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ABSTRACT 

 

The knowledge of speed and headway distributions is essential in microscopic traffic 

flow studies because speed and headway are both fundamental microscopic 

characteristics of traffic flow. For microscopic simulation models, one key process is the 

generation of entry vehicle speeds and vehicle arrival times. It is helpful to find desirable 

mathematical distributions to model individual speed and headway values, because the 

individual vehicle speed and arrival time in microscopic simulations are usually 

generated based on some form of mathematical models. Traditionally, distributions for 

speed and headway are investigated separately and independent of each other. However, 

this traditional approach ignores the possible dependence between speed and headway.  

 

To address this issue, the dissertation presents two different methodologies to construct 

bivariate distributions to describe the characteristics of speed and headway. Based on the 

investigation of freeway speed and headway data measured from the loop detector data 

on IH-35 in Austin, it is shown that there exists a weak dependence between speed and 

headway and the correlation structure can vary depending on the traffic condition.   

 

The dissertation first proposes skew-t mixture models to capture the heterogeneity in 

speed distribution. Finite mixture of skew-t distributions can significantly improve the 

goodness of fit of speed data. To develop a bivariate distribution to capture the 

dependence and describe the characteristics of speed and headway, finite mixtures of 
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multivariate skew-t distributions are applied to the 24-hour speed and headway data. The 

bivariate skew-t mixture model can provide a satisfactory fit to the multimodal speed 

and headway distribution and this modeling approach can accommodate the varying 

correlation structure between speed and headway. 

 

To avoid the restriction of the bivariate skew-t distributions that individual behavior of 

speed and headway is described by the same univariate distributions, this research 

proposes copulas as an alternative method for constructing the multivariate distribution 

of traffic variables. Copula models can adequately represent the multivariate 

distributions of microscopic traffic data and accurately reproduce the dependence 

structure revealed by the speed and headway observations. This dissertation compares 

the advantages and disadvantages of copula models and finite mixtures of multivariate 

distributions. Overall, the proposed methodologies in this dissertation can be used to 

generate more accurate vehicle speeds and vehicle arrival times by considering their 

dependence on each other when developing microscopic traffic simulation models. 
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CHAPTER I  

INTRODUCTION 

 

Speed is a fundamental measure of traffic performance of a highway system (May, 

1990). Most analytical and simulation models of traffic either produce speed as an 

output or use speed as an input for travel time, delay, and level of service determination 

(Park et al., 2010). It is desirable to find an appropriate mathematical distribution to 

describe the measured speeds, because in some microscopic simulations the individual 

vehicle speed needs to be determined according to some form of mathematical model 

during vehicle generation (Park et al., 2010).  

 

Headway is an important flow characteristic and headway distribution has applications 

in capacity estimation, driver behavior studies and safety analysis (May, 1990). The 

distribution of headway determines the requirement and the opportunity for passing, 

merging, and crossing (May, 1990). The headway distribution under capacity-flow 

conditions is also a primarily factor in determining the capacity of systems. Moreover, a 

key component in many microscopic simulation models is to generate entry vehicle 

headway in the simulation process. To generate accurate vehicle arrival times to the 

simulated network, it is necessary to use appropriate mathematical distributions to model 

headway. 
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As described above, the knowledge of speed and headway is necessary because these 

variables are fundamental measures of traffic performance of a highway system. 

Therefore, developing reliable and innovative analytical techniques for analyzing these 

variables is very important. The primary goal of this research is to develop some new 

methodologies for the analysis of microscopic freeway speed and headway data.  

 

1.1 Statement of the Problem  

This dissertation consists of three parts. The first part concerns the heterogeneity 

problem in freeway vehicle speed data. If the characteristics of speed data are 

homogeneous, speed can be generally modeled by normal, log-normal and gamma 

distributions. However, if the speed data exhibit excess skewness and bimodality (or 

heterogeneity), unimodal distribution function does not give a satisfactory fit. Thus, the 

mixture model (composite model) has been considered by May (1990) for traffic stream 

that consists of two classes of vehicles or drivers. So far, the mixture models used in 

previous studies to fit bimodal distribution of speed data considered normal density as 

the specified component; therefore, it is useful to investigate other types of component 

density for the finite mixture model.  

 

The second and third parts concern the dependence between freeway speed and headway 

data. Traditionally, the dependence between speed and headway is ignored in the 

microscopic simulation models. As a result, the same headway distribution may be 

assumed for different speed levels and this assumption neglects the possible variability 



 

3 

 

of headway distribution across speed values. Moreover, a number of developed 

microscopic simulation models generate vehicle speeds and vehicle arrival times as 

independent inputs to the simulation process. Up to date, only a few studies have been 

directed at exploring the dependence between speed and headway. Considering the 

potential dependence between speed and headway, it is useful to construct bivariate 

distribution models to describe the characteristics of speed and headway. Compared with 

one dimensional statistical models representing speed or headway separately, bivariate 

distributions have the advantage that the possible correlation between speed and 

headway is taken into consideration. Given this advantage, it is necessary to construct 

bivariate distributions to improve the accuracy or validity of microscopic simulation 

models. 

 

1.2 Research Objectives 

The primary goal of this research is to develop new methodologies for analyzing the 

characteristics of speed and headway. To accomplish this goal, following objectives are 

planned to be addressed in this research.  

1. To address the heterogeneity problem in freeway vehicle speed data, we apply 

skew-normal and skew-t mixture models to capture excess skewness, kurtosis and 

bimodality present in speed distribution. Skew-normal and skew-t distributions are 

known for their flexibility, allowing for heavy tails, high degree of kurtosis and 

asymmetry. To investigate the applicability of mixture models with skew-normal and 
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skew-t component density, we fit a 24-hour speed data collected on IH-35 using skew-

normal and skew-t mixture models with the Expectation Maximization type algorithm. 

2. To construct bivariate distribution of speed and headway, we examine the 

dependence structure between the two variables. Three correlation coefficients (i.e., 

Pearson correlation coefficient, Spearman’s rho and Kendall’s tau) are used to evaluate 

the dependence between speed and headway.  

3. To develop a bivariate distribution for capturing the dependence and describing 

the characteristics of speed and headway simultaneously, finite mixtures of multivariate 

skew-t distributions are proposed. Finite mixtures of multivariate skew-t distributions 

have shown to be useful in modeling heterogeneous data with asymmetric and heavy tail 

behavior. In addition to the multivariate skew-t distribution, the multivariate normal and 

multivariate skew-normal distributions are also considered as the component density.  

4. To avoid the restriction of the multivariate skew-t distributions that the individual 

behavior of the two variables is described by the same univariate distribution (i.e., skew-

t distributions), copula models are proposed as an alternative method for constructing the 

multivariate distribution of traffic variables. Since vehicle type plays a role in the 

congested traffic condition, when constructing the multivariate distribution of traffic 

variables, vehicle length is used as a surrogate. The applicability of different families of 

copulas to traffic variables (speed, headway and vehicle length) is investigated and some 

recommendations are made. 
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1.3 Outline of the Dissertation 

The rest of this dissertation is organized as follows: 

Chapter II overviews various mathematical models that have been used for describing 

speed and headway distributions. Some studies that focused on the dependence between 

speed and headway are also discussed. 

 

Chapter III provides the characteristics of the traffic dataset used throughout in the 

dissertation. A preliminary analysis is conducted to investigate the dependence structure 

between speed and headway. 

 

Chapter IV applies skew-t mixture models to fit freeway speed data. This chapter shows 

that finite mixture of skew-t distributions can significantly improve the goodness of fit of 

speed data and better account for heterogeneity in the data. 

  

Chapter V explores the applicability of the finite mixtures of multivariate distributions to 

address the heterogeneity problem in speed and headway data. This chapter shows that 

the bivariate skew-t mixture model can provide a satisfactory fit to the speed and 

headway data. This modeling approach can accommodate the varying correlation 

coefficient.  

 

Chapter VI documents the application of copulas for constructing the multivariate 

distribution of traffic variables (speed, headway and vehicle length). This chapter 
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compares the advantages and disadvantages of copula models and finite mixtures of 

multivariate distributions. 

 

Chapter VII summarizes the major results of in this research. General conclusions and 

recommendations for future research are presented. 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter first provides a review of mathematical models for speed and headway. 

Specifically, different speed and headway distributions proposed in the past studies are 

introduced. Then, we discuss some research focused on the dependence between speed 

and headway. 

 

2.2 Speed Distributions 

Previously, normal, log-normal and other forms of distribution have been used to fit 

freeway speed data. Leong (1968) and McLean (1979) proposed that speed data 

approximately follow a normal distribution when flow rate is light. Haight and Mosher 

(1962) showed that the log-normal distribution is proper for speed data. Gerlough and 

Huber (1976) and Haight (1965) have used normal, log-normal and gamma distributions 

to model vehicular speed. Compared with normal distribution, log-normal and gamma 

distributions have the capacity to accommodate the right skewness and eliminate 

negative speed values generated by normal distribution. If the speed data exhibit excess 

skewness and bimodality, unimodal distribution function does not give a satisfactory fit; 

thus, several researchers used the mixture model to fit the distribution of speed. When 

the traffic stream consists of two vehicle types, the composite distribution has been 

proposed by May (1990). He also suggested that the vehicle speeds for subpopulations 
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follow normal or lognormal distributions. Dey et al. (2006) introduced a new parameter, 

spread ratio to predict the shape of the speed curve. He stated that the bimodal speed 

distribution curve consists of a mixture of two-speed fractions, lower fraction and upper 

fraction. Ko and Guensler (2005) did a similar study by characterizing the speed data 

with two different normal components, one for congested and the other for non-

congested speeds. The congestion characteristics can be identified based on the speed 

distribution.  Recently, Park et al. (2010) explored the distribution of 24-hour speed data 

with a g-component normal mixture model. Jun (2010) investigated traffic congestion 

trends by speed patterns during holiday travel periods using the normal mixture model.  

 

2.3 Headway Distributions 

Many headway models have been proposed and these models can be classified into two 

types: single distribution models and mixed models. For single distribution models, 

exponential (Cowan, 1975), normal, gamma, lognormal and log-logistic distributions 

(Yin et al., 2009) have been studied to model headway. The representatives of mixed 

models are Cowan M3 model (Luttinen, 1999), M4 model (Hoogendoorn and Bovy, 

1998), the generalized queuing model and the semi-Poisson model (Wasielewski, 1979). 

Zhang et al. (2007) performed a comprehensive study of the performance of typical 

headway models using the headway data recorded from general-purpose lanes. 
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2.4 Dependence between Speed and Headway 

There have been some studies that focused on the dependence between speed and 

headway. Luttinen (1992) found out that speed limit and road category have a 

considerable effect on the statistical properties of vehicle headways. WINSUM and 

Heino (1996) investigated the time headway and braking response during car-following. 

Taieb-Maimon and Shinar (2001) conducted a study to investigate drivers’ following 

headways in car-following situation and the results showed that drivers adjusted the 

distance headways in relation to speed. Dey and Chandra (2009) proposed two statistical 

distributions for modeling the gap and headway in the steady car-following state. 

Brackstone et al. (2009) found that there is a limited dependence of following headway 

on speed and the most successful relationship fit of headway and speed is an inverse 

relationship. Yin et al. (2009) also studied the dependence of headway distributions on 

the traffic condition (speed pattern) and concluded that different headway models should 

be used for distinct traffic conditions (speed patterns). 

 

2.5 Summary 

From the above discussion, there are several current issues existing in modeling the 

speed and headway data. First, when modeling multimodal distribution of speed data, the 

mixture models used in previous studies extensively considered normal density as the 

specified component; therefore, other types of component density were not fully 

investigated. Second, considering the possible dependence between speed and headway, 
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there were very few studies focusing on constructing bivariate distribution models to 

describe speed and headway simultaneously.  
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CHAPTER III 

DATA INTRODUCTION AND PRELIMINARY ANALYSIS 

 

3.1 Introduction 

As discussed in Chapter I, the main objective of this dissertation is to develop new 

methodologies for analyzing the characteristics of freeway speed and headway data. The 

traffic data analyzed in this dissertation are the microscopic traffic variables (i.e., 

individual speed and headway observations) measured from the loop detector data. The 

study site is on IH-35 in Austin, Texas. This chapter introduces the characteristics of the 

traffic dataset which is used throughout in the dissertation. A preliminary analysis is 

conducted to investigate the dependence structure between observed speed and headway 

data. 

 

3.2 Data Description 

The dataset was collected at a location on IH-35. IH-35 has four lanes in the southbound 

direction and the free flow speed is 60 mile/hour (or 96.56 kilometer/hour) for all types 

of vehicles. Due to the heavy traffic demand and a large volume of heavy vehicles, the 

data collection site is typically congested during the morning and afternoon peak hours. 

The detector records vehicle arrival time, presence time, speed, length, and classification 

for each individual vehicle (Ye et al., 2006). This dataset was analyzed in some previous 

studies (Ye and Zhang, 2009). The data have 27920 vehicles with recorded speed values, 

arrival times and vehicle lengths in a 24-hour period (from 00:00 to 24:00, December 11, 
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2004), including 24011 (86%) passenger vehicles and 3909 (14%) heavy vehicles. For 

this dataset, the headway value between two consecutive vehicles is the elapsed time 

between the arrivals of a pair of vehicles. The arrival times were recorded in second (s); 

the observed speeds were recorded in meter/second; and the vehicle lengths were 

recorded in meter (m). To compare the result of this work with some previous studies, 

we convert the meter/second to kilometer/hour (kph). We also assume that 24-hour 

period (T) consists of two time periods: the peak time period (T1) which contains two 

sub-periods 07:10-08:20 and 15:22-19:33; while the off peak period (T2) includes two 

sub-periods 08:20-15:22 and 19:33-07:10. 

 

3.3 Preliminary Analysis 

Figure 3.1 (a), (b) and (c) display the scatter plots of speed, headway and vehicle length 

by time of day for each time period. Because of large samples in the dataset, semi-

transparent points are used to alleviate some of the over-plotting in Figure 3.1. Figure 

3.1 (c) indicates that the observed vehicles seem to consist of two sub-populations: one 

at about 5 meters, representing passenger vehicles, and the other at about 22 meters, 

representing trucks and buses. Previously, Zhang et al. (2008) estimated large truck 

volume using loop detector data collected from IH-35, and they classified vehicles into 

two categories: short vehicles (smaller than 12.2 m (40 feet)) and long vehicles (larger 

than or equal to 12.2 m (40 feet)). In order to see the changing pattern of vehicle 

composition over the time, we calculate the hourly percentage of long vehicles (greater 

than or equal to 12.2 m), which is shown in Figure 3.1 (d). It can be observed that the 
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proportion of long vehicles is relatively high between 00:00 and 6:00 compared with 

other time periods of the day. 

