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ABSTRACT

This dissertation presents a proper orthogonal decomposition (POD) method

that uses dynamic basis functions. The dynamic functions are of a prescribed form

and do not explicitly depend on time but rather on parameters associated with flow

unsteadiness. This POD method has been developed for modeling nonlinear flows

with deforming meshes but can also be applied to fixed meshes. The method is

illustrated for subsonic and transonic flows with fixed and deforming meshes. This

method properly captured flow nonlinearities and shock motion for cases in which

the classical POD method failed.

Additionally, this dissertation presents a novel approach for assessing the number

of basis functions used in POD. POD results are compared between subsonic and

transonic flows for several cases. It is demonstrated that in order to determine the

number of basis functions, it is better to assess the variation of individual energy

values, as opposed to the cumulative energy values. Finally, for off-reference flow

conditions, interpolation is performed on a tangent space to a Grassmann manifold,

and the effect of interpolation order is investigated.
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1. INTRODUCTION∗

1.1 Motivation and Background

Despite continuous advances in computer hardware, the computational cost of

high-fidelity computational fluid dynamics simulations remains a limiting factor for

many science- and engineering-relevant problems. A typical example of numerical

simulations that require large computational resources is aeroelasticity, where un-

steadiness of the flow and temporal variation of the mesh can be a computational

burden.

Reduced-order modeling based on proper orthogonal decomposition (POD) has

proven to be a successful method for reducing the computational time, while provid-

ing high-fidelity results for a wide range of applications covering transport phenom-

ena and structural dynamics [1]. Through model reduction, dominant spatial modes

are used to describe the flow. The nonlinear partial differential equations can then

be reduced to ordinary differential equations from which the time coefficients that

weight the spatial modes are calculated.

Proper orthogonal decomposition is a method through which snapshots of the

flow obtained from the full-order model (FOM) are used to extract the optimal

set of spatially dependent basis functions [2]. The large set of partial differential

equations is then projected onto the basis functions, resulting in a much smaller set

of ordinary differential equations.

∗Part of this section is reprinted with permission from “Using proper orthogonal decomposition
to model off-reference flow conditions” by B. A. Freno, T. A. Brenner, P. G. A. Cizmas, 2013.
International Journal of Non-Linear Mechanics, vol. 54, pp 76–84, Copyright 2013 by Elsevier.
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1.2 Literature Review

Reviews of POD-based reduced-order models (ROMs) have been presented in [3,

4, 5]. In the last decade, three main research directions were explored for POD-

based ROMs: (i) improving the prediction of off-reference conditions, (ii) improving

performance, and (iii) modeling moving/deforming meshes.

1.2.1 Off-Reference Conditions

Early POD-based ROMs focused on computing basis functions directly from snap-

shots of a FOM for the same flow parameters as the ROM [6]. This approach renders

the computational savings of the ROM moot. For practical applications, it is neces-

sary to extend the ROM to off-reference parameter sets [7].

Proposed modifications to the POD basis functions to account for off-reference

conditions include direct interpolation, enriching the snapshot database [8], interpo-

lation using subspace angles [9, 10, 11] or a tangent space to a Grassmann mani-

fold [12, 13, 14], sensitivity analysis using parametric derivatives [15, 16], and using

actuation modes [17, 18]. Some of these methods are reviewed in [19].

1.2.2 Performance

To improve performance for compressible flows, the use of physically or numer-

ically sensible inner products has been suggested to better account for dynamically

significant variables [20] and to improve ROM stability [21]. For multiphase flows,

Brenner et al. [22] showed that treating field variables separately when assembling

the autocorrelation matrix, which yields the POD basis functions, produces greater

error than using a coupled approach. To solve flows with discontinuities, an aug-

mented POD method [23] was developed using mathematical morphology. Several

acceleration techniques were proposed in [24].

2



1.2.3 Deforming Meshes

The modeling of moving/deforming meshes has been primarily motivated by

aeroelastic applications, which are notorious for requiring large computational re-

sources. POD has been used in linear [10, 12, 25, 26, 27] and nonlinear aeroelastic

simulations [28, 29, 30, 31, 32]. One of the primary challenges associated with non-

linear aeroelastic simulations is the motion of the mesh, particularly when it is de-

formed. Spatial and temporal integration no longer commute when the mesh varies

in time. However, if the mesh is deformed in a topologically consistent manner, the

integrals can commute if a computational index-based domain is used.

Anttonen [28] and Anttonen et al. [30, 33] proposed using different sets of index-

based basis functions associated with different deformations; however, discontinu-

ously changing basis functions with respect to time reduces the solution fidelity.

Additionally, several sets of basis functions are required to yield a robust model, and

a matching algorithm is necessary to determine the most appropriate set.

Liberge and Hamdouni [34] used interpolation by treating the fluid–structure

domain as a multiphase flow. In addition to requiring interpolation, modifications

to the boundary conditions are required. Lewin and Haj-Hariri [29] modeled the

incompressible Navier–Stokes equations by using the reference frame of the moving

airfoil to exploit the simplified boundary conditions that arise from incompressible

viscous flow. Placzek et al. [31] modeled compressible flow for rigid-body motions.

These approaches do not address mesh deformation.

1.3 Objective and Scope

This dissertation presents a new, index-based method that uses a dynamic average

and dynamic basis functions to model compressible flow using a deforming mesh.

There is no need for interpolation or modification of the boundary conditions. These

3



dynamic functions vary continuously with respect to parameters associated with the

flow unsteadiness and/or mesh deformation, and they are optimal, subject to the

prescribed form. Furthermore, one set of basis functions is used, and a matching

algorithm is unnecessary.

Additionally, this dissertation offers several valuable insights. POD results are

generated for several cases, and a comparison is made between subsonic and transonic

flows. The effects of interpolation order when using a Grassmann manifold are

investigated for the different flow regimes. Finally, the energy spectrum is used

to assess the necessary number of basis functions. It is demonstrated that in order

to determine the number of basis functions, it is better to assess the variation of

individual energy values, as opposed to the cumulative energy values.

1.4 Novel Aspects of this Dissertation

In POD, the average and basis functions are functions only of space. In this disser-

tation, a dynamic average and dynamic basis functions are introduced to model flow

for which the standard approach fails. These dynamic functions vary continuously

with respect to time-dependent parameters associated with the flow unsteadiness

and/or mesh deformation, and they are optimal, subject to the prescribed form.

The work presented herein marks the first known usage of dynamic basis functions

that vary with time.

The dynamic functions are better suited for capturing unsteady, highly nonlinear

phenomena, especially when the static functions fail. Consequently, fewer dynamic

basis functions are needed. For cases in which static basis functions are suitable,

the use of fewer dynamic basis functions avoids the need to resolve the higher fre-

quencies associated with a larger amount of basis functions. Several cases simulating

deforming meshes and compressible flow are presented in which the dynamic func-

4



tions perform better than the static counterparts. In addition, this dissertation offers

several valuable insights concerning the modeling of different flow regimes, deforming

meshes, and off-reference conditions.

1.5 Outline

In Section 2, POD is discussed, the dynamic average and the dynamic basis

functions are derived, and static basis function interpolation for off-reference flow

conditions is explained. The physical model, FOM, and ROM of the flow solver are

described in Section 3. In Section 4, results are shown for subsonic and transonic

flow through a channel with fixed and deforming meshes using static and dynamic

functions. Comparisons are made between the FOM and the ROM, and the re-

sults are discussed. In Section 5, results are shown for transonic flow through a

linear compressor cascade with plunging blades using static and dynamic functions.

Comparisons are made between the FOM and the ROM using static and dynamic

functions, and the results are discussed. Results for off-reference flow conditions

are presented and discussed in Section 6. In Section 7, methods for reducing the

computational time associated with the ROM are described. Finally conclusions are

presented in Section 8.
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2. PROPER ORTHOGONAL DECOMPOSITION∗

Proper orthogonal decomposition is a method through which an optimal set of

orthogonal spatial basis functions is extracted from a set of data, from which the

mean has typically been subtracted. The spatial basis functions are linearly combined

using time-dependent coefficients to form a reduced-order model:

U(x, t) ≈ Ū(x) +
m∑
j=1

aj(t)ϕj(x).

Through reduced-order modeling, the partial differential equations are reduced to a

system of ordinary differential equations.

In this dissertation, proposed modifications to POD include replacing the static

average and static basis functions with a dynamic average and dynamic basis func-

tions. The dynamic average and dynamic basis functions do not explicitly depend

on time but rather on parameters Γ ≡ {γ1, . . . , γd}T associated with the flow un-

steadiness and/or mesh deformation.

The dynamic functions take the form

f(x; Γ) = f0(x) +
d∑

k=1
γkfk(x).

The elements of Γ can consist of time derivatives, powers, and products of the mea-

sured quantities, provided all elements are linearly independent.

The first subsection outlines the procedure for determining the static basis func-

∗Part of this section is reprinted with permission from “Using proper orthogonal decomposition
to model off-reference flow conditions” by B. A. Freno, T. A. Brenner, P. G. A. Cizmas, 2013.
International Journal of Non-Linear Mechanics, vol. 54, pp 76–84, Copyright 2013 by Elsevier.
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tions [2, 35], and the following two subsections show how the optimal dynamic average

and dynamic basis functions of the prescribed form are computed. The final sub-

section discusses interpolating between sets of static basis functions for off-reference

flow conditions.

2.1 Standard Approach

A more general framework for the traditional approach to POD is presented to

facilitate the extensions proposed later in this section. Conventionally, after sub-

tracting the time average, Ū, from the snapshots, U, Ũ ≡ U − Ū is approximated

by

Ũ(x, t) ≈
m∑
j=1

aj(t)ϕj(x),

where aj(t) =
(
Ũ(x, t),ϕj(x)

)
/
(
ϕj(x),ϕj(x)

)
, and (·, ·) is the inner product. The

basis functions have been presumed mutually orthogonal to more efficiently span the

subspace. Ũ is equal to the sum of the approximation obtained from the projection

onto the basis and the error:

Ũ =
m∑
j=1

(
Ũ,ϕj

)
(
ϕj,ϕj

)ϕj +
Ũ−

m∑
j=1

(
Ũ,ϕj

)
(
ϕj,ϕj

)ϕj
 .

