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ABSTRACT 

 

This research presents a new method to estimate the local road vehicle miles 

traveled (VMT) with the concept of betweenness centrality. Betweenness centrality is a 

measure of a node’s or link’s centrality on a network that has been applied popularly in 

social science and we relate it to traffic volumes. We demonstrate that VMT on local roads 

exhibits a scale-free property: it follows two piecewise (double) power law distributions. 

In other words, the total local VMT can be obtained by properly connecting the two 

distributions at a breakpoint, each having a slope of the power law distribution. We show 

that the breakpoint can be predicted by using certain network topological measures, which 

indicates that the breakpoint may be an inherent property for a particular network. We also 

show that the highest betweenness centrality point can be estimated using network 

measures. Furthermore, we prove that the estimated VMT is not sensitive to the power of 

the power law distributions. This research highlights a potentially new direction of effort 

for local road VMT estimation. 
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CHAPTER I 

INTRODUCTION 

 

Vehicle miles traveled (VMT) refers to the total miles traveled by vehicles on the 

roadway. It is often used for transportation design, planning, decision making, federal fund 

allocation, air quality control, and accident analysis. It also has a close relationship to gas 

tax receipts, the main source of funding for transportation projects. Every year, the state 

Departments of Transportation (DOT) report the VMT on all functional classes of 

roadways, both in urban and rural areas to the Federal Department of Transportation (1).  

Roadways are classified according to functions: interstate, other freeways and 

expressways, principal arterial road, minor arterial road, major collector road, minor 

collector road, and local road (Figure 1). Interstates are the highest class road and connect 

major cities of the 48 U.S. contiguous states. Arterial roads, classified as either urban or 

rural, include expressways without full control of access, U.S. numbered routes, and 

principal state routes. Collector roads serve as links between arterial roads and local roads. 

Local roads provide access to properties, and have factors such as low capacity and speed. 

Arterial roads focus on mobility, but local roads focus on accessibility. Collector roads 

serve in between the two goals. The local roads comprise approximately 60-70 percent of 

a state’s road network as Table 1 shows, but the traffic on local roads is light compared to 

that on other classes of roads. Interstates, freeways, and major arterial roads are completely 

monitored by the Highway Performance Monitoring System (HPMS), a national inventory 

system which monitors nationwide highway travel performance. Collector roads are also 
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covered by various traffic monitoring programs which are developed by DOTs. However, 

no detailed traffic data is collected on local roads. 

 

 

 

Figure 1. Diagram of land access mobility for each functional system. (Source: FHWA 
Functional Classification Guidance Update, 2011) 
 

 

 

 

 

 

 



 

3 

 

Table 1. VMT and mileage of each functional systems for urbanized areas. (Source: 
FHWA Functional Classification Guidelines, 2000) 

  Range (percent) 

System VMT Miles 

Principal arterial system 40-65 5-10 

Principal arterial plus minor arterial street systems 65-80 15-25 

Collector street system 5-10 5-10 

Local street system 10-30 65-80 
 

 

There have been many studies on VMT, and many methods to estimate VMT have 

been proposed in literature. The methods for collector roads and above are mature and 

consistent. However, there are issues with the VMT estimation on local roads. Most 

agencies estimate VMT by using ground count methods, such as the HPMS method. 

HPMS serves as a reliable data source for VMT, but it doesn’t cover local roads because 

it is originally designed for high functional class roads. Besides, the Environmental 

Protection Agency (EPA) does not enforce the use of any particular method in the 

estimation of travel on local roads. Moreover, Federal Highway Administration (FHWA) 

did not develop schemes for local road VMT estimation. Instead, the estimating 

procedures are left to each state DOT. Therefore, currently no consistent method has been 

identified and adopted by all states. Furthermore, most state DOTs are reluctant to develop 

comprehensive programs for traffic data collection on local roads due to various reasons, 

such as the less important role of local roads in the state highway system, cost, and so on. 

All the reasons mentioned previously result in this situation: though local roads constitute 

a large portion of the total length of a road network, much fewer efforts have been made 
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so far to estimate VMT on local roads than for other classifications of roads. Thus, the 

difficulty of estimating VMT on local roads lies on the lack of sufficient available traffic 

data on them. However, VMT on local roads has gained much more attention recently 

because of its importance for air quality control and traffic accident rate analysis. 

Hence, it is essential to develop alternative methods to estimate local road VMT 

which are reliable, accurate, easy to use, and cost-effective. To do so, it is first necessary 

to analyze and take advantage of the existing data available on local roads. It is also 

necessary to deeply investigate the inherent characteristics of the local road VMT in terms 

of its distribution, patterns, and so forth.  

1.1 Problem Statement 

The purpose of this study is to estimate the VMT on local roads by using limited 

data available. In order to avoid dependence on traffic count data, as traditional methods 

do, we aim to explore mechanisms behind traffic distribution patterns on local road 

networks. We believe that trips on the local road community are determined and can be 

estimated by land use and road network structures. Our proposed approach is based on the 

concept of scale-free property (or power-law distribution) which has been found recently 

existing in most large-scale networks in sociology, computer science, finance, and other 

disciplines. Moreover, we take advantage of the concept of betweenness centrality, which 

is a useful tool to measure traffic on networks. Through simulation, we prove that 

betweenness centrality follows power-law distribution and the distribution is solely based 

on network properties. That said, we can develop a model which only requires limited 

network information to predict a whole picture of the traffic distribution pattern on certain 
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local road network communities. This model is further validated and proved to be working 

well as a new direction for local road VMT estimation.  

1.2 Research Objectives 

The primary goal of this study is to estimate local road VMT using minimum 

information that is readily available. For this purpose, the following objectives are 

specified: 

 To introduce and relate the concept of scale-free property with traffic 

pattern within typical a local road networks. 

 To conduct simulations to generate data for analysis so as to develop VMT 

estimating models. 

 To validate developed models. 

 To give suggestions for practical application. 

1.3 Thesis Organization 

This thesis is composed of six chapters. Chapter 1 introduces the background, 

including the problem statement and research objectives. Chapter 2 provides a review of 

the past research on various methods for VMT estimation and other concepts regarding 

road network properties. Chapter 3 introduces the concept of power-law distribution and 

betweenness centrality and proves their relationship using simulations. Chapter 4 presents 

how the property of power-law distribution can be used to estimate VMT and proves that 

the distribution can be predicted based on network measures. Chapter 5 discusses the 

application of the proposed estimation model. Chapter 6, the conclusion of this thesis, 
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includes the major findings of the study, limitations and some suggestions for further 

research. 
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter reviews the previous studies regarding the methods of estimating 

VMT. First it introduces various existing methods and comments on their respective 

advantages and disadvantages. Then it reviews the past research with regard to the 

measures of the road network characteristics.  

2.1 Reviews on VMT Estimation Methods 

VMT refers to total miles traveled by all kinds of vehicles on a road network. It is 

of importance to transportation design, planning, decision making, fund allocation, air 

quality control, and accident analysis. Although various methods of estimating VMT have 

been proposed, they might generate different estimate results, relying on the availability 

of data sources. Nevertheless, all these estimates need to be evaluated and compared in 

order to obtain the reasonable VMT estimates. Moreover, due to various reasons, 

traditional methods do not pay enough attention to the VMT on local roads, which 

becomes increasingly important. The following is a brief review of current literature 

regarding VMT estimation. The related literature falls into three categories: traffic-count 

based approaches, non-traffic-count based approaches, and local road-specific approaches. 
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2.1.1 Traffic-Count Based VMT Estimation Approaches 

The most common approach to estimate VMT is based on traffic counts. This type 

of approach directly takes advantage of actual traffic counts on major roads. After 

sampling procedures or conducting statistical model regression, the total VMT on a road 

network can be estimated. 

The Highway Performance Monitoring System (HPMS) is a national inventory 

system which monitors nationwide highway travel performance. The HPMS method is a 

typical case of traffic-count-based methods, which use traffic counts on sampled road 

sections and road mileage to estimate VMT. Both the sampling and data collection 

procedures follow the HPMS manual (2) to determine the accuracy of final results. This 

method first obtains VMT in each volume group of each functional class, and then 

calculates the expansion factor for each group. After summing up the VMT of all groups, 

the total area VMT can be derived. As long as enough road sections are sampled, this 

method is highly accurate, since it is based on actual data and statistical principles. 

