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ABSTRACT 

Despite offering high specificity and speed compared to other methods, the 

dependency of the response of an enzymatic sensor on ambient oxygen concentrations.  

To investigate this issue, a reaction-diffusion model was developed using the finite 

element method.  Due to the growing population of people with diabetes, glucose was 

chosen as a model analyte.  This glucose sensor model was used to examine the oxygen 

dependency and the resulting inaccuracy of glucose predictions.  To improve the 

accuracy of glucose predictions, an oxygen compensation method was developed which 

utilizes a variable calibration curve where the fit parameters are dependent on the 

ambient oxygen concentration.  This allows a unique calibration curve to be obtained for 

every oxygen concentration.  Glucose predictions made with this compensation 

technique were found to be within clinically acceptable regions more than 95% of the 

time whereas predictions made without compensation were clinically acceptable less 

than 50% of the time. 

In order to apply this compensation technique for real-time analysis, ambient 

oxygen concentrations must be measured in parallel with the response of the glucose 

sensor.  Despite the growing need for multi-analyte sensors such as this, a suitable 

method for monitoring multiple responses in vivo has yet to be developed.  Due to the 

measurement flexibility provided by luminescence, a time-domain luminescence lifetime 

measurement system was developed.  The Dynamic Rapid Lifetime Determination 

(DRLD) approach utilizes a dynamic windowing algorithm to select the optimal window 

width for calculation of lifetimes using an integrative approach.  This method was 
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demonstrated with an oxygen-sensitive luminophore and shown to accurately determine 

lifetime values six orders of magnitude faster than traditional methods. 

This method was then extended to simultaneous measurement of the lifetimes 

from two luminophores (Dual DRLD or DDRLD) for multi-analyte applications.  The 

ability of DDRLD to calculate lifetimes was demonstrated using temperature and oxygen 

sensing films.  Similar to oxygen compensation of glucose sensors, a temperature 

compensation method was investigated for oxygen sensors.  Lifetimes of the temperature 

sensing films for dual films measurements made using DDRLD were not significantly 

different than individual film measurements using DRLD.  Oxygen responses for dual 

films followed the same trend as individual film measurements and displayed a minimal 

difference on average (2%).  Real-time, dynamic temperature and oxygen predictions 

were demonstrated using DDRLD in conjunction with temperature compensation of the 

oxygen sensing film response. 
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1. INTRODUCTION 

Despite the growing number of people living with diabetes mellitus, the current 

standard for monitoring blood glucose levels remains the “finger-prick” method.  

Although it is recommended to check blood glucose levels 6 to 8 times a day for most 

patients,
1
 the pain and annoyance caused by this method often leads to inadequate 

glucose monitoring despite the many health complications associated with poor glucose 

monitoring and diabetes.
2-5

  Currently, several continuous glucose monitoring systems 

(CGMS) are available on the market; however, several issues including compliance 

remain (see Chapter 2).
6-7

 

To combat this non-compliance, a large amount of research is being performed 

on simple, pain-free sensing methods that can be used to monitor in vivo glucose levels.
6, 

8
  Although a variety of glucose measurement techniques have been proposed, many 

glucose sensors being developed utilize glucose oxidase (GOx) to transduce glucose 

concentration because of its specificity and fast reaction rate.
9
  This enzyme allows 

glucose levels to be determined indirectly through changes in hydrogen peroxide or 

oxygen concentrations as well as changes in pH (Figure 1.1).  Luminescent, enzymatic 

glucose sensors are attracting attention for glucose monitoring because of a possible 

“smart tattoo” implementation whereby the response of the sensor can be read non-

invasively through the tissue.
10-13

  These sensors often utilize oxygen-quenchable dyes 

which are able to provide high selectivity and sensitivity compared to electrochemical 

methods.
4, 8
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Due to the enzymatic nature of these types of sensors, the steady-state is 

determined by a balance of the reaction and diffusion rates of the substrates.
12, 14-17

    For 

sensors utilizing GOx, the response is consequently dependent on both oxygen and 

glucose levels.
15

  Even though GOx consumes glucose and oxygen equally, these 

reactants are not present in equal or constant concentrations in the body.  Changes in 

ambient oxygen concentration will affect the rate of glucose consumption causing shifts 

in sensor response leading to inaccurate glucose predictions.
18-23

  To provide accurate in 

vivo measurements using luminescent glucose sensors, the response of the glucose 

sensor needs to be compensated for ambient oxygen concentrations.  The glucose sensor 

response can be corrected to enable accurate glucose readings by measuring the ambient 

oxygen concentration with a second sensor.
18-23

  However, a robust method capable of 

performing compensation has yet to be demonstrated for enzymatic glucose sensors.   