Since the error is orthogonal to the approximation, the Pythagorean theorem holds,

and

∥∥∥Ũ∥∥∥2
=

∥∥∥∥∥∥
m∑
j=1

(
Ũ,ϕj

)
(
ϕj,ϕj

)ϕj
∥∥∥∥∥∥

2

+

∥∥∥∥∥∥Ũ−
m∑
j=1

(
Ũ,ϕj

)
(
ϕj,ϕj

)ϕj
∥∥∥∥∥∥

2

,

where ‖ · ‖ is the L2-norm. Consequently, minimizing the time-averaged error is

equivalent to maximizing the time-averaged approximation. Due to the orthogonal-
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ity assumption, the time-averaged square of the norm of the approximation can be

simplified to

〈∥∥∥∥∥∥
m∑
j=1

(
Ũ,ϕj

)
(
ϕj,ϕj

)ϕj
∥∥∥∥∥∥

2〉
=
〈

m∑
j=1

(
Ũ,ϕj

)2(
ϕj,ϕj

)〉 ,
as shown in Appendix A. 〈·〉 denotes the time average.

The norm of the approximation is maximized by determining the optimal basis

functions that maximize the functional

J [ϕ] ≡
〈(Ũ,ϕ)2

(ϕ,ϕ)

〉
, (2.1)

where the subscript j has been removed for convenience. Using the notation Â(t) ≡

Ũ(x, t)⊗ Ũ(x, t) yields
(
Ũ,ϕ

)2
≡ ϕT Âϕ, so that (2.1) becomes

J [ϕ] ≡
〈
ϕT Â(t)ϕ

(ϕ,ϕ)

〉
. (2.2)

As shown in Appendix B, (2.2) is extremized when

〈
Â(t)ϕ
(ϕ,ϕ) −

(ϕT Â(t)ϕ)ϕ
(ϕ,ϕ)2

〉
= 0.

Additionally, for a non-trivial solution for ϕ, it is necessary that

∣∣∣∣∣
〈

Â(t)
(ϕ,ϕ) −

(ϕT Â(t)ϕ)I
(ϕ,ϕ)2

〉∣∣∣∣∣ = 0. (2.3)
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Equation (2.3) is an eigenvalue problem, in which

λ =
〈
ϕT Â(t)ϕ

(ϕ,ϕ)

〉
=
〈(Ũ,ϕ)2

(ϕ,ϕ)

〉
(2.4)

are the eigenvalues and ϕ are the eigenvectors of 〈Â〉. If the eigenvectors are nor-

malized so that ‖ϕ‖ = 1, λ = 〈a(t)2〉. Consequently, the eigenvectors with the

largest eigenvalues are the most significant basis functions. Additionally, since Â is

symmetric positive semidefinite, the eigenvectors are orthogonal.

Assuming the number of snapshots, M , is less than the number of unknown

values in each snapshot, n, the eigenvalue problem can be further simplified using the

method of snapshots [35]. The basis functions are expressed as linear combinations of

the mean-subtracted snapshots, Ũ, and the matrix is reduced from n×n to M ×M .

2.2 Dynamic Average

Instead of subtracting a static average, Ū(x), as is done in the standard approach,

subtracting an optimal dynamic average of the form

Ū(x; Γ) ≡ Ū0(x) +
d∑

k=1
γkŪk(x) (2.5)

is proposed. In (2.5), Γ ≡ {γ1, . . . , γd}T consists of time-dependent parameters as-

sociated with the flow unsteadiness and/or mesh deformation. For example, the ele-

ments of Γ can be associated with the pitching or plunging of an airfoil or the modal

coefficients of a deformable structure. The elements can consist of time derivatives,

powers, and products of the measured quantities, provided all elements are linearly

independent.
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The dynamic average is considered optimal when the functional

J
[
Ū0, . . . , Ūd

]
≡
〈∥∥∥∥∥U− Ū0 −

d∑
k=1

γkŪk

∥∥∥∥∥
2〉
, (2.6)

which measures the time-averaged difference between U and the dynamic average,

is minimized. Equation (2.6) is extremized by solving

∂J

∂δ

[
Ū0, . . . , Ūk−1, Ūk + δφ, Ūk+1, . . . , Ūd

]∣∣∣∣∣
δ=0
= 0, 0 ≤ k ≤ d. (2.7)

The system of equations (2.7) reduces to

〈
γ0
...
γd



γ0
...
γd


T〉

Ū0
...

Ūd

 =


〈γ0U〉

...
〈γdU〉

 ,

where γ0 ≡ 1.

2.3 Dynamic Basis Functions

In addition to employing a dynamic average, the use of dynamic basis functions

is also proposed. Similarly, the basis functions take the form

ϕj(x; Γ) ≡ ϕ̃j0(x) +
d∑

k=1
γkϕ̃

j
k(x). (2.8)

Instead of one unknown spatial function for each basis function, there are now d+ 1:

{ϕ̃j0, . . . , ϕ̃
j
d}.

2.3.1 Optimization

The basis functions will be determined individually, with the average and the

projection of the previously obtained basis functions being subtracted from U, such
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that, for ϕj,

Ũ ≡ U− Ū−
j−1∑
i=1

aiϕi. (2.9)

In (2.9), [a]k ≡ ak is computed from Pa = b, where [P]ik ≡ (ϕi,ϕk) and [b]i ≡(
ϕi,U− Ū

)
for 1 ≤ i, k ≤ j − 1. Therefore, each subsequent basis function can be

obtained by extremizing (2.1). Using (2.8) and the identities ϕT Âϕ ≡ ϕ̃TAϕ̃ and

(ϕ,ϕ) ≡ ϕ̃TBϕ̃, where γ0 ≡ 1,

ϕ̃ ≡


ϕ̃0
...
ϕ̃d

 , A(t) ≡


γ0γ0Â · · · γ0γdÂ

... . . . ...
γdγ0Â . . . γdγdÂ

 , B(t) ≡


γ0γ0I · · · γ0γdI
... . . . ...

γdγ0I · · · γdγdI

 ,

Equation (2.2) becomes

J [ϕ̃] =
〈
ϕ̃TA(t)ϕ̃
ϕ̃TB(t)ϕ̃

〉
. (2.10)

Equation (2.10) is extremized analogously to the manner used with the standard

approach in Subsection 2.1, such that

∣∣∣∣∣∣∣
〈

A(t)
ϕ̃TB(t)ϕ̃

−

(
ϕ̃TA(t)ϕ̃

)
B(t)(

ϕ̃TB(t)ϕ̃
)2

〉∣∣∣∣∣∣∣ = 0. (2.11)

Equation (2.11) is a generalized eigenvalue problem

Ãϕ̃ = λB̃ϕ̃, (2.12)
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where

Ã ≡
〈

A(t)
ϕ̃TB(t)ϕ̃

〉
, B̂ ≡

〈(
ϕ̃TA(t)ϕ̃

)
B(t)(

ϕ̃TB(t)ϕ̃
)2

〉
,

λ ≡
〈
ϕ̃TA(t)ϕ̃
ϕ̃TB(t)ϕ̃

〉
, B̃ ≡ B̂

λ
. (2.13)

The eigenvectors can be determined by using an iterative eigenvalue algorithm that

computes the eigenvector corresponding to the most dominant eigenvalue. The re-

maining basis functions can be determined by updating Ũ and recomputing Ã and

B̃.

2.3.2 Problem Size Reduction

The dimension of the matrices in (2.13) is (d+ 1)n× (d+ 1)n and therefore large.

As previously mentioned, it is assumed the number of snapshots, M , is less than n.

Letting α(t) ≡ ϕ̃TA(t)ϕ̃ ≡
(
Ũ,ϕ

)2
, β(t) ≡ ϕ̃TB(t)ϕ̃ ≡ (ϕ,ϕ), and

G ≡


G̃0
...

G̃d

 ∈ R(d+1)n×M ; H(t) ≡


H̃0(t)

...
H̃d(t)

 ∈ R(d+1)n×n;

[
G̃k

]
ij
≡ γk(tj)

[
Ũ(x, tj)

]
i√

β(tj)
,

1≤ i ≤n
1≤ j≤M ; H̃k(t) ≡ γk(t)

√
α(t)
β(t) I ∈ Rn×n;

it holds that Ã = 1
M

GGT and B̂ =
〈
HHT

〉
. Furthermore, since B̂ =

〈
HHT

〉
and

the requisite linear independence of {γ0, . . . , γd} ensures the invertibility of B̂, B̂ is

symmetric positive definite. Therefore, B̂ can be decomposed through a Cholesky
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decomposition: B̂ = 1
M

LLT . Consequently, (2.12) can be written as

GGT ϕ̃ = LLT ϕ̃, (2.14)

where L takes the form

L =


L0,0I 0
L1,0I L1,1I
... ... . . .

Ld,0I Ld,1I · · · Ld,dI

 ∈ R(d+1)n×(d+1)n. (2.15)

Since B̂ consists of d + 1 rows and d + 1 columns of identity submatrices, each of

which multiplied by a constant, the cost of the Cholesky decomposition and inversion

is inexpensive.

The standard approach to POD can be used to obtain a set of M orthonormal

static basis functions Φ ≡ [φ1, . . . ,φM ] that span all of the snapshots. Consequently,

Ũ can be expressed as a linear combination of the static basis functions:

Ũ(x, t) =
M∑
i=1

w̃i(t)φi(x),

or Ũ = ΦW̃, where

W̃ ≡
[
w̃(t1), . . . , w̃(tM)

]
∈ RM×M ;

[
Ũ
]
ij
≡
[
Ũ(x, tj)

]
i
, 1≤ i ≤n, 1≤ j≤M;[

Φ]ij ≡
[
φj(x)

]
i
, 1≤ i ≤n, 1≤ j≤M;[

W̃
]
ij
≡ w̃i(tj), 1≤ i ≤M, 1≤ j≤M.

Furthermore, the number of unknowns associated with the dynamic basis func-

tions can be reduced by expressing each of the {ϕ̃0, . . . , ϕ̃d} as a linear combination
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of the static basis functions:

ϕ̃k(x) =
M∑
j=1

ckjφj(x), 0 ≤ k ≤ d, (2.16)

or ϕ̃ = Φ̂c, where

Φ̂ ≡


Φ 0 · · · 0
0 Φ · · · 0
... ... . . . ...
0 0 · · · Φ

 ∈ R(d+1)n×(d+1)M ;
c ≡


c̃0
...

c̃d

 ∈ R(d+1)M ;

[
c̃k
]
j
≡ ckj , 1≤ j ≤M.