 
 
 
 

 

(a) 

Figure 3.1 (a) speed scatter plots by time of day; (b) headway scatter plots by time 
of day; (c) vehicle length scatter plots by time of day; (d) hourly percentage of long 

vehicles by time of day. 
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(b) 

 

(c) 

Figure 3.1 Continued 
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(d) 

Figure 3.1 Continued 

 
 
 
From Figure 3.1 (a), we can see that the speed data exhibit heterogeneity and the main 

cause for this heterogeneity is different traffic flow conditions over the 24-hour period. 

Since the characteristics of speed data are heterogeneous, the mixture models are used to 

capture bimodality present in speed distribution. Then, we examine the correlation 

between speed and headway. Since the 24-hour traffic data in the study consist of 

distinct traffic flow conditions, it is useful to evaluate the dependence between vehicle 

speed and headway under different traffic conditions. As discussed above, we divided 

the 24-hour traffic data into two time periods (i.e., the peak period T1 and the off-peak 

period T2) based on corresponding traffic conditions. For each time period, three 

correlation coefficients are used to evaluate the dependence. These three measures of 
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dependence are Pearson correlation coefficient (PCC), Spearman’s tau (SCC), and 

Kendall’s pho (KCC). The summary statistics of speed and headway for different time 

periods are given in Table 3.1. 

 
 
 
 
Table 3.1 Summary statistics of speed and headway for different time periods 

 
T (24 hours) 

T1 (07:10-08:20 and 

15:22-19:33) 

T2 (08:20-15:22 and 

19:33-07:10) 

 
Speed Headway Speed Headway Speed Headway 

Min. 0 0 a 1.01 0 0 0 

1st Quantile 84.74 1 18.22 2 92.38 1 

Median 94.57 2 37.76 2 97.09 2 

Mean 85.3 3.1 42.71 3.15 97.24 3.08 

3rd Quantile 100.4 3 68.57 4 101.95 3 

Max. 149.69 76 104.72 48 149.69 76 

Number of 

vehicles 
27919 6114 21805 

PCC -0.054 -0.469 0.116 

KCC 0.003 -0.488 0.135 

SCC 0.011 -0.635 0.186 

Note: a Headway values are less than 0.5s. 
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PCC measures the linear relationship between two continuous variables. It is defined as 

the ratio of the covariance of the two variables to the product of their respective standard 

deviations: 

( , )PCC
x y

Cov x y
σ σ

=               (3.1) 

where xσ  and yσ  are the standard deviations of variables x and y. 

 

SCC is a rank-based version of the PCC and it can be computed as: 

1

2 2

1 1

( ( ) ( ))( ( ) ( ))
SCC

( ( ) ( )) ( ( ) ( ))

n

i i
i

n n

i i
i i

rank x rank x rank y rank y

rank x rank x rank y rank y

=

= =

− −
=

− −

∑

∑ ∑
         (3.2) 

where ( )irank x  and ( )irank y  are the ranks of the observation ix  and iy  in the sample. 

 

Similar to SCC, KCC is designed to capture the association between two measured 

quantities. KCC quantifies the discrepancy between the number of concordant and 

discordant pairs. Its estimate can be expressed as follows: 

1 1
sgn( )sgn( )

KCC= 1 ( 1)
2

n n

i j i j
i j

x x y y

n n

= =

− −

−

∑∑
            (3.3) 

where 
1  if ( ) 0

sgn( ) 0  if ( ) 0
1  if ( ) 0

i j

i j i j

i j

x x
x x x x

x x

⎧ − >
⎪− = − =⎨
⎪− − <⎩

 and 
1  if ( ) 0

sgn( ) 0  if ( ) 0
1  if ( ) 0

i j

i j i j

i j

y y
y y y y

y y

⎧ − >
⎪− = − =⎨
⎪− − <⎩

 . 
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Note that the PCC, KCC, and SCC are -0.469, -0.488 and -0.635 between speed and 

headway for peak period T1, suggesting a moderate inverse relationship between these 

two traffic variables. Since speed and headway values in peak period T1 were observed 

under congested traffic conditions, it is reasonable to consider most of the headway 

values in time period T1 as following headways. From Figure 3.2, it is observed that 

headway increases as speed decreases, and the relationship can be split into two regimes. 

The time headway is approximately stable when speed is above 20 kph in the first 

regime. In the second regime when speed is below 20 kph, the time headway increases 

significantly as speed decreases. The findings from Figure 3.2 are consistent with the 

results reported in a study conducted by Brackstone et al. (2009). In their study, it is 

shown that there is a limited dependence of following headway on speed: the most 

successful relationship fit of headway and speed is an inverse relationship. Interestingly, 

KCC is 0.135 between speed and headway for off-peak period T2, indicating a positive 

dependence. This is reasonable because as headway values become larger during the off 

peak period, fewer vehicles are on the road and it is expected to see that vehicle speeds 

increase accordingly.  
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Figure 3.2 Scatter plot of speed and headway for peak period (T1). 
 
 
 

3.4 Summary 

This chapter described the characteristics of traffic data collected on IH-35. As shown in 

Figure 3.1 (a), the speed data are heterogeneous and to capture the bimodality present in 

the speed distribution, Chapter IV proposes skew-t mixture models to fit freeway speed 

data. Besides, the data analysis indicates that the two microscopic traffic variables 

(speed and headway) are correlated under different traffic conditions, and the correlation 

structure tends to vary depending on the traffic condition. Thus, in order to construct 

bivariate distribution of speed and headway, two different methodologies (i.e., finite 

mixtures of multivariate skew-t distributions and copula models) are proposed in 

Chapters V and VI, respectively.   
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CHAPTER IV 

METHODOLOGY I: MIXTURE MODELING OF FREEWAY SPEED DATA1 

 

4.1 Introduction 

An appropriate mathematical distribution can help describing speed characteristics and is 

also useful for developing and validating microscopic traffic simulation models. To 

accommodate the heterogeneity in speed data, the mixture models used in previous 

studies extensively considered normal density as the specified component; therefore, 

other types of component density were not fully investigated. To capture excess 

skewness, kurtosis and bimodality present in speed distribution, we propose skew-

normal and skew-t mixture models to fit freeway speed data. This chapter shows that 

finite mixture of skew-t distributions can significantly improve the goodness of fit of 

speed data and better account for heterogeneity in the data. 

 

4.2 Finite Mixture Models 

In this chapter, it is assumed that the speed data are independent and identically 

distributed (i.i.d.) realizations from a random variable which follows either a mixture of 

g-component normal, skew-normal or skew-t mixture model. The mixture model is 

                                                 

1 Reprinted with permission from “Use of skew-normal and skew-t distributions for 
mixture modeling of freeway speed data” by ZOU, Y., & ZHANG, Y., 2011. 
Transportation Research Record, 2260, 67-75, Copyright [2011] by the Transportation 
Research Board.  None of this material may be  presented to imply  endorsement by TRB 
of a product, method, practice, or policy.  
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widely used in modeling bimodal speed distribution to account for the heterogeneity. 

The normal, skew-normal and skew-t mixture models are briefly introduced in this 

section: 

 

The normal mixture model for the vehicle speed has the following probability density 

function: 

2 2

1

( | , , ) ( | , )
N

k k k k k k
k

f x w w NL xξ σ ξ σ
=

=∑
         

(4.1) 

2
2

22

( )1( | , ) exp( )
22

k
k k

kk

xNL x ξξ σ
σπσ

−
= −

         
(4.2)

 

 

The expectation and variance of a normal distribution can be written as: 

( ) kE x ξ=              (4.3)
 

2( ) kVar x σ=                            (4.4)  

where N  is the number of components, kw  is the weight of component k , with 

1 0kw> >  and 
1

1
N

k
k

w
=

=∑ , kξ  is the location parameter, 2
kσ  is the scale parameter, and 

2( | , )k kNL x ξ σ  is the normal density function with mean kξ  and variance 2
kσ . 

 

The skew-normal distribution was first developed by Azzalini (1985). The probability 

density function for the skew-normal mixture model is given by: 
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2 2

1

( | , , , ) ( | , , )
N

k k k k k k k k
k

f x w w SN xξ σ λ ξ σ λ
=

=∑
            

(4.5) 

2 2( | , , ) k k
k k k k

k k k

x xSN x ξ ξξ σ λ φ λ
σ σ σ

⎛ ⎞ ⎛ ⎞− −
= Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠                    
(4.6) 

 

The expectation and variance of a skew-normal distribution are given by 

2( ) k kE x ξ σδ
π

= +                    (4.7) 

2
2 2( ) 1 k
kVar x δσ

π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

                  (4.8) 

where 
21

k
k

k

λδ
λ

=
+

, kλ  is the skewness parameter, ( )φ ⋅  and ( )Φ ⋅  are, the standard 

normal density and cumulative distribution function, and 2( | , , )k k kSN x ξ σ λ  is the skew-

normal density function. The mean and variance of 2( | , , )k k kSN x ξ σ λ  are given in 

equations (4.7) and (4.8), respectively. 

 

It can be shown that the excess kurtosis of a skew-normal distribution is limited to the 

interval [0, 0.8692]. Later, the skew-t distribution was introduced by Azzalini and 

Capitanio (2003) to allow for a higher degree of kurtosis. The skew-t mixture model can 

be written as follows: 

2 2

1

( | , , , , ) ( | , , , )
N

k k k k k k k k
k

f y w v w ST y vξ σ λ ξ σ λ
=

=∑
          

(4.9) 
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2
1 2

2 1( | , , , ) ( )k k k y k y
k y

ST y t x T x
xν ν

νξ σ λ ν λ
σ ν+

⎛ ⎞+
= ⎜ ⎟⎜ ⎟+⎝ ⎠          

(4.10) 

where ν  is the degrees of freedom, ( ) /y k kx y ξ σ= − , tν and Tν  represent the standard 

Student-t density and cumulative function with ν  degrees of freedom, and 

2( | , , , )k k kST y ξ σ λ ν  is the skew-t density function. Also, it can be shown that the skew-t 

distribution converges to a skew-normal distribution when ν →∝  (ν  tends to infinity). 

 

4.3 Model Estimation Method 

There are various methods available for estimating a mixture model. The method of 

moments was first used by Pearson in the early days of mixture modeling. The 

maximum likelihood estimation with Expectation Maximization (EM) algorithm and 

Bayesian estimation become the most widely applied methods when large calculations 

can be easily done by powerful computers. Assuming the number of components is 

known, Bayesian approach can be implemented with data augmentation and Markov 

Chain Monte Carlo (MCMC) estimation procedure using Gibbs sampling techniques 

(Zou et al, 2012). However, one of the main drawbacks of MCMC procedures is that 

they are generally computationally demanding, and it can be difficult to diagnose 

convergence (Zou et al, 2012). Furthermore, the label switching is another difficulty and 

has to be addressed explicitly when using a Bayesian approach to conduct parameter 

estimation and clustering (Frühwirth-Schnatter, 2006). 
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Since the label switching is of no concern for maximum likelihood estimation, the 

maximum likelihood method is adopted for estimation of finite mixture of skew-normal 

and skew-t distributions in this study. The EM algorithm was introduced by Dempster et 

al. (1977) and there are two extensions of it: the Expectation/Conditional Maximization 

Either (ECME) and the Expectation/Conditional Maximization (ECM) algorithms. 

Among the three algorithms, the ECM algorithm converges more slowly than the EM 

algorithm, but consumes less processing time in computer. The ECME algorithm has the 

greatest speed of convergence as well as the least processing time; moreover, it 

preserves the stability with monotone convergence. Thus, the ECME algorithm is chosen 

for the estimation of the parameters here. 

 

4.4 Modeling Results 

We apply normal, skew-normal and skew-t mixture models with an increasing number 

of components (g =2,…,6) to the 24-hour speed data described in Chapter III. The 

ECME algorithm is coded and run until the convergence maximum error 0.0000001 is 

satisfied or until the maximum number of iterations 3000 is reached. A common 

problem with this method is that the EM type algorithm may lead to a local maximum 

and one feasible solution to find the global maximum is to try many different initial 

values. Therefore, the procedure described by Basso et al. (2010) is adopted to ensure 

that initial values are not far from the real parameter values. 
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4.4.1 Determination of optimal model 

To select the most appropriate model from normal, skew-normal and skew-t mixture 

models, the Akaike Information Criterion (AIC), the Bayesian Information Criterion 

(BIC), and the Integrated Completed Likelihood Criterion (ICL) are computed for each 

mixture model. AIC and BIC have the same form 2 nLL cγ− + , where LL is the log-

likelihood value, γ  is the number of free parameters to be estimated and nc  is the 

penalty term with a positive value.  

 

The value of nc  is defined depending on the selected criterion. For AIC and BIC, nc  

equals 2 and log( )n  respectively, where n is the number of observations. The ICL 

criterion approximated from a BIC-like approximation is defined as *2 log( )LL nγ− + , 

where *LL  is the integrated log-likelihood. It is known that BIC is more conservative 

than AIC. In the density estimation context, BIC is a reliable tool for comparing mixture 

models. When choosing the form of the model, using BIC as the criterion usually results 

in a good fit of data. If the finite mixture model is correctly specified, BIC is known to 

be consistent. On the other hand, if the concern of mixture modeling is cluster analysis, 

ICL criterion is preferred over BIC when selecting the optimal number of components g, 

because BIC may overestimate the number of components (Biernacki et al., 2000). In 

particular, BIC is likely to be imprecise in identifying the correct size of the clusters 

when component densities of mixture model are not specified correctly. The ICL 
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criterion includes an additional entropy term which favors well-separated clusters 

(Biernacki et al., 2000).  

 

Bold values in Table 4.1 report the smallest AIC, BIC among three mixture models. 

