
ENERGY EFFICIENT AND ERROR RESILIENT NEUROMORPHIC

COMPUTING IN VLSI

A Dissertation

by

YONGTAE KIM

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Peng Li
Committee Members, Gwan Choi

Jose Silva-Martinez
Rabi Mahapatra

Head of Department, Chanan Singh

December 2013

Major Subject: Electrical Engineering

Copyright 2013 Yongtae Kim

ABSTRACT

Realization of the conventional Von Neumann architecture faces increasing chal-

lenges due to growing process variations, device reliability and power consumption.

As an appealing architectural solution, brain-inspired neuromorphic computing has

drawn a great deal of research interest due to its potential improved scalability and

power efficiency, and better suitability in processing complex tasks. Moreover, in-

herit error resilience in neuromorphic computing allows remarkable power and energy

savings by exploiting approximate computing. This dissertation focuses on a scalable

and energy efficient neurocomputing architecture which leverages emerging memris-

tor nanodevices and a novel approximate arithmetic for cognitive computing.

First, a brain-inspired digital neuromorphic processor (DNP) architecture with

memristive synaptic crossbar is presented for large scale spiking neural networks.

We leverage memristor nanodevices to build an N×N crossbar array to store not

only multibit synaptic weight values but also the network configuration data with

significantly reduced area cost. Additionally, the crossbar array is accessible both

column- and row-wise to significantly expedite the synaptic weight update process for

on-chip learning. The proposed digital pulse width modulator (PWM) readily creates

a binary pulse with various durations to read and write the multilevel memristors

with low cost. Our design integrates N digital leaky integrate-and-fire (LIF) silicon

neurons to mimic their biological counterparts and the respective on-chip learning

circuits for implementing spike timing dependent plasticity (STDP) learning rules.

The proposed column based analog-to-digital conversion (ADC) scheme accumulates

the pre-synaptic weights of a neuron efficiently and reduces silicon area by using only

one shared arithmetic unit for processing LIF operations of all N neurons. With 256

ii

silicon neurons, the learning circuits and 64K synapses, the power dissipation and

area of our design are evaluated as 6.45 mW and 1.86 mm2, respectively, in a 90 nm

CMOS technology.

Furthermore, arithmetic computations contribute significantly to the overall pro-

cessing time and power of the proposed architecture. In particular, addition and

comparison operations represent 88.5% and 42.9% of processing time and power for

digital LIF computation, respectively. Hence, by exploiting the built-in resilience of

the presented neuromorphic architecture, we propose novel approximate adder and

comparator designs to significantly reduce energy consumption with a very low er-

ror rate. The significantly improved error rate and critical path delay stem from a

novel carry prediction technique that leverages the information from less significant

input bits in a parallel manner. An error magnitude reduction scheme is proposed

to further reduce amount of error once detected with low cost in the proposed adder

design. Implemented in a commercial 90 nm CMOS process, it is shown that the

proposed adder is up to 2.4× faster and 43% more energy efficient over traditional

adders while having an error rate of only 0.18%. Additionally, the proposed com-

parator achieves an error rate of less than 0.1% and an energy reduction of up to

4.9× compared to the conventional ones. The proposed arithmetic has been adopted

in a VLSI-based neuromorphic character recognition chip using unsupervised learn-

ing. The approximation errors of the proposed arithmetic units have been shown to

have negligible impacts on the training process. Moreover, the energy saving of up

to 66.5% over traditional arithmetic units is achieved for the neuromorphic chip with

scaled supply levels.

iii

DEDICATION

To my wife

iv

ACKNOWLEDGEMENTS

First and foremost, I am very grateful to have had the opportunity to work with

a great research advisor Dr. Peng Li and would like to thank him with my deep

respect for his valuable advice and consistent support during my doctoral studies at

Texas A&M University. Dr. Li has actively encouraged me to move forward with new

innovative research ideas and willingly shared his profound knowledge, deep insight

and creative inspiration so I could learn the way of research from him. Also, I would

like to thank my committee members Dr. Gwan Choi, Dr. Jose Silva-Martinez

and Dr. Rabi Mahapatra for their constructive discussions and suggestions on my

research, making this dissertation possible.

My appreciation goes to all the members in our research group for their knowl-

edge, discussion and friendship. Particular thanks go to Yong Zhang and Qian

Wang for the simulation and layout supports. Many friends in the department and

the alumni of Korea University have made my stay of four years in College Station

a pleasurable and unforgettable experience. I also want to acknowledge all my other

friends who have consistently helped me at A&M for their considerable assistances.

From deep down in my heart, I would like to thank my parents and other family

members for their devotion, support and encouragement. In particular, I would like

to give special thanks to my wife for her unconditional love, trust, patience and

sacrifice, leading me to successfully complete my Ph.D. studies.

Finally, the funding support from the Semiconductor Research Corporation is

acknowledged.

v

NOMENCLATURE

ADC Analog-to-Digital Conversion/Converter

ANN Artificial Neural Network

CMOS Complementary Metal Oxide Semiconductor

CLA/CLC Carry Lookahead Adder/Comparator

DNP Digital Neuromorphic Processor

EDAP Energy-Delay-Area Product

EDC Error Detection and Correction

EDEP Energy-Delay-Error Product

EDP Energy-Delay Product

FSM Finite State Machine

LIF Leaky Integrate-and-Fire

LSB Least Significant Bit

LUT Look Up Table

MSB Most Significant Bit

PWM Pulse Width Modulation/Modulator

RCA/RCC Ripple Carry Adder/Comparator

SNN Spiking Neural Network

STDP Spike Timing Dependent Plasticity

VCO Voltage Controlled Oscillator

VLSI Very Large Scale Integration

WTA Winner-Take-All

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiii

1. INTRODUCTION . 1

1.1 Digital Neuromorphic Processor for Cognitive Computing 2
1.2 Approximate Arithmetic for Energy Efficient Neurocomputing 3
1.3 Outline of the Dissertation . 5

2. BACKGROUND AND RELATED WORKS 7

2.1 Brain-Inspired Neuromorphic Computing 7
2.1.1 Biological Motivation . 8
2.1.2 Artificial Neural Networks . 11
2.1.3 Spiking Neural Networks . 18
2.1.4 Silicon Neuron Circuits . 22
2.1.5 Neuromorphic VLSI Systems 26

2.2 Approximate Computing . 30
2.3 Emerging Memory Technologies . 32
2.4 Objective of the Dissertation . 36

3. RECONFIGURABLE DIGITAL NEUROMORPHIC PROCESSOR WITH
MEMRISTIVE CROSSBAR ARRAY . 39

3.1 Digital Neuromorphic Processor Architecture 39
3.1.1 Overall Processor Architecture 39
3.1.2 Flow Control of the Neuromorphic Processor 42

3.2 Memristive Synaptic Crossbar Array 45
3.2.1 Memristor Readout Schemes 45
3.2.2 Memristive Synaptic Cell Partition 48

vii

3.2.3 Memristive Crossbar Array and Cells 49
3.2.4 Digital Pulse Width Modulation for Memristive Synaptic Cell 50

3.3 Building Block Implementations . 52
3.3.1 Memristor Readout . 52
3.3.2 Neuron and LIF Arithmetic Units 56
3.3.3 Learning Unit . 58

3.4 Implementation of the Neuromorphic Processor and Simulation Re-
sults . 61
3.4.1 Column ADC Performance . 62
3.4.2 Overall Processor Performance 64
3.4.3 Application of the Neuromorphic Processor for Character Recog-

nition System . 65
3.5 Summary . 69

4. ENERGY EFFICIENT APPROXIMATE ARITHMETIC 71

4.1 Proposed Approximate Adder . 71
4.1.1 Approximate Adder Architecture 71
4.1.2 Error Rate Analysis . 74
4.1.3 Error Magnitude Reduction Scheme 77

4.2 Proposed Approximate Comparator 79
4.2.1 Approximate Comparator Architecture 79
4.2.2 Error Rate Analysis . 81

4.3 Simulation Results . 83
4.3.1 Error Rate of the Proposed Approximate Adder 83
4.3.2 Performance of the Proposed Approximate Adder 84
4.3.3 Comparison with Seven Other Approximate Adders 85
4.3.4 Comparison on Error-Free Operations 89
4.3.5 Error Rate of the Proposed Approximate Comparator 91
4.3.6 Performance of the Proposed Approximate Comparator 92

4.4 Summary . 95

5. APPLICATION OF APPROXIMATE ARITHMETIC TO NEUROMOR-
PHIC COMPUTING . 96

5.1 Evaluation Environment . 96
5.2 Impacts of Approximation Errors on Neuromorphic Applications . . . 99

5.2.1 Approximate Adder Error Effects 99
5.2.2 Approximate Comparator Error Effects 104

5.3 Energy Efficiency of LIF Neurons with Approximate Adders and Com-
parators with Supply Voltage Scaling 105

5.4 Energy Efficiency during the Training Process with Supply Voltage
Scaling . 107

5.5 Summary . 110

6. CONCLUSION AND FUTURE WORK 111

viii

6.1 Conclusion . 111
6.2 Future Work . 113

REFERENCES . 117

ix

LIST OF FIGURES

FIGURE Page

1.1 Application of approximate arithmetic in neuromorphic computing. . 4

2.1 Biological neuron anatomy [57]. 9

2.2 Artificial neuron. 12

2.3 Activation functions: (a) step, (b) piecewise linear, and (c) sigmoid
with different parameter a. 14

2.4 Feedforward artificial neural network architecture. 16

2.5 Spiking neural network. 18

2.6 Spiking neuron behavior. 20

2.7 Spike timing dependent plasticity. 21

2.8 Analog silicon neuron: (a) schematic and (b) timing diagram [29]. . . 23

2.9 Digital silicon neuron [6]. 25

2.10 Block diagram of digital neurosynaptic core [46]. 27

2.11 Block diagram of (a) neuromorphic chip and (b) silicon neuron [58]. . 29

2.12 Memristive device structure (left) and variable resistance model (right)
[63]. 34

2.13 Energy efficient and error resilient neuromorphic computing in VLSI. 36

3.1 Block diagram of the proposed digital neuromorphic processor archi-
tecture. 40

3.2 Flow diagram of the proposed neuromorphic processor. 42

3.3 Memristor sensing schemes by (a) load resistor and (b) summing am-
plifier. 46

3.4 Memristor level partitions by equal conductance. 48

x

3.5 Proposed synaptic crossbar array and CMOS/memristor hybrid synap-
tic cell. 50

3.6 Digital pulse width modulator. 51

3.7 Proposed memristor readout block consisting of column ADC and low-
resolution ADC array. 52

3.8 Block diagram of VCO based ADC and proposed delay cell. 55

3.9 Neuron elements with the LIF arithmetic unit. 56

3.10 Flowchart of the processing of the neuron unit. 57

3.11 Learning elements with global timer and shared LUTs. 59

3.12 Flowchart of the processing of the learning unit. 60

3.13 Layout of the neuromorphic processor with 256 neurons and 65,536
synapses. 62

3.14 Column ADC performance: (a) input-to-output characteristics and
(b) power and area as functions of counter type and resolution. 63

3.15 Neuromorphic processor performance: (a) power and (b) area break-
down. 64

3.16 Network for character recognition and training for alphabets. 66

3.17 Neuron index mapping and synaptic connections of the crossbar array. 67

3.18 Learning results for network: (a) receptive fields after training and (b)
spike rasters for output neurons. 68

4.1 Block diagram of the proposed approximate adder. 72

4.2 Proposed carry prediction using parallel carry-skip (k=6, v=3). . . . 73

4.3 Block diagram of the error magnitude reduction and an example of its
operation (k=8, v=2). 78

4.4 Block diagram of the proposed approximate comparator. 79

4.5 Example of the comparator configuration (n=16, k=4, v=2). 81

4.6 Error rates of the proposed adder under different n, k and v. 84

4.7 Energy comparison under supply scaling. 89

xi

4.8 Error rates of the proposed comparator with various n, k and v. . . . 91

5.1 Digital LIF neuron: (a) block diagram and (b) delay and power break-
downs. 97

5.2 (a) Input character patterns and (b) receptive fields with 16-bit accu-
rate adders. 99

5.3 Receptive fields with 16-bit (a) proposed approximate adder, (b) LUA,
(c) LOA (8-8), (d) ETAI (8-8), (e) ETAII, (f) VLCSA-1, (g) ACA and
(h) DAA (8-8). 101

5.4 Receptive fields with 16-bit (a) LOA (13-3), (b) ETAI (15-1) and (c)
DAA (11-5). 103

5.5 Receptive fields with 16-bit (a) accurate adder with proposed com-
parator and (b) proposed adder with proposed comparator. 104

5.6 Normalized energies of one digital LIF neuron with various adders
with supply voltage scaling. 106

5.7 Normalized energy consumptions by all the digital LIF neurons of the
network while training with various adders and comparators under
supply voltage scaling. 109

6.1 Neuron and synapse integration densities as a function of technology. 113

6.2 Trends of gate length and power supply [70]. 115

6.3 Scaling trend of neuron and synapse integration. 115

xii

LIST OF TABLES

TABLE Page

3.1 Normalized write times to change one level of memristor conductance
(RON=10KΩ, ROFF=500KΩ, VWRITE=1.2V). 48

3.2 Neuromorphic processor implementation summary. 63

4.1 Proposed adder with different n, k and v. 85

4.2 Comparison with other 16-bit adders. 86

4.3 Approximate adders with error detection and correction. 91

4.4 Proposed comparator with different n, k and v. 92

4.5 Comparison with other 16-bit comparators. 94

5.1 Error rates and average error magnitudes of various adders during
training process. 100

xiii

1. INTRODUCTION

The human brain mediates and produces our thoughts, actions, memory, feelings

and other complex tasks. All these, however, are accomplished with great energy and

space efficiency by the brain. In contrast, to achieve the same, the man-made con-

ventional Von Neumann machines may require tremendous power, energy and space

resources for computation, communication and memory if it is all possible [46]. To

date, implementing the Von Neumann architecture faces grand challenges due to

growing process variations, device reliability and power consumption. As an ap-

pealing architectural solution, brain-inspired neuromorphic computing has emerged

as a promising solution to overcome these underlying constraints. It may be well-

suited for processing complex tasks, such as character or image recognition, clas-

sification and language learning and enjoy greater power efficiency and scalability

[48, 58, 46, 59, 4, 43].

Furthermore, brain-inspired architectures may offer inherit error resilience and

fault tolerance, which is very appealing for large-scale integration in scaled VLSI

technologies. This inherit error resilience in neuromorphic computing allows remark-

able power and energy savings by adopting approximate computing, which has drawn

a significant research amount of interest in order to remedy the increasing energy

efficiency challenges [21, 60, 8]. The key observation of approximate computing is

that many applications, such as digital signal processing (DSP) and neuromorphic

systems, have inherent error resilience, and hence 100% precision in computation is

not required. This provides opportunities for energy saving by relaxing computation

accuracy while achieving an acceptable processing quality. Particularly, the core of

many DSP and neuromorphic applications lies in processing specific kernel functions,

1

which occupy a significant portion of silicon area and computation time [49, 26]. For

instance, MPEG motion estimation heavily performs the L1-norm arithmetic for sum

of absolute difference (SAD) calculation [66] and spiking neural networks use the

leaky integrate-and-fire (LIF) operation to mimic neuron behavior [58]. Obviously,

adders are the primary component for building these arithmetic kernel functions.

In addition, comparators are indispensable to determine firing activities in the LIF

operation of neuromorphic applications.

To this end, this dissertation proposes two hardware design techniques for scal-

able and energy efficient neurocomputing applications: 1) reconfigurable digital neu-

romorphic processor (DNP) with memristive synaptic crossbar and 2) energy efficient

approximate arithmetic for neuromorphic VLSI systems.

1.1 Digital Neuromorphic Processor for Cognitive Computing

The first contribution of this dissertation includes a reconfigurable neuromorphic

processor with memristive synaptic crossbar for cognitive computing. We propose a

reconfigurable digital neuromorphic architecture comprising a memristive crossbar,

an array of digital LIF spiking neurons and on-line learning circuits that support

spike timing dependent plasticity (STDP) learning mechanisms. We leverage the

memristor nanodevice to implement on-chip synaptic weight storage with low-cost

since the memristor provides non-volatility, excellent scalability and high density of

10 Gb/cm2 or more [23, 72]. To implement a multilevel memristor synaptic memory,

we systematically analyze the memristor device in terms of programming time and

level partitioning. We also investigate memristor readout schemes to more efficiently

perform digital LIF operations with the crossbar structure and present a low-cost

digital pulse width modulation (PWM) scheme for writing the memristor. While the

previous analog-to-digital converter (ADC) design in [36] has a bottleneck of overall

2

power dissipation, we address this limitation by optimizing the VCO based column

ADC through the introduction of an asynchronous counter to measure the VCO

frequency in digital form. In the proposed DNP, the N×N memristive synaptic

array, which stores both multibit synapse values and network configuration data,

can be accessed both column- and row-wise to speed up the synaptic weight update

process. The proposed column ADC effectively accumulates pre-synaptic weights

and allows a single adder and comparator to be shared among all N neurons to

perform LIF operations without degrading throughput. This leads to a considerable

silicon area reduction and its digital implementation style is scalable for large scale

integration.

When implemented in a commercial 90 nm CMOS technology, a 256 neuron design

with a 256×256 synaptic array based on the proposed neuromorphic architecture has

an estimated area of 1.86 mm2 and power consumption of 6.45 mW under the regular

supply voltage of 1.2 V , respectively. The proposed neuromorphic architecture is

rather flexible and can be configured to various network topologies to support to a

range of cognitive learning applications. To demonstrate its potential application,

we configure our DNP to realize a two-layer spiking network with over two hundreds

silicon neurons for character recognition with unsupervised learning.

1.2 Approximate Arithmetic for Energy Efficient Neurocomputing

Our second contribution is to apply an approximate computing scheme to the

neuromorphic hardware design for considerable energy saving (see Figure 1.1). To

achieve this, we propose a novel approximate adder with a parallel carry-skip scheme.

While reducing the worst-case carry propagation delay, this carry-skip scheme allows

for highly accurate carry prediction, making it possible to either speed up addition

operations or reduce energy dissipation by lowering the supply voltage. The signif-

3

Input Spikes

Approximate Arithmetic

Synapse

Learning - Plasticity

Neurons – Leaky Integrate-and-Fire

O
u

tp
u

t
In

te
rf

a
c

e

In
p

u
t

In
te

rf
a

c
e

+ -
CMP

Output Spikes

Adder

++

Figure 1.1: Application of approximate arithmetic in neuromorphic computing.

icantly improved error rate and critical path delay stem from the employed carry

prediction technique that leverages the information from less significant input bits

in a parallel manner. An error magnitude reduction scheme is proposed to further

reduce amount of error once detected with low cost. Our adder design is rather flex-

ible in the sense that a low-overhead error correction logic can be readily included to

achieve error-free operations at the cost of one additional clock cycle. Additionally,

we extend our approximate arithmetic scheme to comparator design and present

a complete error rate analysis for the proposed arithmetic units. We extensively

compare our approximates designs with a large number of existing accurate and ap-

proximate adders and comparators and show the large improvements in area, power,

energy, timing and error rate brought by our design technique. To evaluate the

performance of our approximate arithmetic units for neurocomputing applications,

we present an efficient evaluation methodology to analyze large VLSI-based spiking

neural networks with over a thousand silicon neurons for character recognition. We

extensively study the error tolerance of the network, the overall energy consump-

4

tion of digital LIF neurons during the learning process and its dependency on the

underlying arithmetic units.

Implemented in a commercial 90 nm CMOS process, it is shown that the proposed

adder is up to 2.4× faster and 43% more energy efficient over traditional adders while

having an error rate of only 0.18%. In addition, the proposed comparator achieves

an error rate of less than 0.1% and an energy reduction of up to 4.9× compared

to the conventional ones. To evaluate the performance of the proposed arithmetics

under neuromorphic applications, we develop a behavioral evaluation approach for

a VLSI-based neuromorphic character recognition chip using unsupervised learning.

The approximation errors of the proposed adder and comparator have been shown to

have negligible impact on the training process while other approximate adders lead

to unacceptable level of performance degradation. Furthermore, the proposed adder

and comparator enable the overall energy reductions of up to 66.5% over traditional

arithmetic units for the digital neuron circuits during the training process with the

scaled supply.

1.3 Outline of the Dissertation

The remainder of this dissertation is organized as the follows. Section 2 describes

the background of brain-inspired neuromorphic and approximate computing, and

the related works in the literature. The memristor nanodevice leveraged for synap-

tic array is also introduced in Section 2. The reconfigurable digital neuromorphic

processor with memristive synaptic crossbar and its application for the character

recognition system with unsupervised learning are presented in Section 3. After

proposing energy efficient approximate arithmetic units in Section 4, the impacts

of the approximation errors on the neurocomputing application and the energy ef-

ficiency analysis of the proposed approximate units for the neuromorphic hardware

5

design are presented in Section 5. Finally, we conclude this dissertation and discuss

the future works in Section 6.

6

2. BACKGROUND AND RELATED WORKS

This section describes an overview of neuromorphic and approximate computing

paradigms. It begins with the biological motivation of neuromorphic computing, then

gives reviews of artificial and spiking neural networks and their learning algorithms.

It also deals with the existing designs of silicon neurons and neuromorphic VLSI

systems to mimic the biological brain on silicon, and discusses their key design issues

and limitations. Next, it introduces a notion of approximate computing and several

design approaches of the approximate adder, which is the primary component in

approximate computing, are briefly reviewed and their advantages and disadvantages

are presented as well. The overview of the memristor nanodevice, which is employed

in our digital neuromorphic processor as on-chip storage to maintain a huge number of

synaptic weight values, is given. Finally, it clarifies the objective of this dissertation.

2.1 Brain-Inspired Neuromorphic Computing

Today’s Von Neumann computers are able to not only deal with very compli-

cated numerical and algorithmic computations and procedural control tasks, such as

sorting, but also store huge amount of data. Thus, they have been widely used for

solving these complicated problems steadily which may be hard to be handled by

humans. On the other hand, traditional machines may be limited by many other

kinds of tasks that human beings can process without difficulties, such as character

or image recognition, text reading and language learning. Importantly, the humans

adapt to new situations and accumulate information and knowledge by an amazing

ability of the brain, learning. In other words, when faced with a new situation, they

make a proper decision and perform an appropriate behavior based on the acquired

knowledge through the learning or training processes. Incredibly, the human brain

7

processes these tasks much more energy efficiently than the conventional computers.

In general, biological neurons are 106× slower than silicon logic gates [20]. Silicon

chips operate with a clock period in the range of the nanoseconds (10−9 sec.) while

neural events happen in the millisecond (10−3 sec.) range. The slower operating speed

of the biological neurons may have contributed to the brain’s results in exceptionally

good energy efficiency. Specifically, the brain consumes approximately 10−16J per

operation per second, whereas the traditional computer requires an energy level of

about 10−6J per operation per second [20].

Historically, from the past years, neuroscientists have devoted intense efforts to-

wards investigating the human brain. As part of these efforts, a landmark work in

modeling the dynamics of a biological neuron was conducted by Hodgkin and Hux-

ley [24]. After that, a variety of computational neuron models, such as FitzHugh-

Nagumo [17, 52], Hindmarsh-Rose [22], and Morris-Lecar [51], have been proposed.

Also, scientists have studied the interactions among neurons through synapses. The

brain and neuron modeling are greatly facilitated by the rapid advance of digital

computers. However, simulating a large number of these computational neurons is

still challenging to date because it requires tremendous computing power and simu-

lation time. Meanwhile, neuromorphic engineers have been trying to reproduce the

neuron behaviors by morphing their anatomy and physiology into silicon chips for

simulating the human or mammal’s brains in real-time [48, 58, 46, 59, 4, 43]. The

hardware implementation provides very fast simulation of neural networks with less

power consumption.

