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ABSTRACT 

 

Accurate measures of forest structural parameters are essential to forest inventory 

and growth models, managing wildfires, and modeling of carbon cycle. Terrestrial laser 

scanning (TLS) provides accurate understory information rapidly through non-

destructive methods. This study developed algorithms to extract individual tree height, 

diameter at breast height (DBH), and crown width in plots at Ecosystem Science and 

Management (ESSM) research area and Huntsville, Texas. Further, the influence of scan 

settings and processing choices on the accuracy of deriving tree measurements was also 

investigated. The study also developed models to estimate aboveground biomass (AGB) 

and investigate different conceptual approaches to study tree level growth in forest 

structural parameters and AGB using multi-temporal TLS datasets.  

DBH was retrieved by cylinder fitting at different height bins. Individual trees 

were extracted from the TLS point cloud to determine tree heights and crown widths.  

The R-squared value ranged from 0.91 to 0.97 when field measured DBH was validated 

against TLS derived DBH using different methods. An accuracy of 92% was obtained 

for predicting tree heights. The R-squared value was 0.84 and RMSE was 1.08 m when 

TLS derived crown widths were validated using field measured crown widths. Examples 

of underestimations of field measured forest structural parameters due to tree shadowing 

have also been discussed in this study. Correction factors should be applied or multiple 

high resolution scans should be conducted to reduce the errors in estimation of forest 

structural parameters.  
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TLS geometric and statistical parameters were derived for individual trees and 

used as explanatory variables to estimate AGB. An extensive literature review reveals 

that this is the first study to model the change in AGB using different innovative and 

conceptual approaches with multi-temporal TLS data. Tree level AGB growth was 

studied over a period of three years using three different approaches. Results showed 

that TLS derived geometric parameters were better correlated to field measured AGB. 

Promising results for AGB change were obtained using the direct modeling approach; 

hence forest growth could be studied independent of any field measurements when 

biomass models are available. However, the models could be improved by incorporating 

more trees with a wide range of DBH and tree heights. The results from this study will 

benefit foresters, planners, and other remote sensing studies from airborne and 

spaceborne platforms, for map upscaling, data fusion, or calibration purposes.  
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NOMENCLATURE 

 

AGB Aboveground Biomass 

AGL Above Ground Level 

ASCII American Standard Code for Information Interchange 

CBH Crown Base Height 

CSV Comma Separated Value 

CW Crown Width 

DBH Diameter at Breast Height 

DEM Digital Elevation Model 

ESSM Ecosystem Science and Management 

GPS Global Positioning System 

HOME  Height Of Median Energy 

LAS LASer 

LDV Lidar Data Viewer 

LTI Laser Technology Inc 

MAD Median Absolute Deviation 

NA Not Available 

NAIP National Agriculture Imagery Program 

QTM Quick Terrain Modeler 

RMSE Root Mean Square Error 

TLS Terrestrial Laser Scanning 
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TreeVaW Tree Variable Window 

VIF Variance Inflation Factor 

WAAS Wide Area Augmentation System 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

 Accurate measures of forest structural parameters and monitoring their changes 

though time are essential to forest inventory and growth models, managing wildfires, 

modeling of carbon cycle, and forest management systems (Næsset et al., 2004). Most 

extant methods, which include indirect and direct measurement techniques, are limited in 

their capability to acquire accurate, spatially explicit measurements of forest three-

dimensional structural parameters. The accuracy of these measurements can be improved 

using lidar (light detection and ranging) (Kussner and Mosandl, 2000; Henning and 

Radtke, 2006).  

 Lidar, which is an active sensor, emits a series of laser pulses and measures the 

distance to targets using the speed of light and travel time of the laser pulses to and from 

a system (Lefsky et al., 2002a). Unlike passive optical remote sensing, lidar remote 

sensing provides detailed information on both horizontal and vertical distribution of 

vegetation in forests (Lim et al., 2003). Applications of lidar remote sensing such as 

measurement of the structure and function of vegetation canopies and estimation of tree 

height, crown width, basal area, stem volume, and aboveground biomass (AGB) are 

elaborated in various studies (Lefsky et al., 2002b; Chen et al., 2007; Popescu and Zhao, 

2008; Falkowski et al., 2009). Non-destructive measurements of AGB can be done using 

airborne lidar with a higher accuracy compared to AGB measurements obtained through 

other remote sensing techniques (Lefsky et al., 2002a; Bortolot and Wynne, 2005; 
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Popescu, 2007; Hudak et al., 2012). Nevertheless, tree height estimates with small 

footprint discrete return airborne lidar tend to slightly underestimate manual 

measurements done in the field, as the laser pulses are not always reflected from tree 

tops. Airborne lidar may not capture the complete vertical distribution of the canopy 

(Lim et al., 2003). Terrestrial laser scanning (TLS)  fills the gap between tree scale 

manual measurements and large scale airborne lidar measurements by providing a 

wealth of precise information on various forest structural parameters (Maas et al., 2008; 

Dassot et al., 2011) and a digital record of the three-dimensional structure of forests at a 

given time. Hence, to obtain accurate understory information and detailed canopy 

vertical structure depiction, TLS can produce better results when compared to airborne 

lidar and field measurements (Loudermilk et al., 2009). 

The use of terrestrial or ground-based laser scanners for forest management 

planning and mapping vegetation properties has grown dramatically in the last decade 

(Moskal et al., 2009; Moskal and Zheng, 2012; Kankare et al., 2013). Terrestrial laser 

scanners have a high potential to acquire three-dimensional data of standing trees 

accurately and rapidly through non-destructive methods, which has resulted in the 

multiple use of this technology in studying forest environments (Lovell et al., 2003; 

Dassot et al., 2011). Several studies have shown that TLS is a promising technology in 

providing objective measures of tree height, diameter at breast height (DBH), stem 

density, canopy cover, and AGB  (Bienert et al., 2006; Hopkinson et al., 2008; Maas et 

al., 2008; Kankare et al., 2013). However, a drawback of this technology is the inability 

of the laser pulses to penetrate through the trees if they are shadowed by other branches, 
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stems or understory (occlusion or shadowing), which finally leads to the underestimation 

of field measured parameters (Bienert et al., 2006; Van Der Zande et al., 2006; Moskal 

and Zheng, 2012).  

 Among the various forest measurements, DBH or stem diameter is an important 

forest inventory attribute because it serves as a fundamental parameter in tree allometry 

and estimation of basal area, thus providing valuable information about individual trees 

and forest stand structure (Moskal and Zheng, 2012). The automatic detection of DBH 

from TLS data has been investigated in various studies. For example, Huang et al. 

(2009) implemented a circle approximation to retrieve DBH, and they concluded that the 

circle fitting algorithm resulted in a smaller diameter when there were insufficient 

surface laser points. Hopkinson et al. (2004) estimated DBH by fitting a cylinder 

primitive to the TLS data. Stems with sparse points were omitted from the analysis. 

Though the residual dispersion was greater in homogenous plantations, the authors 

achieved an overall significant correlation with an R-squared value of 0.85 between lidar 

and field measurements for DBH. Bienert et al. (2006) determined DBH efficiently 

using a circle fitting algorithm, and they added that DBH measurements from TLS could 

be fraught with errors if adequate laser points are not available due to occlusion from 

other stems. Watt and Donoghue (2005) concluded that accurate DBH measurements 

from TLS datasets can be obtained only for unobstructed trees. The previously 

mentioned studies indicate that TLS can be used to accurately measure individual tree 

attributes, such as DBH, in datasets with sufficient stem returns. However, no research 

has been done on retrieving DBH using cylinder fitting with different height bins to 
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account for sparse laser points (Aschoff and Spiecker, 2004; Bienert et al., 2006; Mass et 

al., 2008; Huang et al., 2009).  

In addition to DBH, tree height is also a vital parameter that provides qualitative 

information about the plot or stand and quantitative information about the tree. Tree 

height is strongly related to various biophysical characteristics and is a function of 

species composition and climate quality. DBH and tree heights are positively correlated 

with biomass, since stem diameter increases as trees grow taller, thus increasing the 

amount of foliage supported by the trees (Dubayah and Drake, 2000). A variety of 

studies have successfully retrieved tree heights using terrestrial laser scanners (Huang et 

al., 2009; Moskal and Zheng, 2012). Hopkinson et al. (2004) determined tree heights 

from terrestrial lidar data by fitting vector primitives, and their findings revealed that 

TLS derived tree heights underestimated field measurements by approximately 1.5 m. 

This underestimation was due to the reduced lidar point density in upper canopy, a direct 

result of the occlusion caused by lower canopy and position of the sensor. The results 

were also justified by a weak relationship illustrated between TLS and field measured 

heights for taller trees. Chasmer et al. (2006) compared field measured heights and TLS 

derived heights for 15 trees. Their results indicated that TLS derived heights 

underestimated field measured heights by an approximately 1.2 m due to reduced 

penetration of laser pulses within the lower canopy because of occlusion by other trees. 

Van Der Zande et al. (2006) illustrated that terrestrial lidar point density is negatively 

correlated with heights in plots with minimal understory. Thus, a few tree tops might be 

missed by laser hits due to shadowing, which further underestimates various lidar 
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derived height metrics. Huang et al. (2009) demonstrated an automatic method to 

determine tree heights from TLS data, and they achieved a correlation of 0.95 for TLS 

derived tree heights and field measured heights. Moskal and Zheng (2012) estimated tree 

heights in heterogeneous stands using TLS data by calculating the difference between 

the lowest and the highest slice plane from horizontal point cloud slicing. Due to 

occlusion effects, the laser pulses could not penetrate fully through the complex canopy 

to reach the top of trees and accounted for only 57.27% accuracy in predicting tree 

heights.  

Crown width (CW) is an important variable, which can be used to estimate 

biomass, tree volume, and leaf area (Evans et al., 2006). An extensive literature study 

reveals that crown width has so far not been estimated from TLS data and a limited 

number of studies have derived crown width from airborne lidar data. Relationships 

between airborne lidar and field derived crown dimensions are significant, but not very 

strong, with R-squared values ranging from 0.51 to 0.63 (Naesset and Oakland, 2002; 

Popescu et al., 2003; Evans et al., 2006; Van Leeuwen and Nieuwenhuis, 2010). A 

significant parameter in the indirect measurement of true leaf area index is gap fraction 

(Danson et al.; 2007). The authors determined stand-level directional gap fraction 

distributions using TLS and found the results were similar to gap fraction measurements 

obtained from hemispherical photographs. Crown cover is another essential attribute, 

which is used to measure tree health, and it is an approximate indicator of stand density 

(Avery and Burkhart, 2002). It provides information on the amount of plant material, 
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such as leaves and branches that obstructs sunlight from penetrating through the tree 

crown.  

AGB is defined as all the living biomass above the soil that includes stem, stump, 

branches, bark, seeds, and foliage; it is associated with important components such as 

tree health, forest regeneration, and energy conversion (Jenkins et al., 2003). It is a 

crucial ecological variable, which has to be accurately estimated to reduce the 

uncertainties in the estimates of forest carbon budget and understand potential changes 

of the climate system. Further, half of the dry biomass is considered to account for 

carbon, which is of great scientific interest to understand the carbon cycle (Houghton et 

al., 2009; Lin et al., 2010; Zolkos et al., 2013). Næsset et al. (2011) developed non-

linear biomass models using airborne lidar derived height metrics and canopy density. 

The authors performed a stepwise forward selection procedure to select the best set of 

independent variables to estimate biomass. They observed that the estimated biomass 

was not statistically different from field measured biomass for lidar based models.  

Yao et al. (2011) used a ground-based, scanning near-infrared full waveform lidar and 

retrieved tree diameters and stem count density to determine aboveground standing 

biomass. They obtained a coefficient of determination of 0.85 between the lidar derived 

and field measured biomass. Lefsky et al. (2002b) developed a single equation to 

estimate AGB from lidar derived canopy structure in three distinct study sites that 

explained 84% of the variance. Zolkos et al. (2013) combined and contrasted results  

from different studies on the estimation of AGB from lidar remote sensing and found 

that AGB estimated from remote sensing models were closely related to field measured 
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AGB if the residual standard error was less than or equal to 20 Mg ha
-1

. They also 

discussed that significantly better results for the estimation of AGB were obtained using 

airborne lidar data compared to radar or optical data. However, very little research has 

been done in estimating AGB at individual tree level with TLS data, which could be 

used in the detailed evaluation of silvicultural techniques (Kankare et al., 2013).   

Evans et al. (2006) addressed the use of lidar for forest assessments and proposed 

two significant domains in which lidar could be a major contributor: (1) tree growth and 

yield modelling at individual tree level for pine plantations using multi-temporal lidar 

data; and (2) implementation of the retrieved individual tree measurements from lidar 

data in immersive visualization environments for the assessment of forest stands. Lidar 

is a promising technology to study growth and derive forest parameters (Hudak et al., 

2009). Few studies have investigated forest succession using lidar to predict long-term 

carbon sequestration (Falkowski et al., 2009; Hudak et al., 2012). Successful modeling 

of change in airborne lidar estimated biomass has been done using three different 

approaches: (1) computing the change in biomass by subtracting the estimated biomass 

between two different years; (2) modeling of biomass change by a system of models; 

and (3) direct modeling of biomass change (Bollandsås et al., 2013). Hopkinson et al. 

(2008) assessed the plot level mean tree height growth for homogenous red pine conifer 

plantations over a five period using repeat airborne lidar datasets. They found that lidar 

estimated growth rates slightly underestimated the field measured growth rates. 

Falkowski et al. (2009) mapped forest succession using lidar metrics with an overall 

accuracy higher than 90%. Hudak et al. (2012) quantified AGB due to forest growth 
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using repeat airborne lidar surveys. They developed predictive tree AGB models using 

random forest algorithm and monitored biomass change using repeat discrete return 

airborne lidar and field surveys. They reported mean canopy height as the most 

significant predictor for tree biomass. Though their results suggested that biomass 

change and carbon dynamics in conifer forests were monitored efficiently with discrete 

return multi-temporal airborne lidar datasets, a few challenges concerning repeated 

measures using airborne lidar exist, such as differences in lidar acquisition pulse density. 