Smaller AIC and BIC values indicate a better overall fit. Based on the results, the skew-t 

mixture model is selected as the best one for g = 2, 3, 5, 6. For g = 4, the skew-normal 

mixture model is slightly better than the skew-t mixture model in terms of AIC and BIC 

values. Upon comparison of three mixture models, we find that the skew-normal and 

skew-t mixture models both show a much better fitting result than the normal mixture 

model; the skew-t mixture model has the smallest AIC and BIC values except when g 

equals 4. The computation times for each model are shown in Table 4.1. Compared with 

the normal mixture model, the skew-normal mixture model can significantly improve the 

goodness of fit of speed data while the increase in computational effort is not 

remarkable. Given this advantage, the skew-normal mixture model can be used as an 

alternative to the skew-t mixture model if the computation time is limited. And the skew-

t mixture model can achieve the best fitting result at the cost of more computation time. 

 

Another important criterion considered for model assessment is the Kolmogorov-

Smirnov’s (K-S) goodness of fit test (Lin et al., 2007). We performed K-S tests to 

validate the above three mixture models. The statistics D and p-value for K-S tests are 

summarized in Table 4.2. Note that in a K-S test, given a sufficiently large sample, a 

small and non-notable statistics D can be found to be statistically significant. For normal, 
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skew-normal and skew-t mixture models, normal and skew-normal model with 2 

components are rejected and none of skew-t mixture models is rejected when the 

significance level is 0.01. Thus, it also suggests that speed data can be better described 

by a mixture of skew-t distributions. 

 

In summary, the skew-t mixture model outperforms the other two mixture models based 

on AIC, BIC and K-S test results. We select the skew-t mixture model as the best one 

and use it to determine the number of components. The parameter estimation results for 

the skew-t mixture distribution are provided in Table 4.3. 

 
 
 
 
 
Table 4.1 Computed AIC, BIC and ICL values for three mixture models  

g = 2 Normal Skew-normal Skew-t 

AIC 232936.8 230936 230223.5 

BIC 232978 230977.1 230264.7 

ICL 234836.4 233345.5 231732.3 

Time* 1 min 4 mins 45 mins 

g = 3 Normal Skew-normal Skew-t 

AIC 230254.7 229819.3 229811.7 

BIC 230320.6 229885.2 229877.6 

ICL 235846.5 242316.9 235082.6 

Time* 1 min 6 mins 63 mins 
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Table 4.1 Continued 

g = 4 Normal Skew-normal Skew-t 

AIC 229921.4 229801.9 229802 

BIC 230012 229892.5 229892.6 

ICL 239894 256410.1 250663.8 

Time* 4 mins 8 mins 363 mins 

g = 5 Normal Skew-normal Skew-t 

AIC 229836.3 229745 229740.6 

BIC 229951.6 229860.4 229855.9 

ICL 251178.7 247112.5 251844.7 

Time* 8 mins 22 mins 438 mins 

g = 6 Normal Skew-normal Skew-t 

AIC 229809.1 229786.7 229746 

BIC 229949.2 229926.7 229886 

ICL 257663.9 243317.1 245020.3 

Time* 18 mins 32 mins 518 mins 

∗  These experiments were performed on a desktop with Core 2 Duo processor E8500 
running at 3.16 GHz and 4 GB RAM. 
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Table 4.2 The K-S test results for three mixture models 
No. of components Normal Skew-normal Skew-t 

 
D p-value D p-value D p-value 

g = 2 0.0275 0.0000 0.0220 0.0000 0.0146 0.0109 

g = 3 0.0117 0.04242 0.0074 0.4796 0.0074 0.4825 

g = 4 0.009 0.2055 0.0072 0.5016 0.0071 0.5141 

g = 5 0.007 0.5038 0.0069 0.5444 0.0070 0.5256 

g = 6 0.0067 0.5583 0.0073 0.4894 0.0067 0.5764 

 
 
 

4.4.2 Selecting the number of components 

It is quite a challenge to determine the optimal number of components in finite mixture 

models. Currently, available methods include reversible jump MCMC and model choice 

criteria. For skew-t mixture models, the implementation of reversible jump MCMC turns 

out to be very complicated and computation of marginal likelihoods remains an issue. 

Thus, we adopted the model choice criteria. As mentioned before, AIC tends to select 

too many components and BIC overrates the number of components if the component 

densities are misspecified. ICL criterion seems to provide a reliable estimate of g for real 

data (Biernacki et al., 2000). Thus, ICL values reported in Table 4.1 are used to 

determine the optimal number of components. Based on ICL criterion, g = 2 is chosen 

for the skew-t mixture model.  Previously, Park et al. (2010) explored the data with a 

normal mixture model and selected the optimal number of components g = 4. To provide 
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further insight into the pattern of mixture, we fit the speed distribution with a 2-

component skew-t mixture model and a 4-component normal mixture model. 

 

The mixture density as well as each component-wise density for the 2-component skew-t 

and 4-component normal mixture distributions are displayed in Figure 4.1 and Figure 

4.2, respectively. Based on the graphical visualization, both 2-component skew-t and 4-

component normal mixture models fit the 24-hour speed distribution very well. 

However, as shown in these figures, the bimodality of the speed distribution suggests the 

presence of 2 different speed groups. One skew-t distribution can adequately capture the 

skewness and kurtosis present in one cluster; by contrast, two normal mixtures are 

needed to accommodate the skewness and kurtosis of one speed group. It is observed in 

Figure 4.1 that cluster 1 is composed of speed data from group 1 and cluster 2 consists of 

speed data from group 2. Since group 1 and group 2 represent distinct traffic flow 

characteristics, this verifies that traffic flow condition is the main cause for heterogeneity 

in this 24-hour speed data. On the other hand, no clear interpretation can be made 

regarding different flow conditions if a 4-component normal mixture model is used. 

 

To summarize, the skew-t mixture model classified vehicle speed into 2 clusters. 

Component 1 (high speed cluster) includes vehicles in uncongested traffic condition and 

a large portion of vehicles in transition flow condition. Component 2 (low speed cluster) 

has a large variance and represents vehicles in congested traffic condition and a small 

portion of vehicles in transition flow condition. 
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Table 4.3 Parameter estimation results for the Skew-t mixture distribution 
Component Parameters 1 2 3 4 5 6 

g=2 ξ  101.71 6.96 
    

2σ  79.01 491.72 
    

λ  -1.07 8.06 
    

nu* 3.59 3.59 
    

η  0.85 0.15 
    

g=3 ξ  88.21 93.92 7.27 
   

2σ  298.74 55.04 363.48 
   

λ  -1.08 0.72 6.09 
   

nu* 9.33 9.33 9.33 
   

η  0.14 0.73 0.13 
   

g=4 ξ  78.36 93.66 7.23 99.78 
  

2σ  254.36 85.60 375.22 90.90 
  

λ  -2.33 1.92 6.09 -1.52 
  

nu* 15.05 15.05 15.05 15.05 
  

η  0.07 0.39 0.13 0.41 
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Table 4.3 Continued 

g=5 ξ  40.41 7.67 93.05 71.68 100.58 
 

2σ  41.52 294.79 99.96 88.97 100.36 
 

λ  2.98 4.97 2.49 -0.50 -1.59 
 

nu* 20.43 20.43 20.43 20.43 20.43 
 

η  0.01 0.12 0.35 0.06 0.45 
 

g=6 ξ  7.85 93.35 99.59 91.89 38.55 70.93 

2σ  270.45 46.18 95.12 83.40 943.53 36.68 

λ  4.52 1.05 2.05 -0.90 9.99 -1.20 

nu* 100.00 100.00 100.00 100.00 100.00 100.00 

η  0.12 0.54 0.11 0.17 0.05 0.02 

∗  Kurtosis parameter 
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Figure 4.1 The fitted mixture model for 2-component skew-t distribution. 
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Figure 4.2 The mixture model for 4-component normal distribution. 
 

 
 
 

4.5 Summary 

This chapter has shown that skew-t distributions are useful for fitting the distribution of 

speed data. It is observed that for heterogeneous traffic flow condition, the flexibility of 

bimodal distribution causes problems when normal mixture models are used. The skew-t 

distributions are preferred component densities because they can capture skewness and 

excess kurtosis themselves. The finite mixture of skew-t distributions can significantly 

improve the goodness of fit of speed data. 

Speed (kph)

co
un

t

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140

Group

G1

G2



 

35 

 

CHAPTER V 

METHODOLOGY II:  MULTIVARIATE MIXTURE MODELING OF FREEWAY 

SPEED AND HEADWAY DATA 

 

5.1 Introduction 

To construct a bivariate distribution of speed and headway that can accommodate the 

heterogeneity in speed and headway data, finite mixtures of multivariate skew-t 

distributions are proposed in this study. Finite mixtures of multivariate skew-t 

distributions have shown to be useful in modeling heterogeneous data with asymmetric 

and heavy tail behavior (Lee and McLachlan, 2013). Besides the multivariate skew-t 

distribution, the multivariate normal and multivariate skew-normal distributions are also 

considered as the component density. This chapter shows that finite mixtures of 

multivariate skew-t distributions can provide a satisfactory fit to the speed and headway 

distribution.  

 

5.2 Basic Assumptions 

Drivers’ speed and headway choices are jointly determined by some factors: driving-

related factors (age, driver experience, alcohol level and so on); factors related to vehicle 

and road (roadway geometric configurations, vehicle types, etc.); and traffic or 

environment-related factors (traffic flows, vehicle composition, traffic control, etc.). 

Unfortunately, some factors (i.e., driving-related data) are usually not observable. The 

correlation structure between speed and headway are likely to be influenced by some 
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factors. Thus, it is reasonable to assume that speed and headway data with different 

combinations of factors (i.e., traffic conditions, etc.) can be divided into distinct sub-

populations (the correlation structure between speed and headway is different across and 

similar within the sub-populations). In this study, it is assumed that the individual 

vehicle speed and headway are generated from a certain number of sub-populations.  

 

5.3 Multivariate Distributions of Speed and Headway 

5.3.1 Multivariate normal distribution 

According to Tong (1990), the p-variate normal distribution ( | , )pN y μ Σ , has the 

following density  

11 1( | , ) exp ( ) ( )
2(2 ) | |

T
p p

N
π

−⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

y μ Σ y μ Σ y μ
Σ        

(5.1) 

where y  is the 1p×  observation vector, μ  is the 1p×  mean vector, Σ  is the p p×  

covariance matrix, and | |Σ  is the determinant of Σ . When 1p = , the density of the 

univariate normal distribution is defined as: 

2
2

1 22

1 ( )( | , ) exp( )
22

yN y μμ σ
σπσ
−

= −
             

5.2)
 

where 2σ  is the variance. 

 

5.3.2 Multivariate skew-normal distribution 

Different characterizations of the multivariate skew-normal and skew-t distributions 

have been developed in recent years (see Lee and McLachlan (2013) for an overview of 
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the various parameterizations of the multivariate skew-normal and skew-t distributions). 

The multivariate skew-normal distribution used in this research was developed 

by Azzalini and DallaValle (1996). The p-variate skew-normal distribution 

( | , , )pSN y μ Σ λ , has the following density  

1/2( | , , ) 2 ( | , ) ( ( ))T
p pSN φ −= Φ −y μ Σ λ y μ Σ λ Σ y μ

         
(5.3)

 
where λ  is the 1p×  shape parameter vector, Tλ  denotes the transpose of λ , 1/2−Σ  is the 

root of Σ , ( | , )pφ y μ Σ  represents the density of the p-variate normal distribution 

( | , )pN y μ Σ  with mean vector μ  and covariance matrix Σ , and ( )Φ i  is the cumulative 

distribution function of the standard univariate normal distribution. Note that when =0λ , 

( | , , )pSN y μ Σ λ  reduces to the normal distribution ( | , )pN y μ Σ . For the univariate skew-

normal distribution, the density of 2
1( | , , )SN y μ σ λ  is given by 

2
1 1

2( | , , ) y ySN y μ μμ σ λ φ λ
σ σ σ

− −⎛ ⎞ ⎛ ⎞= Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠          

(5.4)
 

where μ  is the location parameter, 2σ  is the scale parameter, and ( )1φ i  is the standard 

univariate normal density function. 

 

5.3.3 Multivariate skew-t distribution 

The multivariate skew-t distribution was first developed by Azzalini and Capitanio 

(2003). The p-variate skew-t distribution with ν  degrees of freedom ( | , , , )pST νy μ Σ λ , 

has the following density  
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1/2( | , , , ) 2 ( | , , ) ( ) |
( , )

T
p p

pST t T p
d
νν ν ν

ν
−⎛ ⎞+

= − +⎜ ⎟⎜ ⎟+⎝ ⎠Σ

y μ Σ λ y μ Σ λ Σ y μ
y μ

      
(5.5)

 

where ( | , , )pt νμ Σi  stands for the density of the p-variate Student-t distribution with 

mean vector μ , covariance matrix Σ  and ν  degrees of freedom, ( | )T pν +i  is the 

cumulative distribution function of the standard univariate student-t distribution with 

pν +  degrees of freedom and 1( , ) ( ) ( )Td −= − −Σ y μ y μ Σ y μ . When +ν → ∞ , the skew-t 

distribution converges to a skew-normal distribution. The density of the univariate skew-

t distribution can be written as: 

2
1 1 2

2 1( | , , , ) ( | ) 1y y
y

ST y t x T x
x

νμ σ λ ν ν λ ν
σ ν

⎛ ⎞+⎜ ⎟= +
⎜ ⎟+⎝ ⎠           

(5.6) 

where ( ) /yx y μ σ= − , 1t  denotes the standard univariate Student-t density function. 

 

5.3.4 Finite mixtures of multivariate distributions 

The probability density function (PDF) of a g-component mixture of multivariate 

distributions is given by 

1
( | ) ( | )

g

j j
j

f wψ
=

=∑y Θ y θ
                       

(5.7) 

where jw  is the weight of component j, 0jw ≥ , 
1

1
g

j
j

w
=

=∑ , 1 1(( , ),..., ( , ))T T T
g gw w=Θ θ θ  is 

the vector of all parameters, jθ  is the component specific vector of parameters, with 

( , )T T
j j j=θ μ Σ  for the multivariate normal distribution, ( , , )T T T

j j j j=θ μ Σ λ  for the 
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multivariate skew-normal distribution, ( , , , )T T T
j j j j ν=θ μ Σ λ  for the multivariate skew-t 

distribution, 1( ,..., )T T
j j jpμ μ=μ , 

,11 ,1

, 1 ,

...
... ... ...