2.1.1 Biological Motivation

Artificial or spiking neural networks are the core of brain-inspired neuromorphic

computing systems. Their development has been motivated in the part by the in-

8

sights obtained from biological nervous systems (e.g. the human brain) which are

an extremely intricate interconnection of neurons. As an example, the adult human

brain is estimated to contain a densely interconnected network of approximately 1011

neurons and more than 1014 synapses [13]. Neurons are the primary elements of a

nervous system and are specialized types of biological cells that are electrically ex-

citable. Neurons process and transmit information in the form of cellular signals

which are either electrical or chemical for long and short distances, respectively. A

considerable number of neurons connect to each other to form a neural network via

synapses, which are specialized connections among the neurons.

Figure 2.1: Biological neuron anatomy [57].

Figure 2.1 illustrates a typical biological neuron and synapse structure. A neuron

9

mainly consists of three functionally distinct parts, which are the cell body (often

called the soma), axon and dendrites. The cell body is the heart of the neuron

and includes the nucleus where most protein synthesis occurs. The dendrites of the

neuron are highly branched extensions and receive nerve signals from other neurons.

A neuron may have numerous dendrites and their overall shape is referred to as a

dendritic tree. On the other hand, the neuron has only one axon that is typically

thinner and much longer than the dendrites and transmits the signals to other cells

via synapses. In short, the dendrites and axon act as the signal receiver and trans-

mitter, respectively. Information of the nervous system is encoded in the form of

an electrical impulse which is called the action potential or spike and the pulse is

transmitted from a pre-synaptic neuron to a post-synaptic one. The action poten-

tials are created by the axon hillock that is a specialized part of the cell body and

connects to the axon. A neuron processes information by integrating the incoming

nerve signals that come from its pre-synaptic neurons and the action potential is

generated when the membrane potential of the neuron reaches a certain threshold.

Briefly, the neuron transmits the information using the action potentials or spikes.

A synapse is basically a junction between two neurons, which are referred to as

the pre-synaptic and post-synaptic neurons, respectively. In fact, neurons do not

physically touch each other and are separated by a small space called the synaptic

cleft. When an action potential arrives at the axon terminal, the pre-synaptic neuron

releases chemical neurotransmitter molecules into the synaptic cleft and they diffuse

across the synaptic junction, leading to interneuron communication at the synapse.

These chemical molecules bind to the receptor which is placed on the opposite side of

the cleft (i.e. post-synaptic neuron) and cause the membrane potential of the post-

synaptic neuron to change. The type of the receptor and neurotransmitter employed

at the synapse determines whether the post-synaptic neuron would be either excited

10

or inhibited when a pre-synaptic spike is generated. The resulting effects of excitation

and inhibition are to potentiate and depress the post-synaptic neuron’s membrane

potential. In addition, the strength of a synapse is defined by the amplitude change of

the membrane potential as a result of a pre-synaptic action potential. Learning and

memory are resulted from the changes in synaptic strength through the mechanism

of synaptic plasticity that leads to either decrease or increase in the strength. In this

way, the synapses store information.

2.1.2 Artificial Neural Networks

Artificial neural network (ANN) is a computational model inspired by the biolog-

ical nervous systems, in particular the brain, and is widely adopted in applications of

intelligent information processing, such as machine learning and pattern recognition

[20, 30]. An ANN is simply an intricated web of connected artificial neurons (called

the processing elements) that processes information in a way to mimic biological

neural networks. The signals of the network are passed among the artificial neurons

over the connection links called synapses. Each synapse has an associated weight or

strength of its own, which typically multiplies the signal transmitted. The weight is

a adaptive numerical parameter that can be manipulated by a learning algorithm.

Additionally, each neuron accumulates the input signals that are weighted by the

respective synapses of the neuron, and applies an activation function that may be

either linear or non-linear to its net input (i.e. sum of the weighted input signals)

to determine its output signal. Furthermore, ANNs are similar to their biological

counterparts in the sense that they perform functions dispersively, collectively and

in parallel by the processing elements.

Artificial neurons are the basic functional units to build an ANN and are a great

simplification of biological neurons. The first computation model of artificial neu-

11

rons was created by McCulloch and Pitts in [44]. The McCulloch-Pitts model is

based on a simplified binary neuron whose state is either active or not-active, and

implements a threshold function in discrete time. The state is determined by accu-

mulating weighted incoming signals of activated pre-synaptic neurons at each neural

computation step. Namely, it is set to active if the sum of the weighted signals

exceeds a given threshold, otherwise it is not. Subsequent neuron models extend

the McCulloch-Pitts model by introducing real-valued inputs and outputs and var-

ious threshold (activation) functions [20]. Figure 2.2 depicts a typical computation

w1k

w2k

wmk

Σ

x1k

x2k

xmk

vk

yk

Activation
function

Summation

Synaptic
weights

Input
signals

Output
signal

Figure 2.2: Artificial neuron.

model of the artificial neuron. The model consists of three basic elements: 1) a set

of synapses which are represented by synaptic weights; 2) an adder for summing

the input signals that are multiplied by the respective synaptic weights; and 3) an

activation function to bound the amplitude of the output signal. The behavior of

12

the neuron k is mathematically described by the following equations:

vk =
m∑
j=0

wjkxj (2.1)

yk = ϕ(vk) (2.2)

where m is the number of pre-synaptic neurons, xj is the input signal coming from

the neuron j, wjk is the synaptic weight between the neuron j and k, vk is the linear

summation due to the input signals, ϕ(·) is the activation function and yk is the

output signal of the neuron k. The activation function denoted by ϕ(·) is play a role

of defining the neuron output in terms of the summation input v. There are many

possible activation functions but we introduce three basic types of functions: 1) step;

2) piecewise linear; and 3) sigmoid. They are plotted in Figure 2.3, respectively.

First, the step function makes a binary decision and produces only two values.

The step function in Figure 2.3(a) can be described by

ϕ(v) =


1 if v ≥ 0

0 if v < 0

(2.3)

where the threshold value is zero. The output value is “0” if the input v is greater

than or equals to a given threshold, otherwise this function generates a value of “1”

as the output.

Second, the piecewise linear function is composed of a number of linear segments

over an equal number of intervals. The piecewise linear function described in Figure

13

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input

O
u

tp
u

t

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input

O
u

tp
u

t

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Input

O
u

tp
u

t

(a)

(b)

(c)

Increasing ɑ

Figure 2.3: Activation functions: (a) step, (b) piecewise linear, and (c) sigmoid with
different parameter a.

14

2.3(b) is expressed by

ϕ(v) =


1 if v ≥ +1

2

v if + 1
2
> v > −1

2

0 if v ≤ −1
2

(2.4)

where the amplification factor for the linear region is unity. It has two saturation

output levels corresponding an upper and lower bounds (e.g. 0 and 1 in (2.4)) and

provides a linear response between them.

Third, the sigmoid function is a smooth version of the piecewise linear function

in (2.4), and produces an S shaped graph. Moreover, it is most commonly adopted

in the construction of ANNs and is mathematically defined by

ϕ(v) =
1

1 + e−av
(2.5)

where a is the slope parameter. Adjusting the parameter a allows the sigmoid func-

tion to generate different slopes as shown in Figure 2.3(c).

The artificial neurons are combined to form a neural network in many different

ways. Most of the ANN architectures exhibit the layered structure. Figure 2.4 illus-

trated a typical feedforward ANN architecture. It has three layers of input, hidden

and output neurons where a set of artificial neurons constitutes a layer. Typically,

a standard L-layer ANN consists of an input layer, L− 2 hidden layers and an out-

put layer and they are connected successively. It is worth to note that the hidden

layer can be omitted in practice. The network can be connected either fully or par-

tially. The communication proceeds layer by layer from the input to the output

layers through the hidden ones. The neuron states of the output layer indicate the

15

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.4: Feedforward artificial neural network architecture.

computation result of the network. The neurons in the input layer receives exter-

nal input signals in the form of activation pattern and projects them onto the next

layer (e.g. hidden layer in Figure 2.4). The hidden layer plays a role of meditating

between the external input and the network output. The addition of more hidden

layers allows the network to perform high-order computations, which is particularly

valuable when the size of the input layer is large [20]. The neurons in the output layer

produce an overall response of the network under the external inputs. In contrast

to the feedforward architecture, the recurrent network includes at least one feedback

loop, which affects the learning capability of the network and its performance. This

network behave like a sequential logic and thus the previous experience may have

an impact on the activation of the neurons. The recurrent network is a dynamic

16

system while the feedforward is a static one. When a new input pattern is given, the

neuron outputs are computed, then the inputs to each neuron are modified due to

the feedback loops, which makes the network enter a new state. Hence, this network

topology can be used as associative memory.

Learning makes us to either increase knowledge or enhance understanding, and

is archived by studying, experiencing or receiving instructions. For ANNs, learning

refers to a process to adjust synaptic weights so that the network is able to perform a

specific task efficiently. Many learning algorithms have been presented to appropri-

ately adjust the synaptic weight values of the neural network but they are classified

into two main learning paradigms: 1) supervised and 2) unsupervised [30].

Supervised learning is a synaptic weight change process that incorporates the

global information. In short, this training process is performed with a teacher that

has knowledge or correct answers. The underlying principle of this learning algorithm

is the error correction rule that leverages the error signal (i.e. difference between the

actual output and the correct output) to adjust the synaptic weight values to re-

duce the error gradually. In supervised learning, every training input is given to

the network with each desired output (i.e. correct answer). The synaptic weights of

the network are modified to produce the outputs as close as possible to the known

correct answers. Therefore, the neural network tries to emulate the teacher grad-

ually through the learning process. The backpropagation and perceptron learning

algorithms are well known supervised learning methods.

In contrast, unsupervised learning does not have a teacher and utilizes only lo-

cal information during the learning process. Briefly, it does not require a correct

answer associated with each training input for the learning. This learning leverages

the properties or correlations of the training inputs, and tries to organize patterns

into categories from these correlations. The basic principle of unsupervised learn-

17

ing is that output units (i.e. neurons) compete among themselves for activation.

Therefore, it allows only one output neuron to be activated at any given time. This

phenomenon is referred to as winner-take-all (WTA), which is a common feature of

unsupervised learning. Generally, the input patterns form a vector and the network

maps the vectors into the synaptic weights. An example of the unsupervised learning

algorithms is competitive learning [30].

2.1.3 Spiking Neural Networks

While the conventional ANNs described in Section 2.1.2 are a powerful computa-

tional tool to solve complex problems, they still suffer from fundamental limitations

in emulating a real biological neural system due to the lack of temporal informa-

tion of spikes. ANNs have become more powerful and biologically realistic. Spiking

neural networks (SNNs), referred to as the third generation of ANNs, have been

developed by considering the communication among neurons with precise timing in-

formation of the spikes. They more realistically resemble the biological brain than

the conventional ANNs [18].

Spiking
Neural
Network

t t

Input spike train Output spike train

Figure 2.5: Spiking neural network.

18

SNNs exploit both the presence and timing of individual spikes as the means

of communication among the spiking neurons while the conventional ANNs process

neural information with real-valued numbers. As in Figure 2.5, an SNN receives

the input spike train from the external environment, processes it, and produces the

output of the network in the form of another spike train. In an SNN, it is assumed

that the amplitude of spikes does not encode any information. Instead, information

is encoded in the timing of the spikes that forms a spike train. Therefore, input

vectors for an SNN have to be preprocessed to extract the input features that may

contain real-valued timing information [18]. Similarly, the output spike train has to

be decoded to interpret the result of the network. There are various coding schemes

for inputs and outputs for SNNs to interpret a spike train as real-valued numbers,

by using either the frequency of the spikes or the timing between the spikes.

Spiking neurons are similar to the conventional artificial ones, but spiking neurons

utilize spikes as input and output while the traditional ones have real-valued coun-

terparts. When the spikes from the pre-synaptic neurons arrive at a post-synaptic

neuron, the membrane potential of the post-synaptic neuron changes. The mem-

brane potential represents the internal state of the spiking neuron that is induced in

the model to respond to pre-synaptic spikes. The membrane potential is affected by

the synaptic characteristics such as strength of the synaptic connections. The post-

synaptic neuron fires when its potential reaches a specific threshold. The behavior

of spiking neurons is illustrated in Figure 2.6. The post-synaptic neuron connects

with three pre-synaptic neurons that transmit their output spikes as inputs to the

post-synaptic neuron. The pre-synaptic neurons produce the spike trains that con-

sist of a sequence of three, two and one spikes, respectively, and these spikes occur

at the different timings. Hence, the post-synaptic neuron receives six input spikes

in total. The membrane potential of the post-synaptic neuron increases whenever

19

g
total

time (s)

S
ie

m
e

n
 (

S
) Threshold

Input spike train

Membrane potential (Post-synaptic neuron)

Pre-syn
Neuron1

Pre-syn
Neuron2

Pre-syn
Neuron3

Post-syn
Neuron

Pre-synaptic neuron output spike train

Post-synaptic neuron output spike train

Figure 2.6: Spiking neuron behavior.

each spike receives as shown in Figure 2.6. It is important to note that the potential

can either increase or decrease according to the type of neurons. In other words,

inhibitory pre-synaptic neurons depress the membrane potential of the post-synaptic

neuron whereas excitatory ones potentiate. All the pre-synaptic neurons in Figure

2.6 are assumed to be excitatory. The post-synaptic neuron temporally integrates

the incoming spike trains to compute the internal state of the neuron (i.e. membrane

potential) over time. The post-synaptic neuron generates a spike when the potential

exceeds the threshold (e.g. two output spikes in Figure 2.6). The output spike train

of the post-synaptic neuron can be either transmitted to other spiking neurons in the

SNN or read off the external environment. Similar neuron behavior can be modeled

with many different ways by exploiting the existing spiking neuron models, such as

20

Hodgkin-Huxley and Leaky Integrate-and-Fire models [54].

Similar to the traditional ANNs, SNNs also learn through synaptic plasticity

which refers to an adaptation process that updates the strength of the synaptic con-

nections among the neurons over time, in response to their increased or decreased

activities. Neuroscientific research revealed that the change in the synaptic strength

depends on the timings of pre- and post-synaptic spikes [42, 33]. This dependency

was experimentally characterized in detail by Bi and Poo [3] and named spike tim-

ing dependent plasticity (STDP) [62]. STDP is most commonly utilized in model-

ing of circuit-level plasticity and learning [16]. Furthermore, the STDP rules have

been recognized in a wide variety of tasks including associative memory and pattern

recognition. STDP is basically a temporally asymmetric form induced by temporal

Pre-syn
Neuron

Post-syn
Neuron

w

Δw

tpost - tpre

t

t

tpost - tpre

tpost

tpre

-800 -600 -400 -200 0 200 400 600 800

-0.5

0

0.5

1

Figure 2.7: Spike timing dependent plasticity.

correlations between the spike firing events between pre- and post-synaptic neurons.

Namely, the strength change of synaptic connection is a function of the spike time

21

difference between pre- and post-synaptic firing events and the difference determines

the synaptic weight change as illustrated in Figure 2.7. As one example, to achieve

the STDP-based learning, the time difference ∆t = tpost− tpre of the firing times be-

tween the pre- and post-synaptic neurons needs to be calculated. Then, the synaptic

weight update is done by adding the weight change ∆w obtained from the STDP

curve into the synaptic connection strength w between the pre- and post-synaptic

neurons. In this case, the STDP learning is mathematically described by the follow-

ing equations

∆w = W (tpost − tpre) (2.6)

w = w + ∆w (2.7)

where tpre and tpost are the firing times of the pre- and post-synaptic neurons, re-

spectively, W (·) is the STDP learning function and w is the synaptic weight between

the neurons. Since the STDP function W (·) affects the learning performance of the

SNN, it should be carefully designed according to the targeted applications.

The rest of this dissertation focuses only on SNNs, which are our primary targeted

computational model.

2.1.4 Silicon Neuron Circuits

Silicon neurons are the fundamental building blocks in neuromorphic hardware

design [1]. They emulate the electrophysiological behavior of real neurons on a

silicon chip rather than on a general purpose computer as software. Many design

approaches to implement silicon neurons with analog and digital circuits have been

presented [29]. Moreover, several different devices, ranging from conventional CMOS

devices to recently developed nano-electro devices such as memristors, are exploited

22

to realize silicon neurons. Considering the presented neuron models so far, the LIF

neuron model is widely adopted to implement silicon neurons due to its simplicity in

hardware implementation. In contrast, more detailed ordinary differential equation

(ODE)-based models such as the Hodgekin-Huxley model can reproduce the behavior

of biological neurons more closely, they are less hardware friendly and appropriate

for large scale integration.

(a)

-
+

Vlk

Iin

Cmem

M2

M3

INA

IK

Vmem

Vthr

Iamp Ilp

M5

M4

Ikdn

Ikup

CK

M7

M6

(b)

Up-swing

Down-swing

Spike width

Integration
Refractory

period

Figure 2.8: Analog silicon neuron: (a) schematic and (b) timing diagram [29].

Traditionally, silicon neurons have been implemented with analog circuits, which

23

utilize the I-V characteristics of the transistors to mimic the biological neurons [48,

65, 69, 11]. Figure 2.8 depicts an analog LIF silicon neuron [29]. The capacitor Cmem

is used to keep the membrane potential and the leakage current of the membrane is

controlled by the gate voltage Vlk of M1 as in Figure 2.8(a). The switches M2 and M3

play the role of charging and discharging the membrane capacitor Cmem, respectively.

The circuit utilizes an analog comparator to compare the threshold Vthr with the

membrane potential Vmem. The emulated membrane voltage over time is illustrated

in Figure 2.8(b). If there is no input Iin applied, the membrane voltage Vmem is drawn

to its resting potential, which is 0 V in this configuration, by the leakage current.

If an excitatory input by a positive Iin is injected to the neuron circuit, then the

membrane capacitor Cmem is charged while the inhibitory input by a negative Iin

discharges Cmem. When the excitatory current is larger than the leakage current,

the membrane potential Vmem increases. The potential Vmem is compared with the

threshold voltage Vthr by the comparator which produces a spike when Vmem exceeds

Vthr. The spike turns the switch M2 on and, as a result, Vmem is reset to the resting

potential by Ik. The analog circuit based silicon neurons may have a simple structure

with a few transistors and consume low power. Unfortunately, they are intrinsically

sensitive to process, voltage and temperature (PVT) variations and thus it is essential

to design carefully to make the circuits robust. Analog circuits are difficult to scale

with technology, reconfigure, and interface with software systems. Importantly, the

use of area-consuming capacitors to maintain a considerable number of synaptic

weights and membrane potentials hinders large-scale integration of spiking neurons

[28, 59].

A digital implementation of silicon neurons is illustrated in Figure 2.9 [6]. The

neuron circuit mainly consists of a digital adder, a digital comparing circuit and

some control blocks. The accumulator (i.e. register) stores an integrated digital

24

18-bit Adder

18-bit Accumulator

Forgetting
Block AER

InterfaceM
U

X

XOR

6 bits6 bits

18
bits

18 bits

Kernel
wij

Sel_forgetting

Sign

Enable

Reset

Reset

Sign

Sel_lim

Pulse

Pulse + Pulse -

Rqst

Ack

Figure 2.9: Digital silicon neuron [6].

value represented by a 2’s complement signed number and its output correspond to

a membrane potential. When the event input occurs, Enable signal is activated and

the accumulator is updated with the corresponding kernel weight wij (i.e. synaptic

weight value) through the adder. If the accumulator output reaches a programmed

threshold, the neuron generates an event pulse (i.e. spike). The threshold value is de-

termined by a 3-bit parameter Sel lim that selects one of the 18 accumulator output

bits via the multiplexer. While a lower bit selected leads to a small threshold value,

a higher one results in a large threshold. For instance, selecting the (5)th and (8)th

bits sets the threshold value to 32 (25) and 256 (28), respectively. The selected bit is

compared with the MSB of the accumulator continuously and the comparator (i.e.

XOR gate) creates a spike when the MSB and the selected bit is different from each

other. Lower thresholds make the neuron fire more frequently, and thus allow fast

processing. The forgetting block mimics the leaking behavior of neurons. The peri-

odic forgetting pulse Sel forgetting is applied to the forgetting block. If Sel forgetting

signal is asserted, the block outputs a fixed leaky value (e.g. −1) so the accumulator

25

output decreases, causing the membrane potential to decrease periodically. The dig-

ital neuron circuits are advantageous in terms of robustness against PVT variations,

better reconfigurability and ease of implementation. However, it may consume large

dynamic power due to digital switching activities.

2.1.5 Neuromorphic VLSI Systems

At the system level, while the conventional computers have become very power-

ful but they still require a huge amount of capacity, power and computation time to

mimic the tasks that humans behave, VLSI-based neuromorphic systems can pro-

vide effective ways to emulating the functions of a biological brain in silicon while

significantly saving computational power and time. Neuromorphic chips are usually

composed of synapse circuits and silicon neurons that store synaptic weight values

and emulate neuron dynamics, respectively. In addition, they can also include ded-

icated on-chip learning circuits according to the application. Recently, two digital

reconfigurable neuromorphic chips integrating a large number of spiking neurons

and their building blocks have been demonstrated in [58, 46, 27, 2]. These two de-

signs support up to 256 programmable digital silicon neurons and 1024×256 binary

synapses by means of an SRAM crossbar array.

Figure 2.10 shows the block diagram of the digital neurosynaptic core in [46]. It

consists of 256 digital LIF neurons with an output encoder, 1024 individually ad-

dressable axons, which can be either excitatory or inhibitory, with an input decoder

and 1024×256 programmable binary synapses implemented with an SRAM crossbar

array. This design does not include an on-chip learning mechanism and necessitates

loading of synaptic weights into the crossbar after the off-chip learning. It performs

neural information processing in an event driven manner to save active power dis-

sipation greatly. Specifically, it adopts an asynchronous design technique where all

26

AK

A3

A2

A1

NMN3N2N1

GK

G3

G2

G1

Select & Encode

D
e

c
o

d
e

Axons TypeCrossbar Synapses

N
e
u

ro
n

s
Sync

Output
spikes

Input
spikes

1 0 1 1

Figure 2.10: Block diagram of digital neurosynaptic core [46].

communication among the blocks requires a request-acknowledge handshake without

a global clock signal. The detailed operation in each time step t is divided into two

phases. In the first phase, a set of input spike-events A are sent to the neurosy-

naptic core at a time, and these events are sequentially decoded to the appropriate

axon block. The corresponding axon activates the SRAM’s row, and reads out all

of its connections and type G. If there are synaptic connections W , which are rep-

resented as “1”, the inputs are sent to the corresponding neurons circuits. Then,

they update the membrane potentials V appropriately. After a sequence of neuron

updates, the axon block deactivates the SRAM and waits for the new inputs. In

the second phase, a synchronization event that occurs in every millisecond period is

sent to all the digital neurons. Each neuron checks whether its membrane potential

reaches certain threshold. If so, it produces a spike and resets the potential to zero.

These spikes of the neurons are encoded and sequentially sent off the chip through

27

the encoder. After that, the leak parameter is applied to the neurons. Throughout

the two phases of neural processing, the neurosynaptic core implements the neuron

dynamics described by the following mathematical expression.

Vi(t+ 1) = Vi(t) + Li +
K∑
j=1

[
Aj(t)×Wji × S

Gj

i

]
(2.8)

where L is the leaky parameter, K is the number of axons, A is the activity bit, W

is the synaptic value and G is the axon type.

