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ABSTRACT 

 

Recent progress has been made developing ion mobility-mass spectrometry (IM-

MS) instruments for biophysical studies; however, experimental techniques that can 

probe the structure and/or dynamics of biomolecules at intermediate extents of hydration 

are limited and little is known about the final stages of desolvation during electrospray 

ionization (ESI). Here, ion optical devices, analytical methodology, and instrument 

platforms are developed to study the conformations of structurally labile biomolecules 

(i.e., peptides and proteins) produced upon ESI and provide new insight into their 

solution to gas phase evolution.  

First, fundamental principles of periodic focusing ion mobility spectrometry are 

comprehensively discussed. Radial ion confinement is attributed to a collisionally 

dampened effective potential that ultimately results in high ion transmission. Detailed 

equations of motion are derived that culminate into useful methodology for accurate 

determination of peptide and protein collision cross section values via inclusion of a 

mobility dampening coefficient. 

Second, evaporation of water from extensively hydrated protons and peptides 

formed by ESI is examined for the first time using a new cryogenic (80 K) IM-MS 

instrument platform. Key parameters that influence the cluster distributions are critically 

examined. In agreement with previous studies, the findings indicate that water 

evaporation is largely dependent upon the particular charge-carrying species within the 

cluster. IM-MS results for protonated water clusters suggest that the special stability of 
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the well-known H+(H2O)n (n = 21) “magic number” cluster is attributed to the presence 

of a compact clathrate cage isomer produced upon ESI. Peptide studies are also 

presented in which specific and nonspecific solvation is observed for gramicidin S [GS + 

2H]2+ (H2O)n (n = 0 to 26) and bradykinin [BK + 2H]2+ (H2O)n (n = 0 to 73), 

respectively. However in the case of substance P, [SP + 3H]3+, the results demonstrate 

that a compact dehydrated conformer population (resulting from the evaporative ESI 

process) can be kinetically trapped on the time scale of several milliseconds, even when 

an extended coil conformation is energetically favorable in the gas phase. 
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NOMENCLATURE 

 

ATD   arrival time distribution 

BK   bradykinin 

CID   collision-induced dissociation 

DC   direct current 

DC IG  direct current ion guide 

CRM   charge residue model 

ESI   electrospray ionization 

GEMMA  gas-phase electrophoretic mobility molecular analyzer 

GS   gramicidin S 

HPLC  high performance liquid chromatography 

IEM   ion evaporation model 

IIMS   inverse ion mobility spectrometry 

IM   ion mobility 

IM-MS  ion mobility-mass spectrometry 

IMS   ion mobility spectrometry 

MS   mass spectrometry 

FAIMS high-field asymmetric waveform ion mobility spectrometry (also 

termed differential mobility spectrometry) 

OMS   overtone mobility spectrometry 

PA   proton affinity 
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PF IMS  periodic focusing ion mobility spectrometry  

SP  substance P 

TDC  time-to-digital converter 

TIMS  trapped ion mobility spectrometry 

TOF  time-of-flight 

TW IMS  travelling wave ion mobility spectrometry 

RF  radio frequency 

RF IF  radio frequency ion funnel 

UF IMS  uniform field ion mobility spectrometry 

a   acceleration 

ar   radial acceleration 

az   axial acceleration 

D   diffusion coefficient 

d   electrode inner diameter 

F   force 

FElectric  force on the ion due to the electric field 

FFriction  force on the ion due to collisions with the neutral buffer gas 

Fr   radial force 

Fz   axial force 

E   electric field 

Ec   central or net electric field 

Emax   maximum periodic focusing electric field  
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Emin   minimum periodic focusing electric field 

E0,r   radial electric field amplitude 

E0,z   axial electric field amplitude 

Ez   axial electric field 

Ez(𝑧)   axial profile of the axial electric field 

Ez(𝑟)   radial profile of the axial electric field 

Er   radial electric field 

Er(𝑧)   axial profile of the radial electric field 

Er(𝑟)   radial profile of the radial electric field 

Ex x-component of the electric field in the Cartesian coordinate system 

Ey y-component of the electric field in the Cartesian coordinate system 

Ez z-component of the electric field in the Cartesian coordinate system 

e   elementary charge (1.602·10-19 C) 

K   ion mobility coefficient 

K0   reduced mobility coefficient 

kB   Boltzmann’s constant (1.381·10-23 J · K-1) 

L   axial length of drift tube 

m   mass 

M   mass of neutral 

N   gas number density 

N0   gas number density at STP (2.687·1025 m-3) 

nz   number of ion-neutral collisions per unit 𝑧-dimension 
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P   pressure 

P0   standard pressure (760 Torr) 

p   momentum 

q   charge of ion 

R   resolving power 

r   radial displacement 

𝑟   radial direction 

ri    initial 𝑟-position 

rv,i    initial 𝑟-displacement in vacuum 

s   electrode spacing 

T   temperature 

Teff   effective ion temperature 

T0   standard temperature (273.15 K) 

t   time 

t0   time spent by an ion outside the drift tube 

td   drift time 

∆td   full width of the drift time peak at half maximum height 

V   voltage 

Vp-p   peak-to-peak RF voltage 

V*   effective potential or pseudopotential 

v   velocity 

vd   drift velocity 
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vr,v   radial velocity in vacuum 

vr,v,i   initial radial velocity in vacuum 

vz   axial velocity 

w   electrode width 

z   charge state 

𝑧 axial direction 

α   mobility damping factor for PF IMS 

β   a term that accounts for the ion-neutral interaction potential 

ξ a dimensionless term to account for the ion’s fractional energy loss due 

to inelastic collisions 

Ω   ion-neutral collision cross section 

ΩHe   ion-helium collision cross section 

ΩRF   RF frequency 

Ωeff   effective RF frequency 

µ   reduced mass 

λ   wavelength 

∆   slope 
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1. ION MOBILITY AND MASS SPECTROMETRY 

 

1.1 Overview 

Ion mobility spectrometry (IMS) involves the electrophoretic transport of gas-

phase ions through a neutral buffer gas. Introduced as plasma chromatography ca. 1970, 

IMS was originally considered to have drift times that compared to chromatographic 

retention times. The association unfortunately hindered the progress of IMS as an 

analytical technique, as the peak capacity of IMS simply could not match that of high 

performance liquid chromatography (HPLC), and the resolution could not match that of 

mass spectrometry (MS). In the past few decades, interest in IMS has renewed as a 

variety of instrument modifications coupling IMS to MS have improved the resolution 

and versatility resulting in suitability for a wide range of biological and chemical 

applications. For example, several variations of the original uniform field IMS (UF IMS) 

technique have been developed including traveling wave IMS (TW IMS), periodic 

focusing IMS (PF IMS), high-field asymmetric IMS (FAIMS), overtone mobility 

spectrometry (OMS), trapped IMS (TIMS), inverse IMS (IIMS), and the gas-phase 

electrophoretic mobility molecular analyzer (GEMMA)—all of which have been 

coupled to MS. Together, ion mobility-mass spectrometry (IM-MS) affords several 

attractive analytical attributes including rapid (µs–ms) separations of complex mixtures, 

isobars, and isomers, reduction of chemical noise, and determination of ion size—all of 

which are difficult or impossible to achieve by IMS or MS alone. Moreover, IM-MS has 

the capability of differentiating ions belonging to chemical classes (i.e. carbohydrates, 
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lipids, nucleotides, peptides, and proteins) and charge states (i.e., z = 1+, 2+, 3+…) along 

distinctive mobility-mass trendlines.1-3 Although a relatively old technique, the 

aforementioned characteristics have allowed IMS and particularly, IM-MS to emerge as 

a powerful analytical tool with a broad range of applications including the study of 

atmospheric ions,4 aerosol particles,5 and ion cluster geometries,6-9 detection of airborne 

chemical agents,10-11 separation of conformational mass isomers of small molecules,12-14 

assignment of ground and excited electronic states in transition metals,15 and 

characterization of hydrocarbons in crude oils.16-17 Additionally, the separation speed 

and information-rich data have allowed for biological applications aimed at investigating 

molecular structure18-19 and/or carrying out high-throughput separations of complex 

mixtures in the fields of proteomics,3,20 glycomics,21-22 and metabolomics.23 

Owing to the versatility of IM-MS, the study of novel instrument design 

platforms and applications continues to be one of the most rapidly growing areas in the 

field. Moreover, several research groups have focused on achieving high resolution (R > 

50) IMS separations as this factor primarily limits overall IM-MS peak capacity and the 

information content that can be experimentally derived.24-26 The resolution of the ion 

mobility measurement is defined as the ratio between the average drift time (td) and the 

full width of the mobility peak at half-maximum height (Δtd). Theoretically, resolution is 

limited by several factors, although for a sufficiently small packet of ions, the dominant 

contribution is axial (𝑧) diffusional broadening in the drift tube. A practical definition of 

diffusion-limited IMS resolution is given by,27 

𝑹 =    𝒕𝒅
𝚫𝒕𝒅

=    𝟏
𝟒

𝒒𝑳𝑬
𝒌𝑩𝑻 𝐥𝐧𝟐

𝟏
𝟐           (1) 
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where T is the temperature, q is the ion charge, kB is Boltzmann’s constant, L is the 

length of the drift tube, E is the electric field, and the product LE translates into the 

overall voltage drop, V, across the drift tube. Jarrold et al. reported among the highest 

measured mobility resolution to date, R = 172, for singly charged fullerene radical 

cations using 10,000 V applied across a 63 cm drift tube maintained at a pressure of 500 

Torr24 while Clemmer et al. more recently achieved R = 345 for doubly charged 

substance P ions using a pulsed cyclic drift tube design.28 

 

1.2 Principles of Uniform Field Ion Mobility Spectrometry 

1.2.1 The Low-field Limit  

UF IMS is the fundamental basis for all other ion mobility techniques since the 

transport theory has been mathematically described and the electric field that ion see 

contains only an axial (𝑧) component.  Ion mobility in UF IMS occurs as ions traverse a 

drift tube containing an inert buffer gas under the influence of a low uniform electric 

field. The force exerted on the ion by the electric field is opposed by the frictional forces 

created by ion-neutral collisions, resulting in an average velocity for the ion, termed the 

drift velocity (vd), as shown in Figure 1. 
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Figure 1.  Forces exerted upon a representative singly charged cation (purple circle) in 
IMS.  The force created by the electric field (FElectric, (+) 𝒛-direction) is greater than the 
frictional forces (FFriction, (-) 𝒛-direction) created by ion-neutral collisions resulting in net 
ion transport in the (+) 𝒛-direction.  Below the low field limit, the magnitude of the drift 
velocity of the ion is comparable to the Maxwell-Boltzmann velocity distribution of the 
neutral gas resulting in ion trajectories that resemble directed diffusion. 
 

The field strength is typically expressed in units of E/P having units of V·cm-

1·Torr-1 or E/N measured in Townsend units (1 Td = 10-17 V·cm2). The mobility constant 

(K) provides proportionality between the drift velocity and the electric field (E) and is 

given by,29 

𝑲 = 𝒗𝒅
𝑬
= 𝑳

𝒕𝒅  𝑬
            (2) 

where td is the drift time of the ion. K may also be expressed as the reduced ion mobility 

coefficient, K0, obtained by standardizing K to standard temperature (T0 = 273.15 K) and 

pressure (P0 = 760 Torr),  
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𝑲𝟎 = 𝑲 𝑷
𝑷𝟎  

𝑻𝟎
𝐓

            (3) 

where P is the drift gas pressure, and T is the drift gas temperature. Structural features 

may be deduced using the parameters K0 and Ω expressed in the relationship,29-30  

𝑲𝟎 =
𝟑𝒒
𝟏𝟔𝑵𝟎

𝟐𝝅
𝝁𝒌𝑩𝑻

𝟏
𝟐 𝟏

𝛀
          (4) 

where,  

𝝁 = 𝒎𝑴
𝒎!𝑴

             (5). 

The terms N0, m, M, q, and 
 
represent the standard particle number density of the 

buffer gas, the mass of the ion, the mass of the buffer gas, the charge of the ion and the 

reduced mass, respectively.  From eqs. (3), (4), and (5), Ω can be obtained from the 

expression, 

𝛀 = 𝟑𝒒
𝟏𝟔𝑵𝟎

𝟐𝝅
𝝁𝒌𝑩𝑻

𝟏
𝟐 𝒕𝒅𝑬

𝑳
𝑷𝟎𝑻
𝑷𝑻𝟎

         (6). 

It should be noted that eq. (6) is defined under conditions where the ion-neutral 

interaction potentials (i.e., ion-induced dipole) and ion heating effects are assumed to be 

minimal.  These assumptions are reasonable for typical operation of UF IMS devices 

with bath gasses of low polarizability at ambient temperature. Moreover, eq. (6) applies 

when the kinetic energy the ions gain in the electric field (!
!
  m𝑣!!) is not significantly 

above the thermal energy (kBT), defining a low-field limit.  

 

  

µ
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1.2.2 Intermediate Electric Fields 

Although it is generally assumed that IMS is carried out under the low-field 

limit, ions present in a drift tube can have a different temperature than the buffer gas 

owing to the electric field acting upon them.29  The effective ion temperature (Teff) is 

described by,  

𝟑
𝟐
𝒌𝑩𝑻𝒆𝒇𝒇 =   

𝟑
𝟐
𝒌𝑩𝑻+   

𝟏
𝟐
𝑴𝒗𝒅  𝟐 (𝟏+ 𝜷)        (7) 

where 𝛽 is a small correction term related to the interaction potential.  When ions are 

molecular, rather than atomic, eq. (7)  must be modified to account for inelastic 

collisions and anisotropic interaction potentials,31 

𝟑
𝟐
𝒌𝑩𝑻𝒆𝒇𝒇′ = 𝟏+    𝑴

𝒎  
𝛏
!𝟏 𝟑

𝟐
𝒌𝑩𝑻+   

𝟏
𝟐
𝑴𝒗𝒅  𝟐 (𝟏+ 𝜷′)       (8). 

In this case, 𝛽′ is a new correction term of similar magnitude to β, ξ is a dimensionless 

ratio which represents the fractional energy loss due to inelastic collisions, and 𝑇!""′  is a 

new effective ion temperature.  However, when E/N is sufficiently small, ξ → 0 and eq. 

(8) reduces to eq. (7). 

Ion heating becomes significant for IMS measurements of macromolecules at 

reduced pressures (0.1-1 Torr) as well as high electric fields.  Under these conditions, Teff 

> T because the field contribution to the ion kinetic energy is nonzero.  That is, the 

translational kinetic energy gained by a macromolecule from the electric field between 

subsequent collisions cannot be completely quenched by a single collision with the 

buffer gas which allows for partial conservation of momentum (see Figure 2(d)).  At 

sufficiently low field strength, K remains independent of E/N defining an intermediate-
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field region where eq. (6) still applies.32-33 However, if Teff becomes sufficiently high, 

labile analytes can undergo structural rearrangement.  If the structural change results in a 

difference in Ω, the transition will be reflected in K. 

 

 

Figure 2.  Microscopic ion velocity (solid blue trace) below the low field limit for a 
given E and P (a), 2E and P (b), and E and 2P (c).  The drift velocity increases owing to 
the electric field acting upon the ion until subsequent collision with a neutral whereupon 
the ion velocity is completely quenched.  In each case, the macroscopic drift velocity 
that is measured by IMS is represented by the dashed grey line.  In the intermediate field 
(d), ion-neutral collisions do not completely quench the ion velocity (solid purple trace) 
allowing for partial momentum conservation—a critical outcome that forms the 
foundation for the theory derived in Sections 2-4. 

 

1.2.3 Addressing the Limitations of the Uniform Field 

Current IM-MS technology emerged from uniform field ion mobility 

spectrometry (UF IMS) measurements that employ a linear voltage gradient to facilitate 
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ion transport through a buffer gas.  While fundamental gas phase ion transport is 

mathematically described for UF IMS29,34-35 and measurement of analyte size (by eq. 6) 

is straightforward, radial (𝑟) diffusion poses significant limitations to the sensitivity 

(especially for ion mobility platforms coupled with MS) owing to the loss of radially-

diffuse ions at conductance limiting apertures required for efficient integration of the 

relatively high pressure drift tube and the vacuum region of the mass analyzer. 

