
REMOTE USB PORTS

A Thesis

by

RAKESH ROSHAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE

Chair of Committee, Riccardo Bettati
Committee Members, A. L. Narasimha Reddy

Radu Stoleru
Head of Department, Nancy Amato

December 2013

Major Subject: Computer Science And Engineering

Copyright 2013 Rakesh Roshan

ABSTRACT

Simplicity, easy to install, plug & play, high bandwidth, low latency and source

of power are features of USB devices. Due to these features, many sensors and actu-

ators are manufactured with USB interfaces for use in industries. The sensors and

actuators need to be installed in fields. A computer system with USB interfaces is re-

quired to be present at the location of USB device for its working. In industry, these

sensors and actuators are scattered over a large geographical area. The computers

connected to them expose a large attack surface. These computers can be consoli-

dated using virtualization and networking to reduce the attack surface. In order to

consolidate computers, we need solution to extend USB port over networks so that,

a USB sensor or actuator, placed in fields can be accessed by a system remotely and

securely.

In this thesis, we propose a remote USB port, which is an abstraction of a USB

port. In the USB core driver of the server machine, with the hub information, port

status of all the ports is stored in a port status table. On the client machine a virtual

host driver is created to manage proxy USB ports. When a device is inserted or

removed from the USB port on the server, the client gets notified and corresponding

device driver is loaded or unloaded respectively. To secure URBs, URB headers are

encrypted before sending them over networks. We have implemented our solution in

the Linux 3.5 kernel. We tested our solution on two machines connected over a 100

Mbps network. Various different types of USB devices were connected in the server

machine and tested from the client machine. We found our solution to be device,

device driver and USB protocol independent and transparent to network and device

failures.

ii

DEDICATION

I dedicate my thesis to my parents K. B. Singh and Urvashi Singh for their

unconditional love, and unwavering moral and emotional support.

iii

ACKNOWLEDGEMENTS

I would like to acknowledge my committee chair Dr. Riccardo Bettati for his

continuous guidance and unwavering support throughout my thesis, without whom

this thesis would not have been possible. His enthusiasm, encouragement and faith

in me throughout have been extremely helpful. He was always available for my

questions. He was always very generous in giving me time and help me with his vast

knowledge. He always helped in solving problems with his knowledge or pointing to

right source and path to solve the problem. He helped a lot in writing this thesis.

I am very thankful to my parents K. B. Singh and Urvashi Singh for their unwa-

vering moral and emotion support. I am also very thankful to my fiancee Swarnica

Pankaj for her love and support.

I would like to thank my committee members Dr. Narasimha Reddy and Dr.

Radu Stoleru for their generous time and valuable suggestion whenever I needed

help.

I am grateful to the TAMU writing center for their valuable suggestion while

writing this thesis.

iv

NOMENCLATURE

VHCD Virtual Host Controller Driver

USB Universal Serial Bus

URB USB Resource Block

TCP Transmission Control Protocol

IP Internet Protocol

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . ix

1. INTRODUCTION . 1

2. SOLUTION CRITERIA . 4

2.1 USB Protocol Independent . 4
2.2 Device Agnostic . 5
2.3 Device Driver Independent . 5
2.4 Bandwidth And Latency . 5
2.5 Transparent Failure Semantics . 6
2.6 Security . 6

3. RELATED WORK . 7

3.1 iSCSI . 7
3.2 USBIP . 8
3.3 Modbus TCP/IP . 8
3.4 USB Sensor Network for Industrial Applications 9
3.5 iPCI . 10
3.6 Wireless USB . 11
3.7 Xively . 11

4. USB DEVICE MODEL . 13

4.1 Device Management . 14
4.2 Data Communication . 15

5. USB PORT REMOTING . 17

vi

5.1 Port Management . 18
5.1.1 Server . 18
5.1.2 Client . 20
5.1.3 usbPortManager . 21

5.2 Data Module . 22
5.2.1 Encapsulation of URBs . 23

5.3 Security . 25

6. EVALUATION . 26

6.1 Implementation . 26
6.1.1 Kernel Level Implementations 26
6.1.2 User Level Implementations 30

6.2 Results . 31
6.2.1 USB Protocol Independent . 31
6.2.2 Device Agnostic . 33
6.2.3 Device Driver Independent . 33
6.2.4 Performance Transparency . 34
6.2.5 Failure Transparency . 40
6.2.6 Security . 41

7. SUMMARY . 49

REFERENCES . 50

vii

LIST OF FIGURES

FIGURE Page

4.1 USB Topology . 13

4.2 Control Plane of USB . 14

4.3 Data Plane of USB . 16

5.1 Control Plane of Remote USB . 19

5.2 Data Plane of Remote USB . 23

5.3 Packet Format . 24

6.1 Importing Remote USB Ports . 31

6.2 Details of Devices Connected to Remote USB Ports 32

6.3 URB Completion Time Vs URB Size 35

6.4 Latency in URB Completion Time Vs URB Size 42

6.5 Bulk Traffic in Storage Device . 43

6.6 Remote Bulk Traffic Packet Size Pattern 44

6.7 Local Bulk Traffic Packet Size Pattern 45

6.8 Local Bulk Traffic Packet Submission Rate 46

6.9 Remote Bulk Traffic Packet Submission Rate 47

6.10 Server Bulk Traffic Submission and Completion Rate 48

6.11 Bonnie++ Benchmark Results . 48

viii

LIST OF TABLES

TABLE Page

6.1 Isochronous Traffic Latency . 37

6.2 URB Submission Rate in Local and Remote USB Bulk Traffic 38

6.3 Device Insertion Time (in µs) . 39

ix

1. INTRODUCTION

A number of highly visible recent attacks on factory automation and SCADA

infrastructure (most prominently the Stuxnet worm [1]) have illustrated the vulner-

ability of such systems to security attacks. Important factors that contribute to this

vulnerability are:

1. These systems are distributed over a large area, with important and vulnerable

components deployed in the field and thus, they are difficult to manage and

control.

2. Systems targeted by such attacks are highly complex and multilayered. They

are composed of a variety of software from different vendors. These components

interact and offer a particularly rich and vulnerable attack surface.

Means must be found to protect such applications by consolidating system compo-

nents as much as possible and thus, reducing the attack surface in the geographic

domain and by simplifying the field-deployed components.

Unfortunately, traditional consolidation techniques used in enterprise systems (for

example, moving services to the cloud) cannot be applied directly, as factory automa-

tion and SCADA systems are inherently cyberphysical in nature. Field components

have to communicate directly with sensors and activators, which are typically not ac-

cessible through networking capable interfaces. At least in the near future, methods

must be found to extend traditional device access interfaces across inter-networks.

With very high bandwidth communication available, we can communicate with

devices over networks with little delay. Gigabit Ethernet [2] supports up to 10 Gbps

speed with low latency. In such high-bandwidth and low latency environments, com-

1

municating with field-deployed devices over networks will result in high performance.

As an initial study, we set out in this thesis to investigate the possibility to

extend the USB device access protocol over IP. Today USB ports are ubiquitous.

USB devices are easy to handle. It supports Plug and Play. The latest USB 3.0 [3]

supports a data transfer rate of up to 5 Gbps with low latency. With such high data

transfer rate and different traffic types, USB supports a large range of devices.

