y )− I(X;Z)

=

∫
X
N(x)dPX(x)−(
D(PY ‖PY |X=0)−D(PZ‖PZ|X=0)

)
(2.31)

≤
∫
X
N(x)dPX(x) (2.32)

=

∫
X ′
N(x)dPX(x) (2.33)

=

∫
X ′

N(x)

b(x)
b(x)dPX(x) (2.34)

≤
(

sup
x∈X ′

N(x)

b(x)

)∫
X ′
b(x)dPX(x) (2.35)

=

(
sup
x∈X ′

N(x)

b(x)

)∫
X
b(x)dPX(x) (2.36)

=

(
sup
x∈X ′

N(x)

b(x)

)
E[b(X)] (2.37)

≤
(

sup
x∈X

N(x)

b(x)

)
E[b(X)] (2.38)

where (2.32) follows from (2.27), and (2.33) follows from the assumption that N(x) =

0 for all x ∈ X \ X ′, and (2.36) follows from the definition of X ′. Substituting (2.5)

and (2.38) into (2.9) gives

Cs = sup
β>0

sup
E[b(X)]≤β

I(X;Y )− I(X;Z)

β
(2.39)

≤ sup
x∈X

N(x)

b(x)
· sup
β>0

sup
E[b(X)]≤β

E[b(X)]

β
(2.40)

= sup
x∈X

N(x)

b(x)
. (2.41)

This completes the proof of (2.22).

To show that for any given x ∈ X , the secrecy rate per unit cost N(x)/b(x)
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can be achieved by an orthogonal coding scheme, let us first consider x ∈ X ′. Fix

0 < δ < 2N(x)/b(x), 0 < ε < 1, and k to be a sufficiently large positive integer. Let

m = w0l0 for some integers w0 and l0 such that

exp

(
k

(
N(x)− δb(x)

2

))
<

w0 < exp

(
k

(
N(x)− δb(x)

3

))
(2.42)

and

exp

(
k

(
D(PZ|X=x‖PZ|X=0) +

δb(x)

12

))
<

l0 < exp

(
k

(
D(PZ|X=x‖PZ|X=0) +

δb(x)

6

))
. (2.43)

Codebook. Each codeword is identified by an integer pair (w, l), where w ∈

{1, . . . , w0} and l ∈ {1, . . . , l0}, and corresponds to an m× k matrix

{xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ k}.

Denote by xki the ith row of the codeword matrix {xi,j}. For codeword (w, l),

xki =

 (x, . . . , x) if i = (w − 1)l0 + l

(0, . . . , 0) otherwise.
(2.44)

Thus, the block length of this code n = mk, and the cost of each codeword is kb(x).

In this paper, the nonzero row of a codeword matrix is referred to as a “pulse”. Note

that the pulses for different codewords are non-overlapping, so the codewords are

orthogonal to each other.

Encoding. Given message W , randomly and uniformly choose an integer L ∈
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{1, . . . , l0}, and send codeword (W,L) through the channel. The randomness used for

choosing L is intrinsic to the transmitter and is not shared with either the legitimate

receiver or the eavesdropper.

Decoding at the legitimate receiver. Given the matrix of observations

{Yi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ k}

the decoder performs m independent binary hypothesis tests, one on each row of the

transmitted codeword matrix:

Hi,0 : xki = (0, . . . , 0)

Hi,1 : xki = (x, . . . , x)

for i = 1, . . . ,m. The conditional error probabilities of these tests are denoted by

α
(k)
i = Pr{Ĥi,1|Hi,0} (2.45)

β
(k)
i = Pr{Ĥi,0|Hi,1} (2.46)

and the decision rule is set so that β
(k)
i < ε/2. If one and only one Hi,1 was claimed

(denoted by Hî,1), we declare the transmitted codeword to be (ŵ, î− (ŵ− 1)l0) (and

the transmitted message to be ŵ) where ŵ is given by the smallest integer greater

than or equal to î/l0. Otherwise, an error is declared.

Obviously, the probability Pw,l for erroneously decoding the transmitted codeword

conditioned on codeword (w, l) being sent is independent of the value of (w, l) and

can be bounded from above as

P1,1 ≤ β
(k)
i + (m− 1)α

(k)
i . (2.47)
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Denote by Y k
i the ith row of the matrix of observations {Yi,j}. Note that Y k

i is i.i.d.

according to PY |X=0 under Hi,0 and i.i.d. according to PY |X=x under Hi,1. By the

Chernoff-Stein lemma [9], since β
(k)
i < ε/2, we can achieve

α
(k)
i < exp

(
−k
(
D(PY |X=x‖PY |X=0)−

δb(x)

12

))
(2.48)

for sufficiently large k. Consequently,

P1,1 < ε/2 +m exp

(
−k
(
D(PY |X=x‖PY |X=0)−

δb(x)

12

))
(2.49)

< ε/2 + exp(−kδb(x)/12) (2.50)

< ε (2.51)

for sufficiently large k, where (2.50) follows from the fact that

m = w0l0 < exp

(
k

(
D(PY |X=x‖PY |X=0)−

δb(x)

6

))
. (2.52)

Confidentiality at the eavesdropper. The mutual information between the trans-

mitted message W and the matrix of observations

{Zi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ k}
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is given by

I(W ; {Zi,j}) (2.53)

= H(W )−H(W |{Zi,j}) (2.54)

= H(W )−H(W,L|{Zi,j}) +H(L|W, {Zi,j}) (2.55)

= H(W )−H(W,L) + I(W,L; {Zi,j}) +H(L|W, {Zi,j}) (2.56)

= −H(L) + I({Xi,j}; {Zi,j}) +H(L|W, {Zi,j}). (2.57)

Induced by the random selection of (W,L), the transmitted codeword entries Xi,j

are identically distributed according to

PX(x) = 1− PX(0) = 1/m. (2.58)

Note from (2.42) and (2.43) that m→∞ in the limit as k →∞. By [10, Eq. (2.13)],

for any (i, j) ∈ {1, . . . ,m} × {1, . . . , k} we have

lim
k→∞

(mI(Xi,j;Zi,j)) = D(PZ|X=x‖PZ|X=0). (2.59)

Thus for sufficiently large k,

I({Xi,j}; {Zi,j}) ≤
m∑
i=1

k∑
j=1

I(Xi,j;Zi,j) (2.60)

< k

(
D(PZ|X=x‖PZ|X=0) +

εb(x)

2

)
(2.61)

where (2.60) follows from the fact that the channel is memoryless, and (2.61) fol-

lows from (2.59). We also have the following lemma, whose proof is provided in

Appendix B.
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Lemma 1.

H(L|W, {Zi,j})

< H(L)− k
(
D(PZ|X=x‖PZ|X=0)−

εb(x)

2

)
(2.62)

for sufficiently large k.

Substituting (2.61) and (2.62) into (2.57) gives

I(W ; {Zi,j}) < kb(x)ε. (2.63)

Combing (2.51) and (2.63), we have successfully constructed for any 0 ≤ ε < 1, any

0 < δ < 2N(x)/b(x), and any sufficiently large k, an (mk,w0, kb(x), ε, kb(x)ε) code

for which

logw0

kb(x)
>
N(x)

b(x)
− δ

2
. (2.64)

Per Remark 2, this proves that for any x ∈ X ′, the secrecy rate per unit cost

N(x)/b(x) can be achieved by the proposed orthogonal coding scheme.

For x ∈ X \X ′, we have b(x) = 0. If N(x) = 0, by our convention N(x)/b(x) = 0,

and there is nothing to prove from the achievability point of view. If, on the other

hand, N(x) > 0, replace b(x) by some positive real b in the previous analysis. Then,

the same orthogonal coding scheme can achieve the secrecy capacity per unit cost

N(x)/b for any b > 0. Letting b→ 0 proves that in this case, the proposed orthogonal

coding scheme can achieve an infinite secrecy rate per unit cost.

Combining the above two cases proves that for any x ∈ X , the secrecy rate per

unit cost N(x)/b(x) can be achieved by the proposed orthogonal coding scheme. This
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completes the proof of the entire theorem.

Compared with the expression (2.5) for the secrecy capacity-cost function, the

expression (2.22) for the secrecy capacity per unit cost involves only an optimization

over the input letter rather than the input distribution. For many specific channels,

this represents a significant reduction of the computational complexity.

Example 1. Consider the Gaussian wiretap channel

Y = X +N1

Z = X +N2 (2.65)

with a real channel input X and a quadratic cost function b(x) = x2, where N1 and

N2 are additive Gaussian noise with zero means and variance σ2
1 and σ2

2, respectively.