Moreover, it has proved to be mature and costless as well, since it has been developed for 

more than 30 years and current existing programs can be fully used. Robert K. Kumapley 

and Jon D. Fricker (3) reviewed this method and focused its localized version, which was 

proposed by INDOT (Indiana Department of Transportation). The INDOT procedure is 

also based on traffic counts and follows the HPMS manual. The difference from traditional 

method is that it uses its own inventory database, which is much more detailed. In spite of 

the improvement made by INDOT, this type of method still has two major shortcomings: 
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the unavailability of local road traffic data and its original designation for high functional 

class roads. 

Despite its monitoring and recording function, the HPMS can serve as a reliable 

data source for other VMT estimating methods. Aikaterini Rentziou, Konstantina Gkritza, 

and Reginald R. Souleyrette (4) developed a method based on simultaneous equation 

models and panel data regression models to estimate VMT. They examined most of the 

well-established factors that would affect VMT, such as demographic and socioeconomic 

characteristics, fuel cost, land use, length of road network, and road capacity. Then, they 

found out the key variables related to VMT and analyzed the data from the HPMS to 

develop linear regressions. Using these models, the future VMT can be forecasted if 

predicted changes of influencing factors are given. Based on the results of estimation of 

rural, urban, and total VMT, it can be understood how the key variables affect VMT. 

According to their findings, state fuel tax and density have the most significant impact on 

VMT. The method developed from this paper may help policy makers make informed 

decisions to reduce energy consumption and emissions. Due to the fact that the VMT data 

are based on the HPMS, the method cannot predict local road VMT. However, the results 

obtained may also indicate possible relations between local VMT and influencing factors. 

Thus, it is possible to take advantage of the current available data sources of those factors 

to estimate or validate VMT on local roads. 

Moreover, the report developed by the Fort Collins LUTRAQ Team (5) reviewed 

three methods to estimate VMT and its growth rate in the Fort Collins area. First, they use 

existing traffic demand forecasting models to estimate traffic on each road, taking into 
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account housing patterns, employment patterns, and roadway capacity. The models are all 

calibrated by means of HPMS traffic count data. Total VMT is then calculated by adding 

up the VMT on each roadway. Second, while the HPMS method may be likely to under-

estimate VMT, it can still be used to validate the VMT growth rate. Third, as for the fuel-

use approach, it calculates the share that the Fort Collins area takes of statewide fuel use 

and then multiplies it by the fuel efficiency. According to the results, they conclude that 

the model-based method has the best accuracy. They also compare the VMT growth rate 

to the population growth rate, which is meaningful to city planning. The results show that 

VMT is growing faster than population. Moreover, they explain the significance of the 

finding to city planning and air quality control. The frequency of updating the traffic 

modeling and calibration is recommended as biennial. The drawbacks of using HPMS data, 

as described in the preceding paragraph, still exist in this method. 

Additionally, HPMS data can also help researchers work together with other data 

sources. The report “TxLED VMT Estimation Project” by Cambridge Systematics Inc. (6) 

estimates truck VMT in order to evaluate the effectiveness of Texas’ low-emission diesel 

(TxLED) fuel program. In this project, the truck VMT consists of three parts: pass-through 

truck VMT, internal-external/external-internal truck VMT, and internal truck VMT. Four 

data sources used in this method include the TxDOT Statewide Analysis Model (SAM), 

TxDOT Highway Performance Monitoring System (HPMS) vehicle classification data, 

Reebie TRANSEARCH freight flow data for State of Texas, and Metropolitan-level travel 

models of Houston and Dallas. The key part of this project is integrating the VMT 

estimates from various data sources. In terms of the characteristics of different data 
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sources, the final estimate of VMT is developed by proportioning the trip type VMT 

estimates from the SAM to the VMT totals from the HPMS. As a result, VMT estimates 

are generated by multiplying the distances of a given OD pair by the number of trucks. 

However, some issues still exist in this method. For example, the fuel usage generated 

from a single survey in Houston’s metropolitan area is not that accurate. More surveys are 

needed for various counties to obtain the generality of results. Also, there are significant 

amounts of data not used in the estimation, which means that the incorporating process 

should be modified and improved in the future. 

2.1.2 Non-Traffic-Count Based Approaches 

Non-traffic-count-based methods refer to those based on statistical analysis of 

factors such as demographical data, fuel sale, and network modeling. Normally, traffic-

related data is not required. 

Brian Stone, William Obermann and Stephanie Snyder (7) tried to analyze the 

relation between land use, demographics, and VMT, by which future VMT can be 

estimated according to the land use changes. The data sources used in the report include 

residential VMT data developed from the Nationwide Personal Transportation Survey 

(NPTS), commercial VMT data derived from the Freight Analysis Framework (FAF), and 

demographic data obtained from 1990 and 2000 censuses. This method derives VMT rates 

for each cluster of census tract based on demographical characteristics. It can obtain high-

resolution graphics showing how VMT varies geographically. It can also estimate current 

and future VMT rates associated with land use and demographics. However, the detailed 

NPTS data is no longer open to the public as a result of privacy concern, so it is difficult 
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for researchers to utilize. In addition, the Oak Ridge National Laboratory Transferability 

study used in this method is owned solely by the company and has not been publicly 

adopted. 

A recent report, “Developing a Best Estimate of Annual Vehicle Mileage for 2009 

NHTS Vehicles,” (8) proposed a method called BESTMILE to estimate VMT based on 

single odometer readings. The data source is Version 3 of the 2009 NHTS (National 

Household Travel Survey) vehicles. The authors first analyzed the 2009 NHTS data 

quality and found that the single odometer reading with vehicle year data was the basis for 

the 2009 data method. Three regressions were conducted separately for three different 

types of vehicles – new, used, and all - in order to get the relation between vehicle age and 

annual miles driven. Then VMT for each year in the single odometer reading could be 

determined, given the vehicle age and accumulative miles. 

Jon D. Fricker and Raymond K. Kumapley (9) also developed a non-count-based 

statewide VMT estimation model to supplement INDOT’s traffic-count-based method and 

assist Indiana DOT in planning. The method uses a short-term cross-classification VMT 

forecasting model for INDOT, based on household and driver survey data such as 

population of licensed drivers, age, and gender, from NPTS data sources. This short-term 

VMT model developed for INDOT predicts the total vehicle miles driven by all licensed 

drivers for all vehicle types. However, the surveys are likely to contain inaccurate 

information provided by respondents and can only forecast a rough total VMT. 

Most state DOTs estimate VMT using ground count methods. However, the local 

road network, which usually forms a majority of the total state road mileage, is biased in 
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the data collection sampling process. Most state DOTs are also reluctant to develop 

comprehensive programs for traffic data. Thus, the difficulty to estimate VMT on local 

roads is due to the lack of traffic data on them. However, research with regard to estimating 

VMT on local roads has gained much more attention recently because of its importance 

for air quality control and traffic accident rate analysis. In the next section, limited 

literature for VMT estimation on local roads will be presented. 

2.1.3 Local Road-Specific VMT Estimation Approaches 

The work by Ming Zhong and Brody L. Hanson (10) is aimed at using travel 

demand models (TDM) to estimate traffic volumes on low-class roads. This method does 

not rely on traditional traffic monitoring systems, which cannot cover all roads in the 

networks. The authors conducted one case study to examine this approach on the York 

County and the Beresford area in the Province of New Brunswick. Major steps include 

building network and traffic analysis zones, trip generation, trip attraction, trip distribution, 

and trip assignment. Once the traffic volumes are obtained, it is easy to estimate VMTs 

for all road classes in the network. Their results demonstrate that the TDM method can 

serve as a practical and cost-effective way to estimate traffic volumes for low-class roads. 

Additionally, a number of Metropolitan Planning Organizations (MPOs) have relied on 

this kind of method (11, 12). The advantage of this method, compared to the traditional 

method, is that it can capture the volume variation within each road group, since traffic 

volumes for each road can be estimated by this method. However, two major issues with 

this method exist. One issue is that the traffic volumes obtained from the model are always 

overestimated, especially for local and collector roads. The reason may be that too much 
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traffic is distributed to the collector and local roads, due to the all-or-nothing assignment 

method. After incorporating traffic count data as the road capacity and the Stochastic User 

Equilibrium (SUE) method, the errors are reduced. Another issue is that reducing the study 

area might gain better accuracy. According to the author, boundaries encompassing only 

the urban influencing area, rather than the whole jurisdiction, should be chosen. 

Fang Zhao and Soon Chung also proposed a method by using Geographic 

Information System (GIS) tools (13). Different from Ming’s method, this method is based 

on a multiple linear regression model of AADT. The study area is the entire Broward 

County in South Florida, a typical coastal area. The AADT data source is composed of 

traffic counts obtained from permanent count stations on state roads. In the regression 

model, AADT serves as the dependent variable and the predictors are roadway 

characteristics, socioeconomic characteristics, expressway accessibility, and accessibility 

to regional employment centers. The four variables can be obtained from GIS tools. 

