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ABSTRACT

The most interesting and technologically important problems in the study of flow

through porous media involve very high pressures and pressure gradients in the flow do-

main such as enhanced oil recovery and carbon dioxide sequestration. The popular Darcy

or Brinkman models do not take into account the changes in the fluid properties (like

viscosity) due to high pressures and temperatures, or the deformation of the solid itself as

the fluid flows through it. We focus on the pressure dependence of viscosity and show that

its significance in these problems cannot be neglected.

Mixture theory is employed as the tool to develop models for this task. The popular

models due to Darcy and Brinkman (and their generalizations) are derived using a gen-

eral thermodynamic framework which appeals to the criterion of maximal rate of entropy

production. Such a thermodynamic approach has been used with great success to describe

various classes of material response and here we demonstrate its use within the context

of mixture theory. One such generalization of the Brinkman model takes into account

the variation of the viscosity and the drag coefficient with the pressure and is used in the

problems studied subsequently.

We then consider the steady flow of a fluid through a porous slab, driven by a large

pressure gradient, and show that the traditional approach that ignores the variation of

the viscosity and drag with the pressure greatly over-predicts the mass flux taking place

through the porous structure. While incorporating the pressure dependence of viscosity

and drag leads to a ceiling flux, the traditional approaches lead to a continued increase in

the flux with the pressure difference.

The effect of inhomogeneities and anisotropy of the porous medium is investigated by

modifying the previous problem to prescribe the drag coefficient as a piecewise constant,

positive definite second order tensor. Finally, we allow for the possibility that the flow is

unsteady, the viscosity and drag are dependent on the pressure and consider the flow of a
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fluid due to a pulsatile forcing pressure at one end of a rigid, homogenoues, isotropic solid

while the other end is open to the atmosphere. In contrast to certain non-Newtonian fluids

where the volumetric flux is enhanced by pulsating the pressure gradient about a non-zero

mean value, we find that pulsations in the pressure diminish the volumetric flux in case

of the flow through a porous medium when the fluid viscosity is considered to be pressure

dependent.
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DEDICATION

My Captain does not answer, his lips are pale and still;

My father does not feel my arm, he has no pulse nor will;

The ship is anchor’d safe and sound, its voyage closed and done;

From fearful trip, the victor ship, comes in with object won;

Exult, O shores, and ring, O bells!

But I, with mournful tread,

Walk the deck my Captain lies,

Fallen cold and dead.

– Walt Whitman
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1. INTRODUCTION

1.1 Motivation

It is natural to imagine that when a flowing fluid encounters a solid object like a rock,

part of the flow is arrested and the fluid flows past the object; that the rock is “imper-

meable” or “impervious” is an obvious assumption to make. The term “impermeable”

is understood to mean “preventing especially liquids to pass through”. A cursory glance

through a thesaurus shows some of its synonyms to be “impervious”,“non-porous”, “im-

passable”, “watertight” etc. Familiarity with any one of these words is enough to expect

that “impermeability” is an ideal, not likely to be attained in practice. One can also

be convinced likewise by directing a sufficiently powerful microscope onto the surface of

whatever object is believed to be impermeable and observe the surface maculated with

pores.

Porous materials are ubiquitous. Objects in nature such as rocks, minerals and soil,

biological tissues like skin, bones, membranes and wood, and man-made materials such

as cements, ceramics and polymers are all instances of a porous medium. The study of

fluid flow through porous media arises naturally and it has emerged as a separate field of

study; the interaction between the fluid and the medium through which it flows adding a

complexity absent in the study of deformable bodies.

One can characterize a porous medium by its permeability, porosity, and saturation.

Porosity is the fraction of the volume occupied by pores, and is a number between 0

to 1. It determines the amount of fluid the medium can hold.

Saturation is the fraction of the pore volume filled with fluid, and is a number between

0 to 1. A value of 1 indicates the medium is saturated, and the pores cannot hold any more

fluid. We shall deal only with saturated porous media in this work, and hence no more will

be said about it.

Permeability is a measure of the ability of a fluid to flow through a medium. It has
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dimension [L]2 and depends solely on the medium. As an example, the permeability of

sand is 10−12 m2 to 10−10 m2 while for clay it is 10−17 m2 to 10−15 m2.

What then, is one to make of the phrase, “impermeable/impervious solid” ? The answer

is that the term has more to do with one’s perception of the object than something intrinsic

to the object itself. To explain, without putting too fine a point on it, an object can be

described as impermeable if in the time scale of observation, a negligible quantity of fluid

flows through it. When a water body drains in clayey soil, observed over months or years,

the permeability of clay cannot be neglected, but one stores water in a clay-pot without

fear of leakage, and it is certainly reasonable to consider the clay-pot to be impermeable.

The point just made lies at the heart of modelling and will be emphasized whenever an

assumption is made about some aspect of the response of a body. As long as the assumption

made does not contradict observations in real physical situations, it is reasonable to do so.

The study of flow through porous media finds context and relevance in a multitude of

instances like filtration, soil and rock mechanics, movement of groundwater and contami-

nants in soils, flow of oil through a reservoir, diffusion of fluids through synthetic polymers

and biological materials etc. The most interesting and technologically important prob-

lems of flow through porous media concern flows of fluids involving very high pressures

and pressure gradients in the flow domain, with concomitant deformation of the porous

medium. Examples of such applications are the problems of enhanced oil recovery and

carbon dioxide sequestration, brief descriptions of which now follow.

1.1.1 Enhanced oil recovery (EOR)

Traditional primary and secondary methods of oil recovery typically recover only one

third of oil in place, leaving two thirds behind. During the life of a well, there is always a

point at which the cost of producing an additional barrel of oil is higher than the price the

market will pay for that barrel. Production then halts. In the past, the well used to be

abandoned, even with 70 % of the oil left in the ground, since oil was easy to find and the

economics dictated that it was cheaper to find and produce oil in a new field. However,

things started to change when the declining reserves and the low probability of locating
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significant new fields drove producers to seek additional oil in old reservoirs, making North

America a proving ground for EOR techniques. EOR is also referred to as tertiary or

improved oil recovery. Today, it is estimated that North America accounts for more than

half the worlds EOR production [1].

EOR is an imprecise term used to describe an assortment of techniques that are used to

recover oil once the primary and secondary recovery methods fail. The various techniques

used in oil recovery are listed in Figure 1.1. The principle behind EOR is however the same

in all methods; a fluid is injected into the injection wells at high pressure and it pushes

the oil to the surface at the production well. The injection pressures involved are usually

in excess of 600 atm [2]. Using EOR techniques up to an additional 30 % of oil may be

recovered from the well. A typical EOR process in Weyburn oil field in Saskatchewan is

depicted in Figure 1.2.

Thus, in the field of petroleum engineering, accurate estimate of oil production rate

and economic feasibility of EOR hinge on the ability to model the physical process of oil

recovery. However, this is no easy task due to a plethora of complications:

1. More than one fluid is involved. The flow could be multi-component/multi-phase in

the sense that we could have a mixture of carbon dioxide, water, steam and oil.

2. The medium (soil) may deform and eventually fracture due to the high pressure of

fluid flowing through it.

3. There could be various interaction mechanisms between the fluid and the solid.

4. The material properties of the fluid like viscosity and density could change due to

the high pressures and elevated temperatures. The fluid could shear-thin or shear-

thicken.

5. The medium may be heterogeneous, with strata of solid rock interspersed with clay

or sand; hence the pore structure of the solid may not be uniform. If the solid is

anisotropic, the permeability to flow may not be the same in all directions.

3



Figure 1.1: Methods of EOR (Source: Lake and Venuto [1])

Figure 1.2: EOR setup (Source: http://www.planetseed.com/node/15251)
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1.1.2 Carbon dioxide sequestration (CS)

The techniques of EOR developed over the past few decades have now found another

avenue for gainful employment: the engineering problem of carbon dioxide sequestration

or geological sequestration. In this process, supercritical carbon-dioxide is pumped at high

pressures into deep saline aquifers or abandoned oil wells and the pressure can vary from

1 atm to 500 atm [3]. This method has been proposed to reduce the level of atmospheric

CO2, since the increased level of the gas is suspected to contribute to global warming

and adversely impact the climate. The idea of sequestering carbon dioxide to reduce the

amount entering the atmosphere is fairly new. But the technology needed to do this has

been developed for EOR already.

Thermal power stations, iron and steel plants and cement production plants are good

candidates for capture and storage because they are large scale sources with a fixed location.

Once concentrated CO2 is captured, geological formations and aquifers, depleted oil and

natural gas reservoirs, and deep coal beds are possible locations to sequester the carbon

dioxide (See Figure 1.3). If the goal is CO2 storage rather than oil recovery, then depleted or

nearly depleted oil fields may be used for sequestration even if they are not good candidates

for enhanced oil recovery. The porous and permeable rock layer that contains fluids is

covered by an impermeable cap rock. Normally, oil and natural gas will tend to migrate

upward through permeable rock but the cap rock traps them. Since oil and natural gas

have been sequestered in such formations for millions of years, there is good reason to

believe that CO2 will remain there as well. The cross section of a typical oil reservoir is

depicted in Figure 1.4. Deep seated aquifers and coal beds are another suitable location

for sequestration of CO2. One project is currently on at Sleipner field in the North Sea

(see Figure 1.5) off the coast of Norway.

However, the issues involved in geological sequestration are more complicated than

those of EOR. Firstly, for sequestration to be effective, the CO2 needs to be stored for

hundreds of years and it is difficult to predict at this point if it will be effective. Secondly,

there is the possibility of CO2 escaping through abandoned wells of an oil field. Another
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Figure 1.3: Carbon sequestration process (Source: http://www.planetseed.com/node/

15250)

Figure 1.4: Cross section of a typical oil reservoir (Source: http://www.planetseed.com/
node/15250)
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possible pathway for CO2 to leak would be cracks in the cap rock. CO2 sequestration is

proposed for regions that are geologically stable, where earthquakes are not likely to occur.

However, the sequestering of CO2 itself could result in increased pressure under the cap

rock that could result in cracks. The solution is to monitor pressure and take care not to

exceed the limits of the formation. The reader may consult [3] for details on the challenges

posed by this problem.

While CO2 is not poisonous, it can cause death by suffocation if there is uncontrolled

release. One such catastrophe occurred at Lake Nyos where on August 21, 1986, there was

a sudden release of CO2, which flowed into valleys around the lake and killed 1,700 people

in nearby villages (see Figure 1.6).

Analogous to the EOR process where the yield at the production well is of importance,

here safety concerns dictate that it is paramount to predict the rate of leakage of CO2.

Thus the main thrust of modelling in both these processes (EOR and CS) is accurate

prediction of fluid flux or leakage [4, 5, 6, 7].

However, neglecting for now the differences between EOR and carbon sequestration, the

complexities of the physical processes in EOR enumerated earlier apply equally to carbon

sequestration.

1.2 Modelling efforts

In principle, one could write down the balance laws for fluid motion through the porous

medium knowing the spatial distribution of the pores and solve for the velocity field after

enforcing appropriate boundary conditions at the fluid-pore interface. This is a hopeless

task, however, for even if the spatial distribution were known, the problem is intractable.

Hence one has to abandon the microscopic view and move to a macroscopic viewpoint,

where one can deal with certain “average” quantities that represent the macroscopic be-

haviour.

The methods of volume averaging and homogenization have been used to this effect

[8, 9, 10]. We shall not discuss them further, for our focus is on the third technique, that

of mixture theory or the theory of interacting continua. The theory is particularly well
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Figure 1.5: Carbon sequestration at Sleipner (Source: http://www.planetseed.com/

node/15252)

Figure 1.6: Hazards of carbon sequestration: In 1986, Lake Nyos released a large cloud of
CO2 , which suffocated 1700 people and 3500 livestock in nearby villages (Source: http:

//www.waterencyclopedia.com/Hy-La/Lakes-Chemical-Processes.html)
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suited to the study of flow of fluids through porous media. We shall discuss the general

framework of mixture theory in the next section, so for now we remark merely that the

theory allows for relative motion between the constituents of the mixture, ensures that

each component of the mixture meets all the balance laws and also takes into account

the various interactions that are possible within the constituents of the mixture including

chemical reactions and inter-conversion between the constituents.

1.2.1 Popular models

We record the equations that represent some of the popular models for flow of fluids

through porous media.

Let grad[·] denote the Eulerian gradient while div[·] denotes the Eulerian divergence

operator.

We denote the velocity field by v(x), the pressure by p, and define the “drag coefficient”

α related to the permeability of the medium k and the viscosity of the fluid µ by

α =
µ

k
(1.1)

The classical Darcy equations [11] are given by the system

grad[p] + αv = ρb, (1.2a)

div[v] = 0 (1.2b)

where ρ is the density of the fluid, and b(x) is the specific body force. It has been applied

to study problems in groundwater hydrology [12, 13], EOR [14, 15] and CS [5, 16].