Assume that σ2
1 ≤ σ2

2. Just like the secrecy capacity, the secrecy capacity per unit

cost of the channel depends on the joint distribution of the additive noise (N1, N2)

only through its marginals. Thus, for the purpose of calculating the secrecy capacity

per unit cost we can write N2 = N1 + Ñ2 where Ñ2 is Gaussian with zero mean and

variance σ̃2
2 = σ2

2−σ2
1 and is independent of N1. It follows that the Gaussian wiretap

channel (2.65) can be equivalently written as

Y = X +N1

Z = X +N1 + Ñ2 (2.66)

which satisfies the Markov relation X → Y → Z. The divergence between two
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Gaussian random variables is given by

D(N (µ1, σ
2
1)‖N (µ0, σ

2
0))

= ln
σ0
σ1

+
σ2
1 − σ2

0 + (µ1 − µ0)
2

2σ2
0

. (2.67)

Therefore, for any x 6= 0 we have

N(x)

x2
=

1

2

(
1

σ2
1

− 1

σ2
2

)
. (2.68)

Thus, by (2.22) and without any optimization, we may conclude that the secrecy

capacity per unit cost of the Gaussian wiretap channel (2.65) under the quadratic

cost function b(x) = x2 is given by

Cs =
1

2

(
1

σ2
1

− 1

σ2
2

)
. (2.69)

Under some mild regularity conditions on the family of distributions {PY |X=x :

x ∈ R}, the following asymptotic result on divergence is known [11, Ch. 2.6]:

lim
x↓0

D(PY |X=x‖PY |X=0)

x2
=

1

2
J0(PY |X) (2.70)

where J0(PY |X) is the Fisher information over the parameter family {PY |X=x : x ∈

R} evaluated at x = 0. This result can be used to obtain a simple lower bound on

the secrecy capacity per unit cost.

Theorem 3. The secrecy capacity per unit cost Cs of the memoryless stationary

wiretap channel (X , (Y ,Z), PY,Z|X) with an input alphabet X = R and a quadratic
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cost function b(x) = x2 can be bounded from below as

Cs ≥
1

2

(
J0(PY |X)− J0(PZ|X)

)
. (2.71)

Proof. As mentioned previously in the proof of Theorem 2, for any x ∈ X the secrecy

rate per unit cost N(x)/b(x) (when it is positive) is achievable for any memoryless

stationary wiretap channels (not necessarily degraded) with a zero-cost input letter.

Under the quadratic cost function b(x) = x2, “0” is a zero-cost input letter, i.e.,

b(0) = 0. Thus, (2.71) can be proved by letting x ↓ 0 in N(x)/b(x) and applying the

asymptotic result (2.70) to both D(PY |X=x‖PY |X=0) and D(PZ|X=x‖PZ|X=0).

With the help of Theorem 3, we can prove a worst-noise property for the Gaussian

wiretap channel (2.65).

Theorem 4. Consider the memoryless stationary wiretap channel (2.66) with an

input alphabet X = R, a quadratic cost function b(x) = x2, and independent additive

noise N1 and Ñ2. While Ñ2 is assumed to be Gaussian with zero mean and variance

σ̃2
2 = σ2

2 − σ2
1, N1 is possibly non-Gaussian. The secrecy capacity per unit cost of the

channel

Cs ≥
1

2

(
1

σ2
1

− 1

σ2
2

)
(2.72)

for any distribution of N1 with zero mean and variance σ2
1. The equality holds when

N1 is also Gaussian.

Proof. By Theorem 3, the secrecy capacity per unit cost of the channel can be
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bounded from below as:

Cs ≥
1

2

(
J(N1)− J(N1 + Ñ2)

)
(2.73)

where J(X) denotes the Fisher information of generic random variable X relative to

a translation parameter. By the Fisher information inequality [12],

J(N1 + Ñ2) ≤
J(N1)J(Ñ2)

J(N1) + J(Ñ2)
=

J(N1)

σ̃2
2J(N1) + 1

(2.74)

where the last equality follows from the fact that Ñ2 is N (0, σ̃2
2) so J(Ñ2) = 1/σ̃2

2.

Substituting (2.74) into (2.73), we have

Cs ≥
1

2

σ̃2
2 (J(N1))

2

σ̃2
2J(N1) + 1

(2.75)

Note that the right-hand side of (2.75) is monotonically increasing with J(N1). By

the well-known Cramér-Rao inequality,

J(N1) ≥
1

σ2
1

. (2.76)

Substituting (2.76) into (2.75) gives

Cs ≥
1

2

σ̃2
2

σ2
1(σ2

1 + σ̃2
2)

=
1

2

(
1

σ2
1

− 1

σ2
2

)
. (2.77)

This completes the proof of the theorem.

2.3.2 General Wiretap Channel

For general memoryless stationary wiretap channels with a zero-cost input letter,

the following secrecy rates per unit cost can be achieved by an orthogonal coding
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scheme.

Theorem 5. The secrecy capacity per unit cost Cs of the memoryless stationary

wiretap channel (X , (Y ,Z), PY,Z|X) with a zero-cost input letter “0” can be bounded

from below as

Cs ≥ sup
PX

D(PY ‖PY |X=0)−D(PZ‖PZ|X=0)

E[b(X)]
(2.78)

where

PY =

∫
X
PY |X=xdPX(x) (2.79)

PZ =

∫
X
PZ|X=xdPX(x) (2.80)

and

E[b(X)] =

∫
X
b(x)dPX(x). (2.81)

Furthermore, for any PX over X such that both

D(PY ‖PY |X=0)−D(PZ‖PZ|X=0)

and E[b(X)] are positive, the secrecy rate per unit cost

Rs =
D(PY ‖PY |X=0)−D(PZ‖PZ|X=0)

E[b(X)]
(2.82)

can be achieved by an orthogonal coding scheme.

Proof. Let us first prove (2.78). For general memoryless stationary wiretap channels,
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by (2.6) and (2.9) we have

Cs ≥
I(V ;Y )− I(V ;Z)

E[b(X)]
(2.83)

for any joint distribution PY,Z,X,V = PY,Z|XPX|V PV . Consider the following distribu-

tion for (V,X): V is a binary random variable such that

PV (1) = 1− PV (0) = 1/m (2.84)

for some positive integer m, and X ∼ PX|V=1 if V = 1 and X = 0 with probability

one if V = 0. For this particular choice of distribution for (V,X), we have

PY |V=0 = PY |X=0 (2.85)

PZ|V=0 = PZ|X=0 (2.86)

PY |V=1 =

∫
X
PY |X=xdPX|V=1(x) (2.87)

PZ|V=1 =

∫
X
PZ|X=xdPX|V=1(x) (2.88)

and

E[b(X)] =
1

m
E[b(X)|V = 1]. (2.89)

By [10, Eq. (2.13)], we also have

lim
m→∞

(mI(V ;Y )) = D(PY |V=1‖PY |V=0) (2.90)

lim
m→∞

(mI(V ;Z)) = D(PZ|V=1‖PZ|V=0). (2.91)
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Substituting (2.89)–(2.91) into (2.83) gives

Cs ≥ lim
m→∞

m (I(V ;Y )− I(V ;Z))

E[b(X)|V = 1]
(2.92)

=
D(PY |V=1‖PY |V=0)−D(PZ|V=1‖PZ|V=0)

E[b(X)|V = 1]
(2.93)

=
D(PY |V=1‖PY |X=0)−D(PZ|V=1‖PZ|X=0)

E[b(X)|V = 1]
(2.94)

for any PX|V=1 over X . Renaming PX|V=1, PY |V=1 and PZ|V=1 as PX , PY and PZ

respectively completes the proof of (2.78).

To prove that (2.82) can be achieved by an orthogonal coding scheme, we shall

consider the following modification of the orthogonal coding scheme proposed for the

degraded case.

Let m = w0l0 for some integers w0 and l0 such that

w0 ≈ exp
(
k
(
D(PY ‖PY |X=0)−D(PZ‖PZ|X=0)

))
(2.95)

l0 ≈ exp
(
kD(PZ‖PZ|X=0)

)
(2.96)

and t0 be an integer such that

t0 ≈ exp (kI(X;Z)) . (2.97)

Let C = {ck(1), . . . , ck(t0)} be a collection of t0 length-k vectors from X k.