We are proposing a solution in which an individual USB port can be exported

to a remote machine and remotely accessed. Whenever a device is connected to

such an exported USB port, the device becomes available at the remote machine and

corresponding drivers are loaded there. The local machine attached to the device

(the USB server) will not have access to the functionality of the device. Instead, it

forwards data and control commands between the remote machine (the USB client)

and the device. The operating system functionality on the USB server can be min-

imal. In the application consolidation scenario, as is described above, the benefits

of a scaled down functionality at the USB server host would further reduce the vul-

nerable attack surface offered by the large scale distributed systems. On one hand,

application components of large-scale systems can be consolidated and hence, better

protected. In addition, exporting of USB ports and hence, the devices connecting to

those ports, would eliminate the need to deploy potentially vulnerable device drivers

in the machines deployed over a large area in the field. Finally, we will show how the

same framework used to export USB ports can be used to disable individual ports

as well, and thus further strengthen field deployed components against attacks. The

semantics of remote access to USB devices remains an intuitive one. If a USB client

machine fails, the application can be started on a different machine and can be re-

connected to the device. Similarly, if the device at the USB server machine fails, this

is treated as a device disconnection at the client. While we limit the description to

2

USB bus protocol only, we envision that other bus protocols such as, PCI, HDMI

etc. can also be extended over networks to remote devices.

This thesis is organized as follows: In Section 2, we will describe criteria which

have been followed for a good solution. In section 3, we will discuss existing work

related to computer bus extension over networks. In Section 4, a brief background

of USB device model is discussed. In Section 5, we will give a full design and

architecture of our solution. In Section 6, we will evaluate the system designed in

Section 5, and discuss the results.

3

2. SOLUTION CRITERIA

USB is a very popular interface to connect a myriad of devices to computing

hosts. It operates at speeds up to 5 Gbps with low latency. It supports dynamic

configuration of device and four different types of traffic. In order to extend it over

the internet, we have to maintain these features. In addition to correctly supporting

the USB specifications, we have to keep the following criteria in mind.

2.1 USB Protocol Independent

The USB specification supports several different USB protocls each for different

types of devices. USB 1.1 [4] operates at full speed (12 Mbps) and low speed (1.5

Mbps). Human interface devices like keyboards etc. operate at these speeds. USB

2.0 [4] operates at high speed (480 Mbps) and is used by high-speed devices like

camera etc. USB 3.0 [3] operates at a super speed(5 Gbps) and is used for very high

performance peripheral such as storage devices, displays and others. The solution

should identify the device speed and behave accordingly. It should work with all USB

protocols. USB supports four types of traffic: Isochronous, Interrupt, Control and

Bulk. In interrupt traffic, at an interval set by driver, host fetches packet from the

device. It is used for the purpose in which interrupt was used in earlier connection

types like mouse. The host schedules an IN or OUT transaction at the interval. It

supports small sized packets. In isochronous traffic, a bandwidth is guaranteed by

the host. It is periodic in nature. Control traffic is used to set and get configuration

of device. Bulk traffic is used for devices which transfer large non time-sensitive

data. The bulk, control and interrupt USB Resource Blocks (URBs) are similar

and there is no difference in structure. In isochronous traffic, a URB encapsulates

child packets. So for isochronous traffic, the serialization and deserialization process

4

should handle it differently from the other URBs. It should support all traffic types.

2.2 Device Agnostic

The solution should not be dependent on the devices, attached in the USB

ports. On client machine, it should behave seamlessly as if the device is con-

nected/disconnected to its local USB port. If the client machine has a proper device

driver for the device which is connected to one of its remote USB port, then the

device driver should be loaded and the device should be ready to use by any appli-

cation on the client machine. Our solution should not impose any restriction on it.

The solution should work smoothly whether a device is connected to the USB port

or not. The process of connection and disconnection of a device on a remote USB

port in a client machine should be such, that they are done directly on the client

machine.

2.3 Device Driver Independent

Device drivers should not require any changes to use a device connecting to a

remote USB port. In fact, device drivers should be totally oblivious to the fact that

the device is connected to a remote USB port. It should continue to work similar to

the way as it works with a device connected to a local USB port. Specifically, the

fact that the device driver controls a device connected to a remote USB port must

be fully transparent to the device driver except the performance transparency.

2.4 Bandwidth And Latency

The performance loss in particular, bandwidth loss and latency of exporting a

port should be minimum. In particular, the bandwidth should only be limited by the

network bandwidth. Similarly, the latency overhead caused by accessing a device over

an exported port must be kept minimized. The protocol being used should not cause

5

much overhead over the USB protocol overhead. The protocol information should

be minimal to successfully transfer the USB packets across the network. Today with

the large availability of Gigabit Ethernet, the network latency has decreased a lot.

With less protocol overhead, the bandwidth of device should be maintained close to

the device bandwidth.

2.5 Transparent Failure Semantics

With network in between the device and the machine, different types of failures

can occur such as, machine failure, device failure and network failure. The machine

with exported port may fail. The device connected to an exported port may fail.

The network connecting the two machines may fail. The solution should handle them

transparently. The device driver, functioning at the USB client machine should be

oblivious to such failures. Remote machine failure, network failure or device failure,

all such failures should be abstracted under a failure which device driver can handle.

Thus same device driver can work smoothly with a remote USB port.

2.6 Security

Network is an insecure medium. We have to take care of integrity of URB trans-

ferring over networks and authentication of clients and server. An authorized user

only should be allowed to connect to a USB port remotely. The data being transferred

should be secured and their integrity should be maintained. The remote machine

should also be ensured that the data is coming from a reliable source. The data

would need to be transferred between kernels directly so, they should be secured

from network attacks. At the same time we have to take care of bandwidth and la-

tency too. Making the protocol more secure will increase the latency and hence, the

bandwidth will be reduced. The protocols should be secure but, with less protocol

and security overhead.

6

3. RELATED WORK

Over the years, a number of bus protocols have been extended over networks in a

variety of ways. The aim is to make devices that are connected to such buses become

available to remote machines transparently. Examples range from buses supporting

system-attached storage, to USB bus and finally to High speed system buses. Some

of these extensions are done over IP (iSCSI, Modbus TCP/IP, USBIP), while others

simply replace the physical medium from wired to wireless (wireless USB).

3.1 iSCSI

The Small Computer System Interface (SCSI) [5] defines the physical interface

and the set of commands to provide communication between peripheral devices that

are connected to the computer. It is used for storage devices, scanners, CD drives

and others. A SCSI device is of three types: an initiator device, a target device and

a initiator/target device. The initiator initiates a command and the target receives

initiator’s command and replies with the requested I/O transfer. The initiator/target

device has property of both the initiator device and the target device. For example,

in a typical setting a computer is an initiator and a hard disk is a target device. SCSI

over IP (iSCSI) [6] defines a standard to extend the basic SCSI across an IP network.

In iSCSI the medium is the network instead of the standard SCSI connections. The

SCSI commands and data are transported between a target and initiator in TCP

packets. This enables a target device to be connected to a remote initiator, provided

the machine with the target device and machine with the initiator are connected

over a network. The iSCSI protocol is independent of device and operating system.

Target and initiator can be on two machines with two different operating systems.

iSCSI supports authentication but does not support encryption. In iSCSI the target

7

machine provides the list of targets available and the initiator connects to any of

them using their addresses. A device need to be remain connected for the protocol

to work.