Multiplying (2.14) by Φ̂
T and substituting (2.16) yields

Φ̂
T
GGT Φ̂c = Φ̂

T
LLT Φ̂c. (2.17)

Exploiting the structure of Φ̂ and L and the orthonormality of Φ: ΦTΦ = I ∈ RM×M ,

the right-hand side of (2.17) can be reduced to L̃L̃Tc, where L̃ has the same form

as L (2.15), except the identity submatrices are M ×M instead of n× n.

Equation (2.17) becomes

Φ̂
T
GGT Φ̂c = L̃L̃Tc,

or

L̃−1Φ̂
T
GGT Φ̂c = L̃Tc. (2.18)
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Introducing the transformation b ≡ L̃Tc, (2.18) can be written as

L̃−1Φ̂
T
GGT Φ̂L̃−Tb = b,

or more compactly as

CCTb = b, (2.19)

where

C ≡ L̃−1Φ̂
T
G ≡


C̃0
...

C̃d

 ∈ R(d+1)M×M ;
[
C̃k

]
ij
≡

k∑
`=0

L−1
k,`

γ`(tj)
[
W̃
]
ij√

β(tj)
,

1≤ i ≤M
1≤ j≤M .

Equation (2.19) can be solved using nonlinear iterative partial least squares [36,

37], thus avoiding the computation of CCT . Ã in (2.12) is (d+1)n×(d+1)n, whereas

C in (2.19) is (d+ 1)M ×M . Additionally the number of unknowns associated with

each basis function has been reduced from (d + 1)n to (d + 1)M . ϕ̃ is recovered

through the inverse transformation:

ϕ̃ = Φ̂L̃−Tb.

Because Ũ and ϕ̃ are expressed in terms of static basis functions, Ũ does not

need to be computed explicitly from (2.9), and ϕ̃ only needs to be computed once c

is known. Instead of computing Ũ, w̃ is computed:

w̃ = w−
j−1∑
i=1

aiĉi,
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where

w ≡ ΦT
(
U− Ū

)
, ĉ ≡

d∑
k=0

γkc̃k,

[P]ik ≡ (ϕi,ϕk) = (ĉi, ĉk) , [b]i ≡
(
ϕi,U− Ū

)
= (ĉi,w) .

Additionally, due to the orthonormality of Φ, α and β can be computed more

efficiently from

α(t) ≡
(
Ũ,ϕ

)2
=
(
w̃, ĉ

)2
, β(t) ≡ (ϕ,ϕ) =

(
ĉ, ĉ

)
.

2.3.3 Eigenvalue Algorithm

The eigenvalue algorithm is begun by computing Φ and w. Each basis function,

ϕj, is computed as follows:

• Compute w̃ ≡ w−
j−1∑
i=1

aiĉi

• Until convergence is achieved with λ =
〈
α

β

〉
,

– Compute α and β

– Compute L̃ and C

– Transform c into b: b ≡ L̃Tc

– Compute the score vector t: t = CTb

– Update the eigenvector: b = Ct

– Transform b back to c and normalize: c ≡ L̃−Tb/
∥∥∥L̃−Tb

∥∥∥
• Upon convergence, compute ϕ̃ = Φ̂c, normalize, and obtain ϕj from ϕ̃
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The solution to each optimal dynamic basis function that maximizes (2.1) is

ϕ = Ũ. Therefore, for the initial iteration in determining each basis function,

α =
(
Ũ, Ũ

)2
=
(
w̃, w̃

)2
and β =

(
Ũ, Ũ

)
=
(
w̃, w̃

)
. The b corresponding to

the most dominant eigenvalue in (2.19) is computed, and the iteration process is

initiated.

2.3.4 Limited-Memory Broyden–Fletcher–Goldfarb–Shanno Algorithm

The preceding two subsections discussed what will be referred to as the eigenvalue

algorithm for extremizing (2.10). As an alternative to the eigenvalue algorithm, the

limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [38, 39] is

considered.

The L-BFGS algorithm is a quasi-Newton optimization method that circumvents

the need to explicitly store the large, (d+1)n×(d+1)n Hessian matrix, making it one

of the few general optimization algorithms suitable for this large-scale optimization

problem.

2.4 Static Basis Function Interpolation

The ROM requires spatial functions, which have thus far been the basis functions

obtained from applying POD to the snapshots generated by the full-order model.

Running the FOM for every ROM case is counter to the motivation behind ROMs.

Therefore, as an alternative, functions can be generated by interpolating between

static basis functions corresponding to flow parameters that bracket the conditions of

interest. In this dissertation, the static basis functions for off-reference conditions are

generated through interpolation on a tangent space to a Grassmann manifold [12, 13].

The resulting basis functions are orthogonal.

For a set of L simulations corresponding to different flow conditions parameterized

by χ, a set of basis functions, Φi ≡ [ϕ1, . . . ,ϕm]i, is generated for each simulation i.
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One of the Φi is taken to be the reference point on the Grassmann manifold and

the origin point for interpolation, Φ0. Each of the remaining Φi is logarithmically

mapped using thin singular value decomposition,

(
I−Φ0ΦH

0

)
Φi

(
ΦH

0 Φi

)−1
= UiΣiVH

i ,

to the tangent space at the reference point:

Γi = Ui tan−1 ΣiVH
i .

VH
i denotes the conjugate transpose of Vi. On the tangent space, the interpolation

is performed for the condition of interest, χ`:

Γ` =
L∑
i=1

αiΓi,

where αi are the coefficients arising from Lagrangian interpolation with respect to

χ. Φ` is then obtained through an exponential mapping of Γ`:

Γ` = U`Σ`VH
` ,

Φ` = Φ0V` cos Σ` + U` sin Σ`.

18



3. FLOW SOLVER

In this section, the physics and discretization of the flow model are discussed,

and the reduced-order model is derived.

3.1 Physical Model

Fluid flow is governed by the conservation of mass, momentum, and energy. For

three-dimensional viscous flow, in the absence of source terms, these axioms can be

expressed in integral form as

∂

∂t

∫
Ω(t)

UdΩ +
∮
∂Ω(t)

(Fc − Fv) n dS = 0, (3.1)

where

U ≡


ρ

ρv
ρE

 , Fc ≡


ρ (v− vg)T

ρv (v− vg)T + pI
ρE (v− vg)T + pvT

 , Fv ≡


0T

T
(Tv + k∇Θ)T

 ,

v ≡ ui + vj + wk, T ≡ 2µD− 2
3µ (∇ · v) I,

and vg is the velocity of the boundary of Ω, which satisfies the geometric conservation

law [5, 40, 41]:

vTg n = ∆Ω
S∆t .

Using conservative variables for the POD basis functions allows the time derivative

to be simplified due to the orthogonality of the basis functions [42]. As a result, U

is captured through snapshots, and the basis functions are computed.
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3.2 Full-Order Model

Letting F ≡ (Fc − Fv)n, (3.1) is discretized using finite volumes [43]:

∆ (ΩkUk)
∆t = −

faces(k)∑
`=1

Fk`S` ≡ −Rk. (3.2)

Equation (3.2) is solved using a Runge–Kutta method with a Roe–Riemann flux-

difference splitting scheme.

Mesh deformation is achieved through radial basis function interpolation within

the updated boundaries [44].

3.3 Reduced-Order Model

The standard POD approximation for U is

U(x, t) ≈ Ū(x) +
m∑
j=1

aj(t)ϕj(x).

When the average and/or basis functions are dynamic, a dependency on a set of

parameters Γ ≡ {γ1, . . . , γd}T is introduced. If the dynamic average is used, Ū(x) is

replaced with Ū(x; Γ), where

Ū(x; Γ) ≡ Ū0(x) +
d∑

k=1
γkŪk(x).

Similarly, if the dynamic basis functions are used, ϕj(x) is replaced with ϕj(x; Γ),

where

ϕj(x; Γ) ≡ ϕ̃j0(x) +
d∑

k=1
γkϕ̃

j
k(x).
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Equation (3.2) can be rearranged as follows:

Un+1
k = Ωn

k

Ωn+1
k

Un
k −

∆t
Ωn+1
k

Rk. (3.3)

Projecting (3.3) onto the basis yields

Pn+1an+1 = Pnan − r− q, (3.4)

if Ωn
k/Ωn+1

k ≈ 1. In (3.4),

[P]n+1
ij ≡


(
ϕn+1
i ,ϕn+1

j

)
, dynamic basis functions

δij, static basis functions
;

[P]nij ≡


(
ϕn+1
i ,ϕnj

)
, dynamic basis functions

δij, static basis functions
;

{a}j ≡ aj;

{r}i ≡
(
ϕn+1
i ,

∆t
Ωn+1 R

)
;

{q}i ≡


(
ϕn+1
i ,∆Ū

)
, dynamic average

0, static average
.

Equation (3.4) is a system of ordinary differential equations from which each succes-

sive a is computed.

Computation of P and q is expedited by computing the inner products of the

spatially dependent contributions
(
ϕ̃ip, ϕ̃

j
q

)
and

(
ϕ̃jp, Ūq

)
once and linearly combining
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them using the products of the elements of Γ:

[P]n+1
ij ≡

(
ϕn+1
i ,ϕn+1

j

)
=

d∑
p=0

d∑
q=0

γn+1
p

(
ϕ̃ip, ϕ̃

j
q

)
γn+1
q ,

[P]nij ≡
(
ϕn+1
i ,ϕnj

)
=

d∑
p=0

d∑
q=0

γn+1
p

(
ϕ̃ip, ϕ̃

j
q

)
γnq ,

{q}j ≡
(
ϕn+1
j ,∆Ū

)
=

d′∑
p=0

d∑
q=1

γn+1
p

(
ϕ̃jp, Ūq

) (
γn+1
q − γnq

)
, (3.5)

where γn+1
0 ≡ γn0 ≡ 1, and d′ is d for dynamic basis functions or 0 for static basis

functions.
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4. DYNAMIC FUNCTION RESULTS – CHANNEL

The reduced-order model resulting from the application of proper orthogonal

decomposition to the governing equations was used to model flow through a channel

with a bump, and the results are compared with those that arose from the full-order

model.

For these cases, an inviscid flow field was modeled through the 5-meter-long

channel with a 1-meter height shown in Figure 4.1. The middle meter of the channel

contained a sinusoidal bump with a 0.1-meter height. The channel was discretized

using 150 cells along the length and 30 cells along the height.

x

y

Figure 4.1: Channel mesh for dynamic functions.