The digital neuromorphic chip incorporating on-chip learning capability in [58]

is illustrated in Figure 2.11. This chip integrates 256 digital spiking neurons with

256×256 binary synapses to implement a fully recurrent network. It operates in a

synchronous manner with a global hardware clock signal and each biological step

consumes many hardware clock cycles. In each time step, the digital spiking neu-

rons calculate their membrane potential according to the implemented dynamics and

produce spikes when the potentials reach the given firing threshold. The spikes cre-

ated by the firing neurons lead to synaptic integrations in all target neurons (i.e.

post-synaptic neurons) and synapse weight updates according to certain learning

rule. While the input spikes to the system represent external stimuli such as input

patterns, the generated spikes (i.e. output spikes) indicate the output activities (e.g.

recognition of a given pattern). The N×N crossbar architecture is suitable to repre-

sent a neural network of N neurons and all N2 possible synaptic connections among

them. Correspondingly, the on-chip storage used to keep the binary synapse values

is implemented by a 256×256 array of transposable SRAM cells. While the conven-

tional memory array is accessible only in row-direction, the proposed transposable

SRAM array is accessible in both row- and column-fashions for pre-synaptic and

post-synaptic weight updates, respectively, leading to a significant speedup of the

28

(a)

(b)

256×256
Synapse Array

BL/WL Driver, Sense Amp

Priority Encoder

256 Neurons

N1 N2 … N256

G
lo

b
a
l
F

in
it

e
 S

ta
te

 M
a

c
h

in
e

In
p

u
t

P
a
d

s

O
u

tp
u

t
P

a
d

s

Clock

Input
Spikes

Reconfigurability
neuron/synapse

configuration

Observability
neuron/synapse

state

Output
Spikes

16-bit
adder

-
+

4
:1

 m
u

x

s+

s-

sext

λ

External

Excite

Inhibit

Leak

θ

Pre-synaptic
counter

Post-synaptic
counter

2
:1

m
u

x

-
+

LFSR

Integrate and Fire Learning

External input External output

Input from
synapse array

Output to
priority encoder

Output to
synapse array

Figure 2.11: Block diagram of (a) neuromorphic chip and (b) silicon neuron [58].

update process. Moreover, an entire row and column of the crossbar can be accessed

simultaneously. Note that each row and column corresponds to a neuron’s axon and

dendrite, respectively, in the SRAM array. Based on the adopted single-bit memory

cells, the binary weight of the synapses are probabilistically set to “1” or “0” accord-

ing to the implemented learning rule. Each neuron in the Figure 2.11 implements

both locally reconfigurable LIF functions and learning rules, and the following LIF

29

neuron dynamics is conducted in each time step

V [t] = V [t− 1] + s+n+[t]− s−n−[t]− λ (2.9)

where V is the membrane potential, n+ and n− are the numbers of excitatory and

inhibitory inputs received through “on” synapses, respectively, s+ and s− are the

input strength parameters and λ is the leak parameter. The membrane potential and

parameters are expressed with 8-bit digital values. Additionally, if the membrane

potential V exceeds a given threshold θ that is reconfigurable variable, a spike is

generated and V is reset to the resting potential. On-chip learning is implemented

in each neuron cell, which thus shares the learning circuit across axonal rows and

dendritic columns of the synapses. The pre- and post-synaptic counters work with a

linear feedback shift register (LFSR) to perform probabilistic synapse weight update.

The two neuromorphic designs both employ an SRAM array to store synaptic

weight values, incurring a significant portion of the entire chip area. Furthermore, the

learning performance may be degraded due to the adopted binary synapses that are

updated by a probabilistic scheme [58]. The lack of an on-chip learning mechanism

may limit the design of applications [46].

2.2 Approximate Computing

Aggressive CMOS technology scaling allows modern VLSI systems to integrate

many high-performance functional modules, such as multi-media and communica-

tion processors. Meanwhile, today’s circuit designers are facing grand challenges

in managing overall chip power and energy consumptions. To remedy the increas-

ing energy efficiency challenges, a new design paradigm of approximate computing

has emerged as one promising solution and has drawn a significant research interest

30

[7, 67, 21, 60, 8, 9]. Approximate computing can provide great computational and

energy efficiencies by relaxing processing precision while maintaining an acceptable

overall processing quality for many applications that involve signal processing of

multimedia data (e.g. audio, video and image), machine learning and speech recog-

nition. Fortunately, these classes of computation do not require perfect accuracy and

approximate results with controlled accuracy may be sufficient. For example, while

approximation errors in image processing may change the numerical values of the

overall output, the users may not be very sensitive to certain amount of error and

may still recognize the image. Similarly, there is certain level of error resilience in

tasks performed by the human brain. The human brain is often able to fill the miss-

ing information and filter out the noisy or redundant information from the received

inputs by its natural error compensation mechanisms. In short, the human brain

has a certain degree of built-in error or fault resilience. Thus, it makes good sense

to system design to reduce the cost in hardware realizations such as power, energy

and area with approximate computing from a ranging from the algorithm to circuit

levels [21, 60, 8, 9].

Certainly, addition is the fundamental operation in many processing applications

and the adder is therefore an essential component to achieve approximate comput-

ing. Furthermore, other arithmetic units, such as comparator and multiplier, can be

implemented based on the adder. Since approximate adder design is one primary

contribution of this dissertation, we briefly review the existing approximate adder

design techniques. Lu proposes an approximate adder [39] that leverages a limited

number of previous (less significant) input bits for carry speculation to increase the

overall speed by cutting down the long carry propagation chain. The critical draw-

back of this approach is the use of a considerable number of carry generators, which

gives rise to large area and high power dissipation. The so-called ETAI [76] and LOA

31

[40] approximate adders are split into an accurate part for higher order bits and an

inaccurate part, which utilizes a modified XOR (ETAI) and OR function (LOA) to

approximately compute the remaining lower output bits. Therefore, the approximate

errors are concentrated on the lower bits. A few transistors are eliminated from the

traditional mirror adder to reduce power and area at the expense of accuracy degra-

dation in [19]. These two approaches are limited by high error rates. The ETAIII

[75] improves the error rate of ETAI by introducing a dynamic dividing strategy

of the accurate and inaccurate parts by input patterns but still yields a high error

rate. The segment based approximate adders are presented in [74] and [14] which

are named ETAII and VLCSA-1, respectively. The carry for each k-bit segment

is predicted from the lower k-bit inputs to reduce the delay of carry propagation.

Similarly, the ACA [32] adopts a number of 2k-bit sub-adders and leverages only k

most significant bit (MSB) outputs of the sub-adders to achieve approximate addi-

tions. Unfortunately, these adders have high error rates for the carry generations,

particularly for 2’s complement signed additions of small numbers. In addition, the

use of carry selection in VLCSA-1 and middle sub-adders in ACA result in power

consumption and area overhead. The lack of an error magnitude reduction in ETAII

degrades the quality of addition. In [47], the approximation errors for less significant

bits are reduced by conditional bounding logic with dithering, which causes area and

power overheads.

2.3 Emerging Memory Technologies

To date, various new memory technologies have emerged to replace the tradi-

tional memories such as SRAM and DRAM. Among these new memory technologies

researched so far, spin-torque-transfer random access memory (STT-RAM), phase-

change memory (PCRAM) and memristor based resistive random-access memory

32

(ReRAM) are considered the most promising candidates for the future. STT-RAMs

exploit a magnetic tunnel junction to store information and the difference in magnetic

directions is used to represent a bit of information [12]. PCRAMs leverage chalco-

genide materials for memory storage which can be switched between a crystalline

phase (SET state) and an amorphous phase (RESET state) by heat [12]. ReRAMs

are typically implemented with a memristor, as known as memory resistor, whose

existence was theoretically predicted by Chua in 1971 as the fourth fundamental

passive circuit element [10]. More recently, TiO2 thin-film based memristors have

been demonstrated at the nanoscale [63]. The memristive nanodevice has gained

increasing research interest and becomes a promising solution for low-cost on-chip

storage thanks to its non-volatile nature, excellent scalability and high density of

10 Gb/cm2 or more [23, 72]. A number of multibit hybrid CMOS/memristor mem-

ory architectures targeting high integration density and low power dissipation have

been proposed to substitute the conventional SRAM and flash memories that are

confronted with the fundamental technology scaling limits [45, 41]. In addition, sev-

eral recent studies have suggested leveraging memristive nanodevices for building

synaptic arrays [31, 61, 55, 25].

We briefly review the memristor device model which is used for implementing

the on-chip synaptic weight storage in our neuromorphic processor design. A TiO2

thin-film based memristor is a two terminal electrical device and is a titanium oxide

film sandwiched by two metal contacts. Conceptually, there are two layers in the

film: a doped and an undoped ones as shown in Figure 2.12. The undoped layer is

a highly resistive pure TiO2 region (TiO2 layer) while the doped one is filled with

oxygen vacancy that makes it highly conductive (TiO2−x layer) [23]. The memristor

33

Doped Undoped

D

w RON·w/D ROFF·(1-w/D)

Figure 2.12: Memristive device structure (left) and variable resistance model (right)
[63].

device model can be mathematically expressed by

R(w) =
w

D
·RON +

(
1− w

D

)
·ROFF

where 0 ≤ w ≤ D

(2.10)

In (2.10), RON and ROFF are the fully doped (lowest) and fully undoped (highest)

resistances of the memristor, respectively, and w is the length of the doped region

and thus physically bounded by the range between 0 and the total device length D.

Moreover, w represents the internal state of the memristor. The memristor state

is controlled by the incoming flux across the device for flux-controlled memristive

devices where the voltage source is utilized as the input. The memristance is deter-

mined by the state w that can be mathematically described by

w

D
=



1 if ϕ ≥ ΦUP

β
β−1

[
1−

√(
R(w0)
ROFF

)2

− ϕ
ΦD

]
if ΦLOW < ϕ < ΦUP

0 if ϕ ≤ ΦLOW

(2.11)

ΦUP =
ΦD

R2
OFF

(
R(w0)2 −R2

ON

)
(2.12)

34

ΦLOW = − ΦD

R2
OFF

(
R2

OFF −R(w0)2
)

(2.13)

where the ratio between the resistances of the on and off states is denoted by β (i.e.

ROFF = βRON), w0 is the initial state of the memristor, D is the total length of the

memristor and ϕ is the injected flux. In addition, ΦUP and ΦLOW are the upper and

lower limits of the effective flux injection, respectively, and

ΦD =
(βD)2

2µv (β − 1)
(2.14)

where µv is the average ion mobility. Also, the memristor internal state w varies

dynamically with the external input. A recent experimental study has shown that

the conductance of the memristive device can be incrementally adjusted by altering

the pulse width of the constant input voltage [31]. In other words, a longer positive

pulse duration leads to a larger increase of memductance that is given by the inverse

of memristance. Suppose that the state of the memristor is moved from the initial

state w0 to a feasible state w by a square-wave voltage pulse with an amplitude of

VA. Then, the required pulse width TW is can be derived to be [23]

TW =
ΦD

VAR2
OFF

[
R(w0)2 −R(w)2

]
(2.15)

Furthermore, the pulse duration required to move the memristor state from w = 0

to w = D is the same as what is needed to change the state from w = D to w = 0,

and the pulse width TW for these moves is given by

TW =

∣∣∣∣ ΦD

VAR2
OFF

(
R2

OFF −R2
ON

)∣∣∣∣ (2.16)

Note that the polarity of the input pulse would be different from each other for these

35

moves. This equation also indicates that the programming time (e.g. pulse width)

needed to write a specific value to the memristor would be a function of the current

and target resistances of the memristor.

2.4 Objective of the Dissertation

The objective of the dissertation is to realize energy efficient and error resilient

neuromorphic computing in VLSI. To achieve this goal, we first introduce a general

digital neuromorphic VLSI architecture. The block diagram of a this digital neu-

N×N Synaptic Crossbar

Read/Write Interface, Controller

Synapse Array

N Dendrites

N
 A

x
o

n
s

Synaptic
Weight

Learning
Circuit

Learning
Circuit

Learning Array
N

Neuron
Circuit

Neuron
Circuit

Neuron Array
N

Memristor Nanodevice

 Non-volatile nature

 High integration density of 10 Gb/cm2

 Excellent Scalability (Multibit synapse)

Approximate Computing

 Fast & low-power consumption

 Extremely low error rate & good energy eff.

 Approximate adder & comparator

Figure 2.13: Energy efficient and error resilient neuromorphic computing in VLSI.

romorphic architecture with N spiking neuron networks is depicted in Figure 2.13.

The design consists of three arrays of synapse, learning, and neuron circuits as well

as a control and an interface circuits for them. The N×N crossbar synapse array

36

represents a fully recurrent network topology and can store all possible N2 synaptic

weights among the N neurons. The resolution of the synaptic weights is determined

according to the targeted applications [56], and can be either binary [58, 46] or multi-

bit [50]. To mimic the behavior of a biological neuron, each neuron circuit emulates

the neuron dynamics (e.g. according to the LIF or Hodgkin-Huxley models) and

generates spikes when it fires. The learning circuits cooperate with the respective

neurons and update the synaptic weights according to a learning rule such as STDP.

To realize energy efficient and error resilient neuromorphic VLSI systems (see

Figure 2.13), we adopt one of the emerging nanodevices, memristor, to implement a

low-cost N×N synaptic crossbar array. While the conventional SRAM-based synap-

tic array suffers from significant area overhead, in particular, for multibit synapses,

the memristor-based nonvolatile arrays provide an excellent scalability and high in-

tegration density of 10 Gb/cm2 or more. We systematically analyze the memristor

device characteristics in terms of access time and level partitioning to realize multibit

synapses and present a low-cost digital PWM scheme for programming the memris-

tor. Furthermore, we investigate memristor readout schemes for the crossbar array

and propose a column based analog-to-digital conversion technique to more efficiently

carry out the digital LIF neuron dynamics. The details of the design of the memris-

tive crossbar is presented in Section 3.

As the second key contribution which will be presented in Section 4 and 5, we ap-

ply approximate computing to the digital neuromorphic VLSI system to considerably

reduce energy dissipation since approximate computing allows for fast computation

with low power consumption, leading to good energy efficiency with an acceptable

computation quality. To do this, a novel approximate arithmetic scheme, referred

to as parallel carry-skip, is proposed for adders and comparators in Section 4. By

cutting down the worst-case carry propagation chain, we reduce the critical path

37

delay and leverage the information from less significant input bits to speculate the

carry in a parallel manner, which allows for highly accurate carry prediction. Thus,

it makes it possible to either speed up addition and comparison operations or reduce

energy dissipation by lowering the supply voltage level. We adopt the proposed ap-

proximate arithmetic units for the digital LIF computations in the neuron circuit

and show the impacts of the approximation errors on the VLSI-based neurocomput-

ing applications. Moreover, we systematically analyze the energy efficiency of the

neuromorphic hardware adopting the approximate components with supply voltage

scaling in Section 5.

Finally, Section 6 summarizes our key contributions and discusses the future

works.

38

3. RECONFIGURABLE DIGITAL NEUROMORPHIC PROCESSOR WITH

MEMRISTIVE CROSSBAR ARRAY

3.1 Digital Neuromorphic Processor Architecture

3.1.1 Overall Processor Architecture

Figure 3.1 depicts the overall block diagram of the proposed neuromorphic pro-

cessor architecture for an N spiking neuron network. It consists of a synapse unit

(SU), a learning unit (LU) with a global timer, a neuron unit (NU), a LIF arithmetic

unit (LAU) and a system controller. The SU employs the proposed N×N memristive

crossbar array since the crossbar structure effectively implements biological synapse

connections [58, 46]. It can represent a fully recurrent network topology and store

N2 possible synaptic weights among N neurons. A biological neuron has multiple

dendrites and a single axon, which receive input spikes from the pre-synaptic neurons

and transmits output spikes to the post-synaptic neurons, respectively. One axon

can connect with the dendrites of multiple post-synaptic neurons. In the crossbar

array, a row and a column corresponds to an axon and a dendrite, respectively, of a

biological neuron. The connection between the (j)th row (axon) and (i)th column

(dendrite) is represented by the synaptic weight wji between the (j)th and (i)th

neurons. The employed memristor device for the array keeps not only a multibit

synapse value but also the network connectivity information. The proposed crossbar

is fully reconfigurable in sense that the connectivity can be programmed with respect

to the topology for any N -neuron network. The detailed memristor cell utilization

of the crossbar array will be explained in Section 3.2. In order to achieve the par-

allel synaptic weight updates, we design the array to be accessible in both row and

column directions and this improves the update performance greatly. Among the

39

L
e
a
rn

in
g

 E
le

m
e
n

t
L

E

C
o

lu
m

n
 (

D
e

n
d

ri
te

)
D

ri
v

e
r

Row (Axon) Driver

M
e
m

ri
s
to

r
C

ro
s

s
b

a
r

A
rr

a
y

(N
 ×

 N
)

C
o

lu
m

n
 (

D
e

n
d

ri
te

)
A

D
C

L
E

 #
1

Global Timer

Read / Write Pulse Generator

L
e

a
rn

in
g

 F
S

M

S
y
s
te

m
 C

o
n

tr
o

ll
e
r

S
p

ik
e

I/

O
L

E
 #

2

P
W

M
 #
1

P
W

M
 #
2

P
W

M
 #
3

P
W

M
 #
N

L
o

w
-R

e
s

o
lu

ti
o

n
 A

D
C

 A
rr

a
y

LUTs for
Synaptic Weight Update

L
E

 #
N

N
e

u
ro

n
 F

S
M

N
E

 #
1

N
E

 #
2

N
E

 #
N

S
p

k
B

u
f

S
p

k
B

u
f

S
p

k
B

u
f

Memristor
Readout

N
e
u

ro
n

 E
le

m
e
n

t
N

E

L
e

a
rn

in
g

 U
n

it
N

e
u

ro
n

 U
n

it
S

y
n

a
p

s
e

 U
n

it

N
D

e
n

d
ri

te
s

N Axons

S
y
n

a
p

ti
c

W
e
ig

h
t

(w
ji
)

L
IF

 A
ri

th
m

e
ti

c

U
n

it

F
ig

u
re

3.
1:

B
lo

ck
d
ia

gr
am

of
th

e
p
ro

p
os

ed
d
ig

it
al

n
eu

ro
m

or
p
h
ic

p
ro

ce
ss

or
ar

ch
it

ec
tu

re
.

40

various neuron models, we adopt the LIF model for the silicon neurons to mimic the

biological counterparts. LIF models have been shown to be effective for a number of

learning applications and are suitable for digital implementation due to its moderate

hardware overhead that includes a few arithmetic components, such as an adder and

comparator [29].

The NU, which consists of a finite state machine (FSM) and N neuron elements

(NEs), emulates the LIF neuron dynamics while interfacing with the column (den-

drite) ADC and LAU. In fact, our DNP has two different memristor readout circuits,

which are a low-resolution ADC array and a column ADC, which will be described

in Section 3.3. Each NE keeps the membrane potential and has spike buffers to store

both the external spike that is fed by the off-chip environment and the output spike

that is generated when the potential is greater than the given threshold voltage. The

NE can be made either excitatory or inhibitory, which potentiates or depresses the

membrane potential of the post-synaptic neurons, respectively.

The LU is responsible for performing an on-chip learning. It contains N learning

elements (LEs) that cooperate with the respective NEs as well as an FSM to con-

trol the overall synaptic weight update process. Each LE has a register to maintain

the corresponding neuron’s spike timing, which is used to calculate the spike time

difference between a pre-synaptic and a post-synaptic neurons. The LU updates the

synapse values in the crossbar based on the time differences to realize the STDP

learning mechanism. The STDP rule is programmable through the use of look-up

tables (LUTs) where synaptic weight change as a function of timing difference is

stored. These LUTs are shared by all N LEs and thus able to reduce the silicon-

area significantly and our design allows for parallel STDP updates of weights of all

neurons in a parallel manner The communications between the proposed neuromor-

phic processor and the external environment is performed through input and output

41

spikes. External stimulus are applied in the form of input spikes while output re-

sults in the form of the generated spikes of the output neurons are outputted. In a

character recognition system, for example, input letters are encoded into sequences

of input spikes that are applied to the input neurons and recognition (classification)

results are identified through spiking activities of output neurons.

3.1.2 Flow Control of the Neuromorphic Processor

The system controller manages the overall operations of the processor through a

clocking based synchronous control and the proposed DNP operates in a synchronous

manner as shown in Figure 3.2. Each step corresponds to a biological time unit and

consumes many hardware clock cycles. It includes three processing stages: 1) spike

input/output (I/O); 2) neuron and 3) learning. These stages are executed in a

pipelined manner in that the spike I/O and learning stages can work simultaneously

because there is no data and control hazards between them. During the spike I/O

stage, the input spike buffers in NEs store the spikes from the external environment.

Meanwhile, the output spikes can be read off the chip to observe the output activities.

After receiving/transmitting all the input/output spikes, the neuron stage starts,

Spike I/O Neuron Learning

Spike I/O Neuron Learning

Spike I/O Neuron

t

t+1

Time (Hardware time)

t-1

Learning

S
te

p
 (

B
io

lo
g

ic
a
l
ti

m
e
)

Figure 3.2: Flow diagram of the proposed neuromorphic processor.

42

where the following LIF neuron dynamics is implemented for each neuron.

Vi[t] = Vi[t− 1] +KSYN

M∑
j=1

wjiSj[t− 1] +KEXTEi[t− 1]− VLEAK (3.1)

where Vi is the membrane potential of (i)th neuron, M is the number of pre-synaptic

neurons, KSYN is the synaptic weight parameter, wji is the synaptic weight between

the (j)th and (i)th neurons, Sj is the activity bit that indicates whether the (j)th

neuron fired, KEXT is the external input spike parameter, Ei is the activity bit for the

input spike of the (i)th neuron and VLEAK is the leaky potential. At each hardware

time step in the neuron stage, through the column driver, an NE activates the cor-

responding column word line to access all its pre-synaptic neurons. The read/write

(R/W) pulse generator, which contains N digital pulse width modulators (PWMs),

produces parallel pulses for reading all pre-synaptic weight values from the mem-

ristor cells in the column and these values are sent to the column ADC. The ADC

accumulates these pre-synaptic weights and converts the sum into a digital quantity.

Note that synaptic weights are stored as an analog quantity of memristors’ resistance

or conductance (i.e. memristance or memductance). This reading process will be de-

tailed in Section 3.2. Finally, the NE updates its membrane potential by adding up

the accumulated pre-synaptic weights, the external spike weight and the leaky po-

tential through LAU. If the membrane potential exceeds the given threshold voltage,

the NE generates a spike event and its potential is reset to the resting potential. The

spiking activity bit of the (i)th neuron Si is set according to

Si[t] =


1 if Vi[t] > VTH

0 otherwise

(3.2)

43

where VTH is the threshold voltage. These spikes are read off the DNP to monitor the

output results during the spike I/O stage. The aforementioned process is repeated

N times to achieve the LIF operations of all N neurons during the neuron stage.

After the neuron stage, the processing continues onto the third learning phase,

where the synaptic weights are updated according to the STDP learning rule. In

this rule, the time difference between a pre-synaptic and a post-synaptic spike event

is measured and utilized to determine the synaptic weight change. To do this, each

LE has a time register to keep track the neuron’s spike event time that is stamped

by the global timer. For each fired neuron, the LU conducts both a pre-synaptic and

a post-synaptic weight updates in a row. If a neuron fires,

1) all its pre- (post-) synaptic neurons’ time registers are compared with the global

timer and the corresponding LEs determine the amounts of the synaptic weight

change using the pre-computed LUT;

2) the column (row) driver activates the memristor crossbar array’s column (row)

word line that is associated with the dendrites (axons) of the fired neuron;

3) the R/W pulse generater provides a read pulse word to the corresponding

column (row) to sense each memristor’s current internal state (i.e. current

synaptic weight) in the column (row) through the low-resolution ADC array;

4) the LEs calculate the pulse durations to write the desired synaptic weight

values, which are evaluated in step 2), into the respective memristor cells using

the memristor’s states obtained in step 3);

5) all the pre- (post-) synaptic weights are updated by means of the R/W pulse

generator with the durations determined in step 4).