Contemporary IM-MS instruments achieve high sensitivity by utilizing radial ion 

focusing devices.  Although this strategy is effective, accurate determination of Ω 

requires additional consideration because ion transport contains additional modes—the 

extent of which depend entirely upon the specific technique employed and voltages 

applied.  For example, the commercially available TW IMS (Synapt HD MS, G1 and 

G2, Waters Inc., Manchester, U.K.) superimposes RF voltage on the ring electrodes to 

radially confine ions during IMS analysis.  TW IMS measurement also relies upon an 

electrodynamic potential waveform (T-wave) which traverses the drift tube to facilitate 

axial ion transport.  While TW IMS has developed into a robust and sensitive method 

with an expanding user-base, TW IMS requires complex electronic design for the 

applied dynamic voltages that limit the overall drift length and subsequent IMS 

resolving power (typically R ≈ 40).  Moreover, determination of Ω by TW IMS deviates 

from the first-order UF IMS principles thereby demanding careful calibration methods 

because Ω is exponentially proportional to TW IMS drift time.36  The calibration is 

further complicated by its dependency on the T-wave height, wave velocity, and the 

potential for significant ion heating inside the drift tube.37 To obtain effective ion-helium 
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Ω values (ΩHe) using TW IMS, drift times measured in N2 (g) are calibrated with ions 

whose ΩHe is known by UF IMS.  Hence, a large effort in calibrating TW IMS 

measurements to yield ΩHe values remains the subject of current research for several 

groups because a robust method must account for all of the aforementioned variables.  

Giles et al. have demonstrated a relatively straightforward method for measurement of 

ΩHe in a TW IMS device, but these conditions do not yield optimal resolution and are 

only established for species with a single (or narrow) conformer distribution.38 

Several other approaches have also been developed to improve dispersive IMS 

ion transport including the segmented quadrupole drift tube39 and drift tube positioned in 

a strong magnetic field.40 However, the most widely used approach involves the use of 

RF ion funnel (RF IF) region(s) in the middle and/or back of a UF IMS drift tube to 

compensate for radial diffusion.  Schematically, the RF IF is a conical shaped ion guide 

that consists of a series of several closely spaced radially symmetric thin ring electrodes 

with an inner diameter that decreases in the axial dimension.  Ions are focused in the r-

dimension by an inhomogeneous RF field that contains a confining effective potential 

(or pseudopotential, V*) barrier extending from the electrode edges while ions propagate 

in the 𝑧-direction owing to the superimposed DC potential drop across the device.  

Although this approach is effective, Gillig et al. demonstrated an even simpler means for 

improving ion transmission by maintaining the inner diameter (d), width (w), and 

spacing (s) of UF IMS electrodes ~6 mm.  These modifications altered the shape of the 

electric field and resulted in ion confinement along the central drift axis (𝑟  = 0) without 

the use of electrodynamic voltages.41-42 The new design yielded ion transmission 
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properties far superior to UF IMS, and the resolving power has exceeded >100 by simply 

increasing the length of the drift tube without affecting ion transmission.42-43 

Fundamental characterization of the new device, termed a periodic focusing ion mobility 

spectrometer, is the major focus of Sections 2 through 4.     

  



 

11 

 

2. PERIODIC FOCUSING ION MOBILITY SPECTROMETRY: AXIAL DRIFT 

AND EFFECTIVE RF MOTION* 

 

2.1 General Features 

PF IMS incorporates two major modifications to the UF IMS ring electrode 

geometry (shown in Figure 3) to achieve radial confinement of ions during the IMS 

separation: (1) a decrease in the inner diameter and (2) an increase in the width of the 

lens element with respect to the electrode spacing, while a linear axial voltage drop is 

maintained across the electrode stack.42,44  The novel geometry takes advantage of the 

fringing electric fields created near the edges of thick electrodes that generate the 

periodic focusing phenomenon.  As a result, PF IMS operates in the low pressure regime 

between 1-10 Torr to produce rapid IMS separations on the µs-ms timescale and allow 

for utilization of kHz electronic pulsing and/or various multiplexing strategies for ion 

injection into the drift tube.45-46 Under these conditions, the signal-to-noise is greatly 

enhanced and the duty cycle of the IM-MS instrument can approach unity.   

                                                

* Part of this chapter is reprinted with permission from “Gas-Phase Ion Dynamics in a 
Periodic-Focusing DC Ion Guide” by Joshua A. Silveira, Chaminda M. Gamage, Ryan 
C. Blase, and David H. Russell, 2010. Int. J. Mass Spectrom., 296, 36-42, Copyright 
[2010] by Elsevier and “Gas-Phase Ion Dynamics in a Periodic-Focusing DC Ion Guide 
(Part II): Discrete Transport Modes” by Chaminda M. Gamage, Joshua A. Silveira, Ryan 
C. Blase, and David H. Russell, 2011. Int. J. Mass Spectrom., 303, 154-163, Copyright 
[2010] by Elsevier. 
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Figure 3.  Longitudinal cross-sections of 32 cm UF (a) and PF (b) IMS drift tubes 
showing ion trajectories (flying left to right) in black.  Ion transmission is increased in 
the PF IMS via the periodic focusing mechanism which confines ions near the central 
drift axis and maximizes ion transport through the exit of the drift tube.  

 

2.2 Mathematical Description of the Effective RF 

Figure 4 contains a schematic representation of two lens elements in PF IMS, 

including labels of the geometric variables and the cylindrical coordinate system referred 

to in this discussion.  
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Figure 4.  Two adjacent PF IMS electrodes showing the variables that define the aspect 
ratio (s:w:d) and the radial (𝒓) and axial (𝒛) dimensions. The location of electric field 
boundary conditions, r = 0 and r = rsurface, are also indicated. 
 

In this section, a PF IMS design with an aspect ratio having s = 6 mm and w = 6 

mm is considered for description of the electric fields as sinusoidal functions.  This 

treatment is optimum at an 𝑟-position < 0.25d where ions typically reside under stable 

operating conditions.  Figure 5 shows the spatial oscillations along the 𝑧-dimension for 

the axial electric field (Ez (𝑧)) and radial electric field (Er (𝑧)) at discrete 𝑟-positions for a 

single electrode subunit.  It is important to note that │Ez (𝑧)│ oscillations are dominant 

compared to │Er (𝑧)│–especially at small 𝑟 values. 
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Figure 5.  Electric fields as a function of the 𝒛-dimension in a PF IMS drift tube: (a) 
axial electric field oscillations at varied 𝒓-position and (b) radial electric field 
oscillations at varied 𝒓-position shown for one electrode subunit.  Ez directs axial ion 
drift while Er generates an effective RF in the inertial frame for an ion with a given axial 
velocity. Analogous to RF devices, 𝑬𝒓  increases as 𝒓-position increases as illustrated in 
(b). 
 

It is initially assumed that vz is constant as changes in this variable will be 

considered later. For these parameters, Ez (𝑧) at constant 𝑟 may be described by the time-

dependent expression, 

𝑬𝒛 𝒛 = 𝑬𝟎,𝒛  𝐜𝐨𝐬    𝛀𝒆𝒇𝒇𝒕 +   𝑬𝒄         (9) 
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where 𝐸!,!  is the axial electric field amplitude, Ωeff is the effective RF frequency, and Ec 

is the central electric field.  Similarly, Er (𝑧) is 90° out-of-phase from the Ez (𝑧) 

waveform and may be approximated by the smooth curve given by, 

𝑬𝒓 𝒛 = 𝑬𝟎,𝒓  𝐬𝐢𝐧    𝛀𝒆𝒇𝒇𝒕           (10) 

for variable radial positions with changing radial electric field amplitude, 𝐸!,!. For the 

waveforms described by eq. (9) and (10), the wavelength (λ) is equivalent to,  

𝝀 = 𝒘+ 𝒔              (11) 

Moreover, the effective RF is given by, 

𝛀𝒆𝒇𝒇 =
𝟐𝝅𝒗𝒛
𝛌
              (12) 

in radians.47-48 The average effective RF (Ω!"") may be calculated considering the ions 

depicted in Figure 3. At E/N = 75 Td the average axial ion velocity for C60
+• in He is 𝑣! 

≈ 0.83 mm·µs-1 corresponding to an average drift time of 380 µs over a 32 cm drift 

length.  For 26 electrodes of dimensions s = w = 6 mm (λ = 12 mm), Ω!""  = 68 kHz.  

Thus, although not intuitively obvious, ions in PF IMS experience an effective RF with 

an average frequency in the kHz range comparable to conventional RF multipole ion 

guides and traps!49 

 

2.3 Equations of Radial Ion Motion 

The radial electric force, Fr, generating the radial ripple can be derived 

considering a system with constant amplitude E0,r (fixed 𝑟-position), and constant axial 

velocity (𝑣!).  Vacuum conditions are initially assumed since this is defined as one 
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boundary condition to describe the radial ion motion.  Considering the harmonic field 

changes as a function in time, 

𝑭𝒓 =𝒎𝒂𝒓 = 𝒒𝑬𝒓 = 𝒒𝑬𝟎,𝒓  𝐬𝐢𝐧 𝛀𝒆𝒇𝒇𝒕         (13) 

where ar is the radial acceleration of the ion.  Rearranging eq. (13) and substituting eq. 

(12), the radial acceleration of the ion becomes, 

𝒂𝒓 =
𝒒
𝒎
𝑬𝟎,𝒓  𝒔𝒊𝒏

𝟐𝝅𝒗𝒛
𝝀
𝒕           (14) 

Under vacuum conditions, the radial velocity component (𝑣!,!) due to the effective RF 

motion can be obtained by integrating eq. (14) with respect to t yielding, 

𝑽𝒓,𝒗 = −    𝒒
𝒎
𝑬𝟎,𝒓

𝝀
𝟐𝝅𝒗𝒛

𝒄𝒐𝒔 𝟐𝝅𝒗𝒛
𝝀
𝒕 +   𝒗𝒓,𝒗,𝒊       (15) 

where 𝑣!,!,! is the initial radial velocity in vacuum.  Accordingly, displacement in the 𝑟-

direction for vacuum conditions is obtained via integration of eq. (15) with respect to t 

yielding, 

𝒓𝒗 = −    𝒒
𝒎
𝑬𝟎,𝒓

𝝀
𝟐𝝅𝒗𝒛

𝟐
𝒔𝒊𝒏 𝟐𝝅𝒗𝒛

𝝀
𝒕 +   𝒗𝒓,𝒗,𝒊𝒕+   𝒓𝒗,𝒊      (16) 

where rv,i is the initial 𝑟-displacement. 

However, since stable operating conditions of PF IMS require the presence of 

collisional cooling, low-field IMS theory must also be considered.  In this case, 

macroscopic radial drift is induced by microscopic collision events  such that the radial 

velocity component is reset to vr = 0 following each ion-neutral collision.33  In this case, 

if a constant electric field is present, the net velocity (or drift velocity) that arises from 

the microscale events is constant while changes in the magnitude of the drift velocity are 

directly proportional to the changes in the magnitude of the electric field. Furthermore, 
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the drift velocity and electric field vectors are in the same direction for a positively 

charged ion. Mathematically, for the sinusoidally changing acceleration caused by the 

force of the electric field in eq. (13), the radial velocity (vr) profile in the low-field 

collisional regime may be obtained by the drift velocity as, 

𝒗𝒓 = 𝑲𝑬𝟎,𝒓  𝒔𝒊𝒏
𝟐𝝅𝒗𝒛
𝝀
𝒕           (17) 

where K is the ion mobility coefficient.  By integrating eq. (17) with respect to t, the 

radial displacement (r) can be obtained, 

𝒓 = −𝑲𝑬𝟎,𝒓
𝝀

𝟐𝝅𝒗𝒛
𝒄𝒐𝒔 𝟐𝝅𝒗𝒛

𝝀
𝒕+   𝒓𝒊          (18) 

where ri is the initial 𝑟-position.  It is important to note that eq. (18) describes the 

effective RF motion in the presence of ion-neutral collisions assuming constant E0,r and 

vz.  However, as 𝑟-position increases, E0,r  increases as shown in Figure 5. As 𝑧-position 

increases, vz oscillates according to Ez and the number of collisions experienced per unit 

z-dimension (nz).48  Each effect induces changes in both the amplitude and the frequency 

of the motion described by eq. (18).  The amplitude changes may be considered 

symmetric in the (+) and (-) 𝑟-segments of the radial ripple motion while the frequency 

changes are not observed in the final ion trajectory traces since they are displayed in the 

space domain with fixed λ.   

More importantly, eq. (18) assumes that ion kinetic energy is reset to zero 

following subsequent collision events. In other words, the radial momentum of the ion is 

completely damped during the collisions.  However, under stable operating conditions, 

ions in PF IMS maintain a fraction of their initial radial momentum after a collision 
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event with a neutral gas molecule which is consistent with IMS in an intermediate field.  

Thus, the results of the previous derivation, (eq. (16) and eq. (18)), represent the two 

boundary conditions for PF IMS and are depicted in Figure 6 (left panel).  The inclusion 

of K in eq. (18) indicates that the amplitude of radial motion has a dependence on 

mobility and may contribute to defining a low-mobility limit for PF IMS.  

During stable operation of PF IMS, maximum radial displacement 

(corresponding to the ion turnaround point) is dependent upon E/N, depicted by the 

simulations shown in Figure 6 (right panel) for several conditions obtained by varied 

pressure. Note that the left panel of Figure 6 shows boundary-condition ion motions in 

the upper half of PF IMS while the simulations in the right panel shows ion trajectories 

in the bottom half (inverted across the 𝑟 = 0 plane with respect to the former). Figure 6 

shows that at higher E/N, ion turnaround point resembles the vacuum expression given 

by eq. (16) which predicts that the ion turnaround point occurs at the tailing edge of the 

electrode (plotted in Figure 6, left panel).  Conversely, at lower E/N, the ion turnaround 

point occurs near the midpoint of the electrode, which is predicted by eq. (18).  Thus, the 

simulations contained in the right panel of Figure 6 are in agreement with the concept 

that the radial ion motion predicted by eqs. (16) and (18) represent the two boundary 

conditions where the radial momentum of the ion is conserved (eq. (16)) and completely 

damped (eq. (18)). 
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Figure 6.  Left panel: Ion motion in the radial direction for vacuum (dotted grey line) 
and in the presence of thermalizing collisions (dashed black line) for one periodic 
focusing subunit as predicted by eq. (16) and eq. (18), respectively, for the static radial 
electric field represented below by the solid blue line.  Motion due to initial radial 
velocity is neglected for the trajectory shown for vacuum conditions. The maximum ion 
displacement in the 𝒓-dimension is shifted in phase by 90° between collisional and non-
collisional boundary regimes.  Right panel: Simulation of an ion trajectory starting at 𝒓 = 
1.5 mm at Ec/N 150 (a), 75 (b), and 37 (c) Td.  In each case, three discrete transport 
modes are present.  In each ease, maximum 𝒓-displacement occurs between the midpoint 
inside of electrodes and the tailing electrode edge. As predicted by theory, the ion 
turnaround point shifts toward the midpoint of the electrodes at lower E/N values.  
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2.4 Axial Ion Transport (Ion Mobility) 

Ion mobility in PF IMS  is affected by two different phenomena: (1) periodic 

changes in the electric field and (2) periodic changes in nz initiated by the electric field 

variations.48 In this section, ion mobility separation in a periodic focusing electric field is 

discussed while the effect of nz is addressed in Section 4. 

It is important to realize that a potential drop across thick periodic focusing 

electrodes of aspect ratio s:w:d gives rise to a non-linear axial electric field. In this 

section, only the variations in the axial electric field in the axial direction (Ez (𝑧)) and 

radial direction (Ez (𝑟)) are considered.  Let us also consider PF IMS designs with two 

different aspect ratios: PF IMS1:1:1 (s = w = d = 6 mm) and PF IMS3:3:4 (s = w = 6 mm, d 

= 8 mm). Figure 7(a) contains plots of (Ez (𝑧)) at 𝑟 = 0 for both geometries normalized to 

the PF IMS1:1:1.  For each lens configuration Ez (𝑧) closely approximates a sinusoidal 

function.  Thus, as ions traverse the device in the 𝑧-direction at a constant 𝑟-position, the 

electric field oscillates about a central electric field, Ec, where the amplitude of the 

sinusoidal function is denoted as E0.  The maximum Ez (𝑧) at 𝑟 = 0 (equivalent to Ec + 

E0) is located at the midpoint between adjacent electrodes whereas the minimum Ez (𝑧) 

(equivalent to Ec – E0) is located at the mid-point inside electrodes. The value of Ec may 

be obtained from, 

𝑬𝒄 =
𝟏
𝟐
(𝑬𝒎𝒂𝒙 + 𝑬𝒎𝒊𝒏)           (19) 

Figure 5(a) shows that in the (+) 𝑟-direction, the shape of Ez (𝑧) deviates from the 

sinusoidal waveform observed at 𝑟 = 0, while the spatial periodicity (λ) and phase of the 

electric field remain constant.  At the electrode inner surface (rsurface) Ez (𝑧) may be 
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approximated by a square wave, although variations are observed near the electrode 

inner edges. For the approximated Ez (𝑧) square waveform at rsurface, the maximum value 

is located in the gap between adjacent electrodes, which approximates the maximum 

electric field that exists between the walls of two adjacent electrodes beyond the central 

orifice (r > rsurface). However, for the approximated Ez (𝑧) square waveform at rsurface, the 

minimum value is located on the inner electrode surface and is always zero.  These 

outcomes imply that rsurface contains the boundary conditions for Emax and Emin values.  