The Forchheimer equations [17] are a modification of the classical Darcy model, where

the “drag coefficient” is no longer a constant, instead

grad[p] + α(‖v‖)v = ρb, (1.3a)

div[v] = 0 (1.3b)
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The classical Brinkman equation [18, 19] is given by the system

αv + grad[p]− 2µ∆v = ρb (1.4a)

div[v] = 0 (1.4b)

where, ∆(·) := div[grad(·)] is the Laplacian operator, all other quantities having been

previously defined. Although it has not enjoyed the same popularity as the Darcy model,

applications of the Brinkman equation in porous media do occur, as in [20, 21, 22].

1.3 Variation of material properties under extreme conditions

It was mentioned earlier that under high pressures and elevated temperatures, the ma-

terial properties of the fluid like viscosity and density could change. There exists irrefutable

experimental evidence that the viscosity of a fluid depends on the pressure. The history of

the early experimental results concerning the same can be found in the book by Bridgman

[23] on the physics of high pressure. Stokes [24] was aware of the viscosity of the fluid

depending on the pressure and as early as 1893 Barus [25] suggested an exponential depen-

dence of the viscosity on the pressure based on his experimental investigations. There has

been a great deal of experimental data since Bridgman’s book that document the variation

of viscosity with pressure (see [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]). In most

liquids, while the variation in the viscosity can be of the order of 108 (see Bair and Kottke

[36]), the variation of the density due to variation in the pressure is of the order of a few

percent (see Dowson and Higginson [38], Rajagopal [39]), and thus it would be reasonable

to assume that the liquid is still incompressible while the visocity varies with the pressure.

Barus [25] suggested an exponential dependence of the viscosity on the pressure, i.e.,

µ(p) = µ0 exp(βp), µ0 > 0, β ≥ 0, (1.5)

where µ0 and β are constants , with µ0 having the dimension of viscosity and β the
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dimension that is the inverse of that of the pressure.

Bridgman [23] in his book cites a personal communication from Andrade that provides

a relationship of the viscosity to the temperature, density and pressure 1 (see also the

discussion in [41]).

µ(p, ρ, θ) = Aρ
1
2 exp

(
(p+ ρ2r)

s

θ

)
, (1.6)

where θ denotes the temperature, A, r and s are constants, and ρ denotes the density.

Pressure-viscosity data and approximate values of the pressure-viscosity coefficient β in

Barus formula for mineral and vegetable oils are reported in [42, 43, 44]. For supercritical

carbon-dioxide, in the range 0.1 MPa to 8000 MPa the variation of viscosity with pressure

at various temperatures is reported in [45, 46]. These experimental studies clearly indicate

that the viscosity varies exponentially with respect to pressure even for supercritical carbon-

dioxide for various temperatures and for a wide range of pressures. Hence we conclude that

viscosity cannot be assumed constant in the operating pressure range of EOR and carbon

sequestration.

From equation (1.5) and (1.6), it is clear that the viscosity increases with increas-

ing pressure but decreases with increasing temperature. These are competing effects and

depending on the process, one effect may dominate the other.

1.4 Limitations of the popular models

Rajagopal [47] has shown that, within the context of theory of mixtures, the Darcy

equation can be obtained after making a plethora of assumptions about the solid and the

fluid. The restrictions under which the Darcy equation was derived are rather stringent,

and in [47], the assumptions are systematically relaxed and an hierarchy of models is thus

obtained, where the Darcy model is the one derived under the most restrictive assumptions.

The reader is directed to references [48, 49, 50] for a detailed derivation of Darcy’s equation

using the theory of mixtures.

Far from being a “law” with universal classical Darcy’s equation, which is an approxi-

1Attempts to locate the paper by Andrade wherein that formula is given have been unsuccessful thus
far. The reference to Andrade [40] that Bridgman provides does not contain the formula mentioned.
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mation to the balance of linear momentum is reasonable only if

1. The solid is a saturated rigid porous body whose balance of linear momentum can be

ignored. The stresses developed in the rigid solid body being that which is necessary

to meet the balance of linear momentum.

2. The pore structure in the solid is uniform and hence there is no inhomogeneity in the

pore structure.

3. The flow is sufficiently slow so that the inertial effects in the fluid can be neglected.

4. The frictional effects in the fluid due to the viscosity of the fluid can be neglected.

5. The only interaction between the solid and the fluid is due to the friction at the pores

and is proportional to the relative velocity between the solid and the fluid.

6. The flow is steady.

7. The fluid is incompressible.

8. The pressure range that the fluid is subject to does not lead to changes in the viscosity

of the fluid.

9. The partial stress in the fluid is that in an Euler fluid.

The Forchheimer model is obtained if one modifies item (5) above to allow the drag

coefficient to depend on the magnitude of the relative velocity between the solid and the

fluid. The classical Brinkman model is obtained by relaxing the assumptions (4) and

(9) given above and assuming the partial stress in the fluid to be given by the classical

incompressible Navier-Stokes constitutive equation and taking into account the viscous

effects in the fluid.

It is easy to see that the assumptions are very restrictive; a real physical problem violates

one or more of these assumptions frequently. The models named thus far are incapable

of predicting the stresses in a deforming porous media, the inertial effects of the flow, or
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take into account other interaction forces between the solid and the fluid. The problems of

EOR and CS have several features that make them complicated as discussed earlier, and

some of them violate the assumptions under which the models of Darcy, Forchheimer and

Brinkman are derived. The change in material properties under high pressure gradients is

specially important in EOR and CS, and we estimate the magnitude of this effect with a

simple example.

The change in density under the operating pressures, say p0 =1 atm, p1 = 600 atm

is calculated from the Dowson-Higginson formula ρ(p) = ρ0

[
1 + 0.6p

1+1.7p

]
, p in GPa, and

the relative percent change in density is less than 3.5 % but using Barus formula µ(p) =

µ0 exp[βp] with β−1 = 40 MPa, i.e., β = 2.5× 10−3 atm−1 the relative percent change in

viscosity is almost 350 %. Thus density changes may be neglected and the assumption of

incompressibility is realistic, but the change in viscosity is clearly too large to be neglected.

One cannot expect at the outset to develop a model that can incorporate all the com-

plexities that characterize the problem of EOR and CS, considering the fact that some of

the features such as the fracturing of the solid remain daunting open problems even when

no fluid flow is involved. Considering that Darcy’s equation is still the most popular model

for describing flow through porous media, it would be prudent to incorporate the various

complexities in a gradual manner and solve the problem as a sequence of problems.

With this in mind, in this dissertation we shall proceed in steps:

(a) In Section 2 we shall derive generalizations of the popular models that take into account

the viscous effects in the fluid and also the fact that the viscosity and the drag depend

upon the pressure. We shall however ignore the deformation of the solid and consider

it to be rigid. The approach differs from conventional mixture theory in that we will

be using the hypothesis of maximization of the rate of entropy production to derive

the results.

(b) Using a generalized Brinkman model obtained previously in Section 2, we shall study

the problem of steady flow in a slab under large pressure gradients in Section 3.
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(c) Then we shall relax assumption (2) and allow the permeability of the porous medium

to be non-uniform and anisotropic, i.e., the permeability to the flow may not be the

same in all directions.

(d) Subsequently in Section 5, while still neglecting the deformation of the solid, we shall

consider unsteady flow engendered by a pulsatile forcing pressure and compare the

response to a constant forcing pressure.

The case of a deforming porous media has not been dealt with in this work, but the

results obtained here for a rigid porous medium clearly indicate that the flow rate, which is

the main quantity of interest, differs qualitatively and quantitatively from that predicted

by classical models, and it makes a compelling case for the use of models that incorporate

the pressure dependence of viscosity.
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2. A THERMODYNAMIC BASIS FOR THE DERIVATION OF THE

DARCY-FORCHHEIMER-BRINKMAN MODELS FOR FLOWS THROUGH

POROUS MEDIA AND THEIR GENERALIZATIONS

Mixture theory provides a thermodynamic framework to study the interactions between

a complex agglomeration, including the production and destruction of the constituents, of

the mixture due to external stimuli. The origins of mixture theory can be traced back to

the seminal contributions due to Fick [51] and Darcy [11]. The mathematical foundations

of mixture theory were laid down by Truesdell [52], [53]. The basic premise of the theory

is that at each point in space occupied by the mixture, there is a particle belonging to

every constituent of the mixture, that is, in a homogenized sense there is co-occupancy by

the constituents of the mixture. Of course, co-occupancy is a physical impossibility. It is

assumed that each of the constituents is dense enough in the mixture to be homogenized

over the region occupied by the mixture and treated as a continuum in its own right. Just

as for a single constituent continuum, one can define motion, mass density, partial stress

tensor, temperature, internal energy, entropy and other relevant physical quantities for

each constituent of the mixture as it moves relative to the other constituents due to the

applied forces.

It is customary to postulate the balance laws for mass, linear momentum, angular

momentum and energy for individual constituents of the mixture and assume suitable con-

stitutive equations for the quantities like stress, specific energy, heat flux, etc. of each con-

stituent as well as the various interactions between the different constituents. Thereafter,

one appeals to the second law of thermodynamics to obtain restrictions for the allowable

forms for the constitutive equations. The reader is directed to [54], [55], [49], [48], [50] and

the books by Samohyl [56] and Rajagopal and Tao [57] for the details.

The theory of mixtures lends itself to a convenient description of the flow of fluids

through porous solids. Darcy’s model [11], which is widely used even today, is one of the
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early attempts at describing the flow of a single fluid through a rigid porous solid, due

to a pressure gradient. It can be shown that Darcy’s model can be obtained from the

framework of mixture theory by making a host of assumptions about the solid and the

fluid (See Munaf et al. [13]). The assumptions include neglecting the deformation of the

solid and assuming it to be rigid, assuming the flow to be steady, neglecting viscous effects

within the fluid, assuming a special form for the drag due to the friction at the pores, and

several others. While the classical Darcy model provides good agreement in many physical

situations, large departures from the predictions of the model are also prevalent as in [58],

[59]. Various generalizations of Darcy’s model, like the Forcheimmer equation [17], have

been proposed to remedy this shortcoming. The restrictions under which the Darcy model

was derived are rather stringent, and in [47], the assumptions are systematically relaxed

and an hierarchy of models is obtained, the Darcy model being the one derived under the

most restrictive assumptions. The Brinkman model [18], [19] is another popular model,

obtained when viscous effects within the fluid are not neglected and instead are modelled

as those of the classical incompressible Navier-Stokes fluid. However, like in the case of the

Darcy model, various generalizations have been made, and in [47], one can find a record of

these various generalizations of the classical Darcy and Brinkman models. In this article,

we derive the familiar Darcy and Brinkman models that are used to describe the flow of

fluids through porous media, and their generalizations, by appealing to the requirement

that the rate of entropy production be maximized. This is a more stringent requirement

than the second law of thermodynamics which requires that the rate of entropy production

be non-negative. Such an approach has been used successfully in a number of studies to

obtain a variety of material responses (see [60], [61], ,[62],[63], [64]) but within the context

of the theory of mixtures, the only relevant study is that provided by [65] which deals with

a mixture of two fluids. The present article is different in that we do not consider a mixture

of two fluids; rather we consider a mixture of a solid and a fluid and assume that the solid

behaves like a rigid body.

The organization of the section is as follows: In Section 2.1 we outline the conventions
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and notations and summarize the governing equations for a mixture of a solid and a fluid.

In Section 2.3, we discuss the constitutive assumptions for the components of the mix-

ture. We illustrate the use of the criterion of maximization of rate of entropy production

in Section 2.4 following which we obtain the Brinkman model and its generalizations in

Section 2.5 while Section 2.6 is devoted to a similar effort for obtaining the Darcy model.

Section 2.7 is devoted to some concluding remarks.

2.1 Preliminaries

First we record the balance equations for a mixture of two constituents, a solid and

a fluid. The quantities associated with the fluid are indicated by the superscript f while

those associated with the solid are indicated by the superscript s. The superscript i signifies

that we are referring to the ith constituent.

Let grad[·] denote the Eulerian gradient and div[·] the Eulerian divergence operator. We

represent the identity tensor by I and the inner product of any two tensors A,B is defined

through A ·B := tr[ATB], where (·)T denotes the transpose of a linear transformation.

The symbol ‖·‖ will be used to denote the norm of a vector or a tensor, where the norm of

a tensor is defined by ‖·‖ :=
√

tr[(·)T (·)].