44

The generator produces parallel write pulses that have different widths according to

not only the amount of the synaptic weight change but also the memristor’s current

internal state (due to the non-linear device characteristics for write time) as will be

described in Section 3.2. This update process works only when the corresponding

neuron fired at the neuron stage. In other words, if the membrane potential of the

(i)th neuron, for instance, does not exceed the threshold voltage at the neuron stage,

then both pre- and post-synaptic weight update processes for the (i)th neuron are

skipped. It is worth to note that the entire learning stage is omitted when no neurons

fired at the neuron stage. In addition, the proposed architecture is able to process

spiking I/O tasks and the learning stage simultaneously since LIF operations are

processed in the previous stage, resulting no conflict of spiking event data.

3.2 Memristive Synaptic Crossbar Array

In this section, we first briefly introduce the memristor model and two readout

schemes that are suitable for processing LIF operations of silicon neurons and synap-

tic weight update process. Then, the proposed memristive synaptic crossbar array

and CMOS/memristor hybrid cell are presented. Additionally, we propose a new dig-

ital PWM scheme for both reading and STDP update of memristive synapses. While

an analog PWM scheme has been conceptualized for implementing the STDP earn-

ing rule [61], the presented digital design is more amenable to large scale integration

in digital system architectures.

3.2.1 Memristor Readout Schemes

Two different ways to read the memristor internal state have been presented

based on the sensing device for the memristor: 1) load resistor and 2) summing

amplifier (i.e. current-to-voltage converter), as depicted in Figure 3.3. The load

resistor based sensing scheme is commonly adopted for both binary and multilevel

45

M1

M2

MN

RL

VOUT

VREAD

VREAD

VREAD

VOUT

VREAD

VREAD

VREAD RF

(a) (b)

M1

M2

MN

-
+

Figure 3.3: Memristor sensing schemes by (a) load resistor and (b) summing ampli-
fier.

memristor memories due to the ease of implementation [23, 45, 41]. This scheme

leverages a load resistor RL, which is connected in series with the memristor, and

forms a voltage divider. Hence, the output voltage VOUT of Figure 3.3(a) under a

given read voltage VREAD is calculated by

VOUT =

∑N
i=1

1
Ri

1
RL

+
∑N

i=1
1
Ri

VREAD =

∑N
i=1 Gi

GL +
∑N

i=1Gi

VREAD (3.3)

where N is the number of memristors attached to the sensing node, Ri and Gi are

the resistance and conductance of the memristor Mi, respectively, and RL and GL are

those of the load resistor. With respect to this particular neuromorphic application,

the result shows that this scheme is unable to integrate multiple memristor internal

states associate with a STDP update since it can not have the output voltage VOUT

represent a linear summation of either memristor resistance or conductance under

a fixed read voltage VREAD. What is possible with this scheme, though, is the ac-

46

cumulation of all pre-synaptic weights for a neuron in N iterations with use of an

additional adder. In other words, each memristor state can be readout and accumu-

lated by the adder at a time, resulting in a total of N2 iterations to complete all N

neurons’ LIF tasks. Additionally, to concurrently integrate pre-synaptic weights of

N neurons to expedite the tasks, it necessitates N adders and N iterations to finish

them [58]. On the other hand, the summing amplifier based sensing scheme provides

a linear summation of conductance of memristors such that it is able to integrate

all pre-synaptic weights for each neuron. This scheme forms a virtual ground at the

negative input terminal of the amplifier and each current from the memristor flows

out into the ground. Thus, the output voltage VOUT of Figure 3.3(b) with the input

voltage VREAD is expressed by

VOUT = RF

N∑
i=1

VREAD

Ri

= RF

N∑
i=1

GiVREAD (3.4)

where RF is the feedback resistor of the amplifier. This scheme allows the adder

and comparator (LAU) to be shared for the LIF task for N neurons, leading to

great area and power savings. It is worth to note that both schemes can be equally

employed to sense the state of a single memristor while the amplifier based scheme

is more suitable to accumulate the internal states of multiple memristors. Hence,

we leverage the summing amplifier based sensing scheme to effectively accumulate

all pre-synaptic weights of each neuron for LIF operations at the expense of an

amplifier, whereas the resistor based sensing is exploited to detect each memristor’s

current state for the synaptic weight update process.

47

3.2.2 Memristive Synaptic Cell Partition

Since the summing amplifier based sensing provides the linear summation of con-

ductance of memristors, we make the memristors of the crossbar array have equally

partitioned 9 conductance levels to represent a multilevel synaptic weight as shown

in Figure 3.4. Importantly, the programming times to write a value to the memris-

tor are drastically different according to the memristor internal state (i.e. current

conductance value) in spite of writing the same value [41]. Table 3.1 shows the write

times to change the conductance value by one level under different internal state

according to our memristor model [71]. They are normalized against the time to

change the level between 7 and 8. Note that the times are symmetric with respect to

0 1 2 3 4 5 6 7 8

Synapse Value 0 7
Network

Connectivity

GOFF

GON

ROFF

GOFF GON

RON

Figure 3.4: Memristor level partitions by equal conductance.

Table 3.1: Normalized write times to change one level of memristor conductance
(RON=10KΩ, ROFF=500KΩ, VWRITE=1.2V).

Level change 0 ⇔ 1 1 ⇔ 2 2 ⇔ 3 3 ⇔ 4 4 ⇔ 5 5 ⇔ 6 6 ⇔ 7 7 ⇔ 8

Time 8205 117 25 10 5 3 2 1

48

the direction (e.g. write time for changing from level 1 to level 0 and vice versa are

the same). Also, we have modeled the memristors with the parameters RON = 10KΩ

and ROFF = 500KΩ and the read voltage VREAD and write voltage VWRITE are consid-

ered as 1.2 V for both [71]. The programming time to change level between 0 and

1 is over 8000× slower than that between 7 and 8 for our memristor. The excessive

programming time required to change the state between levels 0 and 1 may notably

slow down the overall on-chip learning speed during the training phase. Therefore,

we utilize the lowest level to indicate the network connectivity of the crossbar, which

allows the network to be fully reconfigurable, and other higher 8 levels to represent

the actual synapse value (i.e. 3-bit synapse) for a significant training speedup. As

an example, if the memristor in the (i)th column and the (j)th row of the crossbar

is at level of 0, it means that no connection between the (j)th and the (i)th neurons

exist. On the other hand, the memristor level of 4 indicates that the (j)th and (i)th

neurons are connected with the synaptic weight of 3.

3.2.3 Memristive Crossbar Array and Cells

Figure 3.5 exhibits the proposed synaptic crossbar array and the CMOS/memristor

hybrid synaptic cell. The two switches S1 and S2 in the cell are introduced to allow

each memristor to be accessible in both the column and row fashion. When the

row (column) driver activates a word line, S1 (S2) of all cells that lie in the same

row (column) are turned on and ready to be accessed. Parallel voltage pulses are

generated by the R/W pulse generator and applied to read or write all cells in the

row (column) as shown in Figure 3.5.

To read the value from a cell, a fixed positive voltage pulse is applied to the

memristor cell, when S3 and S4 connect to the pulse generator and the ADC (i.e.

memristor readout circuit) lines, respectively. The current generated by the cell due

49

Column Word LineRead
Pulses

Write
Pulses

S1

S2

To Readout Circuit (ADC)

S3 S4

From R/W Pulse Gen.

F
ro

m
 R

/W
 P

u
ls

e
 G

e
n

.

Figure 3.5: Proposed synaptic crossbar array and CMOS/memristor hybrid synaptic
cell.

to the applied positive voltage pulse flow out into the ADC line and is converted to

a digital value, reflecting the memductance of the cell. Unfortunately, the applied

positive pulse disturbs each memductance [23]. Therefore, a flipped (i.e. negative)

voltage pulse following the positive one is injected to each memristor to restore its

memductance, resulting zero net flux injection for the memristor. This is effectively

done by connecting S3 and S4 to the ADC and the generator lines, respectively. In the

write operation, the cells in either one row or column are accessed and incrementally

updated in parallel. A write voltage pulse is injected to each memristor cell and

its memductance is altered depending on the pulse duration. The write operation

latency varies with respect to the value to be written into the cell. It is possible to

either increase or decrease the memductance. For the latter, S3 and S4 are connected

to the ADC and the generator lines, respectively, to effectively apply a negative

voltage pulse to the memristor cell.

3.2.4 Digital Pulse Width Modulation for Memristive Synaptic Cell

The proposed DNP uses a parallel write pulse word, consisting of N binary pulses

whose durations are different from each other to update either all the pre-synaptic

50

or post-synaptic weights of a given neuron during the training process. The delay

line based digital PWM requires both of a large number of delay cells to realize

many different pulse widths and a large multiplexer to select one output from these

cells, leading to remarkable area and power overheads [64]. Also, the delay cells

can be sensitive to PVT variations. This affects the pulse durations and may incur

failures in writing the desired values to the memristors. Thus, we leverage a low-cost

counter based digital PWM to readily generate a binary pulse with various durations

as illustrated in Figure 3.6. The counter records the number of cycles of the clock

NPWM cycles

Counter

NPWM

M
U
X

nRSTPWM

CKPWM

PPWM

-

+ C
M
P

CNTPWM

Figure 3.6: Digital pulse width modulator.

signal CKPWM and its output CNTPWM is compared with the desired number of cycles

NPWM by the digital comparator. The multiplexer outputs “1” until CNTPWM reaches

NPWM and chooses “0” after then. The pulse duration is given by

tPWM = NPWM · tCKPWM
(3.5)

where NPWM and tCKPWM are the desired number cycles and the period, respectively,

of the PWM clock CKPWM. Note that CKPWM does not have to be identical to the

51

DNP operating clock. NPWM is provided by LU, where the amount of synaptic weight

change is calculated by the time difference between a pre- and a post-synaptic firing

events in accordance with the STDP rule, during the learning stage. CKPWM and

NPWM can be straightforwardly configured according to the range of level change and

device characteristics of the memristor. The R/W pulse generator includes N digital

PWMs to create a read or write pulse word to simultaneously access the memristive

synaptic cells in either one column or row.

3.3 Building Block Implementations

3.3.1 Memristor Readout

Figure 3.7 illustrates the proposed memristor readout block that includes a col-

umn ADC and a low-resolution ADC array. The column ADC works only for the

neuron stage to conduct LIF operations while the low-resolution ADC array is ac-

tivated during the learning stage to sense each memristor’s internal state. In [58],

each neuron circuit has its own adder and comparator to integrate all pre-synaptic

weights and determine firing activity. It requires N iterations to complete all neu-

VINTPRE

-
+

S/H
High-Res
12b ADC

C
o

l
#
1

R
o

w
 #
1

C
o

l
#
2

R
o

w
 #
2

C
o

l
#
N

R
o

w
 #
N

3.2b
ADC #1

W1 W2 WN

Column ADC

Low-Res. ADC Array

RF

VREF

Gen.
3.2b

ADC #2
3.2b

ADC #N

Figure 3.7: Proposed memristor readout block consisting of column ADC and low-
resolution ADC array.

52

rons’ LIF tasks. The proposed column ADC, which contains a summing amplifier, a

sample-and-hold circuit and a high-resolution ADC, provides significant power and

area reductions without degrading overall throughput since it allows a single adder

and comparator (LAU) to be shared by all N neurons.

During a LIF operation, the R/W pulse generator injects a pulse word into the

corresponding column to read all pre-synaptic weights from the memristor cells. Each

current from the cell flows out into the virtual ground and is summated at the neg-

ative terminal of the amplifier. The total current is converted to a voltage quantity

through the feedback amplifier. The sample-and-hold circuit keeps the voltage and

the high-resolution ADC transforms it into a digital value that corresponds to the

term
M∑
j=1

wjiSj[t − 1] in (3.1). In this way, N iterations are enough to complete the

LIF operations for all N neurons with only one adder and comparator (LAU).

During the learning stage, before performing a synaptic weight update with a

desired value (i.e. writing the value into the memristor), we should know the corre-

sponding memristor’s current internal state to determine the pulse duration to write

the desired synaptic weight. This is because that the required pulse width varies

with respect to the current state, notwithstanding writing the same amount of value

into the memristor, due to the non-linear device characteristics as demonstrated in

Table 3.1. To do this, we consider the array of N low-resolution flash ADCs to read

all pre- (post-) synaptic weights of each column (row) in parallel. Also, we leverage

the load resistor based sensing scheme, as in Figure 3.3(a), to eliminate the need

of involving amplifiers to reduce area and power dissipation. Each flash ADC has

8 comparators to detect one of 9 levels in our memristor cell and a digital logic to

encode the output of the comparators. The reference voltage generator shared by N

flash ADCs is a resistor string and creates 8 reference voltages for the comparators

of each ADC. Importantly, this string does not have equally spaced resistor values

53

since our memristor cell is equally sliced not by resistance but by conductance (see

Figure 3.4).

The desired resolution of the column ADC is derived by

resolution = dlog2N + log2Le (3.6)

where N and L are the numbers of neurons and conductance levels of the memristor

cell in the array, respectively. Obviously, the flash ADC architecture is not suitable

for a high-resolution ADC because it requires 2K−1 comparators to implement K-bit

analog-to-digital conversion, leading to considerable power and area consumptions as

K increases. The successive approximation register (SAR) and pipeline ADCs occupy

large silicon area stemming from area-consuming passive components. Moreover, the

SAR and delta-sigma (∆Σ) ADCs are able to achieve a high-resolution and they may

be, unfortunately, limited by a relatively slow conversion rate that is the KHz range.

Therefore, to realize a low-cost high-resolution ADC with a moderate conversion

speed, we adopt a multiphase voltage controlled oscillator (VCO) based ADC where

an analog input alters the VCO frequency and the frequency is measured in digital

value by counters [73]. The VCO based ADC is readily implemented with a few

digital components such as counters, resulting in a small area overhead. Figure 3.8

shows the block diagram of the VCO based ADC, which consists of a ring VCO,

counters, and a tree adder, and the proposed delay cell. We employ a 12-stage ring

VCO with the proposed pseudo differential delay cell that is based on an inverter

structure with a NMOS current source. The back-to-back inverter in the cell ensures

the differential outputs. The VCO operating frequency is adjusted by control the

current source (i.e. a higher current leads to a higher frequency). The clock phases

of each delay cell of the VCO can be exploited to enhance the ADC resolution [34].

54

+
+

A
D

D

VCTRL

Async
Counter

Async
Counter

+
+

A
D

D

CK23 CK11

DOUT

CK10 CK22

CK8

CK20

CK21 CK9

VINP

VCTRL

VCTRL

VOUTN VOUTP VINN

Async
Counter

Async
Counter

CK0

CK12

Async
Counter

Async
Counter

CK4

CK16

+
+

A
D

D
+

+

A
D

D
+

+

A
D

D

Ring VCO Counters Tree Adder

Delay Cell

+ -

+-

+ -

+-

+ -

+-

+ -

+-

Figure 3.8: Block diagram of VCO based ADC and proposed delay cell.

Generally, the use of more phases results in the higher resolution with higher power

and area overheads. In our DNP, six phases (see Figure 3.8) are leveraged to achieve

a 12-bit ADC resolution for 256 neurons and 9 levels of the memristor cells under

1 MHz conversion rate as will be described in Section 3.4. These clock phases are

connected to the respective digital counters whose outputs are summed by the tree

adder to obtain the final digital output. The frequency of our VCO is up to 1016 MHz

and thus 10-bit counter is used to measure the frequency of each clock phase under

1 MHz sampling frequency. Also, the VCO usually operates at a few hundred MHz

and the counters that operate at such a high frequency contribute a large portion of

the overall ADC power dissipation [36]. Hence, we employ asynchronous counters to

significantly reduce the ADC power.

55

3.3.2 Neuron and LIF Arithmetic Units

The NU cooperates with LAU to emulate the LIF neuron behavior of (3.1) dur-

ing the neuron stage. The block diagram of NEs with LAU and the flowchart of

NU processing are described in Figure 3.9 and Figure 3.10, respectively. For each

MUX

VMEM

REG
Spike
REG

VREST

Ext Spk
REG

NE #N

MUX

VMEM

REG
Spike
REG

VREST

Ext Spk
REG

MUX

Memb
REG

Out Spk
REG

VTH

VREST

A
D

D
S

U
B

VLEAK

A
D

D

Output
Spikes

MUX

KEXT

LIF Arithmetic
Unit

NE #1

KSYN

M
U

L

M
U

X

Ext Spk
REG

External
Input

Spikes

VMEMBNEW

-

+ C
M

P+

-

+

+

+

+

VINTPRE

SUB

+

-

NFIREPREi

(ADC) (LEs)

VMEMB

Figure 3.9: Neuron elements with the LIF arithmetic unit.

neuron, the NU makes the R/W pulse generator to create a read pulse word for the

corresponding column (dendrite) of the crossbar and sums up all the pre-synaptic

weights of the neuron VINTPRE through the column ADC. Importantly, the word con-

tains the read pulses for only fired neurons at the previous time step t − 1 to save

power. Consder a network of 10 neurons as an example. If the (3)rd, (4)th and (5)th

neurons fired and the other 7 neurons did not fire at t− 1, only the (3)rd, (4)th and

(5)th PWMs in the generator produce the read pulse and the other PWMs output

56

curNeuron = 0

curNeuron == N ?

Generate read pulses
for fired neurons at t-1

LIF operation
for curNeuron

curNeuron++

NU DONE

YES

NO

Any neuron fired at t-1?

YES
NO

NU START

Figure 3.10: Flowchart of the processing of the neuron unit.

“0”. Similarly, this column reading and pre-synaptic weight accumulating process is

omitted to reduce power dissipation when there is no firing activity in the previous

neuron stage (i.e. ∀j,0≤j<N : Sj[t− 1] = 0 in (3.1)). In this case, VINTPRE is forced to

zero due to the term
M∑
j=1

wjiSj[t− 1] = 0 in (3.1) and only the leaky potential VLEAK

and the external input spike weight KEXT are considered to obtain the membrane

potential.

More importantly, the column ADC output VINTPRE should be adjusted since our

synaptic cell includes the connectivity information (e.g. memristor level of 4 in the

(j)th row and (i)th column of the crossbar indicates the synapse value of 3 between

the (j)th and (i)th neurons). Therefore, VINTPRE is subtracted by the number of

fired pre-synaptic neurons NFIREPREi (for the (i)th neuron), which is evaluated by the

corresponding LE during the synaptic weight update process (i.e. the learning stage)

at the previous time step t − 1. The subtractor output VINTPRE − NFIREPREi is added

57

to the corresponding membrane potential VMEMB, and the external input spike weight

KEXT and leaky potential VLEAK are added as well. The adder’s output VMEMBNEW is

compared to the threshold voltage VTH by the digital comparator and the result is

sent to the respective NE through the demultiplexer and captured by its output spike

register. Meanwhile, VMEMBNEW is sent to the NE and stored in the membrane register

when it does not exceed VTH. Otherwise, the register is reset to the resting potential

VREST via the multiplexer.

3.3.3 Learning Unit

The LU is designed to conduct the STDP on-chip learning by calculating the

amounts of pre- and post-synaptic weight changes, determining the pulse durations

to write the desired weights and updating the memristive crossbar array with the

values through the R/W pulse generator. Figure 3.11 exhibits the block diagram of

the learning elements with the global timer and the two programmable LUTs. The

flowchart of LU is shown in Figure 3.12 as well. All LEs contain their own time

register to keep the neuron’s spike event time and share the register-based LUTs for

STDP learning curve and write pulse width for the memristor. The STDP LUT holds

several pairs of the spike time difference ∆t and synaptic weight change ∆W while

the LUT stores the required number of cycles of PWM clock CKPWM to write desired

values for the memristor. The design of the pulse width LUT involves important area

considerations. For K-bit synapses, a brute-force implementation would require a

large number of 2K(2K−1)
2

LUT entries for all possible pairs of the current and target

memristor levels. Instead, to reduce area and complexity of the selection logic, we

design the LUT in such a way that only the desired cycles of CKPWM for altering the

memristor level from the lowest to each target (i.e. from level 1 to levels 2, 3, 4, 5,

6, 7 and 8) are stored in 2K − 1 entries. With this area-efficient design, the actual

58

MUX

Time
REG

S
U

B

+

-

Selection Selection

Selection

ADD

++

SUB

+ -

Counter
(W1 ≥ 1)

W

WD

PWD PWS

T
im

e
S

c
a
li
n

g

To R/W Pulse Gen.

t

W

0

4

1

2

2

1

L

NPWM

1→2

117

1→3

142

1→4

152

Global Timer

MUX

Time
REG

S
U

B

+

-

Selection Selection

Selection

ADD

++

SUB

+ -

Counter
(W1 ≥ 1)

W

WD

PWD PWS

T
im

e
S

c
a

li
n

g

MUX

Time
REG

S
U

B

+

-

Selection Selection

Selection

ADD

++

SUB

+ -

Counter
(W1 ≥ 1)

W1

WNEW1

NWNEW1 NW1

T
im

e
S

c
a
li
n

g

LE #1

From Low-Resolution ADC Array

NFIREPRE1

t1

W1

LUT for Pulse Width

LUT for STDP

(To NEs)

W2 WN

NPWM1

NFIREPRE2

NFIREPREN

Figure 3.11: Learning elements with global timer and shared LUTs.

pulse duration for a given update is determined by finding the difference between

the entry values for the current and target levels. For instance, the number of cycles

for increasing the memristor level from 3 to 5 is obtained by subtracting the number

of cycles needed for changing the memristor level from 1 to 3 from that for changing

from level 1 to 5. As a result, we attain 2K−1× area reduction of the pulse width

LUT (e.g. 4× reduction in the proposed DNP). In addition, the LU supports a time

scaling feature to provide additional programmability in scaling the stored STDP

rule. It is implemented with a shift operation of the time differences.

The processing of the learning stage for the entire network is done as follows.

The synaptic weight updates are processed by iterating over all fired neurons. To

check each neuron’s firing activity, the LU checks the output spike buffer, which is

59

Find next fired neuron

LU START

Generate read pulses
for column (dendrite)

Calculate pre-synaptic weight
changes & pulse widths by LUTs

LU DONE

Generate write pulses for
column (pre-syn update)

Found ?

Generate read pulses
for row (axon)

Calculate post-synaptic weight
changes & pulse widths by LUTs

Generate write pulses for
row (post-syn update)

YES

Figure 3.12: Flowchart of the processing of the learning unit.

filled at the neuron stage, in the corresponding NEs. For each fired neuron, the LU

runs the following two back-to-back parallel processes, one for pre-synaptic weights

and the other for post-synaptic weight updates. Note that in the absence of neuron

firing, the learning stage is skipped. The respective LE for every fired neuron up-

dates its time register with the global timer. Simultaneously, all LEs calculate the

scaled time differences ∆t1,∆t2, · · · ,∆tN between the global timer and their time

register values. This step basically determines the firing time differences between

this fired neuron and all other neurons in the network. The synaptic weight changes

∆W1,∆W2, · · · ,∆WN for ∆t1,∆t2, · · · ,∆tN are selected from the STDP LUT in par-

allel. Meanwhile, all pre- (post-) synaptic weights W1,W2, · · · ,WN (before update)

are obtained from the corresponding column (row) through the R/W pulse genera-

tor and low-resolution ADC array and fed into the respective LEs, also in parallel.

The pre- (post-) synaptic weights to be written into the respective memristor cells

60

WNEW1,WNEW2, · · · ,WNEWN are computed by the adder (i.e. ∀i : WNEWi = Wi + ∆Wi).

Now, Wi and WNEWi correspond to the current and target levels of the (i)th mem-

ristor, respectively. Then, each LE concurrently looks up the cycle counts NWi and

NWNEWi from entries associated with Wi and WNEWi from the pulse width LUT. The

desired numbers of cycles NPWM1, NPWM2, · · · , NPWMN to update the pre- (post-) synap-

tic weight values by WNEW1,WNEW2, · · · ,WNEWN, respectively, are determined by sub-

tracting each NWi from NWNEWi (i.e. ∀i : NPWMi = NWNEWi − NWi). Finally, the pulse

generator produces the parallel write pulse word with NPWM1, NPWM2, · · · , NPWMN as

in Figure 3.6. When creating the word, NPWMi is set to “0” for Wi = 0 since no

pre- (post-) synaptic connection exists. Additionally, for negative NPWMi values, the

generator inverts the polarity of the pulses and it is effectively done by manipulating

the switches of the proposed cell as shown in Figure 3.5. Also, all LEs record the

numbers of fired pre-synaptic neurons NFIREPRE1, NFIREPRE2, · · · , NFIREPREN during the

post-synaptic weight update process for the following LIF operations as detailed in

Section 3.3.2.