Figure 5(a) also demonstrates that in the (+) 𝑟-direction, Emin shifts toward the minimum 

boundary condition more rapidly than Emax shifts toward the maximum boundary 

condition. Mathematically, this outcome may be stated, 

𝒅 𝑬𝒎𝒂𝒙
𝒅𝒓

<    𝒅 𝑬𝒎𝒊𝒏
𝒅𝒓

           (20) 

which is a consequence of the fact that while the boundary condition for Emax is 

determined only by the voltage difference between adjacent electrodes of spacing s, the 

boundary condition for Emin is always fixed at zero.  As a result of eq. (20), Ec, decreases 

in the (+) 𝑟-direction as reflected in Figure 7(b) for PF IMS1:1:1 and PF IMS3:3:4 

configurations. The importance of Ec (𝑟) is considered in the following section in the 

context of diffusion-limited IMS expressions. 

Nevertheless, in any IMS separation, if the required low or intermediate field 

conditions29 are maintained, the changes in the electric field do not change K since the 

drift time in eq. (2) is inversely proportional to E. For PF IMS, the position-varying 

electric field conditions may also be represented by a net electric field (𝐸) obtained by 

integrating over the periodic axial electric field profile. That is, for a fixed 𝑟-position, the 
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axial mobility separation can be described by replacing E in eqs. (2) and (6) with 𝐸.  In 

order to derive an expression for 𝐸, let us consider an ion traveling in the (+) 𝑧-direction 

at the 𝑟 = 0 position. The spatial periodicity (wavelength) of the axial electric field is 

given by λ in eq. (11). The spatial variation of the axial electric field may be described 

by, 

𝑬𝒛(𝒛) = 𝑬𝟎𝐜𝐨𝐬  (𝝎𝒛𝒛)+ 𝑬𝒄          (21) 

where, 

𝝎𝒛 =
𝟐𝝅
𝝀

             (22) 

such that,  

𝑬𝒛(𝒛) = 𝑬𝟎𝒄𝒐𝒔
𝟐𝝅𝒛
𝝀

+ 𝑬𝒄          (23). 

Owing to the periodicity of the Ez (𝑧) waveform, the net electric field resulting at 𝑟 = 0 

can be obtained by integrating over one wavelength, 

𝑬 = 𝑬𝟎𝒄𝒐𝒔
𝟐𝝅𝒛
𝝀

+ 𝑬𝒄 𝒅𝒛
𝟐𝝅
𝟎          (24) 

yielding, 

𝑬 = 𝑬𝒄             (25). 

Thus, for ions traveling in the (+) z-direction at constant 𝑟-position, the net electric field 

that contributes to the overall mobility separation is identical to a uniform electric field 

with the magnitude Ec. In this case, the mobility coefficient and the resolving power in 

PF IMS are explained by eqs. (2) and (1) with E substituted by Ec as follows, 

𝑲𝑷𝑭  𝑰𝑴𝑺 =
𝑳

𝒕𝒅  𝑬𝒄
            (26) 
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𝑹𝑷𝑭  𝑰𝑴𝑺 =   
𝒕𝒅
𝚫𝒕𝒅

=    𝟏
𝟒

𝒒𝑳𝑬𝒄
𝑲𝑩𝑻 𝐥𝐧𝟐

𝟏
𝟐         (27). 

Eqs. (26) and (27) approximate the mobility coefficient and the diffusion-limited 

resolution for ions traveling along the 𝑧-dimension at 𝑟 = 0 position in PF IMS. 

However, ions traversing in the drift tube sample different radial positions (owing to 

radial ripple motion and diffusion) although they are periodically refocused toward the r 

= 0 position (by V*).  Hence, Section 4 considers more rigorous treatment of ion 

mobility in PF IMS for accurate determination of collision cross sections.  Ion optics 

simulations43,48 suggest that ions at initial r ≠ 0 positions are focused to the r = 0 position 

after traversing a few electrodes (~1-4, depending on the initial ion position, E/N, and 

w:s:d), and that overall ion migration to 𝑟-positions exceeding half the value of the 

radius (r = 0.25d) is extremely rare.  For, both electrode configurations, at r < 0.25d, the 

deviation in Ec from Ec (r = 0) is minimal (< 2%), as shown in Figure 7(b).  Thus, 

assuming Ec (r < 0.25d) ≈ Ec (r = 0), eqs. (26) and (27) can still provide a practical 

estimate of the overall theoretical (diffusion-limited) K and R in PF IMS. Moreover, 

Figure 7(b) shows that as d is increased, Ec (r = 0) increases which is accompanied by a 

decrease in the amplitude of the Ec waveform shown in Figure 7(a).  In this case, the 

resulting electric field near the central 𝑧-axis exhibits fewer 𝑟 and 𝑧 variation which 

ultimately increases the measurement resolution as observed in the experimental data 

discussed below. Finally, as d becomes sufficiently large, the electric field near the 𝑧-

axis approaches a uniform electric field with the magnitude of the applied electric field, 

E, as in UF IMS. In other words, for large d values, the amplitude term of the Ez (𝑧) at r 
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= 0 waveform approaches zero while Ec approaches E. Therefore, as d is increased, the 

resolving power of the IMS measurement increases; however, as detailed in references48 

the ion transmission through the device will decrease. Moreover, R in PF IMS can be 

increased without affecting ion transmission by simply increasing L while keeping the 

applied electric field constant according to eq. (27) and the data presented in references 

43,50.  Thus, PF IMS not yields high ion transmission, but also provides high resolution 

gas phase separations that are based on first-order IMS principles. 
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Figure 7. (a) Central electric field as a function of 𝒓-position shown for both PF IMS1:1:1 
(blue ▲) and PF IMS3:3:4 (tan ♦) geometries. Data is shown normalized to the PF 
IMS3:3:4 Ec (𝒓 = 0) curve. The vertical dotted lines denote the r-position at half-radius (𝒓 
= 0.25d) for both electrode configurations. In each case, Ec (𝒓 = 0.25d) corresponds to a 
< 2% decrease from Ec (𝒓 = 0) as indicated by the horizontal dotted lines. (b) Axial 
electric field at the 𝒓 = 0 position for the PF IMS1:1:1 (blue) and PF IMS3:3:4 (tan) 
electrode configurations. The electric field is shown with respect to electrode position 
and normalized to the maximum value.  
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3. PERIODIC FOCUSING ION MOBILITY SPECTROMETRY: CENTRAL 

DRIFT MOTION AND THE EFFECTIVE POTENTIAL MODEL* 

 

3.1 General Features 

In contrast to uniform field IMS, PF IMS contains radial focusing properties 

analogous to the effective potentials found in a DC ion guide (DC IG) described by 

Guan and Marshall.47  The effective potential concept, however, was originally derived 

to explain radial confinement of gas-phase ions moving relatively slowly (or at rest) with 

respect to  an inhomogeneous  RF (a time-varying waveform) electric field.51  The 

effective potential (V*) of a multipole ion guide with an applied RF voltage is described 

by the relationship, 

𝑽∗ = 𝒒𝟐𝑬𝟎(𝒓)𝟐

𝟒𝒎 𝛀𝑹𝑭 𝟐            (28)
   
where E0(𝑟) is the amplitude of the instantaneous electric field in the radial direction and 

Ω is the frequency of the applied RF voltage.  While V* is well established for a number 

of electrodynamic devices including RF ion guides and quadrupole ion traps51, and RF 

ion funnels,52 an analogous effect is achieved for an ion moving across alternating high 

and low electrostatic fields, as in the DC IG. In the DC IG, ions are radially focused as 

                                                

* Part of this chapter is reprinted with permission from “Gas-Phase Ion Dynamics in a 
Periodic-Focusing DC Ion Guide” by Joshua A. Silveira, Chaminda M. Gamage, Ryan 
C. Blase, and David H. Russell, 2010. Int. J. Mass Spectrom., 296, 36-42, Copyright 
[2010] by Elsevier and “Gas-Phase Ion Dynamics in a Periodic-Focusing DC Ion Guide 
(Part II): Discrete transport Modes” by Chaminda M. Gamage, Joshua A. Silveira, Ryan 
C. Blase, and David H. Russell, 2011. Int. J. Mass Spectrom., 303, 154-163, Copyright 
[2010] by Elsevier. 
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they traverse thin electrodes that are alternately biased at positive and negative DC 

potentials. The electrostatic potentials create an effective RF potential (a position-

varying waveform) in the inertial frame for an ion traveling with a given axial velocity, 

vz.  In a position-varying waveform, ion motion tracks with the effective RF frequency, 

that is dependent upon the axial velocity of the ion and the spatial periodicity of the axial 

electric field, as depicted in Figure 8. Substituting eq. (12) into eq. (19) and using the 

actual radial electric field, E(𝑟), to represent the radial electric field amplitude yields, 

𝑽∗(𝒓) = 𝒒𝟐𝑬(𝒓)𝟐  𝝀𝟐

𝟏𝟔𝝅𝟐𝒎𝒗𝒛𝟐
           (29). 

 

 

Figure 8.  Schematic snapshot outlining the fundamental difference in ion dynamics for 
traditional and effective RF devices.  In the case of traditional RF, slow ions encounter 
time-varying waveforms while in the case of an effective RF, fast ions sample static 
position-dependent waveforms.  In both cases, ions experience an oscillatory force in the 
radial dimension, which gives rise to ion focusing.    
 

Similarly, the axial voltage and electric field variations for a DC IG at a fixed 𝑟-

position are shown in Figure 9(b).47 Although the electrostatic potentials are different in 
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the DC IG and PF IMS, both ultimately result in an oscillating electric field with a 

spatial periodicity that generates an effective RF for an ion moving with a given axial 

velocity.  In the DC IG, two adjacent electrodes comprise a single effective RF spatial 

period (λ) while a single electrode and the spacing between the adjacent electrodes 

comprise one λ in PF IMS.  Nevertheless, Ωeff is remarkably similar as both devices 

operate in the kHz range.  Moreover, the absence of a net electric field in the DC IG 

results in ion losses for ions without sufficient initial kinetic energy and for ions whose 

kinetic energy is quenched by thermalizing collisions.  On the other hand, the net electric 

field in PF IMS oscillates about a central electric field (Ec) with an amplitude (E0) as 

shown in Figure 9(a).  Thus, initial ion kinetic energy is not critical in PF IMS, so long 

as it is not sufficiently high as to result in collision induced dissociation of labile 

macromolecules or structural rearrangement when determining Ω; instead, after 

equilibration, ion kinetic energy is governed by E/N as in conventional UF IMS.  Simply 

stated, the presence of the net electric field in PF IMS allows for ion transport at elevated 

pressures and separation on the basis of Ω. 
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Figure 9.  Axial variations of the instantaneous voltage and the electric field shown for 
PF IMS (solid blue lines) with respect to the uniform field (dashed grey lines) (a), and 
the DC IG (dotted red lines) (b) at fixed radial position.  In both PF IMS and the DC IG, 
the axial voltage profile results in a sinusoidally oscillating electric field. 
 

3.2 Determination of the Effective Potential 

Analogous to the DC IG, the effective potentials in PF IMS are created by the 

radial variations in the electric field and are dependent upon the axial velocity of the ion. 

Here, the radial electric fields were determined using SIMION 8.0 (SIS, Ringoes, NJ).  

In SIMION, electrostatic potentials (and the electric fields) are determined by solving 

the Laplace equation in three dimensions,  

𝛁𝟐𝑽 =   𝛁 ∙ 𝑬 =    𝝏𝑬𝒙
𝝏𝒙
+ 𝝏𝑬𝒚

𝝏𝒚
+ 𝝏𝑬𝒛

𝝏𝒛
= 𝟎        (30) 

where the electric fields are described by Cartesian coordinates and the electrodes serve 

as the boundary conditions. It should be noted that the Laplace equation is not used to 
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treat space-charge effects that may contribute to electric field variations; in this work, 

the space-charge contributions are assumed to be minimal.  Thus, to derive the effective 

potential profiles, a SIMION user program was used to calculate the radial variations in 

the electric field and measure the average axial ion velocity at 0.25 mm intervals along a 

periodic focusing drift tube (geometry: s = w = d = 6 mm). Since q, λ, and m are 

constants in eq. (20), the quotient, E2(r) / vz
2, is directly proportional to V*.  Although 

the axial ion velocity values derived represent a radial average, the standard deviation of 

these measurements was low (± 0.07 mm·µs-1).  Thus, the radial variation of the axial 

velocity component is minimal.   

The equipotential and effective potential contour profiles for a single electrode in 

PF IMS are depicted in Figure 10(a) and (b), respectively.  When the axial ion velocity is 

considered constant, the effective potential contours appear symmetric.53 The difference 

in axial velocity of the ions at the leading and tailing edge of the electrode contributes to 

the asymmetry of the effective potentials.  That is, because ions are moving with 

relatively lower axial velocities as they approach the tailing edge of an electrode, the 

magnitude of the effective potential increases, as predicted by eq. (20).  It is also 

important to note that the effective potentials, although asymmetric, are centered on the 

edges of each electrode and are relatively small in the regions where the radial electric 

field variations are minimal viz. the midpoints between and inside electrodes (see Figure 

5(b)). The discontinuity in the effective potentials is a result of the thickness of the lens 

elements—since radial variations only occur near the electrode edges via fringing field 

effects—which has important consequences in terms of ion losses (discussed later in the 
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text, see Figure 11(b)).  Furthermore, the effective potential profile at the edges of the 

electrode (without considering variations due to vz) shows exponential decay with 

respect to radial position (V* is proportional to er) as expected for V* derived for a 

cylindrical potential profile.47,51  It should be noted that an exponential decay profile 

contains larger space-charge capacity than RF multipole devices because it more closely 

approaches a particle in a box. That is, the radial field variations are minimal for ions on-

axis while ions that deviate off-axis (𝑟 > 0) are confined by a steep barrier.  Because the 

radial V* profile deviates from a cylindrical profile away from the electrode edges, the 

radial electric fields are more easily obtained using SIMION calculations as opposed to 

modification of analytical expressions derived for an ideal cylindrical potential profile.  

 

 

Figure 10.  Equipotential lines shown in red (a) and contour plot of effective potentials 
shown in blue (b) projected from cylindrical coordinates onto the plane of the paper and 
plotted with respect to electrode position. The regions which are separated by dashed 
lines and labeled A-C are described in Section 3.3. 
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To qualitatively describe the ion dynamics in PF IMS, a subunit in the drift 

region has been divided into four sections labeled A, B1, C, and B2, as shown in Figure 

10.  In region A, the axial electric field is relatively high owing to the electrostatic 

potential drop from one electrode to the next.  In this region, ion mobility occurs on the 

basis of a positionally dependent oscillating electric field where the amplitude of the 

axial profile of the electric field exceeds the central field (Ec + E0).  As ions enter an 

electrode (region B1) their velocity decreases as a result of the dampened electric field 

and ion-neutral collisions.  In region C, the axial electric field amplitude defines an 

electric field lower than the central electric field (Ec – E0), thus, ion velocities continue 

to decrease.  It is important to note that region C does not contain strong effective 

potentials.  Thus, if the electrode thickness is increased significantly, or if the overall 

applied electric field is decreased beyond a lower limit, region C approaches a field-free 

region where diffusion will dominate. For example, the overall average E/N is decreased 

from 75 to 37 Td in the simulation shown in Figure 11(b) to achieve low local field 

conditions in region C (E/Nmin~12 Td V·cm-1·torr-1, corresponding to Ec – E0), while still 

maintaining sufficiently high field strengths for mobility separation in region A (E/Nmax 

~62 Td, corresponding to Ec + E0). In this case, thermalization begins to dominate for 

ions in region C owing to very low acceleration from the local electric fields and 

increased collisional cooling, resulting in random diffusion behavior. Under these 

conditions some radially diffusing ions may not have sufficient axial kinetic energy to 

traverse region C and/or overcome the effective potential barrier extending from the 

back edge of the electrode.  Thus, these ions are neutralized at the electrode surface as 
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illustrated by the ion denoted † in Figure 11(b).  These results suggest that the electric 

field strength is critical in PF IMS due to the existence of low local electric fields inside 

the electrodes. However, as long as the applied E/N is sufficiently large (>~47 Td), the 

ion trajectory simulations suggest that PF IMS transmits nearly all ions (m/z = 720) 

across the device.   