...

j j p
T
j

j p j pp

σ σ

σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Σ , 1( ,..., )T T
j j jpλ λ=λ ,  and 

( | )jψ =y θ multivariate normal, skew-normal or skew-t density function.  

 

In the mixture context, we consider the latent component-indicator variables

1( ,... )T
i i igZ Z=Z , 1,...,i n= , to classify each vector observation iy , which is defined as  

1,  if   belongs to group j,
0,   otherwise
i

ijZ ⎧
= ⎨
⎩

y
                        (5.8) 

and
 1

1
g

ij
j

Z
=

=∑ . 1,..., nZ Z  are independent random vectors and each of them has a 

multinomial distribution with density given: 

1 2
1 2 1 1( ) ...(1 ... ) igi i zz z

i gf w w w w −= − − −z                                (5.9) 

Thus, we denote it as 1~ (1; ,..., )i gM w wZ . 

 

5.4 Model Estimation Method 

Compared with the normal mixture model, the parameter estimation process is more 

challenging for the skew-normal and skew-t mixture models. Lin et al. (2007) and Lin 

(2010) implemented the maximum likelihood estimation of the univariate and 

multivariate skew-t mixture models via a modified Expectation-Maximization (EM) 

algorithm. Recently, Cabral et al. (2012) also developed a general EM-type algorithm for 
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estimating parameters of finite mixtures of multivariate skew-normal and skew-t 

distributions. Since most studies on finite mixtures of multivariate distribution employed 

the maximum likelihood estimation with EM algorithm, we also compute the maximum 

likelihood estimates for the model parameters. For more details about the EM algorithm 

used in this chapter, interested readers can see Cabral et al. (2012). 

 

5.5 Goodness of Fit Statistics 

To evaluate the goodness of fit of the selected mixture models, the Akaike Information 

Criterion (AIC), the Bayesian Information Criterion (BIC), R2 and root mean square 

error (RMSE) statistics are used.  

 

The AIC and BIC have the same form 2 nLL cγ− + , where LL  is the log-likelihood 

value, γ  is the number of free parameters to be estimated and nc  is the penalty term 

with a positive value. The value of nc  is defined depending on the selected criterion. For 

the AIC and BIC, nc  equals 2 and log( )n  respectively, where n is the number of 

observations in the data. In the density estimation context, the BIC is a reliable tool for 

comparing mixture models.  

 

R2 statistic is a bin-specific test. The common definition of the R2 is 

2 1 err

tot

SSR
SS

= −
                     

(5.10) 



 

41 

 

where errSS  represents the sum of squares of the residuals and totSS  denotes the total 

sum of squares. R2 statistic ranges from 0 to 1 and higher R2 values indicate a better fit. 

 

The RMSE statistic is also bin-specific and has the following form: 

err

T

SSRMSE
N

=
                     

(5.11)  

where errSS  represents the sum of squares of residuals, and TN  is the total number of 

bins. Unlike the R2 statistic, higher RMSE values indicate a poorer fit. Note that when 

calculating the R2 and RMSE statistics for the bivariate distribution, errSS  reflects the 

total difference between the observed and expected frequency for all of the two-

dimensional bins, and TN  is the total number of two-dimensional bins. For speed, the 

bin size of R2 metric is fixed at 2 kph, whereas for headway, the bin size is specified as 1 

second. The RMSE metric uses the same bin size.  

 

5.6 Modeling Results 

We apply bivariate normal, skew-normal and skew-t mixture models with an increasing 

number of components (g = 2,…,6) to the 24-hour speed and headway data described in 

Chapter III. A common problem with the EM algorithm is that the likelihood function of 

mixture models might have multiple roots corresponding to local maxima (Zou et al., 

2012). Thus, in order to ensure a global maximum has been found, many different 

random starting values are applied with the EM algorithm and we select the optimal 

estimation result that corresponds to the largest likelihood value (Zou et al., 2012). 
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5.6.1 Determination of the optimal model 

To select the most appropriate model for speed and headway data from bivariate normal, 

skew-normal and skew-t mixture models, the AIC, the BIC, R2 and RMSE are computed 

for each mixture model. Table 5.1 provides the goodness of fit statistics (i.e., Log-

likelihood (LL), AIC, BIC, R2 and RMSE) for three mixture models with g = 2,…,6. 

Larger LL and R2 and smaller AIC, BIC and RMSE values indicate a better overall fit. 

When the number of components in the finite mixture model is small (i.e., g = 2, 3), the 

bivariate skew-t mixture model can provide a significant better fitting result for the 

speed and headway data than the other two mixture models. On the other hand, as the 

number of components increases, the differences of the fitting performance among three 

mixture models become less obvious. Overall, the bivariate skew-t mixture model can 

consistently outperform the bivariate normal and skew-normal mixture models in terms 

of the LL, AIC and BIC values while the bivariate normal mixture model provides the 

least satisfactory fitting performance. Based on the goodness of fit statistics in Table 5.1, 

we select the bivariate skew-t mixture model as the optimal model for describing the 

speed and headway data. The parameter estimation results for the bivariate skew-t 

mixture models are provided in Table 5.2. Since the 24-hour traffic data used in this 

research consists of distinct traffic flow conditions, the correlation structure between 

speed and headway varies based on the traffic condition (for example, as shown in Table 

3.1, speed and headway usually have an inverse relationship during the peak period and 

a positive relationship during the off-peak period.). The finite mixtures of bivariate 

skew-t distributions can address this issue naturally, since each component has its own 
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covariance matrix and the correlation structure between speed and headway can be 

different across components. 

 
 

 

 

 

 

 

 
Table 5.1 Goodness of fit statistics for three mixture models 

G = 2 Normal Skew-normal Skew-t 

LL -192922 -184068 -174635 

AIC 385865 368157.8 349292.4 

BIC 385955.6 368248.4 349383 

R2 0.493895 0.660278 0.92225 

RMSE 26.62933 21.81735 10.43732 

g = 3 Normal Skew-normal Skew-t 

LL -176937 -174820 -170936 

AIC 353908.3 349674.7 341906.1 

BIC 354048.3 349814.7 342046.1 

R2 0.853 0.837 0.955 

RMSE 14.319 15.097 7.887 
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Table 5.1 Continued  

g = 4 Normal Skew-normal Skew-t 

LL -173822 -171824 -170666 

AIC 347689.8 343693.3 341377.3 

BIC 347879.3 343882.7 341566.8 

R2 0.894 0.937 0.972 

RMSE 12.175 9.388 6.247 

g = 5 Normal Skew-normal Skew-t 

LL -171360 -171727 -170089 

AIC 342778.7 343512.4 340236.5 

BIC 343017.6 343751.3 340475.4 

R2 0.962 0.956 0.962 

RMSE 7.223 7.765 7.220 

g = 6 Normal Skew-normal Skew-t 

LL -171407 -170437 -170110 

AIC 342884 340943.5 340290.4 

BIC 343172.3 341231.8 340578.7 

R2 0.967 0.948 0.950 

RMSE 6.737 8.501 8.344 
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Table 5.2 Parameter estimation results for the bivariate Skew-t mixture models 

Number of components Parameter 
Component 

1 2 3 4 5 6 

g=2 

1jμ  98.47 15.43 
 

2jμ  0.85 2.94 
 

,11jσ  7.71 17.77 
 

,12jσ  -0.13 -0.47 
 

,22jσ  1.85 1.27 
 

1jλ  -0.81 1.89 
 

2jλ  2.02 0.87 
 

ν  2.44 2.44 

jw  0.85 0.15 
 

g=3 

1jμ  95.86 15.40 92.77 
 

2jμ  0.72 2.73 0.84 
 

,11jσ  5.86 8.44 18.91 
 

,12jσ  0.41 -0.17 -0.45 
 

,22jσ  2.31 1.95 0.57 
 

1jλ  0.73 1.19 -1.89 
 

2jλ  2.57 1.61 1.34 
 

ν  2.82 2.82 2.82 

jw  0.66 0.10 0.23 
 

g=4 

1jμ  99.11 15.42 68.59 98.72 
 

2jμ  1.06 2.68 1.04 2.09 
 

,11jσ  8.39 7.11 20.22 5.40 
 

,12jσ  -0.22 -0.24 -0.63 0.04 
 

,22jσ  0.91 2.22 0.70 3.86 
 

1jλ  -1.23 0.93 -1.32 0.78 
 

2jλ  1.14 1.75 0.97 2.26 
 

ν  3.87 3.87 3.87 3.87 

jw  0.58 0.09 0.08 0.24 
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Table 5.2 Continued 

g=5 

1jμ  31.76 98.93 99.90 14.76 83.52 

2jμ  1.88 0.98 2.92 2.73 0.84 

,11jσ  11.99 6.68 5.54 6.25 13.98 

,12jσ  -0.02 -0.23 -0.29 -0.22 -0.42 

,22jσ  0.85 1.21 4.63 2.31 0.65 

1jλ  1.20 -0.93 0.76 0.78 -1.47 

2jλ  0.95 1.56 2.28 1.73 1.41 

ν  4.01 4.01 4.01 4.01 4.01 

jw  0.04 0.60 0.16 0.09 0.12 

g=6 

1jμ  94.20 72.57 27.21 17.05 96.96 100.41 

2jμ  0.87 0.94 2.00 2.20 1.43 4.55 

,11jσ  7.16 9.66 12.64 5.20 5.51 6.25 

,12jσ  -0.34 -0.42 -0.12 -0.85 0.13 -0.56 

,22jσ  0.78 0.69 1.00 3.00 1.46 6.32 

1jλ  -1.44 -1.34 1.05 -0.64 1.12 0.62 

2jλ  1.12 1.04 1.12 2.60 1.32 2.29 

ν  4.37 4.37 4.37 4.37 4.37 4.37 

jw  0.30 0.05 0.06 0.07 0.43 0.09 

 
 
 
 
The number of components in finite mixtures of bivariate distributions can be 

determined in two approaches: the first method is to assume that g is an unknown 

variable and it is estimated within the modeling process; the second way is to fit a series 

of models with increasing numbers of components and we select the most plausible 

model by the model choice criteria (Park et al., 2010). For finite mixtures of univariate 

distributions, some methodologies (for example, reversible jump Markov Chain Monte 
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Carlo) have been proposed for the analysis of mixture models with unknown number of 

components. However, for finite mixtures of multivariate distributions, the 

implementation of the first method turns out to be very complicated and some issues 

remain unsolved. Thus, we adopted the model choice criteria. In this section, the 

bivariate skew-t distribution is selected as the component density for determining the 

number of components in the mixture model. 

 

To select the optimal number of components, the information-based criteria (AIC and 

BIC) and classification results from the modeling process are considered. As shown in 

Table 5.1, the AIC and BIC values of the model with g = 2 are significantly larger than 

other models, indicating the assumption of two components cannot adequately capture 

the heterogeneity of this dataset. Thus, based on the information-based criteria, the 

model with g = 2 can be excluded from further consideration. Classification or grouping 

results were used to examine if the finite mixture model can reasonably separate the 

speed and headway data into different clusters. Each speed and headway data pair was 

classified into different groups by assigning each observation to the component with the 

highest posterior probability (Park et al. 2010). The posterior probability is used to 

calculate the probability that observation iy  is from component j. In the EM algorithm, 

at iteration r+1, the posterior probability 
( 1)r

ijε
+∧

 that observation iy  is from component j, 

given iy  and 
( )r∧

Θ  is defined as (Cabral et al., 2012): 
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where ijZ  is the indicator variable, 
( )

( | )
r

jj if
∧

y θ  is the component density, and 

( ) ( )

( 1| )
r r

j ijw p Z
∧ ∧

= = Θ  is the prior probability that observation iy  is from component j, 

given 
( )r∧

Θ , which is estimated from iteration r. 

 

Figure 5.1 shows the classification results from bivariate skew-t mixture models with g = 

2,…,6. As discussed in the above paragraph, the model with g = 2 is not a viable option 

due to its unsatisfactory fitting performance. When we compare Figure 5.1 (b) and (c), it 

can be observed that component 1 in Figure 5.1 (b) is approximately and unnecessarily 

further separated into two sub-clusters (components 1 and 4 in Figure 5.1 (c)). Similarly, 

component 3 in Figure 5.1 (c) contains two sub-clusters (components 1 and 5 in Figure 

5.1 (d)) and component 5 in Figure 5.1 (d) roughly consists of two sub-clusters 

(components 1 and 2 in Figure 5.1 (e)). Thus, for the principle of model parsimony, the 

three-component bivariate skew-t mixture model is preferred. For Figure 5.1 (b), the first 

component (red dots) represents mostly the free flow traffic condition and the second 

component (green dots) represents mostly the traffic condition during the peak periods. 

The third component (blue dots) can be viewed as the transition flow condition. The 

classification results shown in Figure 5.1 indicate that the heterogeneity for the 24-hour 

speed and headway data mainly resulted from different traffic conditions.  
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(a) 

Figure 5.1 Scatter plots of grouping results from the (a) two-component; (b) three-
component; (c) four-component; (d) five-component and (e) six-component 

bivariate skew-t mixture models. 
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(b) 

 

(c) 

Figure 5.1 Continued 
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(d) 

 

(e) 

Figure 5.1 Continued 
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5.6.2 Effect of vehicle type on following headway 

To investigate the impact of the vehicle composition on component grouping, the speed 

and headway data were classified into different groups by assigning each observation to 

the component with the highest posterior probability (Park et al., 2010). In this chapter, a 

long vehicle (LV) is defined as a vehicle with its length larger than or equal to 12.2 

meters (40 feet). The percentages of vehicle composition of the dataset used in this paper 

are 10.4% (long vehicles) and 89.6% (other types of vehicles). If there exists an 

association between component grouping and vehicle classification, then it is expected 

that the proportion of LVs will be different between components. However, as indicated 

in Figure 5.1, it is clear that the different flow conditions are the main cause for the 

component separation for the 24-hour dataset. To minimize the effect of the traffic 

condition on speed and headway, one reasonable method to investigate the influence of 

vehicle type on speed and headway is to confine the analysis to traffic data with a 

specified speed range. For the congested traffic condition, Ye and Zhang (2009) and 

Sarvi (2011) showed that passenger cars take a longer time headway behind long 

vehicles than when following other passenger cars. Similarly, long vehicles also adopt 

longer headway (in time) when following other vehicles due to their less agile operating 

characteristics with respect to acceleration and deceleration. Since the influence of 

vehicle type on speed and headway is more obvious in the car following situation, 

further analysis was carried out using the traffic data observed in the congested traffic 

condition. Specifically, we consider the traffic data from five different speed groups (i.e., 

0-10 kph, 10-20 kph, …, 40-50 kph). For each sub-dataset within the specified speed 
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range, the two-component bivariate skew-t mixture model was applied and the 

classification results were provided in Table 5.3. By assuming two components, it is 

helpful to understand what factors make a particular observation more prone to fall into 

one or the other sub-population (Zou et al., 2012). 