Through analysis, they find that function class and number of lanes are the most significant 

predictors. This method can be used to estimate AADT on almost all road segments, as 

long as the variable data are provided. It can be used to estimate VMT on local roads, 

while there is insufficient validation for local roads due to the lack of AADT data on local 

roads. In addition, temporal stability and errors of the models need to be analyzed in the 

future. 

Kelly Blume, et al. (14) propose to estimate local road VMT based on GIS data 

and regression modeling. The major difference is that they only use GIS data as stratifying 

tools and sample collected traffic data. This method takes advantage of census data and 
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the correlation between travel and population density, job density, and roadway density. 

By stratification and sampling procedures, median AADT for each functional class and 

each stratum of road could be obtained. Then, the VMT can be estimated. According to 

the descriptions, the first important thing is to build a statewide GIS database containing 

all functional roads’ information. After that, in order to define the most reasonable 

boundaries which are neither too small nor too large, a new concept called the ZIP code 

tabulation area (ZCTA) is introduced. Each ZCTA has the similar characteristics. The 

Florida state is then divided into ZCTAs by three categories – urban, rural, and mixed ZIP 

codes. The next step is to group these ZCTAs into strata. The sample size required for 

each stratum is calculated using the formula proposed by the HPMS Field Manual. As for 

count locations, they are randomly selected in the GIS database. The last step is to estimate 

VMT once the average or median ADT is obtained. After adjusting this value, a 

representative AADT for each classification road can be derived. Thus, VMT could be 

calculated by multiplying this AADT by the local road length. One feature of this method 

is that it is based on the correlation between travel, population density, job density, and 

roadway density, which is reasonable and intuitive. However, a complete local road 

database and accurate local road AADTs should be available. In addition, more work that 

should be done includes choosing better stratification variables, developing a more reliable 

and accurate GIS roadway database. 

Apart from GIS-based methods, William L. Seaver, Arun Chatterjee, and Mark 

Seaver (15) propose a mathematical model based on statistical analysis. It does not rely 

on traditional sampling procedures or traffic count programs. In order to develop the 



 

16 

 

model, data from 80 counties in Georgia was selected for analysis. Differing from the 

traditional method, which tries to find the relationship between VMT and socioeconomic 

and geographic variables at the census tract level, the authors conducted the process at the 

county level. They tested 45 very general variables to derive models and adopted principal 

components out of 45 initial variables. Afterwards, the optimal multiple regression for 

ADT on rural local roads was derived. One feature of this method is the focus on 

identifying and selecting variables to predict ADT accurately. This method can also be 

applied to states which do not have traffic counts on local roads. As for limitations, the 

data - such as census data - on which the model relies does not update frequently, which 

results in a lag somehow. Additionally, relying solely on the demographic data may not 

be sufficient. 

Furthermore, there is also a method that incorporates concepts from electrics. The 

paper proposed by Shengguo Wang et al. (16) developed a circuit network model and 

simulation to estimate VMT and AADT for local roads. This method assumes that the road 

network can be represented by circuit networks and that AADT is related directly to the 

households along each road. They found that there is a nearly linear relationship between 

the total entrance AADT with the number of community households. Then a circuit 

network was modeled among which resistor, current flow, and voltage were represented 

by road length, AADT, and VMT, respectively. Simply put, each entrance serves as a 

current source and each branch has a sink current source at its mid-point. Then, circuit 

models were developed and, with the help of software, AADT at each road segment and 

VMT of the whole area can be calculated automatically. This method can conduct the 
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estimation without field data collection. However, there are still some issues. For example, 

it needs further validation when assuming that AADT is linearly related to the number of 

households. Moreover, some problems may arise if resistors are solely used to account for 

road lengths. For instance, houses and apartments along one road of the same length 

should be treated differently. 

 

2.2 Measures of Road Network Characteristics 

Networks are composed of a set of nodes and links. In transportation, nodes are 

generally the connection points of roads, such as intersections, while links are road 

sections. In two-dimensional networks, the number and spacing of nodes define the 

density and shape; the links between nodes define the level of connectivity. Different 

arrangement of nodes and links results in different network structures. There are a number 

of measures to quantitatively evaluate network structure so far, such as connectivity, 

heterogeneity, gamma index, compactness, etc. Since the 1970s, researchers have made 

efforts to investigate how traffic flows and travel pattern are related to different network 

structures. Several common measures of road network are reviewed below. 

2.2.1 Connectivity 

Connectivity, as one of the most common measures, is a measure of different ways 

to connect a pair of origins and destinations (17). Generally, a high level of connectivity 

means one has more choices to make a trip from one point in the network to another point. 

Based on previous research, street connectivity plays an important role in defining traffic 

flow patterns. Moreover, data required to measure connectivity is easy to obtain and the 
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concept is quite straightforward. Though connectivity can be defined in different ways, 

the most common and simplest form is dividing the number of links by the number of 

nodes (i.e. C=L/N, where L stands for number of links and N number of nodes). The 

following reviews partially examine previous research related to network topology and 

connectivity.  

Carlos A. Alba and Edward Beimborn (18) examined the relation between 

connectivity of local residential streets and traffic volumes on nearby arterial roads. The 

study revealed that improved connectivity can reduce arterial traffic. The relative speed 

on the arterial vs. that on local roads defines the extent of the effect. It is proved that better 

connectivity of local streets can help spread out traffic volumes more efficiently 

throughout a network. Gil Tal, Susan Handy, and Marlon G. Boarnet (19) stated the 

connectivity changes in the evolvement of typical street network patterns in the U.S. They 

compared and commented on past studies on how connectivity will affect VMT and GHG 

(Greenhouse Gas) emissions. Dill Jennifer (20) evaluated various measures of network 

connectivity for the purposes of increasing walking and biking, based on a project in 

Portland. They selected street network density, connected node ratio, intersection density, 

and link-node ratio as variables. They found that the four measures are positively 

correlated, but they do not assign the same level of connectivity for an area. Mike 

Tresidder (21) examined the different measures for connectivity and evaluated their 

effectiveness and limitations. In the rest of their study, they proposed a method for 

measuring connectivity using GIS and analyzed limitations and issues of that method.  
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Pavithra Parthasarathi, Hartwig Hochmair, and David Levinson (22) incorporated 

land use and socio-demographic characteristics, in addition to connectivity, to analyze 

their impacts on VMT. Regression models were derived to show the influence. According 

to the results, the street network structure does influence the travel behavior of individuals. 

Meanwhile, connectivity, circuity, shape factor, and the population and employment 

density show a negative influence on VMT, after controlling other independent socio-

demographic and land use variables. 

2.2.2 Compactness 

The measure “compactness” proposed by Courtat (23) is used to measure how a 

certain area is filled with roads. It is expressed as below: 

φ = 1 − ସ஺
(௟೅ିଶ√஺)మ

                                                      (2-1) 

where A is the area of a community of interest and ்݈ the total length of roads. The value 

of φ will be within the range of [0,1]. If there are no roads in the area, the value will be 0. 

It is very likely that the larger the value is, the more connected one network is. 

 2.2.3 Betweenness Centrality (BC) 

Road networks have strongly heterogeneous functions. Some roads carry high 

traffic volumes and serve as a backbone for the whole network, while others only provide 

accessibility to neighborhoods.  The underlying idea can be represented with a single 

measure — centrality. The study of centrality, however, originated from sociology. In the 
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classic structural sociology network, nodes represent individuals and links represent the 

relationships between individuals. Freeman (24) proposed betweenness centrality to 

identify an individual’s social status in terms of his social influence and connections. 

Recently, betweenness centrality has been extensively applied to other disciplines 

including computer communication networks (25, 26), protein networks (27), urban 

design (28), and also transportation networks. Altshuler, Y., R. Puzis, Y. Elovici et al. (29, 

30) proposed that applicability of BC, and certain augmented measures of it, can be used 

for the prediction of mobility patterns in transportation networks. Specifically, they found 

that there is a strong positive correlation between traffic flows through a node and its BC 

measures. Other literatures also pointed out the correlation between traffic flow patterns 

and betweenness centrality distribution (31, 32). 