3.2 USBIP

USBIP [7] is an approach to make USB devices accessible over an IP network. A

virtual bus is implemented, which abstracts all the network layer activities. In this

technology, USB packets (URBs) are exchanged over a network between the device

on the remote machine (the latter is called server) and the device driver on the

client machine. A device connected to the server is bound to a special stub device

driver. On the client machine, a virtual host controller is installed, which talks

to a stub driver and passes any URB sent to it to the stub driver. On successful

completion, the stub driver sends back the URBs to the virtual host controller. The

communication between the virtual host controller on the client and the stub driver

on the server is tunnelled through a TCP/IP connection. Conceptually, USBIP

tunnels the communication between a virtual USB bus on the client and a physical

device connected to a USB port on the server. As a consequence of this, the USB

device is required to remain connected for the protocol to work. If an extended

device is disconnected and again connected, the user has to re-establish the tunnel

as the previous connection gets lost. In addition, the protocol does not take security

into consideration.

3.3 Modbus TCP/IP

A small number of proposals exist for extending industrial field buses over net-

works. The Modbus [8] protocol is a messaging standard developed for industrial

applications by Modicon to establish a client/server communication between devices

connected to a serial bus. It has a master/slave architecture. At a time, there is

8

only one master, which initiates the request. The request contains the address of

the intended device. Slave devices listen for requests. The target device accepts the

request and processes it. The protocol is very simple and has become very popular

in industrial settings.

Modbus TCP/IP [9] extends the Modbus protocol over networks. This enables

connectivity among devices that are not on the same serial bus but are connected

over TCP/IP networks. The Modbus protocol data units are encapsulated inside

TCP/IP packets. A special header is added, which is used to differentiate Modbus

TCP/IP packets from Modbus packets. Additionally, length information must be

kept, since networks may split the packet. In a typical Modbus TCP/IP deployment,

a pair of gateway nodes, one at the server and one at the client, perform the necessary

translation between Modbus and Modbus TCP/IP protocols. The protocol is device,

application and operating system independent. Limitations of protocols like Modbus

TCP/IP are twofold primarily. First, the protocol allows for static tunneling between

a predefined server and a predefined device. No device discovery or other form of

dynamic configuration is supported. Second, Modbus TCP/IP lacks mechanisms to

secure the communication between servers and clients.

3.4 USB Sensor Network for Industrial Applications

The simplicity, ”plug & play” feature, and power supply to devices by bus are

some of the special properties of USB. These are also reasons why many sensors and

actuators have been developed with USB interfaces. Power source from the bus, for

example, reduces the cabling cost to power the devices. A micro controller with USB

interface and Network interface is used to create a USB sensor network in industries

[10]. The software in microcontroller has two main modules: network and USB. The

network module is used to connect with other users in the LAN. The USB module

9

is used to communicate with the device. The microcontroller does not process the

data. It simply submits data to or receives data from the USB device. The network

module has a Modbus TCP protocol implemented, which bridges data between USB

and TCP.

3.5 iPCI

Since late 1990, Peripheral Component Interconnect (PCI) [11] has become pop-

ular as a way to provide an abstraction of processor bus to devices connected to it.

It provides high bandwidth and low overhead quality of service (QoS). PCI was the

first bus to support plug-and-play and automatic configuration. More recently, an

architecture and a protocol satisfying QoS requirement of PCI over networks [12]

have been proposed in the literature. In this protocol, PCI transport packets are

encapsulated into network packets for transportation between bus and device over

an IP network. A light-weight and low-overhead protocol is described for making

PCI devices available over a network. The protocol is operating-system independent,

device independent, and does not rely on particular application level software. There

are three types of connectivity mode described:

1. IP-based Network Packet Mapping : In this mapping, the PCI transport packets

are encapsulated within TCP, IP and Ethernet headers and footers. It has least

data throughput but maximum flexibility in the quantity and distribution of

I/O resources.

2. Switched LAN Packet Mapping : In this mapping, the PCI transport packets are

encapsulated within Ethernet header and footer. It provides more throughput

than IP-based but less than Direct Connection. It provides access to PCI bus

of machines on local network.

10

3. Direct Physical Connect Packet Mapping : In this mapping, the PCI trans-

port packets are encapsulated within physical layer headers. It has maximum

throughput but least flexibility. Only one remote PCI bus per Ethernet port

can be accessed.

As there is no implementation of this proposed protocol for PCI over networks, there

is no empirical evaluation of the impact on either performance or QoS.

3.6 Wireless USB

Wireless USB [13] provides support for connectivity of USB devices to a computer

in a wireless setting. It uses Ultra-wideband (UWB) radio platform to support high

bandwidth wireless connectivity between a wireless USB device and a host. Its range

is very limited around 10m. With such low range, the computer has to be very close

to the device. The scope of extension is limited.

3.7 Xively

Xively [14] is an infrastructure to build applications using a variety of connected

devices. For example, an application can be created that utilizes data from two

different sensors. These sensors need not be connected to the machine on which

the application is running. A datastream is created from each sensor device to the

Xively server. The datastream is utilized by other applications connected to the

Xively server. It provides a publish/subscribe infrastructure to publish and utilize

data from a device over internet. A bidirectional channel is established between the

host connected to the device and the Xively server. A unique API key is used to

identify a device. It is actually a datastream that is connected to the Xively server.

Data-based triggers can be created on the Xively server to send messages to other

web services. Xively only allows data to be shared. Full control of device is not

possible. There is no direct communication between the device and the application.

11

There are two different connections, one from the device to the Xively server, another

from the Xively server to the application. Xively can not be used for device controls.

12

4. USB DEVICE MODEL

In this chapter, we will briefly discuss the USB device model. We will describe the

process of device discovery and management and the process of data flow between

the USB device driver and the USB device in Linux.

The initial aim of the USB interface was to provide a solution to a mixture of

connection methods to PC like serial port, parallel port, keyboard, mice connection

and others. The basic structure of USB architecture is based on a tiered-star topology

as shown in Figure 4.1. In this topology, there is a host controller, connected to a

root hub, which in turn may have several connection points, called ports. Each port

can accept a URB device or a further USB hub. A root hub is a USB hub that is

embedded with the USB host controller. By connecting hubs to ports, the number

of ports that are supported by the host controller can be easily scaled.

Figure 4.1: USB Topology

13

4.1 Device Management

Figure 4.2: Control Plane of USB. Device Insertion: 1. The host controller detects
the device insertion by polling. 2. On detecting the device, the device description is
retrieved and the device is reset and initialized. 3. The device driver is loaded.

The USB device management is controlled by the so-called USB core driver, which

in turn controls three aspects of the USB operation: First it handles the detection

of events on physical ports. Second, it handles the loading and unloading of device

drivers when needed. Third, it dispatches the communication between device drivers

and the device. Figure 4.2 describes the control plane of the USB device model. It

displays how the device management is done in USB. For each hub, the USB core

driver keeps a usb hub data structure. A process, named khubd monitors the changes

14

on any port by polling each port of all hubs to check for events at any of the ports.

Such events can be the insertion and removal of a device. Depending on the event,

a corresponding action is taken. In case of insertion, a device driver loading module

is called. In case of removal, a device driver removal module is called.

Whenever a device is connected to a port, for example, the khubd process identifies

the hub and the port at which the event took place. It then retrieves the device

description from the device itself by sending it a specially crafted control USB request

block (URB). The device replies by filling the URB with the description of the device.