 

For speed group 1 with speed values less than 10 kph, there is a difference in the average 

value of headway between the two components; while there is no significant difference 

in the average value of speed between two components. Table 5.3 shows that the 

following or leading vehicles (especially the leading vehicles) in component 1 are more 

likely to be long vehicles than component 2. The classification results for speed group 1 

suggest that larger following or leading vehicle length generally results in longer time 

headway. Similar findings can be observed for group 2. Interestingly, for groups with 

speed values greater than 30 kph, the effect of vehicle type on headway and speed is not 

as significant. The scatter plot of speed and headway illustrated in Figure 3.2 can be seen 

as evidence to support the findings drawn from the mixture modeling. As shown in 

Figure 3.2, the speed and headway data points are highly dispersed when speed values 

are below 20 kph and gradually become concentrated as speed increases. Thus, there 

should be some factors (for example, vehicle type) to explain this interesting pattern. 

Overall, the analysis in this part shows that the bivariate skew-t mixture modeling 

approach has the flexibility in explaining the impact of other factors (for example, 

vehicle type) on speed and headway. 
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Table 5.3 Effect of vehicle type on headway and speed under the congested traffic 
condition 

Speed 

groups 

(kph) 

Component 
Average 

speed 

Average 

headway 

Average vehicle 

length 
Percentage of LVs 

following leading following leading

1 (0-10 

kph) 

1 (73)a 7.535 18.52 7.843 12.12 19.2% 42.5% 

2 (375) 7.209 5.568 6.586 6.021 11.5% 9.1% 

2 (10-20 

kph) 

1 (1152) 15.12 3.761 6.454 5.629 11.5% 6.5% 

2 (145) 14.28 11.34 8.91 14.11 26.9% 57.9% 

3 (20-30 

kph) 

1 (569) 22.46 3.42 6.349 6.506 11.2% 12.3% 

2 (349) 27.59 2.739 5.794 5.787 7.7% 7.2% 

4 (30-40 

kph) 

1 (290) 32.34 2.869 6.478 6.429 11.7% 11.7% 

2 (202) 37.55 2.322 5.669 5.623 7.4% 6.9% 

5 (40-50 

kph) 

1 (296) 42.87 2.135 5.634 5.904 7.1% 9.1% 

2 (162) 47.59 2.352 6.083 5.776 10.5% 7.4% 

Note: a Number of observations in each component. 

 
 
 

5.7 Summary 

Although finite mixtures of univariate distributions can capture the heterogeneity 

observed in one-dimensional data (i.e., speed data), this modeling approach neglects the 

possible correlation between speed and headway. This chapter examined the 
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applicability of the finite mixtures of multivariate distributions to accommodate the 

heterogeneity existing in speed and headway data. It is found that the bivariate skew-t 

mixture model can provide a satisfactory fit to the speed and headway distribution and 

this modeling approach can accommodate the varying correlation coefficient. For the 24-

hour freeway speed and headway data, the three-component bivariate skew-t mixture 

model was considered as the optimal model. For the speed and headway data observed 

under the congested traffic condition, the use of the bivariate skew-t mixture model 

demonstrated that vehicle type has a significant impact on following headway when 

speed is below 20 kph. 
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CHAPTER VI 

METHODOLOGY III:  MODELING FREEWAY SPEED AND HEADWAY USING 

COPULAS 

 

6.1 Introduction 

In the previous chapter, the bivariate skew-t mixture model was proposed to describe the 

speed and headway data. Although bivariate skew-t distribution can accommodate 

dependence structure between speed and headway, the main restriction of this approach 

is that the individual behavior of speed and headway is characterized by the same 

univariate distributions. Therefore, this chapter introduces copula models which can 

avoid this restriction. 

 

6.2 Concept of Copulas 

The concept of copula was first proposed by Sklar (1959) and the interests in copulas 

and their application in the statistics field have grown over the last decades (see Genest 

and MacKay (1986); Genest and Rivest (1993); Nelsen (2006)). Recently, the copula 

method has received much attention from the finance, hydrological modeling, 

econometrics and transportation fields (see, Embrechts et al. (2002); Cherubini et al. 

(2004); Zhang and Singh (2006); Bhat and Eluru (2009)).  

 

What are copulas? Copulas are functions that join or “couple” multivariate distribution 

functions to their one-dimensional marginal distribution functions (Nelsen, 2006). For 
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continuous random variables X  and Y , the Sklar’s theorem (1959) stated that let 

( , )H x y  be a joint cumulative distribution function (cdf) with continuous marginal 

distributions ( )F x  and ( )G y , then there exists a bivariate copula C : 

( , ) ( ( ), ( ))H x y C F x G y=             (6.1) 

where 2: [0,1] [0,1]C → = copula.  

 

A valid model for ( , )X Y  can be obtained from equation (6.1) if ( )F x  and ( )G y  are 

selected from parametric families of distributions. For example, ( )F x  can be a normal 

distribution with parameters 2( , )μ σ  and ( )G y  can be an exponential distribution with 

parameter λ . Moreover, a rich set of copula types C  are available for generating the 

joint cdf ( , )H x y . These copula types include the Gaussian copula, the Farlie-Gumbel-

Morgenstern copula, and various Archimedean copulas (a detailed introduction to these 

copulas is provided in section 6.4). One advantage of the copula approach is that the 

selection of a model for representing X  and Y  can proceed independently from the 

choice of the marginal distributions (Genest and Favre, 2007).  

 

For continuous distribution functions ( )F x  and ( )G y , the generalized inverse functions 

are defined by { }( ) inf | ( )F t x F x t− = ≥  and { }( ) inf | ( )G t y G x t− = ≥ , respectively. Let 

( )U F X=  and ( )V G Y= , then based on the probability integral transform, U  and V  

are uniformly distributed random variables with support [ ]0,  1 . We can obtain 
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( ) ( ) ( )( ) ( )( )1Pr Pr PrF x X x F U x U F x−= < = < = <  and 

( ) ( ) ( )( ) ( )( )1Pr Pr PrG y Y y G V y V G y−= < = < = < . 

 

Let ( , )H x y  be a distribution function with continuous marginal distributions ( )F x  and 

( )G y , then for any [ ], 0,  1u v∈ , the copula function can be defined as (Nelsen, 2006): 

( ) ( ) ( )( ), ,C u v H F u G v− −=
            

(6.2) 

 

6.3 Measuring Dependence 

There are different ways to measure dependence. Some measures are scale-invariant 

(i.e., these measures remain unchanged under strictly increasing transformations of the 

random variables). Two widely known scale-invariant measures of association are 

Kendall’s tau and Spearman’s rho. Specifically, let ( , )i ix y  and ( , )j jx y  be two 

observations from a vector ( , )X Y  of continuous random variables. It is defined that  

( , )i ix y  and ( , )j jx y  are concordant if i ix y<  and j jx y< , or if i ix y>  and j jx y> . 

Similarly, ( , )i ix y  and ( , )j jx y  are discordant if i ix y<  and j jx y> , or if i ix y>  and 

j jx y< . 

 

Assume ( )1 1,X Y  and ( )2 2,X Y  be independent and identically distributed random 

vectors, with a joint distribution function ( , )H x y . The population version of Kendall’s 
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tau can be defined as the probability of concordance minus the probability of 

discordance (Nelsen, 2006): 

( ) ( ) ( )( ), 1 2 1 2 1 2 1 2[ 0] [ 0]X Y P X X Y Y P X X Y Yτ = − − > − − − <          (6.3) 

 

Let X  and Y  be continuous random variables whose copula is C . For 

( , ) ( ( ), ( ))H x y C u F x v G y= = = , the expression of Kendall’s tau ,X Yτ  above can be 

rewritten as (see Nelsen, 2006, p. 159-162 for a proof): 

( )2, [0,1]
4 , ( , ) 1X Y C u v dC u vτ = −∫∫                         

(6.4) 

 

Let ( )1 1,X Y , ( )2 2,X Y , and ( )3 3,X Y  be three independent random vectors with a 

common joint distribution function ( , ) ( ( ), ( ))H x y C u F x v G y= = = . The population 

version of Spearman’s rho ,X Yρ  is proportional to the probability of concordance minus 

the probability of discordance for the two vectors ( )1 1,X Y  and ( )2 3,X Y , which is given 

by: 

, 1 2 1 3 1 2 1 33( [( )( ) 0] [( )( ) 0])X Y P X X Y Y P X X Y Yρ = − − > − − − <                 (6.5) 

 

Note that the joint distribution function of ( )1 1,X Y  is ( , )H x y , and 2X  and 3Y  are 

independent, indicating the joint distribution function of ( )2 3,X Y  is ( ) ( )F x G y . 
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Let X  and Y  be continuous random variables whose copula is C . For 

( , ) ( ( ), ( ))H x y C u F x v G y= = = , the expression of Spearman’s rho ,X Yρ  above can be 

rewritten as (see Nelsen, 2006, p. 167 for a proof): 

2 2, [0,1] [0,1]
12 ( , ) 3 12 ( , ) 3X Y uvdC u v C u v dudvρ = − = −∫∫ ∫∫                  

(6.6) 

 

Besides the Kendall’s tau and Spearman’s rho, one traditional correlation coefficient 

needs to be mentioned is the Pearson’s product-moment correlation coefficient, which 

measures the linear dependence between random variables. Compared with the rank-

based correlation, the linear correlation has the deficiency that it is not invariant under 

nonlinear strictly increasing transformations (Embrechts et al., 2002). Embrechts et al. 

(2002) also pointed out that for multivariate distributions which possess a simple closed-

form copula, the moment-based correlations (i.e. Pearson’s correlation coefficient) may 

be difficult to calculate and the determination of rank-based correlation (i.e., Kendall’s 

tau and Spearman’s rho) may be easier. Therefore, considering the advantages of rank-

based correlation, the Kendall’s tau and Spearman’s rho are used to characterize the 

dependence structure for different types of copulas described in the following section. 

 

6.4 Family of Bivariate Copulas 

6.4.1 Bivariate Gaussian copulas 

The Gaussian copula can be obtained using the inversion method. The 2-dimensional 

Gaussian copula with linear correlation matrix Σ is given by: 
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( ) ( )( )

( )
( )( )1 1

1 1

2 2

22

( , ) ,

1 2             = exp
2 12 1

u v

C u v u v

s st t dsdtθ
θπ θ

− −

− −
Σ Σ

Φ Φ

−∞ −∞

= Φ Φ Φ

⎛ ⎞− +⎜ ⎟−
⎜ ⎟−− ⎝ ⎠

∫ ∫
       

(6.7) 

where 
1

1
θ

θ
⎛ ⎞

Σ = ⎜ ⎟
⎝ ⎠

 is the correlation matrix, with parameter ( )1,  1θ ∈ − , ΣΦ  is a 

standard bivariate normal distribution and Φ  is a standard normal distribution. If 0θ = , 

the Gaussian copula becomes to the independent copula. Dependence parameter θ  and 

Kendall’s tau have the relationship, that is, ( )1(2 / ) sinτ π θ−= . The 2-dimensional 

Gaussian copula density function is given by: 

( )1
2

1 1( , ) exp
2

Tc u v Iω ω−
Σ

⎛ ⎞= − Σ −⎜ ⎟
⎝ ⎠Σ          

(6.8) 

where ( ) ( )( )1 1,T u vω − −= Φ Φ , 2I  is the 2 2×  identity matrix. 

 

6.4.2 The Farlie-Gumbel-Morgenstern copula 

The FGM was originally introduced by Morgenstern for Cauchy marginals and 

investigated by Gumbel for exponential marginals, and later generalized to arbitrary 

functions by Farlie. The FGM copula is an intuitive and natural way to construct the 

joint distribution function based on the marginal cdf. The joint cdf of a bivariate 

distribution constructed by the FGM copula can be described as follows:   

( , ) [1 (1 )(1 )]C u v uv u vθ θ= + − −             (6.9) 

where θ  is a parameter of the copula function and for absolutely continuous marginal 

distributions, we need | | 1θ ≤  (Schucany et al., 1978). 
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And the density of the FGM copula is provided by: 

( ), [1 (2 1)(2 1)]c u v u vθ θ= + − −                 (6.10) 

 

The FGM copula has the limitation that only if the correlation of two variables is weak, 

the FGM can provide an effective way for constructing a bivariate distribution. The 

correlation structure of FGM copula has been investigated for various continuous 

marginal distributions such as uniform, normal, exponential, gamma and Laplace 

distributions. For the rank-based dependence measures, Schucany et al. (1978) showed 

that, regardless of the forms of marginal distributions, θ  and concordance-based 

correlation ( ,X Yτ  and ,X Yρ ) satisfy the following equations: 

,
2
9X Yτ θ=             (6.11) 

, 3X Y
θρ =             (6.12) 

 

Since θ  is in [ 1,1]− , the FGM copula can allow weak positive and negative dependence 

and ,X Yτ  and ,X Yρ  are bounded on 2 2[ , ]
9 9

−  and 1 1[ , ]
3 3

− , respectively. 

 

6.4.3 Bivariate Archimedean copulas 

Archimedean copulas are important class of copulas and these copulas are widely 

applied for a few reasons: (1) Archimedean copulas have a simple and explicit form 
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expression; (2) they are characterized by a single parameter function ϕ  that meets 

certain requirements; (3) a variety of families of copulas which belong to this class. 

Archimedean copulas were introduced by Genest and MacKay (1986). One parameter 

Archimedean copulas are briefly introduced in the following paragraph, further details 

can be found in Nelsen (2006). 