Codebook. Each codeword is identified by an integer triple (w, l, t), where w ∈

{1, . . . , w0}, l ∈ {1, . . . , l0}, and t ∈ {1, . . . , t0}, and corresponds to an m× k matrix

{xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ k}.
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Denote by xki the ith row of the codeword matrix {xi,j}. For codeword (w, l, t),

xki =

 ck(t) if i = (w − 1)l0 + l

(0, . . . , 0) otherwise.
(2.98)

Encoding. Given message W , randomly, uniformly, and independently choose an

integer L ∈ {1, . . . , l0} and an integer T ∈ {1, . . . , t0}, and send codeword (W,L, T )

through the channel. The randomness used for choosing L and T is intrinsic to the

transmitter and is not shared with neither the legitimate receiver nor the eavesdrop-

per. Note that:

1) even though the codewords are not necessarily orthogonal to each other, the

codewords representing different messages remain orthogonal to each other;

and

2) compared with the orthogonal coding scheme proposed for the degrade case,

additional randomization on the “shape” of the pulse is used in the modified

scheme.

Decoding at the legitimate receiver. Given the matrix of observations

{Yi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ k}

the decoder performs m independent binary hypothesis tests, one on each row of the

transmitted codeword matrix:

Hi,0 : xki = (0, . . . , 0)

Hi,1 : xki uniformly drawn from C

for i = 1, . . . ,m. If one and only one Hi,1 was claimed (denoted by Hî,1), we declare
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the transmitted message to be the smallest integer greater than or equal to î/l0.

Otherwise, an error is declared.

Performance analysis. Using a random-coding argument for which the entries of

the vectors from C are independently generated according to PX , it can be shown

that for sufficiently large k:

1) the cost associated with each vector from C is approximately kE[b(X)]; and

2) xki , when uniformly drawn from C, has approximately i.i.d. entries according

to PX .

Then, following the same footsteps as those for the degraded case, it can be shown

that the secrecy rate per unit cost (2.82) can be achieved by the proposed coding

scheme. This completes the proof of the theorem.

Note that if we choose X = x with probability one, the right-hand side of (2.78)

reduces to (2.22) which was shown to be the secrecy capacity per unit cost when the

wiretap channel is degraded. The following example, however, shows that further

randomization of the pulse shape can strictly improve the achievable secrecy rate per

unit cost when the wiretap channel is not degraded.

Example 2. Consider a binary memoryless stationary wiretap channel with X =

Y = {0, 1}. The marginal channel transition probabilities are given by

PY |X=1 = (0.4, 0.6), PY |X=0 = (0.6, 0.4)

PZ|X=1 = (0.3, 0.7), PZ|X=0 = (0.5, 0.5).

Obviously, the channel is not degraded. The cost function is given by b(0) = 0 and
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b(1) = 1. Simple calculations give

D(PY |X=1‖PY |X=0)−D(PZ|X=1‖PZ|X=0)

b(1)
≈ −0.0012.

Therefore, orthogonal codes with constant pulse shape cannot achieve any positive

secrecy rate per unit cost. On the other hand, let PX = (0.5, 0.5) and we get

PY = (0.5, 0.5) and PZ = (0.4, 0.6).

By Theorem 5, the following secrecy rate per unit cost is achievable by an orthogonal

code with randomized pulse shape:

D(PY ‖PY |X=0)−D(PZ‖PZ|X=0)

E[b(X)]
≈ 0.0006.

So at least for this simple example, further randomization of the pulse shape can

strictly improve the achievable secrecy rate per unit cost.

2.3.3 MIMO Wiretap Channel

We consider the model of a MIMO wiretap channel with t transmit antennas, r

receive antennas at the legitimate receiver’s terminal and e receive antennas at the

eavesdropper’s terminal:

Y = HrX + Nr

Z = HeX + Ne

(2.99)

where Hr ∈ Rr×t and He ∈ Re×t are the channel gain matrices associated re-

spectively with the legitimate receiver and the eavesdropper, and Nr ∈ Rr×1 and

Ne ∈ Re×1 are independent additive Gaussian noise vectors with zero mean and
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identity covariance matrices Ir and Ie.

The secrecy capacity of the MIMO Gaussian wiretap channel was characterized

in [13,14] under the average total power constraint and in [15] under the more general

matrix constraint. Here, we show that the secrecy capacity per unit cost under

the quadratic cost function b(x) = ‖x‖2 can be achieved by orthogonal codes with

constant pulse shape.

We make the following assumptions:

• the transmitted signal vector X with covariance matrix KX � 0, satisfies the

power constraint tr(KX) ≤ β.

• Hr and He are fixed channel gain matrices such that Ht
rHr � 0 , Ht

eHe � 0.The

channel gain matrices considered in this section are assumed to be fixed and

known to all three terminals.

Theorem 6. The secrecy capacity per unit cost of the Gaussian MIMO wiretap

channel as given by (2.99), with a zero-cost input letter “0” is bounded from below

as

Cs ≥ λt (2.100)

where λt is the maximum eigenvalue of of the Matrix M := Ht
rHr −Ht

eHe

Proof. A natural lower bound for Cs is given by (2.71), since the assumption of a

degraded version of the wiretap channel gives a weaker channel as compared to the

general wiretap channel:

Cs ≥ sup
x

D(PY|X=x‖PY|X=0)−D(PZ|X=x‖PZ|X=0)

‖x‖2 (2.101)

The expression for the divergence between two Gaussian distributions is well
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known [16]

D(N(µ1,Σ1)‖N(µ0,Σ0)) = (µ1 − µ0)
tΣ−10 (µ1 − µ0)

+ log det Σ0 − log det Σ1

+ tr(Σ−10 Σ1 − I)

(2.102)

Use (2.102) to evaluate the right-hand side of (2.101)

C ≥ sup
x

‖Hrx‖2 − ‖Hex‖2
‖x‖2

= sup
x

xt(Ht
rHr −Ht

eHe)x

‖x‖2

= sup
x

xtMx

‖x‖2 (2.103)

where M := Ht
rHr − Ht

eHe is a real and symmetric matrix of dimension t. The

right-hand side of (2.103) is a maximization of a Rayleigh quotient which is achieved

whenever x is proportional to the unit eigenvector associated with the maximum

eigenvalue λt of the matrix M [17]. As a result:

C ≥ λt (2.104)
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3. SECURE COMMUNICATION WITH KNOWN INTERFERENCE

3.1 Introduction

In information theory, an interesting and useful communication model is a state-

dependent channel where the channel states are non-causally known at the transmit-

ter as side information. Of particular importance is a discrete-time channel with real

input and additive white Gaussian noise and interference, where the interference is

non-causally known at the transmitter as side information.

Costa [18] was the first to study this communication scenario, which he whim-

sically coined as “writing on dirty paper.” Based on an earlier result of Gel’fand

and Pinsker [19], Costa [18] proved the surprising result that the capacity of writing

on dirty paper is the same as that of writing on clean paper without interference.

Since [18], dirty-paper coding has found a wide range of applications in digital wa-

termarking and network communications, particularly involving broadcast scenarios.

Recent works [20] and [21] studied the problem of dirty-paper coding in the

presence of an additional eavesdropper, which is a natural extension of Costa’s dirty-

paper channel to the secrecy communication setting. In this scenario, which we dub

as “secret writing on dirty paper”, the legitimate receiver channel is a dirty-paper

channel of Costa. The signal received at the eavesdropper, on the other hand, is

assumed to be a degraded version of the signal received at the legitimate receiver.

An achievable secrecy rate was established based on a double-binning scheme and

was shown to be the secrecy capacity of the channel under some channel parameter

configurations [20, 21]. For the general channel parameter configuration, however,

the secrecy capacity of the channel remains unknown.

In facing some challenging Gaussian network communication problems, recent
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advances [22, 23] in network information theory advocate a deterministic approach

and seeks approximate characterization of the network capacity to within finite bits

(regardless of the received signal-to-noise ratios). Motivated by the success of [22]

and [23], we take a deterministic view and revisit the problem of wiretap channel

with side information. A precise characterization of the secrecy capacity is obtained

for a linear deterministic model, which naturally suggests a coding scheme which we

show to achieve the secrecy capacity of the degraded Gaussian model to within half

a bit.

3.2 Writing on Dirty Paper

3.2.1 Gaussian Model

Consider the dirty-paper channel of Costa [18], where the received signal Y [i] at

time index i is given by

Y [i] = hX[i] + gS[i] +N [i]. (3.1)

Here, X[i] is the channel input which is subject to a unit average power constraint,

N [i] and S[i] are independent standard Gaussian noise and interference and are in-

dependently identically distributed (i.i.d.) across the time index i, and h and g

are the (real) channel coefficients corresponding to the channel input and interfer-

ence, respectively. The interference S[i] is assumed to be non-causally known at the

transmitter as side information. The channel coefficients h and g are fixed during

communication and are assumed to be known at both transmitter and receiver.