After receiving the descriptor, the USB core driver resets the device and assigns it a

unique address. This is called device enumeration. Then, the USB core driver uses

the device information to find an appropriate device driver for the device. Whenever

the USB core communicates with a device, be it to send or receive data, or to

control the device, it does so by sending and receiving URBs. Whenever a URB is

sent, it reaches all of the devices connected to a hub. Since each device knows its

address, assigned during device enumeration, it matches the destination address in

the URB and accepts the URB if the address matches. Similarly, when a device is

disconnected, the khubd process identifies the hub and port and unload the device

driver that was bound to the device on that port. This process informs the device

driver about the removal of device.

4.2 Data Communication

Figure 4.3 describes the data communication module of the USB device model.

All communications on a USB bus are initiated by the host. Since a device cannot

initiate a communication, the device transfers data only when requested by the host.

Whenever a device driver wants to read data from a device or to write data to a

device, it creates a URB of type IN or OUT respectively and submits it to the

15

Figure 4.3: Data Plane of USB. The data request is initiated from the application.
The device processes the request and replies back with a response

USB core driver. The USB core driver in turn finds the host controller driver (HCD)

attached to the corresponding hub and submits the URB to it. The HCD, depending

on the URB type, submits the URB to the device. The device driver registers a

callback method, which is called back by the HCD when the URB is successfully

processed by the device. For an IN URB, the device puts the requested data into the

URB, which is later read by the device driver. For an OUT URB, the device reads

data from the URB transfer buffer and processes it accordingly.

16

5. USB PORT REMOTING

In this chapter, we will discuss the design and the protocol of a practical example

of remote USB ports. We will discuss the design of how to encapsulate the USB

device model over IP. This will entail the design of the port management (how

to mark ports available to remote hosts), the device discovery (what happens when

devices are connected to or disconnected from ports), and the data exchange between

the remote client and the device. Finally, we will discuss the security model.

As described in Section 1, our objective is to provide transparent remoting of

USB ports. In order to accomplish this, the device discovery and device driver

management on the client must not appear different than in the local-device case.

In our approach to USB port remoting, the objective is to follow the semantics of

traditional, i.e. non-remoted, USB. That is, whenever a device is inserted, the device

driver loading module is called, and whenever a device is removed, the device driver

using that device is informed and unloaded. The data module also follows the same

semantics: the USB device driver submits the URB to the USB core driver. The

USB core driver submits it to the host controller driver. Finally, the host controller

driver submits it to the device.

In our implementation, the remote port is accessed at the client through a proxy

host controller, which represents a proxy hub, which in turn hosts proxies of remote

ports. Instead of sending URBs to and from the local device, the device driver

communicates with the proxy host controller, which in turn exchanges URBs with

the proxy port. The proxy port tunnels the communication to a stub driver at the

server. To the devices connected to the server, the stub driver acts as proxy for the

device driver (if any) at the client.

17

5.1 Port Management

On the server machine, physical USB ports can be made available to remote

machines as remote USB ports. A local USB port can be in any of the following

states:

1. Enabled : This means that when any device is inserted in the port, then a device

driver appropriate for that device is loaded. This is the default state.

2. Disabled : The USB port is not monitored by the hub controller. When a device

is inserted in the port, no device driver is loaded.

3. Remoted : A remoted port can be imported by a client. If any device is inserted

in the port, then a stub driver is loaded, which is capable of communicating

with a remote device driver over networks.

Port management handles the status of ports (enabled, disabled, remoted) on the

server side. On the client side, port management enables ports to be imported.

Imported ports are represented on the client by corresponding proxy ports, which

tunnel communication from the client device driver to the remote port. Figure 5.1

illustrates the port management.

5.1.1 Server

The port status is maintained in the port status table, which is stored with each

USB hub data structure. The status of ports are maintained in this table. By

default, all ports in an USB hub are enabled and work as local ports. When the

user disables a port, the port status table entry corresponding to the port is marked

as disabled. If there is already a device in that port, then the corresponding device

driver is unloaded. No more device drivers are loaded for any device inserted in the

18

Figure 5.1: Control Plane of Remote USB. Device Insertion: 1. The server detects
the device insertion by polling. 2. The device description is retrieved. 3. The device
is reset and initialized. 4. The stub driver is loaded. 5. The stub driver informs the
proxy port about device insertion. 6. The proxy host controller detects the device
insertion by polling. 7. Device description is retrieved. 8. The device is initialized.
9. The device driver for the device is loaded.

port until it is enabled again. When a port is remoted, the port status table entry

corresponding to the port is marked as remoted. Whenever a device is inserted into

the port, a stub driver is loaded and bound to the device. If a port is remoted that

has already a device inserted, the port is unbound from the current device driver and

the stub driver is bound to it. In order for a port to be imported on a client, it must

be in the remoted state on the server. We notice that there is no need of any specific

device driver on the server machine for a device that is attached to a remoted port.

Rather, the stub driver is bound to all devices inserted in remote ports.

19

5.1.1.1 Stub Driver

A stub driver is a special USB device driver on the server, which communicates

with a device on an exported local USB port on behalf of the device driver on the

client. It receives URBs submitted by the device driver on the client and submits

them to the device on the exported USB port on the server. When the URB is

processed by the device, the stub driver sends the processed URB to the client. When

a device is inserted in a remoted USB port, but not exported, the stub driver is only

loaded and does not do anything unless some client imports that port. When the

remoted port is also exported, the stub driver is the entity on the server responsible

for informing the client that a device is present on the remote USB port.

5.1.2 Client

On the client machine, remote USB ports are imported. There is a special host

controller the proxy host controller, which provides communication between the de-

vice on the remote USB port and the device driver on the client. The proxy host

controller is attached to a proxy hub. The proxy hub in turn maintains information

of proxy USB ports. A proxy USB port per remote USB port is maintained to com-

municate over networks to the remote USB port on the server. From the proxy host

controller’s view, a proxy USB port looks identical to a USB port. The USB core

polls the proxy USB port through the proxy host controller for any event. Whenever

a device is inserted in a remote USB port, the USB core on the client finds it out

by polling the proxy port, attached to the remote USB port. Similarly, whenever a

device is removed from a remote USB port, the USB core on the client finds it out by

polling the proxy port, attached to the remote USB port. The USB core on finding

the events, triggers the device driver loading or unloading module accordingly.

20

5.1.3 usbPortManager

The usbPortManager is a user level API to manage local ports in the server

and proxy ports in the client. This interface takes commands and controls the port

status table for managing local ports in the server. In case of proxy ports, the proxy

host controller driver modifies the proxy port. It is provided through user level

commands. There are two sets of commands: one for local ports and the other for

proxy ports.

5.1.3.1 Commands for Local Ports

In response to the commands issued for local ports, the port status table is

modified. Except the list command, all other commands require a port address. The

commands are:

• enable: This command marks the port enabled.

• disable: This marks the port disabled.

• remote: This marks the port remoted.

• unremote: This marks the port not remoted.

• list : This lists the local USB ports and drivers bound to devices in those ports.

5.1.3.2 Commands for Proxy Ports

These commands are for managing the proxy ports. All of the client commands

take server address and client authentication parameters. The commands are:

• list : It lists the ports available in the server, which can be imported.

• attach: It takes a server port address as an additional parameter. If the port

is available, a proxy port is created on the client.

21

• detach: It takes a proxy port address as an additional parameter. From the

proxy port address, the remote port address and the server information is

retrieved. The server marks the port available and the proxy port is destroyed

on the client.