 

As defined in Nelsen (2006), let ϕ  be a continuous, strictly decreasing function from 

[0,1]  to [0, ]∞  such that (1) 0ϕ = . The pseudo-inverse of ϕ  is the function 

[ 1] : [0, ] [0,1]ϕ − ∞ →  such that 
1

[ 1] ( )  0 (0)
( )

    0     (0)  
t t

t
t

ϕ ϕ
ϕ

ϕ

−
− ⎧ ≤ ≤

= ⎨
≤ ≤ ∞⎩

. If we assume (0)ϕ = ∞ , 

then [ 1] 1ϕ ϕ− −= , and we have [ 1]( ( ))t tϕ ϕ − = . Using functions ϕ  and 1ϕ− , the definition 

of one parameter Archimedean copulas is given as: 

1( , ) ( ( ) ( ))C u v u vθ ϕ ϕ ϕ−= +          (6.13) 

 

The function ϕ  is called a generator of the copula. When  (0)ϕ = ∞ , ϕ  is said to be a 

strict generator and ( , )C u vθ  in Equation (6.13) is a strict Archimedean copula. In the 

following paragraphs, several well-known one-parameter families of Archimedean 

copulas, along with their generators are described.  
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6.4.3.1 Ali-Mikhail-Haq copula 

The Ali-Mikhail-Haq copula, proposed by Ali et al. (1978), can allow for weak positive 

and negative dependence. The generator function is 1 (1 )( ) ln tt
t

θϕ − −
= , with [ 1,1)θ ∈ −

, and the corresponding Ali-Mikhail-Haq copula function is as follows: 

( , )
1 (1 )(1 )

uvC u v
u vθ θ

=
− − −          

(6.14) 

 

Kendall’s tau is related to θ  by ( ) ( )
2

2

2 13 2 ln 1
3 3

θθτ θ
θ θ

−−
= − − , so that 

0.182 0.333τ− < < . The density function of Ali-Mikhail-Haq copula is given by (Hofert 

et al., 2012): 

( ) ( ){ }
3

22 2 2

,(1 )( , ) ,
A

Ah u v
c u v Li h u v

u v
θ

θ θ
θ

θ −

−
=

        
(6.15) 

where ( ),
1 (1 ) 1 (1 )

A u vh u v
u vθ θ

θ θ
=

− − − −
 and ( )

1
/k s

s
k

Li z z k
∞

=

=∑ .
 

 

6.4.3.2 The Clayton copula 

If the generator function is selected as 1( ) ( 1)t t θϕ
θ

−= − , with (0, )θ ∈ ∞ , the 

Archimedean copula is called the Clayton copula. It is given by: 

1/( , ) ( 1)C u v u vθ θ θ
θ

− − −= + −          (6.16) 
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The Clayton copula was first proposed by Clayton (1978) and allows only positive 

dependence. Kendall’s tau is related to θ  by 
2

θτ
θ

=
+

, so that 0 1τ< < . If θ  tends to 0, 

the Clayton copula becomes independent copula. The density function of Clayton copula 

is given by (Hofert et al., 2012): 

( 1) ( 1) 1/ 2( , ) (1 ) ( 1)c u v u v u vθ θ θ θ θ
θ θ − + − + − − − −= + + −       (6.17) 

 

6.4.3.3 The Frank copula 

If we choose 1( ) ln
1

tet
e

θ

θϕ
−

−

−
= −

−
, with ( , ) \{0}θ ∈ −∞ ∞ , the Archimedean copula is 

called the Frank copula. It is given by: 

( )( )1 11( , ) ln 1
1

u ve e
C u v

e

θ θ

θ θθ

− −

−

⎛ ⎞− −
⎜ ⎟= − +
⎜ ⎟−⎝ ⎠        

(6.18) 

with 1
41 [1 ( )]Dτ θ
θ

= − − , where 1( )D θ  is the first order Debye function ( )kD θ  which is 

defined as 
0

( )
1

k

k k t

k tD dt
e

θ
θ

θ
=

−∫ .  

 

The Frank copula was proposed by Frank (1979). It can allow for both positive and 

negative dependence. The range of τ  is ( 1,  1)−  and if θ  tends to 0, the Frank copula 

becomes independent copula. The density function of Frank copula is given by (Hofert 

et al., 2012): 
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( ){ } ( )1
exp( ( ))( , ) ,

1 ,
F

F

u vc u v Li h u v
e h u vθ θθ

θ

θ θ
−−

− +⎛ ⎞= ⎜ ⎟−⎝ ⎠       
(6.19) 

where ( ) 1, (1 ) (1 exp( ))(1 exp( ))Fh u v e u vθ
θ θ θ− −= − − − − −  . 

 

6.4.3.4 The Gumbel copula 

The Gumbel copula, also known as the Gumbel-Hougaard copula, was first introduced 

by Gumbel (1960). The generator function for this copula is ( ) ( ln )t t θϕ = − , and the 

corresponding copula function is  

( ) ( )
1/

( , ) exp ln lnC u v u v
θθ θ

θ
⎛ ⎞⎡ ⎤= − − + −⎜ ⎟⎣ ⎦⎝ ⎠        

(6.20)
 

 

The Gumbel copula only accommodates positive dependence and Kendall’s tau is 

related to θ  by 11τ θ −= − , so that 0 1τ< < . If 1θ = , the Gumbel copula becomes 

independent copula. The density function of Gumbel copula is given by (Hofert et al., 

2012): 

( ){ } ( )
( )( )

1 1
2

2,2
( ln ) ( ln )( , ) exp , ,

,
Gu vc u v t u v P t u v

t u v uv

θ θ
α α

θ θ α θ
θ

θ
− −− −

= −
    

(6.21) 

where 1/α θ= , ( )
2

2, 2
1

( )G G k
k

k
P x xα ε α

=

=∑ , and ( )2
2

1

2( ) 1
2!

k
jG

k
j

k j
jk

α
ε α −

=

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ . 
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6.4.3.5 The Joe copula 

The Joe copula, discussed by Joe (1993, 1997), has a generator function 

( )( ) ln 1 1t t θϕ ⎡ ⎤= − − −⎣ ⎦ . The Joe copula is defined as: 

( ) ( ) ( ) ( )
1/

( , ) 1 1 1 1 1C u v u v u v
θθ θ θ θ

θ
⎡ ⎤= − − + − − − −⎣ ⎦       

(6.22) 

with ( )41 JDτ θ
θ

= + , where ( ) ( )1

10

[ln(1 )] 1
J t

t t
D dt

t

θ θ

θθ −=

− −
= ∫  

 

Like the Clayton and Gumbel copulas, the Joe copula can not account for negative 

dependence. The range of τ  is (0,  1) . If θ  tends to 0, the Joe copula becomes 

independent copula. The density function of Joe copula is given by (Hofert et al., 2012): 

( ) ( )
( ){ }

( )
( )

1 1

2,1

1 1 ,
( , )

1 ,1 ,

J
J

JJ

u v h u v
c u v P

h u vh u v

θ θ
θ

θ αα
θθ

θ
− −

−

⎧ ⎫− − ⎪ ⎪= ⎨ ⎬−⎪ ⎪− ⎩ ⎭       

(6.23) 

where 1/α θ= , ( ) ( ){ } ( ){ }, 1 1 ) 1 1 )Jh u v u vθ θ
θ = − − − − , ( ) ( )

1

2, 2
0

J J k
k

k
P x xα ε α

=

=∑ , 

( ) ( )2
( 1 )2, 1

(1 )
J
k

kS k αε α
α

Γ + −
= +

Γ −
 and ( ),S j k  is the Stirling numbers of the second kind. 

 

6.5 Multivariate Gaussian Copulas 

The copula of the n-variate normal distribution with n n×  correlation matrix Ρ  is 

( ) ( ) ( )( )1 1 1
1 2( ) , ,...,            nC u u u− − −

Ρ Ρ= Φ Φ Φ Φu
      

(6.24) 
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where ΡΦ  represents the joint distribution function of the n-variate standard normal 

distribution function with correlation matrix Ρ , and 1−Φ  is the inverse of the distribution 

function of the univariate standard normal distribution. For the multivariate Gaussian 

copula, correlation matrix Ρ  and Kendall’s tau have the relationship, that is

( )1
,

2 sin
i jX X ijτ ρ

π
−=  (Embrechts et al, 2003; Demarta and McNeil , 2005). 

 

In the trivariate case the copula expression can be written as 

( )

( )( )( ) 11 1
31 2

1
1 2 3 1/23/2

1 1( , , )= exp
22

uu u
TC u u u d

π

−− − ΦΦ Φ
−

Ρ
−∞ −∞ −∞

⎛ ⎞− Ρ⎜ ⎟
⎝ ⎠Ρ∫ ∫ ∫ w w w

    
(6.25) 

where 
12 13

12 23

13 23

1
1

1

ρ ρ
ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥Ρ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 is the symmetrical correlation matrix with 1 1ijρ− ≤ ≤  (

, 1, 2,3i j = ); ( )1 2 3, , Tw w w=w  represents the corresponding integral variables. 

 

Besides the multivariate Gaussian copula, multivariate Archimedean copulas are also 

widely used for modeling multivariate distribution of multiple random variables. The 

multivariate Archimedean copulas include the symmetric Archimedean copula and the 

asymmetric Archimedean copula (which is also called nested Archimedean copula). 

Note that the symmetric Archimedean copula is a special case of the asymmetric 

Archimedean copula. The symmetric Archimedean copula suffers from a very limited 

dependence structure since all k-margins are identical; they are distribution functions of 
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n exchangeable ( )0,1U  random variables (Embrechts et al., 2003). As a consequence of 

this exchangeability property, all mutual dependences among variables are modeled by 

only one Archimedean 2-copula (Grimaldi and Serinaldi, 2006). On the other hand, the 

asymmetric Archimedean copula allows for nonexchangeability and a part of all possible 

mutual dependences can be modeled in a different way. For more details about 

multivariate Archimedean copulas, interested readers can see Grimaldi and Serinaldi 

(2006). Compared with the multivariate Gaussian copulas which are able to model all 

range of dependence, the multivariate Archimedean copula families ( 3n ≥ ) can model 

only positive dependence. Thus, considering the possible inverse relationship between 

speed and headway, only multivariate Gaussian copulas are considered. 

 

6.6 Estimation of  θ  

Given a parametric family (Cθ ) of copulas and a random sample ( ) ( )1 1, ,  ...,  ,n nX Y X Y  

from continuous random variables ( ),X Y , the first step is to select appropriate marginal 

distributions for each variable. Then the data can be transformed onto the copula scale 

using the probability integral transform. The next step is to estimate θ . Genest and Favre 

(2007) reviewed various nonparametric methods for estimating θ  and they recommend 

using ranked-based estimators since the ranks of the observations are the best summary 

of the joint behavior of the random pairs. Two straightforward estimators are based on 

Kendall’s Tau and Spearman’s Rho. These two rank-based estimators are explained in 

the following example. 
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If the dependence structure of a random pair ( ),X Y  can be appropriately modeled by 

the FGM copula described in Equation (6.9). Thus, as discussed above, there exist 

relations between the parameter θ  and Kendall’s Tau and Spearman’s Rho, which are 

,
2
9X Yτ θ=             (6.26) 

, 3X Y
θρ =             (6.27) 

 

Since ,X Yτ  and ,X Yρ  can be computed from the sample pairs, a simple and intuitive 

approach to estimating θ  would be  

,
9
2 X Yθ τ=

�

  
         (6.28) 

,3 X Yθ ρ=
�

           (6.29)
 

,X Yτ  and ,X Yρ  are rank-based, and this estimation strategy may be seen as a 

nonparametric adaptation of the method of moments (Genest and Favre, 2007). 

 

Another method for estimating θ  is called the method of maximum pseudolikelihood, 

which requires that Cθ  be absolutely continuous with density cθ . The concept is to 

maximize a rank-based log-likelihood function, which takes the form: 

( )
1

log ,
1 1

n
i i

i

R Sc
n nθθ

=

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟+ +⎝ ⎠⎩ ⎭
∑A

        
(6.30) 
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where iR  stands for the rank of iX  among 1,..., nX X , and iS  stands for the rank of iY  

among 1,..., nY Y . 

 

Compared with Kendall’s Tau and Spearman’s Rho, the maximum pseudolikelihood 

estimator has the advantage that it does not require the dependence parameter θ  to be 

real. However, this method also involves a lot of numerical work and requires the 

existence of a density cθ . Thus, for simplicity, the Kendall’s Tau based estimator is 

adopted in this research. For detailed procedure of using the maximum pseudolikelihood 

estimator, see Genest et al. (1995). Note that Joe (1997, Chap. 10) also introduced a 

parametric two-step procedure referred to the inference from margins (IFM) method for 

estimating θ . Kim et al. (2007) pointed out that the IFM estimator depends on the 

choice of margins, and may run the risk of being unduly affected if selection of the 

margins turn out to be inappropriate.  

 

6.7 Random Variate Generation 

One of the primary applications of copulas is in simulation and Monte Carlo studies 

(Nelson, 2006). Based on Sklar’s theorem, the copula can be used as a tool for 

generating observations ( ),x y  of a pair of random variables ( ),X Y  from copula 

function Cθ  with marginal distributions ( )F x  and ( )G y . Specifically, we need to 

generate uniform random variates ( ),u v  from the desired copula Cθ , and then use the 
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inverse distribution function method to transform the data, ( ) ( ) ( )( )1 1, ,x y F u G v− −= . 

This section describes three algorithms for copula simulation. 

 

6.7.1 Conditional distribution method 

One general procedure for generating ( ),u v  from a certain copula is the conditional 

distribution method. Before introducing the algorithm, we first define the conditional 

distribution function for V  given U u= , which is given by 

( ) ( ) ( ) ( ) ( )
0

, , ,
Pr | limu u

C u u v C u v C u v
C v V v U u

u uΔ →

+ Δ − ∂
= ≤ = = =

Δ ∂        
(6.31) 

 

Then, the algorithm for generating the uniform random variates ( ),u v  from the copula 

Cθ  is defined as (Nelson, 2006, p. 41): 

1. Generate two independent uniform ( )0,1  variates u  and t ; 

2. Set ( )1
uv C t−= , where ( )1

uC − i  is a generalized inverse of uC . 