We denote by vi the velocity field of the ith constituent and the material time derivative

with respect to the ith constituent is given by

d(i)(·)
dt

:=
∂(·)
∂t

+ grad[·] · vi (2.1)

We also define the following kinematical quantities

Li := grad[vi], (2.2)

Di :=
1

2
[Li + (Li)T ] (2.3)

which are pertinent to our calculations.
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2.2 Summary of governing equations

The balance of mass for each of the constituents in the absence of interconversion of

mass due to chemical reactions takes the form

d(i)ρi

dt
+ ρidiv[vi] = 0, i = s, f (2.4)

where ρi is the density of the ith constituent.

Let ti denote the partial traction associated with the ith constituent. Then if T i denotes

the partial stress of the ith constituent,

ti = (T i)Tn, i = s, f (2.5)

where n is the outward unit normal.

The balance of linear momentum for each of the constituents is given by

div[T i]T + ρibi + mi = ρi
d(i)vi

dt
, i = s, f (2.6)

where T i is the (partial) Cauchy stress, mi is the interaction force acting on the ith

constituent due to the other constituents and bi is the specific body force.

Since there can be no net production of momentum, summing over i = s, f yields

ms + mf = 0 (2.7)

The balance of angular momentum in the absence of body couples and angular momen-

tum supply reduces to

T i = (T i)T , i = s, f. (2.8)

The balance of energy is given by

ρi
d(i)

dt

(
εi +

1

2
vi · vi

)
= div[T ivi − qi] + mi · vi + ρibi · vi + ρiri + Ei, i = s, f (2.9)
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where εi is the specific internal energy, qi the specific heat flux , ri the specific radiant

heating and Ei is the energy supply to the ith constituent.

Since there is no net production of energy, summing over i = s, f yields

(Ef + Es) + (ms · vs + mf · vf ) = 0 (2.10)

Using equation (2.6) and equation (2.4), we can simplify equation (2.9) to

ρf
d(f)εf

dt
= T f ·Lf − div[qf ] + ρfrf + Ef = 0, (2.11a)

ρs
d(s)εs

dt
= T s ·Ls − div[qs] + ρsrs + Es = 0 (2.11b)

We adopt the local form of the Clausius-Duhem inequality for the mixture as a whole

as the statement of the second law.1 We also assume that at a given time instant and

position, all the constituents have a common temperature θ. Thus, we obtain:

ρf
d(f)ηf

dt
+ ρs

d(s)ηs

dt
+ div

[
qs + qf

θ

]
−
[
ρsrs + ρfrf

θ

]
= ηprod ≥ 0 (2.12)

where ηprod is the production of entropy from the mixture as a whole and is non-negative

as per the statement of the second law of thermodynamics.

We now introduce the specific Helmholtz potential ψi for the constituents through

ψi = εi − θηi. (2.13)

It follows from the Clausius-Duhem inequality that

∂ψi

∂θ
= −ηi, (2.14)

1Even within the context of a single continuum, there are fundamental issues concerning the use of the
local form of the second law of thermodynamics and the usual procedure of requiring that the body be
subject to arbitrary thermodynamic processes (See [62] for a more detailed discussion).
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Using equation (2.13) and equation (2.14) in equation (2.12), equation (2.11) along

with equation (2.10) and equation (2.7) yields

ξ := θηprod = T f ·Lf + T s ·Ls + ms · vrel − ρf
d(f)ψf

dt

∣∣∣∣∣
θ

− ρsd
(s)ψs

dt

∣∣∣∣∣
θ

− grad[θ] · (qf + qs)

θ
≥ 0 (2.15)

where vrel := vf − vs is the relative velocity of the fluid with respect to the solid.

The equation equation (2.15) is a general form of the reduced dissipation equation in

terms of the Helmholtz potential for a mixture of a solid and a fluid with no mass exchange

between them. We shall simplify this equation for particular cases in the next section.

2.3 Constitutive assumptions

We now make the constitutive assumptions pertinent to the constituents of the mixture

and simplify the governing equations which have been obtained thus far.

1. We assume that the solid is an idealized rigid solid. Hence the strain εs ≡ 0, along

with Ds ≡ 0 for all motions of the solid.

2. We shall neglect thermal effects and consider only isothermal processes that take

place at a constant temperature θ∗.

3. We shall assume that the fluid is incompressible, i.e., it can only undergo isochoric

motions. The constraint of incompressibility for the fluid can then be expressed in

any of the following equivalent ways as follows:

div[vf ] = trLf = trDf = Df · I = Lf · I = 0. (2.16)

4. We neglect transient and inertial effects so that
d(i)vi

dt
≈ 0, i = s, f . This assumption

will be used later on.
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The partial stress of the fluid is decomposed as

T f = −pfI + T̂
f

(2.17)

where pf := −trT f

3
is the mean normal stress and T̂

f
is the deviatoric part of the stress.

Such a decomposition is unique and using it in light of the assumptions (1)− (3) in equa-

tion (2.15), yields

ξ := θηprod =

[
T̂
f ·Df + ms · vrel − ρf

d(f)ψf

dt

∣∣∣∣∣
θ∗

− ρsd
(s)ψs

dt

∣∣∣∣∣
θ∗

]
≥ 0 (2.18)

We assume that the state variables are

S =
{
Df ,vrel

}
(2.19)

The set of state variables has been chosen on the basis of the assumptions made above. If

the fluid were not incompressible for instance, then trDf would also be considered a state

variable.

2.4 Maximization of the rate of entropy production

At this juncture it is appropriate to make a remark on the usage of the Helmholtz and

Gibbs potential in the context of modelling a rigid solid. The Helmholtz potential usually

depends on the temperature, appropriate kinematical variables (usually the deformation

gradient and its higher time or spatial derivatives) , amongst other appropriate variables,

and the Gibbs potential on the other hand depends on the temperature, stress and other

appropriate variables. However, the stress in a rigid body is indeterminate, or put differ-

ently it can be whatever it needs to be so that the boundary conditions are met. It thus

makes no sense to define the Gibbs potential for such a body as the Gibbs potential is

based on the stress.

On the other hand, the strain in a rigid body is zero (or to be more precise, the

deformation gradient in a rigid body corresponding to a rigid motion is an orthogonal
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tensor, since a rigid body is one wherein the distance between any two points pairwise

remains the same for all time), and the Helmholtz potential for the body could depend on

the temperature, and possibly other variables. It is usually assumed that the Helmholtz

potential is a function of temperature [66] and this leads to the familiar equation governing

heat conduction in a rigid solid. The assumption is not strictly in accordance with the

definition of a rigid body, but it all depends on what one means by temperature.

If by temperature one means the random thermal agitation of the molecules, then one

has the problem of what one means by a rigid body as this thermal agitation would mean

that the distance between the randomly agitating points (particles) constituting the body

would change. We cannot get into these sorts of issues here. In a recent paper Rajagopal

[67] outlines the difficulties that are inherent with the notion of “points” in mathematics

and particles in mechanics and hence the difficulty with regard to even defining what is

meant by distance between “points”.

Ideally, we ought to assume that in a rigid body, the Helmholtz potential is a constant.

However, since the temperature is assumed to be constant in the problem that we are

considering (in fact we are assuming that the processes are isothermal in deriving the

equations due to Darcy, Forchheimer and Brinkman), the Helmholtz potential for the

mixture is essentially the Helmholtz potential of the fluid. If the solid were deformable,

then we could define an appropriate Helmholtz potential for the deforming solid.

We shall now pick specific forms for the Helmholtz potential of the fluid ψf (Df ,vrel, θ
∗)

and the rate of dissipation ξ(Df ,vrel, θ
∗) of the mixture such that ξ is nonnegative. The

arguments are frame indifferent quantities and hence the functions so defined are automat-

ically frame indifferent scalars.

Maximizing ξ subject to the constraint given by equation (2.18) and equation (2.16)

yields constitutive equations for the material. We assume that the Helmholtz potential

ψf = ψf (θ∗), (2.20)
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which immediately implies that in this case

d(f)ψf

dt

∣∣∣∣∣
θ∗

= 0 (2.21)

d(s)ψs

dt

∣∣∣∣∣
θ∗

= 0 (2.22)

Thus equation (2.15) further simplifies to

ξ = T̂ ·D + m · vrel ≥ 0 (2.23)

where the superscripts have now been dropped for convenience.

We maximize ξ with respect to D and vrel over all D that are traceless, i.e., D · I = 0

and the constraint equation (2.23) We utilize the method of Lagrange multipliers, and

construct the auxiliary function that we wish to maximize:

Φ(D,vrel) := ξ + λ1(ξ − T̂ ·D −m · vrel) + λ2(D · I). (2.24)

The necessary condition for an extremum then yields

∂Φ

∂D
= 0 ⇒ φ1

∂ξ

∂D
− T̂ + φ2I = 0, (2.25a)

∂Φ

∂vrel
= 0 ⇒ φ1

∂ξ

∂vrel
−m = 0, (2.25b)

where φ1 :=
1 + λ1

λ1
, φ2 :=

λ2

λ1
.

Multiplying equation (2.25a), equation (2.25b) by D, vrel respectively and adding, we

obtain

φ1

[
∂ξ

∂T̂
· T̂ +

∂ξ

∂vrel
· vrel

]
− ξ = 0, (2.26)

while taking inner product of equation (2.25a) with I yields

φ2 = −φ1

3

[
∂ξ

∂D
· I
]

= −φ1

3
tr

[
∂ξ

∂D

]
. (2.27)
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We have used the fact that D · I = 0, I · I = 3.

We introduce the notation [·]dev to denote the deviatoric part of a tensor and by using

equation (2.26) and equation (2.27) in equation (2.25)

T̂ = φ1

[
∂ξ

∂D

]

dev

, (2.28a)

m = φ1
∂ξ

∂vrel
, (2.28b)

and φ1 = ξ

[
∂ξ

∂D
·D +

∂ξ

∂vrel
· vrel

]−1

. (2.28c)

By making specific choices for the rate of dissipation ξ, we can obtain different types of

models. Of course, the choice of ξ is dictated by the physics of the problem.

2.5 Generalizations of Brinkman’s model

Consider

ξ(D,vrel) = α(p, T̂ ,m)‖vrel‖2 + 2µ(p, T̂ ,m)‖D‖2, where α > 0, µ > 0. (2.29)

It is clearly non-negative and moreover, ξ(0,0) = 0. The functional form chosen suggests

that the total dissipation comes from two sources; the dissipation at the pores of the solid

due to the flow of the fluid and the dissipation due to viscous effects within the fluid bulk.

On using the form equation (2.29) and on substituting it into equation (2.28), we obtain

T̂ = 2µ(p, T̂ ,m)D, (2.30a)

m = α(p, T̂ ,m)vrel. (2.30b)

As they stand, the formulae equation (2.30a) and equation (2.30b) are yet general as

specific choices have not been made for the viscosity µ and the drag coefficient α. In contrast

to the conventional approach, the constitutive equations obtained are for the kinematical

quantities D,vrel as a function of p, T̂ ,m. We shall now consider various specific choices for

µ and α. We shall also fix the frame to the solid so that vs ≡ 0, vrel ≡ vf , Drel ≡Df
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and drop the superscript f for convenience.

Some particular choices are:

1. α(p, T̂ ,m) = α0, µ(p, T̂ ,m) = µ0, where α0, µ0 are positive constants, leads to the

standard Brinkman model T = −pI + 2µ0D, m = α0vrel, which in turn leads to the

following governing equation2

α0v + grad[p]− div[2µ0D] = ρb, (2.31a)

div[v] = 0. (2.31b)

2. α(p, T̂ ,m) = α(p) > 0, µ(p, T̂ ,m) = µ(p) > 0 leads to a generalization of the

Brinkman model where both the viscosity and drag coefficient depend on the pressure

(or the mean normal stress) T = −pI + 2µ(p)D, m = α(p)vrel. In this case, the

governing equation reduces to:

α(p)v + grad[p]− div[2µ(p)D] = ρb, (2.32a)

div[v] = 0. (2.32b)

3. The choice α(p, T̂ ,m) = α0 + α1‖m‖, where α0, α1 are positive constants, leads to

m = [α0 + α1‖m‖]vrel. (2.33)

This implies ‖m‖ =
α0‖vrel‖

1− α1‖vrel‖
and clearly, α1‖vrel‖ < 1

Substituting ‖m‖ in equation (2.33) and approximating

(1− z)−1 ≈ 1 + z when ‖z‖ < 1, (2.34)

2Since div[v] = 0, div[2µ0D] = µ0∆v, where ∆(·) := div[grad(·)] is the Laplacian operator.
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we obtain a Forcheimmer-like formula for the drag coefficient

m ≈ [α0 + α0α1‖vrel‖]vrel (2.35)

In this case, the governing equation, assuming µ(p, T̂ ,m) = µ0 > 0 is:

− (α0α1‖v‖+ α0)v + grad[p]− div[2µ0D] = ρb, (2.36a)

div[v] = 0. (2.36b)

4. By choosing µ(p, T̂ ,m) = µ0[1 + γ‖T̂ ‖2]n, we obtain the “stress power law” model,

D =
T̂

2µ0[1 + γ‖T̂ ‖2]n
, (2.37)

which is the counterpart to the classical power law model which can show shear

thinning/thickening behaviour. For an extensive discussion of such “stress power

law” models, the reader is invited to consult [68].