5.1.3.3 Server Daemon

A user level daemon process running on server machine handles requests from

clients. It processes only two types of requests:

• import : If the requested port is available, then the client information is stored

in the port status table.

• release: If the client making the request has imported the requested port,

then the port is marked available for further import request and the client

information is deleted from the port status table.

5.2 Data Module

This module handles the data communication between a device and a device

driver. The data flow path for the local USB device and its driver is from the device

driver to the USB device via the USB core driver and the host controller driver. In

case of remoted ports on the server, the device driver is at the client machine. The

device driver creates URBs and submits them to the host controller of the proxy hub

which transfers them to the corresponding proxy USB port which is connected to

the server side stub driver over networks. The stub driver at the server side is like

a device driver which submits the URBs to the local host controller driver, which in

turn submits them to the real device. The return path is similar, the URB processed

by device is sent from the host controller on server side to the proxy host controller on

the client side via the stub driver and the proxy port connected over socket. We use

22

Figure 5.2: Data Plane of Remote USB. The data request is initiated from the
application. The device processes the request and replies back with a response

a regular ping mechanism to keep the connection alive and also to find any network

failure. Figure 5.2 displays the data module.

5.2.1 Encapsulation of URBs

In order to exchange URB between server and client, the URBs have to be trans-

ferred over networks. The URBs are encapsulated in protocol data units. Both server

and client transfer the URB after encapsulating it inside a protocol data packet. The

client encapsulates the URB submitted by the device driver and sends it to the server.

The server decapsulates the URB from the received protocol packet and submits it

to the device in local port. The server on receiving the processed URB, encapsulates

it again in a protocol packet and sends it to the client. The client decapsulates the

23

URB from the protocol packet and sends it to the device driver. While encapsulat-

ing, serialization of the URB is done and while decapsulating, deserialization of the

URB is done. The encapsulation of URBs are similar for all traffics except for the

isochronous traffic. In isochronous traffic, the URB has several children packets. So

they also are serialized while encapsulating and deserialized while decapsulating.

Figure 5.3 displays the format of a protocol packets. There are two types of

protocol packets, data and control. The data protocol packets are used to transfer

URBs between server and client. The control protocol packets are used in trans-

ferring control messages. The data packets have all the three parts: basic header,

command specific header and the URB. In case of control packets, a basic header

is present. The command-specific header is present in some control messages. The

URB is not present in case of control messages. The basic header contains basic pro-

tocol information: sequence number, type of request, remote USB port address, the

direction of transfer and the endpoint number. The command-specific header con-

tains information depending on the command. A URB submit command contains

the length of the URB in this header. A import command stores the port address in

this header. The URB in protocol packet is in serialized form.

Figure 5.3: Packet Format

24

5.3 Security

We expect that USB can be remoted over long distances, that is, beyond premises

that can be secured. Therefore, the USB remoting protocols must ensure the in-

tegrity and confidentiality of the URBs exchanged between client and server. We

are providing the user authentication and confidentiality of protocol headers. The

payload confidentiality and integrity is not provided. The integrity of payload can

be provided by storing the hash of the payload in the protocol header.

For authentication, the server stores all the legitimate users along with their

passwords. The import request has port address encrypted with the client’s password

as key and userid in plaintext. The server retrieves the client’s password from the

userid in the import request and use it to decrypt the port address.

The confidentiality of the protocol header is maintained by encryption. The server

and client both encrypts the protocol header of the protocol packets before sending

them over networks. The encryption is done with the password of the client as key.

For decryption also the same key is used.

25

6. EVALUATION

In this chapter we will discuss the implementation and evaluation of our solution.

First we will describe the implementation of port status table, the stub driver, the

proxy port and the security. Finally, we will evaluate our solution.

6.1 Implementation

We implemented our solution in Linux 3.5 kernel. The USB core driver is modified

to store port status table. An user interface usbPortManager is used to modify them.

We modified the USBIP drivers to support extension of a USB port over networks.

There were two types of codes. The driver changes were made in kernel. An user level

interface for managing the physical USB ports and proxy USB ports is implemented.

An user level daemon is implemented for server machines to process client requests.

6.1.1 Kernel Level Implementations

At kernel level, the port status table is implemented in the USB core driver. The

proxy port and the stub driver are implemented in the USBIP drivers.

6.1.1.1 Port Status Table

The port status table stores the status of all the ports of a hub. The USB core

driver stores usb hub data structure for each hub. This data structure stores the

various configuration parameters of a USB hub and information about all the ports

on the hub. In this data structure, we have implemented the port status table. It is

implemented with two bitmaps and an array. The bitmap has one bit information

for each port and the array has a field for each port. The disabled ports bitmap

tells whether the port is disabled or not. By default all bits are zero i.e. enabled.

The remoted ports bitmap tells along with the disabled ports bitmap that whether

26

the port is remoted or not. The array client info stores the socket descriptor to

communicate with the client and the key of the client for encryption/decryption.

We used sysfs mechanism to pass the information from user level to kernel level.

A new device attribute manage port is created for the hub device. To manage the

port status table, the data is passed to the attribute manage port in the form ”<

command >< portaddress >< arg1 >< arg2 >”. For enabling, disabling, remoting

and unremoting the ports, arg1 and arg2 are blank. When a port is exported to a

client, the arg1 is socket file descriptor of the socket connected to the client and arg2

is the key of the client.

6.1.1.2 Stub Driver

The stub driver is a special device driver that can communicate over networks.

Whenever a port is imported by a client, the server passes the client information to

the stub driver, bound to the device inserted in the port. The client information is its

key and socket to communicate with the client. The stub driver starts two threads,

one for transmitting messages and the other for receiving messages. The first message

sent to the client is the device inserted message. In response to this, the client

starts device initialization process. Whenever the device is removed, the threads are

stopped and a last message device removed is sent to the client. When no client has

imported the device, no threads are running. The device driver does nothing in that

case. This driver has an attribute usbip sockfd. It is used to pass the client socket

and key information to the driver from the user level daemon usbPortManagerD.

6.1.1.3 Proxy Host Controller

The proxy host controller is a host controller driver. It receives the URBs from the

USB core driver and passes them to the proxy USB ports to send them to the server.

It also creates and destroys proxy USB ports. It is bound to a proxy hub device.

27

Every host controller driver has to register a hc driver type of variable with the

USB core. The hc driver has two function pointers, urb enqueue and urb dequeue.

These function pointers are used by the USB core driver to submit URBs to device

or unlink URBs from device respectively. The proxy host controller on receiving

the URBs through these enqueue and dequeue function pointers, passes them to the

corresponding proxy ports. For creation and destruction of proxy ports, two proxy

hub device attributes attach and detach are used. The server connection information

and client key are used to create proxy ports. The detach attribute is used to destroy

the proxy port.

6.1.1.4 Proxy Port

The proxy ports are analogous to physical USB ports. The proxy port sends the

data to the device on the server and receives data from the device on the server. It

informs the client USB core when a device is inserted or removed from the remote

USB port. It is implemented with two threads, one for sending data to the server

and the other for receiving data from the server. It handles two types of protocol

packets: data packets and control packets. The data packets encapsulate the URBs,

being exchanged between the device driver on the client and the device on the server.

The control packets are for informing when a device is inserted or removed. When

a device is inserted, the USB core driver on the next poll to the port detects it and

starts the device initialization process using data protocol packets. When a device is

removed, the proxy port on polling informs the USB core that the device is removed

and in turn the device driver is unbound.