Two flow regimes were simulated: a subsonic flow with an inlet Mach number of

0.5, and a transonic flow with an inlet Mach number of 0.75. Two approaches were

used to generate unsteady flow: (1) sinusoidally varying the channel back pressure,

and (2) sinusoidally varying the channel bump height. In the first case, the compu-

tational mesh was fixed, while in the second case, the mesh deformed. ROM results

are shown using a static average with static basis functions, a dynamic average with

23



static basis functions, and a dynamic average with dynamic basis functions.

4.1 Fixed Mesh

For the fixed-mesh case, the static pressure at the channel outlet was varied

sinusoidally to force unsteadiness of the flow. The back pressure was prescribed by

pb = p̄b [1 + 0.05 sin(ωt)] ,

where p̄b was 101,325 Pa and ω was 60 rad/s. Consequently, the reduced frequency

based on half of the bump length was 0.176 for the subsonic case and 0.118 for the

transonic case. The basis functions were obtained from 1000 snapshots during the

second second, which spanned more than nine periods.

ROM results are shown using a static average with static basis functions, a dy-

namic average with static basis functions, and a dynamic average with dynamic basis

functions. For the dynamic functions, Γ ≡ {γ, γ̇}T , where γ and γ̇ were respectively

set equal to the dimensionless back pressure and its time derivative. The dynamic

basis functions were computed using the eigenvalue algorithm and the L-BFGS al-

gorithm. In this section, when the algorithm is omitted, the dynamic basis functions

were obtained from the eigenvalue algorithm.

4.1.1 Subsonic Flow

Figure 4.2 shows the energy of each basis function,

E ≡ λi/
M∑
j=1

λj, (4.1)

as well as the cumulative energy, computed for the subsonic case. In (4.1), λj ≡〈
(Ũ,ϕj)/(ϕj,ϕj)

〉
, and the average has been subtracted: Ũ ≡ U− Ū. Note that Ũ
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is different for the static and dynamic average cases since the static and dynamic av-

erages are different. With the dynamic average, the energy of the static and dynamic

basis functions obtained from the eigenvalue algorithm was comparable. However,

the energy of the dynamic basis functions obtained from the L-BFGS algorithm

accumulated energy less rapidly than those obtained from the eigenvalue algorithm.

Figure 4.3 shows the error in the force per unit length acting on the bump along

the y-direction for different amounts of basis functions. The error measure for the

force is defined to be εf ≡
√〈

(fFOM − fROM)2
〉
/
√
〈f 2

FOM〉. Using the dynamic average

offered a generally higher fidelity result, often with an error that was an order of

magnitude less than with the static average. With the dynamic average, the flow was

not better modeled by the dynamic basis functions, and the dynamic basis functions

obtained from the eigenvalue algorithm performed better than those obtained from

the L-BFGS algorithm.

Additionally, an excerpt of the time history of the force is plotted in Figure 4.4,

and contour plots of the Mach number and Mach number error for the subsonic

case are presented in Figures 4.5 and 4.6. The Mach number error is defined to

be εM ≡ |MFOM −MROM| /MFOM. These contour plots correspond to the instance

when the maximum Mach number occurred. Although the contour plots of the Mach

number error shown in Figure 4.6 look differently, the magnitude of the error values

was less than 6 × 10−4. Consequently, Figures 4.4–4.6 show that all of the ROMs

accurately predicted the flow field.
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Figure 4.2: Fixed mesh, subsonic case: energy spectrum. Solid lines show energy of
each basis function; dashed lines show 1− (cumulative energy).
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Figure 4.3: Fixed mesh, subsonic case: error in force per unit length acting on bump
along y-direction.
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Figure 4.4: Fixed mesh, subsonic case: force per unit length acting on bump along
y-direction.
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Figure 4.5: Fixed mesh, subsonic case: Mach number contour plots. (a) FOM;
(b) ROM, static average, 5 static basis functions; (c) ROM, dynamic average, 5 static
basis functions; and (d) ROM, dynamic average, 5 dynamic basis functions.
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Figure 4.6: Fixed mesh, subsonic case: Mach number error contour plots. (a) ROM,
static average, 5 static basis functions; (b) ROM, dynamic average, 5 static basis
functions; and (c) ROM, dynamic average, 5 dynamic basis functions.
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4.1.2 Transonic Flow

For the transonic case, Figure 4.7 shows the energy of the basis functions. The

static basis functions with a dynamic average contained less energy than the dynamic

basis functions.

Figure 4.8 shows the error in the force with respect to the number of basis func-

tions. For certain simulations, the ROMs diverged, and therefore the symbol is

omitted on the plot. Using the dynamic average with the dynamic basis functions

obtained from the eigenvalue algorithm generally performed better than with static

basis functions, and using the dynamic average with static basis functions generally

performed better than using the static average. Overall, the dynamic basis functions

obtained from the eigenvalue algorithm performed better than those obtained from

the L-BFGS algorithm.

The time history of the force is plotted in Figure 4.9, and contour plots of the

Mach number and Mach number error for the transonic case are presented in Fig-

ures 4.10 and 4.11. The contour plots correspond to the instance when the maximum

Mach number was achieved. The dynamic basis functions obtained from the eigen-

value algorithm were better able to address the flow nonlinearity and model the

shock. Note that the error level for the transonic flow shown in Figure 4.11 is two to

three orders of magnitude higher than that of the subsonic flow shown in Figure 4.6.
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Figure 4.7: Fixed mesh, transonic case: energy spectrum. Solid lines show energy of
each basis function; dashed lines show 1− (cumulative energy).
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Figure 4.8: Fixed mesh, transonic case: error in force per unit length acting on bump
along y-direction.
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Figure 4.9: Fixed mesh, transonic case: force per unit length acting on bump along
y-direction.
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Figure 4.10: Fixed mesh, transonic case: Mach number contour plots. (a) FOM;
(b) ROM, static average, 15 static basis functions; (c) ROM, dynamic average,
15 static basis functions; and (d) ROM, dynamic average, 15 dynamic basis functions.
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Figure 4.11: Fixed mesh, transonic case: Mach number error contour plots. (a) ROM,
static average, 15 static basis functions; (b) ROM, dynamic average, 15 static basis
functions; and (c) ROM, dynamic average, 15 dynamic basis functions.
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4.2 Deforming Mesh

For the deforming-mesh case, the height of the bump was varied sinusoidally. The

height was prescribed by

h = h0 (1 + 0.4 sin[ω(t− t0)]) ,

where h0 is the original height distribution, ω is 60 rad/s, and t0 is 0.01 s.

ROM results are shown arising from using the static average with static basis

functions, the dynamic average with static basis functions, and the dynamic average

with dynamic basis functions. For the dynamic functions, Γ ≡ {γ, γ̇}T , where γ was

set equal to 0.4 sin[ω(t− t0)], and γ̇ was the time derivative of γ.

4.2.1 Subsonic Flow

The energy of each basis function and the cumulative energy are shown in Fig-

ure 4.12 for the subsonic case. Using the dynamic average, there was little distinction

between the energy of the static and dynamic basis functions obtained from the L-

BFGS algorithm. Additionally, the energy of the dynamic basis functions obtained

from the eigenvalue algorithm accumulated energy more rapidly than those obtained

from the L-BFGS algorithm.

Figure 4.13 shows the error of the force per unit length acting on the bump along

the y-direction with respect to basis function count. Increasing the number of basis

functions did not modify the error level. With the dynamic average, there was little

distinction between the use of static and dynamic basis functions. Using the static

average with the static basis functions resulted in a better force prediction than using

the dynamic average when more than one basis function was used.

An excerpt of the time history of the force is shown in Figure 4.14, and contour
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plots of the Mach number and Mach number error for the subsonic case are presented

in Figures 4.15 and 4.16. These contour plots correspond to the instance when the

maximum Mach number occurred. Each of the ROMs provided reasonable results.

Because of the error levels shown in Figure 4.13, only one basis function was used

for the dynamic average cases.
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Figure 4.12: Deforming mesh, subsonic case: energy spectrum. Solid lines show
energy of each basis function; dashed lines show 1− (cumulative energy).

36



0 1 2 3 4 5 6 7 8 9 10
1x10-3

1x10-2

1x10-1

ROM, static average, static basis functions
ROM, dynamic average, static basis functions
ROM, dynamic average, dynamic basis functions (Eigenvalue)
ROM, dynamic average, dynamic basis functions (L-BFGS)

Number of basis functions

Er
ro

r 
of

 fo
rc

e 
in

 y
-d

ire
ct

io
n,

 "
f y

Figure 4.13: Deforming mesh, subsonic case: error in force per unit length acting on
bump along y-direction.
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Figure 4.14: Deforming mesh, subsonic case: force per unit length acting on bump
along y-direction.
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Figure 4.15: Deforming mesh, subsonic case: Mach number contour plots. (a) FOM;
(b) ROM, static average, 4 static basis functions; (c) ROM, dynamic average, 1 static
basis function; and (d) ROM, dynamic average, 1 dynamic basis function.
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Figure 4.16: Deforming mesh, subsonic case: Mach number error contour plots.
(a) ROM, static average, 4 static basis functions; (b) ROM, dynamic average, 1 static
basis function; and (c) ROM, dynamic average, 1 dynamic basis function.

39



4.2.2 Transonic Flow

For the transonic case, the energy of the basis functions and the cumulative energy

are plotted in Figure 4.17. The dynamic basis functions contained more energy than

the static basis functions with the dynamic average.

Figure 4.18 shows the error of the force, and Figure 4.19 shows the time history

of the force. The ROMs using the static average with static basis functions and the

dynamic average with static basis functions diverged for several attempted amounts

of basis functions. Table 4.1 shows the amounts of basis functions for which the

ROMs converged or diverged. The ROMs using static basis functions diverged for

several amounts of basis functions, whereas the ROMs using dynamic basis functions

converged for most amounts of basis functions. Beyond forty static basis functions

with the dynamic average, the error increased. Using the dynamic average and dy-

namic basis functions performed considerably better than using the dynamic average

with static basis functions, which often failed.