3.4 Implementation of the Neuromorphic Processor and Simulation Results

Except for the memristor nanodevices, the proposed neuromorphic processor has

been implemented with a commercial 90 nm CMOS technology under the regular

supply voltage of 1.2 V . All the digital circuits, which exclude the analog components

of the column ADC (e.g. ring VCO and summing amplifier) and the low-resolution

ADC array, are synthesized with standard cells. The layout that measures 1.45 mm

× 1.28 mm is shown in Figure 3.13. It is worth to note that the memristor crossbar

array is defined as an empty macro based on the estimated area. The main clock

frequency is 1 MHz while the R/W pulse generator operates at 50 MHz. Table 3.2

summarizes the key features of the implementation. All the results are obtained from

61

Low-Resolution
ADC Array

Memristor
Crossbar

Ne
ur

on
 &

 L
IF

Ar

ith
m

et
ic

Un
its

Learning Unit

Controll
er, etc

Pu
lse

Ge

ne
ra

to
r

Co
lu

m
n

AD
C

Figure 3.13: Layout of the neuromorphic processor with 256 neurons and 65,536
synapses.

the pre-layout simulations.

3.4.1 Column ADC Performance

To show the performance of the VCO based ADC as proposed in Figure 3.8,

we sweep the input voltage from 0.45 V to 1.15 V with a 0.05 V step under a

sampling frequency of 1 MHz. The simulated input-to-output characteristic is shown

in Figure 3.14(a). The digital output spreads over the range from 1,440 to 5,862

(i.e. 12.1-bit resolution) and exhibits a great linear behavior with respect to the

input (R2 = 0.9964). Thus, it satisfies the resolution required in (3.6) to serve as

a column ADC for the 256 silicon neurons and 256×256 memristive crossbar array

with 3-bit synapses in the proposed architecture. As in Figure 3.14(b), we compare

the power and area of the ADC with the asynchronous and synchronous counters

under various ADC resolutions. Our 12-stage differential ring VCO in Figure 3.8 can

62

Table 3.2: Neuromorphic processor implementation summary.

Item Specification

Technology 90 nm CMOS

Synapse Storage Memristor

Supply Voltage 1.2 V

Main/PWM Operating Frequency 1 / 50 MHz

of Neurons 256

of Synapses 65,536

Synapse Resolution 3-bits (8-levels)

Neuron Model Parameter Resolution 5-bits

Membrane Potential Resolution 16-bits

Neuron Model Digital LIF neuron

Learning Rule On-chip STDP learning

Synaptic Connection Scheme Fully reconfigurable crossbar

Power Dissipation 6.45 mW

Area 1.86 mm2

10-2

(a) (b)

Figure 3.14: Column ADC performance: (a) input-to-output characteristics and (b)
power and area as functions of counter type and resolution.

63

attach up to 24 counters and hence can be leveraged to realize ADCs with a resolution

between 9- and 14-bits. Note that the tree adder size also varies according to the

number of counters. The power consumptions are measured at the input voltage

of 0.8 V , which is the median input of Figure 3.14. The ADC with asynchronous

counters is more power efficient than that with synchronous ones while the area

remains almost the same as the resolution increases. In the 12-bit resolution, the

ADC adopting the asynchronous counter dissipates 24.8% less power with merely

1.6% area overhead compared with the synchronous counter based ADC. Hence, the

asynchronous counter is appealing for high-resolution VCO based ADC designs.

3.4.2 Overall Processor Performance

Figure 3.15 demonstrates the overall performance of the proposed neuromorphic

processor. The power consumption as functions of the network size, which are eval-

Neuron &
LIF Arith.

Units
12.2%

Learning Unit
42.2%

Controller, etc
5.5%

Memristor
Crossbar

8.6%

Low-Resolution
ADC Array

19.5%

Pulse
Gen.

10.2%

Column ADC
1.8%

(a) (b)

32 64 128 256

0

2

4

6

8

of Neurons

P
o

w
e

r
(m

W
)

Figure 3.15: Neuromorphic processor performance: (a) power and (b) area break-
down.

64

uated based on a 90 nm CMOS technology and memristor parameters in [71], is

depicted in Figure 3.15(a). The required column ADC resolution is a function of

the network size as given in (3.6). (e.g. 9-bit column ADC for a 32 neuron de-

sign). As the number of integrated neurons N doubles, the chip power increases

more slowly than twice. The asynchronous counter based column ADC consumes

over 21% of the overall power dissipation but its power does not increase much as

the resolution increases (see Figure 3.14(b)). The area breakdown analysis for the

neuromorphic processor for a 256 neuron network is illustrated in Figure 3.15(b) as

well. The SU, which includes the column ADC, low-resolution ADC array, mem-

ristive crossbar, and pulse generator, occupies about 40% of the chip area. Despite

of the relatively small area of the memristive crossbar array (8.6%), realizing the

parallel access scheme for the multibit memristive crossbar requires integration of

several peripherals such as the array of low-resolution ADCs and multiple PWMs.

In addition, the concurrent synaptic weight update scheme makes LU to occupy a

large area portion (42.2%). Nevertheless, as a return, this parallel scheme expedites

the synaptic weight update process significantly. Furthermore, the power consumed

by SU reaches 5.16 mW , which is 80% of the entire processor power. Therefore,

further optimized low-overhead access scheme can be appealing, as will be explored

in the future work.

3.4.3 Application of the Neuromorphic Processor for Character Recognition

System

Finally, we conduct a behavior-level digital simulation of the chip to demonstrate

the functionality of the neuromorphic processor designed in this section. The behav-

ioral simulation is necessary as gate or transistor level simulation of long training

processes requires huge CPU times, making it practically infeasible. To realisti-

65

cally capture the functionality of the designed processor and its dependencies on key

hardware design choices, the key network and design features including the digital

LIF neuron dynamics, the STDP learning rules, bit-widths to represent the neuron

model and synapses in Table 3.2 are fully captured in the behavioral simulation. We

specifically consider the case where the proposed DNP is configured to be a two-layer

learning network for character recognition as illustrated in Figure 3.16 [15]. The net-

A B Z

Input Spikes

5k 10k 130k
step

14

14

Figure 3.16: Network for character recognition and training for alphabets.

work has an input-and-output layer structure with 232 excitatory and 7 inhibitory

neurons and is designed to recognize the alphabets “A”−“Z” by unsupervised learn-

ing. The input layer has 196 excitatory neurons, which form a 2 dimensional array.

Each excitatory input neuron receives a binary input representing a pixel value in

the 14×14 pixel input pattern and projects its output to all excitatory output neu-

rons through plastic synapses. In the input layer, the excitatory neurons project

signals to 6 inhibitory neurons which provide negative feedback to modulate the fir-

ing frequencies of all excitatory neurons. The output layer consists of 36 excitatory

neurons where each of which receives input from all the input excitatory neurons.

66

Structurally similar to the input layer, one inhibitory neuron is also employed in the

output layer to provide strong negative feedback. The inclusion of this inhibitory

neuron and these connections implements the winner-take-all (WTA) mechanism,

where any firing output neuron activates the inhibitory neuron and thereby prevents

other output neurons from firing through negative feedback.

We clock the chip at the frequency of 1 MHz under a fixed supply level of 1.2 V .

To train the network, we first convert the training letters, which are composed of a

14×14 pixel map each, to 196 (=142) parallel input spike trains to inject into the

network as in Figure 3.16. The corresponding input neuron is either silent or active to

encode a binary pixel. Then, for each alphabet from “A” to “Z”, the corresponding

input spike trains are applied to the respective input neurons for 5000 biological time

steps. As described here, the network connectivity can be configured by properly

programming the memristive crossbar. Note that our reconfigurable processor has

256 neurons. For the configured character recognition chip, Figure 3.17 illustrates

Neuron Index Mapping

Neuron Type Neuron Index

Input Excitatory

Output Excitatory

Input Inhibitory

Output Inhibitory

1 ~ 196

197 ~ 232

233 ~ 238

239

0

64

128

192

256

0 64 128 192 256

A
x
o

n
 I
n

d
e
x

Dendrite Index

Figure 3.17: Neuron index mapping and synaptic connections of the crossbar array.

67

the index mapping for the neurons and the synaptic connections of the 256×256

memristive crossbar array (i.e. dot plot for memristor levels > 1). The weights of

all plastic synapses are random values before the training. With any input pattern,

the net input received by each excitatory output neuron can be thought as the inner

product of a random weight vector and a signal vector representing the activities of

the excitatory input neurons. The weight vector of each output neuron corresponds

to its receptive field, which describes the input pattern whose presence leads to

excitation of the corresponding output neuron. The network reshapes receptive fields

of some excitatory output neurons to memorize each alphabet during the training

such that they receive strong excitatory signal and emit spikes with the presence of

corresponding input pattern.

(b)(a)

×103

A

C

P
Q

N

Y

Figure 3.18: Learning results for network: (a) receptive fields after training and (b)
spike rasters for output neurons.

To demonstrate the function of the proposed processor, we show the simulation

results of the learning network for the alphabet training in Figure 3.18. The recep-

tive fields of the network after the training are shown in Figure 3.18(a). As can be

68

seen, the receptive fields are well shaped by the training in the sense that every letter

from “A” to “Z” appears once at least in the fields. This implies that during the

recognition phase the presence of a letter is expected to excite at least one output

neuron whose receptive field closely reassembles the presented letter, signifying the

correct recognition of the letter. The spike rasters for the 36 output excitatory neu-

rons, which correspond to the neuron indices from 197 to 232, respectively, during

the training process is plotted in Figure 3.18(b). Due to the WTA network config-

uration, each input pattern has the tendency to one or few output neurons to fire

and all other output neurons are inhibited through the negative feedback. For in-

stance, during the biological time steps from 1 to 5000, the letter “A” is presented

in training. The (197)th neuron’s receptive field is trained to resemble “A” and this

neuron is the only output neuron who actively fires in this period. In short, the

(197)th neuron is the winner when the alphabet “A” is presented. For the training

of some letters such as “B”, there may be a small number of winners in the WTA

mechanism and, as a result, more than one output neuron are trained as seen two

“B” shaped letters in the receptive fields. The results shown in Figure 3.18(b) verify

the correct functioning of the designed WTA scheme. In Figure 3.18(b), we mark

the spike rasters of a few output neurons which should be active with the presence

of the corresponding training alphabet. For ease of visualization, only a subset of

these neurons are marked in the figure.

3.5 Summary

In this section, we have proposed a scalable digital neuromorphic processor archi-

tecture for large scale integration of spiking neurons. A novel multilevel memristive

synaptic crossbar design is presented to allow for high-density synaptic storage and

flexible access. Moreover, the lowest conductance level of each memristor is used

69

to arbitrarily configure the network connectivity with very low overhead, which also

significantly improves the synaptic weight update performance by reducing the write

time of the memristive crossbar. The proposed VCO based column ADC design re-

duces the silicon overhead required for LIF operations and is amenable to integration

due to its digital implementation style. Implemented in a 90 nm CMOS process, our

design with 256 digital neurons with learning circuits and 64K synapses is evaluated

to occupy an area of 1.86 mm2 and dissipate a power of 6.45 mW under a supply

voltage of 1.2 V . Furthermore, we have validated the functionality of the proposed

architecture through the behavioral digital simulation for the case of a character

recognition system with unsupervised learning.

70

4. ENERGY EFFICIENT APPROXIMATE ARITHMETIC

4.1 Proposed Approximate Adder

Our main focuses and key contributions in the design of approximate arithmetic

units include 1) a significant reduction of the error rate by the carry-skip scheme

enabling carry speculation in a parallel manner and its application to the adder and

comparator design, 2) complete error rate analysis of the proposed arithmetic units

and 3) a very low-cost error magnitude reduction scheme without additional clock

cycle scheme for the proposed adder. In this section, the proposed approximate adder

design is presented while the proposed approximate comparator is discussed in the

next section.

4.1.1 Approximate Adder Architecture

Denote the two inputs of the adder A and B, and the (i)th least significant bits

(LSBs) by ai and bi, respectively. In addition, the propagate (pi), generate (gi), kill

(ki), and carry (ci) signals of the (i)th bit position are defined by

gi = aibi, ki = āib̄i, pi = ai ⊕ bi

ci =


1 if gi = 1

0 if ki = 1

ci−1 if pi = 1

(4.1)

where ci−1 is the carry of the (i-1)th bit position. Briefly, the adder outputs the

carry ci when gi=1 or ki=1 independently of ci−1, otherwise, it propagates ci−1 to ci.

Figure 4.1 shows the block diagram of the proposed approximate n-bit adder,

which is divided into several k-bit sized blocks. Each block contains a k-bit sub-

71

(i+1)th

Sub
Adder

(i)th

Sub
Adder

(i-1)th

Sub
Adder

Ak-1:0Ai+1 Bk-1:0Bi+1 Ak-1:0Ai Bk-1:0Bi Ak-1:0Ai-1 Bk-1:0Bi-1

Sapx,k-1:0Si+1 Sapx,k-1:0Si Sapx,k-1:0Si-1

CoutCi CoutCi-1

CinC
i^CinC

i+1^

(i+1)th block (i)th block (i-1)th block

(i+1)th

Sub
Carry Gen.

(i)th

Sub
Carry Gen.

(i-1)th

Sub
Carry Gen.

Figure 4.1: Block diagram of the proposed approximate adder.

adder and a k-bit sub-carry generator, which create a partial summation and a

partial carry-out signal, respectively. The n-bit adder has m = dn
k
e blocks. Also,

as in Figure 4.1, the k-bit inputs of the (i)th block are represented by Aik−1:0 and

Bi
k−1:0, and the partial summation result is indicated by Siapx,k−1:0. Note that the sub-

adders could be implemented by any traditional accurate adders such as ripple-carry

adder (RCA) and carry-lookahead adder (CLA). At the beginning of an addition

operation, all the sub-carry generators simultaneously create the partial carry-out

signals (· · · , Ci+1
out , Ci

out, C
i−1
out , · · ·) using only their k-bit inputs. Then, the sub-

adders’ carry-in signals (· · · , Ĉi+1
in , Ĉi

in, Ĉi−1
in , · · ·) are also concurrently speculated

from the v (≥2) preceding k-bit sub-carry generators with a multiplexer. Finally,

the sub-adders work with the speculated carries and produce the partial summations

(· · · , Si+1
apx,k−1:0, Siapx,k−1:0, Si−1

apx,k−1:0, · · ·). Therefore, the critical path delay of the

72

proposed approximate adder tapx is derived by

tapx = tsa + dlog2vetmux + tscg (4.2)

where tsa, tmux and tscg are the delays of the sub-adder, a two-input multiplexer,

and the sub-carry generator, respectively. The delay is based on a multilevel tree

structure of two-input multiplexers. Note that the multiplexer delay is negligible if

k is large.

The proposed carry prediction works as follows. When all the propagate signals

of the (i-1)th block are true, the carry-out of a large number of preceding blocks are

required for more accurate carry prediction for the (i)th sub-adder. Thus, we utilize

carry-skip to speculate the carry as depicted in Figure 4.2, which is an example of the

adder with k=6 and v=3. This carry-skip scheme is particularly more advantageous

A

B

Sapx

Sub
Adder

(i)th

block
(i-3)th

block

p/g/k

carry-skip

CoutCi-3

CinC
i^

CoutCi-1

(i-1)th

block

CoutCi-2

(i-2)th

block

Figure 4.2: Proposed carry prediction using parallel carry-skip (k=6, v=3).

over the alternative approach of cascading several sub-carry generators [74], which

could appreciably increase the critical path delay when k is large. In order to obtain

73

the (i)th carry-in Ĉi
in, the multiplexer selects Cu

out where i−v ≤ u < i if any propagate

signal of the (u)th block is false as in Figure 4.2. If all the propagate signals of the

v preceding blocks are true, it chooses Ci−v
out . Hence, Ĉi

in is expressed by

Ĉi
in =P i−1

k−1:0C
i−1
out + P i−1

k−1:0P
i−2
k−1:0C

i−2
out + · · ·+

i−v+2∏
j=i−1

P j
k−1:0P

i−v+1
k−1:0 C

i−v+1
out +

i−v+1∏
j=i−1

P j
k−1:0C

i−v
out

where P i
k−1:0 =

k−1∏
j=0

pij

(4.3)

In (4.3), Ci
out is the carry-out signals of the (i)th block and pij is the propagate signal

of the (j)th bit position of the (i)th block. Additionally, the carry-out of the (i)th

block is given by

Ci
out = gik−1 + gik−2p

i
k−1 + ...+ gi0

k−1∏
j=1

pij , Gi
k−1:0 (4.4)

where gij is the generate signal at (j)th bit position of the (i)th block.

By adopting the carry-skip scheme, the proposed adder is able to enhance the

carry prediction accuracy at the cost of multiplexer delay. Generally, a larger number

of preceding sub-carry generators can be used to further improve the accuracy of carry

prediction, at a low-cost of one multiplexer delay per each included generator.

4.1.2 Error Rate Analysis

The carry prediction error of the proposed adder occurs when a carry propagation

chain has a length greater than kv. In other words, if all the propagate signals of

more than v consecutive blocks are true and a carry is generated in the preceding

block, then the carry prediction is incorrect. Assuming that the adder inputs A

and B are bitwise independent, then the propagate and generate signals are bitwise

74

independent as well. We denote the event that the carry-in prediction of the (i)th

sub-adder is mistaken due to a carry propagation path of a length between kv and

k(v + 1)−1 by Ei
cin

Ei
cin =P i−1

k−1:0P
i−2
k−1:0 · · ·P

i−v
k−1:0G

i−v−1
k−1:0

(4.5)

where P i
k−1:0 and Gi

k−1:0 is defined in (4.3) and (4.4), respectively and the probability

of the event is given by

P(Ei
cin) =P(P i−1

k−1:0P
i−2
k−1:0 · · ·P

i−v
k−1:0G

i−v−1
k−1:0)

=P(P i−1
k−1:0)P(P i−2

k−1:0) · · ·P(P i−v
k−1:0)P(Gi−v−1

k−1:0)

(4.6)

In (4.6), P(P i
k−1:0) [= P(P i−1

k−1:0) = · · ·] and P(Gi
k−1:0) [= P(Gi−1

k−1:0) = · · ·] are

given by

P(P i
k−1:0) = P(

k−1∏
j=0

pij) =
k−1∏
j=0

P(pij) =
1

2k

P(Gi
k−1:0) = P(gik−1 + gik−2p

i
k−1 + · · ·+ gi0

k−1∏
j=1

pij)

= P(gik−1) + P(gik−2p
i
k−1) + · · ·+ P(gi0

k−1∏
j=1

pij)

=
1

4
+

1

4
· 1

2
+ · · ·+ 1

4
· 1

2k−1
=

1

2

(
1− 1

2k

)
(4.7)

where gik−1, gik−2p
i
k−1, · · · , gi0

k−1∏
j=1

pij are mutually exclusive. The proposed adder

produces an error if any error event Ei
cin occurs for any of the sub-adders except

for the v+1 least significant ones. Note that the (0)th, (1)st, · · · , (v)th sub-adders

always have the correct carry-in signals in our design. Thus, the overall error rate of

75

the proposed adder under random inputs is expressed by

Perr(n, k, v) = P(E
dn
k
e−1

cin + E
dn
k
e−2

cin + · · ·+ Ev+2
cin + Ev+1

cin) (4.8)

By the inclusion-exclusion principle [5], it is given by

Perr(n, k, v) =
∑
v<i<m

P(Ei
cin)

−
∑

v<i1<i2<m

P(Ei2
cinE

i1
cin)

+
∑

v<i1<i2<i3<m

P(Ei3
cinE

i2
cinE

i1
cin)

− · · ·+ (−1)m−vP(Em−1
cin Em−2

cin · · ·Ev+1
cin)

where m = dn/ke

(4.9)

Once Ei
cin occurs, Ei−1

cin , Ei−2
cin , · · · , Ei−v

cin can not do. This is because that under

this case the carry propagate chain lengths for the (i-1)th, · · · , (i-v)th sub-adders

become less than kv due to P i−2
k−1:0 = · · · = P i−v

k−1:0 = Gi−v−1
k−1:0 = 1 and thus the carry

speculations for these sub-adders are always correct. In short, P(Eir
cin · · ·E

i1
cin) = 0 if

∃q : iq − iq−1 ≤ v where v < i1 < · · · < ir < dnk e. Then, we can rewrite (4.9) to yield

Perr(n, k, v)

=
m−v−1∑
r=1

(−1)r+1

 ∑
v<i1<···<ir<m,
∀q:iq−iq−1>v

P(Eir
cin · · ·E

i1
cin)


where m = dn/ke

(4.10)

76

Eir
cin, E

ir−1

cin , · · ·Ei1
cin are independent if ∀q : iq − iq−1 > v. Therefore, by putting (4.6),

(4.7) and (4.10) together, the overall error rate for the adder under random inputs is

Perr(n, k, v)

=
m−v−1∑
r=1

(−1)r+1

 ∑
v<i1<···<ir<m,
∀q:iq−iq−1>v

P(Eir
cin) · · ·P(Ei1

cin)



=
m−v−1∑
r=1

(−1)r+1

 ∑
v<i1<···<ir<m,
∀q:iq−iq−1>v

(
1

2kv+1

(
1− 1

2k

))r
where m = dn/ke

(4.11)

4.1.3 Error Magnitude Reduction Scheme

In addition to error rate, another important metric to evaluate approximate

adders is error significance, which should be minimized and is defined by the ra-

tio of the error magnitude to the correct summation result as follows [53]

error significance =

∣∣∣∣Sapx − ScorScor

∣∣∣∣ (4.12)

where Sapx and Scor are the approximate and correct outputs for given inputs.

Figure 4.3 depicts the block diagram of the proposed error magnitude reduction

and one example of its operation in case of k=8 and v=2. In the example, since

all the propagate signals of the (i)th and (i-1)th blocks are true, the carry-in for

the (i+1)th sub-adder is speculated to “0” although the correct one is “1” due to

Ci−2
out = 1. Then, the error significance is 1

27
. Note that it could reach 1

2
for the

worst case inputs of Ai+1
7:0 = 00000001 and Bi+1

7:0 = 00000000. To reduce the amount

of error, the proposed adder forces all the output bits of the (i)th and the (i-1)th

77

A

B

Sapx

p/g/k

Scor

Semr

coutci-2 =1

Error
Magnitude
Reduction

(i)th

Block
(i)th

Block

Error Magnitude Reduction

Pk-1:0Sapx,k-1:0, P
i+1Si+1 Pk-1:0Sapx,k-1:0, P

iSi

Semr,k-1:0Si+1 Semr,k-1:0Si Semr,k-1:0Si-1

(i-1)th

Block

Sapx,k-1:0,Si-1 Pk-1:0Pi-1

Figure 4.3: Block diagram of the error magnitude reduction and an example of its
operation (k=8, v=2).

sub-adders to “1” when P i
k−1:0 = P i−1

k−1:0 = 1. The reduction can be implemented by

ORing each partial summation (i.e. Siapx,k−1:0 and Si−1
apx,k−1:0) and the product of the

propagate signals (i.e. P i
k−1:0P

i−1
k−1:0). It allows the error significance to be reduced by

1
22k

. As a result of the reduction, the adder finally produces the error reduced output

of Siemr,k−1:0 = Si−1
emr,k−1:0 = 11111111 and the error significance decreases from 1

27
to

1
223

. It is worth mentioning that the error magnitude reduction always produces the

exact right results when Ci−2
out = 0. Consequently, the worst case error magnitude is

reduced from 2n−k to 2n−k(v+1) through the use of error magnitude reduction.