Utilization an appropriate oxygen compensation method will also require the 

development of a method for simultaneously measuring the response of both the oxygen 

and glucose sensors.  Due to scattering and auto-fluorescence associated with tissue, in 

 

Figure 1.1 Generalized reaction scheme of glucose oxidase showing the substrates 

consumed and products. 
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vivo measurements of implanted sensors can be significantly more complicated than in 

vitro measurements.  Time-domain measurements of the lifetime response of 

luminescent sensors can be used to overcome these and other issues encountered with 

intensity-based measurements.
24

  Non-linear least-squares analysis is typically utilized to 

fit the decay data and obtain a lifetime value; however, this approach can be 

computationally intense and dependent on the initial guesses of the fit.
25

  Simultaneous 

measurements of glucose and oxygen sensors will increase the complexity of the 

measurement due to the need to separate the individual sensor responses and the 

extensive calibration required.
26

  Thus, in order to accurately make simultaneous 

measurements of the luminescence lifetime response of these sensors, a new evaluation 

method must be developed that is suitable for in vivo measurements.   

Following a review of the appropriate background material, the following 

separate research aims were developed to address these aforementioned issues.  First, the 

oxygen-dependence of enzymatic glucose sensor response will be investigated using 

finite element analysis and an appropriate oxygen compensation technique will be 

developed.  Concurrently, a luminescence lifetime calculation technique will be 

developed that can be utilized for real-time measurement applications for both single 

and dual luminophore responses.  The future goal, outside the aims of this work, will be 

to utilize the dual response measurement technique for use with oxygen compensation of 

luminescent, enzymatic glucose sensors.  The research performed to achieve these aims 

as well as further background information will be provided herein. 
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As mentioned, development of an oxygen compensation method for enzymatic 

glucose sensors was performed in silico.  A model for a luminescent, enzymatic glucose 

sensor using a hydrogel matrix will be developed using COMSOL, a finite element 

analysis modeling software.  With this model, different properties of the sensor will be 

modified and the oxygen dependent glucose response will be determined.  After 

calibration at a range of physiologic glucose and oxygen concentrations, mathematical 

trends can then be obtained and used for oxygen compensation purposes.  The 

realization of this compensation mechanism will allow the appropriate oxygen 

dependent calibration curve to be determined by monitoring the ambient oxygen 

concentrations using a separate oxygen sensor, similar to other approaches.
18-20, 22

  Once 

the ambient oxygen concentration is determined, the appropriate calibration curve can be 

selected, allowing a more accurate prediction of glucose levels. 

A novel time-domain lifetime calculation technique will be investigated based on 

the Rapid Lifetime Determination (RLD) approach.
27-29

  This approach will utilize 

windows with dynamic widths rather than static widths used in the past.  I hypothesized 

that the Dynamic Rapid Lifetime Determination (DRLD) method will allow increased 

accuracy of lifetime over a wider range while still retaining improved calculation speed 

over traditionally used non-linear least squares calculations of lifetime.  The method 

developed will be tested and verified using an oxygen-sensitive porphyrin similar to 

those utilized in luminescent, enzymatic glucose sensors.
30-31

 

After demonstrating the feasibility of this method to determine the lifetime 

response of an individual sensor, this method will be expanded to allow the lifetime 
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measurement of two luminophores simultaneously with the goal of using this approach 

for oxygen compensation.   The Dual DRLD (DDRLD) approach will calculate the 

actual lifetimes of each sensor allowing each sensor to be calibrated individually unlike 

other multi-sensor approaches utilizing time-resolved measurements of luminescence.  