Average Basis functions Number of basis functions
Max. no.
of basis
functions

Converged Static Static 1 2 12 80
Dynamic Static 1 5 8 10 17 29 40 43 64 65 80

Diverged Dynamic Dynamic (Eig.) 2 3 20
Dynamic Dynamic (L-BFGS) 12 13 14 20

Table 4.1: Deforming mesh, transonic case: number of basis functions that led to
ROM convergence or divergence.
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Figure 4.17: Deforming mesh, transonic case: energy spectrum. Solid lines show
energy of each basis function; dashed lines show 1− (cumulative energy).
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Figure 4.18: Deforming mesh, transonic case: error in force per unit length acting
on bump along y-direction.
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Figure 4.19: Deforming mesh, transonic case: force per unit length acting on bump
along y-direction.
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Contour plots of the Mach number and Mach number error for the transonic

case are presented in Figures 4.20 and 4.21 when the maximum Mach number was

achieved. Once more, the dynamic basis functions most closely matched the full-

order model.
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Figure 4.20: Deforming mesh, transonic case: Mach number contour plots. (a) FOM;
(b) ROM, static average, 12 static basis functions; (c) ROM, dynamic average,
40 static basis functions; and (d) ROM, dynamic average, 13 dynamic basis functions.
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Contour plots of the average and first two basis functions of the density are shown

in Figure 4.22–4.25. The contour plots in Figure 4.22 are of the static average and

static basis functions, and the contour plots in Figures 4.23–4.25 are of the dynamic

average and dynamic basis functions. The dynamic functions were better equipped

to model the shock.
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Figure 4.21: Deforming mesh, transonic case: Mach number error contour plots.
(a) ROM, static average, 12 static basis functions; (b) ROM, dynamic average,
40 static basis functions; and (c) ROM, dynamic average, 13 dynamic basis func-
tions.
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Figure 4.22: Density for deforming mesh, transonic case: (a) static average, (b) first
static basis function, and (c) second static basis function.
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Figure 4.23: Deforming mesh, transonic case: dynamic average of density.
(a) γ = 0, γ̇ = γ̇max; (b) γ = γmax, γ̇ = 0; (c) γ = 0, γ̇ = γ̇min; and (d) γ = γmin,
γ̇ = 0.
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Figure 4.24: Deforming mesh, transonic case: first dynamic basis function of density.
(a) γ = 0, γ̇ = γ̇max; (b) γ = γmax, γ̇ = 0; (c) γ = 0, γ̇ = γ̇min; and (d) γ = γmin,
γ̇ = 0.
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Figure 4.25: Deforming mesh, transonic case: second dynamic basis function of
density. (a) γ = 0, γ̇ = γ̇max; (b) γ = γmax, γ̇ = 0; (c) γ = 0, γ̇ = γ̇min; and
(d) γ = γmin, γ̇ = 0.
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4.3 Discussion

4.3.1 Fixed Mesh – Subsonic Flow

For the subsonic case with the fixed mesh, the ROMs accurately predicted the

flow field, as shown in Figures 4.3, 4.4, 4.5, and 4.6. Using the dynamic average

offered a generally higher fidelity result than the static average, often with an error

that was an order of magnitude less. With the dynamic average, the flow was better

modeled by the static basis functions, as opposed to the dynamic basis functions.

Using the dynamic average, the energy of the static and dynamic basis functions

obtained from the eigenvalue algorithm was comparable, as shown in Figure 4.2.

Furthermore, using dynamic basis functions obtained from the eigenvalue algorithm

yielded better results than those obtained from the L-BFGS algorithm.

4.3.2 Fixed Mesh – Transonic Flow

The ROMs reasonably simulated the transonic case with the fixed mesh, as shown

in Figures 4.8, 4.9, 4.10, and 4.11; however, there was a greater disparity in fidelity

between the static and dynamic functions. When using the dynamic average, the

dynamic basis functions obtained from the eigenvalue algorithm generally performed

better than the static basis functions. Additionally, using the dynamic average with

static basis functions generally performed better than using the static average with

static basis functions. As shown in Figure 4.7, when using the dynamic average, the

static basis functions contained less energy than the dynamic basis functions. Over-

all, the dynamic basis functions obtained from the eigenvalue algorithm performed

better than those obtained from the L-BFGS algorithm. The dynamic basis func-

tions obtained from the eigenvalue algorithm were better able to capture the shock

movement than the static basis functions, as shown in Figures 4.10 and 4.11.
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4.3.3 Deforming Mesh – Subsonic Flow

For the subsonic case with the deforming mesh, the ROM error shown in Fig-

ure 4.13 was noticeably higher than for the subsonic case with the fixed mesh shown

in Figure 4.3. Additionally, increasing the number of basis functions did not improve

the result. Using the dynamic average, there was little distinction between the use

of static and dynamic basis functions, which had comparable energy, as shown in

Figure 4.12. Using the static average with the static basis functions resulted in a

better force prediction than using the dynamic average when more than one basis

function was used. Nonetheless, each of the cases provided reasonable results, as

presented in Figures 4.14, 4.15, and 4.16.

4.3.4 Deforming Mesh – Transonic Flow

For the transonic case with the deforming mesh, the ROM using the static average

and static basis functions was unsuitable for modeling the flow. Furthermore, as

shown in Figures 4.18, 4.19, 4.20, and 4.21, using the dynamic average and dynamic

basis functions performed considerably better than using the dynamic average with

static basis functions, which often failed. Additionally, fewer dynamic basis functions

were needed, and the dynamic basis functions contained more energy, as shown in

Figure 4.17.

From the Mach number and Mach number error plots shown in Figures 4.20 and

4.21, the dynamic basis functions, shown in Figures 4.23–4.25, better captured the

flow nonlinearity and shock movement than the static functions shown in Figure 4.22.

Generally, the dynamic basis functions obtained from the eigenvalue algorithm per-

formed better than those obtained from the L-BFGS algorithm.
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4.3.5 Summary

Static functions are suitable for modeling subsonic flows and flows with fixed

meshes, but fail for transonic flows with deforming meshes. Dynamic functions are

better able to overcome the shortcomings of the static functions when the flow is

nonlinear and the mesh is deforming.

Additionally, the energy spectrum provides initial insight, but it is not a flawless

indicator of ROM performance.

Generally, using too few basis functions produces a low-fidelity result; however,

the fidelity can also deteriorate when there is an excessive amount of basis functions.

In the latter case, the errors increase since the higher frequencies cannot be resolved

without reducing the time step. Due to the dynamic nature, fewer dynamic basis

functions are required, thereby justifying the additional storage requirements. Using

fewer basis functions overcomes the need to resolve higher frequencies and evaluate

additional time coefficients.

Two optimization algorithms were considered for computing the dynamic basis

functions: the eigenvalue algorithm and the L-BFGS algorithm. The dynamic basis

functions computed from the eigenvalue algorithm generally performed better than

those obtained from the L-BFGS algorithm.
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5. DYNAMIC FUNCTION RESULTS – TENTH STANDARD

CONFIGURATION

The reduced-order model resulting from the application of proper orthogonal de-

composition to the governing equations was used to model flow in the Tenth Standard

Configuration, and the results are compared with those that arose from the full-order

model.

The first subsection describes the simulations and the FOM implementation. In

the second subsection, the ROM results are presented and compared with those that

arose from the FOM. The final subsection provides a discussion of the results.

5.1 Full-Order Model

The Tenth Standard Configuration is a two-dimensional, linear compressor cas-

cade consisting of modified NACA 0006 profiles at a 45-degree stagger angle [45, 46].

The modified airfoils have camber, the chord length is one meter, and the gap-to-

chord ratio is one.

Figures 5.1 and 5.2 show the mesh used to discretize the domain. The mesh

was generated using a Poisson solver and contained 16,500 nodes on each of the two

layers parallel to the xy-plane. The inlet was positioned 3.5 chord lengths before the

leading edge, as measured in the x-direction. The outlet was positioned 5.3 chord

lengths beyond the trailing edge, as measured in the x-direction. There were 70

nodes from the inlet to the leading edge, 138 nodes around the airfoil, 70 nodes from

the trailing edge and the outlet, and 40 nodes from airfoil to airfoil.

An inviscid transonic flow was simulated with an inlet Mach number of 0.8 and

an inlet flow angle of 58 degrees. The blades experienced a forced plunging motion in

the direction perpendicular to the chord. The motion for each blade was prescribed
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Figure 5.1: Tenth Standard Configuration mesh.
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Figure 5.2: Detailed Tenth Standard Configuration mesh.
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by

h = h0 cos (ωt+ nbσ) , (5.1)

where nb was the blade number, beginning with zero, and σ was the inter-blade phase

angle.

For the simulations presented in this section, the angular frequency ω was such

that the reduced frequency based on half of the chord was 0.5. Consequently, the

period was 0.023 seconds, and the frequency was 43.3 Hz. The inter-blade phase

angle was 180 degrees. The plunging amplitude h0 was 5% of the chord, and the

peak-to-peak amplitude was 10%.

The FOM used a dual-time stepping scheme. For each real-time step, up to

500 pseudo-time steps were used. The pseudo-time stepping ended if one of two

conditions were reached: (1) the average residual for each variable was reduced to

10−9 or (2) the ratio of the average residual at the beginning of the real-time step to

that at the current pseudo-time step exceeded 105. The FOM used a second-order

accurate spatial discretization.

5.2 Reduced-Order Model

ROM results are shown using a static average with static basis functions, a dy-

namic average with static basis functions, and a dynamic average with dynamic basis

functions. The basis functions were obtained from 1084 snapshots, which spanned

more than ten periods between 0.50 and 0.75 seconds. The dynamic basis functions

were computed using the eigenvalue algorithm discussed in Subsection 2.3.3.
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Equation (5.1) and its time derivative can be alternatively written as

h = α1γ1 + α2γ2,

ḣ = α2γ1 − α1γ2,

where γ1 ≡ cosωt, γ2 ≡ sinωt, α1 ≡ h0 cosnbσ, and α2 ≡ −h0 sinnbσ. Because α1

and α2 do not vary with time, γ1 and γ2 provided suitable parameters for the dy-

namic functions since the plunging motion and its time derivatives could be expressed

linearly in terms of these parameters without additional time dependencies.

Figure 5.3 shows the energy of each basis function (4.1), as well as the cumulative

energy. In (4.1), λj ≡
〈
(Ũ,ϕj)/(ϕj,ϕj)

〉
, and the average has been subtracted: Ũ ≡

U− Ū. Note that Ũ is different for the static and dynamic average cases since the

static and dynamic averages are different. The static basis functions with a dynamic

average accumulated energy less rapidly than the dynamic basis functions, suggesting

that the dynamic basis functions more efficiently captured the flow features.