Yu et al. (2006) were able to measure four years of height growth of 82 Scots pines 

(Pinus sylvestris) with multi-temporal laser surveys, and they developed a tree-to-tree 

matching algorithm. The three change detection techniques used in their study were: (1) 

differencing between canopy height models; (2) comparison between canopy profile, and 

(3) analysis of difference between height histograms. An R-squared value of 0.68 was 

obtained when field measured individual tree height growth was validated against laser 

derived individual tree height growth. However, multi-temporal airborne laser scans 

poses some difficulties such as changes in flight conditions and flight path. Though very 

limited research has been done on AGB change estimation using lidar, several authors 

have discussed the potential of this technology to study forest growth (Yu et al., 2006; 

Næsset et al., 2013). Situations where airborne laser data cannot be used for change 

detection studies are described by the previously mentioned authors, and they suggest 

the use of TLS for future growth analysis.  

The use of TLS for spatially explicit assessment of plot level forest canopy 

structure was examined by Henning and Radtke (2006) in leaf-off and leaf-on 
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conditions. The authors quantified differences in characterizations obtained under the 

two conditions. The comparison results of leaf-on and leaf-off provided a RMSE of 

0.169 m in DBH and mean position error of 0.29 m. Their results support the 

applications of TLS for multi-temporal observation. However, registration of TLS data 

across time was not studied by the authors, but when performed could prove 

advantageous for multi-temporal change detection. Kaasalainen et al. (2010) and 

Kankare et al. (2013) analyzed the potential of TLS to measure standing tree biomass in 

a laboratory environment. One main drawback of local scale AGB estimates produced 

using field measurements or low resolution satellite imagery are the estimate 

uncertainties. However, TLS data allows for non-destructive and detailed modeling of 

individual trees. For example, Kankare et al. (2013) developed single tree based AGB 

models from multiple scan TLS data and reported improved accuracies for branch 

biomass. They input 83 TLS based variables and performed lasso regression and 

stepwise regression to estimate biomass. Kaasalainen et al. (2010) concluded that TLS is 

a promising technology for studying biomass change, and they obtained high R-squared 

values of 0.95 to 0.99 when TLS estimated standing tree biomass were validated with 

field measured biomass.   

The majority of existing studies only investigate biomass estimation in static 

conditions, i.e., determining various forest parameters and estimating AGB at a single 

point in time. Thus, by utilizing multi-temporal lidar data, there is potential in increasing 

the scope of lidar remote sensing for carbon modeling, wildfire risk assessment, and 

other applications (Hudak et al., 2009). Biomass is dynamic and hence has to be 
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monitored continuously to provide information on sinks and sources of carbon. It is also 

essential to utilize such information to project AGB changes to inform decision making 

processes (Avery and Burkhart, 2002; Houghton et al., 2009). 

Until recently, measuring and monitoring forest growth were mostly done using 

airborne laser scanning, making retrieval of forest attributes and change detection 

challenging at the individual tree level. Since the potential to retrieve different forest 

structural parameters and monitor forest growth using multi-temporal TLS data is not 

completely tested in the current literature, this study will investigate methods to measure 

and monitor tree level forest structural parameters and AGB, which will benefit forest 

management and other remote sensing studies from airborne and spaceborne platforms, 

for map upscaling, data fusion, or calibration purposes.  

Since Southern pine forests are extremely productive and bolster forest carbon 

sequestration capacity, regular monitoring of forests is essential to foresters and planners 

for managing forest resources and ecosystem services efficiently (Johnsen et al., 2001). 

As the non-destructive and non-contact measurements can be collected by a lidar system 

at multiple moments in time, the growth parameters of trees over time can be assessed 

(Watt and Donoghue, 2005; Dassot et al., 2011) with high accuracy. In addition, when 

extended to a larger area, the multi-temporal change study will provide us with 

information on tree mortality and continuous forest dynamics. 

The overall aim of this study is to develop a methodology to retrieve tree level 

forest structural parameters and AGB and study tree level growth using multi-temporal 

TLS datasets. Specific objectives are to 1) develop methods to estimate tree height, 
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DBH, and crown width from TLS datasets at individual tree level; 2) investigate the 

influence of scan settings, such as leaf-on/leaf-off seasons, tree positioning relative to 

scanner, and processing choices, on the accuracy of deriving tree measurements; (3) 

develop models using TLS parameters to estimate tree level AGB; and (4) investigate 

different conceptual approaches for estimating change in AGB with multi-temporal lidar 

scans.  

This thesis is organized into four major sections. An overall introduction and 

literature review are presented in chapter I. Chapters II and III follow the style of 

individual manuscripts. Overall summary and conclusions for this study are discussed in 

chapter IV.   
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CHAPTER II 

TERRESTRIAL LIDAR AS AN EFFECTIVE TOOL TO RETRIEVE TREE 

LEVEL HEIGHT, CROWN WIDTH, AND STEM DIAMETER 

 

2.1 Introduction  

Accurate measures of forest structural parameters and monitoring their changes 

though time are essential to forest inventory and growth models, managing wildfires, 

modeling of carbon cycle, and forest management systems (Næsset et al., 2004). Most 

extant methods, which include indirect and direct measurement techniques, are limited in 

their capability to acquire accurate, spatially explicit measurements of forest three-

dimensional structural parameters. The accuracy of these measurements can be improved 

using lidar (light detection and ranging) (Kussner and Mosandl, 2000; Henning and 

Radtke, 2006).  

Lidar, which is an active sensor, emits a series of laser pulses and measures the 

distance to targets using the speed of light and travel time of the laser pulses to and from 

a system (Lefsky et al., 2002a). Unlike passive optical remote sensing, lidar remote 

sensing provides detailed information on both horizontal and vertical distribution of 

vegetation in forests (Lim et al., 2003). Applications of lidar remote sensing such as 

measurement of the structure and function of vegetation canopies and estimation of tree 

height, crown width, basal area, stem volume, and aboveground biomass are elaborated 

in various studies (Lefsky et al., 2002b; Chen et al., 2007; Popescu and Zhao, 2008; 

Falkowski et al., 2009). Nevertheless, tree height estimates with small footprint discrete 
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return airborne lidar tend to slightly underestimate manual measurements done in the 

field, as the laser pulses are not always reflected from tree tops. Airborne lidar may not 

capture the complete vertical distribution of the canopy (Lim et al., 2003). Terrestrial 

laser scanning (TLS)  fills the gap between tree scale manual measurements and large 

scale airborne lidar measurements by providing a wealth of precise information on 

various forest structural parameters (Maas et al., 2008; Dassot et al., 2011) and a digital 

record of the three-dimensional structure of forests at a given time. Hence, to obtain 

accurate understory information and detailed canopy vertical structure depiction, TLS 

can produce better results when compared to airborne lidar and field measurements 

(Loudermilk et al., 2009). 

The use of terrestrial or ground-based laser scanners for forest management 

planning and mapping vegetation properties has grown dramatically in the last decade 

(Moskal et al., 2009; Moskal and Zheng, 2012; Kankare et al., 2013). Terrestrial laser 

scanners have a high potential to acquire three-dimensional data of standing trees 

accurately and rapidly through non-destructive methods, which has resulted in the 

multiple use of this technology in studying forest environments (Lovell et al., 2003; 

Dassot et al., 2011). Several studies have shown that TLS is a promising technology in 

providing objective measures of tree height, diameter at breast height (DBH), stem 

density, canopy cover, and plot level volumes (Hopkinson et al., 2004; Bienert et al., 

2006; Maas et al., 2008). However, a drawback of this technology is the inability of the 

laser pulses to penetrate through the trees if they are shadowed by other branches, stems 

or understory (occlusion or shadowing), which finally leads to the underestimation of 
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field measured parameters (Bienert et al., 2006; Van Der Zande et al., 2006; Moskal and 

Zheng, 2012).  

Among the various forest measurements, DBH or stem diameter is an important 

forest inventory attribute because it serves as a fundamental parameter in tree allometry 

and estimation of basal area, thus providing valuable information about individual trees 

and forest stand structure (Moskal and Zheng, 2012). The automatic detection of DBH 

from TLS data has been investigated in various studies as listed in table 1. For example, 

Huang et al. (2009) implemented a circle approximation to retrieve DBH, and they 

concluded that the circle fitting algorithm resulted in a smaller diameter when there were 

insufficient surface laser points. Hopkinson et al. (2004) estimated DBH by fitting a 

cylinder primitive to the TLS data. Stems with sparse points were omitted from the 

analysis. Though the residual dispersion was greater in homogenous plantations, the 

authors achieved an overall significant correlation with an R-squared value of 0.85 

between lidar and field measurements for DBH. Bienert et al. (2006) determined DBH 

efficiently using a circle fitting algorithm, and they added that DBH measurements from 

TLS could be fraught with errors if adequate laser points are not available due to 

occlusion from other stems. Watt and Donoghue (2005) concluded that accurate DBH 

measurements from TLS datasets can be obtained only for unobstructed trees. The 

previously mentioned studies indicate that TLS can be used to accurately measure 

individual tree attributes, such as DBH, in datasets with sufficient stem returns. 

However, no research has been done on retrieving DBH using cylinder fitting with 

different height bins to account for sparse laser points (Table 1).  
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Table 1. Overview of DBH retrieval methods using TLS datasets and their results. 

*AGL - Above Ground Level, RMSE - Root Mean Square Error 

Reference DBH retrieval method Number of trees 

measured 

Number of scans 

conducted 

Results 

Aschoff and 

Spiecker  

(2004) 

Circle fitting at 1.2 m, 

1.3 m and 1.4 m AGL 

NA Single scan and 

multiple scans         

(5 positions) 

NA (not 

available) 

Bienert et al. 

(2006) 

Circle fitting at 1.3 m 

AGL 

79 Single scan and 

multiple scans  

(3 positions) 

Standard 

deviation ranged 

from1.21 to     

2.47 cm 

Brolly and 

Kiraly  

(2009) 

(a) Single circle fitting  

at 1.3 m AGL (10 cm 

thickness) 

(b) Multiple circle 

fitting at 1 m, 1.5 m, 2 

m AGL (10 cm 

thickness) 

(c) Cylinder fitting 

between 0.95 and 2.05 

m AGL 

154 

 

154 

 

 

134 

Single scan 

 

Single scan 

 

 

Single scan 

RMSE = 4.2 cm 

 

RMSE = 3.4 cm 

 

  

 

RMSE = 7.0 cm 

Hopkinson et 

al. (2004) 

Cylinder fitting 

between 1.25 and 1.75 

m AGL 

128 Multiple scans           

(5 positions)  

R
2 
= 0.85 

Huang et al. 

(2009) 

Circle fitting at 1.3 m 

AGL (10 cm thickness) 

26 Multiple scans            

(4 positions)  

R
2 
= 0.79 

Maas et al. 

(2008) 

Circle fitting at 1.3 m 

AGL 

80 Single scan and 

multiple scans         

(3 positions) 

Overall RMSE      

= 1.8 cm 

Tansey et al. 

(2009) 

Circular Hough 

transformation for 

points between 1.27 

and 1.33 m AGL, circle 

and cylinder fitting 

(0.04 m thick   cross-

section) 

8 Multiple scans           

(4 positions) 

RMSE ranged 

from  1.9 to      

3.7 cm 

Thies and 

Spiecker  

(2004) 

Hough transformation 

and circle fitting at 1.3 

m AGL 

11 Single scan and 

multiple scans         

(4 positions) 

NA 

Watt and 

Donoghue 

(2005) 

 

Circle fitting at   1.3 m 

AGL 

12 (site 2) Single scan at site 1 

and multiple scans  

(2 positions) at site 2 

R
2
 = 0.92, site 2 

Wezyk et al. 

(2007) 

Cylinder fitting 

between 1.28 and 1.32 

m AGL and pixel 

method 

199 Multiple scans        

(4 positions) 

R
2
 > 0.946 
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In addition to DBH, tree height is also a vital parameter that provides qualitative 

information about the plot or stand and quantitative information about the tree. Tree 

height is strongly related to various biophysical characteristics and is a function of 

species composition and climate quality. DBH and tree heights are positively correlated 

with biomass, since stem diameter increases as trees grow taller, thus increasing the 

amount of foliage supported by the trees (Dubayah and Drake, 2000). A variety of 

studies have successfully retrieved tree heights using terrestrial laser scanners (Huang et 

al., 2009; Moskal and Zheng, 2012). Hopkinson et al. (2004) determined tree heights 

from terrestrial lidar data by fitting vector primitives, and their findings revealed that 

TLS derived tree heights underestimated field measurements by approximately 1.5 m. 

This underestimation was due to the reduced lidar point density in upper canopy, a direct 

result of the occlusion caused by lower canopy and position of the sensor. The results 

were also justified by a weak relationship illustrated between TLS and field measured 

heights for taller trees. Chasmer et al. (2006) compared field measured heights and TLS 

derived heights for 15 trees. Their results indicated that TLS derived heights 

underestimated field measured heights by an approximately 1.2 m due to reduced 

penetration of laser pulses within the lower canopy because of occlusion by other trees. 

Van Der Zande et al. (2006) illustrated that terrestrial lidar point density is negatively 

correlated with heights in plots that have zero or less understory. Thus, a few tree tops 

might be missed by laser hits due to shadowing, which further underestimates various 

lidar derived height metrics. Huang et al. (2009) demonstrated an automatic method to 

determine tree heights from TLS data, and they achieved a correlation of 0.95 for TLS 
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derived tree heights and field measured heights. Moskal and Zheng (2012) estimated tree 

heights in heterogeneous stands using TLS data by calculating the difference between 

the lowest and the highest slice plane from horizontal point cloud slicing. Due to 

occlusion effects, the laser pulses could not penetrate fully through the complex canopy 

to reach the top of trees and accounted for only 57.27% accuracy in predicting tree 

heights.  