In order to implement this method, the lifetime response of each luminophore must be 

distinct in order to resolve the individual responses.  Similar to DRLD studies, the 

feasibility of DDRLD will be investigated using an oxygen-sensitive porphyrin.  Due to 

the temperature-sensitivity of porphyrins, a temperature-sensitive inorganic phosphor 

will also be used which will allow for compensation of the oxygen sensor response.  

Again, I hypothesize that DDRLD will display similar accuracy but improved 

calculation speed over traditionally used non-linear least squares lifetime calculations. 

The content of this dissertation has been organized following the logical 

progression of the aims outlined above.  Furthermore, several chapters are, of 

themselves, manuscripts that will be submitted for publication or are already in print.  

Chapter 2 gives an overview of different glucose measurement techniques that are 

currently being utilized or developed including enzymatic sensors which are of particular 

interest.  In addition, previous reports of oxygen dependent responses and compensation 

methods are discussed in this chapter.  Chapter 3 describes the modeling utilized to 

determine dependence of enzymatic glucose sensors on ambient oxygen concentrations.  

In addition, the proposed method of oxygen compensation is demonstrated.  Lifetime 

calculation techniques for both single and dual lifetime measurements are reviewed in 

Chapter 4.  In Chapter 5, the theory of DRLD is discussed and the accuracy of this 
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method is compared to other methods; chapter 6 extends this work to dual lifetime 

measurements.  Chapter 7 concludes the work performed in this dissertation and 

proposes directions for future work.  Implications of the results in the context of current 

sensing applications are also discussed. 
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2. GLUCOSE SENSOR BACKGROUND 

As of 2010, diabetes mellitus affected 25.8 million people in the United States, or 

8.3% of the population,
32

 however, this number could increase to over 30% by 2050.
33

  

This chronic disease is characterized by high blood glucose levels as a result of the 

body’s inability to produce (Type 1 diabetes) or utilize (Type 2 diabetes) insulin.  If 

blood glucose levels are not properly monitored and treated with insulin or the 

appropriate medicine, people with diabetes have the risk of developing serious health-

related complications including heart disease, stroke, hypertension, kidney disease, 

nervous system damage, and limb amputation.
32

  If not prevented, these health 

complications can double the odds of people with diabetes dying prematurely compared 

to people of similar age without diabetes.
32

 

In order to reduce the risk of these health issues monitoring of blood glucose 

levels is needed.
2, 6-7

  Through self-monitoring, patients are more likely to keep their 

blood glucose levels within or near the normal range (euglycemia).  This is often done 

by injecting insulin or taking oral medication when glucose levels are too high 

(hyperglycemia) or ingesting a sugar-containing substance when glucose levels are too 

low (hyperglycemia). 

2.1 Measurements Utilizing Finger-Lancing 

Despite the growing number of people living with diabetes and the documented 

benefits of controlling blood glucose levels, the current standard for monitoring blood 

glucose levels remains the “finger-prick” method.
1-2, 34

 This method requires lancing a 

finger up to 6 to 8 times a day so that a blood sample can be obtained for testing with a 
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glucose meter and test-strip.
1
  Due to the pain and inconvenience associated with this 

approach, patient compliance can often be low.  To overcome this issue, millions of 

dollars are spent each year developing new glucose sensor technology that is less 

invasive and more patient friendly.
6
  The ultimate goal is to develop an artificial 

pancreas that can replace the deficient pancreas of a person with diabetes.
2
 

2.2 Commercial CGMS 

Although an artificial pancreas is being researched on many fronts, a large 

amount of research time and money is being spent on developing continuous glucose 

monitoring systems (CGMS) which will allow improved glucose monitoring.
35

  

Adoption of CGMS will ultimately follow several key features including reliability, ease 

of use, and comfort.
2, 7

  With the development of an improved CGMS that meets these 

criteria, non-compliance associated with self-monitoring will become less of an issue.
2
  

Several different methods have been researched in order to achieve a working CGMS; 

the more prominent techniques will be discussed below.    