 

 

Figure 11.  Ion trajectories showing periodic-focusing subunits at varied field strength: 
Ec/N 75 Td (a) and 37 Td (b). In (b), the radially-diffuse ion labeled † is thermalized 
owing to the locally dampened electric field in region C. 
 

3.3 Theoretical Limits: Adiabaticity and Energy Conservation 

Although the radial ripple motion is clear from Figure 6, slow central drift about 

𝑟 = 0 is slightly less obvious in a single periodic focusing subunit, though easily 

observed after several effective RF cycles.  The central drift motion is attributed to 

effective potentials created by the electric field variations and collisional cooling.  The 

theoretical basis for the estimation of effective potentials is provided by the presence of 
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fast (kHz) and continuous effective RF with increasing amplitude in the (+) 𝑟-direction 

as shown in Figure 5(b). 

The conservation of the radial momentum, at least to some extent, is vital for the 

effective potential concept.  Let us first consider an undamped effective potential model 

as represented by eq. (20). While the mathematical treatment for the undamped effective 

potential model is well established, a qualitative physical description of the origin of 

effective potentials in PF IMS (considering no damping) may be presented 

contemplating the conserved momentum of a positively charged ion.  Consider an ion 

initially residing at a certain 𝑟-position and travelling in the 𝑧-direction. During its 𝑧 

motion, the ion is subjected to different phases of the Er(𝑧) waveforms, i.e. the ion sees 

an effective RF. When the phase is (+), the ion is subjected to a force in the (+) 𝑟-

direction (away from 𝑟 = 0, (+) force), while the (-) phase applies a force in the (-) 𝑟-

direction (towards 𝑟  = 0, (-) force).  Consider an ion moving in the (+) 𝑟-direction under 

the influence of a (+) phase. Consequently, the ion is subjected to waveforms having 

higher amplitudes that impart progressively higher (+) force.  After the ion reaches the 𝑧 

position where the waveforms switch to (-) phase, a (-) force is exerted on the ion. 

However, at the transition point, the ion has already acquired a momentum in the (+) 𝑟-

direction and thus the ion has to be decelerated by the (-) force before it turns around. 

Thus, a certain turnaround time results in the ion travelling an additional distance in (+) 

𝑟-direction from the time it is subjected to the waveform phase change. Let us term this 

extra displacement in the 𝑟-direction the turnaround displacement. After turning around, 

the ion travels in the (-) 𝑟-direction and is subjected to (-) phase waveforms that apply 
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progressively lower (-) force due to decreasing amplitudes. Subsequently, the ion 

reaches the 𝑧-position where the waveforms change phase to (+) again, applying a (+) 

force on the ion. By this time, the ion has acquired momentum in the (-) 𝑟-direction. 

However, unlike in the previous turnaround event, the waveforms have lower amplitudes 

and do not apply a force as high as the previous scenario prior to deceleration. This 

causes the ion to have a longer turnaround displacement in the (-) 𝑟-direction than in the 

previous scenario. Due to this, the ion also displaces in the (-) 𝑟-direction beyond the 

initial 𝑟-position. Over several RF cycles, the net effect of this displacement is seen as an 

apparent drift towards the r = 0 position, which is suggested as the physical origin of the 

effective potentials herein.  

Since the effective RF motion of the ions under stable operating parameters in PF 

IMS represents an intermediate situation between the completely conserved radial 

momentum (eq. (16)) and completely damped radial momentum (eq. (18)), the central 

drift motion may be explained using a damped effective potential model. To a first 

approximation, the damping of V* with respect to eq. (20) may considered to be by a 

uniform factor throughout the device since the number density of the buffer gas, N, is 

uniform under constant static pressure conditions. In other words, although a finite 

portion of the ion radial momentum is damped, an undamped portion remains conserved, 

defining an adiabatic total energy. This may give rise to effective potentials damped by a 

factor with respect to the magnitudes predicted by eq. (20).  According to this 

approximation, the relative magnitudes of the effective potential profiles remain the 

same as presented in reference 48 with relatively higher magnitudes towards the tailing 
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edge of the electrode as a result of the low axial ion velocities in that region.  

Accordingly, Figure 12 contains a flowchart of the proposed PF IMS focusing 

mechanism on the basis of a damped V*. The bottom panel of Figure 12 contains a three 

dimensional profile of effective potentials that result in the radial ion confinement.  

 

 

Figure 12.  Flowchart diagram of the proposed radial focusing mechanism in PF IMS.  
See text for details. 

 

Although the ion-neutral collisions damp the effective potentials, the presence of 

collisions is vital for the focusing mechanism to take effect. This is illustrated by the fact 

that the radial ripple and central drift motion are largely absent under vacuum conditions 

(simulation not shown) or dominant axial electric field conditions in the presence of 
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collisions i.e. the gap between adjacent electrodes.  The latter is demonstrated by the fact 

that detailed motion due to the radial electric field is not observed in Figure 6 (right 

panel) near the leading and tailing edges of the electrodes and in the spacing between the 

electrodes because the axial electric field is dominant in these regions. Under these 

conditions, the ions are mainly influenced by the larger axial fields acquiring a relatively 

large vz. In this case, ions do not spend sufficient time inside the electrodes to follow a 

well-defined radial ripple motion under the influence of the radial fields. More 

specifically, an increase in the axial ion velocity increases Ωeff causing an instantaneous 

decrease in the amplitude of the radial ripple motion (eqs. (16) and (18). In the presence 

of collisions, ion momentum is dampened such that ion axial velocity decreases inside 

the electrodes and ion motion may be influenced by the relatively weak radial electric 

fields to follow the radial effective RF motion, giving rise to damped effective 

potentials. In other words, collisional damping is vital in radial focusing. Our 

simulations also indicated a low molecular weight inert gas such as He produces 

smoother effective RF trajectories in contrast to higher molecular weight gases such as 

nitrogen that cause scattering. This phenomenon is similar to the trapping of ions by 

means of smooth secular motion in a quadrupolar ion trap where the optimum 

performance in terms of resolution is obtained when He is used for collisional 

damping.54  

It should be noted that the term E0,r (𝑟) in eq. (20) is replaced with Er when 

obtaining the V* contours for PF IMS. Although the Er (𝑧) waveforms can be considered 

as continuous sinusoidal functions, in this representation, the waveforms encountered by 
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the ion at each 𝑧-position is considered to have different instantaneous amplitudes that 

are represented by Er. This representation is adopted since unlike in traditional RF 

devices, V* profiles are composed of a combination of multipole terms that are different 

for each 𝑧-position. The exponentially decaying V* (𝑟) profile expected for a thin ring 

electrode is observed only at the edges of the electrodes 48 while the fringing fields 

create different combinations of multipole V* (𝑟) profiles at other 𝑧-positions. These 

variations are linked to the 𝑧-variations of the Er (𝑟) profiles. The 1/Ωeff term signifies the 

amount of time the ion spends at each 𝑧-position. For example, the middle of the 

electrode (region C, as denoted in Figure 11) contains very small Er (𝑟) variations while 

the 1/Ωeff term is relatively large. These conditions create a region where the effective 

potentials are minimal or absent.  We previously showed that for relatively low E/N 

conditions (<37 Td for C60 radial cations), ion losses may occur in the middle of each 

electrode, supporting the adopted V* representation.  In this region, V* creates a 

potential well in the axial dimension (Figure 12, bottom panel) and ions without 

sufficient axial velocity may be lost towards the electrode walls by either diffusion or 

radial electric fields.  Increasing w beyond a certain limit will convert this region to a 

field-free diffusing region. Similar potential wells have been reported by Giles et al. for 

a traveling wave ion mobility spectrometer (TW IMS) with an RF applied 180° out-of-

phase to adjacent electrodes and a superimposed DC pulse that travels in the 𝑧-

dimension.55 

The fast effective RF motion can be decoupled from the slower central drift 

motion as shown in the simulations, suggesting that the first order adiabatic 
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approximation51 used in deriving these expressions  may still be used for the estimation 

of V*. Additionally, the fact that the magnitude of radial electric field variations during 

one effective RF cycle is small compared to the magnitude of the radial electric field 

provides justification for the use of an adiabatic approximation.  However, the presence 

of collisional damping and the 𝑧-dependence of the V*(𝑟) profiles complicate a 

quantitative calculation or validation of the effective potentials for PF IMS. In other 

words, the use of adiabatic approximations to validate a V* model damped with respect 

to eq. (20) or a model that incorporates the 𝑧-dependence of V*(𝑟) is beyond the scope of 

the current study. The model is presented in order to provide a semi-quantitative 

understanding of the effective potentials in PF IMS and an exact mathematical treatment 

of V* is not intended.  
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4. PERIODIC FOCUSING ION MOBILITY SPECTROMETRY: 

DETERMINATION OF ION-NEUTRAL COLLISION CROSS SECTIONS* 

 

4.1 Background 

The basic principles of operation for the periodic focusing ion mobility 

spectrometer have been described in detail in Section 1 through 3.  Functionally, PF IMS 

has three major ion transport modes:  (1) axial drift, which gives rise to ion mobility, (2) 

radial ripple motion owing to the existence of an effective RF, and (3) central drift 

motion that causes the ions to be radially focused toward the central drift axis (𝑟= 0).50,56  

In principle, PF IMS is analogous to the RF-confining drift tube recently implemented 

into a Synapt G1 platform by Bush et al. for determination of ΩHe reference values for 

TW IMS calibration.57  A major difference, however, is that RF voltages are not used in 

PF IMS, but ion transport through the PF IMS drift tube is identical to an 

inhomogeneous RF field.  This outcome is achieved because PF IMS supplants the 

velocity of the ion in position-dependent DC electric fields for the time-dependent 

voltage utilized in RF devices.  The result is that ions are confined by a collisionally-

damped effective potential that arises from an effective RF experienced by relatively fast 

ions traversing electrostatic waveforms. These results demonstrated that ion mobility in 

PF IMS may be described by the same principles as UF IMS (even in the presence of 
                                                

* Part of this chapter is reprinted with permission from “Damping Factor Links Periodic 
Focusing and Uniform Field Ion Mobility for Accurate Determination of Collision Cross 
Sections” by Joshua A. Silveira, Junho Jeon, Chaminda M. Gamage, Pei J. Pai, Kyle L. 
Fort, and David H. Russell, 2012. Anal. Chem., 84, 2818-2824, Copyright [2012] by The 
American Chemical Society. 
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position-dependent DC electric fields); however, the measured drift time in PF IMS is 

relatively longer owing to the radial ripple and the central drift motion that do not exist 

in UF IMS.  Hence, we introduce a mobility damping factor (α) to account for the 

increase in drift time. In the current work, we present a quantitative treatment of α to 

develop the fundamental methodology for direct and accurate measurement of peptide 

and protein Ω values using PF IMS. 

 

4.2 Experimental Methods 

Bradykinin, angiotensin II, melittin, ubiquitin (bovine) and cytochrome c 

(equine) were purchased from Sigma-Aldrich (St. Louis, MO). ESI solutions were 

prepared at concentrations between ~5 - 50 µM in H2O (0.01% formic acid) for ubiquitin 

and 50:50% CH3OH:H2O (0.1% formic acid) for all other compounds.   

A detailed description of the home-built IM-MS instrumentation used in this 

study is found in reference.58  Briefly, sample solutions were directly infused at 0.5 

µL·min-1 from a pulled-tip nano-ESI emitter into a heated capillary maintained at 343 K 

with a ~2.5-3.0 kV potential drop.  Ions are focused through a 2.0 mm aperture with a 

RF IF operating at 700 kHz and 75 Vp-p at a pressure ~0.75 Torr.  The drift tube consists 

of a 58 cm periodic-focusing ion mobility spectrometer with an electrode width (w) and 

spacing (s) of 6.35 mm and an inner diameter (d) of 8 mm.  Ions are pulsed into the drift 

tube maintained at 1.00 ± 0.01 Torr He (g) with a gating frequency of 200 Hz.  The 

typical resolving power for a single conformer in the drift tube is ~50.  Ions exiting the 

PF IMS drift tube are accelerated orthogonally into a time-of-flight (TOF) mass 
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spectrometer and detected by a dual microchannel plate detector. The mobility spectra 

were recorded by pulsed synchronization of the mobility gate and TOF extraction source 

using custom 2D acquisition software provided by Ionwerks (Houston, TX). 

For each analyte, the arrival time distribution (ATD) was plotted against 1/V to 

determine the time spent outside the drift tube (t0) that is subtracted from the ATD to 

yield the drift time (td).  Data were recorded at 300 K ± 1K for three to five different 

drift voltages; a minimum of five measurements were collected at each voltage setting.  

Thus, each experimentally reported Ω value represents the average of fifteen to twenty 

five measurements.   

The average drift times of peptide ions through 10 cm PF IMS (s = w = 6.25 mm, 

d = 8 mm) and UF IMS (s = w = 6.25 mm, d = 42 mm) drift tubes were calculated using 

the collision_hs1.lua program provided with SIMION 8.0.  Ion-neutral collisional 

dynamics were simulated for elastic collisions between He (g) and peptide ions at 300 K. 

Theoretical α values were calculated by simulating ion trajectories for known analytes 

using Ω values measured by UF IMS.59-60 

 

4.3 Transport Theory 

Section 1 contains a detailed discussion of UF IMS theory.  In PF IMS, the 

mobility damping coefficient (α) is introduced to account for the differences between the 

apparent mobility in PF IMS (KPF IMS) and the mobility expected in a UF IMS (KUF IMS = 

K), which is defined as,56 

𝛂 = 𝑲𝑷𝑭  𝑰𝑴𝑺
𝑲𝑼𝑭  𝑰𝑴𝑺

= 𝑲𝟎,𝑷𝑭  𝑰𝑴𝑺
𝑲𝟎,𝑼𝑭  𝑰𝑴𝑺

            (31) 
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Alternatively, α may also be derived from the respective slope (∆) of the td vs. 1/V plot 

for UF IMS and PF IMS measurements (see Figure 13) given by, 

𝛂 =    ∆𝑼𝑭  𝑰𝑴𝑺
∆𝑷𝑭  𝑰𝑴𝑺

             (32). 

In either case, eqs. (2) and (6) can be rewritten for PF IMS such that,56 

𝑲 = 𝑳
𝛂𝒕𝒅  𝑬

             (33) 

and 

𝛀 = 𝟑𝒒
𝟏𝟔𝑵𝟎

𝟐𝝅
𝝁𝒌𝑩𝑻

𝟏
𝟐 𝛂𝒕𝒅𝑬

𝑳
𝑷𝟎𝑻
𝑷𝑻𝟎

         (34). 

The following discussion is focused upon validation of this theory from both a 

fundamental as well as an analytical perspective. 

 

4.4 Quantitative Description of Ion Mobility 

Figure 13(a) shows representative ion trajectories for UF IMS and PF IMS drift 

tubes, along with the coordinate system referred to in the discussion.  Owing to radial 

ripple and central drift motion observed in PF IMS, drift times are longer than UF IMS 

measurements—all other parameters being equal.  These differences can be seen in the 

drift time versus inverse voltage plot for bradykinin [M + 2H]2+ obtained by SIMION 

simulation shown in Figure 13(b).  In this approach, the ratio of slopes given by eq. (23) 

provides the quantitative theoretical α value of 0.79.   
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Figure 13.  Representative bradykinin [M + 2H]2+ (531.3 m/z, Ω = 242 Å2, 60) ion 
trajectories in UF IMS (a, top panel) and PF IMS (a, bottom panel) at 1.00 Torr and 
ambient temperature (300 K).  In PF IMS, ions drift axially (as in UF IMS) but also 
undergo radial ripple and central drift motion that maintains ion trajectories near   𝒓 = 0.  
When the observed drift times over L = 10 cm are plotted as a function of 1/V (b), the 
apparent mobility of the ions in PF IMS is smaller by a factor of α, owing to the 
additional transport modes.  The correlation coefficients are R2 (UF IMS)  = 0.99995 and 
R2 (PF IMS) = 0.99768. 