78

4.2 Proposed Approximate Comparator

4.2.1 Approximate Comparator Architecture

Basically, a comparator determines the larger of two inputs A and B, and can

be implemented by using a subtraction. After subtracting two inputs A − B, a

comparison is readily done by checking the sign bit (i.e. MSB) of the result. In

short, A < B when the MSB = 1, otherwise A ≥ B. Note that subtraction is

achieved by addition of 2’s complement (i.e. A − B = A + B + 1) and requires an

additional inverting operation for one of two inputs. However, the use of traditional

adders such as an RCA may incur timing and energy overheads since the MSB of the

addition would be needed to produce the final comparator output. Again, due to the

fact that the targeted neuromorphic computing applications have built-in resilience

to arithmetic errors as shown in the later part of the section, we exploit the same

idea of the parallel carry-skip scheme to improve the timing and energy efficiency of

the comparator.

1b
FA

(v-1)th
Sub

Carry Gen.
Cin,n-1C
^

(v-2)th
Sub

Carry Gen.

An-1

Sapx,n-1

Oapx

Bn-1

(0)th
Sub

Carry Gen.

Ak-1:0Av-1 Bk-1:0Bv-1 Ak-1:0Av-2 Bk-1:0Bv-2 Ak-1:0A0 Bk-1:0B0

CoutCv-2
CoutCv-1

CoutC0

Figure 4.4: Block diagram of the proposed approximate comparator.

Figure 4.4 illustrates the block diagram of the proposed approximate compara-

79

tor. The n-bit comparator consists of a 1-bit full adder and v (≥2) k-bit sub-carry

generators that are identical to the ones in the proposed adder. In Figure 4.4,

the k-bit inputs of the (i)th sub-carry generator Aik−1:0 and Bi
k−1:0 correspond to

An−k(v−i−1)−2:n−k(v−i)−1 and Bn−k(v−i−1)−2:n−k(v−i)−1, respectively. It is worth to note

that the proposed approximate comparator exploits only kv+1 MSBs of the n-bit

inputs, resulting in area and power reductions. Importantly, the input B is inverted

to achieve subtraction operation. Since implementing 2’s complement necessitates

an additional incrementor, we employ 1’s complement to further reduce area and

energy with sacrificing an error rate, but still achieving a very low error rate. The

full adder generates the sign bit Sapx,n−1 (MSB output) of the subtraction between

the two inputs by leveraging the speculated carry-in signal Ĉin,n−1 and the MSB of

the two inputs. The speculated carry-in signal is obtained in the same parallel way

by the v sub-carry generators according to (4.3) and (4.4). When the two inputs

have the different signs (i.e. An−1 ⊕ Bn−1 = 1), the comparison result is readily ob-

tained by the input MSB without the full adder. Therefore, the output multiplexer

selects the MSB of the input An−1 if the signs of two inputs are different from each

other, otherwise, it chooses the full adder output Sapx,n−1. Therefore, the comparator

output Oapx is expressed by

Oapx = (An−1 ⊕Bn−1)An−1 +
(
An−1 ⊕Bn−1

)
Sapx,n−1

where Sapx,n−1 = An−1 +Bn−1 + Ĉin,n−1

(4.13)

Then, the critical path delay of the proposed approximate comparator tapx,cmp with

80

the multilevel tree based multiplexer is derived to be

tapx,cmp = tfa + (dlog2ve+ 1) tmux + tscg (4.14)

where tfa, tmux and tscg are the delays of the full adder, the two-input multiplexer,

and the sub-carry generator, respectively. In the proposed comparator, the 1-bit full

adder delay is negligible and the multiplexer delay is also negligible if k is large.

4.2.2 Error Rate Analysis

The proposed comparator fails when the signs of the inputs are different from

each other as well as the carry prediction for the full adder is incorrect. Figure 4.5

illustrates an example of the proposed comparator configuration with n=16, k=4,

v=2 to effectively explain the carry prediction error for the full adder. The input B is

inverted and it includes an unused sub-carry generator block that has the 7 LSBs as

the inputs and its carry-in signal Cin,0 is always “1” due to the 2’s complement (i.e.

−B = B + 1). Note that this block is never used for the comparisons in our design.

The carry speculation is incorrect when all the propagate signals in the v (in this

case two) sub-carry generators used for carry prediction are true and Cun
out = 1. The

latter condition is true if a carry is generated by the unused block or Cin,0(= 1) is

1b
FA

Cin,15C
^

Sapx,15

CoutC0

b14

Unused

b13 b12 b11

a14 a13 a12 a11

(1)th Sub
Carry Gen.

b10 b9 b8 b7

a10 a9 a8 a7

(0)th Sub
Carry Gen.

b6 b5 b4 b3

a6 a5 a4 a3

b2 b1 b0

a2 a1 a0

CoutC1

b15

a15

1

Cin,0CoutCun

Figure 4.5: Example of the comparator configuration (n=16, k=4, v=2).

81

propagated through the unused block. It is important to note that we should consider

Cin,0 propagation since the proposed comparator adopts 1’s complement, instead of

2’s complement, for the subtraction. We assume that the comparator inputs A and

B are bitwise independent. Then, the probability of the carry prediction error for

the full adder is given by

P(Ecin,n−1)

= P(P v−1
k−1:0P

v−2
k−1:0 · · ·P

0
k−1:0 (Gn−kv−2:0 + Pn−kv−2:0))

= P(P v−1
k−1:0)P(P v−2

k−1:0) · · ·P(P 0
k−1:0)×

(P(Gn−kv−2:0) + P(Pn−kv−2:0))︸ ︷︷ ︸
P(Cun

out=1)

(4.15)

where Gn−kv−2:0 and Pn−kv−2:0 are mutually exclusive. And, they are given by

P(Gn−kv−2:0)

= P(gn−kv−2 + gn−kv−3pn−kv−2 + · · ·+ g0

n−kv−2∏
i=1

pi)

= P(gn−kv−2) + · · ·+ P(g0

n−kv−2∏
i=1

pi)

=
1

4
+

1

4
· 1

2
+ · · ·+ 1

4
· 1

2n−kv−2
=

1

2

(
1− 1

2n−kv−1

)

P(Pn−kv−2:0) = P(
n−kv−2∏
i=0

pi) =
n−kv−2∏
i=0

P(pi) =
1

2n−kv−1

(4.16)

where gn−kv−2, gn−kv−3pn−kv−2, · · · , g0

n−kv−2∏
i=1

pi are mutually exclusive. Thus, by

putting (4.7), (4.15) and (4.16) together, the overall comparator error rate by the

82

carry-skip scheme under random inputs is

Perr,cmp(n, k, v)

=P(An−1 ⊕Bn−1)P(Ecin,n−1)

=
1

2
· 1

2kv
·
(

1

2

(
1− 1

2n−kv−1

)
+

1

2n−kv−1

)
=

1

2kv+2

(
1 +

1

2n−kv−1

)
(4.17)

4.3 Simulation Results

The proposed approximate arithmetic units were designed in Verilog HDL and

synthesized with a commercial 90 nm CMOS technology and standard cell library.

Also, the gate-level netlists were translated into transistor-level to perform HSPICE

simulations. Each sub-adder in the proposed adder was implemented using an RCA

structure.

4.3.1 Error Rate of the Proposed Approximate Adder

First, we examine the error rates of the proposed adder with various values of n, k

and v. Figure 4.6 exhibits the error rates of the proposed adder under random inputs.

The error rate worsens as the input bit-width n increases for given k and v, whereas

it improves as k increases for fixed n and v. The error rate is significantly reduced

when v increases under the same n and k. Specifically, by leveraging one more sub-

carry generator for carry speculation, the error rate of the 128-bit adder with k=4

and v=2 is decreased from 5.19% to 0.32%, representing a 16.23× improvement (with

v=3). Under the case of n=16, k=4 and v=2, compared to the previously presented

approximate adders [74, 14, 32], the proposed adder is able to considerably reduce

the error rate from 5.86% to 0.18% for random input patterns. Hence, the proposed

carry prediction technique is very appealing to both wide and narrow bit-width

83

2 3 4 5 6 7 8
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Block Width (k)

Er
ro

r
R

at
e

n= 16,v=2
n= 32,v=2
n= 64,v=2
n=128,v=2
n= 16,v=3
n= 32,v=3
n= 64,v=3
n=128,v=3
n= 16,v=4
n= 32,v=4
n= 64,v=4
n=128,v=4

2 3 4 5 6 7 8
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Block Width (k)

Er
ro

r
R

at
e

Figure 4.6: Error rates of the proposed adder under different n, k and v.

approximate additions requiring very low error rates.

4.3.2 Performance of the Proposed Approximate Adder

Table 4.1 reports the implementation results of area, delay, power, and error rate

under the nominal supply of 1.2 V. Note that the error magnitude reduction circuit

is included in all the proposed design implementations. The delay increases as k

increases with a fixed n and v while the error rate and the power decrease. With a

lower k for a given n and v, more carry prediction blocks are needed and the carry

prediction with a smaller number of LSBs causes more errors. Meanwhile, under a

given k and v, while the delay remains almost the same as n increases, the error rate

deteriorates slowly. The proposed 64-bit adder with k=4 and v=2 has an error rate

even over 2× less than the error rate of 5.86% of other 16-bit approximate adders

with the same k [74, 14, 32]. Furthermore, when the adder exploits two more sub-

carry generators for the carry prediction (i.e. v=4), it achieves 295× reduction of

84

Table 4.1: Proposed adder with different n, k and v.

Parameters Area Delay Power Energy Error Rate

(n, k, v) (µm2) (ps) (mW) (pJ) (%)

(16, 2, 2) 525 202 0.902 0.182 11.55

(16, 3, 2) 533 297 0.708 0.210 2.05

(16, 4, 2) 466 359 0.600 0.215 0.18

(16, 5, 2) 509 431 0.591 0.255 0.05

(16, 2, 3) 550 221 0.917 0.203 2.34

(16, 3, 3) 543 324 0.744 0.241 0.17

(16, 2, 4) 557 232 0.897 0.208 0.44

(16, 3, 4) 547 332 0.863 0.287 0.01

(32, 4, 2) 1147 345 1.682 0.581 0.91

(64, 4, 2) 2389 344 3.039 1.046 2.36

(128, 4, 2) 4873 339 5.827 1.976 5.19

(32, 4, 4) 1185 363 1.884 0.684 0.002

(64, 4, 4) 2846 381 3.105 1.183 0.008

(128, 4, 4) 5250 370 6.009 2.222 0.019

the error rate at the expense of merely 6.6%, 10.7% and 2.2% extra area, delay and

power, respectively.

4.3.3 Comparison with Seven Other Approximate Adders

We also implemented 16-bit (i.e. n=16) two traditional accurate adders (RCA

and CLA) and seven previously presented approximate adders, which are Lu’s Adder

(LUA) [39], LOA [40], ETAI [76], ETAII [74], VLCSA-1 [14], ACA [32] and Dither

Approximate Adder (DAA) [47] in the same commercial 90 nm CMOS technology,

so as to compare with the proposed adder in various aspects. The VLCSA-1 and

ACA have their own error detection and correction (EDC) mechanisms. The invok-

ing of these modules, however, requires additional clock cycles, leading to timing

overhead and potential architectural design complications needed for facilitating a

85

T
ab

le
4.

2:
C

om
p
ar

is
on

w
it

h
ot

h
er

16
-b

it
ad

d
er

s.

D
es

ig
n

A
re

a
D

el
a
y

P
o
w

er
E

n
er

gy
E

rr
o
r

R
a
te

A
vg

.
E

rr
o
r

E
D

P
E

D
A

P
E

D
E

P

(µ
m

2
)

(p
s)

(m
W

)
(p
J

)
(%

)
M

a
gn

it
u

d
e

(p
J
·p
s)

(p
J
·p
s·
µ
m

2
)

(p
J
·p
s
·%

)

R
C

A
33

4
85

6
0.

34
3

0.
29

4
N

/A
N

/A
25

1
83

93
6

N
/A

(0
.7

2
×

)1
(2

.3
8
×

)
(0

.5
7×

)
(1

.3
7×

)
(3

.2
6
×

)
(2

.3
3
×

)

C
L

A
51

4
40

7
0.

92
2

0.
37

5
N

/A
N

/A
15

5
81

61
3

N
/A

(1
.1

0
×

)
(1

.1
3
×

)
(1

.5
4×

)
(1

.7
4×

)
(2

.0
1
×

)
(2

.2
7
×

)

L
U

A
60

9
23

4
0.

90
8

0.
21

2
16

.6
8

13
63

.7
50

30
21

0
82

7

(1
.3

1
×

)
(0

.6
5
×

)
(1

.5
1×

)
(0

.9
9×

)
(9

2.
67
×

)
(1

81
.8

3×
)

(0
.6

5
×

)
(0

.8
4
×

)
(5

9.
07
×

)

L
O

A
(8

-8
)

20
0

45
0

0.
42

0
0.

18
9

43
.7

5
11

1.
3

85
16

97
6

37
19

(0
.4

3
×

)
(1

.2
5
×

)
(0

.7
0×

)
(0

.8
8×

)
(2

43
.0

6
×

)
(1

4.
84
×

)
(1

.1
0
×

)
(0

.4
7
×

)
(2

65
.6

4×
)

E
T

A
I

(8
-8

)
23

4
43

5
0.

47
0

0.
20

4
90

.0
0

17
8.

3
89

20
71

1
79

80

(0
.5

0
×

)
(1

.2
1
×

)
(0

.7
8×

)
(0

.9
5×

)
(5

00
.0

0
×

)
(2

3.
77
×

)
(1

.1
6
×

)
(0

.5
8
×

)
(5

70
.0

0×
)

E
T

A
II

37
4

25
4

0.
56

4
0.

14
3

5.
86

12
7.

5
36

13
58

3
21

3

(0
.8

0
×

)
(0

.7
1
×

)
(0

.9
4×

)
(0

.6
7×

)
(3

2.
56
×

)
(1

7.
00
×

)
(0

.4
7
×

)
(0

.3
8
×

)
(1

5.
21
×

)

V
L

C
S

A
-1

2
67

3
27

7
1.

33
7

0.
37

0
5.

86
12

7.
5

10
3

69
15

9
60

2

(1
.4

4
×

)
(0

.7
7
×

)
(2

.2
3×

)
(1

.7
2×

)
(3

2.
56
×

)
(1

7.
00
×

)
(1

.3
4
×

)
(1

.9
2
×

)
(4

3.
00
×

)

A
C

A
2

47
2

37
4

0.
66

6
0.

24
9

5.
86

12
7.

5
93

44
01

0
54

6

(1
.0

1
×

)
(1

.0
4
×

)
(1

.1
1×

)
(1

.1
6×

)
(3

2.
56
×

)
(1

7.
00
×

)
(1

.2
1
×

)
(1

.2
2
×

)
(3

9.
00
×

)

D
A

A
(8

-8
)

37
0

43
5

0.
56

6
0.

24
6

25
.0

0
74

.7
10

7
39

50
9

26
71

(0
.7

9
×

)
(1

.2
1
×

)
(0

.9
4×

)
(1

.1
4×

)
(1

38
.8

9
×

)
(9

.9
6
×

)
(1

.3
9
×

)
(1

.1
0
×

)
(1

90
.7

9×
)

P
ro

p
os

ed
3

46
6

35
9

0.
60

0
0.

21
5

0.
18

7.
5/

14
.1

4
77

35
95

9
14

1
(*

)
n

o
rm

a
li

za
ti

o
n

a
ga

in
st

th
e

p
ro

po
se

d
a
d
d
er

2
w

it
h
o
u

t
th

e
er

ro
r

d
et

ec
ti

o
n

a
n

d
co

rr
ec

ti
o
n

3
w

it
h

th
e

er
ro

r
m

a
gn

it
u

d
e

re
d
u

ct
io

n
4

w
it

h
o
u

t
th

e
er

ro
r

m
a
gn

it
u

d
e

re
d
u

ct
io

n

86

given processing application. To examine the approximate natures of the different

adder designs, to be fair, we exclude the EDC modules and their timing, power and

area overheads from this comparison. The same RCA structure is used for the sub-

adders in ETAII, VLCSA-1 and ACA and the parameters of k=4 are adopted in

these adders as well as LUA. The proposed adder employs the same k with v=2 and

the RCA structure for the sub-adders. Moreover, we split LOA, ETAI and DAA to

have both 8-bit sizes for the accurate and inaccurate parts and the RCA structure

is used for the accurate parts. For the dithering in DAA, we utilize the MSB of one

input of the inaccurate part (i.e. A7) as the dithering bit in order to alleviate an

overhead due to the external dither control as presented in [47]. Also, we denote

these three adders by LOA (N-M), ETAI (N-M) and DAA (N-M), where N and M

indicate the bit widths of the accurate and inaccurate parts, respectively.

The energy-delay product (EDP) is widely adopted to effectively show energy

efficiency of circuits and systems. In addition to EDP, we take into account the

energy-delay-area product (EDAP) [37, 38] to compare both the energy and cost

of silicon-area of the adders. Importantly, the energy-delay-error product (EDEP)

is particularly an interesting metric in approximate arithmetic designs because it

considers not only energy and delay but also error rate [49]. Thus, the adders are

compared in terms of EDP, EDAP and EDEP, as well as the fundamental metrics,

such as area, delay, power, energy, error rate and average error magnitude. Table 4.2

summarizes the performance comparison under the regular supply of 1.2 V. The RCA

exhibits the lowest power with the longest delay due to the bit-by-bit carry propagate

chain and the CLA consumes the largest energy. While the RCA is more energy and

area efficient than CLA, over 2× longer delay degrades its EDP and EDAP. The LUA

is the fastest but occupies the second largest area due to the considerable number

of carry generators. Additionally, the carry prediction approach in LUA makes the

87

errors to be able to occur in higher significant bits, which leads to the highest average

error magnitude among the approximate adders. The error rate of EATI (8-8) reaches

90%, which may limit its practical use, due to lack of carry prediction for the accurate

part (i.e. the carry is fixed to zero) and worsens EDEP remarkably. On the other

hand, thanks to the simple carry speculation scheme of LOA (8-8), which is achieved

by ANDing two MSBs of each operand of the inaccurate part, the error rate is

improved to 43.75%, which is still fairly large. The use of the simple OR operation

for the inaccurate part allows it to be the most area efficient adder. The proposed

dithering control for the inaccurate part in DAA (8-8) further improves the error rate

as well as the average error magnitude with area and power overheads. The high

error rates in ETAI (8-8), LOA (8-8) and DAA (8-8) exacerbate the EDEP metric.

Fortunately, the adders have fairly low average error magnitudes despite of the high

error rates since approximation errors are concentrated on lower significant bits (i.e.

inaccurate parts). Thanks to the dithering, the DAA (8-8) demonstrates the best

performance in terms of the error rate, average error magnitude and EDEP among

these three adders. Among the adders having the same error rate of 5.86%, the

ETAII is the most efficient in terms of all the metrics. As a result of the use of carry

selection in VLCSA-1, it dissipates the highest power, which is up to 3.9× more than

the others and incurs EDP, EDAP and EDEP degradations. The proposed adder is

2.4× faster and 3.3× EDP efficient than RCA. The carry-skip scheme allows it to

have the lowest error rate of 0.18% and EDEP of 14 among the approximate adders.

Furthermore, the proposed error magnitude reduction approach improves the average

error magnitude by 1.88× from 14.1 to 7.5, which is also the lowest value among the

approximate adders. Our design is comparable to ACA with respect to area, delay,

power and energy while having much lower error rate, average error magnitude and

EDEP thanks to carry-skip.

88

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

0.1

0.2

0.3

0.4

Supply Voltage (V)

En
er

gy
 (p

J)

RCA
CLA
LUA
LOA (8-8)
ETAI (8-8)
ETAII
VLCSA-1
ACA
DAA (8-8)
Proposed

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

0.1

0.2

0.3

0.4

Supply Voltage (V)

En
er

gy
 (p

J)

Figure 4.7: Energy comparison under supply scaling.

Figure 4.7 plots the energy comparison under scaled voltages. The energy effi-

ciency of VLCSA-1 is hindered by a high power dissipation in spite of its relatively

fast speed. It takes almost the same amount of energy as CLA that consumes the

highest energy, whereas the ETAII does the lowest among the adders. The good

tradeoff between delay and power obtained by the carry-skip approach allows our

adder to be more energy efficient than the two accurate adders, VLCSA-1, ACA

and DAA (8-8). Particularly, our design attains an energy saving of 27% and 43%

compared to RCA and CLA, respectively. Besides, the proposed adder, LUA, LOA

(8-8) and ETAI (8-8) show similar energy consumptions under the scaled voltages

while our design enjoys the lowest error rate.

4.3.4 Comparison on Error-Free Operations

The main objective of this work is to develop an energy efficient approximate

adder with a low error rate for neuromorphic applications. For completeness, we

89

also compare the error-free operations of various designs. We consider the EDC

schemes for VLCSA-1, ACA and the proposed adder. In each of these designs, the

error detection is achieved by checking the propagate and generate signals in the

approximate addition phase. Upon detecting an error, the error correction circuit

reconstructs accurate results by leveraging propagate and generate signals [68, 14]

or by adding “1” to sub-adder output [32], either of which requires an additional

clock cycle. The VLCSA-1 and ACA exploit the prefix adder and incrementor,

respectively, for error correction. For the proposed adder, the prefix adder based

error correction circuit is implemented to produce error-free results [14]. Note that

the error magnitude reduction of our adder is not necessary here and thus removed

in this implementation. Obviously, the error correction circuit is activated whenever

errors are detected in the addition phase [32] and the effective energy Eeff can be

expressed by

Eeff = Papxtapx + Perr · Pectec (4.18)

where Papx, tapx, Pec and tec are the power and delay of the approximate adder

and those of the error correction circuit, respectively, and Perr is the error rate of

the approximate adder. The implementations are summarized in Table 4.3. The

error correction circuits have shorter delays than the respective approximate adders.

The critical path delays of VLCSA-1 and ACA are slightly longer than the delays

in Table 4.2 due to the additional error detection logic. Conversely, the proposed

adder’s critical path delay becomes shorter in spite of the error detection circuit since

the error magnitude reduction block is eliminated. Our design occupies the lowest

area and is the most efficient adder in terms of power and effective energy.

90

Table 4.3: Approximate adders with error detection and correction.

Design
Area Delay1 Power Energy2

(µm2) (ps) (mW) (pJ)

VLCSA-1
899 296 2.094 0.473

(1.72×)3 (0.93×) (2.38×) (2.43×)

ACA
580 389 1.269 0.287

(1.11×) (1.22×) (1.44×) (1.47×)

Proposed 524 318 0.881 0.195

1 critical path delay 2 effective energy
3 (*) normalization against the proposed adder

4.3.5 Error Rate of the Proposed Approximate Comparator

Figure 4.8 shows the error rates of the proposed approximate comparator with

various n, k and v under random inputs. Unlike the proposed adder, the comparator

error rate does not deteriorate and remains almost the same although n increases

2 3 4 5 6 7 8
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Block Width (k)

Er
ro

r R
at

e

n= 16,v=2
n= 32,v=2
n= 64,v=2
n=128,v=2
n= 16,v=3
n= 32,v=3
n= 64,v=3
n=128,v=3
n= 16,v=4
n= 32,v=4
n= 64,v=4
n=128,v=4

2 3 4 5 6 7 8
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Block Width (k)

Er
ro

r R
at

e

Figure 4.8: Error rates of the proposed comparator with various n, k and v.

91

under fixed k and v. This is because under the given k and v,
(
1 + 1

2n−kv−1

)
≈ 1 when

n is fairly large and the overall error rate is, therefore, dominated by 1
2kv+2 according

to (4.17). Also, the error rates are even better than those of the proposed adders in

the same n, k and v (e.g. 11.55% vs 1.56% for the 16-bit comparator and the adder

with k=2 and v=2). The main reason is that the proposed comparator necessitates

only one correct carry prediction for the 1-bit full adder for the MSB to attain the

correct comparison result, whereas the proposed adder requires the carry-in signals

for all the sub-adders to be correct to achieve the correct summation. Consequently,

it is equally attractive in very low error rate approximate comparisons for both wide

and narrow bit-widths inputs.