It appears that it would not be possible to obtain the general form of the classical

power law model by starting with the Helmholtz potential as has been done in this

study.

It is clear that the generalizations of the Brinkman model have been obtained under

the assumptions recorded in Section 2.3 and the special form of the dissipation considered

in equation (2.29), namely, that dissipation at the pores and dissipation in the fluid bulk

due to shear are both significant.

2.6 Generalizations of the Darcy model

If the dissipation due to the drag at the pores is much larger than the dissipation due

to shear in the fluid bulk, i.e.,

2µ‖D‖2 � α‖vrel‖2, (2.38)
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then it is reasonable to simplify equation (2.29) to

ξ(D,vrel) ≈ α(p, T̂ ,m)‖vrel‖2, where α > 0. (2.39)

Then, from equation (2.23) and equation (2.39), we obtain that

ξ(D,0) = 0 = T̂ ·D ∀ tr[D] = 0. (2.40)

From equation (2.40), we conclude that T̂ must be a scalar multiple of the identity tensor,

but since T̂ is deviatoric, this implies that T̂ ≡ 0.

Equation equation (2.23) then simplifies to

ξ = m · vrel. (2.41)

Now maximizing ξ(vrel) with respect to vrel with equation (2.41) as the constraint, it

is easy to see that we obtain

T = −pI, (2.42a)

m = α(p, T̂ ,m)vrel. (2.42b)

Fixing the frame to the solid as before, we are led to the governing equation:

αv + grad[p] = ρb, (2.43a)

div[v] = 0, (2.43b)

which is clearly a generalization of Darcy’s model. The various choices for the function

α(p, T̂ ,m) mentioned earlier yield different generalizations of Darcy’s model.
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2.7 Conclusion

In this short note, we developed various generalizations of the Brinkman and Darcy

models by appealing to a thermodynamic framework that has been used successfully to

describe very distinct types of material response using the hypothesis of maximization

of the rate of entropy production. Such an approach clarifies some issues that are not

apparent in a conventional approach such as the role that the dissipative mechanisms play.

The approach allows one to develop systematically, models that are consistent with the

laws of thermodynamics by choosing appropriate forms for the Helmholtz potential and

the rate of dissipation function.
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3. FLOW OF A FLUID THROUGH POROUS MEDIA DUE TO HIGH PRESSURE

GRADIENTS: PART 1 - STEADY FLOWS*

Darcy’s equation [11] is the most popular mathematical model to describe the flow

of fluids through a porous solid due to an applied pressure gradient. Darcy’s equation,

which is commonly referred to as “Darcy’s law” is an approximation that is valid only if

numerous assumptions are met (See Munaf et al. [13], Rajagopal [47]). Far from being

a “law” with universal or for that matter wide ranging applicability, the classical Darcy’s

equation, which is an approximation to the balance of linear momentum is reasonable only

if

1. The solid is a rigid porous body whose balance of linear momentum can be ignored.

The stresses developed in the rigid solid body being that which is necessary to meet

the balance of linear momentum.

2. The pore structure in the solid is uniform and hence there is no inhomogeneity in the

pore structure.

3. The flow is sufficiently slow so that the inertial effects in the fluid can be neglected.

4. The frictional effects in the fluid due to the viscosity of the fluid can be neglected.

5. The only interaction between the solid and the fluid is due to the friction at the pores

and is proportional to the relative velocity between the solid and the fluid.

6. The flow is steady.

7. The fluid is incompressible.

*Reprinted with permission from Flow of a fluid through a porous solid due to high pressure gradients
by Shriram Srinivasan, Andrea Bonito, and K.R. Rajagopal, 2012. Journal of Porous Media, 16(3):193–203,
Copyright 2012 by Begell House, Inc.
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8. The pressure range that the fluid is subject to does not lead to changes in the viscosity

of the fluid.

9. The partial stress in the fluid is that in an Euler fluid.

In this section, we are interested in the flow of a fluid through a porous solid when

assumptions (4),(8) and (9) do not hold. Such flows have relevance to several problems in

petroleum and geotechnical engineering, such as EOR and CS where the range of pressure

that the fluid is subject to is very large. In some of the problems, more than one fluid is

involved such as steam and oil in EOR. However before embarking on the study of such

problems, it is necessary to study the problem of a single fluid flowing through a porous

solid. When assumption (4) alone does not hold, we obtain the equations developed by

Brinkman [18, 19].

The variation of the viscosity with the pressure implies that the “Drag coefficient” that

appears in the equations governing the flow of a liquid through a porous solid will depend

on the pressure.

In this study, while we assume that the viscosity and “Drag coefficient” depend on

the pressure, we assume that the other assumptions mentioned above hold. This leads to

a generalization of the Brinkman equation with the viscosity and the “Drag coefficient”

depending upon the pressure. Recently, Nakshatrala and Rajagopal [58] studied the gen-

eralization of Darcy’s equation when the “Drag coefficient” depends on the pressure.

As we mentioned earlier, Barus [25] suggested an exponential dependence of the vis-

cosity on the pressure, i.e.,

µ(p) = µ0 exp(βp), µ0 > 0, β ≥ 0, (3.1)

where µ0 and β are constants , with µ0 having the dimension of viscosity and β the

dimension that is the inverse of that of the pressure. The expression equation (3.1) would
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lead to a “Drag coefficient” α(p) of the form

α(p) = α0 exp(βp), α0 ≥ 0, (3.2)

where α0 is a constant with dimension of ML−3T−1.

Using a semi-inverse approach, Kannan and Rajagopal [59] studied the flow of a fluid

through a porous inclined slab. They considered a variety of forms for the dependence of

viscosity and the “Drag coefficient” including the exponential dependence given in equa-

tion (3.1), equation (3.2). We shall not get into a detailed discussion of their results, suffice

it is to say the solutions exhibited markedly different characteristics than the solutions for

the classical Darcy and Brinkman equations. The semi-inverse solution sought simplifies

the problem greatly and the governing equations reduce to a simple ordinary differential

equation.

Recently, Nakshatrala and Rajagopal [58] were able to study numerically the prob-

lem corresponding to the generalization of Darcy’s equation, when the “Drag coefficient”

depends exponentially on the pressure as given in equation (3.2). They were able to find

solutions to the partial differential equation governing the flow using a mixed finite element

method. They showed that the results they obtain are different from the solution to the

classical Darcy’s equation. Assuming that the “Drag coefficient” is a bounded function of

the pressure in the generalized Darcy’s equation, Girault et al. [69] guaranteed the well-

posedness of the system together with the convergence of a finite element method. When

the dependence on the pressure is exponential (as in equation (3.2)), the authors propose an

interesting splitting algorithm, observed numerically to be robust in the parameter range

tested.

The generalization of the Brinkman equation considered here (viscosity and “Drag coef-

ficient” given by equation (3.1) and equation (3.2) respectively), no theoretical convergence

results are available. While we are unable to obtain a numerical solution of the governing

equations for large values of the non-dimensionalized pressure-viscosity coefficient “β” that
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appears in the viscosity-pressure relation equation (3.1) , we are however able to obtain

solutions to the problem when the non-dimensionalized pressure-viscosity coefficient β̄ is

small. Fortunately, for the class of incompressible fluids (like mineral oil for instance) that

we are interested in, the non-dimensionalized pressure-viscosity coefficient β̄ is indeed small

(see Section 3.3 for details).

It is worth noting that the viscosity data for various pressures have been obtained

from experiments where the applied pressure is positive, i.e., the applied normal stress

is compressive. When the pressure is sufficiently low cavitation can occur, leading to the

formation of cavities or bubbles in the flow field. Cavitation is the phenomenon that occurs

at sufficiently low pressure, when the pressure of the fluid at the location becomes less than

the vapor pressure of the liquid at that temperature at the location in question. Cavitation

occurs in the flows of fluids through pumps, bearings and adjacent to rotating propellers

amongst other flows. The “Drag” due to the motion of a solid in a cavitating fluid is not

well understood and more importantly there is no measurement of the viscosity of fluids in

such a state. In view of this, we shall adopt a procedure that is followed in lubrication and

assume that when the pressure becomes negative the viscosity corresponds to that for zero

pressure (see Szeri [70] for a detailed discussion of the manner in which cavitation is handled

within the context of obtaining numerical solutions in elastohydrodynamics wherein very

high pressures are involved). For the fluids considered here, we shall assume that the

variation of viscosity and “Drag coefficient” is negligible when the pressure is negative and

that both the viscosity and “Drag coefficient” are a continuous function of the pressure.

Furthermore, the numerical method used requires that the function be differentiable. In

Appendix A the viscosity and “Drag coefficients” are chosen to be a particular smooth

function of the pressure which satisfies all our hypotheses.

When β = 0, the problem reduces to that considered by Brinkman, namely the viscosity

being constant.

When the viscosity and “Drag coefficient” is given by equation (3.1) and equation (3.2)

respectively, we find that the volumetric flux due to the pressure gradient is distinctively
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and characteristically different. While the classical Brinkman equation predicts a linear

relationship between the volumetric flux and the pressure gradient as the pressure gradient

increases, the model employed in the study predicts a ceiling flux as the pressure gradient

increases. One would expect such a relationship as one cannot push through more than

a certain quantity of fluid. In fact, increasing the pressure gradient significantly will lead

to the flow becoming turbulent with the possibility of back flow, leading in fact to the

diminishing of the volumetric flux at very high pressure gradient. As is to be expected,

we also find that as the pressure difference between the inlet and the outlet increases, the

region wherein the component of the velocity is close to a constant decreases, that is, the

effect of the no-slip velocity boundary condition is more pronounced when the pressure

gradient causing the flow is larger. We also find that the component of the velocity in

the direction normal to the gradient (see Figure 3.1) increases when the pressure gradient

increases.

The organization of the section is as follows: In Section 3.1 we introduce the problem

and record the governing equations and the boundary conditions. In Section 3.2, we derive

the non-dimensional equations that govern the flow, and this is followed by Section 3.3

where we discuss the numerical solution to the problem on hand and make some concluding

remarks. A brief description of the finite element scheme used for the computational

resolution of the problem is given in Appendix A.

3.1 Governing equations

The assumption that the viscosity of the fluid depends on the pressure and that the

frictional effects in the fluid are not ignored implies that the Cauchy stress T in the fluid

is given by

T = −p1 + 2µ(p)D, (3.3)

where −p1 is the indeterminate part of the stress due to the constraint of incompressibility,

v is the velocity of the fluid, µ(p) is the pressure dependent viscosity and D denotes the
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symmetric part of the velocity gradient, i.e.,

D :=
1

2

[(
∂v

∂x

)
+

(
∂v

∂x

)T]
. (3.4)

The balance of linear momentum for the fluid, on neglecting body forces, is given by

ρ
dv

dt
= div[T ] + I, (3.5)

where I is the interaction between the solid and the fluid, namely the frictional resistance

at the pores of the solid on the fluid that is flowing.

In general, there could be various other interaction mechanisms: drag, virtual mass

effect, Magnus effect, Basset forces, Faxen forces, density gradient effects, temperature

gradient effects, etc. We shall assume that the only interaction mechanism is that due to

drag and that I is given by

I = −α(p)v. (3.6)

Since we shall be interested in slow flow, inertial effects in equation (3.5) are neglected.

Also, since we shall assume that the fluid is incompressible, the velocity field has to satisfy

the constraint that

div[v] = 0. (3.7)

It follows from equation (3.3)–equation (3.6), on neglecting the inertial term that the

appropriate governing equation is

− ∂p
∂x

+ div[2µ(p)D]− α(p)v = 0. (3.8)

We shall be interested in the flow in a slab 1 due to the applied tractions on the surfaces

1A similar problem was studied by Subramanian and Rajagopal [71]. However a semi-inverse method
was employed in that study which simplified the problem to a unidirectional flow across the slab. Here,
we solve the system of partial differential equations that allows for flow along the direction of the pressure
gradient as well as normal to it.
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H

L

B C

A D

Figure 3.1: Pressure driven flow through a slab of length L and width H. A purely normal
traction is applied at the left and right boundaries. The fluid satisfies no-slip boundary
condition at the top and bottom of the slab.