The ROM using the static average with static basis functions diverged for several

attempted amounts of basis functions. Table 5.1 shows the amounts of basis functions

for which the ROMs converged or diverged. The ROMs using the dynamic average

converged for all cases.

56



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

1x100 1x10-4

1x10-3

1x10-2

1x10-1

1x100

Static average, static basis functions
Dynamic average, static basis functions
Dynamic average, dynamic basis functions

Number of basis functions

En
er

gy
, E

 [−
]

1−
(c

um
ul

at
iv

e 
en

er
gy

), 
[−

]

Figure 5.3: Tenth Standard Configuration: energy spectrum. Solid lines show energy
of each basis function; dashed lines show 1− (cumulative energy).

Average Basis functions Number of basis functions
Max. no.
of basis
functions

Converged Static Static 1–2 8–11 15–17 20

Diverged Dynamic Dynamic – 20
Dynamic Static – 20

Table 5.1: Tenth Standard Configuration: number of basis functions that led to
ROM convergence or divergence.
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Figures 5.4 and 5.5 show the error in the force per unit length acting on a blade

along the x- and y-directions for different amounts of basis functions. The error

measure for the force is defined to be εf ≡
√〈

(fFOM − fROM)2
〉
/
√
〈f 2

FOM〉. For the

simulations wherein the ROM diverged, the symbol is omitted on the plot. Although

the static average with static basis functions and the dynamic average with static

basis functions occasionally performed well, they did not perform as consistently as

the dynamic average with dynamic basis functions. Additionally, the static average

with static basis functions failed for several attempted cases.

An excerpt of the time history of the force is shown in Figures 5.6 and 5.7. As

shown in these figures, the ROMs reasonably predicted the force acting on a blade.

For different amounts of dynamic basis functions, Figure 5.8 shows the time his-

tory of the difference in the force per unit length in the x-direction between the ROM

and the FOM, ∆f x ≡ fxROM − fxFOM. The results are consistent with Figure 5.4,

indicating that using too few or too many dynamic basis functions yielded a greater

error.

Contour plots of the Mach number and Mach number error at time t = 0.69

seconds are presented in Figures 5.9 and 5.10. The Mach number error is defined to

be εM ≡ |MFOM −MROM| /MFOM. Figures 5.9 and 5.10 show that all of the ROMs

reasonably predicted the flow field when the models did not diverge. For each of the

ROMs, the greatest error occurred in the wake. The dynamic basis functions best

modeled the shock when it was the strongest.
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Figure 5.4: Tenth Standard Configuration: error in force per unit length acting on
a blade along x-direction.
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Figure 5.5: Tenth Standard Configuration: error in force per unit length acting on
a blade along y-direction.
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Figure 5.6: Tenth Standard Configuration: force per unit length acting on a blade
along x-direction.
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Figure 5.7: Tenth Standard Configuration: force per unit length acting on a blade
along y-direction.
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Figure 5.8: Tenth Standard Configuration: difference in force per unit length acting
on a blade along x-direction.
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Contour plots of the average and first two basis functions of the density are shown

in Figures 5.11–5.16. The contour plots in Figures 5.11–5.13 are of the static average

and static basis functions, and the contour plots in Figures 5.14–5.16 are of the

dynamic average and dynamic basis functions at the instances listed in Table 5.2.

Middle Blade Outer Blade Γ

Identifier h/hmax ḣ/ḣmax h/hmax ḣ/ḣmax γ1 γ2

(a) 0 1 0 −1 0 1
(b) 1 0 −1 0 −1 0
(c) 0 −1 0 1 0 −1
(d) −1 0 1 0 1 0

Table 5.2: Tenth Standard Configuration: dynamic function reference points.

The static average shown in Figure 5.11 provided a nearly identical flow field for

each blade and accounted for some of the transonic region on the upper surfaces. The

first and second static basis functions shown in Figures 5.12 and 5.13 emphasized

the contrasting flow fields near the blades, for each blade.

Figure 5.11 shows the differences in the dynamic average on the upper surfaces,

near the leading edge, between the two blades. These differences accounted for

some of the information that was alternatively contained in the first two static basis

functions. The first and second dynamic basis functions shown in Figures 5.15 and

5.16 primarily modeled the shock motion on the upper surfaces.
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Figure 5.9: Tenth Standard Configuration: Mach number contour plots. From top
to bottom: (a) FOM; (b) ROM, static average, 10 static basis functions; (c) ROM,
dynamic average, 3 static basis functions; and (d) ROM, dynamic average, 3 dynamic
basis functions.
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Figure 5.10: Tenth Standard Configuration: Mach number error contour plots. From
top to bottom: (a) ROM, static average, 10 static basis functions; (b) ROM, dynamic
average, 3 static basis functions; and (c) ROM, dynamic average, 3 dynamic basis
functions.
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Figure 5.11: Tenth Standard Configuration: static average of density.

65



x

y

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Density

Figure 5.12: Tenth Standard Configuration: first static basis function of density.
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Figure 5.13: Tenth Standard Configuration: second static basis function of density.
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Figure 5.14: Tenth Standard Configuration: dynamic average of density. From top
to bottom: (a), (b), (c), and (d), as indicated in Table 5.2.
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Figure 5.15: Tenth Standard Configuration: first dynamic basis function of density.
From top to bottom: (a), (b), (c), and (d), as indicated in Table 5.2.
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Figure 5.16: Tenth Standard Configuration: second dynamic basis function of den-
sity. From top to bottom: (a), (b), (c), and (d), as indicated in Table 5.2.
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5.3 Discussion

Compared to the results shown for the channel with the bump in Subsection 4.2.2,

the static average with static basis functions and the dynamic average with static

basis functions were able to more effectively model the Tenth Standard Configuration

without failing as frequently or producing such low-fidelity results. Nonetheless, the

static average with static basis functions often failed, and the dynamic average with

static basis functions produced inconsistent results.

The dynamic basis functions performed more consistently than the static and

dynamic averages with static basis functions, with regard to solution fidelity, as

shown in Figures 5.4–5.10, and stability, as shown in Table 5.1 and Figures 5.4

and 5.5. Occasionally, the static and dynamic averages with static basis functions

performed better than the dynamic basis functions. However, using the static average

with static basis functions often failed, and the dynamic average with static basis

functions performed inconsistently.

As with the channel with the bump, the dynamic basis functions more stably

modeled the flow in the Tenth Standard Configuration while providing an accurate

result.
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6. OFF-REFERENCE CONDITION RESULTS∗

The reduced-order model resulting from the application of proper orthogonal

decomposition to the governing equations was used to model flow through a channel

with a sinusoidal bump, and the results are compared with those that arose from the

full-order model.

For these cases, an inviscid flow field was modeled through the 5-meter-long

channel with a 1-meter height shown in Figure 6.1. The middle meter of the channel

contained a sinusoidal bump with a 0.1-meter height. The channel was discretized

using 150 cells along the length and 30 cells along the height.

The static pressure at the channel outlet was varied sinusoidally to force unsteadi-

ness of the flow. The back pressure was prescribed by

pb = p̄b [1 + ε sin(ωt)] , (6.1)

where p̄b was 101,325 Pa and ω was 68.0585 rad/s. Consequently, the reduced fre-

quency based on half of the bump length was 0.1/Minlet. Two values were used for ε:

0.01 and 0.05. The FOM was used to simulate fourteen flows associated with inlet

Mach numbers of 0.3–0.8 at sea level. Of the cases simulated, supersonic flow was

first achieved using an inlet Mach number of 0.65 for both values of ε. The simula-

tions spanned one second, which included at least ten periods, and 1000 snapshots

were taken for each case. This section investigates the number of basis functions

used, as well as the order of interpolation.

∗Part of this section is reprinted with permission from “Using proper orthogonal decomposition
to model off-reference flow conditions” by B. A. Freno, T. A. Brenner, P. G. A. Cizmas, 2013.
International Journal of Non-Linear Mechanics, vol. 54, pp 76–84, Copyright 2013 by Elsevier.
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Figure 6.1: Channel mesh for off-reference conditions.

6.1 Number of Basis Functions

Using the snapshots obtained from the FOM simulation, basis functions were

computed for use in the ROM. Figures 6.2 and 6.3 respectively show the energy of

each basis function (4.1) for ε = 0.05 and 0.01. For ε = 0.05, Figure 6.4 shows

the energy for all available basis functions, and Figure 6.5 alternatively shows the

cumulative energy as a function of the number of basis functions.

Figure 6.2 shows that, for a larger ε, the energy decrease with basis function

number increase was noticeably more gradual than for the case of a small ε in Fig-

ure 6.3. A smaller ε reduced the diversity of the flow field with respect to time and

enabled the motion to be modeled with fewer basis functions.

Cases with inlet Mach numbers of 0.3–0.6 were purely subsonic. As shown in

Figures 6.2 and 6.4 for ε = 0.05, the energy was largely accounted for within the

first ten basis functions for the subsonic simulations. Conversely, for the transonic

simulations, energy decrease with basis function number increase was considerably

more gradual. Additionally, increasing the Mach number, and therefore increasing

the flow nonlinearity, reduced the energy accumulation. The disparity in energy
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Figure 6.2: Energy spectrum, ε = 0.05.

accumulation between the subsonic and transonic cases, particularly the subsonic

case energy plateau shown in Figure 6.2, was not as evident when only the cumulative

energy was taken into account, as shown in Figure 6.5. Letting ε = 0.05 henceforth,

these observations are further emphasized in Figures 6.6 and 6.7, which show the

absolute value of the time coefficients that arose from projecting the snapshots onto

the basis functions obtained directly from the snapshots for the Mach 0.40 and 0.75

cases. For the Mach 0.40 case, the amplitude of the oscillation decreased considerably

for each subsequent basis function. For the Mach 0.75 case, the decrease in amplitude

was much more gradual.
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Figure 6.3: Energy spectrum, ε = 0.01.
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Figure 6.4: Energy spectrum, ε = 0.05.