The proxy hub attached to the proxy host controller driver manages the proxy

ports. It has two device attributes attach and detach. Whenever the client wants to

import a remote USB port of the server, the usbPortManager is used to attach to

28

the remote USB port of the server. If the port is available, the socket information

and client key is passed to the attach attribute. The proxy host controller driver

creates a proxy USB port with this socket and key information. The transmitting

and the receiving threads are started using the socket information. Whenever the

client wants to cancel the import of any remote USB port, the usbPortManager is

used to detach from the remote USB port of the server. The proxy host controller

is passed this information through detach attribute and the server is informed. The

proxy host controller in turn stops the transmitting and the receiving thread and

destroys the socket. Thus the proxy port is destroyed.

6.1.1.5 Security

We are providing the user authentication and the protocol header confidentiality

feature. For authentication, the client user id and key is stored in the server. The

import request has two fields: the user id and the port address. The user id is in

plaintext and the port address is encrypted with the key of the client. The server on

receiving an import request, retrieves the user id from the request. The user id is used

to retrieve its password. The password is used as key to decrypt the port address.

The password is stored in the port status table along with the socket information of

the client.

For confidentiality of protocol headers, the server and the client both encrypts

the protocol header before sending it over networks. The key used in the encryption

in case of client is stored in the proxy USB port. In server, the key is stored in the

port status table. The stub driver retrieves the key from the port status table and

use it to encrypt and decrypt the protocol headers of each packet.

29

6.1.2 User Level Implementations

At user level, there are two modules. The usbPortManagerD daemon to process

the clients’ requests and the usbPortManager utility to manage the physical USB

ports on the server and proxy USB ports on the client.

6.1.2.1 usbPortManagerD Daemon

A daemon, usbPortManagerD runs on the server to receive import and release

requests from the clients. It listens on a port for incoming connections. It receives

the request, authenticates the client and if the request is valid, corresponding actions

is taken. In case of import request, the port address is retrieved from the request. If

the port is available for import, the client is passed a success message and the client

information (socket and key) is passed to the USB core through the match port

attribute of hub using sysfs libraries. If a device is already connected in that port,

then the client information is also passed to the device driver using its attribute

usbip sockfd.

6.1.2.2 usbPortManager

usbPortManager is used to manage physical USB ports in the server and proxy

USB ports in the client. It is implemented using socket and sysfs libraries to com-

municate with server and the kernel level attributes.

For managing physical USB ports, the hub’s manage port attribute is used to

manage the ports. It is used to mark the port enabled, disabled or remoted. To

mark the port with any status, the message corresponding to the status is passed

to the manage port attribute. In turn, the port status table entry for the requested

port is modified.

For managing proxy USB ports, first of all, a connection is established with the

30

server. Then the import request is sent. If the requested port is available, then the

message is sent to the proxy host controller using the proxy hub’s attribute attach.

In response to this, the proxy host controller creates a proxy USB port. Similarly,

when releasing the imported port, the proxy hub’s detach attribute is used to destroy

the proxy USB port.

6.2 Results

We set up a number of experiments to assess to which level, the solution criteria

laid out in the Section 2 have been satisfied by our implementation. We performed

experiments on a USB mouse, a USB webcam, a USB mic, a USB flash drive and a

USB hard drive. We are describing our evaluation for each of the criteria.

6.2.1 USB Protocol Independent

Figure 6.1: Importing Remote USB Ports

31

Figure 6.2: Details of Devices Connected to Remote USB Ports

In order to illustrate the USB protocol independence of our implementation, we

show how we can successfully import devices that use different USB protocols (1.1,

2.0 in our case). Specifically, we connected a USB webcam that was a USB 2.0

device, while also a USB 1.1 mouse. The webcam utilized isochronous traffic to

exchange data. The mouse utilized interrupt traffic to exchange data. The control

traffic is used in all USB devices in device initialization. Two remote USB ports

were imported by the client machine. On one port, the mouse was connected. On

second port, the webcam was connected. We used a Kamoso application to test the

webcam. The Matte desktop manager was used to test the mouse. The Kamoso

application displayed video smoothly. The mouse cursor was also moving freely. We

took the screenshot of the screen which displays the details of the devices connected

to the proxy ports and their details. The Figure 6.1 is the screenshot of importing

32

remote USB ports at the client machine. It shows two devices. One is a Logitech

Mouse and the other is a Logitech webcam. In the Figure 6.2, the details of the

devices connected to the imported ports are shown. The mouse was a Full Speed

(USB 1.1) device and the webcam was a High Speed (USB 2.0) device.

6.2.2 Device Agnostic

In order to illustrate the device agnosticism, we show how we can successfully

connect different USB devices to the remote USB ports. We connected these USB

devices to local USB ports too. The devices were working and applications used

the devices successfully irrespective of the devices connected on local USB port or

remote USB port. We connected a Logitech USB webcam, a Logitech USB mouse

as shown in the Figure 6.1 and used applications Kamoso for webcam and Mate

window manager for mouse. We saw that device was not aware, whether it was

being accessed remotely or locally. They worked same in both cases.

6.2.3 Device Driver Independent

In order to illustrate the device driver independence, we show how we can suc-

cessfully bind same device driver for devices connected to the local USB port or the

remote USB port. In Linux 3.5, the device driver for a USB webcam is uvcvideo. The

device driver for a USB mic is snd-usb-audio. The device driver for a USB mouse is

usbhid. We first connected all the devices to a local USB port. Then we connected

all of them to a remote USB port. In both cases, the corresponding drivers for the

connected devices were loaded irrespective of the USB port types. In Figure 6.2,

we see the device drivers bound to the mouse and webcam connected to the remote

USB ports. We also used applications utilizing those device drivers like Kamoso

for camera and Mate for mouse. The same device driver worked same whether the

device was in the local USB port or the remote USB port.

33

6.2.4 Performance Transparency

We are extending a port over network. We have to maintain a performance

transparency so that, the applications utilizing the device on those ports are not

affected. In this test, we are testing at two levels. System level and Application

level. At system level, we measured the end-to-end latency for each URB when

submitted to a local USB port device and a remote USB port device. We then

compared them. At application level, we used Bonnie++ [15] benchmark tool to

test hard drive and file system performance.

We tested on a USB webcam, USB mic and USB Flash Drive. USB webcam and

USB mic worked on the isochronous traffic while USB flash drive works on the bulk

traffic. In the isochronous traffic, the packets are exchanged at a regular interval.

It is given the highest preference by host controller for bandwidth allocation. Bulk

traffic is given the lowest preference by host controller while bandwidth allocation.

The machines for testing were connected over a 100 Mbps wired connection. We

used usbmon [16] module to monitor the USB traffic.

6.2.4.1 Isochronous Traffic

The isochronous traffic is used by devices, which need a guaranteed bandwidth.

The USB host controller gives the highest priority in bandwidth allocation to the

isochronous traffic. We used the USB webcam and the USB mic to test the isochronous

traffic performance. The USB mic used packets of size 152 bytes. The USB cam used

two different types of URBs, one of size 560 bytes and the other is of size 39345 bytes.

The performance is affected by the CPU utilization of the client machine, the CPU

utilization of the server machine and the network latency. These factors are always

varying. We found the average end-to-end latency in an URB processing. We used

the usbmon module to find out the end-to-end delay between an URB submission

34

and its completion.