AB and CD, that is,

t
∣∣∣
AB

= [−p1 + 2µ(p)D]
∣∣∣
AB

nAB, (3.9a)

t
∣∣∣
CD

= [−p1 + 2µ(p)D]
∣∣∣
CD

nCD, (3.9b)

where nAB and nCD denote the outward unit normals on the surface AB and CD (see

Figure 3.1). It is important to recognize that the traction boundary conditions not only

take into account the appropriate pressure, they also take into account the appropriate

components of the velocity gradient. In addition to the above boundary conditions on the

surface AB and CD, we assume that on the surface BC and AD, the fluid satisfies the

no-slip boundary condition, i.e.,

v
∣∣∣
BC

= v
∣∣∣
AD

= 0. (3.10)
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Thus we need to solve equation (3.8) subject to the boundary conditions equation (3.9)

and equation (3.10).

It must be remembered that classical solutions are not possible even in the case of

linear partial differential equations unless the boundary data satisfy certain compatibility

conditions (see [72]). Such is the case in the present work, for the chosen values of the

applied traction on AB and CD lead to an incompatibility at the corners. This leads to

sharp gradients and concomitant numerical difficulties in solving the discretized system of

non-linear algebraic equations and the incompatibility of the boundary conditions leads to

singularity at the boundary that leads to the spike in the pressure that is observed in the

numerical solution that we have obtained.

It is worth observing that when the viscosity and the “Drag coefficient” are indepen-

dent of the pressure, we recover the classical Brinkman equation. If the frictional effects

within the fluid are ignored, we obtain the equations considered by Nakshatrala and Ra-

jagopal [58], which is the generalization of Darcy’s equation for a pressure dependent “Drag

coefficient” . Equation equation (3.8) can be generalized to

− ∂p
∂x

+ div[2µ(p)D]− α(‖v‖)v = 0, (3.11)

which is the generalization of equation (3.8) to include a Forchheimer like term (see Forch-

heimer [17]). A generalization of the Brinkman model to describe power law fluids has

been considered in [73] and [74].

3.2 Non-dimensional equations

In order to carry out a systematic study we shall appropriately non-dimensionalize the

governing equations. Let us suppose that the surface CD is exposed to the atmosphere so

that the pressure (the mean normal stress) is the atmospheric pressure p0. We introduce
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the following non-dimensionalization

p̄ :=
p

p0
, x̄ :=

x

H
, β̄ :=

β
1

p0

, v̄ :=
v

v0
, (3.12)

where H is the thickness of the slab (see Figure 3.1) and v0 is a representative velocity, say

v0 :=
p0

α0H
. (3.13)

Also, let

µ̄ :=
µ

µ0
, ᾱ :=

α

α0
. (3.14)

The following non-dimensional counterpart of equation (3.1)

µ̄(p̄) = ᾱ(p̄) =





exp(β̄p̄) if p̄ > 0,

1 if p̄ ≤ 0,

(3.15)

is evidently a continuous function of the pressure. However, the function in equation (3.15)

is not differentiable in the classical sense, and we postpone to Appendix A the description

of the numerical method.

It follows from equation (3.12)–equation (3.15) that equation (3.8) can be expressed as

− ¯grad[p̄]− ᾱ(p̄)v̄ +
1

A d̄iv[2µ̄(p̄)D̄] = 0, (3.16a)

d̄iv[v̄] = 0, (3.16b)

where ¯grad[·] :=
∂(·)
∂x̄

, d̄iv[·] := tr[ ¯grad[·]], D̄ :=
1

2

[(
∂v̄

∂x̄

)
+

(
∂v̄

∂x̄

)T]
and A :=

α0H
2

µ0
is

a non-dimensional number that is the ratio of the frictional effect due to drag (frictional

effect between the fluid and the pores in the solid) to the frictional effect within the fluid due

to viscosity. We shall also find it convenient to introduce two additional non-dimensional
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numbers

γ :=
L

H
, P :=

pAB
p0

. (3.17)

The non-dimensional forms of the traction boundary conditions are then

t̄
∣∣∣
x̄=1

= −1i, (3.18a)

t̄
∣∣∣
x̄=0

= P i, (3.18b)

while the corresponding non-dimensional form of the no-slip boundary condition is

v̄
∣∣∣
ȳ=0

= v̄
∣∣∣
ȳ=γ

= 0. (3.19)

The domain and the boundary conditions for equation (3.16) that we shall work with are

illustrated in Figure 3.2.

t̄
∣∣∣
AB

= P i t̄
∣∣∣
CD

= −1i

v̄
∣∣∣
AD

= 0

v̄
∣∣∣
BC

= 0

(0,0)

(1, γ)

i

j

B

A D

C

Figure 3.2: Pressure driven flow through a slab of length γ and width 1 with boundary
conditions indicated on all sides of the slab.
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Thus we solve equation (3.16) with the form for µ̄, ᾱ given by equation (3.15) subject

to the boundary conditions equation (3.18) and equation (3.19).

3.3 Numerical results

The various parameters in the problem were chosen as follows: We let α0 = µ0 = 1 and

set H = 1, L = 10. This in conjunction with p0 = 105 yields γ = 10, A = 1. The traction

at the left end is varied by varying P . From the experiments reported in [43, 42, 44] the

measured value of the reciprocal of the pressure-viscosity exponent β is seen to lie in the

range 30 MPa to 100 MPa for the fluids measured. Hence we choose to study the cases β =

0, 1× 10−8, 2× 10−8, 3× 10−8 and 3.5× 10−8 (in units of Pa−1) which give a qualitative

picture of the effects of pressure dependent viscosity over the range of measured values

of the exponent β. The case β = 0 corresponds to the case of constant viscosity (or the

standard Brinkman model). The values chosen for β lead to values of β̄ = 0, 1× 10−3,

2× 10−3, 3× 10−3 and 3.5× 10−3. We allow P to take on the values 1, 100, 200, 300, 400

and 500.

Note that the traction is specified at x̄ = 0 and x̄ = 1 and no-slip boundary condition

is enforced at ȳ = 0 and ȳ = 10 including the corners.

We shall find it convenient to represent v̄ as

v̄ = V̄xi + V̄yj. (3.20)

A quantity of interest in this problem is the flux or flow rate obtained at the end of

the slab that is open to the atmosphere, i.e., the side CD. We denote the non-dimensional

flux by q̄, where

q̄ :=

∫

CD
[v̄ · nCD] dl =

∫ γ

0
V̄x(1, ȳ)dȳ. (3.21)

The system of (non-dimensionalized) partial differential equations equation (3.16) with

the form for µ̄, ᾱ given by equation (A.3) subject to the boundary conditions equation (3.18)

and equation (3.19) was solved using a mixed finite element method, details of which are
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provided in the Appendix A.

The profiles of V̄x and p̄ at AB are shown in Figure 3.3 while the profiles at CD are

shown in Figure 3.4. The lack of smoothness near the corners is expected; there is an

incompatibility at the corners due to the change from the specified value of traction at

AB and CD to a no-slip boundary condition at BC and AD. One can also notice that the

velocity for the constant viscosity case is almost 200 % more than that for the variable

viscosity case

The contours of velocity and pressure over the entire domain are indicated in Figure 3.5.

The contours of V̄y indicate that unidirectional flow occurs only in a small region close to

the middle of the slab. The pressure does not vary too much over the domain except for

the occurrence of high pressures at some points close to the boundaries.

The variation of flux for different forcing pressures is shown in Figure 3.6. This is of

great import because one observes that a standard Brinkman model with constant viscosity

grossly overpredicts the flux; by as much as almost 250 % for a pressure difference across

the slab equal to 499 (which occurs when P = 500); the over prediction increases nearly

linearly as can be seen from the figure. Also, the figure indicates that for the value of β̄ =

3.5× 10−3, there is very negligible increase in the flux for forcing pressures P > 200 , that

is there seems to be a ceiling flux as is to be expected on physical grounds. This is in direct

contrast to the case where the viscosity is constant and the model predicts a flux that will

increase continuously with increase in P .
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Figure 3.3: Velocity and pressure profiles at the left end x̄ = 0 with P = 300 for various β̄.
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Figure 3.4: Velocity and pressure profiles at the right end x̄ = 1 with P = 300 for various
β̄.
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Figure 3.5: Contours of velocity and pressure for β̄ = 3.5× 10−3 when P = 500. The finite
element mesh used is also shown.

43



0 100 200 300 400 500
P

0

1000

2000

3000

4000

F
lu

x
q̄

β̄ = 0

β̄ = 1× 10−3

β̄ = 2× 10−3

β̄ = 3× 10−3

β̄ = 3.5× 10−3

Figure 3.6: Flow rate through slab for different values of traction at the left boundary.
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4. FLOW THROUGH A HETEROGENEOUS POROUS MEDIUM

4.1 Motivation

In our study thus far, it has been assumed that the pore structure of the porous solid

is uniform, and its permeability to flow is the same in all directions, i.e., the porous

medium may be said to be homogeneous and isotropic with regard to its permeability.

Thus the permeability k was assumed to be a constant scalar. This is not true in general,

a porous medium may be heterogeneous, for example a bed of silt could be interspersed

with inclusions of clay, sand or solid rock in which case the permeability to flow changes

not only with spatial location but direction as well.

In such cases the permeability is described by a second order tensor K(x) which is

symmetric and positive definite [75]. Thus it is invertible and the “drag coefficient” is now

represented by a positive definite, symmetric, second order tensor Λ = µK−1(x). The

positive definiteness of Λ is necessary and sufficient to ensure that the rate of entropy

production is non-negative and thus automatically meet the second law of thermodynam-

ics. This becomes clear on examining equation (2.29), where the term α(p, T̂ ,m)‖vrel‖2

modified to Λ(p, T̂ ,m)vrel · vrel is non-negative by the very definition of positive definite-

ness of a second order tensor. In fact the derivation carried out in Section 2 , with the

minor modification made above leads to an identical result with Λ in place of α. When the

medium is isotropic, the permeability tensor reduces to a spherical tensor and we recover

the scalar form.

When the viscosity depends on the pressure, we can express the drag coefficient as

Λ = Λ0(x) exp(βp) (4.1)

analogous to equation (3.2) in Section 3.
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4.2 Problem definition and governing equations

We shall consider a slight modification of the problem considered in the last section,

namely, the porous medium is now assumed to be inhomogeneous and anisotropic. The

solid is assumed to contain an inclusion whose permeability is different from that of the

medium. However, all other assumptions remain the same. We shall consider three prob-

lems with inhomogeneities of different geometries illustrated by Figure 4.1.

H

L

B C

A D

Ω1
Ω0

(a)

H

L

B C

A D

Ω0

Ω1

Ω1

(b)

H

L

B C

A D

Ω0

Ω1

(c)

Figure 4.1: Pressure driven flow through a heterogeneous rigid slab of length L and width
H. A purely normal traction is applied at the left and right boundaries. The fluid satisfies
no-slip boundary condition at the top and bottom of the slab. The subdomain Ω0 is
assumed to be homogeneous and isotropic unless mentioned otherwise.
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The governing equations are non-dimensionalized using the scheme equation (3.12) as

before and they lead to:

− ¯grad[p̄]− Λ̄(p̄,x)v̄ +
1

A d̄iv[2µ̄(p̄)D̄] = 0, (4.2a)

d̄iv[v̄] = 0, (4.2b)

where

Λ̄(p̄, x̄) :=
Λ

α0
=

Λ̄0

α0
exp(β̄p̄) = Λ̄0(x̄) exp(β̄p̄) (4.3)

while the boundary conditions are again

t̄
∣∣∣
x̄=1

= −1i, (4.4a)

t̄
∣∣∣
x̄=0

= P i, (4.4b)

while the corresponding non-dimensional form of the no-slip boundary condition is

v̄
∣∣∣
ȳ=0

= v̄
∣∣∣
ȳ=γ

= 0. (4.5)

4.3 Numerical results and discussion

The solution was obtained for β̄ =0, 2× 10−3 and 4× 10−3 while γ = 0.3, P =

300, A = 100 and different cases of Λ̄0(x̄) were considered which are described next.

While the same numerical technique (see Appendix A) is used, one needs to generate the

mesh for the finite element technique carefully. The elements of the mesh (triangles or

quadrilaterals) are permitted to intersect the subdomain interface either at a node or an

edge, i.e., each element must lie entirely in subdomain Ω0 or Ω1.