The channel capacity, as shown by Costa [18], is given by

C = I(U ;Y )− I(U ;S)
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where the input variable X is standard Gaussian and independent of the known

interference S, and U is an auxiliary variable chosen as

U = hX +
h2

h2 + 1
gS. (3.2)

For this choice of auxiliary-input variable pair (U,X),

I(U ;Y )− I(U ;S) =
1

2
log(1 + h2)

which equals the capacity of the channel (3.1) when the interference S[i] is also known

at the receiver.

3.2.2 Linear Deterministic Model

Consider the linear deterministic model [23] for Costa’s dirty-paper channel (3.1),

where the received signal Y [i] at time index i is given by

Y [i] = Dq−nX[i]⊕Dq−mS[i]. (3.3)

Here, X[i] is the binary input vector of length q = max{n,m}, S[i] is the i.i.d.

interference vector whose elements are i.i.d. Bernoulli-1/2, D = [dj,k] is the q × q

down-shift matrix with elements

dj,k =

 1 if 2 ≤ j = k + 1 ≤ q

0 otherwise

and n and m are the integer channel gains corresponding to the channel input and

interference, respectively. The vector interference S[i] is assumed to be non-causally

known at the transmitter as side information. The channel gains n and m are
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fixed during communication and are assumed to be known at both transmitter and

receiver.

Following the result of Gel’fand and Pinsker [19], the capacity of the linear de-

terministic dirty-paper channel (3.3) is given by

C = I(U ;Y )− I(U ;S)

where the input variable X is an i.i.d. Bernoulli-1/2 random vector and independent

of S, and U is an auxiliary variable chosen as

U = Y = Dq−nX ⊕Dq−mS. (3.4)

For this choice of the auxiliary-input variable pair (U,X),

I(U ;Y )− I(U ;S) = I(Y ;Y )− I(Y ;S)

= H(Y )− I(Y ;S)

= H(Y |S)

= H(Dq−nX)

= rank(Dq−n)

= n

which equals the capacity of the channel (3.3) when the interference S[i] is also known

at the receiver.

We emphasize that in (3.4), we may choose U = Y only because Y here is a

deterministic function of X and S. In fact, for any deterministic Gel’fand-Pinsker

channel (not necessarily linear) where the channel output Y is a deterministic (bivari-
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ate) function of the channel input X and state S, maxp(x|s)H(Y |S) is the capacity

of the channel when the channel state S is also known at the receiver. Thus, U = Y

is always an optimal choice for deterministic Gel’fand-Pinsker channels, a fact which

was also observed in [24] recently.

3.2.3 Connections between the Gaussian and the Linear Deterministic Model

A quick comparison between the Gaussian (3.1) and the linear deterministic (3.3)

models reveals the following equivalence relationship between these two models:

h←→ Dq−n and g ←→ Dq−m. (3.5)

Given this equivalence relationship, the optimal choice (3.4) of auxiliary variable U

for the linear deterministic model (3.3) naturally suggests the following choice of

auxiliary variable U for the Gaussian model (3.1):

U = hX + gS (3.6)

where X is standard Gaussian and independent of S. Compared with the optimal

choice (3.2), the choice (3.6) of auxiliary variable U is suboptimal. However, for this

suboptimal choice of auxiliary-input variable pair (U,X),

I(U ;S) =
1

2
log

(
1 +

g2

h2

)
and I(U ;Y ) =

1

2
log(1 + h2 + g2)
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giving an achievable rate

R = [I(U ;Y )− I(U ;S)]+

=

[
1

2
log

(1 + h2 + g2)h2

h2 + g2

]+
≥

[
1

2
log(h2)

]+

which is always within half a bit of the actual channel capacity C = 1
2

log(1 + h2).

Here, we denote x+ := max{0, x} so that the achievable rates are always nonnegative.

The fact that the choice (3.6) of auxiliary variable U leads to an achievable rate

which is always within half a bit of the dirty-paper channel capacity is well known

(see [25] for example). However, it is interesting to see that such a choice comes up

naturally in the context of the deterministic approach.

3.3 Secret Writing on Dirty Paper

Having understood how the linear deterministic model of [23] may be used to ob-

tain an approximate characterization of the capacity of Costa’s dirty-paper channel,

next we shall extend the deterministic approach to the problem of secret writing on

dirty paper.
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3.3.1 Discrete Memoryless Model

Transmitter

Legitimate
Receiver

Eavesdropper

W
Xn

Sn

Y n
1

Y n
2

p(y1, y2|x, s)

Ŵ

1

n
I(W ; Y n

2 ) → 0

Figure 3.1: Wiretap channel with side information.

As illustrated in Fig. 3.1, consider a discrete-time memoryless wiretap channel

with transition probability p(y1, y2|x, s), where X[i] is the channel input (at time

index i), S[i] is the channel state, and Y1[i] and Y2[i] are the received signals at the

legitimate receiver and the eavesdropper, respectively. The channel state S[i] is i.i.d.

across the time index i and is assumed to be non-causally known at the transmitter

as side information. The transmitter has a message W , which is intended for the

legitimate receiver but needs to be kept asymptotically perfectly secret from the

eavesdropper. Following the classical works [2] and [3], it is required that

1

n
I(W ;Y n

2 )→ 0 (3.7)

in the limit as the block length n→∞, where Y n
2 := (Y2[1], . . . , Y2[n]). The secrecy

capacity Cs is defined as the largest secrecy rate that can be achieved by a coding

scheme.
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Chen and Vinck [21] derived a single-letter lower bound on the secrecy capacity

(an achievable secrecy rate), which can be written as

Cs ≥ maxp(u,x|s) min {I(U ;Y1)− I(U ;S),

I(U ;Y1)− I(U ;Y2)}
(3.8)

where U is an auxiliary variable satisfying the Markov chain U → (X,S)→ (Y1, Y2).

We also have the following simple upper bound on the secrecy capacity.

Proposition 1. The secrecy capacity Cs of a discrete memoryless wiretap chan-

nel p(y1, y2|x, s) with channel state S non-causally known at the transmitter as side

information can be bounded from above as

Cs ≤ max
p(x|s)

min {I(X;Y1|S), I(X,S;Y1|Y2)} . (3.9)

Note that maxp(x|s) I(X;Y1|S) is an upper bound on the Shannon capacity of the

legitimate receiver channel by giving the channel state S to the legitimate receiver,

and maxp(x|s) I(X,S;Y1|Y2) is an upper bound on the secrecy capacity of the wiretap

channel by allowing the transmit message W to be encoded by the channel state

S (i.e., fully action-dependent state [26]) and by giving the received signal Y2 to

the legitimate receiver. Here, a simple single-letterization technique of Willems [27]

allows the maximizations to be moved outside the minimization. See Appendix C

for the details of the proof.

For semi-deterministic channels where the channel output at the legitimate re-

ceiver is a deterministic (bivariate) function of the channel input and state, the lower

(3.8) and the upper (3.9) bounds coincide, leading to a precise characterization of

the secrecy capacity. The result is summarized in the following theorem.
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Theorem 7. Consider a discrete memoryless wiretap channel p(y1, y2|x, s) with

channel state S non-causally known at the transmitter as side information. If the

received signal Y1 at the legitimate receiver is a deterministic function of the channel

input X and state S, i.e., Y1 = f(X,S) for some bivariate function f , the secrecy

capacity Cs of the channel is given by

Cs = max
p(x|s)

min {H(Y1|S), H(Y1|Y2)} . (3.10)

Proof. The fact that

Cs ≥ max
p(x|s)

min {H(Y1|S), H(Y1|Y2)}

follows from the lower bound (3.8) by setting U = Y1 (we may do so only because

here Y1 is a deterministic function of X and S), which gives

I(U ;Y1)− I(U ;S) = H(Y1)− I(Y1;S) = H(Y1|S)

and similarly

I(U ;Y1)− I(U ;Y2) = H(Y1)−H(Y1|Y2) = H(Y1|Y2).

The converse part of the theorem follows from the upper bound (3.9) and the

fact that Y1 is a deterministic function of (X,S), so we have

I(X;Y1|S) = H(Y1|S)−H(Y1|X,S) = H(Y1|S)
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and

I(X,S;Y1|Y2) = H(Y1|Y2)−H(Y1|X,S, Y2) = H(Y1|Y2).

This completes the proof of the theorem.