When betweenness centrality applies to links in road networks, it is based on all 

shortest paths between nodes. In other words, it quantifies to what degree a link would 

separate the network into two parts, assuming that people choose to travel on their shortest 

paths. Mathematically, the betweenness centrality for a link is defined as the number of 

shortest paths from all vertices to all others that pass through that link, i.e.,  

݃(݁) = ∑ ఙೞ೟(௘)
ఙೞ೟௦,௧∈௏ ,                                                  (2-2) 

where ݏ and ݐ represent nodes in the network, ߪ௦௧(݁) the number of shortest paths going 

from ݏ to ݐ through link ݁, ߪ௦௧  and the total number of shortest paths between	ݏ and ݐ 

within the network. A higher value of betweenness centrality indicates that the 

corresponding link likely rests on the edge between two parts of the network. From this 



 

21 

 

perspective, links with high betweenness centrality are very likely to carry more traffic, as 

they play an important role in networks. 
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CHAPTER III 

SCALE-FREE PROPERTY OF LOCAL TRAFFIC 

  

A road network exhibits its specialty in terms of its geographical, historical, and 

social–economical characteristics compared to other networks. This section studies BC on 

local road networks and, via simulation, shows that traffic flow over a local neighborhood 

network has the scale-free property. 

3.1 Introduction 

Networks or graphs have been studied for a long time in many disciplines 

including mathematics, mathematical sociology, computer science, and quantitative 

geography. Since Albert and Barabasi (33) proposed the existence of degree 

heterogeneities in the real world, many researchers have been focusing on the properties 

of a spatial network, which is in contrast to random networks. That said, real networks are 

composed of nodes and edges, which are constrained by geometry and space. The 

combination of nodes and edges determines the topological properties of the network and 

affects the operating mechanism taking place on it. 

Large-scale networks, either observed in reality or abstracted from real-world 

systems, have been found to exhibit two fundamental properties. The first is the small 

world property, which says that the shortest distance of any two random nodes among the 

network is usually short. The small world property also implies a high degree of clustering. 
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This property has been demonstrated in social networks, the Internet, and computer and 

mail networks (34, 35, 36).   

The second property of large-scale networks is the scale-free property. The scale-

free property characterizes an insight in networks that a large portion of nodes have 

attained little connectivity and that a small portion of nodes have the most connectivity, 

when connectivity is measured as the number of links to a node (37). If a network 

possesses such a property, the distribution of the connectivity follows a so-called power 

law distribution (38). As indicated in Barabasi, A. L., and R. Albert. (39), this property 

differentiates the real world networks from random networks since, in random networks, 

the distribution of connectivity may follow a bell-shaped exponential distribution. 

Although the scale-free property has been explored in some disciplines (40, 41), recently 

it has also been discovered in urban street networks (42, 43, 44). In a series of work (32, 

37, 45), Jiang and his colleagues demonstrated a small world property for the topologies 

of urban street networks, and a scale-free property for both street length and connectivity 

degree. Their findings also revealed the street hierarchy with different importance, which 

indicates that a minority of streets account for a majority of traffic flow (45). The above 

sequential work indicates a strong connection between traffic patterns over the networks 

and the scale-free property.   

3.2 Power Law 

Scale-free property can be described by power law. That is why power law is also 

called scale-free distribution. And the graph possessing such a property is called a scale-

free graph (46). Power law is a functional relationship between two quantities, which can 
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be expressed as p(x) = Cିݔఈ . It is also noted as long tail distribution or scale-free 

distribution. Many societal entities have this property. For instance, the number of cities 

with a certain population varies according to a power of the population. In other words, 

those cities with a large population only account for a small percentage of all cities, which 

is shown in the left plot of Figure 2. Power law also applies to other areas such as income, 

word frequency, websites visited, and road segment lengths. One of the features of power 

law is that if we take log-log values for both sides of the equation, there will be a straight 

trend line overlaying the dots, as shown in the right plot of Figure 2. In this case, differing 

from Gaussian distribution, the average value may not be a good index to reflect the 

characteristics of the quantity, because of the heavy tail. The tail part of the distribution 

indicates variation, and is of interest and of importance to practice. 

 

 

Figure 2. Left: histogram of the populations of all U.S. cities with population of 10,000 
or more. Right: histogram of the same data, but plotted on logarithmic scales. (Source: 
Pareto distributions and Zipf's law, Newman, 2005) 
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However, there are some issues with this kind of expression in actual practice. One 

solution is using cumulative distribution function. The power law can be expressed by two 

different expressions in practice (47). Pareto proposed a form of cumulative distribution 

when he investigated income distribution. He is interested in how many people have an 

income higher than x as the expression is defined as r ~ିݔఉ  (r = number of people with 

income higher than x, x = income). Meanwhile, he observed that around 80% of the land 

in Italy was owned by 20% of the population. This phenomenon also exists in income 

range. That is why this kind of distribution is known as the 80-20 rule or the law of the 

vital few. On the other hand, Zipf (48) proposed that the size of the nth largest occurrence 

of the event is inversely proportional to its rank, r. The expression is x ~	ିݎఈ (r=rank, 

x=income). Actually Zipf’s form is the transformation of Pareto’s distribution. In reality, 

according to the expression, the best way to examine if one distribution follows power law 

is to see its log-log plot since the rank of a quantity can be easily obtained. If there is a 

straight line on the plot then there is enough evidence that the distribution follows power 

law. In this paper, Zipf’s law for the modified betweenness centrality, which will be 

introduced below, is utilized to analyze traffic flow patterns on local road networks. 

3.3 Modified Betweenness Centrality 

VMT can be calculated by multiplying road length with the traffic volume on them. 

As the local road length is readily available from government database, estimation of 

traffic volumes via ADT (or AADT) on local roads is our major task. 

A common feature in most local communities is that they are usually surrounded 

by collector roads. This kind of local community will be investigated in this study. From 
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now on, the term ‘local road network’ is referred to as the local roads within a community 

surrounded by collector roads. 

The variability of ADT across the local network reflects the movement intensity 

and, to some degree, the preference of travelers on local road networks. The two major 

factors that affect such preference are topology of road network and traffic demand 

distribution. Note that detailed demand information may be obtained from the 

metropolitan planning organization (MPO) and census data; thus, it is then the objective 

of this study to identify the statistical relationship between traffic flow pattern and road 

network properties in each local region. In order to achieve this goal, we first establish a 

relationship between the betweenness centrality measure and AADT values. Be aware that 

BC depends on the shortest paths. In a local neighborhood, the road traffic is normally low 

enough, and it is natural to assume people choose the shortest paths in their trips. Recall 

that betweenness centrality is calculated using the number of shortest paths through a link. 

If we incorporate the Origin-Destination (OD) matrix (in terms of daily volumes) into the 

calculation of betweenness centrality, then in an ideal local road network, betweenness 

centrality for a link will be sum of the ratio of traffic flow on a link from an OD pair to 

the total flow from this pair over the network. This modified betweenness centrality 

measure then becomes 

 ݃(݁) = ∑ ை஽ೞ೟(௘)
ை஽ೞ೟௦,௧∈௏                                             (3-1)                            

where ܱܦ௦௧  denotes the daily volume in OD matrix for OD pair ݏ	 − ݐ , and ܱܦ௦௧(݁) 

denotes the daily volume on link ݁  from OD pair ݏ − ݐ . If the traffic flow from OD 

pair	ݏ − (݁)௦௧ܦܱ	݁, then	does not go through the link ,ݐ = 0. 
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The equation (3-1) can be further simplified because one attempt is to obtain VMT 

estimation in local community. Two assumptions are used here. First, the population 

density is uniformly distributed in a local neighborhood area. Accordingly, the origins of 

OD pairs are uniformly distributed. Second, trips generated from a local community have 

equal probability to all the destinations. Here, the destinations are represented by the exits 

of the community. Since there are only a limited number of exit points, the dimension of 

the OD matrix is manageable. The two assumptions give rise to a symmetric situation. 

Therefore, all ܱܦ௦௧ can be regarded as equal. In this view, Equation (3-1) becomes    

 ݃(݁) = ∑ ை஽ೞ೟(௘)ೞ,೟∈ೇ
ை஽

= ௏(௘)
ை஽

 ,                                        (3-2) 

where ܸ(݁) represents the traffic volume on link ݁	and ܱܦ represents the volume for each 

OD pair in the local community. Obviously, Equation (3-2) is a rescaled traffic volume on 

each link. However, the value of ݃(݁) depends on the number of OD pairs that goes 

through link e, which makes it hard to compare between different communities. Thus, we 

can further convert Equation (3-2) into Equation (3-3) by introducing the total traffic 

demand. In that case, ݃(݁) becomes rescaled so that its value falls within 0 and 1 and 

makes it possible to compare between different communities. Equation (3-3) is described 

as 

݃ᇱ(݁) = ∑ ை஽ೞ೟(௘)ೞ,೟∈ೇ
௡∗ை஽

= ௏(௘)
ை஽೟೚೟ೌ೗

                                            (3-3) 

where ݃ᇱ(݁) is rescaled betweenness centrality, ݊ is the number of OD pairs, and ܱܦ௧௢௧௔௟ 

becomes the total traffic demand within each community. 
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We have conducted extensive simulations to reveal the scale-free property of local 

traffic and to explore its possibility of estimating local road VMT. A fairly large array of 

neighborhood networks were generated, which are distinct from each other in terms of 

topology. Local trips regarding travel behaviors and population density were generated 

based on assumptions mentioned above. Then the modified measure of betweenness 

centrality was calculated according to Equation (3-3). Once the value of betweenness 

centrality is proved to follow power law and the associated parameters are shown to be 

determined by network properties, then it is possible to estimate local road VMT directly.  