The inhomogeneity or anisotropy is due to the term Λ̄0(x̄) which could take on different

values at different locations. We shall assume that the subdomain Ω0 is homogeneous and

isotropic with respect to its permeability, and that Λ̄0(x̄) = 1 in Ω0 unless mentioned
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otherwise and consider the following possibilities: A less permeable material specified by

the notation Λ̄0(Ω1) = 1000 which represents

Λ̄0(x̄) =





1 ∀ x̄ ∈ Ω0

1000 ∀ x̄ ∈ Ω1

(4.6)

A more permeable material specified by the notation Λ̄0(Ω1) = 1
1000

Λ̄0(x̄) =





1 ∀ x̄ ∈ Ω0

1
1000 ∀ x̄ ∈ Ω1

(4.7)

An anisotropic material specified by listing the characteristic (or eigen) directions and

(eigen) values explicitly. For example, with characteristic directions at ±45◦ with side BC,

and values 1000 and 1,

Λ̄0(x̄) =





1 ∀ x̄ ∈ Ω0


50.05 49.95

49.95 50.05


 ∀ x̄ ∈ Ω1

(4.8)

This representation follows due to the fact that with respect to a basis consisting of the

eigen vectors, the matrix associated with the tensor has a diagonal form with entries

corresponding to the respective eigen values, and hence changing the basis to the natural

basis (unit vectors along the length and width of the slab) yields the matrix representation

quoted above. This is the method used to write down matrix representations of the drag

coefficient for each case of anisotropy considered here. Subsequently, we shall only mention

the characteristic value corresponding to one eigen direction, with the understanding that

the second eigen direction (which is normal to the first) shall have a corresponding eigen

value of unity.

It is emphasized that a jump in permeability of this magnitude is quite normal in
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practice.

For subsequent use, we document that if the eigen value corresponding to the eigen

direction along diagonal BD be 1000, then

Λ̄0(x̄) =





1 ∀ x̄ ∈ Ω0


917.5 274.9

274.9 83.4


 ∀ x̄ ∈ Ω1

(4.9)

If the eigenvalue corresponding to the eigen direction normal to diagonal BD be 1000,

then

Λ̄0(x̄) =





1 ∀ x̄ ∈ Ω0


83.4 −274.9

−274.9 917.5


 ∀ x̄ ∈ Ω1

(4.10)

It would be interesting to see the how the flow field changes due to the heterogeneous

inclusion in the medium. One would also like to observe the effect that the inclusion has

on the flow rate. It is expected that a more permeable inclusion (lesser value of drag

coefficient) will increase the flux while the less permeable inclusion will decrease the flow

rate, but it is of greater interest to investigate if the inclusions affect the flow rate to a

similar degree.

One answer follows readily from Table 4.1. It is seen that while a more permeable

inclusion raises the flow rate by a small amount, a less permeable inclusion decreases the

flow rate by a large factor. Secondly, this effect seems to be independent of the pressure

viscosity coefficient β̄.

The streamlines of the flow are shown in Figures 4.2 – 4.4. The homogeneous case has

not been shown because it is almost identical (qualitatively) to the case when the inclusion

corresponds to a more permeable material. When the inclusion is less permeable than the

surroundings, one can see the dramatic changes in the streamlines as they bend around

the region of low permeability in Figure 4.2b. In the case of the anisotropic inclusion in
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Figure 4.2f, the streamlines follow the direction of more permeability. As expected, in each

instance the flow is slower when β̄ = 0.004.

Since the pressure-viscosity exponent β̄ does not seem to have any new qualitative effect,

we exhibit only the case of β̄ = 0 for the other geometries in Figure 4.3 and Figure 4.4.

We consider various possibilities of anisotropic behaviour including the case wherein both

the subdomains are anisotropic with different eigen values but the same characteristic

directions in Figure 4.3f. Whenever the permeability in the flow direction increases, as in

Figures 4.2b, 4.3b and 4.4b the streamlines do not show any remarkable change. However,

if the subdomain ahead is less permeable as in Figures 4.3c and 4.4c, the streamlines travel

normal to the interface between the subdomains.

Table 4.1: Volumetric flux for various cases. The percent change relative to the homoge-
neous case is also tabulated.

β̄ Homogeneous Λ̄0(Ω1) = 1
1000 % Λ̄0(Ω1) = 1000 %

β̄ = 0 36.07 39.75 10.20 9.95 -72.41

β̄ = 0.002 27.09 29.85 10.19 7.46 -72.46

β̄ = 0.004 20.93 23.06 10.18 5.75 -72.53
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(f) Ω1 anisotropic
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(g) Ω1 anisotropic

Figure 4.2: The streamlines of the flow field and the contours of the velocity component
along the flow direction are shown for different permeability characteristics of the subdo-
main Ω1. The figures on the left are those for β̄ = 0 while those on the right are for
β̄ = 0.004. The anisotropic medium has an eigenvalue 1000 corresponding to the direction
at 45◦ with side BC.
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(d) Λ̄0(Ω1) = 1000 along BD
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(f) Λ̄0(Ω0) = 1000 along BD and Λ̄0(Ω1) = 1000
normal to BD

Figure 4.3: The streamlines of the flow field and the contours of the velocity component
along the flow direction are shown for β̄ = 0. The geometry and arrangement of the
inhomogeneous subdomains are also shown.
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(c) Λ̄0(Ω1) = 1000

Figure 4.4: The streamlines of the flow field and the contours of the velocity component
along the flow direction are shown for β̄ = 0. As before, the geometry and arrangement of
the inhomogeneous subdomains are shown.
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5. FLOW OF FLUIDS THROUGH POROUS MEDIA DUE TO HIGH PRESSURE

GRADIENTS: PART 2 - UNSTEADY FLOWS

Most porous solids are inhomogeneous and anisotropic, and the flows of fluids taking

place through such porous solids are inherently unsteady. Such flows have relevance to a

wide variety of important technical problems such as the movement of groundwater and

contaminants in soils, flow of oil through a reservoir and enhanced oil recovery, carbon

dioxide sequestration, diffusion of fluids through synthetic polymers and biological ma-

terials, to name a few. Darcy [11] proposed a model in 1856 to study the movement of

fluids through porous media which to this day has proven to be the most popular model.

However, the model proposed by Darcy does not capture the flow of fluids through porous

media when high pressure gradients or flow velocities are involved and in view of this sev-

eral alternate models have been proposed (see Brinkman [18, 19], Forchheimer [17]). A

hierarchy of models for the flow of fluids through porous media can be found in the article

by Rajagopal [47].

Darcy’s model is based on numerous assumptions (see assumptions (1)-(9) listed earlier

in the introduction) and as these premises are not necessarily valid in most technical

applications, various modifications have been made to the model in order to account for

instance the inertial effects of the fluid, the deformation of the solid, etc. However, most of

these modifications are totally ad hoc (Verruijt [76]). An interesting class of applications

concerning flow through porous media concerns flows of fluids involving very high pressures

and pressure gradients in the flow domain. Examples of such applications are the problems

of Enhanced Oil Recovery (EOR) and Carbon dioxide sequestration (COS), wherein the

fluid is subject to high pressures and pressure gradients. For such problems, the classical

Darcy model and the Brinkman model are grossly inadequate and it is necessary to take

into account the fact that both the viscosity of the fluid and the drag coefficient should

depend on the pressure, and they both can vary by orders of magnitude in the flow field.
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We earlier reviewed the considerable experimental evidence to support the fact that

the viscosity of a fluid depends on the pressure. This in turn would imply that the drag

coefficient would also depend on the pressure in the fluid. In view of this, Nakshatrala

and Rajagopal [58] generalized the model due to Darcy by assuming the drag coefficient

to depend upon the pressure. They studied the flow of a fluid within a porous solid due

to a pressure gradient and in marked contrast to the classical result they found that the

flux through the porous solid achieved an asymptotic value as the driving pressure gradient

increased unlike the predictions of the classical Darcy model that the flux has to increase

linearly.A rigorous mathematical study of such a model has been carried out by Benardi,

Girault and Rajagopal [77].

While Darcy’s model takes into account the effect of drag, it ignores the effect of

viscosity within the fluid, that is, it ignores the viscous dissipation within the fluid. The

study by Shriram, Bonito and Rajagopal [78] redressed this issue and took into account

the viscous effects within the fluid by generalizing the model due to Brinkman by allowing

the viscosity and the drag coefficient to depend upon the pressure. The study of Shriram,

Bonito and Rajagopal [78] was restricted to steady flows, and in keeping with the results

of Nakshatrala and Rajagopal [58], they found that the volumetric flux attained a ceiling.

“Steady state” is a mathematical idealization, and all processes in the real world are

initial value problems; some of them attain a state that is reasonably close to what could

be characterized as “steady state” after a sufficient time interval. When our interest in

such processes often lies purely in the long term behaviour, we are content to model the

problem as one of “steady state”. In other problems however, our interest may squarely

lie in the initial transients, or the problem may be such that it may never attain a steady

state and in that case the temporal evolution of the problem needs to be considered. In

EOR and CS, if we wish to consider flow of a fluid through a deforming porous solid, then

the inertial effects cannot be neglected. Before getting to that however, it is important

to solve the simpler problem of unsteady flow of a fluid through a saturated rigid porous

solid. This sets the stage for the problem considered in this paper.

55



We are interested in the problems of EOR and COS, and since the flow in these problems

are inherently unsteady and since the fluid is injected at high pressures, in this study we

allow for the possibility that the flow is unsteady and that the viscosity and drag are

dependent on the pressure, but we assume that the solid is homogeneous and isotropic.

We consider the problem wherein the fluid that enters a slab is pulsatile in nature, about a

non-zero mean pressure. Our aim was to determine whether the pulsations would enhance

the volumetric flux, a phenomenon that is observed in pulsatile flows in pipes; we however

find that this is not the case, that is pulsations in the pressure does not lead to flow

enhancement. To our knowledge, this is the first study wherein the unsteady flow of a fluid

with pressure dependent viscosity through a porous solid is carried out.

In this section, we extend our previous study of flow through porous media due to

high pressure gradients (see Shriram et al. [78]) and consider a variant of the problem,

namely, the flow of a fluid, initially at rest, through a rigid saturated porous medium

wherein the flow is engendered by a pulsatile forcing pressure at one end of the solid

while the other end is open to the atmosphere (See Figure 5.1). We consider the case

when the forcing pressure varies sinusoidally about a non-zero mean value and compare

the volumetric flux with the situation when the fluid is subjected to a constant forcing

pressure with magnitude equal to the mean value specified earlier. In some applications,

it has been found [79, 80, 81, 82, 83, 84] that the volumetric flux can be enhanced by

pulsating the pressure gradient about a mean value. It would be interesting to observe

whether a similar effect occurs in case of the flow through a porous medium when the fluid

viscosity is considered to be pressure dependent.

The problem of pulsatile flow in rigid tubes with various cross sections has been well

studied (see [85, 86]). In the context of porous media, the flow through a rigid porous solid

due to a pulsatile pressure gradient is investigated in [87, 88] where the classical Brinkman

model is used and exact solutions obtained using a semi-inverse technique; it is assumed

that the pipe is infinitely long. The limitation of these studies is that they are inapplicable if

the viscosity is a function of the pressure; along the direction of infinite extent the pressure
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Figure 5.1: Pressure driven flow through a slab of length L and width H. A purely normal
traction is applied at the left and right boundaries. The fluid satisfies no-slip boundary
condition at the top and bottom of the slab. The forcing pressure on the left end varies
with time.

becomes unbounded and so does the viscosity. Of course, the notion of an infinite pipe is

an idealization in order to simplify the flow field and in all practical problems one deals

with a bounded body. Interestingly, this also ensures that the viscosity remains bounded.

Our investigation is restricted to the flow of a fluid with pressure dependent viscosity in a

finite slab (see Figure 5.1).

The organization of the paper is as follows:In Section 5.1 we introduce the problem and

record the governing equations and the boundary conditions. In Section 5.2, we derive the

non-dimensional equations that govern the flow, and this is followed by Section 5.3 where we

discuss the numerical solution to the problem on hand and make some concluding remarks.

A brief description of the finite element scheme used for the computational resolution of

the problem is given in Appendix B.

5.1 Governing equations

We assume that the liquid is incompressible while the viscosity varies exponentially

with the pressure

µ(p) = µ0 exp(βp), µ0 > 0, β ≥ 0, (5.1)

where µ0 and β are constants , with µ0 having the dimension of viscosity and β the

dimension that is the inverse of that of the pressure.
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Hence the flow of the fluid has to be isochoric and the velocity field must satisfy the

constraint that

div[v] = 0. (5.2)

The assumption that the viscosity of the fluid depends on the pressure and that the

frictional effects in the fluid cannot be ignored implies that the Cauchy stress T in the fluid

is given by

T = −p1 + 2µ(p)D, (5.3)

where −p1 is the indeterminate part of the stress due to the constraint of incompressibility,

v is the velocity of the fluid, µ(p) is the pressure dependent viscosity and D denotes the

symmetric part of the velocity gradient, i.e.,

D :=
1

2

[(
∂v

∂x

)
+

(
∂v

∂x

)T]
. (5.4)

The balance of linear momentum for the fluid, on neglecting body forces, is given by

ρ
dv

dt
= div[T ] + I, (5.5)

where I is the interaction between the solid and the fluid, namely the frictional resistance

at the pores of the solid on the fluid that is flowing. It is worth observing that we are

only concerned with the balance of linear momentum for the fluid and ignore the balance

of linear momentum for the solid as it is assumed to be rigid, the stresses in the solid are

what they need to be to guarantee that the balance of linear momentum for the solid is

met.