 

Note that the correlation coefficients for the linear trendlines are high, despite 

slight deviation at higher V where drift times were measured above the approximate low 

field limit described by,34 

𝑬
𝑵
  <    𝒎

𝒎!𝑴

𝟏
𝟐   𝒅

𝟐

𝒛
            (35). 

where d is the diameter of the ion approximating its Ω using a hard sphere.  For 

bradykinin [M + 2H]2+ of d = 8.74 Å,29 the semi-quantitative expression predicts that the 

low field limit extends to values ≾  38.1 Td (≾ 12.3 V·cm-1·Torr-1).  However, optimal 

operation of PF IMS, requires intermediate fields where a fraction of the radial 

momentum is conserved thereby allowing for energy exchange among the modes of 
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transport.51,56  The deviation observed from inclusion of intermediate field drift time 

measurements is small and only contributes to 1% error in the SIMION-based 

measurement (viz. α = 0.78 when calculated using only data recorded ≤ 64 V).   

The deviation is not observed experimentally because polyatomic ions have 

degrees of freedom that are unaccounted for in the hard sphere approximation utilized in 

eq. (11) and SIMION-based measurements.  Figure 14(a) shows a representative ATD 

for bradykinin at 54.4 Td—the highest field strength utilized.  Under the conditions 

employed, the bradykinin spectrum is dominated by the relatively broad [M + 2H]2+ 

peak.  Although FAIMS studies have shown evidence for six [M + 2H]2+ 

conformations,61 these results are consistent with UF IMS studies by Pierson et al., 

which contain two partially resolved ATDs.62  Figure 14(b) shows the experimental PF 

IMS ATD of bradykinin [M + 2H]2+ plotted against 1/V in both the low and intermediate 

field regime (32.3 - 54.4 Td or 10.4 - 17.5 V·cm-1·Torr-1).  The high correlation 

coefficient (R!"  !"#!  = 0.9998) confirms that the dependence of K upon E/N is for the 

field strengths employed is negligible, and low field IMS expressions may still be used 

to describe macroscopic ion drift. 
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Figure 14.  Arrival time distribution (a) and arrival time vs. 1/V plot (b) for bradykinin.  
The spectrum shown in (a) was collected at 54.4 Td (17.5 V · cm-1 · Torr-1).  In (b), the 
electric field strengths range from 10.4 - 17.5 V · cm-1 across the 58 cm PF IMS drift 
tube.  The high correlation coefficient suggests that although experimental 
measurements are made in both low and intermediate field regimes according to eq. (26), 
the higher order tems are negligible and low field experssions may be used to describe 
ion drift observed in PF IMS for the field strengths employed.  The data in (b) 
corresponds to the main peak centroid observed at longer arrival times. 
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4.5 Origins of α 

Qualitatively, α is a measure of the extent to which the mobility in PF IMS 

deviates from UF IMS for equivalent operating conditions.  It should be noted that the 

quantity α is defined under conditions where the ion-neutral interaction potentials and 

ion heating effects are assumed to be minimal.  These assumptions are reasonable for 

typical operation of PF IMS devices with He (g) and ambient temperature.  By 

definition, α is mathematically limited to values 0 ≤ α ≤ 1.  For the case of α = 1, PF IMS 

drift motion is identical to UF IMS—a theoretical boundary condition approached in 

Figure 13(b) where the trendlines converge at high V.  For practical operating conditions 

in low and intermediate fields, α < 1 as a result of mobility damping.  The two main 

parameters that contribute to the existence of mobility damping have been introduced in 

our previous work56: (1) the increase in number of ion-neutral collisions per unit 𝑧-

displacement (nz) and (2) the decrease in the applied net electric field (Ec) at larger 𝑟-

positions; however, the contribution of the later effect to the net electric field is ≾2% 

leaving variation in nz as the dominant effect.  Mobility damping is directly proportional 

to nz and inversely proportional to α. Expressed mathematically, the end result yields, 

𝛂 ≈ 𝟏/𝒏𝒛,𝑷𝑭  𝑰𝑴𝑺
𝟏/𝒏𝒛,𝑼𝑭  𝑰𝑴𝑺

            (36). 

Although N is constant in PF IMS, the relative increase in nz compared to UF IMS is 

attributed to radial ripple and central drift, which influence ion motion and serve to 

increase the effective path length traveled by the ion.  The overall effect is that ions 

experience more collisions in PF IMS compared to UF IMS at identical N, thus the PF 

IMS mobility constant (described by eq. (24)) is smaller by a factor of α.  For example, 
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Figure 15 contains simulations for 1/nz as a function of E/N for equivalent UF IMS and 

PF IMS conditions.  In both cases, the plot may be described by a linear function at low 

E/N that deviates at high E/N.  Independent of the field strength, the value for 1/nz is 

relatively smaller in PF IMS, which implies that ions undergo more collisions (compared 

to UF IMS) for equivalent operating conditions.  At high E/N (≿ 70 Td), nz values begin 

to converge, which suggests that under high field conditions, N is not sufficient for 

adequate collisional dampening and ion motion is not influenced by the weak radial 

electric fields (and thus, V*) resulting in loss of radial ripple motion in PF IMS.  That is, 

ion motion in PF IMS at extremely high E/N is comparable to UF IMS, although high 

field strengths are not typically employed.  Moreover, using eq. (27), α may be 

approximated in the linear portion of the curve yielding, α ≈ 0.80 (as compared to α = 

0.79 derived above).  This outcome is remarkably consistent with the fact that the major 

contribution of mobility dampening is attributed to a relative increase in nz, whereas the 

additional (≾2%) of mobility dampening is attributed to ions sampling 𝑟-positions away 

from the central drift axis where Ec < E (see Figure 7). 
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Figure 15.  The origin of α: 1/nz for bradykinin [M + 2H]2+ at 8 V·cm-1 is simulated at 
varied P and plotted as a function of  E/N for PF IMS (♦) and UF IMS (▲) conditions 
(a).  In part (b), the data in the low E/N region is converted to (1/nz, PF IMS) / (1/nz, UF IMS) 
on the y-axis which approximates α ≈ 0.80 by eq. (36). For reference, the value α = 0.79 
determined from previous simulation results is shown with a dashed line. 
 

4.6 Determination of Ω 

The ion optics simulation results discussed thus far provide a strong fundamental 

basis to define and characterize α for PF IMS. From prior studies, we have determined 

that α is dependent upon the electrode geometry and pressure.43,56 Because these 
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variables must be fixed for measurement of Ω, the remaining discussion focuses on 

empirical validation of the concept.  The experimental data is limited to measurements 

performed at 1.00 Torr and ambient temperature to highlight the analyte-dependent 

parameters that influence α and consequently accurate Ω measurements.   

Table 1 lists the model peptides and proteins used in these experiments.  These 

analytes were selected because multiple Ω values have been reported in the literature 

from UF IMS measurements.  The analytes represent a broad range of mass (~1050 to 

12,400 Da), charge (2+ to 19+), and collision cross section (~240 to 2900 Å2).  Using the 

theoretical value α  = 0.79 derived from SIMION in eq. (10), Ω values were calculated 

for each analyte and compared to UF IMS literature measurements.  The percent 

difference for these measurements is shown in Figure 16(a) as a function of charge state.  

Overall, the Ω measurements are in good agreement (< ±8% difference), however, 

careful inspection of the data indicates that the predicted Ω values for lower charge 

states (≾ 10+) are generally larger than reported UF IMS values whereas Ω values for 

higher charge states (≿10+) are generally smaller.  The relatively small charge state 

dependence may be accounted for by replacing α with a charge state-dependent value, 

α(z).  The reasoning for this approach is discussed in the following section. Using this 

approach, Ω values were determined by the same procedure and compared to literature 

values; the percent difference analysis is shown in Figure 16(b).  Comparison of Figure 

4(a) and (b) indicates that utilizing α(z) instead of α decreases the magnitude of the 

percent difference (< ±4%) and randomizes the experimental differences about zero.  Ω 

values derived from the later approach are listed in Table 1 for all charge states 
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observed.   For reference purposes, the empirically determined charge state-dependent 

α(z) values used to calculate Ω are listed in Table 2. 

 

 

Figure 16.  Percent difference in peptide and protein Ω measurements using PF IMS 
compared to UF IMS literature values (see Table 1) using α = 0.79 (a) and a charge 
state-dependent α(z) value listed in Table 2 (b).  The data indicates that when a single α 
value is employed in eq. (10), a small systematic error is present owing to the charge 
state dependence, which is not considered.  Utilizing α(z) to calculate Ω decreases the 
magnitude of the percent difference and randomizes the percent differences about zero. 
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analyte z Ωexperiment, Å2 Ωliterature, Å2 ref. % difference 
bradykinin 2 245 a 240 63 +2.1 

   
236 64 +3.9 

   
242 b 60 +1.3 

   
237 c 57 +3.4 

angiotensin II 2 254 253 65 +0.2 

   
245 c 57 +3.5 

melittin 4 583 572 66 +1.9 

   
576 66 +1.2 

 
5 593 602 66 -1.4 

   
605 66 -1.9 

ubiquitin 9 1603 1649 59 -2.8 

   
1612 64 -0.5 

   
1670 c 57 -4.0 

 
10 1716 1733 59 -1.0 

   
1689 64 +1.6 

   
1730 c 57 -0.8 

cytochrome c 14 2448 2473 59 -1.0 

   
2435 64 +0.6 

   
2451 b 60 -0.1 

   
2520 c 57 -2.8 

 
15 2555 2579 59 -0.9 

   
2564 b 60 -0.3 

   
2600 c 57 -1.7 

 
16 2633 2679 59 -1.7 

   
2642 b 60 -0.3 

   
2670 c 57 -1.4 

 
17 2731 2723 59 +0.3 

   
2740 c 57 -0.3 

 
18 2800 2766 59 +1.2 

   
2800 c 57 -0.013 

  19 2921 2800 59 +4.3 

   
2870 c 57 +1.8 

 
Table 1.  Experimentally measured Ω values using PF IMS in He (g) for peptides and 
proteins at 300 K. The experimental Ω values were calculated using the charge state-
dependent α function described in the text and given by Table 2. a Ω calculated from the 
centroid of the main peak corresponding to the longer arrival time (see Figure 14(a)). b Ω 
value measured in an Ionwerks drift tube which employs electrostatic high and low 
fields similar to PF IMS. c Ω value measured in an Syanpt G1 with a modified drift tube 
which employs UF IMS conditions with a superimposed RF-confining potential. 
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z α(z) 
1 0.760 
2 0.763 
3 0.766 
4 0.769 
5 0.772 
6 0.775 
7 0.778 
8 0.781 
9 0.784 
10 0.787 
11 0.790 
12 0.793 
13 0.796 
14 0.799 
15 0.802 
16 0.805 
17 0.808 
18 0.811 
19 0.814 
20 0.817 

 
Table 2.  Reference table for charge state-dependent α values given by the empirically 
derived expression α(z) = 3.03·10-3·z + 0.757. 
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Figure 17 contains a plot of literature Ω values (from Table 1) versus Ω values 

calculated herein using α(z) (from eq. (25)).  The value for the slope of the linear 

regression trendline (1.00002) indicates that systematic errors are not present when α(z) 

values are employed.  Note that the intercept (~4.5) is an indication of the error in Å2.  

The high correlation coefficient (R2 = 0.99881) across the wide range of data confirms 

general agreement of the dataset.  Collectively, Figure 17 indicates that the charge state-

dependent α values listed in Table 2 produce accurate Ω values across for peptides and 

proteins. 

 

 

Figure 17. Calibration curve of literature Ω values versus Ω values measured by PF 
IMS. 
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4.7 Charge-state Dependence of α 

The inclusion of α(z) in eq. (25) is justified by considering the difference in the 

amplitude of radial motion for ions with different charge states in an identical periodic 

focusing electric field.  Although both species undergo axial as well as radial transport, 

the magnitude of the axial electric field is more than two orders of magnitude larger than 

the radial electric field.56  Because the force exerted on the ion is proportional to charge 

(F = q · E), more highly charged ions experience a relatively greater force in the axial 

dimension compared to the radial direction.  This effect enhances the axial momentum 

(p = m · v) of the more highly charged ion such that its amplitude of radial motion is 

decreased.  Moreover, in the context of IMS, the drift velocity (see eq. (2)) is 

proportional to the acceleration of the ion between subsequent collisions (a = q · E / m).  

Substituting (q · E / m) for v into the momentum expression above yields a result that 

suggests momentum is directly proportional to the charge of the ion, because the 

periodic focusing electric field is equivalent and mass effects cancel. 

Owing to the relatively higher magnitude of the axial force on ions carrying more 

charge, the axial momentum of the ion suppresses the radial ripple motion and more 

highly charged ions experience less mobility dampening, meaning that they have slightly 

larger α values, which is in fact, the observed experimental trend.  These differences are 

small as the charge state-dependent α function has a slope that is two orders of 

magnitude smaller than the actual α value (see Table 2).  Therefore, reasonable 

agreement for proteins and peptides may be obtained using only α, but better agreement 

is obtained using charge correction of the mobility damping factor.   
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A separate factor that may contribute to the charge state dependence of α is the 

fact that the magnitude of the effective potential is analyte-dependent and increases as a 

function of charge state.  For example, neglecting collisional dampening effects, V* for 

the 17+ charge state of cytochrome c is approximately 10-fold greater in magnitude as 

compared to the 2+ charge state of bradykinin.  Owing to the relative extent of ion 

confinement along the central drift axis, this effect would also result in bradykinin [M + 

2H]2+ encountering more collisions per unit 𝑧-displacement relative to cytochrome c [M 

+ 17H]17+, and thus, a smaller α value.  However, central drift motion induced by the 

effective potential is a small effect (compared to the radial ripple motion), and its 

contribution to α is likely negligible. 

 

4.8 Comparison to the RF-Confining Drift Tube 

The determination of Ω using PF IMS is analogous to the RF-confining drift tube 

recently implemented into a Synapt G1 by Bush et al., which superimposed RF voltage 

on a drift tube device.57  A schematic diagram of the device is shown in Figure 18. 

Although this drift tube design offers independent control of the magnitude of the RF 

and DC potentials, PF IMS does not as the effective RF is generated in the inertial frame 

of the ion with a given axial velocity traversing a position-dependent radial electric field.  

The authors noted that Ω values obtained using the RF-confining drift tube were slightly 

larger (0.3 ± 1.4%) than literature values obtained by UF IMS but were within the 

experimental error.  Moreover, drift times measured at lower drift voltages deviated 

toward longer drift times—a result that has also been observed in a RF IF positioned at 
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the exit of a  long UF IMS drift tube.26  On the basis of the work described herein, we 

can conclude that under low (axial) field conditions, the RF-confining drift tube and RF 

IF also contain a mobility damping factor (α) that originates from radial ripple motion 

and causes an increase in nz relative to UF IMS conditions.  At higher drift voltages, this 

deviation is not observed, which is also consistent with our results.  Hence, sufficient 

electric field-driven momentum gains in the axial direction can suppress radial ripple 

motion for an ion in an electrodynamic or electrostatic system. 

 

 

Figure 18.  Schematic diagram of the RF-confining drift tube.  The 2.7 MHz RF 
frequency (200 Vp-p) is applied to adjacent electrodes out-of-phase.  A linear DC voltage 
gradient facilitates ion transport through the 18 cm drift tube.  The electrode dimensions 
are as follows: d = 7 mm, w = 0.5 mm, and s = 1.5 mm. 
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4.9 Conclusions 

The methodology for obtaining accurate Ω values for proteins and peptides using 

PF IMS (s = w = 6 mm, d = 8 mm) operating at 1.00 Torr and ambient temperature (300 

K) is described.  By quantifying the extent of mobility dampening with respect to UF 

IMS measurements, accurate Ω values for bradykinin, angiotensin II, melittin, ubiquitin, 

and cytochrome c were obtained with excellent agreement compared to UF IMS 

measurements.  The results validate that the relatively weak position-dependent radial 

electric fields in PF IMS induces oscillatory motion (a radial ripple effect caused by an 

effective RF) as ions traverse the device.  Unlike TW IMS, careful selection of calibrant 

ions and instrument operating conditions is not critical (viz. calibration of PF IMS drift 

tubes does not require native calibrants whose Ω brackets the Ω of the analyte, 

optimization of T-wave velocity, measurement at several T-wave velocities, and 

evaluation of the calibrant ion dependence on T-wave velocity) because Ω is directly 

proportional to α𝑡! in PF IMS.  Instead, reasonable Ω values may be obtained via direct 

measurement of the PF IMS drift time by simply incorporating  α ≈ 0.79 into UF IMS 

expressions (eq. (25)), while optimal calibration (≤ 4% difference) may be achieved 

through charge state correction of the mobility damping factor (α(z)).  The results 

presented herein suggest that charge state-dependence is an important consideration for 

calibration of PF IMS drift tubes as well as any IMS device that utilizes radial ion 

focusing strategies. 
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5. TEMPERATURE EFFECTS IN ION MOBILITY SPECTROMETRY 

 

5.1 Effective Ion Temperatures in Periodic Focusing Devices 

Since optimal operation of PF IMS requires intermediate electric fields (see 

Sections 1.2.2 and 4.4), the variable Teff becomes increasingly important.  Moreover, the 

PF IMS ion dynamics described in Sections 1 through 3 are reinforced by studying Teff.  