3.4.1 Simulation Network Settings 

Though road networks exhibit numerous different shapes in reality, there are 

several patterns of layouts established for analysis. They represent dominating street 

design models for different periods in history. “American conceptions of the residential 

street network have changed dramatically from the interconnected rectilinear grid pattern 

of the turn-of-the-century, to the fragmented grid and warped parallel streets of the 1930s 

and 1940s and the discontinuous, insular patterns of cul-de-sacs and loops that have 

preferred since the 1950s” (49). Figure 3 contains bird’s-eye views from Google Maps, 

indicating different types of local road network layouts in the Houston Area. In these 

networks, local roads are marked by white lines and collector roads are marked by bold 

yellow lines. These figures support our earlier assumption that local roads are all 

surrounded by collector roads. Basically, these networks represent popular local 

community shapes in every urban area in the world.  

3.4 Scale - Free Property for Local Traffic:  Simulation Results
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Figure 3. Four examples of layout for local communities from the area of Houston, TX. 
 

 

In order to make this study inclusive and results conclusive, we set up 30 types of 

local neighborhood networks for simulation. Their layouts vary in terms of the number of 

links, number of nodes, and the length of links, so as to represent the real-world local 

communities (Table 2). Figure 4 illustrates 15 examples of the local neighborhoods in our 

simulations, whose attributes are shown in Table 1. These configurations are also designed 
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based on examples in Southworth and Ben-Joseph (47). For simplicity and comparison 

purposes, we confined each local neighborhood network into a square area with the same 

length for side edges. All neighborhood layouts have their inner links as local roads and 

the surrounding links (i.e., the side edges of the square areas) as collector roads. Apart 

from the topology, the layouts of these communities are also different from the number of 

links connecting with local and collector roads. 

As mentioned above, each network has the same area with a square shape. 

Specifically, the length of each side is 8 miles and thus the total area of each community 

is 64 square miles. The speed for local roads and collector roads is set at 15 mph and 40 

mph, respectively. The reason for this setting is to make sure that collector roads have a 

higher priority for travelers than local roads. In reality, travelers do not like driving on 

local roads and prefer higher class roads because a collector road has higher speed and 

less resistance. As Figure 4 shows, road links are those segments between nodes. In order 

to reduce simulation errors, those extremely long links are split into multiple road 

segments. 
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Figure 4. Layouts of 30 simulation networks 
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Table 2. Characteristics of simulation networks 

ID Edge Node Average 
Degree 

Total 
Length 

Avg_Link
Length Link/Node 

1 24 9 5.33 47.99 2.00 2.67 
2 40 16 5 63.98 1.60 2.50 
3 60 25 4.8 79.98 1.33 2.40 
4 112 49 4.57 111.97 1.00 2.29 
5 55 33 3.33 75.77 1.38 1.67 
6 45 30 3 62.46 1.39 1.50 
7 47 33 2.85 63.46 1.35 1.42 
8 59 51 2.31 63.92 1.08 1.16 
9 35 23 3.04 52.80 1.51 1.52 
10 40 36 2.22 50.86 1.27 1.11 
11 48 36 2.67 59.94 1.25 1.33 
12 31 25 2.48 46.12 1.49 1.24 
13 28 28 2 47.82 1.71 1.00 
14 50 39 2.56 59.20 1.18 1.28 
15 68 41 3.32 73.17 1.08 1.66 
16 88 41 4.29 88.11 1.00 2.15 
17 96 41 4.68 96.04 1.00 2.34 
18 104 41 5.07 104.01 1.00 2.54 
19 105 41 5.12 105.01 1.00 2.56 
20 98 41 4.78 97.94 1.00 2.39 
21 91 41 4.44 91.16 1.00 2.22 
22 89 41 4.34 89.16 1.00 2.17 
23 98 41 4.78 98.11 1.00 2.39 
24 96 41 4.68 87.16 0.91 2.34 
25 85 41 4.15 85.16 1.00 2.07 
26 94 41 4.59 94.13 1.00 2.29 
27 90 41 4.39 90.13 1.00 2.20 
28 86 41 4.2 86.14 1.00 2.10 
29 92 41 4.49 92.02 1.00 2.24 
30 77 41 3.76 76.97 1.00 1.88 
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3.4.2 Trip Generation 

Since the simulation involves traffic demand analysis, it is necessary to clarify 

influencing factors. Briefly speaking, two elements must be considered: land use mix and 

activity intensity. First, traffic is derived from land use, as land use determines where 

people live, work, and shop. In our simulation, we avoid land use mix by assuming all 

traffic originates from the local network community and goes outside. Otherwise, the 

existence of land use mix will cause traffic to be absorbed internally and it will be 

impossible to analyze network property individually. Second, activity intensity, or travel 

demand intensity, determines the total number of trips between each OD pair. Intuitively, 

traffic flow will change proportionally with travel demand. So travel demand is set equal 

for each simulation network. 

In our simulation setting coded in TransCAD software (version 4.5), there are 64 

traffic analysis zones (TAZs) that represent the traffic demand sources, and all travelers 

originate from the center of each TAZ. A certain number of TAZs (from one to four) at 

the corners of each community are constructed to make travelers go along collector roads 

through those corners, so as to reach other places. The volumes attracted by these four 

TAZs are equal. As mentioned above, we assume that traffic demand is uniformly 

distributed within each community. It is important to note that this assumption is 

reasonable for general local communities and serves as a comparison purpose only. It does 

not affect the scale-free property of the local traffic. We set the total trip production for 

each community as 640 demand units, and the trips attracted by each corner TAZs as 160 

demand units. Such setup enables us to generate the trips similar to the scale of 
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observations in the available data from a Texas MPO. However, one can rescale the 

demand to any real situations according to the local monitoring data. Figure 5 (a) shows 

the 64 TAZs (in blue) within the layout of example from Figure 4. 

The volumes on links of each local network are obtained through simulation output. 

As the daily volume on each link in a local neighborhood network is usually low, we 

assume that no congestion occurred on each link. Therefore, the simulation is conducted 

based on an all-or-nothing approach that would assign travelers to the shortest path in 

terms of travel time, which is consistent with the observations in the local neighborhood. 

Figure 5 (b) shows the resulting traffic volume on each link and in each TAZ for the 

example (with four TAZs at corners) in Figure 5 (a). One thing to note is that though 

centroid connectors are loaded with traffic, they are not counted as local roads. 
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 (a) 

 
(b) 

Figure 5. Example for traffic demand settings: (a) 64 TAZs (in blue) within an 
example network; (b) Resulting traffic volume on each link and in each TAZ. 
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3.4.3 Scale-Free Property: Two-Piecewise Power Law Distributions  

As explained already, traffic flows can be expressed with betweenness centrality. 

In our case, the betweenness centrality for each link is calculated according to Equation 

(3-3), based on the results from simulation for each local community. Then, all the values 

of betweenness centrality are sorted from the largest to the smallest, and the associated 

links are assigned a number (starting from 1) to represent their rank in the sorted results. 

In order to examine Zipf’s law for traffic patterns, the logarithmic values are used to find 

the relationship between the rank and betweenness centrality. We denote the logarithmic 

value of each link rank by ݎ, and the logarithmic value of betweenness centrality by ݕ. 

The results show that the link betweenness centrality exhibits two piecewise power law 

distributions, i.e., 

ݕ = ௜ߛ −  (4-3)                                                   ݎ௜ߚ

where ߛ௜ and ߚ௜ are constants, ݅ = 1 for ݎ ≤ ܾ and ݅ = 2 for ݎ > ܾ. The value of ݎ starts 

from 1 to the total number of links in the network. We call the value of ݕ at ݎ = ܾ as the 

breakpoint between two pieces. The first piece includes the first 20% of the links and the 

second piece involves the other 80% of the links. The linear regression result for ݎ and ݕ 

shows a significant high R-square value for each piece.  