Crown width (CW) is an important variable, which can be used to estimate 

biomass, tree volume, and leaf area (Evans et al., 2006). An extensive literature study 

reveals that crown width has so far not been estimated from TLS data and a limited 

number of studies have derived crown width from airborne lidar data. Relationships 

between airborne lidar and field derived crown dimensions are significant, but not very 

strong, with R-squared values ranging from 0.51 to 0.63 (Naesset and Oakland, 2002; 

Popescu et al., 2003; Evans et al., 2006; Van Leeuwen and Nieuwenhuis, 2010). A 

significant parameter in the indirect measurement of true leaf area index is gap fraction 

(Danson et al.; 2007). The authors determined stand-level directional gap fraction 

distributions using TLS and found the results were similar to gap fraction measurements 

obtained from hemispherical photographs. Crown cover is another essential attribute, 

which is used to measure tree health, and it is an approximate indicator of stand density 

(Avery and Burkhart, 2002). It provides information on the amount of plant material, 

such as leaves and branches that obstructs sunlight from penetrating through the tree 

crown. Evans et al. (2006) addressed the use of lidar for forest assessments and proposed 

two significant domains in which lidar could be a major contributor: (1) tree growth and 
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yield modelling at individual tree level for pine plantations using multi-temporal lidar 

data; and (2) implementation of the retrieved individual tree measurements from lidar 

data in immersive visualization environments for the assessment of forest stands.  

Until recently, measuring and monitoring forest growth were mostly done using 

airborne laser scanning, making retrieval of forest attributes and change detection 

challenging at the individual tree level. Since the potential to retrieve different forest 

structural parameters using TLS data is not completely tested in the current literature, 

this study will investigate methods to determine individual tree height, DBH, and crown 

width, which will benefit forest management and other remote sensing studies from 

airborne and spaceborne platforms, for map upscaling, data fusion, or calibration 

purposes. Since Southern pine forests are extremely productive and bolster forest carbon 

sequestration capacity, regular monitoring of forests is essential to foresters and planners 

for managing forest resources and ecosystem services efficiently (Johnsen et al., 2001).  

The overall aim of this study is to develop innovative methods to retrieve forest 

structural parameters at individual tree level using lidar data sets acquired with TLS for 

two distinctly different study sites. Innovative aspects of our study consist in 1) 

developing new methods of deriving tree height, DBH, and crown width from TLS 

datasets at individual tree level; and 2) investigating the influence of scan settings, such 

as leaf-on/leaf-off seasons, tree positioning relative to scanner, and processing choices 

that affect DBH retrieval accuracy. 
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2.2 Materials and Methods 

The flowchart presented in figure 1 shows the research methodology followed in 

this study. This section includes a description of the study area, data used for this study, 

TLS data processing, and the methods to extract individual trees and retrieve DBH, tree 

height, and crown width. 

 

 

 

 
Figure 1. Methodology flowchart to retrieve tree height, DBH, and crown width.  
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2.2.1 Study Area  

The study area for this research includes two different sites (Figure 2). Site 1, 

Ecosystem Science and Management (ESSM) range area, is located in College Station, 

TX, approximately 2.3 km south-east of Easterwood airport (30°34'25.95"N, 

96°21'52.53"W). The study site covers an area of approximately 0.0012 km
2
 and 

includes 21 post oak (Quercus stellata) trees. Post oak is a valuable contributor to the 

urban planting and wildlife food. The slope at this study site varies from 0 to 6 degrees, 

and the elevation ranges from 56.79 to 70.47 m. Site 2 is located near Huntsville, East 

Texas, centered within the rectangle defined by 95°24′57″W - 30°39′36″N and 

95°21′33″W - 30°44′12″N. It includes seven circular plots; four plots cover an area of 

404.600 m² (1/10th acre; r = 11.35 m) each and three plots cover an area of 40.468 m² 

(1/100th acre; r = 3.59 m) each. The dominant species in this site is loblolly pine (Pinus 

taeda), while other cover types in this area include upland and bottomland hardwoods, 

young pine plantations, and old growth pine stands. Loblolly pine is a fast growing pine 

extensively planted for lumber and pulpwood being widely cultivated in the southern 

United States. Besides various anthropogenic uses (e.g. furniture, pilings) it is also used 

as a windbreak and to stabilize eroded soil. The topography of the study area is 

characterized by gentle slopes with elevation ranging from 62 to 105 m. 
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Figure 2. Study site 1: ESSM range area, located in College Station, TX and study site 2 

located in Huntsville, TX shown as a false color composite of national agricultural 

imagery program (NAIP) image. 

 

 

 

2.2.2 Terrestrial Laser Scanning (TLS) Data 

The scans were conducted using Leica ScanStation2, a high point density 3D 

laser scanner (Figure 3), which emits visible green light pulses (532 nm) with a scan rate 

of 50,000 pulses per second. Single point accuracies of 4 mm for distance measurement 

and 6 mm for positional measurement from 1 to 50 m can be achieved with this scanner. 

The maximum field-of-view is 360º horizontal and 270º vertical. At site 1, leaf-on and 

leaf-off scans were conducted in November, 2010 and February, 2012 respectively 

(Figure 4). Site 1 consisted in a group of 21 post oak trees that were scanned from two 

opposite directions to avoid laser shadows as much as possible. The different algorithms 
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developed to retrieve DBH were first tested on the data collected at site 1. At site 2, only 

single scans (360° center scans) were conducted for seven plots in November 2009 and 

two plots in November 2012 (Figure 5).  

For both sites, two stationary reference targets were used while scanning the 

plots, which allowed us to geo-register the scans. The position of the scanner was 

recorded using a differential global positioning system (GPS), and the azimuth to targets 

was measured using a compass. Scans for the study sites were conducted with a point 

density of one laser pulse within 10 cm x 10 cm at a distance of 50 m. As commonly 

noted in literature, multiple high-resolution scans were time consuming compared to 

single scan (Aschoff and Spiecker, 2004; Bienert et al., 2006). At study site 1, the scan 

time was approximately 1.5 hours, with two-direction scans conducted in 2010 and 

2012. The single scan time for study site 2 was 40 min for each plot. 
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Figure 3. Leica ScanStation2, located over the center of a scanner setting at study site 1. 

 

 

 

 
 

Figure 4.TLS point cloud for study site 1 highlighting an individual post oak tree. The 

point cloud is colored by the above ground level (AGL) heights. 
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Figure 5.TLS point cloud for a (1/10
th

) acre circular plot at study site 2. 

 

 

 

2.2.3 Ground Inventory Data 

         At site 1, field measurements (tree height, DBH, and distance and azimuth 

from plot center) were recorded for each tree. At site 2, tree species, height, DBH, crown 

width, and distance and azimuth from plot center were recorded for each tree. Crown 

width was calculated as the average of two values measured along the north-south and 

east-west directions of the crown. A laser technology Inc (LTI) TruPulse 360 laser range 

finder was used to find the distance and azimuth to each tree, and measure the tree height 

and crown width. A diameter tape was used to measure DBH to the nearest tenth of an 

inch. The coordinates of each plot center and positions of reference targets were 

recorded by point averaging using a wide area augmentation system (WAAS) enabled 
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Trimble global positioning system (GPS). Post-processing of GPS data included 

differential correction using Trimble’s Pathfinder software. Ground heights derived from 

a digital elevation model (DEM) were assigned to the differentially corrected points. 

2.2.4 TLS Data Processing 

The 3D virtual point clouds obtained from the scans were unstructured data and 

were reconstructed by dedicated programs to provide required information such as 

heights (Dassot et al., 2011). Registration of the scans for site 1 was done in 3D point 

cloud processing software, Cyclone (Leica Cyclone, Version 7.1.3), wherein three 

common points for both the scans were selected and constraints were added. Registration 

was not required for site 2, since only single scans were conducted at each plot. Once 

registration was complete, geo-registration was performed, wherein individual scans 

from two different local coordinate systems were transformed into a common coordinate 

system. Coordinates of the scanner’s position and azimuth to a stationary target were 

used to complete the geo-registration. While geo-registering the scans, the X and Y 

coordinates (easting and northing) for the scanner position were added from the GPS 

measurements. The Z coordinate (height) was calculated by adding the height of the 

scanner to the z value obtained from a 0.5 m digital elevation model (DEM) generated 

from airborne lidar data available for the study sites.  

The point cloud was then exported to an American standard code for information 

interchange (ASCII) file for further processing in Quick Terrain Modeler (QTM) 

software (Applied Imagery, 2010). Co-registration of the scans (Figure 6) was performed 

using QTM software. The scans from two different years at site 2 were aligned together 
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to extract the same area for data processing and analysis. Since reference targets were 

not used while scanning site 1 in 2010 and site 2 in 2009, co-registration was used to 

assign a coordinate system to the unregistered TLS point cloud. Above ground level 

(AGL) point heights were calculated in QTM by subtracting DEM values from 

corresponding point elevations. All the points with heights less than 0.5 m were 

considered as ground returns and filtered for further analysis. This height threshold was 

selected to minimize the effects of low lying vegetation and rocks, and preserve the 

information useful to estimate different forest structural parameters. In addition, since 

one of the height bins for the retrieval of DBH using cylinder fitting was from 1.0-1.6 m, 

a height threshold of 0.5 was appropriate.  

 

 

 

 
 

Figure 6. Co-registered TLS point cloud data from 2009 and 2012 for a plot dominated 

by loblolly pines at site 2. 
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The trees at each plot were mapped using the distance and azimuth collected 

during our field survey, which allowed us to validate lidar and field measurements of 

different forest structural parameters. A “Map Trees” tool was created using ArcObjects, 

which can automatically map the trees using the co-ordinates of the plot center, distance 

and azimuth to each tree (Figure 7). This tool minimized the field survey time since GPS    

coordinates for each tree need not be collected.  

 

 

 

     

 

Figure 7. Stem map created using the “Map Trees” tool for a 1/10
th

 acre plot at site 2. 

0 4 8 122
Meters

Plot 
Center 
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0.5 m buffers were generated for each mapped tree location and were overlaid on 

the TLS point cloud to verify if the trees mapped using the “Map Trees” tool matched 

with the scanned trees (Figure 8).  

 

 

 

 
 

Figure 8. Mapped trees using distance and azimuth overlaid on the TLS point cloud for 

a 1/10
th

 acre plot, site 2. 

 

 

 

2.2.5 Retrieval of DBH by Cylinder Fitting  

For DBH measurements, height bins of two different sizes were extracted for the 

plot at site 1, and three different sizes were extracted for plots at site 2 using R statistical 

software (version 2.13.1). Once the height bins were extracted, the point clouds were 

cleaned manually to remove the remaining low lying vegetation, to accurately fit 
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cylinders to retrieve DBH using Leica Cyclone. Figure 9 shows the height bin from 1.2-

1.4 m for each of the scanned trees at site 1. The points were colored by AGL heights.  

 

 

 

 
 

Figure 9. 1.2-1.4 m height bin for 2012 TLS point cloud at site 1. 
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DBH was retrieved from TLS datasets using four different methods for site 1: (a) 

cylinder fitting on 1.2-1.4 m height bin; (b) cylinder fitting on 1.25-1.35 m height bin; 

(c) calculation of average diameter between the North-South (N-S) and East-West (E-W) 

edges; and (d) calculation of average DBH of (a) and (c) (Figure 10).  20 cm and 10 cm 

height bins were used at site 1 because two-direction scans were conducted and 

sufficient TLS points were available in the height bins. Hence, increased size height bins 

were not required. DBH for trees located at site 2 were retrieved by fitting cylinders on 

three different height bins: (a) 1.2-1.4 m; (b) 1.1-1.5 m; and (c) 1.0-1.6 m.  Since only 

single scans were conducted at site 2, increased size height bins of 20 cm, 40 cm, and 60 

cm were required to retrieve DBH. Points which deviated most from a fitted cylinder 

were considered noise and removed for DBH measurements. The best cylinder fitting 

method to estimate DBH was also investigated. Further, this study also addressed the 

influences of tree distance from the scanner, number of points to fit the cylinder, number 

of scans (single vs. two-direction scans), and height bin size on DBH estimation 

accuracy.  
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Figure 10. DBH retrieval methods from TLS data. 

 

 

 

2.2.6 Extraction of Individual Trees from TLS Point Cloud  

Individual trees were extracted at each plot to retrieve tree heights and crown 

widths. The first step was to extract point clouds for individual trees by isolating points 

using a cylinder with diameter equal to an expected crown width for each tree. In this 

study, a relationship between field measured crown widths and DBH was established 

from field surveys conducted in 2004. Figure 11 shows the regression results of field 

measured crown widths and DBH for 200 loblolly pine trees in Huntsville, East Texas. 

A high R-squared value of 0.9260 was obtained. The coefficients to predict crown 
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widths were obtained separately for different tree species such as loblolly pines, sweet 

gum (Liquidambar), and oaks (Quercus) (Table 2).  

 

 

 

 
 

Figure 11. Scatter plot of simple linear regression result for field measured crown width 

and field measured DBH 

 

 

 

Table 2. Regression results of field measured crown width (CW) and DBH. 

 

Species Number 

of trees 

Equation R
2 

RMSE (m) 

Loblolly pine 200 CW = 0.5973 + 0.1647 * DBH  0.93 0.71 

Sweet gum  80 CW = 1.2946 + 0.1950 * DBH 0.77 0.67 

Oak 100 CW = 0.7927 + 0.2635 * DBH 0.81 1.26 
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The crown widths were used as the distance variable in the buffer tool in 

Arcmap, and buffers were created for each tree mapped using the previously mentioned 

map trees tool. The individual trees were extracted using vertical cut cylinders in QTM 

obtained using the crown width buffers (Figure 12). After extracting the individual trees 

from lidar point cloud, visual inspection was done to manually remove the points from 

adjacent crowns or stems if present (Hopkinson et al., 2004).  