4.3.6 Performance of the Proposed Approximate Comparator

Table 4.4 lists the comparator implementations with various n, k and v under

the supply voltage of 1.2 V. The proposed comparators exhibits better performances

than the proposed adders under the same n, k and v in terms of all the aspects

since they consider only kv+1 bits of n-bit inputs for comparisons and require less

Table 4.4: Proposed comparator with different n, k and v.

Parameters Area Delay Power Energy Error Rate

(n, k, v) (µm2) (ps) (mW) (pJ) (%)

(16, 2, 2) 61 152 0.089 0.014 1.563

(16, 4, 2) 121 215 0.111 0.024 0.098

(16, 2, 3) 101 194 0.132 0.026 0.391

(16, 4, 3) 193 233 0.155 0.036 0.007

(16, 2, 4) 140 216 0.163 0.035 0.098

(32/64/128, 4, 2) 121 215 0.111 0.024 0.0981

(32/64/128, 4, 4) 288 257 0.198 0.051 3.81e-41

1 error rate differences among 32-/64-/128-bit comparators are < 10-6%

92

number of sub-carry generators than the adders, leading to the smaller area, delay

and power. All the 16-bit comparators exhibit very low error rates (< 1.6%) with

good area and energy efficiencies and hence can be applied to low-cost comparisons

in error-tolerant applications with a desired accuracy. Interestingly, the proposed

comparators are the identical designs regardless of the input bit-width n as long as

k and v are the same in that they consist of v k-bit sub-carry generators in spite of

different values of n. Only difference here is the error rate. Interestingly, the error

rate differences among the comparators in Table 4.4 are negligibly small as mentioned

in Section 4.3.5 and thus ignorable. Hence, the same design can be reused without

any change for various bit-widths comparisons with the same k and v while enjoying

almost the same extremely low error rates.

From the authors’ best knowledge, unfortunately, no approximate comparator is

presented to date. So, we compare the proposed 16-bit comparator with k=4, v=2

to the two accurate comparators, which are ripple carry and carry lookahead based

comparators (RCC and CLC, respectively). They are also implemented with the

same 90 nm CMOS process and the results are summarized in Table 4.5. The accurate

comparators have less area, delay, power and energy than their corresponding adders

in Table 4.2 because they requires only the carry for the MSB and no logics to produce

summation outputs. Also, they show much better EDP and EDAP performances

than the adders. The proposed comparator demonstrates the best performance in

all the aspects except that it consumes more power than RCC. It is up to 18× more

efficient than the other designs in terms of EDP and EDAP with an extremely low

error rate (< 0.1%), which is well suitable for error-tolerant applications.

93

T
ab

le
4.

5:
C

om
p
ar

is
on

w
it

h
ot

h
er

16
-b

it
co

m
p
ar

at
or

s.

D
es

ig
n

A
re

a
D

el
a
y

P
o
w

er
E

n
er

gy
E

rr
o
r

R
a
te

E
D

P
E

D
A

P
E

D
E

P

(µ
m

2
)

(p
s)

(m
W

)
(p
J

)
(%

)
(p
J
·p
s)

(p
J
·p
s·
µ
m

2
)

(p
J
·p
s
·%

)

R
C

C
14

6
8
34

0.
09

0
0.

07
4

N
/A

62
90

86
N

/A
(1

.2
1×

)1
(3

.8
8×

)
(0

.8
1×

)
(3

.0
8×

)
(1

2.
40
×

)
(1

4.
65
×

)

C
L

C
42

3
3
23

0.
25

8
0.

08
3

N
/A

27
11

34
2

N
/A

(3
.4

1×
)

(1
.6

9×
)

(2
.9

0×
)

(4
.8

8×
)

(5
.4

0
×

)
(1

8.
29
×

)

P
ro

p
o
se

d
12

1
2
15

0.
11

1
0.

02
4

0.
09

8
5

62
0

0.
50

1
(*

)
n

o
rm

a
li

za
ti

o
n

a
ga

in
st

th
e

p
ro

po
se

d
co

m
pa

ra
to

r

94

4.4 Summary

In this section, novel approximate adder and comparator designs to considerably

reduce energy consumption with a very moderate error rate has been presented for

energy efficient neuromorphic VLSI systems. The proposed carry prediction with

carry-skip scheme significantly enhances the overall error rate and the critical path

delay. Additionally, the error magnitude reduction technique for the adder reduces

the amount of error further with low cost. Implemented in a commercial 90 nm

CMOS process, the proposed adder is 2.4× faster and 43% more energy efficient over

traditional adders with an error rate of merely 0.18%. Furthermore, the proposed

approximate comparator exhibits an extremely low error rate of 0.098% and achieves

an energy reduction of up to 4.9× over the conventional ones.

95

5. APPLICATION OF APPROXIMATE ARITHMETIC TO NEUROMORPHIC

COMPUTING

5.1 Evaluation Environment

To evaluate our approximate arithmetic units designed in Section 4, we consider

the general digital neuromorphic VLSI system described in Figure 2.13. Additionally,

we adopt the digital LIF model for the silicon neurons since the LIF model is suitable

for digital implementation with a few arithmetic components among various neuron

models. This model is widely used in digital neuromorphic chip [58, 36] and its

dynamics can be indicated by

V t+1
i = V t

i +Ksyn

M∑
j=1

wjiS
t
j +KextE

t
i − Vleak

St+1
i =


1 if V t+1

i > Vth

0 otherwise

(5.1)

where V t
i is the membrane potential of neuron i at time t, Sti is the spike bit that

indicates whether neuron i fired at time t and is set to “1” when the membrane

potential exceeds the given threshold voltage Vth, wji is the synaptic weight between

neuron j and i, Et
j is the spike bit for the external input for neuron i, M is the

number of pre-synaptic neurons, Vleak is the leaky potential, and Ksyn and Kext

are the weight parameters for synapses and external input spikes, respectively. In

(5.1), additions and comparisons are certainly the key operations to calculate the

membrane potentials and determine the firing activities, respectively.

A digital implementation of the LIF neuron is shown in Figure 5.1(a). It con-

tains a multiplier, a comparator and an adder. It accumulates one of the pre-synaptic

96

Vleakwji Kext

Adder

++

Multiplier

Ksyn

Reg.

Registers

Ei

Vth

Reg.

Vmemb

Spike

+

- C
M

P

Comparator
43.7%

Adder
44.8%

Multiplier, etc
11.5%

Multiplier, etc
57.1%

Adder
34.0%

Comparator
8.9%

Power

Delay

(a) (b)

Figure 5.1: Digital LIF neuron: (a) block diagram and (b) delay and power break-
downs.

weights, external input and leaky potential, which correspond to the terms KsynwjiS
t
j,

KextE
t
i and −Vleak in (5.1), respectively, through the multiplexer at a time. If the

adder output exceeds the given threshold voltage Vth, the digital comparator pro-

duces a spike. The adder and comparator dominate the computation time because

the multiplier is relatively small due to narrower bit-widths in multiplications. To

demonstrate the portion of the adder and comparator for the digital LIF silicon neu-

ron, we show the delay and power breakdowns of the LIF neuron when implemented

with the ripple carry based adder and comparator in Figure 5.1(b). Each synaptic

weight, model parameter and membrane potential are represented using 3, 3 and 16

97

bits, respectively. The adder and comparator contribute to 88.5% of the processing

time and 42.9% of the power in the entire LIF computation. Therefore, it is ex-

tremely crucial to reduce the delay and power of the adder to improve overall energy

efficiency of neuromorphic computing.

Evaluating the performance of the proposed arithmetic units by simulating the

long training process of the neuromorphic system at the transistor level is compu-

tationally intractable. Instead, we develop a hardware-aware spiking neural network

simulator for the neuromorphic VLSI system to evaluate the performance of our new

arithmetic designs. The key network features and hardware design parameters in-

cluding the digital LIF neuron dynamics, the STDP learning rule, bit-widths used

to represent various neuron model parameters are fully captured in the simulator.

The proposed approximate adder and comparator are carefully characterized and

their circuit profiles are extracted from HSPICE simulations [35]. To evaluate the

approximate nature of our designs, we disable the error correction logic of the adder

and inject the characterized input-specific adder and comparator errors into each

addition and comparison operations in the behavioral simulator, providing a precise

evaluation of the impacts of the approximate errors for neuromorphic computation.

We use the neuromorphic application for character recognition system as illus-

trated in Section 3 to systematically examine the impacts of approximate adder and

comparator errors of several designs. We specifically consider the case where the

neuromorphic hardware is configured to be the same two-layer network for character

recognition as illustrated in Figure 3.16. Here, we extend the network to have over a

thousand silicon neurons such that the input layer contains 1024 excitatory neurons

receiving binary inputs representing pixel values in a 32 × 32 pixel input pattern

while the output layer has 36 excitatory neurons receiving inputs from all excitatory

input neurons through plastic synapses. The behavior of each layer is modulated

98

by the inhibitory neurons as described in Section 3. To train the network, 26 input

patterns of alphabets “A” – “Z”, which are 32×32 pixel patterns, are applied one

by one to the input layer. In this network, we use 3, 3 and 16 bits respectively to

represent each synaptic weight, model parameter and membrane potential for each

neuron and employ a 16-bit adder and comparator for the LIF computation.

5.2 Impacts of Approximation Errors on Neuromorphic Applications

5.2.1 Approximate Adder Error Effects

First, we fix the supply level to 1.2 V and clock the chip at the nominal clock

rate of 100 MHz so that the errors produced are only due to the approximate natures

of the adders since there is no timing failure. Also, the accurate 16-bit comparator

RCC is used for the digital LIF neurons to compare the threshold voltage with the

membrane potentials to generate neurons’ firing activities. Figure 5.2(a) shows the

(a) (b)

Figure 5.2: (a) Input character patterns and (b) receptive fields with 16-bit accurate
adders.

input character patterns “A” to “Z” for the training and the receptive fields of all

99

excitatory output neurons after the training with the accurate adders (i.e. RCA and

CLA). The receptive fields as in Figure 5.2(b) are trained well to respond to the

inputs from “A” to “Z”. This means that every letter appears once at least in the

receptive fields. The results in Figure 5.2(b) serves as a golden reference for the

approximate adders.

We also test the proposed approximate adder and other approximate adders with

the network. The receptive fields after the training with various approximate adders

are shown in Figure 5.3. The corresponding error rates and average error magnitudes

during the learning process are listed in Table 5.1 as well. The proposed 16-bit adder

Table 5.1: Error rates and average error magnitudes of various adders during training
process.

Design
Error Rate Avg. Error

(%) Magnitude

LUA 14.24 200.47

LOA (8-8) 61.05 11.82

ETAI (8-8) 14.32 8.81

ETAII 14.24 544.11

VLCSA-1 14.24 544.11

ACA 14.24 544.11

DAA (8-8) 13.04 7.68

LOA (13-3) 60.95 1.59

ETAI (15-1) 17.50 0.17

DAA (11-5) 23.25 0.59

Proposed 0.18 0.03

with k=4 and v=2 has an error rate of merely 0.18% with an average error magnitude

of 0.03 for the LIF computations during the training. Note that no EDC is considered

but the error magnitude reduction is. Fortunately, thanks to the error resilience of

100

(a) (b)

(d) (e) (f)

(g) (h)

(c)

Figure 5.3: Receptive fields with 16-bit (a) proposed approximate adder, (b) LUA,
(c) LOA (8-8), (d) ETAI (8-8), (e) ETAII, (f) VLCSA-1, (g) ACA and (h) DAA
(8-8).

101

the neuromorphic system, Figure 5.3(a) shows that the receptive fields are trained

successfully to recognize all the letters and the approximation errors have negligible

effect on the training process of the character recognition system. For LOA, ETAI

and DAA, the 8-bit accurate and inaccurate parts are used (i.e. LOA (8-8), ETAI (8-

8) and DAA (8-8)). The MSB of one input of the inaccurate part (i.e. A7) is leveraged

for the dithering bit in DAA. The parameters of n=16 and k=4 are adopted in LUA,

ETAII, VLCSA-1 and ACA and only the approximate adder part (i.e. without the

EDC) is utilized for the later two adders. All these approximate adders have an

error rate of more than 13% during the learning process. Especially, the error rate

of LOA (8-8) reaches 61.05% throughout the training. As seen in Figure 5.3(b) –

(h), the approximate adders produce a set of receptive fields with random synaptic

weights. These high error rates give rise to failures in training the network since the

approximation errors cause the neurons to either fire randomly or cease to fire. In

particular, the 2’s complement signed additions of small numbers frequently occur

during leaky operations (i.e. −Vleak in (5.1)) for the training. In this case, the LUA,

ETAII, VLCSA-1 and ACA produce many wrong carry predictions, incurring an

error rate of more than 14% and a high average error magnitude over 200 during the

learning process and an unacceptable performance degradation. This result suggests

the carry speculation with only 4-bit of less significant inputs in these 16-bit adders

may be insufficient for this application.

To shed more light on this, we increase the accuracy of LOA, ETAI and DAA by

expanding the accurate part of the adder at the cost of increased delay and energy

dissipation. When the LOA, ETAI and DAA have 13, 15 and 11 bits accurate parts,

respectively, the network starts to perform better. Figure 5.4 illustrates the receptive

fields with these adders and the respective error rates and average error magnitudes

are also listed in Table 5.1. Although the LOA (13-3) still has a relatively high error

102

(a) (b) (c)

Figure 5.4: Receptive fields with 16-bit (a) LOA (13-3), (b) ETAI (15-1) and (c)
DAA (11-5).

rate of 60.95%, the corresponding receptive fields as in Figure 5.4(a) are trained such

that all alphabets except for “D”, “E”, “H” and “K” can be identified. In addition,

a vague “I” shaped receptive field is trained, which may be confused with “Y”. Due

to the expansion of the accurate part of the adder, the errors now concentrate more

on LSBs and the average error magnitude is reduced from 11.82 to 1.59. Similarly,

the inclusion of a 15-bit accurate part in ETAI (15-1), which has an error rate of

17.50% with an average error magnitude of 0.17 during the training, allows the

network to be trained for all letters except for “B”, “H” and “I” as illustrated in

Figure 5.4(b). The DAA requires only three more accurate bits to train the network

better and achieves a relatively low average error magnitude of 0.59 thanks to the

dithering scheme. Unfortunately, the high error rate of DAA (11-5) hinders the

network from training all the letters. Several letters are not shown in the receptive

fields and the other letters in the fields are less distinct than the receptive fields with

the other adders as seen in Figure 5.4(c). Clearly, our design outperforms all other

approximate adders.

103

5.2.2 Approximate Comparator Error Effects

To see the impacts of the errors of the proposed approximate comparator on the

neuromorphic computing, we replace the accurate comparator by the proposed ap-

proximate one with k=4 and v=2 in the neuron circuits. The receptive fields with

the proposed comparator are illustrated in Figure 5.5. Note that the errors are in-

(a) (b)

Figure 5.5: Receptive fields with 16-bit (a) accurate adder with proposed comparator
and (b) proposed adder with proposed comparator.

duced from only the approximations without timing failures of the circuits. Figure

5.5(a) is the receptive fields with the accurate adder and the proposed comparator.

The proposed comparator allows the network to train well to recognize all the let-

ters by virtue of the extremely low error rate of 0.45% and the error resilience of

neuromorphic computing. Additionally, the proposed approximate adder together

with the proposed comparator also produce the good receptive fields that show all

the letters as in Figure 5.5(b). The error rates of the adder and comparator are

0.19% and 0.48%, respectively, while training. These very low error rates affect the

104

learning process negligibly and our two designs can be, therefore, equally adopted

for the neuromorphic application without performance degradations.

5.3 Energy Efficiency of LIF Neurons with Approximate Adders and Comparators

with Supply Voltage Scaling

To show the energy efficiency of the these adders in the neuromorphic hard-

ware, we scale down the supply voltage and obtain the energy dissipation in one

LIF operation involving a multiplication of a synaptic weight wji with the weight

parameter Ksyn and an addition of the membrane potential V t
i with the multiplier

output Ksynwji, a key processing step in (5.1). A comparison between the membrane

potential V t
i and the threshold voltage Vth is also included for the LIF operation and

the RCC is employed in the neuron circuit. The clock frequency is fixed at the max-

imum value such that the neuron with RCA and RCC can operate without any error

in the regular supply voltage of 1.2 V. For each adder design, we scale down the

supply voltage with a 0.05 V step as long as there is no critical timing failure created

in the neuron circuit. Figure 5.6 plots the energy comparison of one LIF operation

with the neurons with the different adders under scaled power supply levels. The

energies are normalized against the neuron with RCA and RCC. Neurons with LUA,

ETAII or VLCSA-1 can operate at a supply voltage of 1.0 V. The ETAII is the most

energy efficient adder design while having a much larger error rate than the proposed

adder and leading to poor learning performance (see Figure 5.3(e)). Regretfully, the

high power consumption from the carry selection in VLCSA-1 is an obstacle to at-

tain energy efficiency. All the adders except for RCA is able to work at the scaled

supply voltage of 1.05 V. The LUA, ETAI and the proposed adder show the similar

energy efficiency and the proposed adder consumes about 8% and 6% less energy

than ACA and DAA (8-8), respectively. Our design achieves the energy savings of

105

0
.8

0
.8

5
0

.9
0

.9
5

1
1

.0
5

1
.1

1
.1

5
1

.2
0

0
.2

0
.4

0
.6

0
.81

1
.2

S
u

p
p

ly
 V

o
lt

a
g

e
 (

V
)

Normalized Energy

R
C

A

C
L

A

L
U

A

L
O

A
 (

8
-8

)

E
T

A
I
(8

-8
)

E
T

A
II

V
L

C
S

A
-1

A
C

A

D
A

A
 (

8
-8

)

P
ro

p
o

s
e

d
 A

d
d

e
r

P
ro

p
o

s
e

d
 A

d
d

e
r

&
P

ro
p

o
s

e
d

 C
o

m
p

a
ra

to
r

F
ig

u
re

5.
6:

N
or

m
al

iz
ed

en
er

gi
es

of
on

e
d
ig

it
al

L
IF

n
eu

ro
n

w
it

h
va

ri
ou

s
ad

d
er

s
w

it
h

su
p
p
ly

vo
lt

ag
e

sc
al

in
g.

106

up to 36.6% and 27.9% over RCA and CLA, respectively, in the scaled supply. It can

be seen that our adder has the most competitive energy and error tradeoff among

all these designs. We also compare a neuron leveraging the proposed adder and the

approximate comparator to the others. This neuron allows the supply voltage to

decrease to 0.8 V, which is 0.25 V lower than a neuron including the proposed adder

only. The proposed adder and comparator enables the neuron to be 1.97×, 2.73×

and 3.11× energy efficient over the neuron adopting the proposed adder, CLA and

RCA with the accurate comparator RCC, respectively, in the scaled supply without

performance degradation (see Fig 5.5(b)). Our comparator also provides a great

energy saving with very low error rate for the neuromorphic computing Since a few

hundreds of silicon neurons are integrated in the form of an array [58, 36], the total

energy saving resulted from our designs are remarkable for the neuromorphic chip.

5.4 Energy Efficiency during the Training Process with Supply Voltage Scaling

Finally, we examine the overall energy consumption by all the digital LIF neurons

in the network for the training process. The LIF neuron dynamics in (5.1) is divided

into three different types of additions to obtain the membrane potential and one

comparison to determine the firing activity:

1) an addition of the membrane potential V t
i with the multiplier output of each

synaptic weight wji and the weight parameter Ksyn;

2) an addition of the membrane potential V t
i with the external spike weight pa-

rameter Kext;

3) an addition of the membrane potential V t
i with the leaky potential −Vleak;

4) a comparison of the membrane potential Vt
i with the threshold voltage Vth.

107

We extract the energy profiles for these three additions and one comparison from

HSPICE simulations and inject the characterized energies into the behavioral simu-

lator. In the synaptic weight integrations, which correspond to term Ksyn

M∑
j=1

wjiS
t
j in

(5.1), the adders are activated only after the pre-synaptic neurons fired (i.e Stj = 1)

for the type 1) addition. Similarly, they work only when the external spiking events

are applied (KextE
t
i in (5.1)) for the type 2) addition. Therefore, we take into ac-

count the neurons’ firing and the external spike activities in the training to obtain

the realistic energy consumptions of the neuron circuits. The simulator accumulates

the energy dissipations of all the neuron circuits in the network by not only discrim-

inating these addition types and comparison but also considering the neurons’ firing

and the external spike activities during the learning process, achieving an accurate

analysis of energy dissipations of all the neurons. We consider the error-free oper-

ation and the proposed addition scheme since the other approximation approaches

show unacceptable learning performances. For the error-free operation, we enable

the EDC of ACA, VLCSA-1 and the proposed adder to achieve the same receptive

fields as the accurate adder after the training (i.e. Figure 5.2(b)). Also, the RCC

is utilized for accurate comparison and the EDC is only activated only when errors

are detected. The clock frequency of the chip is set to the same as that in Section

5.3 since the digital neuron circuits have the overall critical timing path of the neu-

romorphic chip [36]. The supply voltage is scaled down with a 0.05 V step without

any critical timing failure in the neurons as well. Figure 5.7 depicts the overall en-

ergy consumed by the digital LIF neurons during the learning process. The energies

are also normalized as the same in Figure 5.6. While the chip with all the designs

except for RCA can operate at a supply voltage of 1.05 V, the proposed adder with

EDC is 1.75× and 1.30× more energy efficient than VLCSA-1 and ACA, respec-

tively. The proposed adder with EDC requires the smallest amount of energy for the

108

0
.8

0
.8

5
0

.9
0

.9
5

1
1

.0
5

1
.1

1
.1

5
1

.2
0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

1
.6

S
u

p
p

ly
 V

o
lt

a
g

e
 (

V
)

Normalized Energy

R
C

A

C
L

A

V
L

C
S

A
 w

/
E

D
C

A
C

A
 w

/
E

D
C

P
ro

p
o

s
e

d
 A

d
d

e
r

w
/

E
D

C

P
ro

p
o

s
e

d
 A

d
d

e
r

w
/o

 E
D

C

P
ro

p
o

s
e

d
 A

d
d

e
r

w
/o

 E
D

C
 &

P
ro

p
o

s
e

d
 C

o
m

p
a

ra
to

r

F
ig

u
re

5.
7:

N
or

m
al

iz
ed

en
er

gy
co

n
su

m
p
ti

on
s

b
y

al
l

th
e

d
ig

it
al

L
IF

n
eu

ro
n
s

of
th

e
n
et

w
or

k
w

h
il
e

tr
ai

n
in

g
w

it
h

va
ri

ou
s

ad
d
er

s
an

d
co

m
p
ar

at
or

s
u
n
d
er

su
p
p
ly

vo
lt

ag
e

sc
al

in
g.

109

neuron circuits among the error-free adders, which encompass RCA, CLA and EDC

enabled VLCSA-1/ACA/proposed adder, thanks to the low-overhead EDC circuit.

The proposed approximate adder without EDC makes the neurons dissipate 29.3%

and 37.4% less energy than CLA and RCA under the scaled voltage. Moreover, when

enabled with the proposed comparator and adder, digital LIF neurons are able to

work at the scaled supply of 0.8 V while achieving an energy saving of 48.8% to

77.8% over all other error-free adders (e.g. 66.5% over RCA) with negligible perfor-

mance degradation. The proposed arithmetic units demonstrate significant energy

savings for the neuromorphic hardware. Additionally, the proposed adder with EDC

also exhibits improved energy efficiency than the other error-free adders and can be

equally employed for energy efficient accuracy significant applications.