The effective ion temperature was determined for fullerene following a semi-quantitative 

procedure previously demonstrated by Fernandez-Lima et al.67  Figure 19 illustrates Teff 

and the number of ion-neutral collisions per unit 𝑧-dimension, with respect to three 

representative electrode subunits. The observed variation in Teff is a result of changes in 

ion velocity (or kinetic energy) initiated by the periodicity of the electric fields (Figure 

5) and enhanced by subsequent collisional cooling at low axial velocities. Teff reaches a 

minimum in region B2 and a maximum in region A, and demonstrates the periodic ion 

heating and cooling phenomenon inherent in the device. Figure 19 also illustrates the 

inverse relationship between Teff and the ion-neutral collision frequency. Although our 

simulations suggest that local effective ion temperatures can be high, the average Teff in 

PF IMS oscillates above and below ~421 K at Ec/N 75 Td.  It should also be noted that 

for reference purposes, we also investigated the effective ion temperature in a 32 cm 

uniform field IMS drift tube at the same field strength, which yielded a similar average 

Teff  ≈ 438 K.   
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Figure 19.  Effective ion temperature of a single fullerene ion (represented with black 
dots) and the average of several ion trajectories (shown in red, top trace).  The number of 
ion-neutral collisions in 0.25 mm bins is shown in blue (bottom trace) across three 
representative electrodes. 

 

Teff is expectedly greater than T (298 K) because in this field, the translational 

kinetic energy of C60
•+ cannot be entirely quenched by a single collision with a helium 

atom at intermediate field strengths.  Moreover, as expected from uniform field IMS in 

the intermediate field, as E/N decreases, Teff decreases proportionally, owing to a 

decrease in acceleration between subsequent collisions, ultimately leveling off as Teff 

approaches T.  The low to intermediate field transition occurs ~25 Td as shown in Figure 

20.   

 



 

61 

 

 

Figure 20.  Average effective ion temperature of fullerene in a periodic focusing ion 
mobility spectrometer as a function of field strength.  The data is shown at 1.0 (blue 
squares) and 2.0 (red circles) Torr. 

 

Section 4 confirmed the presence of mobility dampening in PF IMS.  A 

consequence of nz,PF IMS > nz,UF IMS is that the macroscopic drift velocity is relatively 

smaller in PF IMS.  Hence, all factors related to the drift velocity, including the field 

contribution to the average effective ion temperature (𝑇eff), are reduced accordingly.  

However, similar to TW IMS, Teff in PF IMS oscillates above and below 𝑇eff as a 

function of 𝑧-position as demonstrated in Figure 19.50  Previous results for fullerene 

confirmed that average ion temperatures in PF IMS are comparable, yet slightly lower 

compared to UF IMS for equivalent operating conditions.  Using the semi-quantitative 

approach outlined above, 𝑇eff  for bradykinin [M + 2H]2+ at 25 Td (below the 

approximate low field limit given by eq. (26) in PF IMS is ~315 K as compared to ~318 
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K for UF IMS.  At 50 Td (intermediate field strength), 𝑇eff estimates for PF IMS and UF 

IMS yield ~364 K and ~366 K, respectively.  It should be noted that depending upon the 

analyte-specific potential energy landscape, an increase in Teff can alter the geometry and 

thus Ω.  However, to date, we see no direct evidence for structural rearrangement for any 

of the model peptide and protein systems that have been presented in Section 4.  

Furthermore, the measured Ω values are in excellent agreement with previously reported 

values (see Figure 17).  This may be attributed to the fact that in an intermediate 

periodic-focusing field where 𝑇eff > T, ions are periodically thermalized while drifting 

inside the electrodes, thereby inhibiting structural rearrangement between collisional 

cooling cycles.  This result is also consistent with the fact that the RF-confining drift 

tube (discussed in the following section) and RF IF (which also imparts some internal 

energy into the analyte) positioned at the front and/or middle of UF IMS drift tube 

segments have no adverse effects to the measured Ω values.68  Moreover, at near-thermal 

temperatures and bath gases having low polarizability (such as helium used exclusively 

herein), the dependence of Ω on temperature is minimal.69 

 

5.2 Analytical Utility of Low Temperature IMS Measurements 

While nearly all IMS measurements are performed at ambient temperature, 

tremendous analytical utility lies in reduced temperature measurements. First, eq. (1) 

shows that diffusion-limited resolving power is proportional to (1/T)1/2. Hence, low 

temperature IMS measurements increase R owing to a decrease in drift gas speed and 

narrowing of the Maxwell-Boltzmann distribution. Second, diffusional broadening of the 
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ion swarm is inhibited at sub-ambient temperatures, which yields increased ion 

transmission through the conductance limiting aperture at the back of the drift tube. 

Third, when helium is used as the drift gas, reducing the temperature of the drift gas to 

80 K results in condensation of typical gas impurities below their boiling point (see 

Table 3 and Figure 21), which decreases the probability of unwanted reaction chemistry 

inside the drift tube and increases the accuracy of Ω measurements. Finally, in the case 

of structurally labile biomolecules that possess potential energy surfaces with shallow 

wells, low temperature measurements can slow the rates of conformational 

interconversion such that individual conformational states can be resolved. These, and 

other aspects of reduced temperature IMS measurements are explored in Chapters 6 and 

7. 

 

Species 
Phase Transition 
Temperature, K 

Molecular  
Mass 

H2 20.35 2.02 
N2 77.3 28.01 
CO 81.6 28.01 
O2 90.2 32.00 
CH4 111.6 16.04 
C2H6 184.5 30.07 
CO2 216.6 44.01 
C3H8 231.1 44.10 
H2O 273.2 18.02 

 
Table 3. Phase condensation temperature for several common drift gas impurities.15  
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Figure 21. Mass spectrum obtained by increasing the pressure of the He (g) inside the 
drift tube (described in Chapter 6) above the breakdown Paschen limit. MS analysis of 
the cations contained in the plasma reveals the composition of contaminant species 
present at ambient (300 K, (a)) and cryogenic (80 K, (b)) temperature. At 300 K, the 
spectrum contains primarily H2O·+ (m/z 18), H3O·+ (m/z 19), and O2

·+ (m/z 32). At 80 K, 
residual water is condensed, however, the spectrum reveals that N·+ (m/z 14), O·+ (m/z 
16), N2

·+ (m/z 28), and O2
·+ (m/z 32) are still present. Note that m/z 16 and m/z 28 may 

also arise from CH4 and CO contaminants, respectively. 
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6. CRYOGENIC ION MOBILITY-MASS SPECTROMETRY CAPTURES 

HYDRATED IONS PRODUCED DURING ELECTROSPRAY IONIZATION* 

 

6.1 Background 

ESI characteristically generates ions that are depleted of solvent; however, 

numerous recent IMS and MS studies suggest that gas-phase peptide,66,68 protein,70 and 

multiprotein complex71-72 ions formed by ESI can retain solution-phase features. 

Implicated in the preservation of the folded state are the relative stability of the native 

fold and electrostatic interactions that stabilize the desolvated ions on the analysis 

timescale (µs-ms).59,73-76 IM-MS studies of native states require gentle instrument 

conditions that minimize ion temperatures (typically achieved via nano-ESI, high 

background gas pressures, low electric fields, etc.) such that weak non-covalent 

interactions and overall topology are preserved.77 Unfortunately, the gentle instrument 

conditions needed for studies of native states come at the expense of ion transmission, 

IM resolution, and oftentimes require extended data acquisition times. Cryogenic IM-

MS provides one possible route to circumventing these limitations. 

Hydrated gas-phase ions represent a form of matter that is intermediate between 

gaseous and condensed states. Studies involving sequential hydration of biomolecules 

under equilibrium conditions,78-82 observation of specific binding geometries from 
                                                

* Part of this chapter is reprinted with permission from “Cryogenic Ion Mobility-Mass 
Spectrometry Captures Hydrated Ions Produced During Electrospray Ionization” by 
Joshua A. Silveira, Kelly A. Servage, Chaminda M. Gamage, and David H. Russell, 
2013. J. Phys. Chem. A., 117, 953-961, Copyright [2013] by The American Chemical 
Society. 
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electrosprayed peptide ions,83-84 as well as gas-phase spectroscopic analysis of small 

model systems85-92 have provided insight into the kinetics, thermodynamics, and 

structure of hydrated biomolecules. However, IM-MS analysis of intact hydrated 

analytes produced from ESI has proven elusive, particularly because the weakly bound 

species are short-lived with respect to ion drift time and do not survive under typical 

operating conditions (300 K) owing to their relatively low stability.93 

Previous studies have demonstrated several important advantages for cryogenic 

temperature IM including: (1) increased sensitivity and resolution through reduction in 

diffusional broadening of the ion swarm,13 (2) increased drift gas purity,14 and (3) the 

ability to “freeze-out” or kinetically trap inter-converting conformers on the timescale of 

the measurement.94 To our knowledge, this is the first low temperature (~80 K) drift tube 

apparatus designed specifically for studies of non-covalent complexes and weakly bound 

cluster ions.  In the present work, ion temperature effects on the distribution of 

protonated water clusters, H+(H2O)n (n = 2 to ~51), are examined using a novel 

cryogenic IM-MS apparatus. In this particular size range, the distribution contains 

species with enhanced stability, referred to as “magic number” clusters. The results for 

protonated water clusters provide a basis for interpreting similar distributions of 

hydrated peptides.  
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6.2 Experimental Methods 

 6.2.1 Sample Preparation 

Protonated water clusters were generated by ESI from deionized water (18 MΩ) 

that was acidified with HCl (pH 3). For peptide studies, 50 µM solutions of bradykinin 

(Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg, Sigma Aldrich, St. Louis, MO) and gramicidin 

S (cyclo(-Pro-Val-Orn-Leu-DPhe-)2, MoCell, Shanghai, China) were prepared in 

deionized water containing 0.1 % formic acid. All samples were directly infused at 400 

nL min-1 from a pulled tip ESI emitter (50 µm initial internal diameter) into a stainless 

steel heated capillary maintained between 340 and 391 K.  The potential difference 

between the emitter and capillary was maintained at 3.0 kV to generate protonated water 

clusters and 1.9 kV to generate hydrated peptides. 

 

6.2.2 Instrumentation 

A schematic representation of the home-built instrument is shown in Figure 22. A 

comprehensive list of all operating parameters is listed in Table 4 and 5. Ions formed by 

ESI are electro-pneumatically focused through a skimmer cone and transferred into the 

variable temperature drift tube using an electrostatic ion guide.47,50 The ion guide is 

composed of 43 identical lenses (Kimball Physics Inc., Wilton, NH). The width and 

spacing of the focusing lenses in the ion guide is 1.27 mm and the inner diameter is 6.35 

mm. The potential of adjacent lens elements alternates by ~40 V and the resulting 

oscillatory radial electric field focuses ions into a pulsed-gate electrode that is used to 

modulate the ions entering the IM drift tube.  During IM-MS data collection, the gate 
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electrode is briefly pulsed from 388 V (ion deflection mode) to 320 V (ion transmission 

mode) for 12 µs at a frequency of 900 Hz. 

 

Figure 22.  Cutaway view of the source (a) and drift tube region (b) of the instrument.  
Labels are as follows: 1-heated capillary, 2-skimmer cone, 3-DC ion guide , 4-IM gate, 
5-IM ring electrode, 6-ceramic spacer, 7-cryogenic Dewar jacket, 8-cryogen inlet line, 9-
electrical feedthrough, 10-helium gas inlet port, 11-drift gas pre-cooling line, and 12-
cryogen outlet line.  The inlet of the heated capillary (11.4 cm in length, ~400 µm 
internal diameter) is at ambient pressure whereas the pressure between the back of the 
capillary and the skimmer cone is typically between 1.0 and 1.5 Torr (depending upon 
the temperature of the capillary).  The pressure in the DC ion guide and Dewar region is 
differentially pumped to ~5x10-4 Torr to prevent ice buildup.  Under typical tuning 
conditions, the potential difference from the skimmer cone to the front of the drift tube is 
~50 V.  Components shown in grey are at ground potential whereas all lens elements in 
color may be varied with a power supply.  The source region of the instrument (shown 
here) is biased to positive potentials whereas the TOF region (not shown) is grounded.  

 

The overall drift tube design was adapted from a previous hybrid IM-MS 

instrument described by May and Russell.13-14 Briefly, the variable temperature IM drift 

tube is composed of 25 lens elements that are encased inside a cryogenic Dewar.  This 

region can be maintained at temperatures ranging from 80 to 400 K. The thickness and 

spacing of all drift tube lens elements is 6.35 mm. The first 22 lenses have an inner 

diameter of 28.6 mm to provide a uniform electric field. The inner diameter of the last 
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two lens elements is tapered to achieve periodic focusing,50,56,95 which increases ion 

transmission through the 800 µm exit aperture.96 All electrodes are connected through a 

series of 1 MΩ resistors and are spaced by non-porous precision ceramic balls. A thin 

vespel insulating spacer isolates the first and last electrode from the Dewar. The entire 

drift tube assembly is held in place by compression onto indium wire seals that are fitted 

to the Dewar endcaps. 

All measurements reported herein were collected during low temperature 

operation of the drift tube (83 ± 3 K), unless otherwise noted. The electric field inside 

the drift tube was maintained between 9.12 and 15.1 V cm-1. Stable pressure was 

achieved using a flow controller (Type 640, MKS, Andover, MA) located near the gas 

inlet into the instrument.  Using the calibration previously described by May and 

Russell, the pressure inside the drift tube was 1.6 Torr yielding field strengths between 

E/N 4.8 and 8.2 Td.13 Ultra high purity helium (99.999%) was introduced into the drift 

tube through 3.175 mm stainless steel tubing.  The helium gas was pre-cooled by 

introducing liquid nitrogen into the Dewar jacket. The temperature of the gas was 

measured using ceramic-encased platinum resistive temperature detectors (PT-100, 

Omega Engineering Inc., Stamford, CT) positioned inside the drift tube. The entire 

assembly is mounted inside the vacuum housing of the instrument and maintained at 

~5x10-4 Torr to minimize ice buildup. Upon an initial cooling cycle, plasma discharge of 

the helium gas inside the drift tube can initiate ion transmission via removal of 

condensed species deposited on the electrode surfaces. 
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Ions exiting the drift tube are pulsed orthogonally (12-15 kHz) into a time-of-

flight (TOF) mass spectrometer maintained at ~1x10-7 Torr via differential pumping. A 

description of the TOF has been reported elsewhere.97 Ions are detected using an 18 mm 

dual microchannel plate assembly (MCP, Photonis, Sturbridge, MA). IM-MS spectra 

were recorded by pulsed synchronization of the gate electrode and TOF extraction 

source using custom 2D acquisition software provided by Ionwerks (Houston, TX). 

 

  
Lens Voltage, V 
ESI emitter ~2500 
heated capillary 366 
source skimmer cone 359 
DC IG 1 352 
DC IG 2 279 
gate lens 328 
IM gate (open) 320 
IM gate (closed) 400 
IM front 311 
IM back 36 
TOF skimmer 0 
Einzel 1 -39 
Einzel 2 -3.8 
Einzel 3 -30.2 
Einzel 4 -20 
TOF push 3.25 
TOF liner 0 
reflectron back ring ~4000 
MCP front -2600 

 
Table 4. Typical operating voltages for all lens elements in the cryogenic IM-MS 
instrument.  
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Parameter, units Setting 
active time (+6.5), μs 55 
resolution, ns 16 
IM gate frequency, Hz 900 
IM pulse width, μs 12 
delay from IM gate to first TOF extraction, ms  0  
run for #seconds, s 0 
TOF extraction frequency, kHz 15 
TOF extraction pulse width 2.667 
number of TOF extractions/IM gate pulse 13 
number of interleaved extractions 20 
TDC start delay from extraction pulse, μs 5.07 

 
Table 5. Typical Ionwerks software parameters used for cryogenic IM-MS experiments. 
 