 

 

 

 
 

Figure 12. Extraction of individual trees using crown widths predicted from TLS 

derived DBH. 

 

 

 

2.2.7 Retrieval of Tree Height and Crown Width  

Since crown widths were not measured at site 1, individual tree heights were 

calculated as the highest point in cut cylinders of varying radii (Maas et al., 2008). 
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Range rings or buffers were created in QTM with different radii such as 0.5 m, 0.8 m, 

and 1 m depending on the DBH of the trees (Figure 13). Range rings of 0.5 m radii were 

created for trees with smaller DBH values.  

 

 

 

 
 

Figure 13. Retrieval of tree heights at site 1 using cut cylinders. 

 

 

 

A different approach was implemented to compute tree heights at site 2. 

FUSION/LDV (Lidar Data Viewer) software is a powerful open source lidar data 

analysis and visualization system developed by the USDA Forest Service, which also 
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includes a collection of task-specific command line programs (McGaughey, 2007). The 

extracted individual trees were input to CloudMetrics algorithm in command line utility. 

Tree heights were automatically computed by the algorithm in addition to several other 

statistical parameters.   

Crown widths were obtained using FUSION and LDV. Measurement cylinders 

were set over each tree (Figure 14), and the diameter was adjusted to compute the crown 

width. For trees with nearly circular crowns, the minimum and maximum crown widths 

were the same. For trees with irregular crowns, the aspect ratio of the measurement 

marker was adjusted to closely match the shape of the crown. Then, the average of 

minimum and maximum crown widths, which correspond to the minor and major axes 

of the measurement disk, was calculated as the crown width of the tree.  

 

 

 

 
 

Figure 14. Measurement disk fitted on a tree to compute crown width.  
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2.3 Results and Discussion 

 2.3.1 DBH Measurement by Cylinder Fitting 

For TLS derived DBH at site 1, validation against field measured DBH indicated 

a high R-squared value of 0.95 for cylinder fitting using 1.2-1.4 m height bin. 

The R-squared values for DBH retrieval using TLS datasets for methods (b), (c), and (d) 

were 0.91, 0.92, and 0.94 respectively. Since two-direction scans were conducted at site 

1, a 20 cm height bin was sufficient to derive DBH from the point cloud. The problem of 

sparse laser points due to shadowing was not experienced at this site.  

The purpose of fitting cylinders with three different height bins at site 2 is 

presented in figures 15 and 16. Two trees at distances 1.22 m (tree 1) and 10.51 m (tree 

2) from the plot center were extracted from the TLS point cloud data. When three height 

bins were generated for both trees, it was seen that tree 1 had sufficient number of laser 

points in all the height bins to fit a cylinder due to no occlusion caused by other trees, 

whereas tree 2 had very few laser points in the 1.2-1.4 m height bin due to shadowing 

from other trees. When the bin size for cylinder fitting was increased from 20 cm to 40 

cm and 60 cm for tree 2, TLS derived DBH were 20.9 cm and 21.5 cm respectively, 

which are close to the field measured DBH (22.3 cm). Since previous studies have 

discussed that DBH cannot be reliably measured with sparse laser points (Bienert et al., 

2006; Brolly and Kiraly, 2009; Huang et al., 2009), estimates of DBH must be retrieved 

using different height bins.  
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Figure 15. Three height bins of two loblolly pines at site 2 extracted for cylinder fitting. 

 

 

 

 
 

Figure 16. Cylinder fitting results on 1.2-1.4 m height bin for tree 1 and tree 2. 
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Overlay plots created for 2009 and 2012 TLS derived DBH from 1.0-1.6 m 

height bin for a plot at site 2 (Figure 17) illustrated the change in DBH for all the trees.  

 

 

 

 
 

Figure 17. Overlay plot for TLS derived DBH using 1.0-1.6 height bin. 

 

 

 

 Table 3 shows the regression results of field measured DBH and TLS derived 

DBH using three height bins for site 2. Though the R-squared values for all three 

methods were high, the number of trees detected using 1.2-1.4 m height bin was low 

compared to the other two methods. Only 83% of the trees were detected and available 

for cylinder fitting to retrieve DBH (Figure 18). For a few trees, the number of points 

within the 1.2-1.4 m height bin was insufficient to fit a cylinder. This might be due to the 

shadowing from other stems or heavy understory. The RMSE value was also high 

compared to the other two height bins (Table 3), which indicated that cylinder fitting on 
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1.2-1.4 m height bin would not be the best method to retrieve DBH from single scans. 

Cylinder fitting on 1.1-1.5 m and 1.0-1.6 m height bins provided similar R-squared 

values and RMSE (RMSE values of 1.83 and 1.85 cm respectively and R-squared value 

of 0.97). Compared to cylinder fitting on 1.2-1.4 m height bin, the RMSE decreased by 

approximately 0.29 cm and the stem detection rate increased by approximately 17%. 

These results show that cylinder fitting on an increased height bin size provide 

promising results for the retrieval of DBH from single scan TLS datasets.  

 

 

 

 
 

Figure 18. Stem detection rate based on the three height bins used for cylinder fitting.   

 

 

 

Table 3. Results of field measured DBH and TLS derived DBH by cylinder fitting using 

three different height bins. 

 

Height bin (m) Number of trees fitted 

with cylinders 

R
2 

RMSE (cm) 

1.2-1.4 122 0.96 2.13 

1.1-1.5 145 0.97 1.83 

1.0-1.6 146 0.97 1.85 
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The accuracy of TLS derived DBH was influenced by several other factors such 

as ranging method, number of scans, and DBH extraction method. The result illustrated 

in figure 19 concurred with the findings of Pueschel et al. (2013), who reported that 

range does not influence the accuracy of DBH estimation; however for lower scan 

resolutions and longer ranges, DBH estimation accuracies might decrease due to reduced 

point density. Figure 20 shows the DBH residuals as a function of the number of points 

to fit 1.0-1.6 m cylinder. DBH residual is the difference between the field measured 

DBH and TLS estimated DBH. Though a strong relationship was not seen, the residuals 

were large for a few stems that had lower number of points to fit the cylinder.  

 

 

 

 
 

Figure 19. DBH residuals as a function of distance from scanner. 
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Figure 20. DBH residuals as a function of number of points to fit the cylinder. 

 

 

 

The minimum, maximum, and average number of points to fit the cylinders using 

1.2-1.4 m, 1.1-1.5 m, and 1.0-1.6 m height bins at site 2 is summarized in table 4. Since 

sufficient laser points were available for cylinder fitting using two-direction scans at site 

1, the number of points used for cylinder fitting was not recorded.  

 

 

 

Table 4. Descriptive statistics for cylinder fitting on single scan data.      

 

 Number of points to fit the 

cylinder 

Cylinder fitting 

height bin (m) 

Min Mean
 

Max 

1.2-1.4  7 126 544 

1.1-1.5 10 245 1105 

1.0-1.6 16 359 1608 
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Considering the number of scans and height bin size, a smaller height bin (1.2-

1.4 m) was sufficient to estimate DBH from two-direction scans. However, for single 

scans, cylinder fitting using increased height bin size provided promising results. The 

use of merged scans for DBH measurements is advantageous due to multi-angular 

coverage (Thies and Spiecker, 2004; Bienert et al., 2006); potentially increasing stem 

detection rates, but is time consuming. Pueschel et al. (2013) found that DBH 

determined from two-direction scans have lower RMSE’s ranging from 0.66-1.21 cm 

compared to single scan data with RMSE’s ranging from 1.39-2.43 cm. The results of 

this study indicated that RMSE for the best DBH extraction method was 0.74 cm for 

two-direction scans 1.83 cm for single scan data.  

 2.3.2 Retrieval of Tree Height and Crown Width 

 Van Leeuwen and Nieuwenhuis (2010) reviewed several studies and discussed 

the accuracy with which different forest inventory parameters can be retrieved using 

lidar. Generally, field measured tree heights are underestimated compared to lidar 

derived heights. As reported in the literature, R-squared values range from 0.75 to 0.98 

for individual tree heights derived from airborne lidar. For TLS derived tree heights, 

RMSE values range from 1.4-4.4 m.  In this study, for site 1, the R-squared value was 

0.66 when TLS derived heights using vertical cut cylinders were regressed against field 

measured heights. The lower R-squared value could be largely attributed to the time lag 

between the field measured tree heights collected in August, 2012 and acquisition of 

TLS data in March, 2012. TLS derived heights underestimated field measured heights by 

an average of 0.6 m. Another possible reason for the unexplained height variance is that 
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the method for tree height estimation at site 1 could result in underestimation of field 

measured heights for irregular crowns, because the highest point might not always be 

found at the center of the tree crown.  

The method used to retrieve tree heights from TLS data in site 2 was more 

automated and provided promising results. The R-squared value was 0.92 and RMSE 

was 1.51 m when field measured heights were regressed against TLS derived heights for 

85 trees (Figure 21). The results agreed with the findings of Hopkinson et al. (2004) and 

Williams et al. (1994) that tree height measurements are less accurate in hardwood 

stands compared to softwood stands. It might also be expected that as the heights 

increase, tree height estimation errors will also increase since the laser pulses might not 

be able to penetrate to the tree tops completely (Van Der Zande et al., 2006). However, 

for site 2, heights had no influence on the tree height estimation, and it was observed that 

field measured heights were overestimated by an average of 0.30 m compared to TLS 

derived heights. This might be due to the misidentification of true tree tops during field 

survey as some plots had dense overstory. Field measured heights were underestimated 

in cases where shadowing was prevalent, which occluded the tree tops.  
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Figure 21. Scatterplot of regression result for field and TLS derived tree heights. 

 

 

 

TLS derived crown widths for site 2 were validated using field measured crown 

widths for 67 trees (Figure 22). The R-squared value was 0.84 and RMSE was 1.08 m. 

This was significantly high compared to other studies, which derived crown widths from 

airborne lidar data (e.g. Naesset and Oakland, 2002). Field measured crown widths were 

underestimated by an average of 0.85 m, which was expected because field 

measurements provided overlapping crown widths, since the entire span of the crown 

was measured in the field, while TLS measurements provided only non-overlapping 

crown widths (Popescu et al., 2003) (Figure 23).  
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Figure 22. Scatterplot of regression result for field measured crown width and TLS 

derived crown width. 
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Figure 23. Non-overlapping crown width obtained from TLS measurements and 

overlapping crown width obtained from field measurements. 

 

 

 

A positive correlation between the crown width residuals and crown widths 

(Figure 24) was observed. Crown width residuals are calculated as the difference 

between field measured crown widths and TLS derived crown widths. As crown width 

increases, the interaction with neighbouring trees also increases, which further increases 
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the variance between field measured and TLS derived crown widths. Field measured 

crown widths were also overestimated when compared to crown widths derived from 

TLS datasets in a few cases, where the complete extraction of an individual tree was not 

possible due to increased interference from adjacent crowns.  

 

 

 

 
 

Figure 24. Crown width residuals as a function of crown width. 

 

 

 

2.3.3 Influence of Tree Shadowing on the Accuracy of Deriving Tree Measurements 

Histograms were generated for a post oak tree at site 1 (Figure 25). It can be 

clearly seen that for the post oak tree at site 1, an increased number of laser hits was 

observed for leaf-on scans at lower heights and fewer laser hits were present on the 

upper part of the tree due to the occlusion caused by other trees, while the number of 
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laser hits in the leaf-off scans were greater for the upper part of the tree due to less 

occlusion. Tree tops could be missed due to shadowing while conducting leaf-on scans, 

leading to the underestimation of field measured tree heights.  

 

 

 

 
 

Figure 25. Histogram overlay analysis for a post oak tree at site 1. 

 

 

 

Figure 26 depicts the influence of tree shadowing, which results in the reduction 

of laser pulse penetration in a plot subset at site 2. The highlighted tree 11 was shadowed 

by tree 12, which prevented the laser pulses from the scanner set at the plot center to 

fully reach the tree crown. Hence, TLS derived tree height underestimated field 

measured tree height by 4.47 m.  The figure also shows another highlighted tree 8, which 

is at a distance of 10.42 m from the scanner and is also obstructed by tree 7. The heavy 

understory and tree 7 have minimized the penetration of laser pulses to tree 8. This led to 

the underestimation of field measured tree height by 4.28 m.  As the tree density and 

branching increases, the quality of information obtained from TLS decreases. Two-



 

49 

 

direction scans can reduce the errors due to occlusion, but they are time consuming (Van 

Leeuwen and Nieuwenhuis, 2010). Thus, it is very important to understand the laser 

pulse penetration through the canopy to reduce the uncertainties in the estimation of 

different forest structural parameters.  

 

 

 

 
 

Figure 26. Reduction of the laser pulse penetration due to tree shadowing.  
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2.4 Conclusions 

The efficacy of terrestrial lidar in retrieving different forest structural parameters 

rapidly and accurately at an individual tree level using novel methods was clearly 

demonstrated in this study. Some of the new methods implemented in this study were 

cylinder fitting on three different height bins to retrieve DBH, tree mapping using an 

automatic tool developed in ArcObjects, extracting individual trees from TLS point 

clouds to retrieve tree height and crown width, and investigating the influence of the 

number of scans on DBH estimation accuracy. For site 1, due to two-direction scans and 

adequate laser point densities in the 1.2-1.4 m height bin, increased height bin size for 

cylinder fitting may not be required to retrieve DBH. For the circular plots at site 2, 

cylinder fitting with increased height bin size provided improved accuracies for DBH 

estimates from single scan TLS data. A high R-squared value of 0.97 and RMSE of 1.85 

cm were obtained when DBH retrieved by cylinder fitting on 1.0-1.6 m height bin were 

validated against field measured DBH. For site 1, the mean height decreased from 2010 

to 2012 due to leaf-on and leaf-off scans respectively, while individual tree level heights 

increased from 2010 to 2012. For site 2, as leaf-on scans were conducted for both the 

years, tree height increased from 2009 to 2012. The R-squared value was 0.84 when 

field measured crown widths were validated against TLS derived crown widths. 