 

6.7.2 Sampling algorithm for Gaussian copulas 

For the conditional distribution method, it is necessary to obtain the partial derivative of 

Cθ . However, for some copulas (i.e., Gaussian copula), it is difficult to get the analytical 

partial derivative. Thus, a widely used algorithm for sampling from Gaussian copula is 

as follows: 

1. Generate ( )1 2, Ty y  from a bivariate normal distribution ( )0,  N Σ , where Σ  is a 
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correlation matrix. 

2. Set ( )1u y= Φ , ( )2v y= Φ . 

 

6.7.3 Sampling algorithm for Archimedean copulas 

Here, we describe another procedure for sampling from Archimedean copulas. Let joint 

distribution function ( ),H s t  of the random variables ( ) ( ) ( )/S U U Vϕ ϕ ϕ= +⎡ ⎤⎣ ⎦  and 

( ) ( )( )1T U Vϕ ϕ ϕ−= +  is given by ( ) ( ), CH s t sK t=  for all ( ) [ ]2, 0,1s t ∈ , where 

( ) ( ) ( )'/CK t t t tϕ ϕ += − , ( )' tϕ +  denotes the one-sided derivatives of ϕ  at t  (Nelson, 

2006). Hence, S  and T  are independent, and S  is uniformly distributed on [ ]0,1  (for a 

proof, see Nelson, 2006, p. 129). Then the algorithm for generating random variates 

( ),u v  is given by: 

1. Generate two independent uniform ( )0,1  variates s  and t ; 

2. Set ( ) ( )1
Cw K t−= ; 

3. Set ( )( )1u s wϕ ϕ−= , ( ) ( )( )1 1v s wϕ ϕ−= − . 

 

6.8 Dependence between Microscopic Traffic Variables 

Vehicle type is known as an important factor in the car following situation. For example, 

some studies (Ye and Zhang, 2009; Sarvi, 2011) showed that passenger cars usually 

travel further behind long vehicles than when following short vehicles and long vehicles 

also take longer time headways when following other vehicles due to their less agile 
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operating characteristics. In this section, to consider dependence structure among speed, 

headway and vehicle length, we construct a multivariate distribution of these three traffic 

variables. We first examine their dependence structure among each other. Since the 24-

hour traffic data collected on IH-35 consists of distinct traffic flow conditions, it is 

possible that the dependence structure between traffic variables may vary depending on 

the traffic condition. Thus, we first evaluate the hourly dependence among speed, 

headway and vehicle length for the 24-hour period. For each hour, Kendall’s tau τ , and 

Spearman’s rho Sρ  are used to measure the dependence. The computed values of 

Kendall’s tau τ , and Spearman’s rho Sρ  for each of the 24-hour are given in Table 6.1.  

 

As shown in Table 6.1 below, the dependence structure among three traffic variables 

exhibits different characteristics. First, for speed and headway, the dependence structure 

is stable under the same traffic condition, but change significantly between different 

traffic conditions. Generally speaking, for the off-peak period, when the flow rate is 

below 1000 vehicles/hour (i.e., 00:00 to 06:00 and 23:00 to 24:00), Kendall’s tau values 

indicate that speed and headway have negligible effect on each other; when the flow rate 

is above 1000 vehicles/hour (i.e., 06:00 to 07:00, 09:00 to 15:00 and 20:00 to 23:00), τ  

ranges between 0.08 and 0.15 and speed and headway have a very weak positive 

correlation. On the other hand, for the peak period, when the flow rate is below 1000 

vehicles/hour (i.e., 16:00 to 19:00), speed and headway have a weak negative 

dependence. Note that compared to the afternoon peak period (most speed values are 

below 40 kph from 16:00 to 19:00), the morning peak period (a large portion of speed 
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values are above 50 kph 7:00 to 8:00) has a different correlation relationship. As shown 

in Figure 3.2, the possible explanation is that the relationship between speed and 

headway can be split into two regimes. The time headway is approximately stable when 

speed is above 20 kph in the first regime. In the second regime when speed is below 20 

kph, the time headway increases significantly as speed decreases. Second, Kendall’s tau 

and Spearman’s rho values indicate that there exists a very limited relationship between 

speed and vehicle length. Third, headway and vehicle length have the strongest 

dependence during the afternoon peak period (i.e., 16:00 to 19:00). For the copula 

modeling approach, parameter θ  is related to Kendall’s tau and it is assumed to be fixed. 

Thus, this modeling approach cannot capture the varying characteristics of dependence 

structure between speed and headway. However, under the same traffic condition, the 

dependence structure among speed, headway and vehicle length is quite stable. In the 

following section, the traffic data observed under the congested traffic condition (from 

16:00 to 19:00) are considered to demonstrate the usefulness of copula methods for 

constructing bivariate models. This is because the relationship between speed and 

headway and the influence of vehicle length on headway is more obvious in the car 

following situation. Figure 6.1 (a), (b), (c) and (d) show the scatter plots of speed, 

headway and vehicle length for the time period from 16:00 to 19:00. Note that there 

were 2,360 vehicles observed between 16:00 to 19:00. 
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Table 6.1 Hourly dependence among speed, headway and vehicle length for the 24-
hour period. 

Time period 
Count 

(Vehicles) 

Speed & 

Headway 

Speed & 

Vehicle length 

Headway & 

Vehicle length 

τ  Sρ  τ  Sρ  τ  Sρ  

0 to 1 457 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 

1 to 2 354 -0.01 -0.02 -0.08 -0.11 -0.02 -0.03 

2 to 3 301 -0.01 -0.01 -0.12 -0.18 -0.03 -0.04 

3 to 4 277 -0.05 -0.08 -0.06 -0.08 -0.03 -0.05 

4 to 5 346 -0.02 -0.02 -0.01 -0.01 -0.04 -0.06 

5 to 6 709 0.05 0.07 -0.11 -0.16 0.03 0.04 

6 to 7 1594 0.15 0.21 -0.02 -0.03 0.08 0.11 

7 to 8 2039 0.04 0.05 0.02 0.03 0.10 0.13 

8 to 9 1851 0.05 0.07 0.02 0.02 0.09 0.12 

9 to 10 1701 0.11 0.15 -0.04 -0.05 0.03 0.04 

10 to 11 1653 0.13 0.17 -0.06 -0.10 0.06 0.08 

11 to 12 1707 0.10 0.13 -0.03 -0.05 0.09 0.12 

12 to 13 1748 0.11 0.15 -0.06 -0.08 0.08 0.11 

13 to 14 1739 0.11 0.15 -0.02 -0.03 0.04 0.05 

14 to 15 1722 0.12 0.16 -0.01 -0.01 0.11 0.14 

15 to 16 1295 -0.35 -0.46 0.00 0.00 0.07 0.09 

16 to 17 755 -0.34 -0.45 0.01 0.01 0.14 0.19 
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Table 6.1 Continued 

17 to 18 676 -0.33 -0.45 -0.01 -0.01 0.14 0.19 

18 to 19 929 -0.36 -0.49 0.02 0.04 0.13 0.17 

19 to 20 1446 -0.11 -0.13 0.01 0.01 0.12 0.16 

20 to 21 1241 0.11 0.15 -0.03 -0.04 0.04 0.06 

21 to 22 1267 0.08 0.11 -0.01 -0.01 0.05 0.07 

22 to 23 1185 0.09 0.12 -0.01 -0.02 0.05 0.07 

23 to 24 927 0.03 0.04 -0.03 -0.05 0.01 0.02 
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(a) 

 

(b)  
 

Figure 6.1 Scatter plot of (a) speed and headway; (b) speed and vehicle length; (c) 
headway and vehicle length; (d) speed, headway and vehicle length for time period 

from 16:00 to 19:00. 
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(c) 

 

(d) 

Figure 6.1 Continued 
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We further examine the dependence among speed, headway and vehicle length using the 

chi-plot which was proposed by Fisher and Switzer (2001). The chi-plot depends on the 

data through the values of their ranks and it is defined as follows: 

{ }1 # : ,
1i j i j iH j i X X Y Y

n
= ≠ ≤ ≤

−         
(6.32) 

{ }1 # :
1i j iF j i X X

n
= ≠ ≤

−          
(6.33) 

and 

{ }1 # :
1i j iG j i Y Y

n
= ≠ ≤

−          
(6.34) 

The above quantities depend exclusively on the ranks of the observations. A chi-plot is a 

scatter plot of the pairs ( ),i iλ χ , where 

( ) ( )1 1
i i i

i
i i i i

H FG
F F G G

χ −
=

− −  
 

and 

( ) ( ){ } ( ) ( ){ }2 24sign 1/ 2 1/ 2 max 1/ 2 , 1/ 2i i i i iF G F Gλ = − − − − .
 

 

To avoid outliers, Fisher and Switzer (2001) recommend that 
21 14

1 2i n
λ ⎛ ⎞≤ −⎜ ⎟−⎝ ⎠

. Figure 

6.2 (a), (b) and (c) show the chi-plots for the traffic data observed from 16:00 to 19:00. 

Dashed blue lines are the 95% confidence band and values of iχ  measure the degree of 

departures from the hypothesis that speed and headway are independent. As shown in 

Figure 6.2 (a), almost all points lie below the 95% probability region and this confirms 
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the presence of negative association between speed and headway. For speed and vehicle 

length, Figure 6.2 (b) shows that many data points are within the dashed blue lines and 

the remaining points are either above or below the 95% probability region. Since the 

area inside the confidence interval means independent, the finding from Figure 6.2 (b) is 

consistent with the results reported in Table 1 that the evidence in support of the 

dependence between speed and vehicle length is generally lacking. Figure 6.2 (c) 

demonstrates that most points are lying above the 95% probability region and while 

some of the points fall inside the confidence band. This pattern corroborates the presence 

of positive association between headway and vehicle length. 
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(a) 

 

(b) 

Figure 6.2 Chi-plot for (a) speed and headway; (b) speed and vehicle length; (c) 
headway and vehicle length. 
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(c) 

Figure 6.2 Continued 
 
 
 

6.9 Marginal Distribution 

In selecting the marginal distributions, we model speed using normal, log-normal, skew-

normal and skew-t distributions and headway using gamma, lognormal and log-logistic 

distributions. Compared with speed and headway, few studies focused on the distribution 

of vehicle lengths. Previously, Wang and Nihan (2004) and Ye and Zhang (2008) used 

normal distributions to fit vehicle length data for short and long vehicles. Considering 

the excess skewness, kurtosis and bimodality present in vehicle length distribution, three 

mixture models are selected, which are 2-component normal mixture distribution, 2-

component skew-normal mixture distribution and 2-component skew-t mixture 

distribution. The parameters were estimated by the maximum likelihood method. The 

best fitted distributions for speed, headway and vehicle length were selected using log-
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likelihood, the Akaike information criterion (AIC) and root mean square error (RMSE) 

values. Table 6.2 reports the log-likelihood, AIC and RMSE values of different speed, 

headway and vehicle length models. Larger log-likelihood and smaller AIC and RMSE 

values indicate a better overall fit. For the speed data, the skew-t model is better than 

other models in term of goodness of fit index and normal model provide the least fitting 

result. In the meantime, the headway data were examined using gamma, lognormal and 

log-logistic models. The performance of headway models is not consistent. Based on the 

results, the log-logistic model has the highest log-likelihood and lowest AIC and RMSE 

values and the gamma model provides the least satisfactory fitting performance. As 

discussed above, the bimodality of the vehicle length distribution indicates the presence 

of 2 different clusters. Thus, 2-component mixture distributions were used. The fitting 

results illustrate that the 2-component skew-t distribution can provide a more accurate 

description of the bimodal vehicle length distribution than the other two mixture models. 

Thus, the skew-t, log-logistic and 2-component skew-t distributions are selected as the 

marginal distributions for describing speed, headway and vehicle length, respectively. 
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Table 6.2 Log-likelihood, AIC and RMSE values of different fitted probability 
distributions for each traffic variable 

Traffic variable 
Fitted marginal 

 distributions 
Log-likelihood AIC RMSE 

Speed 

Normal -8751.15 17506.30 14.75 

Log-normal -8521.78 17047.56 11.30 

Skew-normal -8495.50 16997.00 9.69 

Skew-t -8476.43 16960.86 8.01 

Headway 

Log-normal -5250.48 10504.95 23.06 

Gamma -5488.46 10980.93 48.51 

Log-logistic -5193.94 10391.89 16.74 

Vehicle length 

2-component normal 3492.39 6996.78 28.08 

2-component skew-normal 3262.86 6541.72 29.10 

2-component skew-t 3035.33 6090.67 28.30 

 
 
 
 

6.10 Optimal Copula Model Selection 

In this section, we modeled the dependence between speed and headway, and headway 

and vehicle length using different families of copulas. Note that speed and vehicle length 

are assumed to be independent due to lack of evidence to support the association 

between each other. The possible explanation is that cars and trucks have the same speed 

limit on IH-35. The traffic data observed in the congested traffic condition (16:00 to 

19:00) were used. 
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Different copulas introduced in section 6.4 were used and the most appropriate copulas 

were identified. The calculated Kendall’s tau and estimated values of parameter θ  of 

each copula are provided in Table 6.3. Note that Kendall’s tau for speed and headway is 

-0.37. Thus, some copulas can be eliminated immediately, given that the degrees of 

dependence they span were insufficient to account for the association observed between 

speed and headway. As a result, only Gaussian and Frank copulas are applicable to the 

speed and headway data. The best copula model was selected based on log-likelihood, 

AIC and RMSE values. For speed and headway data, the Gaussian copula can give 

slightly larger log-likelihood and smaller AIC and RMSE values than the Frank copula. 

For headway and vehicle length data, all copulas are viable and the goodness-of-fit 

statistics for each copula model are provided in Table 6.4. Overall, the Gaussian copula 

was found as the best fitted copula for headway and vehicle length data. 