For illustrative purposes, Figure 7 shows the results of six selected local 

communities respectively, which are shown in Figure 6. Results for the rest of the 

networks are attached in Appendix 1. Note that the breakpoints between two pieces of 

power law distributions may vary for different topological communities, because the total 

number of links vary. However, as we require ݎ to start from 1, the point with the largest 
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value of ݕ always lies on the y-axis. Obviously, the relatively flat top part (red regression 

line) represents the links with the higher betweenness centrality, and the second part (blue 

regression line) represents links with lower betweenness centrality. We will further utilize 

this feature to estimate local road VMT. 

 

Figure 6. Selected 6 examples for typical layouts of 30 simulation networks. 
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(a) 

 
(b) 

Figure 7.  Betweenness centrality exhibits two piecewise power law distributions for 
the local communities in Figure 6, respectively. The logarithmic value of the link rank 
(Rank) by r, and the logarithmic value of betweenness centrality (BC value) by y. The 
first piece (red) includes 20% total links and the second (blue) involves 80% links. 
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(c) 

 
(d) 

Figure 7.  continued 
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(e) 

 
(f) 

Figure 7.  continued 
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CHAPTER IV 

LOCAL VMT ESTIMATION BASED ON SCALE-FREE PROPERTY 

 

As we illustrated above, the converted betweenness centrality versus rank plots do 

not follow a straight line. Instead, they can be partitioned into two parts – the top 20% part 

and the bottom 80% part. Each part can be approximately overlaid by a straight line. This 

phenomenon illustrates deviation from traditional power law distribution, which only has 

one line. In fact, this kind of double exponent power law distribution has been revealed by 

other researchers (31), but the reason behind it is still unclear. However, we can still take 

advantage of its characteristics to estimate local road VMT. 

4.1 Illustrative Framework 

For illustrative purposes, we assume that the ADT values are given on the links 

with the first 20% rank, and the slope ߚଶ		(in Equation (3-4)) as well as the breakpoint of 

power law distributions for the remaining 80% links are also known. Our objective is to 

predict VMT on the remaining 80% roads so as to obtain the VMT over the entire local 

neighborhood, based on the above known values. However, we will further demonstrate 

that the actual results are not quite sensitive to the value of	ߚଶ	, and the breakpoint between 

two power law distributions can be predicted by the related topological measures without 

observed traffic count data. Therefore, our framework suggests an applicable way for 

VMT estimation that we will demonstrate later.  

Table 3 shows the results for VMT estimation on 30 local networks based on the 

slope	ߚଶ	and the breakpoint. In the table, ID denotes the number of network in simulation. 
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We use the simulated volume from multiple runs on each link to represent ADT. Hence, 

the actual total local VMT can be obtained by summing up all the products of the link 

length and its associated ADT. The average link length is computed given the profile of 

the local network, and the value is scaled relative to the unit length in the simulation. The 

ADTs for the links with lower 80% ranks are predicted by using the Equation (3-3), where 

the betweenness centrality is viewed as the rescaled ADT. We remark here that in order 

to estimate 80% road ADTs, one only needs to obtain the total number of links over the 

entire local networks, since one does not need to specify the value	ݕ	in Equation (3-4) on 

a particular road. Then, the estimated VMT is computed by multiplying the estimated 

ADT and average link length. We can see from the last column (Diff %) in Table 3 that 

most estimates of VMT are accurate within the 15% gap. Only 3 networks show the errors 

larger than 20%.  The results imply that the VMT can be estimated precisely, based on the 

power law.  
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Table 3. Results for VMT estimation on 30 local networks based on the slope ࢼ૛ and 
the known breakpoint. 

ID 

Actual 
Total 
Local 
VMT 

Avg 
link 

Length 
2  

Estimated 
VMT 
(80%) 

Actual 
VMT 
(20%) 

Estimated 
Total 
VMT 

Diff. 
(%) 

1 1596.90 2.00 1.1007 785.92 656.18 1442.11 9.69 
2 1468.07 1.60 1.248 755.60 636.39 1391.99 5.18 
3 1252.86 1.33 1.3579 529.28 651.16 1180.43 5.78 
4 1044.92 1.00 1.7478 437.47 719.07 1156.54 10.68 
5 1537.15 1.38 1.6482 544.60 712.30 1256.90 18.23 
6 1705.91 1.39 1.398 825.14 756.36 1581.49 7.29 
7 1875.50 1.35 1.1203 1043.30 805.84 1849.14 1.41 
8 2006.39 1.08 1.3908 876.82 932.73 1809.55 9.81 
9 1933.45 1.51 1.6388 649.99 805.99 1455.99 24.69 

10 2256.31 1.27 1.508 761.33 1181.36 1942.68 13.90 
11 2295.96 1.25 1.6567 785.58 1262.79 2048.37 10.78 
12 3994.24 1.49 2.5578 1257.79 2705.87 3963.65 0.77 
13 14608.41 1.71 1.145 6979.37 4504.31 11483.68 21.39 
14 2613.75 1.18 1.5134 790.54 1549.29 2339.83 10.48 
15 1596.70 1.08 1.1371 623.58 897.10 1520.68 4.76 
16 1908.87 1.00 1.87 499.27 1290.71 1789.97 6.23 
17 1388.79 1.00 1.6877 493.62 842.94 1336.57 3.76 
18 1199.35 1.00 1.7808 508.43 714.47 1222.90 1.96 
19 1313.84 1.00 2.0801 428.31 889.59 1317.91 0.31 
20 1832.15 1.00 2.4069 411.93 1315.32 1727.25 5.73 
21 2462.78 1.00 1.8211 1038.75 1821.17 2859.92 16.13 
22 2778.49 1.00 1.494 1267.18 1858.39 3125.57 12.49 
23 1559.06 1.00 1.2372 1108.37 1049.20 2157.58 38.39 
24 3100.33 0.91 1.4737 1118.91 2100.33 3219.24 3.84 
25 3661.29 1.00 1.4398 1250.90 1959.18 3210.08 12.32 
26 1876.07 1.00 1.4482 916.47 1065.64 1982.12 5.65 
27 2196.07 1.00 1.3567 931.20 1335.21 2266.41 3.20 
28 2756.47 1.00 1.4694 1026.71 1834.33 2861.04 3.79 
29 1142.77 1.00 1.6866 376.98 744.22 1121.20 1.89 
30 1350.51 1.00 1.4254 566.65 749.56 1316.21 2.54 

Note:	݂݂݅ܦ% = |ா௦௧௜௠௔௧௘ௗ	௏ெ்ି஺௖௧௨௔௟	௏ெ்|
஺௖௧௨௔௟	௏ெ்
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4.2 Sensitivity of Slope in VMT Estimation 

Now we will show the results in Table 3 are not sensitive to the value of	ߚଶ	. By 

analyzing the distribution of all beta values, we find that the mean value of 	ଶߚ	  is -

1.561536667 with the 95% confidence interval between -1.4327 and -1.6904. Assuming 

breakpoint is known, we utilize the linear relationship, i.e., Equation (3-4), and -1.56 for 

  to estimate the local VMT. Table 4 shows how results change compared to Table 3	ଶߚ	

and Figure 8 illustrates the comparison between estimated results and actual VMT. It is 

obvious that the results by using the average value of 	ߚଶ	 are close to the actual results 

with an average error 12%. The largest error occurs at the network with ID 13, which has 

extreme conditions (only one exit to collector road).   

 

Table 4. Results for VMT estimation on 30 local networks based on the average slope 
and the known breakpoint. 