Isochronous Traffic Completion Time

client(remote USB port)

server(local USB port)

URB Completion Time(micro seconds) x 103

3Packet Size(Bytes) x 10

8.0000

9.0000

10.0000

11.0000

12.0000

13.0000

14.0000

15.0000

16.0000

17.0000

18.0000

19.0000

20.0000

-10.0000 0.0000 10.0000 20.0000 30.0000 40.0000

Figure 6.3: URB Completion Time Vs URB Size

In Figure 6.3, the URB completion time of URBs of different sizes on the server

machine and the client machine are displayed. The graph in Figure 6.4 displays how

the latency in the URB completion time at the client varied with the URB size.

35

Average completion time of a URB in a traffic from the USB mic device was 7996.26

µs, when the device was connected to the remote USB port. When the device was

connected to a local USB port, then the average completion time an URB was 7826.15

µs. The average latency was 170.1 µs. In USB cam, there were two types of URBs.

One was of size 560 bytes and another of size 39345 bytes. The average completion

time of a URB on a camera connected to the remote USB port for 560-byte packet

was 20111.42 µs and for 39345-byte packet was 20063.78 µs. The average completion

time of an URB on a camera connected to a local USB port for 560-byte packet

was 19681.66 µs and for 39345-byte packet was 16350.57 µs. Average delay for the

560-byte packet was 429.76 µs and for 39345-byte packet was 3713.21 µs.

The URB completion time on the client was measured from the time of submitting

a URB to the USB core driver to the time of retrieving it back from the USB core.

It includes the delay incurred due to the packaging of a URB in a TCP packet,

passing it over network, USB processing time at server, passing response back over

network and unpackaging a TCP packet to retrieve the URB. On server side, the

device is connected to a local USB port. The completion time on the server was

measured from the time of submitting a URB to the USB core driver to the time

when the URB gets completed. On client side, there were two types of processing,

one was USB processing time(done on server), another was protocol and network

processing time(in serializing/deserializing URBs). The server-side latency includes

the USB processing time. The rest of the client-side latency comprised of protocol

and network processing time. We see in the Figure 6.4, the latency increases as the

packet size increases. The network connection takes more time to transfer a larger

packet so, the latency increases. The test machines were connected over a 100 Mbps

connection. If we assume, we were getting full 100 Mbps bandwidth then, we can

find the time required to transfer a packet over the network. The Table 6.1 shows the

36

network latency for URB packets of different sizes. We can observe from the results

that as the packet size grows, the network latency becomes major delay factor.

Packet Size Network Delay Total Delay
152 bytes 11.6 µs 170.1 µs
560 bytes 42.73 µs 429.76 µs

39345 bytes 3001.79 µs 3713.21 µs

Table 6.1: Isochronous Traffic Latency

6.2.4.2 Bulk Traffic

The bulk traffic is used by devices, which exchange data which are not time-

sensitive. For example, a USB flash drive uses bulk traffic to exchange data.

We tested on a USB flash drive. The dd command was used to read 100 MB of

data from the flash drive. We did only a read test on the flash drive, since, write

on a flash memory incur some flash layer delay too. The latency is not constant

for the same size URB in case of bulk traffic. In Figure 6.5, we see that there was

an average increment of 348.53 µs in the completion time of URBs of same size,

submitted contiguously. There was a decrease in completion time for smaller URBs.

The URB size requested by the device driver was different if the device was

connected to the local USB port and if it was connected to the remote USB port.

The graph in Figure 6.6 shows the URB packet sizes in case the device was on the

local USB port. The graph in Figure 6.7 shows the URB packet sizes in case the

device was on the remote USB port. In both cases, large and small URBs were being

exchanged at regular interval. In case of the local USB port, a URB of size 12280

bytes was followed by two 13-byte and 31-byte packets. In case of the remote USB

37

port, the 12280-byte URB was splitted in several smaller URBs. This split caused a

large bust of URBs submitted in a very short interval of time. The graph in Figure

6.8 shows how frequently URBs were submitted in the local USB port device. For

the remote USB port device, the submission pattern is shown in Figure 6.9. The

Table 6.2 displays the distribution of URBs over different submission rates.

Submission Interval (δ)
Number of URBs

Local USB Port Remote USB Port
δ <10µs 0 81

10µs ≤ δ < 100µs 5 0
100µs ≤ δ < 200µs 46 0
200µs ≤ δ < 300µs 15 1
300µs ≤ δ < 500µs 4 7
500µs ≤ δ < 1000µs 14 5
1000µs ≤ δ < 2000µs 0 1

2000µs ≤ δ 15 3

Table 6.2: URB Submission Rate in Local and Remote USB Bulk Traffic

Out of 100 URBs, more than 80 URBs were submitted at a gap of less than 10 µs

in case of the remote USB port. While, in case of the local USB port, no URBs were

submitted within 10-µs duration of the last URB submitted. In case of the remote

USB port, URBs need to be transferred over networks. On server, the URBs were

processed on a device connected to a local port. We see in the Figure 6.10 that, the

frequency at which the URBs were submitted, the URBs got completed at almost

the same frequency on server. But they could not be delivered at the same frequency

to the client due to network latency. So, the URBs got stored in a queue. With

each URB, this network latency got accumulated. In the Figure 6.5, we see that the

completion time of a URB on a device connected to a remote USB port increased at

38

an average increment of 349.53 µs. The time required to transfer a 4096-byte packets

over a 100 Mbps network was 312.5 µs. The increasing latency is due to the network

latency.

6.2.4.3 Device Management Performance

The device insertion and removal takes place at the remote USB port. It affects

the process time of the device insertion and the device removal on the client machine

than that done on a local USB port. We observed the time from when the USB core

driver detects the insertion or the removal events to the time when the device driver

load or unload process is triggered respectively. The processing time of the device

insertion and removal is not a constant time process. We tested for 10 insertion

operations and took an average of them. The device insertion process in the remote

USB port, on an average took 680.83 ms. The device insertion process in the local

USB port on an average took 322.86 ms. The Table 6.3 displays the experimental

results. The device removal process did not have much effect on the client side. The

Local USB Port Remote USB Port
322932 654755
323053 683379
322764 684037
322651 684263
322683 683499
322382 683581
323146 683915
323077 683623
323109 683515
322847 683723

Table 6.3: Device Insertion Time (in µs)

39

average device removal time on the remote USB port was 16848.63 µs. The average

device removal time on the local USB port was 12216.1 µs. The average device

removal time on the remoted port on the server was 1736426.67 µs. There is large

delay on the server side was due to the timeout mechanism to detect the network

failure. This timeout mechanism caused the average delay of around 1.74 sec.

6.2.4.4 Application Performance

Bonnie++ [15] is a well known benchmark tool to test the hard drive and the

filesystem performance. We used Bonnie++ version 1.96 for our test. A USB

portable hard drive with NTFS filesystem was used for testing. The Figure 6.11

displays the result of Bonnie++. We ran Bonnie++ test first on the hard drive

connected to the remote USB port. Then we tested by connecting the hard drive to

the local USB port. The bandwidth is the average bandwidth while the latency is

the maximum latency. So in the Figure 6.11, we see that there is no direct relation

between bandwidth reduction and latency increment. We see that the performance

decrement in data operations like read and write was more as compared to control

operations like seek.