In general, there could be various interaction mechanisms between the flowing fluid

and the rigid solid: drag (which is a consequence of the relative velocity between the fluid

and the solid), virtual mass effect (a consequence of the relative accelerations of the fluid

and the solid), Magnus effect (due to the relative spins of the constituents), Basset forces,

Faxen forces, density gradient effects, temperature gradient effects, etc. We shall assume
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that the only interaction mechanism is that due to drag and that I is given by

I = −α(p)v. (5.6)

The “Drag coefficient” is related to the viscosity µ through α = µ
k where k is the coeffi-

cient of permeability and hence the expression equation (5.1) leads to a “Drag coefficient”

α(p) of the form

α(p) = α0 exp(βp), α0 ≥ 0, (5.7)

where α0 is a constant with dimension of ML−3T−1.

Since we shall be interested in slow flow, non-linear terms in the inertial effects in

equation (5.5) are neglected.

It follows from equation (5.2)–equation (5.6), on neglecting the convective acceleration

term that the appropriate governing equation is

− ∂p

∂x
+ div[2µ(p)D]− α(p)v = ρ

∂v

∂t
(5.8a)

div[v] = 0 (5.8b)

with initial condition

v(x, 0) = 0 (5.9)

We are interested in the flow engendered by application of a pulsatile traction at the

left end of the slab while the right end is open to the atmosphere. Due to the applied

tractions on the surfaces AB and CD, the boundary condition reads

t
∣∣∣
AB

= [−p1 + 2µ(p)D]
∣∣∣
AB

nAB =

[
tF1

a
H(a− t) + [F1 + F2 sin(ω(t− a))]H(t− a)

]
nAB,

(5.10a)

t
∣∣∣
CD

= [−p1 + 2µ(p)D]
∣∣∣
CD

nCD = patmnCD, (5.10b)
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where

H(z) =





1 if z > 0

1
2 if z = 0

0 if z < 0

(5.11)

is the standard Heaviside function.

The expression for the traction has been chosen in order to prevent the impulsive motion

of the fluid as it starts from the state of rest; the traction increases linearly from zero and

reaches the desired value at time t = a.

The fluid obeys the no-slip boundary condition at the other two boundaries:

v
∣∣∣
BC

= v
∣∣∣
AD

= 0. (5.12)

Thus we need to solve equation (5.8) subject to the boundary conditions equation (5.10) ,

equation (5.12) and the initial condition equation (5.9).

5.2 Non-dimensional equations

In order to carry out a systematic study we shall appropriately non-dimensionalize

the governing equations. Since the surface CD is exposed to the atmosphere, the mean

normal stress is the atmospheric pressure p0 = patm. We introduce the following non-

dimensionalization

p̄ :=
p

p0
, x̄ :=

x

H
, β̄ :=

β
1

p0

, v̄ :=
v

v0
, t̄ :=

t

t0
, (5.13)

where H is the thickness of the slab (see Figure 5.1) and v0 is a representative velocity, say

v0 :=
p0

α0H
. (5.14)
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while t0 :=
H

v0
is a representative time. Also, let

µ̄ :=
µ

µ0
, ᾱ :=

α

α0
. (5.15)

We shall use the following non-dimensional counterpart of equation (5.1)

µ̄(p̄) = ᾱ(p̄) =





exp(β̄p̄) if p̄ > 0,

1 if p̄ ≤ 0,

(5.16)

which is evidently a continuous function of the pressure.

It follows from equation (5.13)–equation (5.16) that equation (5.8) can be expressed as

− ¯grad[p̄]− ᾱ(p̄)v̄ +Ad̄iv[2µ̄(p̄)D̄] = ρ̄
∂v̄

∂t̄
, (5.17a)

d̄iv[v̄] = 0, (5.17b)

where ¯grad[·] :=
∂(·)
∂x̄

, d̄iv[·] := tr[ ¯grad[·]], D̄ :=
1

2

[(
∂v̄

∂x̄

)
+

(
∂v̄

∂x̄

)T]
, A :=

µ0

α0H2
is

a non-dimensional number that is the ratio of the frictional effect within the fluid due

to viscosity to the frictional effect due to drag (friction at pores between the fluid and

the solid), ρ̄ :=
ρp0

(α0H)2
is a non-dimensional density. We shall also find it convenient to

introduce the additional non-dimensional numbers

γ :=
L

H
, ω̄ :=

α0H
2ω

p0
F̄1 :=

F1

p0
, F̄2 :=

F2

p0
. (5.18)

We choose the time instant t = a such that the non-dimensional form of the traction

boundary condition is then

t̄
∣∣∣
x̄=1

= −1i, (5.19a)

t̄
∣∣∣
x̄=0

=
(
t̄F̄1H(1− t̄) + (F̄1 + F̄2 sin(ω̄(t̄− 1))H(t̄− 1)

)
i, (5.19b)
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while the corresponding non-dimensional forms for the no-slip boundary condition and

initial condition are

v̄
∣∣∣
ȳ=0

= v̄
∣∣∣
ȳ=γ

= v̄(x̄, 0) = 0. (5.20)

The domain and the boundary conditions for equation (5.17) are illustrated in Fig-

ure 5.2.

t̄
∣∣∣
AB

= f (t̄)i t̄
∣∣∣
CD

= −1i

v̄
∣∣∣
AD

= 0

v̄
∣∣∣
BC

= 0

(0,0)

(1, γ)

B

A D

C
i

j

Figure 5.2: Slab of length γ and width 1 with boundary conditions indicated on all sides
of the slab. The forcing pressure on the left end varies with time.

Thus we solve equation (5.17) with the form for µ̄, ᾱ given by equation (5.16) subject to

the boundary conditions equation (5.19) and equation (5.20). We postpone to Appendix B

the description of the numerical method.

5.3 Numerical results

It would be interesting to study the problem for various values of the non-dimensional

numbers. Accordingly, we fix H = 1, γ = 0.25, F̄1 = 300, F̄2 = 200 and allow A, ρ̄ and β̄

to take the values A = 0.01, 100, ρ̄ = 1, 10, 100 and β̄ = 0, 2× 10−3 and 4× 10−3. Values

of β̄ were chosen from the results of the experiments reported in [45, 46, 44, 43]. We let

ω̄ =
π

2
, 0 in order to compare the response to constant and pulsatile traction.
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We shall find it convenient to represent v̄ as

v̄ = V̄xi + V̄yj. (5.21)

The quantity of interest in this problem is the flux or flow rate obtained at the end of

the slab that is open to the atmosphere, i.e., the side CD. We denote the non-dimensional

flux by q̄, where

q̄(t̄) :=

∫

CD
[v̄ · nCD] dl =

∫ γ

0
V̄x(1, ȳ, t̄)dȳ. (5.22)

We also compute the mean flow rate over one cycle (with time period τ̄) after the initial

transients have died down

Q̄ =
1

τ̄

∫ a+τ̄

a
q̄(t̄)dt̄ (5.23)

and denote the value corresponding to the constant and pulsatile tractions by Q̄const and

Q̄pulse respectively.

The system of (non-dimensionalized) partial differential equations equation (5.17) with

the form for µ̄, ᾱ given by equation (5.16) subject to the boundary conditions equa-

tion (5.19) and equation (5.20) was solved using a mixed finite element method, details of

which are provided in the Appendix B.

From the Figures 5.3–5.7, it can be observed that as the pressure-viscosity coefficient

increases, the cumulative volumetric flux obtained upto that instant of time decreases.

Moreover, for a given value of ρ̄ and A, when one compares the variation of the flux,

we see that the cumulative flux is indifferent to the pulsations when β̄ = 0. This is not

surprising, since pulsations have no effect on the flow rate for the incompressible Navier-

Stokes fluid although for other non-Newtonian fluids [79, 80, 81] the flux does get affected.

The trend changes when β̄ = 2× 10−3, 4× 10−3 and the cumulative volumetric flux for

pulsatile traction is lesser than that obtained for constant traction (see Table 5.1). From

the table, it can be seen that when A = 100 and the pressure-viscosity coefficient for the

fluid is known to be β̄ = 4× 10−3, the classical Brinkman model (β̄ = 0) predicts that

63



pulsating the forcing pressure about a non-zero mean value would not change the flow

rate while our calculations (using a generalization of the Brinkman model that takes into

account the pressure dependence of the viscosity and consequently the drag coefficient)

predict a reduction of almost 8 % in the flow rate. This suggests that for the flow of such

fluids through a porous medium, one cannot increase the volumetric flux by pulsating the

pressure about a mean value. The values of the mean flow rate differ both qualitatively

and quantitatively, and it makes a compelling case for the use of models that incorporate

the pressure dependence of viscosity.

Secondly, one can observe the effects of inertia when the value of ρ̄ is increased. The

time taken for onset of the long term behaviour is delayed significantly as expected.

Table 5.1: Comparison of the mean flux for constant and pulsatile traction. The percent
change in the mean flux relative to Q̄const is also shown. The pulsations enhance the flow
rate when the viscosity is a constant but decrease the flow rate when the fluid viscosity
depends on pressure.

A ρ̄ β̄ = 0 β̄ = 2× 10−3 β̄ = 4× 10−3

Q̄const Q̄pulse % Q̄const Q̄pulse % Q̄const Q̄pulse %

0.01 1 24.33 24.33 0 18.27 17.5 -4.21 14.13 13.18 -6.72

0.01 10 24.31 24.31 0 18.27 18.03 -1.31 14.12 13.64 -3.40

100 1 0.004 0.004 0 0.00298 0.00284 -4.70 0.00231 0.00213 -7.79

100 10 0.004 0.004 0 0.00298 0.00284 -4.70 0.00231 0.00214 -7.36
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Figure 5.3: Variation of flux with time for A = 0.01, ρ̄ = 1 under constant and sinusoidal
traction. The dotted lines in the plot denote the flux for constant traction.
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Figure 5.4: Variation of flux with time for A = 100, ρ̄ = 1 under constant and sinusoidal
traction. The dotted lines in the plot denote the flux for constant traction.
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Figure 5.5: Variation of flux with time for A = 0.01, ρ̄ = 10 under constant and sinusoidal
traction. The dotted lines in the plot denote the flux for constant traction.
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6. CONCLUSIONS

6.1 Concluding remarks

In the problem of flow of a fluid through a porous media due to a large pressure gradient,

there are multiple features that need to be taken into account in order to model the process

with fidelity. In this dissertation, we focussed on the dependence of the fluid viscosity on

the pressure and studied the flow through a porous rigid slab first due to a constant pressure

and later a pulsatile pressure (with non-zero mean) applied at the boundary, the former

modelled as a steady flow problem while the latter provided a case of unsteady flow. The

volumetric flux obtained in the problems departs significantly from that of the case when

the viscosity is assumed constant.

Firstly, the results suggest that the flow in the slab is eventually “choked”, i.e., as

the driving pressure is increased the volumetric flux increases and eventually achieves

an asymptotic value. To one unfamiliar with the subject, the result may not appear

remarkable; it is the comparison with the standard models in use (none of which incorporate

the pressure dependence of viscosity) that makes it so. The classical Brinkman or Darcy

models do not predict a ceiling flux, instead they suggest that the volumetric flux can be

increased indefinitely by increasing the driving pressure.

Secondly, the results show that the volumetric flux is more for a constant pressure than

for a pulsatile pressure with equivalent mean value. This is contrary to what is observed in

certain non-Newtonian fluids where the flux is enhanced by the pulsations. If the viscosity

is assumed constant, however, there is no difference in the flow rates obtained.

This dissertation makes a cogent argument in favour of models which take into account

the pressure dependence of viscosity when studying the flow of fluids through a porous

media involving very high pressure differentials, such as enhanced oil recovery or carbon

dioxide sequestration.
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6.2 Suggestions for future work

In the flow of a fluid through a porous solid, one would like to predict all quantities

of interest knowing the nature of the mixture constituents (solid and fluid in this case).

But this is easier said than done, for the deformation of the solid due to the flow of fluid

through it could be highly non-linear, in extreme cases the solid could fracture due to the

pressure of the fluid, and the fluid itself may show non-linear behaviour. Being able to

accurately describe such situations quantitatively is the ultimate goal.