Underestimation of field measured crown widths were observed in this study, because 

overlapping and non-overlapping crown widths were obtained from field measurements 

and TLS data respectively.  



 

51 

 

This study also discussed the influence of number of scans, distance from 

scanner, cylinder fitting height bin size on the estimation of various parameters. TLS 

derived measurements underestimated field measurements when the laser pulses had not 

penetrated completely to the tree crowns due to canopy shadowing. Though an increased 

amount detail is obtained from two-direction scans, it is time consuming in terms of data 

collection and processing (Aschoff and Spiecker, 2004; Bienert et al., 2006; Dassot et 

al., 2011).  Multiple scans should be conducted or correction factors should be applied to 

reduce the errors in estimation of forest structural parameters. The various metrics 

derived from TLS point cloud will be useful for inventory and time series analysis. 

Future work could investigate the potential of integrating spatially coincident airborne 

lidar data and terrestrial lidar data to provide an enhanced characterization of the 

overstory and understory.  
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CHAPTER III 

STUDYING TREE LEVEL GROWTH AND BIOMASS CHANGE USING 

MULTI-TEMPORAL TERRESTRIAL LASER SCANNING DATASETS 

 

3.1 Introduction  

Accurate measures of forest structural parameters and the monitoring of their 

changes through time are essential to forest inventory and growth models, managing 

wildfires, modeling of carbon cycle, and forest management systems (Næsset et al., 

2004). Most extant methods, which include indirect and direct measurement techniques, 

are limited in their capability to acquire accurate, spatially explicit measurements of 

forest three-dimensional structural parameters. The accuracy of these measurements can 

be improved using lidar (light detection and ranging) (Kussner and Mosandl, 2000; 

Henning and Radtke, 2006).  

Lidar, which is an active sensor, emits a series of laser pulses, and measures the 

distance to targets based on the speed of light and travel time of the laser pulses to and 

from a system (Lefsky et al., 2002a). Unlike passive optical remote sensing, lidar remote 

sensing provides detailed information on both horizontal and vertical distribution of 

vegetation in forests (Lim et al., 2003). Applications of lidar remote sensing such as 

measurement of the structure and function of vegetation canopies and estimation of tree 

height, crown width, basal area, stem volume, and aboveground biomass (AGB) are 

elaborated in various studies (Lefsky et al., 2002b; Chen et al., 2007; Popescu and Zhao, 

2008; Falkowski et al., 2009). Non-destructive measurements of AGB can be done using 
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airborne lidar with a higher accuracy compared to AGB measurements obtained through 

other remote sensing techniques (Lefsky et al., 2002a; Bortolot and Wynne, 2005; 

Popescu, 2007; Hudak et al., 2012). Nevertheless, tree height estimates with small 

footprint discrete return airborne lidar tend to slightly underestimate manual 

measurements done in the field, as the laser pulses are not always reflected from tree 

tops. Airborne lidar may not capture the complete vertical distribution of the canopy 

(Lim et al., 2003). Terrestrial laser scanning (TLS)  fills the gap between tree scale 

manual measurements and large scale airborne lidar measurements by providing a 

wealth of precise information on various forest structural parameters (Maas et al., 2008; 

Dassot et al., 2011) and a digital record of the three dimensional structure of forests at a 

given time. Hence, to obtain accurate understory information and detailed canopy 

vertical structure depiction, TLS can produce better results when compared to airborne 

lidar and field measurements (Loudermilk et al., 2009). 

The use of terrestrial or ground-based laser scanners for forest management 

planning and mapping vegetation properties has grown dramatically in the last decade 

(Moskal et al., 2009; Moskal and Zheng, 2012; Kankare et al., 2013). Terrestrial laser 

scanners have a high potential to acquire three-dimensional data of standing trees 

accurately and rapidly through non-destructive methods, which has resulted in the 

multiple use of this technology in studying forest environments (Lovell et al., 2003; 

Dassot et al., 2011). Several studies have shown that TLS is a promising technology in 

providing objective measures of tree height, diameter at breast height (DBH), stem 

density, canopy cover, and AGB  (Bienert et al., 2006; Hopkinson et al., 2008; Maas et 
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al., 2008; Kankare et al., 2013). Evans et al. (2006) addressed the use of lidar for forest 

assessments and proposed two significant domains in which lidar could be a major 

contributor: tree growth and yield modelling at individual tree level for pine plantations 

using multi-temporal lidar data, and implementation of retrieved individual tree 

measurements from lidar data in immersive visualization environments for the 

assessment of forest stands.  

AGB is defined as all the living biomass above the soil that includes stem, stump, 

branches, bark, seeds, and foliage; it is associated with important components such as 

tree health, forest regeneration, and energy conversion (Jenkins et al., 2003). It is a 

crucial ecological variable, which has to be accurately estimated to reduce the 

uncertainties in the estimates of forest carbon budget and understand potential changes 

of the climate system. Further, half of the dry biomass is considered to account for 

carbon, which is of great scientific interest to understand the carbon cycle (Houghton et 

al., 2009; Lin et al., 2010; Zolkos et al., 2013). Næsset et al. (2011) developed non-

linear biomass models using airborne lidar derived height metrics and canopy density. 

The authors performed a stepwise forward selection procedure to select the best set of 

independent variables to estimate biomass. They observed that the estimated biomass 

was not statistically different from field measured biomass for lidar based models.  

Yao et al. (2011) used a ground-based, scanning near-infrared full waveform lidar and 

retrieved tree diameters and stem count density to determine aboveground standing 

biomass. They obtained a coefficient of determination of 0.85 between the lidar derived 

and field measured biomass. Lefsky et al. (2002b) developed a single equation to 
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estimate AGB from lidar derived canopy structure in three distinct study sites that 

explained 84% of the variance. Zolkos et al. (2013) combined and contrasted results  

from different studies on the estimation of AGB from lidar remote sensing and found 

that AGB estimated from remote sensing models were closely related to field measured 

AGB if the residual standard error was less than or equal to 20 Mg ha
-1

. They also 

discussed that significantly better results for the estimation of AGB were obtained using 

airborne lidar data compared to radar or optical data. However, very little research has 

been done in estimating AGB at individual tree level with TLS data, which could be 

used in the detailed evaluation of silvicultural techniques (Kankare et al., 2013).   

Lidar is also a promising technology to study growth and derive forest 

parameters (Hudak et al., 2009). Few studies have investigated forest succession using 

lidar to predict long-term carbon sequestration (Falkowski et al., 2009; Hudak et al., 

2012). Successful modeling of change in airborne lidar estimated biomass has been done 

using three different approaches: (1) computing the change in biomass by subtracting the 

estimated biomass between two different years; (2) modeling of biomass change by a 

system of models; and (3) direct modeling of biomass change (Bollandsås et al., 2013). 

Hopkinson et al. (2008) assessed the plot level mean tree height growth for homogenous 

red pine conifer plantations over a five period using repeat airborne lidar datasets. They 

found that lidar estimated growth rates slightly underestimated the field measured 

growth rates. Falkowski et al. (2009) mapped forest succession using lidar metrics with 

an overall accuracy higher than 90%. Hudak et al. (2012) quantified AGB due to forest 

growth using repeat airborne lidar surveys. They developed predictive tree AGB models 
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using random forest algorithm and monitored biomass change using repeat discrete 

return airborne lidar and field surveys. They reported mean canopy height as the most 

significant predictor for tree biomass. Though their results suggested that biomass 

change and carbon dynamics in conifer forests were monitored efficiently with discrete 

return multi-temporal airborne lidar datasets, a few challenges concerning repeated 

measures using airborne lidar exist, such as differences in lidar acquisition pulse density. 

Yu et al. (2006) were able to measure four years of height growth of 82 Scots pines 

(Pinus sylvestris) with multi-temporal laser surveys, and they developed a tree-to-tree 

matching algorithm. The three change detection techniques used in their study were: (1) 

differencing between canopy height models; (2) comparison between canopy profile, and 

(3) analysis of difference between height histograms. An R-squared value of 0.68 was 

obtained when field measured individual tree height growth was validated against laser 

derived individual tree height growth. However, multi-temporal airborne laser scans 

poses some difficulties such as changes in flight conditions and flight path. Though very 

limited research has been done on AGB change estimation using lidar, several authors 

have discussed the potential of this technology to study forest growth (Yu et al., 2006; 

Næsset et al., 2013). Situations where airborne laser data cannot be used for change 

detection studies are described by the previously mentioned authors, and they suggest 

the use of TLS for future growth analysis.  

The use of TLS for spatially explicit assessment of plot level forest canopy 

structure was examined by Henning and Radtke (2006) in leaf-off and leaf-on 

conditions. The authors quantified differences in characterizations obtained under the 
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two conditions. The comparison results of leaf-on and leaf-off provided a RMSE of 

0.169 m in DBH and mean position error of 0.29 m. Their results support the 

applications of TLS for multi-temporal observation. However, registration of TLS data 

across time was not studied by the authors, but when performed could prove 

advantageous for multi-temporal change detection. Kaasalainen et al. (2010) and 

Kankare et al. (2013) analyzed the potential of TLS to measure standing tree biomass in 

a laboratory environment. One main drawback of local scale AGB estimates produced 

using field measurements or low resolution satellite imagery are the estimate 

uncertainties. However, TLS data allows for non-destructive and detailed modeling of 

individual trees. For example, Kankare et al. (2013) developed single tree based AGB 

models from multiple scan TLS data and reported improved accuracies for branch 

biomass. They input 83 TLS based variables and performed lasso regression and 

stepwise regression to estimate biomass. Kaasalainen et al. (2010) concluded that TLS is 

a promising technology for studying biomass change, and they obtained high R-squared 

values of 0.95 to 0.99 when TLS estimated standing tree biomass were validated with 

field measured biomass.   

The majority of existing studies only investigate biomass estimation in static 

conditions, i.e., determining various forest parameters and estimating AGB at a single 

point in time. Thus, by utilizing multi-temporal lidar data, there is potential in increasing 

the scope of lidar remote sensing for carbon modeling, wildfire risk assessment, and 

other applications (Hudak et al., 2009). Biomass is dynamic and hence has to be 

monitored continuously to provide information on sinks and sources of carbon. It is also 
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essential to utilize such information to project AGB changes to inform decision making 

processes (Avery and Burkhart, 2002; Houghton et al., 2009). Until recently, measuring 

and monitoring forest growth were mostly done using airborne laser scanning, making 

change detection challenging at individual tree level. Since the potential to monitor 

forest growth with multi-temporal TLS datasets remains untested in current literature, 

this study will investigate methods to measure and monitor change in forest biomass 

using TLS data. We believe that the results of this study will benefit forest management 

and planners, and other remote sensing studies from airborne and spaceborne platforms, 

for map upscaling, data fusion, or calibration purposes. 

Since Southern pine forests are extremely productive and bolster forest carbon 

sequestration capacity, regular monitoring of the forests is essential to manage the 

resources efficiently (Johnsen et al., 2001). As the non-destructive and non-contact 

measurements can be collected by a lidar system at multiple moments in time, the 

growth parameters of trees over time can be assessed (Watt and Donoghue, 2005; Dassot 

et al., 2011) with high accuracy. In addition, when extended to a larger area, the multi-

temporal change study will provide us with information on tree mortality and continuous 

forest dynamics. 

The overall goal of this research is to study tree level growth in various forest 

structural parameters and AGB using multi-temporal TLS datasets. Specific objectives 

are to (1) develop models using TLS parameters to estimate tree level AGB; and (2) 

investigate different conceptual approaches for estimating change in AGB.  

 



 

59 

 

3.2 Materials and Methods 

The flowchart presented in figure 27 provides the general methodology followed 

to accomplish the objectives of this study.  

 

 

 

 
 

Figure 27. Methodology flowchart to study tree level growth in height, DBH, and AGB. 
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This section includes details of the study area, description of the data used in this 

study, methods used to retrieve tree level TLS parameters, estimation of tree level AGB 

and studying tree level growth using TLS derived forest structural parameters and 

estimated AGB.  

3.2.1 Study Area  

 The study area for this research is located near Huntsville, East Texas, centered 

within the rectangle defined by 95°24′57″W - 30°39′36″N and 95°21′33″W - 

30°44′12″N. It includes three plots; two of which cover an area of 404.600 m² (1/10th 

acre; r = 11.35 m) and one that covers 40.468 m² (1/100th acre; r = 3.59 m) (Figure 28). 

The dominant species in this site is loblolly pine (Pinus taeda), while other cover types 

in this area include upland and bottomland hardwoods, young pine plantations, and old 

growth pine stands. Loblolly pine is a fast growing pine extensively planted for lumber 

and pulpwood, being widely cultivated in the southern United States. Besides various 

human industrial uses for furniture, pilings, etc., it is also used as a wind break and 

stabilizes eroded soil. The topography of the study area is characterized by gentle slopes 

with elevation ranging from 62 to 105 m. 
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        Figure 28. Study area located in Huntsville, TX shown as a false color composite 

of national agricultural imagery program (NAIP) image. 

 

 

 

3.2.2 Terrestrial Laser Scanning (TLS) Data 

  The scans were conducted using Leica ScanStation2, a high point density 3D 

laser scanner, which emits visible green light pulses (532 nm) with a scan rate of 50,000 

pulses per second. Single point accuracies of 4 mm for distance measurement and 6 mm 

for positional measurement from 1 to 50 m can be achieved with this scanner. The 

maximum field-of-view is 360º horizontal and 270º vertical. As commonly noted in 

literature, the collection of multiple scans were time consuming compared to single scan 

(Aschoff and Spiecker, 2004; Bienert et al., 2006). Hence, only single scans (360° center 

scans) were conducted for the three plots in November 2009 and November 2012.  Two 

stationary reference targets were used while scanning the plots, which further allowed us 

to geo-register the scans. The position of the scanner was recorded using a differential 

global positioning system (GPS), and the azimuth to targets was measured using a 
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compass. Scans for the study sites were conducted with a point density of one laser pulse 

within 10 cm x 10 cm at a distance of 50 m. Single scan time for each plot in the study 

area was approximately 40 min.  