Note that when the channel state S is deterministic, a semi-deterministic wiretap

channel with side information reduces to a regular semi-deterministic wiretap channel

without side information. In this case, let S be a constant in (3.10) and we have

Cs = max
p(x)

min {H(Y1), H(Y1|Y2)} = max
p(x)

H(Y1|Y2)

which recovered the result of [28] on the secrecy capacity of the semi-deterministic

wiretap channel (without side information).

3.3.2 Linear Deterministic Model

Next, let us use the result of Theorem 7 to determine the secrecy capacity of

a linear deterministic wiretap channel with side information. In this model, the

received signals (at time index i) at the legitimate receiver and the eavesdropper are

given by

Y1[i] = Dq−n1X[i]⊕Dq−m1S[i]

Y2[i] = Dq−n2X[i]⊕Dq−m2S[i]
(3.11)

where X[i] is the binary input vector of length q = max{n1, n2,m1,m2}, S[i] is the

i.i.d. vector interference whose elements are i.i.d. Bernoulli-1/2, D is the q × q

down-shift matrix, and n1, n2, m1 and m2 are the integer channel gains. The vector

interference S[i] is assumed to be non-causally known at the transmitter as side

information. The channel gains n1, n2, m1 and m2 are fixed during communication

and are assumed to be known at all terminals.

The following theorem provides an explicit characterization of the secrecy capac-
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ity of the linear deterministic wiretap channel (3.11) with side information.

Theorem 8. The secrecy capacity Cs of the linear deterministic wiretap channel

(3.11) with side information is given by

Cs =



n1, if n1 −m1 6= n2 −m2,

n1 ≤ m1 or n2 ≤ m2

max {m1, n1 − n2 +m2} ,

if n1 −m1 6= n2 −m2,

n1 > m1 and n2 > m2

(n1 − n2)
+, if n1 −m1 = n2 −m2.

(3.12)

To prove Theorem 8, let us first prove the following proposition.

Proposition 2. The secrecy capacity Cs of the linear deterministic wiretap channel

(3.11) with side information is given by

Cs = min

n1, rank


 A

B


− rank(B)

 (3.13)

where

A :=

[
Dq−n1 Dq−m1

]
and B :=

[
Dq−n2 Dq−m2

]
.

(3.14)

Proof. To prove (3.13), we shall show that for the linear deterministic model (3.11),

bothH(Y1|S) andH(Y1|Y2) are simultaneously maximized whenX is an i.i.d. Bernoulli-

1/2 random vector and independent of S.
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First,

H(Y1|S) = H(Dq−n1X|S)

≤ H(Dq−n1X)

≤ rank(Dq−n1)

= n1 (3.15)

where the equalities hold when X is an i.i.d. Bernoulli-1/2 random vector and inde-

pendent of S. To show that H(Y1|Y2) is also maximized when X is an i.i.d. Bernoulli-

1/2 random vector and independent of S, we shall need the following technical lemma,

which can be proved using a counting argument as provided in Appendix D.

Lemma 2. For any matrices A and B in F2 (Galois field of size 2) that have the

same number of columns,

maxH(AZ|BZ) = rank


 A

B


− rank(B) (3.16)

where the maximization is over all possible binary random vector Z. The maximum

is achieved when Z is an i.i.d. Bernoulli-1/2 random vector.

Now let

Z :=

 X

S

 .
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By Lemma 2,

H(Y1|Y2) = H(AZ|BZ)

≤ rank


 A

B


− rank(B) (3.17)

where the equality holds when X is an i.i.d. Bernoulli-1/2 random vector and inde-

pendent of S.

Substituting (3.15) and (3.17) into (3.10) completes the proof of the proposition.

Given Proposition 2, the explicit characterization (3.12) of the secrecy capacity

Cs can be obtained from (3.13) by evaluating the rank of the matrices

 A

B


and B. The details of the evaluation process are provided in Appendix E.

3.3.3 Degraded Gaussian Model

Finally, let us consider the Gaussian wiretap channel where the received signals

(at time index i) at the legitimate receiver and the eavesdropper are given by

Y1[i] = h1X[i] + g1S[i] +N1[i]

Y2[i] = h2X[i] + g2S[i] +N2[i].
(3.18)

Here, X[i] is the channel input which is subject to a unit average power constraint,

Nk[i], k = 1, 2 and S[i] are independent standard Gaussian noise and interference

and are i.i.d. across the time index i, and h1, h2, g1 and g2 are the (real) channel
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coefficients. The interference S[i] is assumed to be non-causally known at the trans-

mitter as side information. The channel coefficients h1, h2, g1 and g2 are fixed during

communication and are assumed to be known at all terminals.

A single-letter expression for an achievable secrecy rate was given in (3.8), which

involves an auxiliary variable U . However, it is not clear what would be a reasonable

choice of U , letting alone finding an optimal one that maximizes the achievable

secrecy rate expression (3.8). On the other hand, for the linear deterministic model

(3.11), it is clear from Theorem 7 and Proposition 2 that the following choice of

auxiliary variable U is optimal:

U = Y1 = Dq−n1X ⊕Dq−m1S (3.19)

where X is an i.i.d. Bernoulli-1/2 random vector and independent of S.

Based on the equivalence relationship (3.5) between the Gaussian and the linear

deterministic model and the success of Sec. 3.2 for Costa’s dirty-paper channel, the

optimal choice (3.19) of auxiliary variable U for the linear deterministic model (3.11)

suggests the following choice of auxiliary variable U for the Gaussian model (3.18):

U = h1X + g1S (3.20)

where X is standard Gaussian and independent of S. For this choice of auxiliary-

input variable pair (U,X),

I(U ;S) =
1

2
log

(
1 +

g21
h21

)
(3.21)

I(U ;Y1) =
1

2
log(1 + h21 + g21) (3.22)

and I(U ;Y2) =
1

2
log

(h21 + g21)(1 + h22 + g22)

h21 + g21 + (h1g2 − h2g1)2
(3.23)
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giving

I(U ;Y1)− I(U ;S) =
1

2
log

(1 + h21 + g21)h21
h21 + g21

and

I(U ;Y1)− I(U ;Y2)

=
1

2
log

(1 + h21 + g21)[h21 + g21 + (h1g2 − h2g1)2]
(h21 + g21)(1 + h22 + g22)

.

By the single-letter achievable secrecy rate expression (3.8),

Rs =
(

min
{

1
2

log
(1+h21+g

2
1)h

2
1

h21+g
2
1

,

1
2

log
(1+h21+g

2
1)[h

2
1+g

2
1+(h1g2−h2g1)2]

(h21+g
2
1)(1+h

2
2+g

2
2)

})+ (3.24)

is an achievable secrecy rate for the Gaussian wiretap channel (3.18) with side infor-

mation.

Following the works [20] and [21], below we focus on the special case where

h2 = βh1 and g2 = βg1 (3.25)

for some |β| ≤ 1. Note that the secrecy capacity of the channel (3.18) does not

depend on the correlation between the additive Gaussian noise N1[i] and N2[i], so

we may write

N2[i] = βN1[i] +N [i]

where N [i] is Gaussian with zero mean and variance 1−β2 and independent of N1[i].

Thus, for the special case of (3.25), the channel (3.18) can be equivalently written
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as

Y1[i] = h1X[i] + g1S[i] +N1[i]

Y2[i] = βY1[i] +N [i]
(3.26)

i.e., the received signal Y2[i] at the eavesdropper is degraded with respect to the the

received signal Y1[i] at the legitimate receiver.

Following [18], an interesting interpretation of the degraded Gaussian model

(3.26) is “secret writing on dirty paper.” In this scenario, a user intends to convey

(to a legitimate receiver) a confidential message on a piece of paper with preexisting

dirt on it. The legitimate receive has access to the original paper with the mes-

sage written on it and hence can decode the intended message. On the other hand,

the eavesdropper can only access a noisy copy of the original paper, from which

essentially no information on the conveyed message can be inferred.

Next, we show that for the degraded Gaussian model (3.26), the achievable se-

crecy rate (3.24) is always within half a bit of the secrecy capacity. The result is

summarized in the following theorem.

Theorem 9. For the degraded Gaussian wiretap channel (3.26) with side informa-

tion, the secrecy capacity Cs can be bounded as

(
min

{
1
2

log
(1+h21+g

2
1)h

2
1

h21+g
2
1

, 1
2

log
1+h21+g

2
1

1+β2(h21+g
2
1)

})+
≤

Cs ≤ min
{

1
2

log(1 + h21),
1
2

log
2(h21+g

2
1)+1

2β2(h21+g
2
1)+1

}
.

(3.27)

Moreover, the lower bound here is always within half a bit of the upper bound.