From the view point of numerical methods, a robust technique that can tackle the

exponential variation in the viscosity and “Drag coefficient” with respect to the pressure

would be a welcome addition. The boundary value problem considered here was merely a

first step in the direction of solving a boundary value problem on a realistic flow domain

that corresponds to practical problems.

From the point of view of modeling the physical phenomena associated with enhanced

oil recovery or carbon dioxide sequestration, there are multiple issues that need attention.

Here we point out possible directions for further work on these problems.

(a) The study on unsteady problems can be extended naturally to account for the con-

vective acceleration terms in the equation which were neglected in this study. The

addition of the inertial non-linearity may change the behaviour of the solution.

(b) We do not have a single fluid but rather a mixture of two fluids, say steam and oil in

enhanced oil recovery. Thus we need to develop models that can adequately capture

the interaction between the constituents. A study similar to this for a mixture of two

incompressible fluids would be a noteworthy first step in this direction.

(c) The only interaction between the constituents we considered was the drag. However,

in other situations, there are a host of other interaction effects that may become im-

portant. In an unsteady flow , for instance, one could consider the virtual mass effect

which arises when an object accelerates in a fluid or the Basset force which is a cor-

rection to the drag due to the unsteady motion. There can be other interaction effects
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due to density or temperature gradients as well. The reader is directed to [89] for a

detailed discussion.

(d) The viscosity of the fluid varies with both pressure and temperature. It increases

with pressure but decreases with temperature, hence these are competing effects and

depending on the process, one may dominate the other. In problems with significant

temperature gradients, the effect of temperature cannot be neglected and incorporating

it in the model would then mean having to simultaneously solve an additional partial

differential equation governing the evolution of temperature.

(e) In general it might be necessary to take into account the fact that the fluid in question

is shear thinning. This would lead both the viscosity and the drag coefficient to depend

on the shear rate (or to be precise the second principal invariant of the symmetric part

of the velocity gradient).

(f) The porous solid in reality is not rigid, it deforms due to the flow of the fluid through it.

The deformation of the solid due to the flow of the fluid could be non-linear. As a first

approximation one could model the solid as a linearized elastic solid and then study a

boundary value problem. Of course the question of appropriate boundary conditions

for such problems is of great interest in its own right.

(g) Eventually, one needs to recognize that the high pressure could lead to hydraulic frac-

ture of the solid (a phenomenon known as “fracking” in the petroleum industry which

releases oil that was trapped inside the porous solid) which is very important. At this

point however, this problem is intractable since the fracture of a single solid by itself

poses a stiff challenge.
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APPENDIX A

FINITE ELEMENT FORMULATION-1

The references [90, 91] supply the requisite knowledge of linear algebra and continuum

mechanics. The mesh data structure used in the computer program was based on the

book by Gockenbach [92]. The packages used for creating line drawings, contour plots and

figures are [93, 94, 95].

In this section we provide a short description of the finite element scheme that was used

to obtain the numerical results for the boundary value problems considered in Section 3

and Section 4.

Let Ω ⊂ Rd be a non-dimensionalized open bounded domain, where d = 2, 3 is the

number of spatial dimensions. The boundary ∂Ω is assumed to be Lipschitz continuous

and is divided into two complementary parts Γv ∩ Γt = ∅ and Γv ∪ Γt = ∂Ω. The part

Γv is the part of the boundary on which the velocity is prescribed and is assumed to have

non-zero measure while Γt is the part of the boundary on which the traction t̄ is imposed.

In order to write equations equation (3.16) in a weaker form suitable for continuous

finite element methods, we denote by L2(K) the space of square integrable function defined

over K = Ω or K = Γt

H1(Ω)d :=

{
v̄ ∈ L2(Ω)d

∣∣∣ ∂v̄
∂x̄i
∈ L2(Ω)d, i = 1, ..., d

}
and

H1
0 (Ω)d :=

{
v̄ ∈ H1(Ω)d

∣∣∣ v̄ = 0 on Γv
}
.

We are now in position to write a weak formulation of equation (3.16): Given t̄ ∈ L2(Γt),

find v̄ ∈ H1
0 (Ω)d and p̄ ∈ L2(Ω) such that for all (w, q) ∈ H1

0 (Ω)d × L2(Ω)

∫

Ω
ᾱ(p̄)v̄ ·w −

∫

Ω
p̄ d̄iv[w] +

2

A

∫

Ω
µ̄(p̄)D̄ · ¯grad[w]−

∫

Ω
d̄iv[v̄] q =

∫

Γt

t̄ ·w, (A.1)
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where the “ · ” denotes the standard inner product for vectors or tensors (that will be clear

from the context). A corresponding conforming finite element formulation reads: Given

t̄ ∈ L2(Γt), find v̄h ∈ Vh and p̄h ∈ Qh such that for all (wh, qh) ∈ Vh ×Qh

∫

Ω
ᾱ(p̄h)v̄h·wh−

∫

Ω
p̄h d̄iv[wh]+

2

A

∫

Ω
µ̄(p̄h)D̄h· ¯grad[wh]−

∫

Ω
d̄iv[v̄h] qh =

∫

Γt

t̄·wh, (A.2)

where D̄h :=
1

2

[(
∂v̄h
∂x̄

)
+

(
∂v̄h
∂x̄

)T]
while Vh and Qh are finite-dimensional subspaces

of H1
0 (Ω)d and L2(Ω) respectively.

The inf-sup or LBB condition constrains the choice of the finite-dimensional spaces

Vh and Qh for finite element formulations equation (A.2) to be suitable approximations

of equation (A.1). In particular, equal-order interpolation for both pressure and velocity

are not suitable (see [96]). Here the so-called Taylor-Hood combination is used. That is,

after the domain is divided into a number of quadrilaterals when d = 2 or hexahedra when

d = 3, on each element the pressure is approximated by a piecewise linear polynomial in

each variable while the velocity is approximated by a piecewise quadratic polynomial in

each variable, both approximations being globally continuous.

In this study, the rectangular domain was divided into 4 × 100 rectangles where the

pressure was computed at the four corner nodes while the velocity was computed at nine

nodes (four corners, four midpoints of sides, and the midpoint of diagonals). The mesh

was made extremely fine (almost 10−11) near the top and bottom in order to capture the

steep gradients developed due to the boundary condition.

The resulting system of non-linear algebraic equations was solved by using a Newton-

Raphson iteration algorithm in conjunction with a line search as outlined in [97]. The

solution to β̄ = 0 was provided as an initial guess for β̄ = 1× 10−3 and so on until the

desired value of β̄ was reached.

Note that the viscosity µ̄ and drag ᾱ given by equation (3.15) are continuous but not
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differentiable. Hence in our numerical scheme we approximate it by the smooth function 1

µ̄h(p̄) := exp(β̄p̄) · 1
2

[
1 + tanh

(
p̄

10hmin

)]
+ 1 · 1

2

[
1 + tanh

( −p̄
10hmin

)]
=: ᾱh(p̄) (A.3)

where hmin represents the length of the smallest element in the mesh.

In the limit of mesh refinement, lim
h→0

µ̄h(p̄) → µ̄(p̄) and lim
h→0

ᾱh(p̄) → ᾱ(p̄) where µ̄(p̄)

and ᾱ(p̄) are as in equation (3.15), so our approximation is verified to be consistent.

1We are motivated by the fact that the Heaviside function H(x) may be realized as the limit of a sequence
of smooth functions, namely, H(x) = lim

n→∞
1
2
[1 + tanh(nx)] = lim

n→∞
[1 + exp(−2nx)]−1.
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APPENDIX B

FINITE ELEMENT FORMULATION-2

In this section we provide a short description of the finite element scheme that was used

to obtain the numerical results for the boundary value problems considered in Section 5

Let Ω ⊂ Rd be a non-dimensionalized open bounded domain, where d = 2, 3 is the

number of spatial dimensions. The boundary ∂Ω is assumed to be Lipschitz continuous

and is divided into two complementary parts Γv ∩ Γt = ∅ and Γv ∪ Γt = ∂Ω. The part

Γv is the part of the boundary on which the velocity is prescribed and is assumed to have

non-zero measure while Γt is the part of the boundary on which the traction t̄ is imposed.

We discretize the time interval of interest intoN instants denoted by tn, (n = 0, · · · , N).

For simplicity, we shall assume uniform time steps, and shall denote the time step by

∆t := tn − tn−1. However, it should be noted that a straightforward modification can

handle non-uniform time steps. We shall denote the time discretized version of a given

quantity z(x, t) at the instant of time tn as follows:

z(n) ≈ z(x, tn) n = 0, · · · , N (B.1)

In order to write equations (5.17) in a weaker form suitable for continuous finite element

methods, we denote by L2(K) the space of square integrable function defined over K = Ω

or K = Γt

H1(Ω)d :=

{
v̄ ∈ L2(Ω)d

∣∣∣ ∂v̄
∂x̄i
∈ L2(Ω)d, i = 1, ..., d

}
and

H1
0 (Ω)d :=

{
v̄ ∈ H1(Ω)d

∣∣∣ v̄ = 0 on Γv
}
.

We are now in position to write a weak formulation of equation (5.17) after approxi-

mating the time derivative by the backward Euler formula, and the viscosity at the current
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time instant by using the pressure from the previous time instant:

Given t̄(n+1) ∈ L2(Γt), v̄n ∈ H1
0 (Ω)d and p̄(n) ∈ L2(Ω) , we need to find v̄(n+1) ∈ H1

0 (Ω)d

and p̄(n+1) ∈ L2(Ω) such that for all (w, q) ∈ H1
0 (Ω)d × L2(Ω)

∫

Ω
ρ̄
v̄(n+1) − v̄(n)

∆t̄
·w +

∫

Ω
ᾱ(p̄(n))v̄(n+1) ·w −

∫

Ω
p̄(n+1) d̄iv[w]

+
2

A

∫

Ω
µ̄(p̄(n))D̄

(n+1) · ¯grad[w]−
∫

Ω
d̄iv[v̄(n+1)] q =

∫

Γt

t̄(n+1) ·w, (B.2)

where the “ · ” denotes the standard inner product for vectors or tensors (that will be clear

from the context).

Since the time steps taken are small, we can approximate the viscosity by using the

pressure at the previous time instant and this linearizes the partial differential equation

and eliminates the possible need for subsequent iterative solution of a non-linear system.

A corresponding conforming finite element formulation reads: Given t̄(n+1) ∈ L2(Γt),

v̄
(n)
h ∈ Vh and p̄(n) ∈ Qh, find v̄

(n+1)
h ∈ Vh and p̄

(n+1)
h ∈ Qh such that for all (wh, qh) ∈

Vh ×Qh

∫

Ω

[
ᾱ(p̄

(n)
h ) +

ρ̄

∆t̄

]
v̄

(n+1)
h ·wh −

∫

Ω
p̄

(n+1)
h d̄iv[wh] +

2

A

∫

Ω
µ̄(p̄

(n)
h )D̄

(n+1)
h · ¯grad[wh]

−
∫

Ω
d̄iv[v̄

(n+1)
h ] qh =

∫

Γt

t̄(n+1) ·wh +

∫

Ω

ρ̄

∆t̄
v̄

(n)
h ·wh, (B.3)

where D̄
(n+1)
h :=

1

2



(
∂v̄

(n+1)
h

∂x̄

)
+

(
∂v̄

(n+1)
h

∂x̄

)T
 while Vh and Qh are finite-dimensional

subspaces of H1
0 (Ω)d and L2(Ω) respectively.

The problem now reduces to a system of linear algebraic equations which can be solved

efficiently using standard techniques. Starting with the given initial condition, the solution

at the previous time level is provided and solution is advanced in time (by solving the

linear system) until the desired final time instant of T was reached.

The inf-sup or LBB condition constrains the choice of the finite-dimensional spaces

Vh and Qh for finite element formulations equation (B.3) to be suitable approximations
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of equation (B.2). In particular, equal-order interpolation for both pressure and velocity

is not suitable (see [96]). Here the so-called Taylor-Hood combination is used. That is,

after the domain is divided into a number of quadrilaterals when d = 2 or hexahedra when

d = 3, on each element the pressure is approximated by a piecewise linear polynomial in

each variable while the velocity is approximated by a piecewise quadratic polynomial in

each variable, both approximations being globally continuous.

In this study, the rectangular domain was divided into 20 × 100 rectangles where the

pressure was computed at the four corner nodes while the velocity was computed at nine

nodes (four corners, four midpoints of sides, and the midpoint of diagonals). The mesh was

made extremely fine (almost 10−13) near the top and bottom in order to capture the steep

gradients developed due to the boundary condition. A time step of magnitude ∆t̄ = 0.05

was used in the computation.
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