 
6.3 Results and Discussion 

Figure 23 contains mass spectra of protonated water clusters, H+(H2O)n (n = 2 to 

~51), acquired at different capillary temperatures. Hydrated cluster ions are formed 

within the ESI plume and/or by evaporation of larger droplets as they traverse the heated 

capillary.  The relative ion abundances are directly linked to the relative stabilities of the 

clusters. Under similar conditions, the temperature of nascent cluster ions exiting the 

capillary has been estimated between 130 and 150 K owing to evaporative cooling.84 

Here, additional cooling of the cluster ions upon entering the drift tube (~80 K) aids in 

the preservation of the distribution produced by ESI.  
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Figure 23. Mass spectra of protonated water clusters produced at different capillary 
temperatures (340 to 356 K) and constant IM field strength (5.0 Td). 
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During the evaporative ESI process, magic number clusters are produced and 

assigned herein on the basis of their enhanced abundance. At capillary temperatures 

between 340 and 350 K, magic number clusters n = 21 and 28 are clearly generated. 

These results are in excellent agreement with previous studies on the stability of 

protonated water clusters where the anomalously high abundances of n = 2184,98-101 and 

2884 have been  explained on the basis of structure, viz. magic number clusters can 

possess enhanced stability owing to the completion of closed clathrate cages (solvation 

shells).100-101 Increasing the temperature of the heated capillary facilitates slow 

desolvation of the hydrated proton and shifts the overall distribution toward smaller n, 

though magic number clusters are still observed above the otherwise smooth 

distributions. At capillary temperatures greater than 350 K, only small cluster ions are 

detected. Under these conditions, persistent clusters indicative of special stability are 

observed in the small size region, namely, n = 4. Several studies have previously noted 

the enhanced stability of n = 4 (H9O4+)84,102 and ab initio calculations have suggested 

that this species is likely present as an H3O+-centered isomer having one H2O monomer 

(H-bond acceptor) attached to each of the central hydrogen atoms.103  

The detection of abundant magic number clusters over a range of capillary 

temperatures demonstrates that the low-energy ion-neutral collisions within the drift tube 

(maintained at 5.0 Td) preserve the cluster ions produced by ESI; however, it is also 

important to examine the effects of IM field strength on the resulting distribution. For 

IM measurements, it is imperative that the field strength is below the so-called “low-

field limit” where the force exerted by the electric field is weak to ensure that the drift 
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time is directly proportional to Ω.29 Here, although extremely weak field strengths are 

employed, we must consider collision-induced dissociation (CID), which is expected to 

proceed via loss of monomers:104 

H+(H2O)n     →  H+(H2O)n-1 + H2O         (37) 

For this study, the heated capillary temperature was maintained at 340 K to 

produce a broad cluster distribution surrounding the region of interest (n = 21 and 28) 

while the electric field was increased from 9.1 V cm-1 (5.0 Td) to 15 V cm-1 (8.4 Td). 

Generally, the data shown in Figure 24 indicate that at low electric fields, persistent 

magic number clusters (n = 21 and 28) are indeed present. As the electric field is 

increased, the abundances of these ions decrease such that the distributions become 

increasingly smooth while the appearance of small clusters (probable terminal products 

of dissociation, n = 2 to 4) become increasingly abundant. 

The exact onset of CID is more easily observed in Figure 25 which contains a 

plot of percent ion abundance for n = 20 to 22 versus IM field strength. In the low-field 

region of the curve (<5.8 Td), the percent abundance of cluster ion species in this size 

range collectively decreases as E/N increases because ion transmission for higher m/z 

species improves with increased electric field strength (see Figure 24).  At 5.8 Td, the 

sharp increase in the abundance of n = 20 and concomitant drop-off in the abundance of 

n = 21 is consistent with the onset of CID. Although we cannot discern the exact 

terminal products of dissociation for each particular species, the CID process primarily 

evolves via sequential loss of water monomers.104 This is also supported by the fact that 

small clusters grow in stepwise, viz. n = 4, 3, then 2 become successively more abundant 
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as the electric field is increased (see Figure 24). It should also be noted that similar 

dissociative phenomena are produced when the drift tube temperature is increased while 

maintaining a low electric field (see Figure 26). Collectively, these results emphasize the 

critical importance of minimizing effective ion temperatures (even when extremely low 

field strengths are employed, i.e. < 10 Td) such that weakly-bound species do not 

dissociate during the IM measurement. 

The previous data have demonstrated that at higher effective ion temperatures, n 

= 21 is decomposed into n = 20 (as well as smaller clusters) at a higher rate than its 

repopulation from larger clusters occurs, ultimately resulting in loss of its characteristic 

enhanced abundance. While the distinct drop-off in the abundance of n = 21 is useful for 

establishing a dissociative limit, the phenomenon is quite unusual given that larger 

clusters (that are present) can also dissociate under these conditions and preferentially 

repopulate magic number abundances; however, Figure 24-26 questionably show that 

this process does not occur. 
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Figure 24. Mass spectra of H+(H2O)n (n = 2 to 45) as a function of electric field (9.1 to 
15.1 V cm-1) applied across the IM drift tube. These conditions correspond to field 
strengths in the range of 5.0 to 8.4 Td. In this cluster size range, magic numbers n = 21 
and 28 are clearly observed above the otherwise smooth distribution of ions at lower 
fields. As the electric field increases, the ion-neutral collisional energy becomes 
sufficient to result in dissociation of monomers from cluster ions, evidenced by the 
gradual disappearance of magic numbers and the increase in small clusters (n = 2 to 4). 
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Figure 25. Percent abundance of H+(H2O)n (n = 20 to 22) as a function of the IM field 
strength.  
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Figure 26. Expanded view of the mass spectra in the size range near n = 21: (a) as a 
function of electric field across the drift tube with constant T ≈ 80 K, and (b) as a 
function of IM drift gas temperature with constant E = 9.1 V·cm-1. Both thermal and 
electric field-induced ion heating result in a decrease in the magic number abundance 
such that the resulting abundances of n = 20 to 22 become similar. 
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To gain insight into the structure and isomer distribution of the clusters in the 

size region surrounding n = 21, the IM arrival time distributions (ATD) were obtained at 

E/N 4.8 Td—conditions well below the previously established dissociative limit. The 

plot of ATD versus m/z (see Figure 27(a)) confirms that the cluster ions are stable on the 

experimental timescale. Though the centroid of most peaks falls along a straight 

trendline, a unique signature is observed at n = 21. Compared to adjacent clusters, the 

mass-selected ATD for n = 21 reveals that this ion is comprised of at least two distinct 

populations (see Figure 27(c-e)). While several nearly isoenergetic structures are 

possible for the population that falls along the trendline,105 the more abundant population 

is shifted toward shorter arrival time and is therefore assigned to a relatively more 

compact clathrate cage isomer. Singh et al. have demonstrated that several structures are 

possible for n = 21 when effective ion temperatures increase above ~145 K such that the 

clathrate cage can open to form a variety of isomers with fewer total H-bonds and more 

dangling H-atoms on the cluster surface.105  
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Figure 27. Two dimensional contour plot of ATD versus m/z for H+(H2O)n (n = 15 to 
35) produced at an electric field of 9.1 V cm-1 (a) and 15.1 V cm-1 (b) in the drift tube. In 
both cases, the capillary temperature was 340 K such that the conditions are nearly 
equivalent to Figure 3(a). Panels (c-e) contain the mass-selected ATDs for (n = 20 to 22) 
at 9.1 V cm-1. The black line is the result of boxcar averaging of the data points (grey ■). 
The vertical dashed line was inserted to guide the eye across the centroid of the IM-MS 
trendlines shown.  

 

Hence, the IM-MS data supports the fact that nascent cluster ion temperatures 

produced from ESI (~130 to 150 K) are intermediate such that both open and closed 

cage isomers are produced. Based upon these findings, CID-induced loss of enhanced 

abundance for n = 21 may occur because dissociation of species n > 21 (having higher 
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effective ion temperatures) yield n = 21 product ions having open structures that lack 

special stability. Note the absence of a trendline deviation at n = 21 (cage isomer) for 

drift tube conditions that induce significant ion heating (Figure 27(b)). Collectively, 

these results support the temperature-dependent structural basis upon which magic 

number phenomena has been previously described. 

Dehydration of nascent charged droplets formed during ESI can also yield 

interesting arrangements of water surrounding the charge-carrying groups found in 

peptide ions. Figure 28(a-f) contains mass spectra of bradykinin (BK) produced at 

different capillary temperatures. Abundant [BK + 2H]2+(H2O)n (n = 0 to ~73) ions are 

observed at a capillary temperature of 340 K (Figure 28(a)), whereas low abundances of 

[BK + 3H]3+ ions are observed at higher capillary temperatures. Increasing the capillary 

temperature promotes desolvation of the peptide eventually yielding fully dehydrated 

[BK + 2H]2+ and [BK + 3H]3+ ions.   The influence of capillary temperature on the [BK 

+ 3H]3+ ion yield implies that its formation is critically tied to the desolvation 

thermodynamics. Preferential formation of highly charged ions by ESI under conditions 

involving more rapid desolvation and/or ion heating has been noted by Sterling et al. and 

attributed to an electrothermal effect.106 The experimental conditions used for these 

studies clearly favor formation of [M + 2H]2+ over [M + 3H]3+ ions as well as [BK + 

2H]2+(H2O)n cluster ions, but the inset of Figure 6d shows that low abundances (< 1%) 

of [BK + 3H]3+(H2O)n species are indeed present.  It is interesting to note that neither 

[BK + 2H]2+(H2O)n nor [BK + 3H]3+(H2O)n display specific solvation (magic number 

clusters). This result is consistent with studies by Lee et al.  where the [BK + 
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2H]2+(H2O)n (n = 0 to ~100) distribution did not contain magic number clusters under 

similar evaporative conditions that facilitated progressive desolvation.84  

Non-specific solvation of [BK + 2H]2+(H2O)n is also indicated by the IM-MS 

plot that does not contain deviations from the straight trendline produced by the cluster 

ions (see Figure 28(g)). At the current IM resolution (R ~30), no changes to the 

completely desolvated [BK + 2H]2+ ATD were detected for inlet conditions that 

facilitated extensive hydration (340 K) and inlet conditions that yielded complete 

desolvation (386 K). These results are interesting given that the ATD is broad and non-

Gaussian suggesting that multiple peptide conformations are present across a wide 

temperature range. 

However, preliminary studies suggest that these phenomena are peptide specific.   

For example, Figure 29(a-c) contains mass spectra of gramicidin S (GS) produced at 

different capillary temperatures. Similar to the results presented for BK, [GS + 

2H]2+(H2O)n species are observed over a range of capillary temperatures. Dehydration of 

GS differs from BK in that ions corresponding to n = 8, 11 and 14 are detected at greater 

abundance compared to adjacent cluster ions within the [GS + 2H]2+(H2O)n (n = 0 to 

~26) distribution (see Figure 29(a)). In this size region, these magic number clusters 

have been previously reported by several groups.83-84,91  
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Figure 28. Mass spectra of hydrated bradykinin at varied capillary temperatures (340 to 
386 K, a-f).  Panel (g) contains a two dimensional plot of ATD versus m/z for [BK + 
2H]2+ (H2O)n (n = 0 to ~55) produced at 4.9 Td. The dashed line was inserted to guide 
the eye across the IM-MS trendline. 
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The IM-MS plot for [GS + 2H]2+(H2O)n (n = 0 to ~24) shown in Figure 29(d) 

differs significantly from both [BK + 2H]2+(H2O)n  and H+(H2O)n  ions as the ATDs do 

not fall along a uniform trendline. Particularly evident at n = 8, it is unlikely that this 

deviation and other irregularities observed are attributed to conformational changes as a 

function of progressive desolvation. Nagornova et al. have recently reported that only 

the first two water molecules induce a significant conformational change to GS by 

weakening the NH3
+-π interaction.  Based upon these results, it is likely that 

irregularities observed in the IM-MS data may be attributed to favorable arrangements of 

water surrounding the ammonium groups. Liu et al. investigated the gas-phase hydration 

of several small peptides and noted that, under equilibrium conditions used in the study, 

the maximum number of water adducts correlated strongly with the number of charged 

functional groups present, ultimately yielding a ratio between 5 and 7 water molecules 

per unit charge.79 Hence, [GS + 2H]2+(H2O)n (n = 14) likely corresponds to exclusive 

hydration of the ammonium ion. 
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Figure 29. Mass spectra of hydrated gramicidin S at varied capillary temperatures (356 
to 391 K, a-c). Panel (d) contains a two dimensional plot of ATD versus m/z for [GS + 
2H]2+ (H2O)n (n = 0 to ~24) produced at 4.9 Td. The dashed line was inserted to guide 
the eye across the IM-MS trendline. 
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Interestingly, n = 14 also corresponds to the exact number of water molecules 

required to overcome the Coulombic repulsion of two isolated ammonium groups and 

fold 1,7-diaminoheptane via a solvent bridge.92  For GS, it remains unclear whether 

solvent bridging actually occurs in a similar manner; however, sequential loss of the 

neutral water trimer (or possibly three individual water monomers) from [GS + 

2H]2+(H2O)n (n = 14) would yield n = 11 and 8. The preference for formation of these 

species may be the enhanced stability of the cyclic water trimer that contains three 

intramolecular H-bonds.107 The terminal magic number cluster, n = 8, can be viewed as 

having four water monomers bound to each ammonium ion, which may not appear 

particularly stable unless alternatively considered as an H9O4+ adduct that does in fact 

possess enhanced stability (see Figure 2b-d).84,91,102  

    −NH!!⋯ H!O !   ⟶   −NH!!⋯ H!O !      𝑜𝑟      − NH!⋯ H!O! ! 

                                                                                                +(H!O)!      𝑜𝑟    + 3(H!O)     (38) 

Charge delocalization arising from the similar proton affinities (PA) of the two 

species may provide additional stabilization to the n = 8 cluster ion (viz. (PA(H8O4) ~225 

kcal mol-1 versus PA(Orn) ~233 kcal mol-1).108-111 

 

6.4 Conclusions 

Stabilization of weak non-covalent interactions during the transition from 

condensed to gaseous states requires gentle IM-MS instrument conditions. Extensively 
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hydrated ions are produced by ESI at low inlet temperatures and preserved in the drift 

tube by employing cryogenic cooling (~80 K) at sufficiently low IM field strength. The 

results presented herein establish a low field dissociative limit for cluster ions held 

together by hydrogen bonds. Below this limit, IM is employed as a useful probe of ion 

structure as IM-MS trendline deviations are observed at magic number cluster species 

for both hydrated protons and peptides.  

Our collective findings indicate that water evaporation from cluster ions is 

largely dependent upon the particular charge-carrying species within the cluster.   Most 

notably, IM-MS data of protonated water clusters suggest the presence of multiple 

isomers at the magic number cluster n = 21, including a compact clathrate cage. 

Generation of this particular isomer appears largely dependent upon the effective ion 

temperature since distributions collected above the dissociative limit do not contain 

features with enhanced local stability. These results are consistent with the temperature-

dependent structural basis by which magic number phenomena have been described.   

It is especially interesting to note that hydrated [GS + 2H]2+  ions displayed 

magic number clusters (n = 8, 11, and 14), but hydrated [BK + 2H]2+ ions did not 

demonstrate specific solvation.  These differences may, in part, be attributed to the 

relative energies of hydration for ammonium (GS) and guanidinium (BK) containing 

ions. However, for peptides, additional intramolecular interactions such as zwitterion 

formation and intramolecular charge solvation can influence the hydration process.   