6.2.5 Failure Transparency

The device drivers should not handle the failures introduced by the remote USB

ports. Our solution hides all failures and the machine sees such failure as device

removal in the client or port unexported in the server. To test it, a USB webcam

was connected to the remote USB port. We created different kinds of failures. Dis-

connected server from the network. Disconnected client from the network. Power off

the machines. The client on detecting failure, informed the device driver that device

was removed and destroyed the proxy port. In turn, the device driver was unloaded.

The server on detecting failure, assumed that the client is no longer interested in the

40

port and marked it to be available for other clients to import.

6.2.6 Security

It uses encryption for integrity and authentication mechanism for secure access to

the remote USB ports. We used a non authenticated user to connect to the remote

USB port. The request was rejected by the server. To simulate the situation of

someone modifying the packet in between, we changed the encryption key on the

client side. The server rejected those packets but did not close the connection. The

authentic user continued to work.

41

Isochronous Traffic Latency

End-To-End Latency

Latency in URB Completion Time(micro seconds) x 103

3Packet Size(Bytes) x 100.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

2.2000

2.4000

2.6000

2.8000

3.0000

3.2000

3.4000

3.6000

3.8000

-10.0000 0.0000 10.0000 20.0000 30.0000 40.0000

Figure 6.4: Latency in URB Completion Time Vs URB Size

42

URB Completion time of each URB packet

test

URB Completion Time x 103

Packet Number
0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

11.0000

12.0000

13.0000

14.0000

0.0000 20.0000 40.0000 60.0000 80.0000 100.0000

Figure 6.5: Bulk Traffic in Storage Device

43

USB Flash Traffic Pattern

Remote Bulk Traffic

Packet Size(Bytes) x 103

Packet No

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

20.0000

22.0000

24.0000

26.0000

28.0000

30.0000

32.0000

34.0000

0.0000 50.0000 100.0000 150.0000 200.0000

Figure 6.6: Remote Bulk Traffic Packet Size Pattern

44

USB Flash Traffic Pattern

Bulk Traffic

Packet Size(Bytes) x 103

Packet No

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

70.0000

80.0000

90.0000

100.0000

110.0000

120.0000

0.0000 20.0000 40.0000 60.0000 80.0000 100.0000

Figure 6.7: Local Bulk Traffic Packet Size Pattern

45

USB Flash Traffic Submission Frequency

Local Bulk Traffic

Time since last submission(microsecond) x 103

Packet No

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

2.0000

2.2000

2.4000

2.6000

2.8000

3.0000

3.2000

3.4000

3.6000

3.8000

0.0000 20.0000 40.0000 60.0000 80.0000 100.0000

Figure 6.8: Local Bulk Traffic Packet Submission Rate

46

USB Flash Traffic Submission Frequency

Remote Bulk Traffic

Time since last submission(microsecond) x 103

Packet No

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

11.0000

12.0000

13.0000

14.0000

15.0000

0.0000 50.0000 100.0000 150.0000 200.0000

Figure 6.9: Remote Bulk Traffic Packet Submission Rate

47

Bulk Traffic submission and completion frequency

URB Submission

URB Completion

Time since last submission/completion(Microsecond) x 103

Packet Number

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

11.0000

12.0000

13.0000

14.0000

0.0000 20.0000 40.0000 60.0000 80.0000 100.0000 120.0000

Figure 6.10: Server Bulk Traffic Submission and Completion Rate

Figure 6.11: Bonnie++ Benchmark Results

48

7. SUMMARY

The Remote USB Port provides a remote port which is secure, with low protocol

overhead and, device, device driver and operating system independent. For smaller

URBs, the protocol overhead is larger as compared to network overhead. But for

larger packets, network is the major overhead. We tested on a 100 Mbps connection.

Today Gigabit Ethernet is available. With Gigabit Ethernet, network latency will

go down. The main protocol overhead is in serialization and deserialization of the

packet. The bulk traffic packets take less time in serialization and deserialization.

The isochronous URBs have many description fields. The isochronous traffic URBs

takes more time in serialization and deserialization. We used symmetric crypto-

graphic technique for encryption/decryption of packet headers. We tested on a 100

Mbps connection. If we test on a Gigabit Ethernet, the latency will go down and

bandwidth will increase. On a server machine, all the ports which are remoted use

same network interface on which the server daemon is running for communication

with client. If there are a lot of remoted ports on the server, the performance will

decrease as the same bandwidth will be shared by multiple connections. As of now,

the solution is not utilizing multiple interfaces (if available) on a machine. The solu-

tion can be extended to utilize multiple interfaces on a machine to provide a better

bandwidth in case a server’s multiple ports are remoted. Security can be enhanced

by using a non-symmetric cryptographic technique.

49

REFERENCES

[1] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier.”

http://www.symantec.com/content/en/us/enterprise/media/security\

_response/whitepapers/w32_stuxnet_dossier.pdf, Feb 2011.

[2] IEEE Computer Society, “Part 3: Carrier Sense Multiple Access with Colli-

sion Detection (CSMA/CD) Access Method and Physical Layer Specifications,”

IEEE Std 802.3TM-2005, Dec 2005.

[3] USB 3.0 Promoter Group, “SuperSpeed USB from the USB-IF.” http://www.

usb.org/developers/ssusb, February 2013.

[4] USB 2.0 Promoter Group, “Hi-Speed USB from the USB-IF.” http://www.

usb.org/developers/usb20, May 2002.

[5] R. O. Weber, “SCSI Architecture Model-3.” http://ftp.t10.org/ftp/t10/

document.02/02-119r0.pdf, March 2002.

[6] Mosaic Technology, “iSCSI Guide.” http://www.mosaictec.com/pdf-docs/

whitepapers/iSCSI_Guide.pdf, February 2009.

[7] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara, “USB/IP - A Peripheral

Bus Extension for Device Sharing over IP Network (Awarded FREENIX Track

Best Paper Award!),” in USENIX Annual Technical Conference, FREENIX

Track, pp. 47–60, USENIX, 2005.

[8] Modbus Organization, “Modbus Application Protocol Specification.” http:

//www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf, April

2012.

50

[9] Modbus Organization, “Modbus Messaging on TCP/IP Implementation Guide.”

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_

V1_0b.pdf, October 2006.

[10] A. Depari, A. Flammini, D. Marioli, and A. Taroni, “USB Sensor Network for In-

dustrial Applications,” Instrumentation and Measurement, IEEE Transactions

on, vol. 57, no. 7, pp. 1344–1349, 2008.

[11] Rovin and Sagar, “Introduction to PCI Protocol.” http:

//electrofriends.com/articles/computer-science/protocol/

introduction-to-pci-protocol/, October 2009.

[12] D. Daniel and J. Hui, “Virtualization of Local Computer Bus Architectures Over

the Internet,” in Global Telecommunications Conference, 2007. GLOBECOM

’07. IEEE, pp. 1884–1889, 2007.

[13] Wireless USB Promoter Group, “Wireless USB from the USB-IF.” http://www.

usb.org/developers/wusb, September 2010.

[14] LogMeIn Inc, “Xively: Public Cloud for the Internet of Things.” https://

xively.com/, July 2013.

[15] R. Coker, “Bonnie++.” http://www.coker.com.au/bonnie++/, January 2006.

[16] P. Zaitcev, “USB monitoring framework.” https://www.kernel.org/doc/

Documentation/usb/usbmon.txt, July 2013.

51