ID 

Actual 
Total 
Local 
VMT 

Avg 
link 

Length 
2  

Estimated 
VMT 
(80%) 

Actual 
VMT 
(20%) 

Estimated 
Total 
VMT 

Diff. 
(%) 

1 1596.90 2.00 1.56 578.08 656.18 1234.26 22.71 
2 1468.07 1.60 1.56 617.67 636.39 1254.06 14.58 
3 1252.86 1.33 1.56 463.16 651.16 1114.31 11.06 
4 1044.92 1.00 1.56 493.24 719.07 1212.31 16.02 
5 1537.15 1.38 1.56 574.76 712.30 1287.06 16.27 
6 1705.91 1.39 1.56 743.68 756.36 1500.03 12.07 
7 1875.50 1.35 1.56 772.49 805.84 1578.33 15.84 
8 2006.39 1.08 1.56 785.30 932.73 1718.02 14.37 
9 1933.45 1.51 1.56 680.58 805.99 1486.57 23.11 

10 2256.31 1.27 1.56 736.58 1181.36 1917.94 15.00 
11 2295.96 1.25 1.56 831.91 1262.79 2094.70 8.77 
12 3994.24 1.49 1.56 2072.32 2705.87 4778.18 19.63 
13 14608.41 1.71 1.56 5304.68 4504.31 9808.99 32.85 
14 2613.75 1.18 1.56 766.92 1549.29 2316.21 11.38 
15 1596.70 1.08 1.56 468.63 897.10 1365.73 14.47 
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Table 4. continued 

ID 

Actual 
Total 
Local 
VMT 

Avg 
link 

Length 
2  

Estimated 
VMT 
(80%) 

Actual 
VMT 
(20%) 

Estimated 
Total 
VMT 

Diff. 
(%) 

16 1908.87 1.00 1.56 603.22 1290.71 1893.93 0.78 
17 1388.79 1.00 1.56 535.38 842.94 1378.32 0.75 
18 1199.35 1.00 1.56 583.82 714.47 1298.29 8.25 
19 1313.84 1.00 1.56 586.05 889.59 1475.64 12.31 
20 1832.15 1.00 1.56 665.68 1315.32 1980.99 8.12 
21 2462.78 1.00 1.56 1222.87 1821.17 3044.04 23.60 
22 2778.49 1.00 1.56 1212.45 1858.39 3070.84 10.52 
23 1559.06 1.00 1.56 889.14 1049.20 1938.35 24.33 
24 3100.33 0.91 1.56 1055.30 2100.33 3155.63 1.78 
25 3661.29 1.00 1.56 1154.14 1959.18 3113.32 14.97 
26 1876.07 1.00 1.56 850.39 1065.64 1916.03 2.13 
27 2196.07 1.00 1.56 811.49 1335.21 2146.70 2.25 
28 2756.47 1.00 1.56 965.90 1834.33 2800.24 1.59 
29 1142.77 1.00 1.56 408.69 744.22 1152.91 0.89 
30 1350.51 1.00 1.56 517.40 749.56 1266.96 6.19 

Note:	݂݂݅ܦ% = |ா௦௧௜௠௔௧௘ௗ	௏ெ்ି஺௖௧௨௔௟	௏ெ்|
஺௖௧௨௔௟	௏ெ்
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Figure 8. VMT estimation by assuming the average slope (ࢼ૛) for the second power law 
distribution. The average error is as low as 12%. 
 

4.3 The Breakpoint Prediction 

Since breakpoint plays a critical role in power law distribution, now we will show 

the breakpoint (i.e., the value of betweenness centrality at ݎ = ܾ	in Equation (3-4)) can be 

predicted by a certain number of network measures. We tried to use common linear 

regression to estimate betweenness centrality at breakpoint. The form is provided as 

follows. 

ܥܤ = ଴ߚ + ଵߚ ଵܺ +⋯⋯+ ௜ߚ ௜ܺ +  (4-1)                                 ,ߝ
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where ௜ܺ represents an independent variable, which is selected network property 

measurement. By trial and error, the independent variables chosen in our regression model 

include: 

1. Compactness 

The index has been introduced before. It measures how a certain area is filled with roads 

and is expressed as below: 

φ = 1 − ସ஺
(௟೅ିଶ√஺)మ

                                                    (4-2) 

where A is the area of a city or community and ்݈ the total length of roads.  

2. Accessible Sides 

This index refers to how many side of the community are connected by local road 

networks. That said, if each side of a surrounding collector road square is accessible to 

local roads, then the index is 4. Obviously, the value varies from 1 to 4. 

3. Completeness Index 

This index is a measurement for degree distribution since, in planar networks, the degree 

distribution is peaked around 3 or 4. We proposed the index as 

ேݎ =
ே(ଷ)ାே(ସ)

∑ ே(௞)ೖసభ,మ,య,ర
                                                       (4-3) 

where ܰ(݇)	means the number of nodes with the degree of k. ܰ(4) and ܰ(3) express the 

number of four-leg and T intersections, which can be considered complete crossings 

compared to cul-de-sacs. If ݎே is large, that means the regular crossings are dominant and 

the network is well organized. 
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We obtained a linear regression with R-squared value of 0.8171. The form is given 

as follows: 

ܥܤ =
(ିଵ.଻ସ଼ହି଼.ଽଵ଴ଶ∗௥ಿ∗

భ
ಽାଷଵ.ଶ଼ଷସ∗

భ
ಽାଵ.଺ଽସଷ∗஦)

ௌ
                            (4-4) 

where 

BC = breakpoint; 

ேݎ = completeness index; 

L = total number of links; 

φ = compactness; 

S = number of accessible sides. 

Figure 9 shows the closeness between the predicted values from regression 

Equation (4-4) and the actual values. The prediction of breakpoint based on the network 

measures has both theoretical and practical meanings. From the theoretical perspective, it 

indicates the breakpoint as an inherent feature for the network with a certain topology. 

From the practical point of view, it enables the proposed VMT estimation to be 

independent from field observations and readily applicable.  
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Figure 9. The prediction of breakpoint by the measures of network topologies for each 
network. 
 

 

4.4 Highest Betweenness Centrality Prediction 

In this study, we prove that the highest betweenness centrality can also be predicted 

according to network properties. As Equation (3-4) shows, the betweenness centrality 

distribution includes two parts. Due to the fact that we can reliably predict a breakpoint, 

and that the slope of the second part can be proved to be insensitive to network layouts, 

we state that the second part of betweenness centrality distribution has been solved. Now 

we focus on the prediction of the first part of the distribution. Since the slope of that part 

is determined by the highest point and breakpoint, the remaining work is about accurately 

predicting the highest point which indicates the link with the highest traffic volume. Here 
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we choose to use the linear regression model as well. The newly incorporated variables 

include: 

1. Connectivity 

This index has been widely used in the transportation planning area. Here, it is measured 

as the number of edges divided by the nodes. The nodes include traditional intersections, 

cul-de-sacs, and any node connecting two street links. The higher the connectivity index 

is, the more connected the road network will be. A reasonable connectivity index is 

considered to be at least 1.4.   

2. Total Number of Exits 

This index refers to the total number of exits connecting local roads to surrounding 

collector roads. The reason we resemble those links as exits or outlets is because we 

assume all traffic originates from inside the local road community and gets outside through 

those exits. It is obvious that the more exits there are, the less distance drivers travel. 

3. Average Number of Exits 

This index is calculated by simply dividing the total number of exits by the number of 

sides, which has been covered above. This index can indicate whether those exits are 

scattered compactly or loosely.   

By trial and error, based on the highest R squared value of 0.8014, the final model 

selected is written as follows: 

BC =
(଴.଴ଶଷ଼ାଵ.ଷଷସ∗భഀା଴.ଷ଼ସହ∗௟௢௚భబ∗ఉି଴.ଵଵସହ∗ఊ)

ௌ
                            (4-5) 
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where 

ߙ = average number of exits; 

ߚ = total number of exits; 

ߛ = connectivity index; 

ܵ = number of accessible sides. 

Figure 10 illustrates how the estimated highest betweenness centrality is compared 

to its actual value. The results prove that the highest BC point is also dependent upon 

network property measures. We can easily find out that the more exits there are, the higher 

the BC value will be. In the extreme case where there is only one exit, of course the highest 

BC value is 1, meaning all traffic has to go through that link. With the highest point and 

breakpoint predictable, we get a better picture of traffic patterns on local roads. It also 

means that it is now possible to estimate VMT without knowing traffic count data.  
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Figure 10. The prediction of highest betweenness centrality by the measures of network 
topologies for each network. 
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CHAPTER V 

VMT ESTIMATION PROCEDURES AND VALIDATION 

 

Considering the results so far, predicting VMT according to betweenness centrality 

distribution seems viable. In practice, if our assumption stands, traffic distribution on local 

road networks should follow the pattern as illustrated above. Therefore, if one can estimate 

the total trips generated from a local community, one can estimate the rescaled breakpoint 

and highest BC point (in terms of modified betweenness centrality) by Equation (3-4) and 

draw a line to approximately estimate ADTs on 20% of links which have higher traffic on 

them. Then the breakpoint serves as the highest value (betweenness centrality) for the 

remaining 80% of local roads. The ADTs on 80% of local roads can be easily obtained by 

the average ߚଶ value and the given total number of roads in the local network. 

We remark here that the value ߚଵ can be obtained by the breakpoint and the largest 

betweenness centrality (rescaled ADT). To summarize, we propose a general procedure 

for local road VMT estimation in the following section. 

5.1 Estimating Procedures 

The proposed procedures include 5 steps, as listed as follows.  

Assumption: The trips are generated uniformly in the local network. 