Future studies aimed at examining the effects of amino acid composition on the products 

of dehydration will lead to a comprehensive understanding of the evaporative process 
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captured at ~80 K. Nonetheless, the cryogenic IM-MS instrument platform provides a 

new approach for investigating important fundamental questions related to the 

evaporative ESI dynamics, the origin of solution-phase and gas-phase conformers 

observed by IM, cluster chemistry, and stepwise dehydration of biomolecules.  
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7. FROM SOLUTION TO THE GAS-PHASE: STEPWISE DESOLVATION AND 

KINETIC TRAPPING OF SUBSTANCE P REVEALS THE ORIGIN OF PEPTIDE 

CONFORMATIONS 

 

7.1 Background 

Conformer preferences of biomolecules, such as proteins and peptides, are 

dictated by both inter- and intramolecular interactions. Because of the large number of 

degrees-of-freedom in bulk solvent networks and the dynamic nature of hydrogen 

bonds,101,112-113 the specific interactions of a particular conformational state can be 

challenging to study in explicit environments (i.e. in solution or interacting with/inserted 

into a lipid membrane). Gas phase studies of solvent-free biomolecules provide a 

potential solution to this problem because inter- and intramolecular interactions are 

effectively decoupled.87-88,91,114 However, a potential concern is that during the transition 

from solution to gas phase via electrospray ionization (ESI), biomolecules encounter 

unique environments that can potentially affect their structure.115-117 A number of studies 

have demonstrated that upon ESI, peptide and protein ions can retain memory of their 

solution structures,62,68,70,72,74-75,118-121 suggesting that gaseous ions can be kinetically 

trapped in local minima along their potential energy surface owing to evaporative 

cooling and slow rates of isomerization. Although covalent bonds are preserved upon 

ESI, the effect of charge state and the extent to which noncovalent interactions are 

affected remain unresolved. 
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It is widely accepted that ESI begins with the production of charged droplets that 

undergo a series of evaporation and fission events under the influence of an electric field 

at ambient pressure and temperature, ultimately generating ions that are depleted of bulk 

solvent. Several models describing the generation of gas phase ions from nanodroplets 

have been proposed. A growing body of literature suggests that ions such as folded 

proteins are generated by the charge residue model (CRM), originally described by Dole 

et al.,122-123 whereby small nanodroplets containing a single analyte species evaporate to 

yield dry ions that can retain native structure in the gas phase. Recent molecular 

dynamics simulations by Breuker and McLafferty suggest that during the final stages of 

evaporation, remnant solvent adducts surround the outermost charged residues thereby 

shielding intramolecular interactions in the partially solvated protein ion.115 

Alternatively, low molecular weight species are thought to be transferred into the gas 

phase by the ion evaporation model (IEM).124 Originally proposed by Iribarne and 

Thompson, the IEM suggests that before charged droplets become sufficiently small 

such that they contain only a single solute molecule, the surface charge density is 

sufficient to eject an ion residing near the nanodroplet surface into the gas phase.125 

Consta126 and Konermann127-128 have proposed that unfolded/extended macromolecules 

are ionized via a similar chain ejection mechanism. However, experimental techniques 

that can directly probe the structure and dynamics of biomolecules at intermediate 

extents of hydration are limited, and little is known about the final stages of desolvation 

during ESI. Consequently, the question posed above, “for how long, under what 
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conditions, and to what extent, can solution structure be retained without solvent?”, 

remains unresolved.115  

We recently introduced cryogenic ion mobility-mass spectrometry (IM-MS) as a 

new technique for studying conformations of hydrated gas phase ions produced during 

the evaporative ESI process.129 Previous findings suggested that water networks formed 

upon evaporation are largely dependent upon the particular charge-carrying species 

present. Specifically, hydrated peptide ions that contain lysine (ammonium ions) display 

“magic number” clusters that possess enhanced stability, whereas hydrated peptide ions 

that contain arginine (guanidinium ions) do not exhibit specific solvation behavior. Here, 

we report a benchmark cryogenic IM-MS study that experimentally captures the 

evaporative dynamics of an amphipathic undecapeptide, substance P (SP, Arg1—Pro2—

Lys3—Pro4—Gln5—Gln6—Phe7—Phe8—Gly9—Leu10—Met11-NH2), containing both 

arginine and lysine residues. As demonstrated below, cryogenic cooling of the IM drift 

tube to 80 K aids in the preservation of hydrated cluster ions formed during ESI such 

that the multiplicity of conformations that arise from solution and in the gas phase can be 

distinguished.  

 

7.2 Experimental Methods 

The cryogenic IM-MS instrumentation and experimental details have been 

recently described.1 Briefly, hydrated ions were generated from a 50 µM solution of SP 

in water containing 0.1% formic acid by ESI using a home-built cryogenic IM-MS 

apparatus. The extent of hydration was controlled using a variable temperature heated 
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capillary inlet operated between 353 and 380 K. Cold cluster ions formed in the source 

region were transported into a 30.2 cm-long drift tube filled with 1.6 Torr helium (T = 80 

± 2 K). Ion transport through the drift tube was facilitated by a weak electric field (9.1 

V·cm-1). The eluting cluster ions were pulsed into an orthogonal reflectron time-of-flight 

(TOF) mass spectrometer for mass-to-charge (m/z) identification. 

Collisional activation studies were performed on a 1.38 m-long home-built IM-

MS instrument that operates at ambient temperature. Ion activation was carried out in an 

ion funnel operated between 11 and 43 V cm-1 Torr-1; the resulting ion populations were 

gated into the high-resolution periodic focusing drift tube for mobility dispersion. 

Determination of collision cross section values in a periodic focusing electric field has 

been previously described.2 Ion-neutral collision cross sections were also measured 

using the high resolution uniform field IM-MS instrument in the Clemmer laboratory3-4 

at Indiana University and there is excellent agreement (values agree to within 2% error) 

between the two data sets.  

  

7.3 Results and Discussion 

ESI mass spectra of SP obtained from aqueous solution produce abundant 

distributions of both [SP + 2H]2+ (H2O)n (n = 0 to ~50) and [SP + 3H]3+ (H2O)n (n = 0 to 

~30) ions (see Figure 30(a-c)); Beauchamp et al. termed the products of this process 

“freeze-dried biomolecules”.84  Increasing the temperature of the ion inlet facilitates 

more rapid desolvation and shifts the overall distribution toward smaller cluster sizes, 

ultimately yielding dehydrated doubly and triply charged SP ions. Note that singly 
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charged ions are not detected in appreciable abundance. These data not only demonstrate 

a high degree of control over the range of cluster size, but also show that the hydrated 

cluster ions detected are indeed the intermediates formed during the final stages of ESI.  

 The relative abundance of a particular hydrated ion is directly related to the 

relative stability of the local hydrogen bond network within the cluster. Figure 30(a-c) 

shows that during the evaporative process, magic number clusters are not evident among 

the relatively smooth distributions of [SP + 2H]2+ (H2O)n and [SP + 3H]3+ (H2O)n ions. 

En route to forming solvent-free ions, the primary sites of water association are the 

charged functional groups.115,130 While magic number clusters (n = 8, 11, 14, 20, and 40) 

have been previously observed for ammonium-containing peptides and model 

compounds (alkyl amines), guanidinium-containing peptides are not known to display 

specific solvation.83-84,91,129 Here, we hypothesize that because both functional groups are 

present in SP (Arg1 and Lys3), non-specific water clustering likely results from interplay 

between the charge sites localized near the flexible N-terminus.131 
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Figure 30. Cryogenic IM and MS results: (a-c) ESI mass spectra of SP ions captured 
prior to (a and b) and after (c) complete dehydration. The inset of panel (a) contains an 
expanded view of the region surrounding [SP + 3H]3+ (H2O)n (n = 0 to 10). The peak 
labeled with an asterisk is a contaminant ion. (d-e) Two dimensional ATD versus m/z 
contour plots for [SP + 2H]2+(H2O)n (n = 0 to ~15) (d) and [SP + 3H]3+(H2O)n (n = 0 to 
~30) (e) collected at an inlet temperature of 356 K. The trendline produced from triply 
charged SP hydrates is shown with a dashed line to guide the eye. [SP + 3H]3+ conformer 
assignments are denoted A and B. In each experiment, the drift tube temperature was 
kept constant (80 ± 2 K) at a field strength of E/N 4.7 Td. 

 

To gain insight into the structural evolution of SP as a function of cluster size, 

cryogenic IM-MS was employed under inlet conditions that produce extensively 

hydrated ions. The data, shown in Figure 30(d-e), reveal that both the doubly and triply 

charged ion forms of SP are comprised of dehydrated conformers that originated from 

evaporation of extensively hydrated ions (for [SP + 3H]3+ this population is denoted A). 
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The near- linear decrease in arrival time for successive n to n-1 cluster ions within each 

distribution reflects the small decrease in the overall collision cross section upon 

stepwise desolvation, suggesting that these dehydrated populations contain 

conformations that largely resemble their solvated counterparts. Consistent with 

evaporative studies by Beauchamp et al., we find no evidence for dissociation of small 

clusters from these hydrated peptide ions, indicating that water evaporation occurs via 

sequential loss of monomers.84 Moreover, fragment ions such as the b102+ species do not 

show evidence for water adduction, indicating that they are produced after complete 

desolvation. Interestingly, [SP + 3H]3+ ions contain a second population of conformers 

observed at relatively longer drift times (denoted B) that do not result from the 

evaporative process. As shown in Figure 31(a), two possible scenarios explain this 

outcome: (1) conformer B is formed by the IEM, (i.e., expulsion from an intact 

nanodroplet thereby leaving no trace of its origin) or (2) B originates from a 

conformational change of a fully dehydrated conformer contained in population A.  
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Figure 31. Two potential pathways for dehydration of [SP + 3H]3+ ions from bulk 
solution via ESI. (a) The CRM (top route) describes the production of gas phase ions by 
evaporation of solvent from [SP + 3H]3+ following successive fission of larger droplets. 
The IEM (bottom route), favored for surface-active molecules, produces ions by a field 
desorption process. In both cases, charged nanodroplets containing SP are produced in 
the ESI plume decay to ultimately yield solvent-free gas phase ions. (b) Mass-selected 
collision cross section profiles for [SP + 3H]3+ ions obtained using a range of field 
strengths in an ion funnel prior to IM analysis. Each panel shows a separate profile 
where the effective ion temperature is increased by collisional activation with the helium 
buffer gas. For reference, the theoretical random coil trendline (321 Å2) is shown with a 
dashed line.  The theoretical collision cross section for [M + 3H]3+ peptide ions was 
generated from a tryptic digest of a 10 component protein mixture.3 

 
Because the former hypothesis is difficult to unambiguously examine by 

experiment, we instead tested the latter hypothesis by collisionally activating the nascent 

population of ions produced upon ESI prior to ambient temperature IM-MS analysis. 

The results, shown in Figure 31(b), confirm that populations A and B are indeed present 

at ambient temperature. These data support the latter hypothesis as the depopulation of A 

(318 Å2) coincides with the subsequent elongation to B (368 Å2). Note that the 

experimental collision cross section values are in general agreement with previous 
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studies. Collectively, these evaporative dynamics clearly indicate that SP ions are 

produced by the CRM. Hence, the transition from bulk solution to the gas phase for SP is 

described by the following scheme: 

 

SP+ 3H !!(𝑎𝑞. )
!"#$%&'  !"#$%&#'(%)  !"#  !"##"$%

   SP+ 3H !
!!   H!O !≾!" 

  
!"#$%&!#  !"!!"#$%&'(

      SP+ 3H !
!! 

!"#$%!#$&'
   SP+ 3H !

!!   
!"#$%!#$&'

  𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 

              (39) 

Consistent with the plurality of states produced upon ESI, previous NMR studies 

of SP in water have revealed that an ensemble of conformers coexist.132 We note that the 

peak for A is significantly broader than that for B (see Figure 31(b)), suggesting that the 

ion population is comprised of multiple conformers that are transferred from solution to 

the gas phase, but are not resolved under the experimental conditions employed. 

Moreover, the compact size of conformers contained within A indicates that 

intramolecular interactions (i.e., π-cation interactions involving Phe7/Phe8 and/or 

hydrogen bonding between Arg1/Lys3 and Gln5/ Gln6)91,133-135 are likely responsible for 

kinetic trapping on the time scale of several milliseconds. The presence of multiple 

conformations is also consistent with NMR studies that showed SP adopts helical 

conformations in low-dielectric environments (i.e. embedded in a lipid membrane and 

docked in the receptor active site).131-132 Here, we observe that conversion to a gas phase 

elongated coil (B) occurs only for the triply charged ion, which is the expected 

predominant species at extracellular pH 7.4. Because [SP + 2H]2+ does not appear to 
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convert to an elongated gas phase population, we speculate that the process may be 

driven by repulsive Coulombic interactions between the multiple sites that are 

protonated. This outcome is especially interesting given that the ATD for [SP + 2H]2+ 

also shows evidence for multiple conformational states (see Figure 32). Nevertheless, the 

conformational change for [SP + 3H]3+ occurs only after complete dehydration!  That is, 

intermolecular hydrogen bonds between [SP + 3H]3+ and water molecules presumably 

compete with intramolecular hydrogen bonding sites required for conversion to B, 

ultimately inhibiting this transition.  

 

7.4 Conclusions 

Hydrated SP ions, sampled during the final stages of the evaporative ESI process, 

were analyzed by cryogenic IM-MS. The results provide direct evidence that upon ESI, 

[SP + 2H]2+ (H2O)n (n = 0 to ~50) and [SP + 3H]3+ (H2O)n (n = 0 to ~30) each produce 

dehydrated conformers originating from stepwise evaporation of extensively hydrated 

clusters. Evidence for structural changes as a function of variable extents of hydration 

was not observed in this size range, indicating that the population of dehydrated 

conformers largely resembles that of the hydrated species. 
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Figure 32. Mass-selected arrival time distributions for the [SP + 2H]2+ ion. Ion heating 
is carried out prior to introduction into the IM drift tube (maintained at constant field 
strength).  Increasing the electric field strength in the ion funnel results in an increase in 
the effective ion temperature owing to collisional activation. 

 

Moreover, IM-MS hydration trendlines proved useful in assigning the origin of 

populations observed in the gas phase, especially in the case of [SP + 3H]3+, which 

contains a second, non-hydrated conformer (B) that did not result from the evaporative 

ESI process.  Collisional activation of the nascent population of conformers produced 
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upon ESI confirms that B originates from gas phase rearrangement of a conformation 

contained within population A. In the case of [SP + 3H]3+, evaporative cooling (freeze-

drying)84 upon ESI kinetically traps a compact population of conformations (A) for 

several milliseconds, even though an extended conformation (B) is energetically 

favorable in the gas phase.   

In the final stages of dehydration the stabilization afforded by solute-solvent 

interactions is replaced by stabilization from intramolecular interactions, i.e., formation 

of salt-bridges and hydrogen bonds. Collectively, these results unambiguously show that 

upon ESI, doubly and triply charged SP conformers observed in the gas phase are 

generated by the CRM. The ability to follow the evolution of conformers as ions emerge 

from differing amounts of solvent in a one-solvent-molecule-at-a-time fashion provides a 

powerful new approach for understanding how key elements of structure are established 

in a range of environments. 
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8. SUMMARY 

 

The fundamental principles of PF IMS have been comprehensively discussed. 

Radial ion confinement is attributed to a collisionally dampened effective potential that 

maintains ions near the central drift axis and ultimately results in high ion transmission. 

Equations of motion were derived that culminated into useful methodology for accurate 

determination of peptide and protein collision cross section values via inclusion of a 

mobility dampening coefficient. Though measured PF IMS drift times can be precisely 

determined by experiment and predicted by SIMION, the major source of error in the 

methodology stems from deviations in the Ω values reported in the literature. 

Additionally, evaporation of water from extensively hydrated protons and 

peptides formed by ESI was examined using a cryogenic IM-MS instrument platform. In 

agreement with previous studies, the findings indicated that water evaporation is largely 

dependent upon the particular charge-carrying species within the cluster. IM-MS results 

for protonated water clusters suggest that the special stability of the well-known 

H+(H2O)n (n = 21) “magic number” cluster is attributed to the presence of a compact 

clathrate cage isomer. Peptide studies are also presented in which specific and 

nonspecific solvation is observed for gramicidin S [GS + 2H]2+ (H2O)n (n = 0 to 26) 

and bradykinin [BK + 2H]2+ (H2O)n (n = 0 to 73), respectively. However in the case of 

substance P, [SP + 3H]3+, the results unambiguously demonstrate that a compact 

dehydrated conformer population (resulting from the evaporative ESI process) can be 
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kinetically trapped on the time scale of several milliseconds, even when an extended coil 

conformation is energetically favorable in the gas phase. 
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APPENDIX  

 
Figure 33. Photographs of the initial (top) and final (bottom) cryogenic IM-MS 
instrument apparatus.  
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Figure 34. Photographs of the ESI source and DC IG regions. Note that the segmented 
lens was designed to replace the gate lens described in Table 4. 
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Figure 35. Photographs of the IM drift tube region. 
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Figure 36. Photographs of the reflectron TOF mass analyzer. 