Proof. The lower bound in (3.27) follows from (3.24) and the degradedness assump-

tion (2.22). To prove the upper bound, note that for any input variable X such that

52



E[X2] ≤ 1 we have

I(X;Y1|S) = h(Y1|S)− h(Y1|X,S)

= h(h1X +N1|S)− h(N1)

≤ h(h1X +N1)− h(N1)

≤ 1

2
log(1 + h21Var(X))

≤ 1

2
log(1 + h21). (3.28)

Furthermore,

I(X,S;Y1|Y2)

= h(Y1|Y2)− h(Y1|X,S, Y2)

= h(Y1|βY1 +N)− h(N1|βN1 +N)

= h(Y1|βY1 +N)− 1

2
log
(
2πe(1− β2)

)
. (3.29)

By an inequality of Thomas [29, Lemma 1] and the independence between Y1 and

N ,

h(Y1|βY1 +N) ≤ 1

2
log

2πeVar(Y1)(1− β2)

β2Var(Y1) + (1− β2)
. (3.30)

Note that the right-hand side of (3.30) is a monotone increasing function of Var(Y1),

which can be bounded from above as

Var(Y1) = Var(h1X + g1S +N1)

= Var(h1X + g1S) + 1

≤ 2 (Var(h1X) + Var(g1S)) + 1

≤ 2h21 + 2g21 + 1.
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Hence,

h(Y1|βY1 +N)

≤ 1

2
log

2πe(2h21 + 2g21 + 1)(1− β2)

β2(2h21 + 2g21 + 1) + (1− β2)

=
1

2
log

2πe(2h21 + 2g21 + 1)(1− β2)

2β2(h21 + g21) + 1
. (3.31)

Substituting (3.31) into (3.29), we have

I(X,S;Y1|Y2) ≤
1

2
log

2(h21 + g21) + 1

2β2(h21 + g21) + 1
. (3.32)

Further substituting (3.28) and (3.32) into (3.9) establishes the upper bound in

(3.27).

To show that the lower bound is always within half a bit of the upper bound, let

us define

a :=
1

2
log(1 + h21)

b :=
1

2
log

2(h21 + g21) + 1

2β2(h21 + g21) + 1

c :=
1

2
log

(1 + h21 + g21)h21
h21 + g21

and d :=
1

2
log

1 + h21 + g21
1 + β2(h21 + g21)

.

We shall consider the following two cases separately.

Case 1: h21 < 1. In this case,

a =
1

2
log(1 + h21) <

1

2
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and the gap between the upper and the lower bound can be bounded from above as

min{a, b} − (min{c, d})+ ≤ min{a, b} ≤ a <
1

2
. (3.33)

Case 2: h21 ≥ 1. In this case,

a− c =
1

2
log(1 + h21)−

1

2
log

(1 + h21 + g21)h21
h21 + g21

≤ 1

2
log(1 + h21)−

1

2
log(h21)

=
1

2
log

(
1 +

1

h21

)
≤ 1

2
. (3.34)

Note that for any channel parameters h1, g1 and β,

b− d =
1

2
log

2(h21 + g21) + 1

2β2(h21 + g21) + 1
− 1

2
log

1 + h21 + g21
1 + β2(h21 + g21)

=
1

2
log

[
2(h21 + g21) + 1

1 + h21 + g21
· 1 + β2(h21 + g21)

2β2(h21 + g21) + 1

]
≤ 1

2
log

2(h21 + g21) + 1

1 + h21 + g21

≤ 1

2
log

2(h21 + g21) + 2

1 + h21 + g21

=
1

2
(3.35)
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Figure 3.2: A numerical comparison between the achievable secrecy rates for choosing
α = α∗ and α = 1 in (3.38). Both α∗ and the achievable secrecy rate Rs are plotted
as a function of h21, while g1 and β are fixed to be 1 and 0.5, respectively.

and for any real scalers a, b, c and d,

min{a, b} − (min{c, d})+

≤ min{a, b} −min{c, d}

= max {min{a, b} − c,min{a, b} − d}

= max{a− c, b− d}. (3.36)

Substituting (3.34) and (3.35) into (3.36), we have

min{a, b} − (min{c, d})+ ≤ max

{
1

2
,
1

2

}
=

1

2
. (3.37)

Combining the above two cases proves that the lower bound in (3.27) is always

within half a bit of the upper bound. This completes the proof of the theorem.
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Finally, we note that the work [20] considered, as a heuristic choice, the auxiliary

variable

U = h1X + αg1S (3.38)

where X is standard Gaussian and independent of S, and α is chosen to maximize

the achievable secrecy rate. A closed-form expression for the maximizing α can be

written as

α∗ =


h21
h21+1

, if 0 ≤ h21 < h21L
β2h21

(
|g1|+
√
h21+g

2
1+1/β2

)
|g1|(1+β2h21)

, if h21L ≤ h21 < h21H

1, if h21 ≥ h21H

where

h21L =

(
−g

2
1

2
− 1 +

|g1|
2

√
g21 +

4

β2
− 4

)+

and h21H = −g
2
1

2
+
|g1|
2

√
g21 +

4

β2
.

Thus, for h21 ≥ h21H , the heuristic choice (3.38) with the maximizing α coincides with

the choice U = h1X + g1S suggested by the linear deterministic model.

A numerical comparison between the achievable secrecy rates for choosing α = α∗

and α = 1 in (3.38) as well as the upper bound in (3.27) is provided in Figure 3.2.

As we can see, when h21 (which represents the received signal-to-noise ratio at the

legitimate receiver) is small, the choice α = 1 (as suggested by the linear deterministic

model) can be very suboptimal in maximizing the achievable secrecy rate. However,

in this case, the secrecy capacity of the channel is also small, so the achievable secrecy

rate given by the suboptimal choice α = 1 remains within half a bit of the secrecy

capacity. For small h21, substantial improvement to the achievable secrecy rate can

be made by optimizing over α. In fact, when h21 ≤ h21L, the achievable secrecy rate
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given α =
h21

1+h21
coincides with the upper bound and hence gives the exact secrecy

capacity of the channel. When h21 is large, the maximizing α approaches 1 (it is

exactly equal to 1 when h21 ≥ h21H), and both choices lead to achievable secrecy rates

which are within half a bit of the secrecy capacity.

3.4 Secret-Key Agreement via Dirty-Paper Coding

A different but closely related communication scenario is secret-key agreement via

dirty-paper coding, which was first considered in [30]. In this setting, the channel

model is exactly the same as that for secret writing on dirty paper. The difference

is in the goal of communication. For secret writing on dirty paper, the goal is to

convey to the legitimate receiver a secret message W , which is pre-chosen and hence

is independent of the known interference {S[i]}. For secret-key agreement, the goal

is to establish, between the transmitter and the legitimate receiver, an agreement

on a secret key K, which must be kept asymptotically perfectly secret from the

eavesdropper, i.e.,

1

n
I(K;Y n

2 )→ 0

in the limit as the block length n→∞. The secret-key capacity CK is defined as the

largest entropy rate (1/n) logH(K) that can be achieved by a coding scheme. Unlike

the problem of secret writing on dirty paper, the secret key K can be potentially

correlated with the known interference {S[i]}. Hence, the secret-key capacity CK is

at least as large as the secrecy capacity Cs for the same wiretap channel.

For a general discrete memoryless wiretap channel with side information, the

secret-key capacity CK is unknown. The following lower and upper bounds were

established in [30]:

max
p(u,x|s)

[I(U ;Y1)− I(U ;Y2)] ≤ CK ≤ max
p(x|s)

I(X,S;Y1|Y2) (3.39)
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where U is an auxiliary variable satisfying the Markov chain U → (X,S)→ (Y1, Y2)

and such that

I(U ;Y1)− I(U ;S) ≥ 0. (3.40)

For semi-deterministic wiretap channels where the received signal Y1 at the legitimate

receiver is a deterministic bivariate function of the channel input X and state S, the

lower bound in (3.39) with the choice of auxiliary variable U = Y1 coincides with the

upper bound, giving an exact characterization of the secret-key capacity

CK = max
p(x|s)

H(Y1|Y2). (3.41)

Note here that the choice U = Y1 always satisfies the constraint (3.40).