75



0 5 10 15 20
0.80

0.85

0.90

0.95

1.00

1.05

0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.675
0.700
0.725
0.750
0.775
0.800

Number of basis functions

M inlet

 C
um

ul
at

iv
e 

en
er

gy
, [

−
]

Figure 6.5: Cumulative energy, ε = 0.05.
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Figure 6.6: Absolute value of snapshots projected onto basis functions,Minlet = 0.40.
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Figure 6.7: Absolute value of snapshots projected onto basis functions,Minlet = 0.75.
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The force acting on the bump between one and two seconds was used in this

section as a measure for assessing the accuracy of the ROMs. Since the back pressure

was prescribed by (6.1), the force acting on the bump was able to be described by

an average value and an amplitude. Figures 6.8 and 6.9 plot the error in the average

value of the force, as well as the error in the amplitude of the oscillation of the force

in the y-direction for inlet Mach numbers of 0.40 and 0.75. These plots show the

results for the ROMs using both basis functions obtained directly from the FOM

snapshots and through linear interpolation on the tangent space to the Grassmann

manifold.

For the subsonic simulations that used basis functions obtained directly from

the FOM, Figure 6.8 indicates that exceeding the number of basis functions beyond

which the energy contribution plateaued in Figure 6.2 did not necessarily improve

the accuracy.

From (2.4), the eigenvalue can be computed for an arbitrary basis function:

λ̃j =
〈

(Ũ,ϕj)2(
ϕj,ϕj

)〉 . (6.2)

In (6.2), the basis function can be obtained through POD or interpolation.

Using (6.2), Figure 6.10 shows the energy of each basis function. Figure 6.10 is

consistent with Figure 6.2 for the transonic simulations, as shown in Figure 6.11 for

Minlet = 0.75. However, for the subsonic simulations, the basis functions that were

in the plateaued region in Figure 6.2 had noticeably more energy in Figure 6.10.

Furthermore, from Figure 6.8, the introduction of these superfluous basis functions

in the plateaued region appears to have contaminated the basis functions arising

from interpolation.

For the transonic simulations, in the absence of a plateau of energy variation,
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Figure 6.8: Error in average force and in amplitude of oscillation for y-component of
force acting on bump, Minlet = 0.40.

increasing the amount of basis functions generally increased the accuracy, as shown

in Figure 6.9. However, the higher-numbered basis functions required a finer time

discretization when used in the ROM. The basis functions obtained from interpola-

tion did not accumulate energy as rapidly as those obtained directly from the FOM

as shown in Figure 6.11. Therefore, the ROM required more than 50 basis functions

for linear interpolation on the tangent space to the Grassmann manifold.
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Figure 6.9: Error in average force and in amplitude of oscillation for y-component of
force acting on bump, Minlet = 0.75.

Due to the differences in energy accumulation between the subsonic and transonic

simulations, for the ROM results that follow, eight basis functions were used for the

subsonic simulations and sixty basis functions were used for the transonic simulations.
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Figure 6.10: Energy spectrum using Equation (6.2), ε = 0.05.
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Figure 6.11: Energy spectrum for Minlet = 0.75, ε = 0.05.
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6.2 Interpolation Order

The ROM simulations presented in this dissertation include those that used basis

functions that were derived directly from the FOM, as well as those that were ob-

tained by interpolating between basis functions derived from snapshots corresponding

to different flow simulations. Linear, two types of quadratic, and cubic interpolation

were performed on the tangent space to the Grassmann manifold. Figure 6.12 shows

the conditions associated with each set of basis functions used in the interpolation.
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Figure 6.12: The four types of interpolation performed on the tangent space to the
Grassmann manifold for the inlet Mach numbers.

The basis functions that arise from interpolation are dependent upon the number

of basis functions used in the interpolation. For example, if linear interpolation

is performed on the tangent space to the Grassmann manifold, two sets of basis

functions corresponding to two bracketing flow conditions would be used. In one

scenario, each set could contain m basis functions, and interpolating between the
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two sets would yield m basis functions. In a second scenario, each set could contain

M basis functions, resulting in M basis functions. In general, if M is greater than

m, the m basis functions arising from interpolation in the first scenario will not be

a subset of the M basis functions arising in the second scenario.

Figures 6.13–6.16 respectively show the energy of each basis function: λ̃i/
∑m
j=1 λ̃j,

where λ̃j was computed from (6.2), for linear, left quadratic, right quadratic, and

cubic interpolation. The amount of basis functions shown corresponds to the number

used for the simulations. Eight basis functions were used for the subsonic simulations

(Minlet ≤ 0.60), and sixty basis functions were used for the transonic simulations

(Minlet ≥ 0.65).

Compared to Figure 6.2, the basis functions obtained from interpolation did not

accumulate energy as rapidly as those obtained directly from the FOM. Summing

the energy of each basis function obtained from interpolation approached one more

slowly. For example, for the Mach 0.40 case, the sum of the energy of the first three

basis functions was 0.96316 when the basis functions were obtained using linear

interpolation and 0.99985 when the basis functions were obtained directly from the

FOM. For the Mach 0.75 case, the sum of the energy of the first three basis functions

was 0.65325 when the basis functions were obtained using linear interpolation and

0.92798 when the basis functions were obtained directly.
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Figure 6.13: Energy spectrum, linear interpolation, ε = 0.05.

0 10 20 30 40 50 60
1x10-6

1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

1x100

0.400
0.450
0.500
0.550
0.600
0.650
0.675
0.700
0.725
0.750
0.775

Number of basis functions

M inlet

En
er

gy
, E

 [−
]

Figure 6.14: Energy spectrum, left quadratic interpolation, ε = 0.05.
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Figure 6.15: Energy spectrum, right quadratic interpolation, ε = 0.05.
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Figure 6.16: Energy spectrum, cubic interpolation, ε = 0.05.
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Contour plots of the Mach number and the error at two seconds are shown in

Figures 6.17–6.20 for inlet Mach numbers of 0.40 and 0.75. For an inlet Mach number

of 0.40, the ROMs using interpolated functions accurately predicted the flow field.

Though some of the flow features for an inlet Mach number of 0.75 were qualita-

tively modeled in Figure 6.19, the accuracy of the interpolated functions noticeably

decreased, as shown in Figure 6.20.

The force acting on the bump along the y-direction between 1 and 2 seconds was

compared for each of the cases simulated. The time history of the force is plotted in

Figure 6.21 for an inlet Mach number of 0.40 and in Figure 6.22 for an inlet Mach

number of 0.75.

For an inlet Mach number of 0.40, the force acting on the bump was accurately

modeled using the interpolated functions. There was a greater discrepancy in the

force for the Mach 0.75 case.

Figure 6.23 shows the average value of the force for each Mach number. The

amplitude of the oscillation about the average value is plotted in Figure 6.24.

For the average value and amplitude of oscillation of the force acting on the

bump, the error of the ROMs was computed relative to the FOM and is plotted in

Figures 6.25 and 6.26. Relative to the FOM, Figure 6.26 shows that the ROMs did

not accurately account for the amplitude of the force oscillation as the Mach number

increased.
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Figure 6.17: Mach number contour plots, Minlet = 0.40. (a) FOM; (b) ROM, direct;
(c) ROM, linear interpolation; (d) ROM, left quadratic interpolation; (e) ROM, right
quadratic interpolation; and (f) ROM, cubic interpolation.
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Figure 6.18: Mach number error contour plots, Minlet = 0.40. (a) ROM, linear
interpolation; (b) ROM, left quadratic interpolation; (c) ROM, right quadratic in-
terpolation; and (d) ROM, cubic interpolation.
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Figure 6.19: Mach number contour plots, Minlet = 0.75. (a) FOM; (b) ROM, direct;
(c) ROM, linear interpolation; (d) ROM, left quadratic interpolation; (e) ROM, right
quadratic interpolation; and (f) ROM, cubic interpolation.

89



(a)

x

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Mach error

Time: 2.0 s

(b)

x

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Mach error

Time: 2.0 s

(c)

x

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Mach error

Time: 2.0 s

(d)

x

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Mach error

Time: 2.0 s

x

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Mach error

Time: 2.0 s

x

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Mach error

Time: 2.0 s

Figure 6.20: Mach number error contour plots, Minlet = 0.75. (a) ROM, linear
interpolation; (b) ROM, left quadratic interpolation; (c) ROM, right quadratic in-
terpolation; and (d) ROM, cubic interpolation.
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Figure 6.21: Force per unit length acting on bump along y-direction, Minlet = 0.40.
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Figure 6.22: Force per unit length acting on bump along y-direction, Minlet = 0.75.
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Figure 6.23: Average force acting on bump along y-direction.
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Figure 6.24: Amplitude of oscillation of force acting on bump along y-direction.
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Figure 6.25: Error in average force acting on bump along y-direction.
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Figure 6.26: Error in oscillation amplitude of force acting on bump along y-direction.

93



6.3 Discussion

For low Mach numbers, the ROMs using interpolated functions accurately pre-

dicted the flow field, as shown in Figures 6.17 and 6.18. Though some of the flow

features were qualitatively modeled in the transonic regime, as shown in Figures 6.19

and 6.20, the accuracy of the interpolated results noticeably decreased. The deteri-

oration in fidelity of the ROMs can be attributed to the increasingly nonlinear flow

in the transonic regime due to the strong nonlinearities associated with the shock.

For the average force in the y-direction, Figure 6.25 shows that the ROMs using

interpolated functions had an error of less than 9.9%. The maximum error occurred

for an inlet Mach number of 0.75 using left quadratic interpolation, which interpo-

lated from one subsonic and two transonic cases. On the other hand, the ROM using

basis functions obtained directly from the snapshots had an error of less than 0.11%,

with the maximum error occurring when the inlet Mach number was 0.65.

For the force in the y-direction, Figure 6.26 shows there was a greater discrepancy

between the ROMs and the FOM in the prediction of the oscillation amplitude when

compared to the average force. The ROMs using interpolated functions had an

error of less than 94%. The maximum error occurred for an inlet Mach number of

0.75 using right quadratic interpolation. On the other hand, the ROM using basis

functions obtained directly from the snapshots had an error of less than 1.9%, with

the maximum error occurring when the inlet Mach number was 0.80.

Note that Figure 6.25 shows that increasing the interpolation order for inlet Mach

numbers up to 0.50 resulted in a more accurate average force in the y-direction.

Basis functions obtained from linear and left quadratic interpolation for inlet Mach

numbers up to 0.55 were interpolated from basis functions arising from subsonic

flow, as were basis functions obtained from right quadratic and cubic interpolation
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for inlet Mach numbers up to 0.50.