3.2.3 Ground Inventory Data 

 Field measurements for this study included: tree species, height, DBH, crown 

width, and distance and azimuth from plot center. A laser technology Inc (LTI) TruPulse 

360 laser range finder was used to find the distance and azimuth to each tree, and 

measure the tree height and crown width. A diameter tape was used to measure DBH to 

the nearest tenth of an inch. The coordinates of each plot center and positions of 

reference targets were recorded by point averaging using a wide area augmentation 

system (WAAS) enabled Trimble global positioning system (GPS). Post-processing of 

GPS data included differential correction using Trimble’s Pathfinder software. Ground 

heights derived from a digital elevation model (DEM) were assigned to the differentially 

corrected points. 

3.2.4 Retrieval of Tree Level TLS Parameters 

  The processing of TLS data is elaborated in section 2.2.4. The multi- 

temporal data were geo-registered and then co-registered. Above ground level (AGL) 

heights were computed and ground returns were filtered. Field measured trees were 

mapped using “Map Trees” tool (also described in section 2.2.4). The point clouds were 

extracted for individual trees by isolating points using a cylinder with diameter equal to 

an expected crown width for each tree. In this study, a relationship between field 

measured crown widths and DBH was established from field surveys conducted in 
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2004.The detailed procedure for extracting individual trees from TLS point cloud is 

explained in section 2.2.6. All extracted trees in the three plots were grouped into 

loblolly pines and hardwoods. Once the trees were extracted, the point cloud was 

converted into LASer file format (LAS). LAS is a public binary file format, which can 

manage and standardize massive size of lidar data. Tree level DBH and crown widths 

were derived using methods discussed in sections 2.2.5 and 2.2.7 for study site 2. Since 

only single scans were conducted at site 2; increased size height bins of 20 cm, 40 cm, 

and 60 cm were required to retrieve DBH. Zolkos et al. (2013) discussed about edge 

effect, where DBH extraction from remote sensing would be sensitive to any stems 

inside the plot boundary that have crowns extending beyond the boundary, but field 

measurements would not. In this study, plot level edge effects have been accounted for, 

because only trees in the point cloud that corresponded to the field mapped trees have 

been considered for DBH retrieval using cylinder fitting. Crown widths were obtained 

using FUSION and LDV. Measurement cylinders were set over each tree, and the 

diameter was adjusted to compute the crown width.  

 TLS parameters were derived using the command line programs of 

FUSION/LDV (McGaughey, 2007). A total of 22 geometric and statistical parameters 

were calculated from the TLS data for individual trees. TLS statistical parameters were 

computed using the CloudMetrics program. The output of CloudMetrics program was 

provided in a comma separated value (CSV) file, with one record of data for each tree 

LAS file processed. Total return count, maximum height, mean height, standard 

deviation, and variance were computed. In addition, 25
th

, 50
th

, 75
th

, and 90
th

 percentiles 
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were computed. A robust estimator of the variability within a data sample is median 

absolute deviation from the median (MAD Median), which was also used an 

independent variable to estimate biomass. 

Two other variables were computed from the crown base height (CBH): All 

returns above average CBH and percentage (%) of all returns above average CBH. The 

average CBH values were used as height breaks instead of the individual tree CBH to 

compute the cover estimates, in order to capture the variation in crown cover between 

the trees. Since field measurements for CBH were not recorded in 2009 and 2012, the 

average CBH was calculated from 2004 field measurements for 100 loblolly pines and 

100 hardwoods as 9.91 m and 6.51 m respectively. Output values for the cover estimates 

ranged from 0.0 to 100.0 percent. Crown cover is an important attribute, which is used to 

measure tree health, and it is an approximate indicator of stand density. It provides 

information on the amount of plant material, such as leaves and branches that obstructs 

skylight from penetrating through the tree crown (Avery and Burkhart, 2002).  

Upper surface area and total volume under upper surface (or between the ground 

and surface) were calculated using SurfaceStats program, a command line program of 

FUSION/LDV. Height models were created for each tree, which were given as input to 

this program. SurfaceStats is essential to compute the measures of canopy surface 

roughness and volume for small areas. Volume and surface area were calculated by 

separating every grid cell in the surface into two triangles, starting from the lower left to 

the upper right corner of the surface. The 3D coordinates of the vertices of the triangle 

were used to calculate the area of every triangle. The area was computed from the 
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magnitude of the cross product of three vertices of the triangle. Then, half of the grid cell 

area was multiplied by the average height of the three vertices to obtain volume under 

the surface for each triangle. Sum of the values for each triangle provided the totals for 

the entire surface.  

3.2.5 AGB Estimation from Models Developed Using DBH and TLS Parameters 

 AGB was estimated using national (Jenkins et al., 2003) and species  

specific regional equations (Lenhart et al., 1987) for loblolly pines. Due to different 

hardwood species in the study area and lack of regional equations for each, AGB of 

hardwoods was estimated only using national equations. The response variable was field 

measured AGB, which was first calculated for loblolly pines and hardwoods using the 

following Jenkins’s national DBH based allometric equation: 

        (          ), where                                          

bm = total aboveground biomass (kg dry weight) 

DBH = dbh for trees 2.5 cm and larger diameter at breast height (cm) 

Exp = exponential function 

ln = log base e (2.718282) 

 Jenkins et al. (2003) clearly mentioned that the published equations may be 

applied for large-scale estimation of AGB, but should be used carefully at very small 

scales. Hence, AGB was also estimated using regional equations. Lenhart et al. (1987) 

developed AGB equations from 65 loblolly pines in East Texas. The following regional 

equation was used to estimate AGB for loblolly pines: 

                                 , where                      
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  CTDWW = complete tree dry weight in pounds of wood 

  D = dbh for trees 4.5 ft above ground (inches) 

  H = total tree height above ground (feet) 

 For AGB estimation using national and regional equations, the following initial 

set of TLS derived explanatory variables were used (Table 5):  

 

 

 

Table 5. List of TLS parameters to estimate AGB. 

 

TLS parameter Description 

DBH TLS derived DBH by cylinder fitting (1.0-1.6 m height bin) 

Vol  Volume under upper surface area 

Area Upper surface area 

Crown width Crown width 

Total count Total return count 

Ht max Maximum height 

Ht mean Mean height 

Ht stddev Standard deviation  

Ht var Variance 

Ht CV Coefficient of variation 

Ht IQ Interquartile distance 

AAD Average Absolute Deviation 

MAD median Median of the absolute deviations from the overall median 

P25 25
th
 percentile height 

P50 50
th
 percentile height 

P75 75
th
 percentile height 

P90 90
th
 percentile height 

Canopy relief ratio Canopy relief ratio 

% returns above mean % returns above mean 

All returns above mean All returns above mean 

%  returns above avg CBH %  returns above average crown base height 

All returns above avg CBH All returns above average crown base height 
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 Four different models were developed to estimate AGB, with reference values 

computed separately using national and regional equations. The first model was 

developed by selecting variables using an initial mixed stepwise regression, in which 

inclusion and removal of variables were based on a significance level of 0.05. It was 

followed by examining the multicollinearity problem through variance inflation factor 

(VIF) analysis and all variables with a VIF >10 were removed from the model. The 

second model to estimate AGB was developed using TLS derived DBH. From section 

2.3.1, since higher R-squared value, low RMSE and higher number of trees were 

obtained for DBH derived by cylinder fitting on 1.0-1.6 m height bin, the same was used 

as an explanatory variable to estimate AGB. The third model was developed only with 

TLS derived geometric and statistical parameters, excluding DBH. The selection of TLS 

parameters to estimate AGB was done based on the correlations with field measured 

AGB, obtained from multivariate analysis. The significant parameters with higher 

correlations to field measured AGB and VIF less than 10 were included in the model. 

The fourth model to estimate AGB was built using TLS parameters and DBH.  

3.2.6 Estimation of Change in Tree Level Forest Structural Parameters and AGB for 

Loblolly Pines 

 Growth and yield modeling should be restricted to shorter time periods not 

exceeding 5 to 10 years, because the rate of tree growth in volume, DBH, or height is 

heavily influenced by tree age (Avery and Burkhart, 2002). To study forest biomass 

change, at least two observations over a 5 year period are required (Houghton et al., 

2009). Biomass change over a period of 11 years was estimated by Næsset et al. (2013) 
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using a direct estimation approach based on field measurements and model assisted 

approach based on airborne lidar data as additional information. The authors related the 

change in biomass estimated using airborne lidar derived explanatory variables to 

various management activities. 

The second objective of this research was to study forest growth over a period of 

3 years using multi-temporal TLS data collected in 2009 and 2012. Growth in tree height 

was calculated as the difference between the TLS derived heights for 2009 and 2012. 

Scatterplots for DBH and height with height growth were developed to study the trend in 

height growth with increasing height and DBH. Field measured AGB growth was also 

studied as a function of tree height. To estimate the change in AGB, three different 

approaches were followed. The first approach was to estimate AGB change by modeling 

AGB for 2009 and 2012 simultaneously, with field and TLS data available for both 

years. Models for AGB were fitted separately. Change in AGB was calculated as the 

difference between the estimated AGB for 2009 and 2012. The second approach was 

separate modeling of AGB for 2009 and 2012, but in this case, field and TLS data were 

available for 2009; only TLS data was considered available for 2012. AGB estimation 

models were built using the data from 2009. AGB for 2012 was estimated using the 

model developed from 2009 field and 2012 TLS data. Then, AGB change was the 

difference between the estimated AGB for 2009 and 2012. The rationale for this second 

approach was based on remote sensing paradigm of reducing but not eliminating field 

work, by using previously developed models to update remote sensing estimates of 

biophysical parameters, in this case biomass. The third approach was the direct modeling 
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of AGB change, in which the changes in TLS parameters were used as independent 

variables. Unlike the first two approaches, the results from direct modeling approach are 

affected by only one model error (Bollandsås et al., 2012).  The purpose of estimating 

AGB change using the third approach was to investigate whether forest growth can be 

studied independent of field data, thereby minimizing manual labor and time. The three 

approaches used to model AGB change are shown in figure 29.  

 

 

 

 
 

Figure 29. Three approaches used to estimate AGB change.  

 

 

 

 Dubayah et al. (2010) identified carbon sources and sinks by observing changes 

in the various height metrics and biomass derived from multi-temporal medium altitude 

waveform lidar data. The authors discussed the need for better allometric equations to 

estimate biomass, since DBH based allometric equations may contain errors as they are 
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developed from limited number of trees, thus failing to provide accurate biomass 

estimates.  Thus, for each approach, different models were developed using TLS derived 

DBH, geometric and statistical parameters. 

3.3 Results and Discussion 

 3.3.1 Tree Level AGB Estimation for Loblolly Pines and Hardwoods 

 The distribution of 58 loblolly pine trees by DBH and height classes is shown in 

figure 30. It can be seen that the DBH for most of the trees ranged from 12 to 27 cm, 

with only two larger trees whose DBH were greater than 30 cm.   

 

 

 

       
 

Figure 30. Distribution of height and DBH for 58 loblolly pines. 
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 Tables 6 and 7 show the correlations of various TLS geometric and statistical 

parameters with field measured AGB calculated using national and regional equations 

respectively. It can be seen from tables 6 and 7 that TLS derived geometric parameters 

such as DBH, volume, area, and crown width were better correlated with field measured 

biomass compared to TLS derived statistical parameters. Our results agree with the 

findings of Kankare et al. (2013), who reported that the best correlations between TLS 

based features and biomass components were achieved with the measured geometric 

features that are less dependent on scanning parameters such as lidar point densities 

compared to statistical parameters. Parameters such as percent returns above mean, total 

count, and percent returns above average CBH were poorly correlated with field 

measured AGB. Presence of heavy understory in 2012 plots, which obstructs the 

penetration of TLS pulses completely to reach the trees could be one of the reasons for 

the weak relationship between few statistical parameters and field measured AGB. 

 

 

 

Table 6. Correlations of TLS parameters with field measured AGB for loblolly pines 

and hardwoods calculated using national equations. 

 

Loblolly Pines Hardwoods 

Parameter Correlation Parameter Correlation 

DBH 0.9648 Vol 0.9910 

Crown width 0.8552 Area 0.9608 

Vol 0.7712 DBH 0.9389 

Ht max          0.6561 Ht var 0.9194 

Area 0.6382 Crown width 0.8853 

Returns above avg CBH 0.4101 P90 0.8613 

Returns above mean 0.4003 P25 0.8571 

Total count 0.3826 Ht mean 0.8469 
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Table 6. Continued 

 

Loblolly Pines Hardwoods 

Parameter Correlation Parameter Correlation 

Ht var 0.3316 P50 0.8434 

P90 0.3306 P75 0.8430 

Ht stddev 0.3271 Ht max 0.8400 

AAD 0.2458 Ht stddev 0.8293 

Ht mean 0.1493 AAD 0.7636 

% returns above avg CBH 0.1427 Returns above avg CBH 0.6601 

P25 0.1419 MAD median 0.6132 

Ht CV 0.1403 Ht IQ 0.6004 

P50 0.1315 Returns above mean 0.4836 

P75 0.0972 % returns above avg CBH 0.4451 

% returns above mean -0.0094 Total count 0.4445 

Ht IQ -0.0442 Ht CV 0.3141 

Canopy relief ratio -0.1014 % returns above mean 0.2404 

MAD median -0.1411 Canopy relief ratio -0.1494 

 

 

 

Table 7. Correlations of TLS parameters with field measured AGB calculated for 

loblolly pines using regional equations. 