For the linear deterministic wiretap channel (3.11) with side information, by

Lemma 2 the conditional entropy H(Y1|Y2) is maximized when the input variable X

is standard Gaussian and independent of S. By the equivalence relationship (3.5)

between the linear deterministic and the Gaussian model, this suggests the following

choice of auxiliary variable U for the degraded Gaussian model (3.26):

U = h1X + g1S (3.42)

where X is standard Gaussian and independent of S, as long as (3.40) is satis-

fied. Substituting (3.42), (3.21)–(3.23), and the degradedness assumption (2.22) into

(3.39) and (3.40), we have the following lower and upper bounds on the secret-key

capacity CK of the degraded Gaussian model (3.26):

1

2
log

1 + h21 + g21
1 + β2(h21 + g21)

≤ CK ≤
1

2
log

2(h21 + g21) + 1

2β2(h21 + g21) + 1
(3.43)
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Figure 3.3: A numerical comparison between the achievable secret-key rates for
choosing ρ = ρ∗ and ρ = 0 in (3.42). The achievable secret-key rate RK are plotted
as a function of h21, while g1 and β are fixed to be 1 and 0.5, respectively.

for all channel coefficients h1 and g1 such that1

h21 ≥ h21T := −g
2
1

2
+
|g1|
2

√
g21 + 4. (3.44)

By (3.35), the lower bound in (3.43) is always within half a bit of the upper bound.

We mention here that [30] also considered, as a heuristic choice, the auxiliary vari-

able U of form (3.42) where X is standard Gaussian. However, instead of choosing

X to be independent of S as suggested by the linear deterministic model, [30] consid-

1The upper bound is valid for all channel parameters. Due to the constraint (3.40), when
h2
1 < h2

1T the linear deterministic model does not appear to provide any insight on how to choose
the auxiliary variable U for the degraded Gaussian model.
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ered X which is correlated with S and with correlation coefficient ρ = E[XS] = ρ∗,

where

ρ∗ =

√
1− h21 + g21

(1 + h21 + g21)h21
· sgn(h1g1). (3.45)

Here, sgn(x) denotes the sign of real scalar x. It is straightforward to verify that

condition (3.44) guarantees the existence of ρ∗. A numerical comparison between

the achievable secret-key rates for choosing the correlation coefficient ρ = ρ∗ and

ρ = 0 as well as the upper bound in (3.43) is provided in Figure 3.3. As we can see,

even though the choice ρ = 0 is suboptimal in maximizing the achievable secret-key

rate, both choices lead to achievable secret-key rates that are within half a bit of the

secret-key capacity for h21 ≥ h21T .
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4. CONCLUSION

The first part of this dissertation introduced the concept of secrecy capacity per

unit cost to study cost-efficient wide-band secrecy communication. For degraded

memoryless stationary wiretap channels with a zero-cost input letter, it was shown

that an orthogonal coding scheme with randomized pulse position and constant pulse

shape achieves the secrecy capacity per unit cost. For general memoryless stationary

wiretap channels, orthogonal coding schemes with constant pulse shape may be sub-

optimal: further randomization of the pulse shape can strictly improve the achievable

secrecy rate per unit cost. The problem whether orthogonal codes can achieve the

secrecy capacity per unit cost of the general memoryless stationary wiretap channel

with a zero-cost input letter remains open.

In the second part of this dissertation, a deterministic view was taken and used

to revisit the problem of wiretap channel with side information. A precise character-

ization of the secrecy capacity was obtained for a linear deterministic model, which

naturally suggests a coding scheme to achieve the secrecy capacity of the degraded

Gaussian model (dubbed as “secret writing on dirty paper”) to within half a bit.

The linear deterministic model twas used o provide approximate characterization of

Gaussian network capacity, an approach which has become increasingly popular in

information theory literature. However, in this dissertation, the use of this method

is somewhat different from most of the practices along this line of research. In litera-

ture, a common practice has been to first gain “insight” from the capacity-achieving

scheme for the linear deterministic model and then translate the success to the Gaus-

sian model at the scheme level. Such translations are more art than science. For the

considered problems, the translation of success from the linear deterministic model
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to the Gaussian model was done at the level of a single-letter description of channel

capacity and hence was much more systematic. A suggested line of research would

focus on understanding to what extent this method can be applied to more complex

network communication scenarios.
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APPENDIX A

PROOF OF REMARK 2

Suppose that there exists a positive real β and a positive integer k0 such that for

any integer k ≥ k0 an (n,w0, kβ, ε, kβε) code can be found for which

logw0

kβ
> Rs −

δ

2
(A.1)

for any δ > 0. Let

ν0 := max

(
k0,

2Rs

δ

)
β. (A.2)

When ν = kβ for some k ≥ n0, we have

logw0

ν
> Rs −

δ

2
> Rs − δ (A.3)

for the (n,w0, kβ, ε, kβε) code.

When kβ < ν < (k + 1)β for some k ≥ k0 and such that ν ≥ ν0, we have

k >
ν

β
− 1 ≥ ν0

β
− 1 ≥ 2Rs

δ
− 1. (A.4)
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In this case, the (n,w0, kβ, ε, kβε) is also an (n,w0, ν, ε, νε) code for which

logw0

ν
>

(
Rs −

δ

2

)
kβ

ν
(A.5)

>

(
Rs −

δ

2

)
k

k + 1
(A.6)

>

(
Rs −

δ

2

)(
1− δ

Rs

)
(A.7)

> Rs − δ (A.8)

for any δ < Rs.

Combining the above two cases completes the proof of the remark.
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APPENDIX B

PROOF OF LEMMA 1

By the symmetry of the code construction, the value of the conditional entropy

H(L|W = w, {Zi,j}) does not depend on the realization w, so we have

H(L|W, {Zi,j}) = H(L|W = 1, {Zi,j}). (B.1)

Given W = 1 and the matrix of observations {Zi,j}, consider the following l0 binary

hypotheses, each on one of the first l0 rows of the transmitted codeword metrix:

Hl,0 : xkl = (0, . . . , 0)

Hl,1 : xkl = (x, . . . , x)

for l = 1, . . . , l0. The conditional error probabilities are denoted by

α
(k)
l = Pr(Ĥl,1|Hl,0) (B.2)

β
(k)
l = Pr(Ĥl,0|Hl,1). (B.3)

Note that Zk
l is i.i.d. according to PZ|X=0 under Hl,0 and i.i.d. according to PZ|X=x

under Hl,1. Fix δ′ > 0. By the Chernoff-Stein lemma [9] a decision rule can be found

such that β
(k)
l → 0 in the limit as k →∞ and

α
(k)
l ≤ e−k(D(PZ|X=x‖PZ|X=0)−δ′) (B.4)

for sufficiently large k.
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For l = 1, . . . , l0, let Nl = 1 if Hl,1 is declared and Nl = 0 if Hl,0 is declared.

Then, for all l 6= L we have

E[Nl] = α
(k)
l (B.5)

Var[Nl] ≤ E[N2
l ] = α

(k)
l . (B.6)

Further let

N :=
∑
l 6=L

Nl. (B.7)

Since Nl, l 6= L, are i.i.d., we have

E[N ] =
∑
l 6=L

E[Nl] = (l0 − 1)α
(k)
l (B.8)

≤ l0e
−k(D(PZ|X=x‖PZ|X=0)−δ′) (B.9)

and

Var[N ] =
∑
l 6=L

Var[Nl] ≤ (l0 − 1)α
(k)
l (B.10)

≤ l0e
−k(D(PZ|X=x‖PZ|X=0)−δ′). (B.11)

71



It follows that

Pr
{
N ≥ 2l0e

−k(D(PZ|X=x‖PZ|X=0)−δ′)
}

≤ Pr
{
N − E[N ] ≥ l0e

−k(D(PZ|X=x‖PZ|X=0)−δ′)
}

(B.12)

≤ Pr
{
|N − E[N ]| ≥ l0e

−k(D(PZ|X=x‖PZ|X=0)−δ′)
}

(B.13)

≤ Var[N ](
l0e
−k(D(PZ|X=x‖PZ|X=0)−δ′)

)2 (B.14)

≤ 1

l0e
−k(D(PZ|X=x‖PZ|X=0)−δ′)

(B.15)

<
1

ek(
δb(x)
12

+δ′)
(B.16)

→ 0 (B.17)

in the limit as k →∞, where (B.12) follows from (B.9), (B.14) follows from the well-

known Chebyshev’s inequality, (B.15) follows from (B.11), and (B.16) follow from

the assumption that

l0 > exp

(
k

(
D(PZ|X=x‖PZ|X=0) +

δb(x)

12

))
. (B.18)

Let E be a random variable such that E = 1 if

N < 2l0e
−k(D(PZ|X=x‖PZ|X=0)−δ′)
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and HL,1 is declared, and E = 0 otherwise. We have

H(L|W = 1, {Zi,j}) (B.19)

≤ H(L,E|W = 1, {Zi,j}) (B.20)

= H(E|W = 1, {Zi,j}) +H(L|W = 1, {Zi,j}, E) (B.21)