In the transonic regime, there was not a clear trend between interpolation order

and accuracy. Additionally, from Figure 6.26, the error in the amplitude of oscilla-

tion for interpolated functions was higher for transonic cases, as well as for subsonic

cases that used basis functions obtained from using transonic basis functions in in-

terpolation.
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7. COMPUTATIONAL SAVINGS

The focus of the work presented in this dissertation has been on developing suit-

able basis functions for use in the reduced-order model. The primary incentive for

using the ROM is to reduce the degrees of freedom and the computational time.

There are two methods for reducing the computational time: (1) computing and

projecting the residual onto the basis functions to increase the time step [4, 42] and

(2) reformulating the equations and pre-computing the inner products to reduced

the problem dimension [20, 47].

7.1 Projecting the Residual onto Basis Functions

By computing the residual and projecting it onto the basis functions, the amount

of computations relative to the full-order model is increased. However, the resulting

equations have a different Courant–Friedrichs–Lewy (CFL) condition, which permits

a greater time step than what was possible with the FOM. Additionally, this approach

requires minimal modification to the FOM to create the ROM. This was the method

used to create the ROM used in this dissertation.

7.1.1 Outline of Reduced-Order Model

The ROM used in this dissertation was created by modifying the FOM. Figure 7.1

provides a flowchart of the algorithm used by the FOM. The modifications made to

the FOM are shown in Figure 7.2, which contains a flowchart of the algorithm used

by the ROM.

The majority of the execution time for both models is spent progressing through

time. The additional costs per time step associated with the ROM arise from re-

constructing the flow field and computing the inner product of the residual and the
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Begin

Read input file

Initialize time and flow field

Compute residual

Compute new flow field

Update boundary conditions Advance in time

Final time
reached?

End

no

yes

Figure 7.1: Flowchart of FOM algorithm

basis functions.

7.1.2 Computational Time Comparison

For the Tenth Standard Configuration case, fewer pseudo-time steps were needed

for the ROM. Figures 7.3 and 7.4 show the relative time consumption during a real-

time step for the FOM and for the ROM using three dynamic basis functions. The

greatest additional cost arose from reconstructing the flow field and projecting the

residual onto the basis functions.
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Begin

Read input file

Read basis functions

Compute inner
products in (3.5)

Initialize time and flow field

Reconstruct flow field
from time coefficients

Compute residual

Compute inner product of
residual and basis functions

Compute new
time coefficients

Reconstruct flow field
from time coefficients

Update boundary conditions

Advance in time

Final time
reached?

End

no

yes

No modifications

Slight modifications

Moderate modifications

Complete modifications

Figure 7.2: Flowchart of ROM algorithm
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89%

11%

Compute residual

Update boundary conditions

Figure 7.3: Computational time profile for FOM

16%

70%

5%
9%

Compute residual

Compute residual inner product

Reconstruct flow field

Update boundary conditions

Figure 7.4: Computational time profile for ROM
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Figure 7.5 plots the ratio of the execution time of the ROM to the FOM, τ . As

shown in the figure, using the dynamic average with static basis functions did not

significantly increase the time beyond that required by the static average with static

basis functions. The static basis functions with the static and dynamic averages

generally required less than half of the time required by the FOM.

The dynamic basis functions required more time than the static basis functions.

Additionally, increasing the number of dynamic basis functions increased the compu-

tational time more rapidly than by increasing the number of static basis functions.

Using three dynamic basis functions yielded a low error, as shown in Subsection 5.2.

This resulted in a cost comparable to using the static basis functions, which was

approximately 30% of the computational time of the FOM.
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Figure 7.5: Ratio of computational time of ROM to FOM.
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7.2 Reformulating the Governing Equations

The other approach to accelerate the ROM is to formulate the governing equa-

tions in terms of the primitive variables. Projecting these equations onto the basis

functions yields cubic nonlinear equations, for which the inner products can be pre-

computed. This method requires significant modification to the FOM to create the

ROM; however, the problem dimension is reduced considerably, and the flow field

does not need to be reconstructed, nor do the inner products need to be computed

throughout the simulation.
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8. CONCLUSIONS∗

This section presents the conclusions drawn from the results shown in the previous

sections for the dynamic average and dynamic basis functions and for modeling off-

reference flow conditions.

8.1 Dynamic Functions

In this dissertation, a novel approach was presented to model highly nonlinear

flows and deforming meshes using proper orthogonal decomposition. The approach

consisted of using the dynamic average with dynamic basis functions. The dynamic

functions resulted in higher-fidelity results and increased stability with fewer basis

functions for the highly nonlinear flows. Using the static basis functions failed or pro-

duced lower-quality results for such flows. Nonetheless, the dynamic basis functions

and occasionally, the dynamic average, do not always provide an improvement for

flows with weak nonlinearities. Therefore, static functions are suitable for modeling

subsonic flows and flows with fixed meshes, whereas dynamic functions are better

able to overcome the shortcomings of the static functions when the flow is highly

nonlinear and the mesh is deforming.

8.2 Off-Reference Flow Conditions

This dissertation additionally presented a novel approach for assessing the num-

ber of basis functions used in POD. POD results were compared between subsonic

and transonic flows for several cases. For off-reference flow conditions, the effect of

interpolation order was investigated.

∗Part of this section is reprinted with permission from “Using proper orthogonal decomposition
to model off-reference flow conditions” by B. A. Freno, T. A. Brenner, P. G. A. Cizmas, 2013.
International Journal of Non-Linear Mechanics, vol. 54, pp 76–84, Copyright 2013 by Elsevier.
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With POD, using too few basis functions results in a low-fidelity result. Con-

versely, using an excessive amount of basis functions introduces the challenge of

resolving higher frequencies. Additionally, it was shown that arbitrarily increasing

the number of basis functions does not guarantee an improvement. Taking into ac-

count the energy contribution of each basis function provides greater insight than

considering only the cumulative energy.

The results from several cases in the subsonic and transonic flow regimes were

presented for inviscid flow through a channel. The FOM was compared with ROMs

using basis functions generated through POD of the FOM for identical flow condi-

tions, and through interpolation of the basis functions from flow conditions bracketing

the value of interest. Interpolation yielded good results for subsonic cases; however,

the fidelity of the transonic cases was noticeably lower.

Using basis functions obtained through interpolation naturally results in a de-

crease in fidelity compared to using basis functions extracted from snapshots of the

FOM for identical flow conditions, especially for transonic flows. However, interpola-

tion remains practical given the goal of reducing computational time while achieving

acceptable results.
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APPENDIX A

NORM SIMPLIFICATION

The square of the norm of the approximation when expanded is
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 ,
=

m∑
j=1


(
Ũ,ϕj

)
(
ϕj,ϕj

)ϕj, m∑
k=1

(
Ũ,ϕk

)
(ϕk,ϕk)

ϕk

 ,
=

m∑
j=1

m∑
k=1


(
Ũ,ϕj

)
(
ϕj,ϕj

)ϕj,
(
Ũ,ϕk

)
(ϕk,ϕk)

ϕk

 ,
=

m∑
j=1

m∑
k=1

(
Ũ,ϕj

)
(
ϕj,ϕj

)
(
Ũ,ϕk

)
(ϕk,ϕk)

(
ϕj,ϕk

)
.

If the basis functions are mutually orthogonal,
(
ϕj,ϕk

)
= 0 when j 6= k. Therefore,

m∑
j=1

m∑
k=1

(
Ũ,ϕj

)
(
ϕj,ϕj

)
(
Ũ,ϕk

)
(ϕk,ϕk)

(
ϕj,ϕk

)
=

m∑
j=1

(
Ũ,ϕj

)
(
ϕj,ϕj

)
(
Ũ,ϕj

)
(
ϕj,ϕj

) (ϕj,ϕj) =
m∑
j=1

(
Ũ,ϕj

)2(
ϕj,ϕj

) .
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APPENDIX B

DERIVATIVE OF THE FUNCTIONAL

To extremize

J [ϕ] ≡
〈
ϕT Â(t)ϕ

(ϕ,ϕ)

〉
,

the derivative ∇ϕJ is set to zero. A Taylor series expansion yields

J [ϕ+ δψ] = J [ϕ] + (∇ϕJ) · δψ + o(|δψ|).

Equivalently,

(∇ϕJ) ·ψ = lim
δ→0

J [ϕ+ δψ]− J [ϕ]
δ

= ∂J

∂δ
[ϕ+ δψ]

∣∣∣∣∣
δ=0
.

The derivative of the functional is obtained by computing ∂J

∂δ
[ϕ+ δψ]

∣∣∣∣∣
δ=0
:
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∂J

∂δ
[ϕ+ δψ]

∣∣∣∣∣
δ=0
=
〈(ϕ,ϕ) ∂

∂δ

[
(ϕ+ δψ)T Â(t) (ϕ+ δψ)

]∣∣∣∣∣
δ=0

(ϕ,ϕ)2

−
(ϕT Â(t)ϕ) ∂

∂δ
(ϕ+ δψ,ϕ+ δψ)

∣∣∣∣∣
δ=0

(ϕ,ϕ)2

〉
,

=
〈(ϕ,ϕ)

(
ϕT Â(t)ψ +ψT Â(t)ϕ

)
(ϕ,ϕ)2 − (ϕT Â(t)ϕ) [(ϕ,ψ) + (ψ,ϕ)]

(ϕ,ϕ)2

〉
,

=
〈(
ϕT Â(t)ψ +ψT Â(t)ϕ

)
(ϕ,ϕ) − 2(ϕT Â(t)ϕ) (ψ,ϕ)

(ϕ,ϕ)2

〉
.

Since Â is symmetric,

∂J

∂δ
[ϕ+ δψ]

∣∣∣∣∣
δ=0
= 2

〈
ψT Â(t)ϕ

(ϕ,ϕ) − (ϕT Â(t)ϕ) (ψ,ϕ)
(ϕ,ϕ)2

〉
.

The derivative is set to zero:

2
〈
ψT Â(t)ϕ

(ϕ,ϕ) − (ϕT Â(t)ϕ) (ψ,ϕ)
(ϕ,ϕ)2

〉
= 0

and must hold for an arbitrary ψ; therefore,

〈
Â(t)ϕ
(ϕ,ϕ) −

(ϕT Â(t)ϕ)ϕ
(ϕ,ϕ)2

〉
= 0.
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