 

Parameter Correlation 

DBH 0.9570 

Crown width 0.8398 

Vol 0.7673 

Ht max          0.7205 

Area 0.6440 

Returns above avg CBH 0.4390 

Returns above mean 0.4289 

Total count 0.4113 

Ht var 0.3807 

Ht stddev 0.3695 

P90 0.3505 

AAD 0.2855 

Ht CV 0.1704 

Ht mean 0.1507 

% returns above avg CBH 0.1389 
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Table 7. Continued 

 

Parameter Correlation 

P50 0.1338 

P25 0.1260 

P75 0.1110 

Ht IQ -0.0114 

% returns above mean -0.0188 

Canopy relief ratio -0.1235 

MAD median -0.1313 

 

 

 

 The four different AGB estimation models for loblolly pines based on national 

and regional equations are given in tables 8 and 9 respectively. The parameters and            

coefficients for each model are also included in the tables. Both national and regional 

level AGB estimation models based on the results from stepwise regression had TLS 

derived DBH and interquartile distance as independent variables. Variance was an 

additional independent variable in the national level AGB estimation model. DBH is an 

important forest inventory attribute because it serves as a fundamental parameter in tree 

allometry, providing valuable information about individual trees and the forest stand 

structure (Moskal and Zheng, 2012). Interquartile range and variance are measures of 

statistical dispersion, which relates to the structure of a tree by providing information on 

the stretch of a distribution.  

Based on the results of the third model developed from TLS parameters, both 

national and regional level AGB estimation models had the same independent variables 

in the models: crown width, maximum height, and 50
th

 percentile. Crown width (CW) is 

an important variable, which can be used to estimate biomass, tree volume, and leaf area 
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(Evans et al., 2006). Extensive literature studies revealed that crown width had so far not 

been estimated from TLS data and a limited number of studies had derived crown width 

from airborne lidar data (Popescu et al., 2003; Evans et al., 2006; Van Leeuwen and 

Nieuwenhuis, 2010). Thus, to our knowledge, the results from this study will be the first 

to develop AGB estimation model using TLS derived crown width as an independent 

variable. The second variable in the model, tree height is also a vital parameter, which 

provides qualitative information about the plot or stand and quantitative information 

about the tree. DBH and tree heights are positively correlated with biomass, since stem 

diameter increases as trees grow taller, thus increasing the amount of foliage supported 

by the trees (Dubayah and Drake, 2000). The third variable in the model is the 50
th

 

percentile height or median, which is the height of median energy (HOME), an 

important variable used to derive forest structural parameters and estimate AGB from 

waveform lidar data (Drake et al., 2002; Zhao et al., 2013).   

For the final model developed using TLS parameters and DBH, interquartile 

distance and maximum height were independent variables for the national and regional 

level AGB estimation models respectively in addition to TLS derived DBH. Though it 

can be seen from table 6 that interquartile distance was not highly correlated to field 

measured AGB, it was the only significant parameter along with DBH with a VIF less 

than 10. On the other hand, maximum height had a higher correlation of 0.7205 with 

field measured AGB calculated from regional equation (Table 7). 
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Table 8. Model parameters and coefficients for the estimation of AGB for loblolly pines 

based on national equation. 

 

Model Parameters and coefficients 

Stepwise regression 15.03(DBH)+2.48(Ht var)-9.17(Ht IQ)-161.23 

DBH 16.56(DBH)-197.69 

TLS parameters 82.50(Crown width)+10.24(Ht max)-5.85(P50)-284.84 

TLS parameters+DBH 16.63(DBH)-2.52(Ht IQ)-186.31 

 

 

 

Table 9. Model parameters and coefficients for the estimation of AGB for loblolly pines 

based on regional equation. 

 

Model Parameters and coefficients 

Stepwise regression 15.61(DBH)-1.51(Ht IQ)-181.21 

DBH 15.57(DBH)-188.03 

TLS parameters 70.03(Crown width)+14.53(Ht max)-4.83(P50)-331.02 

TLS parameters+DBH 14.16(DBH)+5.60(Ht max)-188.03 

 

 

 

 The results obtained for AGB estimation for 58 loblolly pines using models 

developed based on national and regional equations were compared (Table 10) to see if 

national or regional based models provided accurate estimations of AGB. Though the 

adjusted R-squared values and RMSE for four different models based on national and 

regional equations were not considerably different, results showed that national level 

AGB models performed better than regional level AGB models except for the model 

developed using TLS parameters alone. Thus, in AGB change estimation for loblolly 

pines, field measured AGB estimated using the national equation was to develop the 

models (section 3.3.2).  
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Table 10. Comparison of AGB estimation models based on national and regional 

equations for loblolly pines. 

 

Model National level AGB models    Regional level AGB models 

Adjusted R
2 

RMSE (kg) Adjusted R
2 

RMSE (kg) 

Stepwise regression 0.95 15.99 0.92 20.52 

DBH 0.93 19.85 0.91 20.74 

TLS parameters 0.82 31.33 0.83 28.81 

TLS parameters+DBH 0.94 18.81 0.92 19.82 

 

 

 

 Figure 31 shows the distribution of field measured AGB calculated using 

national equation for loblolly pines and distributions of estimated AGB from four 

different models as explained above. Though the mean estimated AGB from the four 

models were the same as the mean field measured AGB, results from table 10 and figure 

31 showed that the best AGB estimation model was the one developed using the 

variables selected from stepwise regression, with the highest adjusted R-squared value 

and lowest RMSE.  
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Figure 31. Frequency distributions of field measured AGB for loblolly pines based on 

national equations and estimated AGB using four different models. 

 

 

 

 For hardwoods, only models based on national equation were developed. Table 

11 provides the various models with the respective parameters and coefficients. The 

third model built using TLS parameters had a significantly high R-squared value of 0.99 

and low RMSE value of 32.33.  Volume and crown width were the independent 

variables, which had high correlation values of 0.9910 and 0.8853 with field measured 

AGB (Table 6).  
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Table 11. Model parameters and coefficients for the estimation of AGB for hardwoods 

based on the national equation. 

 

Model Parameters and coefficients 

Stepwise regression 21.54(DBH)+37.94(Crown width)+2.78(Ht mean)+ 

6.59(% returns above mean)-708.70 

DBH 30.88(DBH)-294.79 

TLS parameters 1.30(Vol)-35.60(Crown width)+69.45 

TLS parameters+DBH 38.71(DBH)-108.99(MAD median)-224.77 

 

 

 

Figure 32 shows the distribution of field measured AGB calculated using the 

national equation for hardwoods and distributions of estimated AGB from four different 

models. The results were in agreement with those from table 12 that the model 

developed using TLS parameters performed the best compared to other three models.  

 

 

 

 
 

Figure 32. Frequency distributions of field measured AGB for hardwoods based on 

national equation and estimated AGB using four different models. 
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Table 12. Salient model results for the estimation of AGB for hardwoods based on 

national equations 

 

Model Number of trees Adjusted R
2 

RMSE (kg) 

Stepwise regression 20 0.88 111.70 

DBH 20 0.87 115.62 

TLS parameters 20 0.99 32.23 

TLS parameters+DBH 20 0.91 99.01 

 

 

 

Though the maximum estimated AGB was close to the field measured AGB, a 

negative minimum estimated AGB was obtained from the three models excluding the 

one built using TLS parameters only. This means that the AGB decreased from 2009 to 

2012, which was not true as observed from field measured AGB results. The reason for 

the underestimation of AGB in 2012 for a few trees might be due to canopy shadowing, 

in which case TLS pulses would not have penetrated completely to certain parts of the 

individual trees due to heavy understory. Canopy architecture is a significant parameter 

which largely influences the penetration of laser pulses. AGB was overestimated for a 

few trees in 2009 and the reason could be due to the inability to separate tree crowns 

completely for plots with heavy overstory.  

 3.3.2 Tree Level Growth for Loblolly Pines 

 Stukey (2013) established a relationship between age and lidar estimated tree 

height through site index. The individual tree age for loblolly pines in Huntsville was 

estimated using 2004 airborne lidar data. An R-squared value of 0.99 was obtained when 

the average field age in 2004 were regressed against average age predicted using lidar 

estimated heights for ten plots. Loblolly pines identified using TreeVaW (Tree Variable 

Window) software were provided by Stukey. Each tree had various attributes including 
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the estimated age from lidar derived heights and site index. For our study, the trees in 

three plots used to estimate tree level change were extracted from the entire study area. 

When the field measured trees were mapped on the TreeVaW identified trees, it was 

observed that only 70 percent of the total field measured trees were identified by 

TreeVaW. The estimated age for trees used to study tree level change ranged from 15 to 

21 years of age in 2009 and 18 to 24 years of age in 2012. Overestimation or 

underestimation of age could be due to errors site index.   

 When height growth from 2009 to 2012 for 29 loblolly pines was plotted against 

field measured tree heights and DBH separately (figure 6 and 7), a meaningful 

relationship in height growth was not observed with increasing heights and DBH. Since 

most of the sample trees had DBH ranging from 14.8 to 26.1 cm, and only two trees with 

DBH 32.6 and 35.8 cm, a better relationship could be obtained if more trees covering a 

wide range of tree heights were sampled. Further, a rapid growth in height was not 

noticed because growth in tree height proceeds slowly in the beginning years after the 

establishment of the seed, which is then followed by very quick growth during the next 

20 to 30 years. In addition, age is not the only variable that influences the rate of 

diameter and height growth. When the trees are closely spaced, root-growing space 

decreases resulting in smaller crowns with a decreased diameter and height growth 

(Avery and Burkhart, 2002). The other reason for observing a slow height and diameter 

growth in loblolly pines could be attributed to the presence of hardwoods in a few of our 

study plots. Hardwoods compete with loblolly pines for soil moisture, nutrients and 

other factors (Clason, 1978; Miller et al., 1991).  
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  Figure 33. Scatterplot of height growth and height. 

 

 

 

 
 

  Figure 34. Scatterplot of height growth and DBH. 
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 When change in AGB between 2009 and 2012 was plotted against tree height 

(Figure 35), it was seen that taller trees had an increased growth in AGB because the age 

of the trees used to study AGB change ranged from 15 to 24. Since canopy properties 

and growth are significantly related to each other, developing models to estimate change 

in forest structural parameters and AGB on a larger scale will be important for stand 

management (Dean and Baldwin, 1996).   

 

 

 

 
 

  Figure 35. Scatterplot of AGB growth and height 

 

 

 

Figure 36 shows the AGB change estimation results from approach I. Mean AGB 

change estimated using three different models in approach I were the same as the field 

measured AGB change. Minimum field measured AGB change was 1.29, but a negative 
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minimum AGB change was observed in the three models. The negative value for AGB 

change might not have necessarily been due to the decrease in AGB. The reasons might 

be due to the underestimation of AGB in 2012 because of canopy shadowing or 

overestimation of AGB in 2009 due to the inability to separate the crowns of adjacent 

trees completely. It is challenging to isolate individual tree crowns accurately in closed 

canopies due to overlapping branches of adjacent trees (Hudak et al., 2009). Amongst 

the three models, AGB change estimated using the models developed from TLS derived 

DBH was closest to field measured AGB change.  

 

 

 

 
 

Figure 36. Distributions of AGB change using approach I. 

 

 

 

 The best models used to estimate AGB in 2009 and 2012 are given below: 

             (   )         

              (   )         
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AGB change was obtained by subtracting the estimated AGB in 2009 and 2012. The 

relationship between field measured AGB change and predicted AGB change using 

approach I is shown in figure 37.   

 

 

 

 
 

Figure 37. Regression of field measured AGB change and estimated AGB change using 

approach I. 

 

 

 

 AGB change estimation results from approach II are presented in figure 38. 

Minimum estimated AGB changes for the three models were better than the results from 

approach I, since a large negative AGB change was not observed. However, mean 

estimated AGB change for the three models were different from the field measured mean 

AGB change, the maximum difference being 39.44 kg and minimum difference being 
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3.57 kg. In this approach, the model developed using TLS derived DBH performed 

better compared to the other two models.  

 

 

 

 
 

Figure 38. Distributions of AGB change using approach II. 

 

 

 

 The best model used to estimate AGB in 2009 is given below: 

             (   )         

AGB in 2012 was obtained using the AGB model developed in 2009 and TLS data in 

2012. The relationship between field measured AGB change and predicted AGB change 

using approach II is shown in figure 39.  
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Figure 39. Regression of field measured AGB change and estimated AGB change using 

approach II. 

 

 

 

 Table 13 shows the correlations of change in TLS parameters with the change in 

field measured AGB. The change in each parameter is denoted as d(parameter), which is 

the difference between TLS parameters in 2009 and 2012. Change in volume and area 

had the highest correlations with change in field measured AGB. Though we used field 

measured AGB change as a dependent variable in approach III, AGB change can be 

estimated using these models if multi-temporal TLS datasets are alone available, thus 

eliminating field measurements. 
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Table 13. Correlations of change in TLS parameters with change in field measured AGB 

for loblolly pines. 

 

Parameter Correlation 

d(Vol) 0.6122 

d(Area) 0.5845 

d(P25) 0.4931 

d(DBH)          0.4346 

d(% returns above mean) 0.3873 

d(Crown width) 0.3812 

d(Returns above avg CBH) 0.3767 

d(Returns above mean) 0.3731 

d(Total count) 0.3341 

d(P50) 0.2271 

d(Ht mean) 0.1884 

d(% returns above avg CBH) 0.1774 

d(P75) 0.1270 

d(Canopy relief ratio) 0.1194 

d(Ht max) 0.1074 

d(Ht var) -0.1437 

d(AAD) -0.1530 

d(Ht stddev) -0.1659 

d(MAD median) -0.1714 

d(P90) -0.1767 

d(Ht IQ) -0.2349 

d(Ht CV) -0.3005 

 

 

 

 Figure 40 shows the AGB change estimation results from approach III. The 

minimum estimated AGB change were better compared to the results from approach I, 

since a large decrease in AGB from 2009 to 2012 was not observed. Though the mean 

estimated AGB change from the three models was the same as the field measured AGB 

change, the maximum estimated AGB change was not the same. Maximum field 

estimated AGB change differed from the maximum AGB change estimated from the 
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models based on TLS derived DBH, TLS parameters, TLS parameters and DBH by 

36.7039 kg, 13.7256 kg, and 23.0672 kg respectively. The best model in this approach 

was the one developed using TLS parameters: change in volume and change in 90
th

 

percentile.  