 
 
 
 
 
Table 6.3 The estimation of Kendall’s tau τ  and parameter θ  of different copulas 

 
τ  Gaussian FGM Gumbel Clayton Ali-Mikhail-Haq Frank Joe 

Speed and headway -0.37 -0.55 NA* NA NA NA -3.80 NA 

Headway and length 0.13 0.21 0.59 1.15 0.30 0.51 1.21 1.27 

* NA means that the parameter θ  for that copula is not applicable. This is because some 
copulas ( Gumbel, Claytion and Joe copulas) can only model positive correlated random 
variables, i.e., Kendall’s tau 0τ > ; for the FGM copula, it can model the correlated 
random variables with 2 / 9 2 / 9τ− ≤ ≤ ; for the Ali-Mikhail-Haq copula, it can model 
the correlated random variables with 0.182 0.333τ− < < . 
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Table 6.4 The log-likelihood, AIC and RMSE values of different copulas  

 

Goodne

ss-of-fit 

statistics 

Gaussian FGM Gumbel Clayton 

Ali-

Mikhail-

Hq 

Frank Joe 

Speed 

and 

headway 

LL* -13305.72 NA NA NA NA -13315.74 NA 

AIC 26625.44 NA NA NA NA 26645.48 NA 

RMSE 1.08 NA NA NA NA 1.12 NA 

Headway 

and 

length 

LL -8179.75 -8180.72 -8182.55 -8206.01 -8188.79 -8179.55 -8198.61 

AIC 16385.50 16387.44 16391.11 16438.03 16403.59 16385.09 
16423.2

1 

RMSE 4.20 4.27 4.23 4.46 4.32 4.26 4.45 

* LL denotes log-likelihood. 

 
 
 
 
 
 
 
One natural way to check the adequacy of copula models is to compare the scatter plot 

of observations with an artificial dataset of the same size generated from fitted copulas. 

Using the random variate generation algorithm previously introduced, 2,360 pairs 

( ),i iU V  were simulated from the Frank and Gaussian copulas with specified θ  values. 

Then, the 2,360 pairs ( ),i iU V  from each copula model were transformed back into the 

original units using the marginal distribution identified in the marginal distribution 

section for speed and headway. Figure 6.3 displays the simulated speed and headway 
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samples. Assuming 0θ =  for the FGM copula, the independent speed and headway 

samples were also generated for the purpose of comparison. The actual observations are 

provided in Figure 6.1 (a). As shown in Figure 6.3 (a) and (b), the simulated samples 

from the Frank copula and Gaussian copula can accurately reproduce the dependence 

structure revealed by the speed and headway observations. Moreover, the 

inappropriateness of the independent model is apparent, as it is hard to observe the 

inverse relationship between speed and headway from Figure 6.3 (c). The same 

procedure was repeated for the headway and vehicle length data using various copulas 

with specified θ  values. Figure 6.4 exhibits the simulated headway and vehicle length 

samples. Due to the very weak dependence between headway and vehicle length, it is 

hard to tell from Figure 6.4 whether the actual observations can be more accurately 

reproduced by considering the dependence structure.  
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(a) 

 

(b) 

Figure 6.3 Transformed samples for (a) the Frank copula with parameter 
3.80θ = − ; (b) the Gaussian copula with parameter 0.55θ = − ; (c) the independent 

copula. 
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(c) 

Figure 6.3 Continued 
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(a) 

 

(b) 

Figure 6.4 Transformed samples for (a) the Frank copula with parameter 1.21θ = ; 
(b) the Gaussian copula with parameter 0.21θ = ; (c) the FGM copula with 

parameter 0.59θ = ; (d) the Gumble copula with parameter 1.15θ = ; (e) the 
Clayton copula with parameter 0.3θ = ; (f) the AMH copula with parameter 

0.51θ = ; (g) the Joe copula with parameter 1.27θ = ; (h) the independent copula. 
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(c) 

 

(d) 

Figure 6.4 Continued 
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(e) 

 

 

(f) 

Figure 6.4 Continued 
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(g) 

 

 

(h) 

Figure 6.4 Continued 
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The parameters of trivariate Gaussian copula are estimated and provided in Table 6.5. 

The log-likelihood, AIC and RMSE values are employed to measure the fitting 

performance. Using the random variate generation algorithm for the Gaussian copulas, 

2,360 vectors ( )1 2 3, ,U U U  were simulated with the specified correlation matrix Ρ . 

Then, the 2,360 vectors ( )1 2 3, ,U U U  were transformed back into the original units using 

the marginal distribution selected for speed, headway and vehicle length. Figure 6.5 

displays the simulated samples. Assuming 3IΡ = , where 3I  is the 3-dimentional identity 

matrix, the independent speed, headway and vehicle length samples were also generated 

for the purpose of comparison. The actual observations are provided in Figure 6.1 (d). 

Since there is an inverse relationship between speed and headway for both passenger 

cars and trucks, the simulated samples from the trivariate Gaussian copula can accurately 

reproduce this dependence structure. However, it is difficult to observe the inverse 

relationship between speed and headway from Figure 6.5 (b). 

 
 
 
Table 6.5 Parameters and fitting evaluation of trivariate Gaussian copula 

Parameter 
LL AIC RMSE 

&speed headwayρ  &  speed vehicle lengthρ &  headway vehicle lengthρ

-0.55 0.01 0.21 -16306.47 33148.44 0.20 
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(a) 

 

(b) 

Figure 6.5 Transformed samples for (a) the trivariate Gaussian copula; (b) the 
independent copula. 
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6.11 Comparison of Copula Models with the Multivariate Skew-t Distribution 

In Chapter V, the multivariate skew-t distribution has been applied to the correlated 

speed and headway data. To compare the performance of the multivariate skew-t 

distributions with copulas, the traffic data observed in the congested traffic condition 

(16:00 to 19:00) were analyzed in this section. Considering that vehicle length explicitly 

consists of two sub-populations (i.e., passenger cars and trucks), the 2-component 

multivariate skew-t mixture model were used to capture the bimodality of the vehicle 

length distribution. The probability density function (PDF) of a 2-component mixture of 

multivariate skew-t distributions is given by 

1 1 1 1 2 2 2 2( | ) ( | , , , ) ( | , , , )p pf w ST w STν ν= +y Θ y μ Σ λ y μ Σ λ
        

(6.35) 

where jw  is the weight of component j, 1 2, 0w w ≥ , 1 2 1w w+ = , 

1 1 1 1 2 2 2 2(( , , , , ), ( , , , , ))Tw wν ν=Θ μ Σ λ μ Σ λ  is the vector of all parameters. 

 

The multivariate skew-t distributions are applied to the traffic data and the goodness-of-

fit statistics are provided in Table 6.6. The copula-based joint distributions and 

multivariate skew-t distributions were compared using some goodness-of-fit statistics 

(i.e., the log-likelihood, AIC and RMSE). For the three scenarios, all goodness-of-fit 

statistics indicate that the copula-based distribution can provide a better fitting 

performance than the multivariate skew-t distribution and the copula-based joint 

distribution can describe the distribution of traffic variables more accurately. Three 

artificial datasets of 2,360 observations were generated from fitted multivariate skew-t 

distributions and were provided in Figure 6.6. Compared with the actual observations 
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shown in Figure 6.1, the distribution of simulated data points differ significantly from 

the empirical data. In particular, contrary to the findings in the data analysis section, it is 

difficult to observe the inverse relationship between speed and headway in Figure 6.6 (a) 

and (c).  

 
 
 
Table 6.6 Fitting evaluation of multivariate skew-t distributions 

 
Fitted distribution LL AIC RMSE 

Speed and 

headway 
bivariate skew-t distribution -13649.41 27316.82 1.23 

Headway and 

vehicle length 

2-component mixture of 

bivarite skew-t distribution 
-8609.02 17240.03 4.73 

Speed, headway 

and vehicle length 

2-component mixture of 

trivariate skew-t distribution 
-17435.49 34908.98 0.22 
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(a) 

 

(b) 

Figure 6.6 Simulated samples from multivariate skew-t distributions for (a) speed 
and headway; (b) headway and vehicle length; (c) speed, headway and vehicle 

length. 
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(c) 

Figure 6.6 Continued 

 
 
 

6.12 Limitation of Copulas 

Since the 24-hour traffic data used in this chapter consists of distinct traffic flow 

conditions, the correlation structure between speed and headway varies based on the 

traffic condition (for example, as shown in Table 3.1, speed and headway usually have 

an inverse relationship during the peak period and a positive relationship during the off-

peak period.). For copulas, although different marginal distributions can be defined for 

the one-dimensional speed or headway data, the association parameter θ  is assumed to 

be fixed, which neglects the dynamic nature of the correlation structure between speed 

and headway over the 24-hour period. The finite mixtures of multivariate distributions 

can address this issue naturally, since each component has its own covariance matrix and 

the correlation structure between speed and headway can be different across components. 
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Thus, when modeling heterogeneous speed and headway data, the finite mixtures of 

multivariate distributions are preferred over the copula modeling approach. 

 

6.13 Summary 

This chapter documented the application of copula models for constructing the 

distribution of traffic variables (speed, headway and vehicle length) using recorded data 

collected on IH-35. Before constructing multivariate distributions, we first evaluated the 

hourly dependence among speed, headway and vehicle length for the 24-hour period. 

For each hour, Kendall’s tau τ , and Spearman’s rho Sρ  are used to measure the 

dependence. Based on the analysis results, the important conclusions can be summarized 

as follows: 

(1) The relationship between speed and headway and the influence of vehicle length on 

headway is most obvious for the time period from 16:00 to 19:00, which is the busiest 

time of the day on IH-35.  

(2) Vehicle length seems to have a very limited negative effect on vehicle operating 

speed under both congested and uncongested traffic conditions.  

(3) There exists a very weak positive dependence between headway and vehicle length 

under both congested and uncongested traffic conditions. And vehicle length does 

influence following headway as trucks and buses usually keep larger following time 

headways than cars at the same speed level. 
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After evaluating the dependence among speed, headway and vehicle length, copula 

models were used to construct bivariate and trivariate traffic distributions and goodness-

of-fit statistics showed that the proposed copula models can adequately represent the 

multivariate distributions of traffic data. Moreover, the simulated samples from some 

families of copulas can accurately reproduce the actual relationship between traffic 

variables. Since speed and headway usually have a weak negative correlation under the 

congested traffic condition, the degrees of dependence most copulas span are insufficient 

to account for the association. In this chapter, only Gaussian and Frank copulas are 

applicable to the speed and headway data. Compared with the finite mixtures of 

multivariate distributions, this chapter shows that copulas can provide better fitting 

performance and more accurate simulation results. However, since parameter θ  is 

assumed to be fixed, copulas cannot be used to model heterogeneous speed and headway 

data over an extended period of time with varying traffic conditions. Overall, Chapter VI 

provides a framework for generating vehicle speeds, vehicle length and vehicle arrival 

times simultaneously by considering their dependence.  
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

7.1 Summary 

Traditionally, traffic variables (speed and headway) are often not studied jointly in 

microscopic simulation models. One important flaw associated with the traditional 

approach is that the simulated samples based on the independence assumption usually 

fail to consider the empirical dependence between traffic variables. To overcome this 

potential problem associated with the traditional approach, it is necessary to construct 

bivariate distributions to model vehicle speed and headway simultaneously.  

 

The dissertation first examined the dependence structure between speed and headway 

using three measures of dependence (i.e., Pearson correlation coefficient, Spearman’s 

rho and Kendall’s tau). The dissertation proposed the skew-t mixture models to capture 

heterogeneity present in speed distribution. To develop a bivariate distribution for 

capturing the dependence, finite mixtures of multivariate skew-t distributions were 

applied to the 24-hour speed and headway data. To avoid the restriction of the 

multivariate skew-t distributions, the dissertation considered copulas as an alternative 

method for constructing the multivariate distribution of traffic variables. 
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7.2 Conclusions 

Based on the modeling results from this research, we drew some important conclusions, 

which are listed as follows: 

1. The proposed skew-t mixture models can reasonable account for heterogeneity 

problem in freeway vehicle speed data. Finite mixture of skew-t distributions can 

significantly improve the goodness of fit of speed data. The methodology developed in 

this dissertation can be used in analyzing the characteristics of freeway speed data. 

Considering that many traffic analytical and simulation models use speed as an input for 

travel time and level of service determination, the developed models can generate more 

accurate speed value as the input and help improving the reliability of the analysis output.  

2. There exists weak dependence between speed and headway and the correlation 

structure can vary depending on the traffic condition. The dependence between speed 

and headway is strongest under the most congested traffic condition. Vehicle length 

seems to have a very limited negative effect on vehicle operating speed under both 

congested and uncongested traffic conditions. There exists a very weak positive 

correlation between headway and vehicle length under both congested and uncongested 

traffic conditions.  

3. The bivariate skew-t mixture model can provide a satisfactory fit to the 

multimodal speed and headway distribution and this modeling approach can 

accommodate the varying correlation coefficient. For the 24-hour freeway speed and 

headway data, the three-component bivariate skew-t mixture model was selected as the 
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optimal model. The proposed methodology can overcome the correlation problem 

associated with the traditional approach.  

4. Copula models can adequately represent the multivariate distributions of 

microscopic traffic data. Some families of copulas can accurately reproduce the 

dependence structure revealed by the speed and headway observations. The Gaussian 

and Frank copulas are applicable to construct the bivariate distribution of speed and 

headway data with a weak negative dependence. Overall, copula models provide an 

accurate way for simulating vehicle speeds, vehicle length and vehicle arrival times 

simultaneously under a given flow condition. 

 

7.3 Future Research 

This research proposes two different methodologies to construct bivariate distributions 

to describe the characteristics of speed and headway, and there are some avenues for 

future work. 

1. A better understanding of speed and headway distributions and its dependence 

structure can help operational analysis of a freeway facility. In future, since the speed 

and headway data are site dependent and different sites may have distinct traffic 

characteristics, multiple locations should be investigated to fully explore the relationship 

between speed and headway.  

2. Traffic headway includes time headway and distance headway, which are closely 

related to each other and both vary depending on speed and traffic condition. Distance 

headway is also an important microscopic traffic variable and one influential factor in 
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the car following model. Some studies have shown that there exists positive dependence 

between distance headway and speed. Thus, if the distance headway data is available in 

this study, we can further investigate the dependence structure among distance headway 

speed, vehicle length. The findings from further analysis may contribute to the existing 

car following theory. 

3. In some popular traffic simulation models (i.e., CORSIM, SimTraffic and 

VISSIM), vehicles are usually generated on the basis of a certain headway distribution. 

CORSIM considers three types of vehicle entry headway generation distributions: 

uniform, normal and Erlang distributions. The negative exponential distribution is used 

in VISSIM and SimTraffic. The current simulation protocols in these microscopic traffic 

simulation models fail to consider the dependence between speed and headway. Thus, in 

the future, the copula-based distributions can be used in these traffic simulation models 

to generate more accurate speed and headway of entry vehicle. 
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