            Step 1: Collect information about local communities including demographic data  

and local road network topological measures; 

            Step 2: Given total trips generated in the local network, estimate the breakpoint 

and highest BC value by using Equations (3-3) and (3-4); 
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            Step 3: Estimate the value ߚଵ based on the highest BC value (rescaled) and the 

breakpoint, and estimate ADTs on the 20% of local roads; 

            Step 4: Obtain ADTs on the remaining 80% of local roads based on a constant ߚଶ 

value and the given total number of roads in the local network; 

            Step 5: The total VMT is computed by multiplying the estimated total ADT on the 

local network and the average link length. 

The procedures above are based on the simulation results, which illustrate that 

betweenness centrality follows two-piecewise power-law distribution among most local 

road networks. In order to validate this method and involved regression models, more 

simulations are necessary. 

5.2 Validation 

In this section, our proposed models for VMT prediction are checked for validity. 

The model validation was conducted through 10 more simulations. The simulations are 

based on 10 newly-set networks. The 10 new networks have different layouts and are 

different from the previously-set 30 networks (Figure 11). However, settings for 

simulation remain the same. The results are used to evaluate the capability of the proposed 

model. The predicted values of VMT are calculated by following steps in the procedures 

above. The estimated and actual values of the VMT are provided in Table 5. The 

differences in percentage between them are also presented. We can observe that the 

average difference is around 15%. Even the highest difference is below 30%. In order to 

provide a closer look at the results, the comparison of the two values is shown in Figure 
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12. From the table and figure we can see that the results are not seriously biased. The 

results indicate that the model is able to estimate VMT reliably.  

One thing that is worth noting is about the cause of errors. From the results we find 

that the significance of VMT estimation errors largely depends on the accuracy of 

breakpoint prediction. As long as the breakpoint is predicted accurately, the errors of VMT 

estimation will be much reduced.  

 

Table 5. Validation results of proposed VMT estimating procedures. 
ID Actual VMT Estimated VMT Difference (%) 

1 1475.975 1477.93133 0.132545 

2 2549.425 2208.70251 13.36468 

3 1914.25 1691.17054 11.65362 

4 2060.45 1528.84734 25.80032 

5 2032.475 1583.83419 22.07362 

6 1892.325 1634.63112 13.61784 

7 2290.45 2292.12712 0.073222 

8 2245.925 1738.08174 22.61176 

9 1954.5 1435.05817 26.57671 

10 1873.075 1624.70974 13.25976 
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Figure 11. Layouts of 10 validation networks 
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Figure 12. Validation results of VMT estimating model 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

This study develops a close collaboration with experimental observation of and 

application to local road VMT estimation. We have demonstrated that the trips, in terms 

of betweenness centrality (rescaled ADTs) on the local networks, exhibit two piece-wise 

power law distributions – scale-free property. Once the total travel demand within a local 

area is known, the total VMT can be obtained by the knowledge of distribution of 

betweenness centrality. We have also showed that the breakpoint and highest point can be 

predicted from a certain number of network measures, and that the estimated VMT is not 

sensitive to the slope value of the falling part of power law distributions. These facts 

enable the proposed VMT estimation to be independent from field observations and 

readily applicable.  

Furthermore, our findings suggest a promising approach in practice for local road 

VMT estimation: the transportation agencies can solely rely on demographic and 

geographic information, which are much more readily available than field traffic count 

data. A certain number of network properties can help determine the parameters in two 

piecewise power law distributions for rescaled ADTs. Then, the agency can use scale-free 

property of the volumes to obtain the VMT estimation over the entire local roads. 

There are still several unsolved problems in our general framework. For example, 

we find that in some typical networks (e.g. a network with just one road, dominating 

branch road, or ring road in it) the power-law distribution does not hold perfectly. Besides, 
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we are unclear if the model can also be applied in local road communities without 

uniformly distributed traffic demand. For example, in rural area, traffic generations will 

be sparsely scattered within a large area. In that case, the assumption of uniform traffic 

demand distribution may not hold anymore. This fact indicates one of the possible 

limitations of our proposed method. Further work is required to analyze such scenario. 

But considering that traffic demand in rural area is much lighter than that in urban area, 

the errors may not be significant. Moreover, we need to test if the results will change when 

the speed settings are different from those in our simulation. Last, but not the least, the 

results should be compared to actual traffic count data in similar scenarios. Only by doing 

this can we truly prove the feasibility and practicableness of our proposed method. In 

addition, some steps in our research process demand further improvements. For example, 

we may try to choose nonlinear curves to fit the power law distribution. Also the selection 

of test network is somewhat arbitrary. The more reasonable method is to categorize 

various types of layouts into groups according to topological measures. Then 

representative networks layouts are analyzed in order to obtain more reliable results. These 

problems will be dealt with in our future work. Ultimately, we hope our findings here 

could expand VMT estimation and theoretical inquiry in new directions. 
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APPENDIX 

 

Illustration of Piecewise Power Law Distributions for Rest Networks 

  
1 

 
2 

y = -1.1007x - 0.2543
R² = 0.8855

y = -1E-15x - 0.8897
R² = #N/A

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 0.5 1 1.5 2

BC
 V

AL
U

E

Rank

Log-Log Plot

y = -1.248x + 0.0553
R² = 0.9002

y = -0.1916x - 1.0013
R² = 0.7696

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

67 

 

 
4 

 
5 

y = -1.7478x + 0.887
R² = 0.8712

y = -0.3753x - 0.953
R² = 0.926

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.6482x + 0.6809
R² = 0.7992

y = -0.5582x - 0.6907
R² = 0.955

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

68 

 

 
9 

 
10 

y = -1.6388x + 0.629
R² = 0.8528

y = -0.3212x - 0.6521
R² = 0.6411

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.508x + 0.5788
R² = 0.8753

y = -0.3768x - 0.5114
R² = 0.6771

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

BC
 V

al
ue

Rank

Log-Log Plot



 

69 

 

 
12 

 
13 

y = -2.5578x + 1.794
R² = 0.9095

y = -0.2585x - 0.2325
R² = 0.6165

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.145x + 0.9028
R² = 0.7711

y = -0.1723x + 0.0114
R² = 0.9276

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 0.5 1 1.5 2

BC
 V

al
ue

Rank

Log-Log Plot



 

70 

 

 
14 

 
16 

y = -1.5134x + 0.6443
R² = 0.8439

y = -0.5558x - 0.3005
R² = 0.9402

-3

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5 3

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.87x + 1.2277
R² = 0.9223

y = -0.7266x - 0.3933
R² = 0.9401

-3

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

71 

 

 
17 

 
18 

y = -1.6877x + 0.9042
R² = 0.9093

y = -0.5299x - 0.7243
R² = 0.9459

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.7808x + 1.0569
R² = 0.8929

y = -0.3235x - 0.9866
R² = 0.8713

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

72 

 

 
19 

 
20 

y = -2.0801x + 1.5047
R² = 0.7322

y = -0.3766x - 0.8472
R² = 0.8862

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot

y = -2.4069x + 2.0287
R² = 0.9087

y = -0.5212x - 0.5474
R² = 0.8839

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

73 

 

 
21 

 
22 

y = -1.8211x + 1.3346
R² = 0.8414

y = -0.3976x - 0.4772
R² = 0.8297

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 0.5 1 1.5 2

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.494x + 0.9469
R² = 0.8353

y = -0.389x - 0.475
R² = 0.7894

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

74 

 

 
23 

 
24 

y = -1.2372x + 0.4105
R² = 0.8115

y = -0.3576x - 0.7806
R² = 0.8066

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.4737x + 0.9202
R² = 0.8432

y = -0.5197x - 0.3125
R² = 0.9135

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

75 

 

 
25 

 
26 

y = -1.4398x + 0.845
R² = 0.8339

y = -0.7828x - 0.0281
R² = 0.9636

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.4482x + 0.7677
R² = 0.8394

y = -0.3649x - 0.7502
R² = 0.8108

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

76 

 

 
27 

 
28 

y = -1.3567x + 0.6315
R² = 0.8243

y = -0.6003x - 0.461
R² = 0.9386

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.4694x + 0.8114
R² = 0.8171

y = -0.6971x - 0.2555
R² = 0.9537

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot



 

77 

 

 
29 

 
30 

 

 

y = -1.6866x + 0.7683
R² = 0.8647

y = -0.3903x - 0.8657
R² = 0.9398

-3

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5 3

BC
 V

al
ue

Rank

Log-Log Plot

y = -1.4254x + 0.5163
R² = 0.9007

y = -0.4626x - 0.7615
R² = 0.9549

-2.5

-2

-1.5

-1

-0.5

0
0 0.5 1 1.5 2 2.5

BC
 V

al
ue

Rank

Log-Log Plot