5.5 Summary

This section has demonstrated the performance of the proposed approximate

adder and comparator as part of an unsupervised learning based VLSI neuromorphic

character recognition chip by developing a hardware-aware simulation approach. The

results have proven that the approximation errors of the proposed adder affect the

training performance negligibly while the other approximate adders severely degrade

the learning performance. The digital LIF neuron adopting the proposed arithmetic

units enables it to be over 3× energy efficient compared with the traditional accurate

arithmetic ones. Moreover, the proposed adder and comparator allow for the energy

saving of up to 66.5% over traditional counterparts for the digital LIF neurons during

the learning process with scaled supply voltage levels.

110

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation has developed techniques for designing a neuromorphic pro-

cessor and approximate arithmetic for low-cost, reconfigurable and energy efficient

neuromorphic computing in VLSI. By addressing the several key issues on imple-

menting brain-inspired hardware architecture, we have significantly improve both

flexibility and performance of neuromorphic VLSI systems. Furthermore, the pro-

posed approximate arithmetic and inherit error resiliency in neurocomputing allow

for excellent energy efficiencies with negligible performance degradations in neural

computation. We conclude this research by summarizing the major contributions.

For digital neuromorphic processor, we have proposed a scalable digital architec-

ture that incorporates synapse, neuron and learning arrays for large scale spiking

neural networks. The memristor nanodevice is leveraged to build a high-density

synapse crossbar array that consists of novel multilevel memory cells to store both

a multibit synapse value and a network configuration information. Through the

systematic analysis of the memristor, we have considerably enhanced the synaptic

weight update performance by reducing the programming time for the memristive

array that can be accessed both column- and row-fashion with the low-cost digital

PWM scheme. Additionally, the proposed column based ADC scheme allows the

digital neuron to efficiently perform the LIF neuron dynamics and reduce the area

and power overheads required for the LIF operations. When implemented in a com-

mercial 90 nm CMOS technology, our design with 256 digital spiking neurons with

learning circuits and 65,536 synapses is evaluated to occupy an area of 1.86 mm2

and dissipate a power of 6.45 mW under a supply voltage of 1.2 V . Furthermore,

111

the validation result of the chip functionality by the behavioral digital simulation

has shown that the proposed architecture realizes character recognition with unsu-

pervised learning successfully.

In approximate arithmetic, a novel approximate arithmetic scheme to significantly

reduce energy consumption with an extremely low error rate has been proposed

for error resilient neuromorphic computing. The proposed carry speculation with

a parallel carry-skip has been applied to both adder and comparator designs to

considerably improve the overall error rate in computation and the critical path delay.

Moreover, the error magnitude reduction technique for the adder further reduces the

amount of error created by the approximate nature with low cost. The complete

error rate analysis has proven that the proposed arithmetic units have extremely

low error rates under random input patterns. The proposed approximate units have

been implemented with the same 90 nm CMOS process. While the proposed adder

exhibits 2.4× faster with an error rate of 0.18% and 43% more energy efficient over

traditional ones, the proposed comparator has an error rate of less than 0.1% and

achieves an energy saving of up to 4.9× over the conventional counterparts. To

demonstrate the impacts of the approximate errors on the neuromorphic computing,

we have conducted hardware-aware simulation of an unsupervised learning based

VLSI neuromorphic character recognition chip that includes over a thousand of silicon

neurons. The result has shown that the proposed approximate arithmetic units affect

the training performance negligibly and outperform the other approximate adders.

Furthermore, they allow for an energy reduction of up to 66.5% over traditional

ones for the digital LIF computations during the learning process with scaled supply

voltage levels.

Accordingly, the proposed architectural and circuit level design approaches are

applicable to a wide range of energy efficient and error resilient neuromorphic com-

112

puting systems, such as image and speech recognition, in VLSI.

6.2 Future Work

So far, we have demonstrated a neuromorphic processor configured as a 256 spik-

ing neuron network in a single-die and able to successfully perform character recog-

nition. Clearly, more complex networks are needed for other more sophisticated

applications. Ultimately, one may think about integrating huge numbers of neurons

and synapses to create an artificial brain that mimics the functions of the human

brain such as reasoning, knowledge, planning, learning and memory. When an arti-

ficial human brain is implemented in silicon, tasks requiring complex reasoning and

information processing as conducted by the humans may be readily solved with ex-

tremely short processing times. Also, artificial brains may allow people to better

understand how the human brain works so as to advance cognitive science.

The CMOS technology scaling enables increasing numbers of neurons and synapses

to be integrated in a given silicon area. Figure 6.1 demonstrates the number of neu-

350 250 180 130 90 65 45 32 22
10

2

10
3

10
4

10
5

10
6

10
7

Technology Node (nm)

#
 o

f
N

e
u

ro
n

s

of Neurons & Synapses / cm2

#
 o

f
S

y
n

a
p

s
e
s

1014

1012

1010

1014

1012

1010

Figure 6.1: Neuron and synapse integration densities as a function of technology.

113

rons and synapses that can be integrated in a fixed area (e.g. 1 cm2) at different

technology nodes. They are evaluated based on our neuromorphic processor de-

signed in Section 3. For the estimations, we take into account the area for only the

CMOS switches in our CMOS/memristor hybrid cell since they dominate the overall

area of the memristor synaptic crossbar array. Additionally, the entire chip area is

assumed to be a linear function of the number of integrated silicon neurons N (i.e.

chip area ∝ N) since the memristive crossbar array, whose area is proportional to N2,

occupies very small portion (<10%) of the overall area. We also consider that the

chip area is scaled with a factor of L2 where L is the technology feature size. Then,

we can not only estimate the area cost per a silicon neuron in the scaled CMOS tech-

nology but also obtain the numbers of integrated silicon neurons and synapses in a

given silicon area. Note that the number of integrated synapses is N2 in our crossbar

structure. The number of integrated neurons approximately doubles for each new

generation CMOS technology. At the 22 nm node, over 0.2 million (2×105) neurons

and 50 billion (5×1010) synapses, a complexity similar to the nervous system of ants,

can be integrated in a 1 cm2 silicon area. Obviously, technology scaling will continue

in the coming decades. According to the International Technology Roadmap for

Semiconductors (ITRS), the CMOS feature size (i.e. gate length) will reach 5.9 nm

in 2026 and the supply voltage levels will decrease continuously as shown in Figure

6.2 [70]. We are able to predict the numbers of integrated neurons and synapses in

a chip in the future from Figure 6.2. Figure 6.3 predicts the trend of the number

of integrated neurons and synapses per 1 cm2 of silicon area. Our neuromorphic

processor and the same estimation method used in Figure 6.1 are also applied to the

prediction. The predicted scaling trend exhibits that the number of silicon neurons

in a cm2 area will increase 25% ∼ 35% for every year from 2013 to 2026. In 2026, the

1 cm2 silicon-die is estimated to include over 3 billion (3×106) neurons and 10 tril-

114

2014 2016 2018 2020 2022 2024 2026
0

5

10

15

20

25

30

35

Year
2014 2016 2018 2020 2022 2024 2026

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gate Length (L)

V
DD

Figure 6.2: Trends of gate length and power supply [70].

2014 2016 2018 2020 2022 2024 2026
10

5

10
6

10
7

Year

#
 o

f
N

e
u

ro
n

s

of Neurons & Synapses / cm2

#
 o

f
S

y
n

a
s
e
s

1014

1012

1010

1013

1011

Figure 6.3: Scaling trend of neuron and synapse integration.

lion (1013) synapses, which may be enough to mimic the cockroach’s nervous system

that contains a billion neurons. Approximately 5 and 17 cm2 silicon-dies would be

needed to emulate the brains of frogs (16 billion) and rats (56 billion), respectively.

115

To this end, it deserves to further optimize the existing neuromorphic hardware de-

sign to better deal with such design complexity. As an example, to compute the

membrane potential of a neuron by accumulating a billion 3-bit pre-synaptic weights

would require a 24-bit resolution for the proposed column ADC according to (3.6).

It is very difficult to achieve a 24-bit resolution by the VCO-based ADC and other

ADC architectures such as ∆Σ ADC may be considered. In a different direction, an

alternative schemes to access the synaptic array may be investigated. In addition to

hardware design, very importantly, appropriate learning algorithms and applications

have to be developed to fully utilize the computing power of future neuromorphic

chips integrating tremendous numbers of silicon neurons and synapses.

116

REFERENCES

[1] J. V. Arthur and K. Boahen. Silicon-Neuron Design: A Dynamical Systems

Approach. IEEE. Trans. Circuits Syst. I, Reg. Papers, 58(5):1034–1043, 2011.

[2] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S. Chandra,

S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar, and D. S. Modha.

Building Block of a Programmable Neuromorphic Substrate: A Digital Neu-

rosynaptic Core. In Proc. of Int. Joint Conf. Neural Netw. (IJCNN), pages 1–8,

2012.

[3] G.-Q. Bi and M.-M. Poo. Synaptic Modifications in Cultured Hippocampal

Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic

Cell Type. The Journal of Neuroscience, 18(24):10464–10472, 1998.

[4] S. Brink, S. Nease, P. Hasler, S. Ramakrishnan, R. Wunderlich, A. Basu, and

B. Degnan. A Learning-Enabled Neuron Array IC Based Upon Transistor Chan-

nel Models of Biological Phenomena. IEEE Trans. Biomed. Circuits Syst.,

7(1):71–81, 2013.

[5] R. A. Brualdi. Introductory Combinatorics. Prentice-Hall, Upper Saddle River,

New Jersey, 2009.

[6] L. Camunas-Mesa, A. Acosta-Jimenez, C. Zamarrefio-Ramos, T. Serrano-

Gotarredona, and B. Linares-Barranco. A 32×32 Pixel Convolution Processor

Chip for Address Event Vision Sensors With 155 ns Event Latency and 20 Meps

Throughput. IEEE. Trans. Circuits Syst. I, Reg. Papers, 58(4):777–790, 2011.

[7] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan. Analysis and

Characterization of Inherent Application Resilience for Approximate Comput-

117

ing. In Proc. of IEEE/ACM Design Automation Conf. (DAC), pages 1–9, 2013.

[8] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakradhar.

Scalable Effort Hardware Design: Exploiting Algorithmic Resilience for Energy

Efficiency. In Proc. of IEEE/ACM Design Automation Conf. (DAC), pages

555–560, 2010.

[9] H. Cho, L. Leem, and S. Mitra. ERSA: Error Resilient System Architecture for

Probabilistic Applications. IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., 31(4):546–558, 2012.

[10] L. O. Chua. Memristor-The Missing Circuit Element. IEEE Trans. Circuit

Theory, 18(5):507–519, 1971.

[11] J. Cosp, J. Madrenas, and D. Fernandez. Design and Basic Blocks of a Neuro-

morphic VLSI Analogue Vision System. Neurocomputing, 69(16-18):1962–1970,

2006.

[12] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi. NVSim: A Circuit-Level Perfor-

mance, Energy, and Area Model for Emerging Nonvolatile Memory. IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., 31(7):994–1007, 2012.

[13] D. A. Drachman. Do We Have Brain to Sparse? Neurology, 64(12):2056–2062,

2005.

[14] K. Du, P. Varman, and K. Mohanram. High Performance Reliable Variable

Latency Carry Select Addition. In Proc. of Design, Automation, Test in Europe

(DATE), pages 1257–1262, 2012.

[15] S. K. Esser, A. Ndirango, and D. S. Modha. Binding Sparse Spatiotemporal

Patterns in Spiking Computation. In Proc. of Int. Joint Conf. Neural Netw.

(IJCNN), pages 1–9, 2010.

118

[16] D. E. Feldman. The Spike-Timing Dependence of Plasticity. Neuron, 75(4):556–

571, 2012.

[17] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve

Membrane. Biophy. J., 1(6):445–466, 1961.

[18] S. Ghosh-Dastidar and H. Adeli. Third Generation Neural Networks: Spiking

Neural Networks. In Advances in Computational Intelligence, pages 167–178,

2009.

[19] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-Power Digital Sig-

nal Processing Using Approximate Adders. IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., 32(1):124–137, 2013.

[20] S. O. Haykin. Neural Networks and Learning Machines. Prentice-Hall, Upper

Saddle River, New Jersey, 2008.

[21] R. Hegde and N. R. Shanbhag. Soft Digital Dignal Processing. IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., 9(6):813–823, 2001.

[22] J. L. Hindmarsh and R. M. Rose. A Model of Neuronal Bursting using

Three Coupled First Order Differential Equations. Proc. R. Soc. Lond. B.,

221(1222):87–102, 1984.

[23] Y. Ho, G. M. Huang, and P. Li. Dynamical Properties and Design Analysis for

Nonvolatile Memristor Memories. IEEE. Trans. Circuits Syst. I, Reg. Papers,

58(4):724–736, 2011.

[24] A. L. Hodgkin and A. F. Huxley. A Quantitative Description of Membrane

Current and Its Application to Conduction and Excitation in Nerve. J. Physiol.,

117(4):500–544, 1952.

119

[25] M. Hu, H. Li, Q. Wu, and G. S. Rose. Hardware Realization of BSB Recall

Function using Memristor Crossbar Arrays. In Proc. of IEEE/ACM Design

Automation Conf. (DAC), pages 498–503, 2012.

[26] J. Huang, J. Lach, and G. Robins. A Methodology for Energy-Quality Tradeoff

Using Imprecise Hardware. In Proc. of IEEE/ACM Design Automation Conf.

(DAC), pages 504–509, 2012.

[27] N. Imam, F. Akopyan, J. Arthur, P. Merolla, R. Manohar, and D. S. Modha. A

Digital Neurosynaptic Core Using Event-Driven QDI Circuits. In Proc. of IEEE

Int. Symp. Async. Circuits and Syst. (ASYNC), pages 25–32, 2012.

[28] G. Indiveri, E. Chicca, and R. Douglas. A VLSI Array of Low-Power Spiking

Neurons and Bistable Synapses with Spike-Timing Dependent Plasticity. IEEE

Trans. Neural Netw., 17(1):211–221, 2006.

[29] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-

Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Haliger, S. Renaud, J. Schem-

mel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi,

T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen. Neuromor-

phic Silicon Neuron Circuits. Frontiers in Neuroscience, 5(73):1–23, 2011.

[30] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial Neural Networks: a Tuto-

rial. Computer, 29(3):31–44, 1996.

[31] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu.

Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Let-

ters, 10(4):1297–1301, 2010.

[32] A. B. Kahng and S. Kang. Accuracy-Configurable Adder for Approximate Arith-

metic Designs. In Proc. of IEEE/ACM Design Automation Conf. (DAC), pages

120

820–825, 2012.

[33] R. Kempter, W. Gerstner, and J. L. Van Hemmen. Hebbian Learning and

Spiking Neurons. Physical Review E, 59(4):4498–4514, 1999.

[34] J. Kim, T.-K. Jang, Y.-G. Yoon, and S. Cho. Analysis and Design of Voltage-

Controlled Oscillator Based Analog-to-Digital Converter. IEEE. Trans. Circuits

Syst. I, Reg. Papers, 57(1):18–30, 2010.

[35] S. H. Kim, S. Mukhopadhyay, and M. Wolf. Modeling and Analysis of Image De-

pendence and Its Implications for Energy Savings in Error Tolerant Image Pro-

cessing. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 30(8):1163–

1172, 2011.

[36] Y. Kim, Y. Zhang, and P. Li. A Digital Neuromorphic VLSI Architecture with

Memristor Crossbar Synaptic Array for Machine Learning. In Proc. of IEEE

Int. System-on-Chip Conf. (SOCC), pages 328–333, 2012.

[37] S. Li, J.-H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling Framework

for Multicore and Manycore Architectures. In Proc. of IEEE/ACM Int. Symp.

Microarchitecture (MICRO), pages 469–480, 2009.

[38] A. Lingamneni, C. Enz, K. Palem, and C. Piguet. Parsimonious Circuits for

Error-Tolerant Applications through Probabilistic Logic Minimization. In Lec-

ture Notes in Computer Science, pages 204–213, 2011.

[39] S.-L. Lu. Speeding Up Processing with Approximation Circuits. Computer,

37(3):67–73, 2004.

[40] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas. Bio-Inspired Impre-

cise Computational Blocks for Efficient VLSI Implementation of Soft-Computing

121

Applications. IEEE Trans. Circuits Syst. I, Reg. Papers, 57(4):850–862, 2010.

[41] H. Manem, J. Rajendran, and G. S. Rose. Design Considerations for Multilevel

CMOS/Nano Memristive Memory. ACM J. Emerg. Technol. Comput. Syst.,

8(1):6:1–6:22, 2012.

[42] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann. Regulation of

Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science,

275(5297):213–215, 1997.

[43] T. M. Massoud and T. K. Horiuchi. A Neuromorphic VLSI Head Direction Cell

System. IEEE. Trans. Circuits Syst. I, Reg. Papers, 58(1):150–163, 2011.

[44] W. McCulloch and W. Pitts. A Logical Calculus of the Ideas Immanent in

Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[45] C. E. Merkel, N. Nagpal, S. Mandalapu, and D. Kudithipudi. Reconfigurable

N-level Memristor Memory Design. In Proc. of Int. Joint Conf. Neural Netw.

(IJCNN), pages 3042–3048, 2011.

[46] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S. Modha. A

Digital Neurosynaptic Core using Embedded Crossbar Memory with 45pJ per

Spike in 45nm. In Proc. of IEEE Custom Integrated Circuits Conf. (CICC),

pages 1–4, 2011.

[47] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. Modeling and Synthesis

of Quality-Energy Optimal Approximate Adders. In Proc. of IEEE/ACM Int.

Conf. Comput.-Aided Design (ICCAD), pages 728–735, 2012.

[48] S. Mitra, S. Fusi, and G. Indiveri. Real-Time Classification of Complex Pat-

terns Using Spike-Based Learning in Neuromorphic VLSI. IEEE Trans. Biomed.

Circuits Syst., 3(1):32–42, 2009.

122

[49] D. Mohapatra, V. K. Chippa, A. Raghunathan, and K. Roy. Design of Voltage-

Scalable Meta-Functions for Approximate Computing. In Proc. of Design, Au-

tomation, Test in Europe (DATE), pages 1–6, 2011.

[50] S. Moradi and G. Indiveri. A VLSI Network of Spiking Neurons with an Asyn-

chronous Static Random Access Memory. In Proc. of IEEE Biomed. Circuits

Syst. Conf. (BioCAS), pages 277–280, 2011.

[51] C. Morris and H. Lecar. Voltage Oscillations in the Barnacle Giant Muscle

Fiber. Biophy. J., 35(1):193–213, 1981.

[52] J. Nagumo, S. Arimoto, and S. Yoshizawa. An Active Pulse Transmission Line

Simulating Nerve Axon. Proc. IRE, 50(10):2061–2070, 1962.

[53] Z. Pan and M. A. Breuer. Basing Acceptable Error-Tolerant Performance on

Significance-Based Error-Rate (SBER). In Proc. of IEEE VLSI Test Symp.

(VTS), pages 59–66, 2008.

[54] H. Paugam-Moisy and S. Bohte. Computing with Spiking Neuron Networks. In

Handbook of Natural Computing, pages 335–376, 2012.

[55] Y. V. Pershin and M. D. Ventra. Experimental Demonstration of Associative

Memory with Memristive Neural Networks. Neural Netw., 23(7):881–886, 2010.

[56] T. Pfeil, T. C. Potjans, S. Schrader, W. Potjans, J. Schemmel, M. Diesmann,

and K. Meier. Is a 4-bit Synaptic Weight Resolution Enough? - Constraints

on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware.

Frontiers in Neuroscience, 6(90):1–19, 2012.

[57] J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and R. B.

Jackson. Campbell Biology. Benjamin Cummings, San Francisco, California,

2010.

123

[58] J.-S. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Ra-

jendran, J. A. Tierno, L. Chang, D. S. Modha, and D. J. Friedman. A 45nm

CMOS Neuromorphic Chip with a Scalable Architecture for Learning in Net-

works of Spiking Neurons. In Proc. of IEEE Custom Integrated Circuits Conf.

(CICC), pages 1–4, 2011.

[59] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-

Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas-Perez,

T. Delbruck, S.-C. Liu, R. Douglas, P. Hafliger, G. Jimenez-Moreno, A. C. Ball-

cels, T. Serrano-Gotarredona, A. J. Acosta-Jimenez, and B. Linares-Barranco.

CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory-

Processing-Learning-Actuating System for High-Speed Visual Object Recogni-

tion and Tracking. IEEE Trans. Neural Netw., 20(9):1417–1438, 2009.

[60] B. Shim, S. R. Sridhara, and N. R. Shanbhag. Reliable Low-Power Digital Signal

Processing via Reduced Precision Redundancy. IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., 12(5):497–510, 2004.

[61] G. S. Snider. Spike-Timing-Dependent Learning in Memristive Nanodevices. In

Proc. of IEEE/ACM Int. Symp. Nanoscale Arch. (NANOARCH), pages 85–92,

2008.

[62] S. Song, K. D. Miller, and L. F. Abbott. Competitive Hebbian Learning Through

Spike-Timing-Dependent Synaptic Plasticity. Nature Neuroscience, 3(9):919–

926, 2000.

[63] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The Missing

Memristor Found. Nature, 453:80–83, 2008.

[64] A. Syed, E. Ahmed, D. Maksimovic, and E. Alarcon. Digital Pulse Width

Modulator Architectures. In Proc. of IEEE Power Electron. Specialists Conf.

124

(PSEC), pages 4689–4695, 2004.

[65] A. van Schaik. Building Blocks for Electronic Spiking Neural Networks. Neural

Netw., 14(6-7):617–628, 2001.

[66] J. Vanne, E. Aho, T. D. Hamalainen, and K. Kuusilinna. A High-Performance

Sum of Absolute Difference Implementation for Motion Estimation. IEEE

Trans. Circuits Syst. Video Technol., 16(7):876–883, 2006.

[67] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. MACACO: Modeling

and Analysis of Circuits for Approximate Computing. In Proc. of IEEE/ACM

Int. Conf. Comput.-Aided Design (ICCAD), pages 667–673, 2011.

[68] A. K. Verma, P. Brisk, and P. Ienne. Variable Latency Speculative Addition: A

New Paradigm for Arithmetic Circuit Design. In Proc. of Design, Automation,

Test in Europe (DATE), pages 1250–1255, 2008.

[69] J. H. B. Wijekoon and P. Dudek. Compact Silicon Neuron Circuit with Spiking

and Bursting Behaviour. Neural Netw., 21(2-3):524–534, 2008.

[70] L. Wilson. International Technology Roadmap for Semiconductors. SEMAT-

ECH, Albany, New York, 2011.

[71] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie. Design Implications of Memristor-

based RRAM Cross-Point Structures. In Design, Automation and Test in Europe

(DATE), pages 1–6, 2011.

[72] J. J. Yang and R. S. Williams. Memristive Devices in Computing System:

Promises and Challenges. ACM J. Emerg. Technol. Comput. Syst., 9(2):11:1–

11:20, 2013.

125

[73] Y.-G. Yoon, J. Kim, T.-K. Jang, and S. Cho. A Time-Based Bandpass ADC

Using Time-Interleaved Voltage-Controlled Oscillators. IEEE. Trans. Circuits

Syst. I, Reg. Papers, 55(11):3571–3581, 2008.

[74] N. Zhu, W. L. Goh, and K. S. Yeo. An Enhanced Low-Power High-Speed Adder

for Error-Tolerant Application. In Proc. of Int. Symp. Integrated Circuits (ISIC),

pages 69–72, 2009.

[75] N. Zhu, W. L. Goh, and K. S. Yeo. Ultra Low-Power High-Speed Flexible

Probabilistic Adder for Error-Tolerant Applications. In Proc. of Int. SoC Design

Conf. (ISOCC), pages 393–396, 2011.

[76] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong. Design of Low-Power

High-Speed Truncation-Error-Tolerant Adder and Its Application in Digital Sig-

nal Processing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 18(8):1225–

1229, 2010.

126