 

 

 

 
 

Figure 40. Distributions of AGB change using approach III. 

 

 

 

 The best model used to estimate AGB change directly using TLS datasets 

available in 2009 and 2012 is given below: 

               (   )      (   )        

The relationship between field measured AGB change and predicted AGB change using 

approach III is shown in figure 41. 
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Figure 41. Regression of field measured AGB change and estimated AGB change using 

approach III. 

  

 

 

 Figure 42 shows the min/mean/max graph for the best AGB change estimation 

model using each approach compared to field measured AGB change. The model results 

of estimated AGB change using the three approaches are given in table 14. Though the 

minimum and maximum AGB changes were close to field measured AGB change, 

approach II had the lowest R-squared value and the highest RMSE. For most of the trees, 

approach II overestimated the field measured AGB change. Since AGB models 

developed in 2009 were used with TLS data in 2012 in approach II to estimate the AGB 

in 2012, errors in the estimated AGB change may be due to the following reasons: (1) 

differences in point densities between the 2009 and 2012 TLS scans; (2) tree shadowing 

due to branches of other trees or heavy understory; (3) scanner positioning errors; and 
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(4) errors in field measured AGB itself. The results from approach II suggests that 

uncertainties in AGB change estimates are possible if AGB model from one year and 

TLS data of the second year are used to estimate the AGB for the second year. The 

errors in AGB change estimates can be minimized if the scanner is placed at the same 

position in both years, if the same scan resolution is used, and if multiple scans are 

conducted to eliminate tree shadowing as much as possible.  

 An R-squared value of 0.45 and RMSE of 10.75 kg were obtained when field 

measured AGB change was regressed against estimated AGB change using approach I. 

However, 17 percent of the trees had a negative estimated AGB change. The 

underestimation of AGB change using approach I may be because of occlusion due to 

heavy understory in 2012, thus minimizing the complete penetration of laser pulses to 

reach the trees. The R-squared value and RMSE did not change significantly even when 

the negative estimated AGB change were changed to zero AGB change (assuming that a 

decrease in AGB did not occur between 2009 and 2012), and then regressed against field 

measured AGB change. Further, the results of estimating the AGB change by modeling 

AGB separately for the two years are affected by two model errors (Bollandsås et al., 

2012).   

 AGB change estimations using approach III were better compared to approaches 

I and II. An R-squared value of 0.50 and RMSE of 10.09 kg were obtained when field 

measured AGB change was regressed against estimated AGB change using approach III. 

Large negative AGB change was not observed in approach III. Results from the direct 

modeling approach suggest that AGB change can be modeled independent of field 
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measurements, if multi-temporal TLS datasets are available. Unlike the first two 

approaches, the results from direct modeling approach are affected by only one model 

error (Bollandsås et al., 2012).   

 

 

 

 
 

Figure 42. Min/mean/max graph for field measured AGB change and AGB change 

estimated using the best model of each approach. 

   

 

 

Table 14. Model results for the estimation of AGB change for loblolly pines. 

 

 Number of trees R
2 

RMSE (kg) 

Approach I  29 0.45 10.75 

Approach II 29 0.19 13.03 

Approach III 29 0.50 10.09 
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3.4 Conclusion 

TLS is a powerful technology that provides highly dense point cloud data, from 

which various geometric and statistical parameters can be extracted for individual trees 

(Kankare et al., 2013). Since majority of the AGB estimation models are developed only 

using DBH, we investigated the potential of TLS by extracting various geometric and 

statistical parameters for AGB estimation. This study presented different methods and 

statistical approaches to estimate AGB and model the change in AGB using multi-

temporal TLS data. The best AGB estimation model for loblolly pines had DBH, height 

variance, and interquartile distance as independent variables. The best AGB estimation 

model for hardwoods included volume and crown width as independent variables, both 

being TLS geometric parameters. Since the mean estimated AGB from the models were 

not statistically different from the field measured AGB, these models could be used to 

obtain non-destructive measurements AGB for loblolly pines and hardwoods. An 

interesting finding was that AGB estimates for pines obtained from generalized biomass 

equations and regional biomass equations were not significantly different. Tree 

shadowing is an important factor that has to be considered and minimized in case of 

single scan data to prevent the underestimation or overestimation of the derived 

statistical parameters. For example, 50
th

 percentile or HOME, an important variable used 

to estimate AGB may be influenced by the laser penetration through the canopy, and the 

value will be higher in areas where lower portions of the canopy are shadowed due to 

heavy understory. Multiple scans can be conducted to avoid laser shadows as much as 

possible due to branches or heavy understory. Co-registered airborne lidar data can also 
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be integrated with terrestrial lidar data to obtain an enhanced characterization of the 

canopy, which may further prevent the underestimation of certain TLS derived 

parameters such as tree height, 75
th 

percentile, and 90
th

 percentile. Although we 

presented methods to estimate AGB only for loblolly pines and hardwoods, they can be 

applied to other tree species also. 

Current and future changes in forest structural parameters and AGB are vital for 

prudent decision making as well as choosing appropriate growth and yield models. 

Natural areas can be protected by increasing the yield on fewer acres of natural stands of 

loblolly pines, thus minimizing the conversion of natural acres to plantations (Bruce and 

Bailey, 2001). We did not observe a significant relationship between growth in tree 

height and DBH to field measured heights. Some factors that influenced the growth of 

loblolly pines were competition due to hardwoods, age of the trees and spacing between 

the trees. Regarding AGB change, we did not model the change for hardwoods due to 

the lack of sufficient trees to develop the model. For AGB change of loblolly pines, 

approach III (Direct modeling of AGB change with TLS data available for 2009 and 

2012) provided the best results. Since the mean estimated AGB changes using the direct 

modeling approach were not significantly different from the field measured AGB 

change, forest growth could be studied independent of any field measurements when 

biomass models are already available. However, the models could be improved by 

incorporating more trees with a wide range of DBH and tree heights. Negative estimated 

AGB change using approach I were observed for a few trees (Separate modeling of AGB 

to estimate AGB change) due to canopy shadowing. The results from approach II 
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(Models developed for 2009 from field and TLS data to estimate biomass in 2012 based 

on 2012 TLS data only and 2009 biomass models) overestimated the field measured 

AGB change for most of the trees. Such errors could be minimized by conducting 

multiple scans. Though a very significant relationship was not observed between the 

field measured AGB change and TLS estimated AGB change using the three 

approaches, there are no other studies we can compare results to. An extensive literature 

review reveals that this is the first study to model the change in AGB using different 

innovative and conceptual approaches with multi-temporal TLS data. 

The results of our study indicate the capability of terrestrial lidar to model the 

change in tree level forest structural parameters and AGB, with potential for reducing 

the amount of field work when using multi-temporal terrestrial lidar datasets. To model 

change in forest structural parameters and AGB at larger scales, multi-stage sampling 

could be implemented based on the availability of airborne lidar data. Reliable 

information on tree level growth on a larger scale will also be vital to forest fire 

managers to make critical decisions on clearing the accumulated fuel. Monitoring 

various forest attributes and biomass using terrestrial and airborne lidar can further be 

used to validate measurements from imminent spaceborne lidar missions (Dubayah and 

Drake, 2000; Falkowski et al., 2010). 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

The efficacy of terrestrial lidar in retrieving different forest structural parameters 

rapidly and accurately at an individual tree level using novel methods was clearly 

demonstrated in this study. Some of the new methods implemented in this study were 

cylinder fitting on three different height bins to retrieve DBH, tree mapping using an 

automatic tool developed in ArcObjects, extracting individual trees from TLS point 

clouds to retrieve tree height and crown width, and investigating the influence of the 

number of scans on DBH estimation accuracy.For site 1, due to two-direction scans and 

adequate laser point densities in the 1.2-1.4 m height bin, increased height bin size for 

cylinder fitting may not be required to retrieve DBH. For the circular plots at site 2, 

cylinder fitting with increased height bin size provided improved accuracies for DBH 

estimates from single scan TLS data. A high R-squared value of 0.97 and RMSE of 1.85 

cm were obtained when DBH retrieved by cylinder fitting on 1.0-1.6 m height bin were 

validated against field measured DBH. For site 1, the mean height decreased from 2010 

to 2012 due to leaf-on and leaf-off scans respectively, while individual tree level heights 

increased from 2010 to 2012. For site 2, as leaf-on scans were conducted for both the 

years, tree height increased from 2009 to 2012. The R-squared value was 0.84 when 

field measured crown widths were validated against TLS derived crown widths. 

Underestimation of field measured crown widths were observed in this study, because 
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overlapping and non-overlapping crown widths were obtained from field measurements 

and TLS data respectively.  

This study also discussed the influence of number of scans, distance from 

scanner, cylinder fitting height bin size on the estimation of various parameters. TLS 

derived measurements underestimated field measurements when the laser pulses had not 

penetrated completely to the tree crowns due to canopy shadowing. Though an increased 

amount detail is obtained from two-direction scans, it is time consuming in terms of data 

collection and processing (Aschoff and Spiecker, 2004; Bienert et al., 2006; Dassot et 

al., 2011).  Multiple scans should be conducted or correction factors should be applied to 

reduce the errors in estimation of forest structural parameters. The various metrics 

derived from TLS point cloud will be useful for inventory and time series analysis.  

TLS is a powerful technology that provides highly dense point cloud data, from 

which various geometric and statistical parameters can be extracted for individual trees 

(Kankare et al., 2013). Since majority of the AGB estimation models are developed only 

using DBH, we investigated the potential of TLS by extracting various geometric and 

statistical parameters for AGB estimation. This study presented different methods and 

statistical approaches to estimate AGB and model the change in AGB using multi-

temporal TLS data. The best AGB estimation model for loblolly pines had DBH, height 

variance, and interquartile distance as independent variables. The best AGB estimation 

model for hardwoods included volume and crown width as independent variables, both 

being TLS geometric parameters. Since the mean estimated AGB from the models were 

not statistically different from the field measured AGB, these models could be used to 
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obtain non-destructive measurements AGB for loblolly pines and hardwoods. An 

interesting finding was that AGB estimates for pines obtained from generalized biomass 

equations and regional biomass equations were not significantly different. Tree 

shadowing is an important factor that has to be considered and minimized in case of 

single scan data to prevent the underestimation or overestimation of the derived 

statistical parameters. For example, 50
th

 percentile or HOME, an important variable used 

to estimate AGB may be influenced by the laser penetration through the canopy, and the 

value will be higher in areas where lower portions of the canopy are shadowed due to 

heavy understory. Multiple scans can be conducted to avoid laser shadows as much as 

possible due to branches or heavy understory. Co-registered airborne lidar data can also 

be integrated with terrestrial lidar data to obtain an enhanced characterization of the 

canopy, which may further prevent the underestimation of certain TLS derived 

parameters such as tree height, 75
th 

percentile, and 90
th

 percentile. Although we 

presented methods to estimate AGB only for loblolly pines and hardwoods, they can be 

applied to other tree species also. 

Current and future changes in forest structural parameters and AGB are vital for 

prudent decision making as well as choosing appropriate growth and yield models. 

Natural areas can be protected by increasing the yield on fewer acres of natural stands of 

loblolly pines, thus minimizing the conversion of natural acres to plantations (Bruce and 

Bailey, 2001). We did not observe a significant relationship between growth in tree 

height and DBH to field measured heights. Some factors that influenced the growth of 

loblolly pines were competition due to hardwoods, age of the trees and spacing between 



 

98 

 

the trees. Regarding AGB change, we did not model the change for hardwoods due to 

the lack of sufficient trees to develop the model. For AGB change of loblolly pines, 

approach III (Direct modeling of AGB change with TLS data available for 2009 and 

2012) provided the best results. Since the mean estimated AGB changes using the direct 

modeling approach were not significantly different from the field measured AGB 

change, forest growth could be studied independent of any field measurements when 

biomass models are already available. However, the models could be improved by 

incorporating more trees with a wide range of DBH and tree heights. Negative estimated 

AGB change using approach I were observed for a few trees (Separate modeling of AGB 

to estimate AGB change) due to canopy shadowing. The results from approach II 

(Models developed for 2009 from field and TLS data to estimate biomass in 2012 based 

on 2012 TLS data only and 2009 biomass models) overestimated the field measured 

AGB change for most of the trees. Such errors could be minimized by conducting 

multiple scans. Though a very significant relationship was not observed between the 

field measured AGB change and TLS estimated AGB change using the three 

approaches, there are no other studies we can compare results to. An extensive literature 

review reveals that this is the first study to model the change in AGB using different 

innovative and conceptual approaches with multi-temporal TLS data. 

The results of our study indicate the capability of terrestrial lidar to model the 

change in tree level forest structural parameters and AGB, with potential for reducing 

the amount of field work when using multi-temporal terrestrial lidar datasets. To model 

change in forest structural parameters and AGB at larger scales, multi-stage sampling 
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could be implemented based on the availability of airborne lidar data. Future work could 

also investigate the potential of integrating spatially coincident airborne lidar data and 

terrestrial lidar data to provide an enhanced characterization of the overstory and 

understory. Reliable information on tree level growth on a larger scale will also be vital 

to forest fire managers to make critical decisions on clearing the accumulated fuel. 

Monitoring various forest attributes and biomass using terrestrial and airborne lidar can 

further be used to validate measurements from imminent spaceborne lidar missions 

(Dubayah and Drake, 2000; Falkowski et al., 2010). 
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