≤ H(E) + Pr {E = 0}H(L)+

H(L|W = 1, {Zi,j}, E = 1). (B.22)

Note that

H(E) ≤ ln 2 (B.23)

H(L) = ln l0 < k

(
D(PZ|X=x‖PZ|X=0) +

δb(x)

6

)
. (B.24)

By the union bound, the probability Pr {E = 0} can be bounded from above as

Pr
{
ĤL,0

}
+ Pr

{
N ≥ 2l0e

−k(D(PZ|X=x‖PZ|X=0)+δ
′)
}

→ 0 (B.25)

in the limit as k →∞. Furthermore,

H(L|W = 1, {Zi,j}, E = 1)

< ln
(

2l0e
−k(D(PZ|X=x‖PZ|X=0)−δ′) + 1

)
(B.26)

= H(L)− k
(
D(PZ|X=x‖PZ|X=0)− ε′

)
(B.27)
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where

ε′ =
1

k
ln

(
2ekδ

′
+
ekD(PZ|X=x‖PZ|X=0)

l0

)
(B.28)

→ δ′ (B.29)

in the limit as k →∞. We thus have

H(L|W = 1, {Zi,j}) (B.30)

< ln 2 + kPr {E = 0}
(
D(PZ|X=x‖PZ|X=0) +

δb(x)

6

)
+H(L)− k

(
D(PZ|X=x‖PZ|X=0)− ε′

)
(B.31)

= H(L)− k
(
D(PZ|X=x‖PZ|X=0)− ε′′

)
(B.32)

where

ε′′ := ε′ +
ln 2

k
+

Pr {E = 0}
(
D(PZ|X=x‖PZ|X=0) +

δb(x)

6

)
(B.33)

→ δ′ (B.34)

in the limit as k →∞. Letting δ′ → 0 completes the proof of the lemma.
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APPENDIX C

PROOF OF PROPOSITION 1

By Fano’s inequality, any achievable secrecy rate Rs must satisfy

n(Rs − εn) ≤ I(W ;Y n
1 )

≤ I(W ;Y n
1 , S

n)

= I(W ;Y n
1 |Sn)

≤ I(Xn;Y n
1 |Sn)

= H(Y n
1 |Sn)−H(Y n

1 |Xn, Sn)

= H(Y n
1 |Sn)−

n∑
i=1

H(Y1[i]|X[i], S[i])

≤
n∑
i=1

H(Y1[i]|S[i])−
n∑
i=1

H(Y1[i]|X[i], S[i])

= n[H(Y1,Q|SQ, Q)−H(Y1,Q|XQ, SQ, Q)]

= n[H(Y1,Q|SQ, Q)−H(Y1,Q|XQ, SQ)]

≤ n[H(Y1,Q|SQ)−H(Y1,Q|XQ, SQ)]

= n · I(XQ;Y1,Q|SQ)

where εn → 0 in the limit as n→∞, and Q is a standard time-sharing variable.
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Similarly, for any achievable secrecy rate Rs we have

n(Rs − εn)

≤ I(W ;Y n
1 )− I(W ;Y n

2 )

≤ I(W ;Y n
1 , Y

n
2 )− I(W ;Y n

2 )

= I(W ;Y n
1 |Y n

2 )

≤ I(Xn, Sn;Y n
1 |Y n

2 )

= H(Y n
1 |Y n

2 )−H(Y n
1 |Xn, Sn, Y n

2 )

= H(Y n
1 |Y n

2 )−
n∑
i=1

H(Y1[i]|X[i], S[i], Y2[i])

≤
n∑
i=1

H(Y1[i]|Y2[i])−
n∑
i=1

H(Y1[i]|X[i], S[i], Y2[i])

= n[H(Y1,Q|Y2,Q, Q)−H(Y1,Q|XQ, SQ, Y2,Q, Q)]

= n[H(Y1,Q|Y2,Q, Q)−H(Y1,Q|XQ, SQ, Y2,Q)]

≤ n[H(Y1,Q|Y2,Q)−H(Y1,Q|XQ, SQ, Y2,Q)]

= n · I(XQ, SQ;Y1,Q|Y2,Q).

Note that the channel states are memoryless, so SQ has the same distribution as

S[i] for any i = 1, . . . , n. The channel is also memoryless, so the conditional distri-

bution of (Y1,Q, Y2,Q) given (XQ, SQ) is given by the channel transition probability

p(y1, y2|x, s). Letting XQ = X, SQ = S, Y1,Q = Y1, Y2,Q = Y2, and n→∞ completes

the proof of the proposition.
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APPENDIX D

PROOF OF LEMMA 2

Let Z be an i.i.d. Bernoulli-1/2 vector. We have

H(AZ|BZ) = H


 A

B

Z
−H(BZ)

= rank


 A

B


− rank(B).

We thus conclude that

maxH(AZ|BZ) ≥ rank


 A

B


− rank(B). (D.1)

To prove the reverse inequality, let us consider the null space of B and its coset

partition based on the null space of

 A

B

 .
Fix BZ = b. Then, any solution Z can be written as the sum of a particular solution

Zp and a vector Zh in the null space of B. Note that all vectors Zh in the same coset

of the null space of B relative to the null space of

 A

B


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give the same value for AZh. Thus, the number of different values that AZ can take

for any given value of b equals the number of cosets in the null space of B, which is

given by

2

nullitiy(B)−nullity



A

B




= 2

rank



A

B


−rank(B)

.

We thus conclude that

maxH(AZ|BZ) ≤ rank


 A

B


− rank(B). (D.2)

Combining (D.1) and (D.2) completes the proof of the lemma.
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APPENDIX E

PROOF OF THEOREM 8

The matrix B is a horizontal stack of two down-shift matrices with rank n2 and

m2, respectively. Since both sub-matrices are in reduced row-echelon form, it suffices

to count the number of nonzero rows of B to find its rank:

rank(B) = q −min{q − n2, q −m2}

= max{n2,m2}.

The matrix

G :=

 A

B

 =

 Dq−n1 Dq−m1

Dq−n2 Dq−m2


is formed by vertically stacking two matrices A and B. Thus, evaluating the rank

of G is equivalent to counting the number of zero rows along with the number of

redundant nonzero rows between A and B (denoted by dAB):

rank(G) = 2q −min{q − n1, q −m1} −

min{q − n2, q −m2} − dAB

= max{n1,m1}+ max{n2,m2} − dAB.

To calculate dAB, let us consider the following five cases separately:

Case 1: Either n1 ≤ m1 and n2 > m2, or n2 ≤ m2 and n1 > m1. In this case, all
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nonzero rows of G are independent so dAB = 0. By Proposition 2,

Cs = min{n1,max{n1,m1} − 0} = n1.

Case 2: n1 ≤ m1 and n2 ≤ m2, but m1 − n1 6= m2 − n2. In this case, the

redundant nonzero rows of G are given by the redundant rows between the top

m1 − n1 nonzero rows of A and the top m2 − n2 nonzero rows of B. Hence, dAB =

min{m1 − n1,m2 − n2}. By Proposition 2,

Cs = min{n1,m1 −min{m1 − n1,m2 − n2}}

= min{n1,max{n1,m1 −m2 + n2}}

= n1.

Case 3: n1 > m1 and n2 > m2, but m1 − n1 6= m2 − n2. In this case, the

redundant nonzero rows of G are given by the redundant rows between the top

n1 −m1 nonzero rows of A and the top n2 −m2 nonzero rows of B. Hence, dAB =

min{n1 −m1, n2 −m2}. By Proposition 2,

Cs = min{n1, n1 −min{n1 −m1, n2 −m2}}

= n1 −min{n1 −m1, n2 −m2}

= max{m1, n1 − n2 +m2}.

Case 4: n1 −m1 = n2 −m2 and n1 ≥ m1. In this case, the redundant nonzero
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rows of G correspond to the redundant nonzero rows of

 Dq−n1

Dq−n2


so dAB = min{n1, n2}. By Proposition 2,

Cs = min{n1, n1 −min{n1, n2}}

= n1 −min{n1, n2}

= (n1 − n2)
+.

Case 5: n1 −m1 = n2 −m2 and n1 < m1. In this case, the redundant nonzero

rows of G correspond to the redundant nonzero rows of

 Dq−m1

Dq−m2


so dAB = min{m1,m2}. By Proposition 2,

Cs = min{n1,m1 −min{m1,m2}}

= min{n1, (m1 −m2)
+}

= min{n1, (n1 − n2)
+}

= (n1 − n2)
+.

Combining the results from the above five cases completes the proof of (3.12) and

hence Theorem 8.
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