2.2.1  Electrochemical 

Most commercial CGMS currently on the market utilize enzymatic transduction 

to monitor glucose levels in the body’s interstitial fluid using a needle-type-sensor with 

an assay similar to test-strips used with glucose meters.
7
   Glucose oxidase consumes 

glucose and oxygen to produce hydrogen peroxide and glucono-δ-lactone which 

hydrolyzes to gluconic acid (Figure 1.1).  Glucose levels can then be measured 

indirectly, by monitoring hydrogen peroxide or oxygen levels amperometricallly using a 

two or three electrode system.
36-37

  Enzyme immobilization and matrix material are 
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important aspects of these and other types of sensors.
7, 37

  For example, it is important to 

slow the diffusion of glucose relative to oxygen because the concentration of glucose is 

much higher than the oxygen concentration in the body.
23

  This will reduce the oxygen-

dependence of the sensor response as well as the sensitivity.  Alternatively, different 

mediators can be used to eliminate the need for oxygen.
7, 37

 

Currently, there are 2 commercially available, FDA-approved CGMS each 

employing an electrochemical approach for glucose monitoring.  The Guardian REAL-

Time from Medtronic MiniMed and the Dexcom SEVEN PLUS provide glucose 

measurements every 5 minutes and can be used for up to 3 or 7 days, respectively.
37-38

  

Although electrochemical sensors are commercially available, they still have many 

limitations.  The response of the sensor can drift over time requiring frequent re-

calibration (generally 2 times a day).
4, 37

  Errors in glucose prediction can also occur due 

to biofouling and interference from a variety of chemicals found in the body.
2, 4, 35, 37

  In 

addition, these subcutaneous sensors are still considered invasive because they are 

connected through the skin to external electronics for an extended period of time which 

could lead to vasculature damage or infection.
7, 35

  It should also be noted that 

commercially-available CGMS are not approved to completely replace finger stick 

measurements as a means of monitoring blood glucose levels.
2
  Despite this, many other 

electrochemical sensors are still being developed that measure glucose levels through 

hydrogen peroxide formation or oxygen consumption.
14, 38-46
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2.2.2 Microdialysis 

Microdialysis is another approach currently used to measure glucose.  For this 

technique, a hollow, semi-permeable fiber is implanted subcutaneously and used to 

remove small molecules from the tissue including glucose.
7, 37

  This is done by pumping 

an isotonic fluid through the fiber which allows glucose to diffuse down its 

concentration gradient into the fiber.  The solution is then pumped to an electrochemical 

detector outside of the body for glucose measurement.  This reduces the effects of 

ambient oxygen concentration on glucose measurement.  Biofouling is also reduced but 

can still cause blockages of flow through the fiber.
37

  In addition, measurement times are 

generally slow with this approach due to the flow rate of the solution.
7, 37

  Although a 

device (GlucoDay, Menarini) using this approach is commercially available, it is 

typically utilized in a hospital setting for retrospective analysis following data collection 

for an extended period of time.
37

 

2.2.3 Reverse Iontophoresis 

Another approach utilizes reverse iontophoresis to make glucose 

measurements.
37, 47-49

  Glucose and other subcutaneous fluids are pulled through the skin 

by applying a small current across a hydrogel that is in contact with the skin.
7, 37, 50

  

Glucose is then measured outside of the body using an electrochemical approach similar 

to the ones described above.
7, 37, 50

  This approach is not as susceptible to oxygen 

fluctuations because the hydrogel is exposed to the ambient air.  In addition, biofouling 

is less of an issue because the skin acts as a natural filter.
7
   However, the current 

exposed to the tissue can cause skin irritations and the method has been shown to be 
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inaccurate (glucose concentrations in the hydrogel are 1000 times less than ISF 

concentrations) especially when sweat is present.
4, 7, 37

  A system (GlucoWatch, Cygnus) 

using this transduction method was briefly available before being removed from the 

market in 2008 due to the issues discussed above as well as long warm up times and 

frequent re-calibration.
7, 50

 

2.3 Optical Methods of Glucose Detection 

As an alternative to electrochemical sensors, optical measurements of glucose 

have been gaining interest in recent years due to their measurement flexibility and 

sensitivity.
4, 26

  Some of the optical methods that have been reported are no longer of 

interest for in vivo glucose measurements due to poor accuracy and/or low signal.  These 

include infrared spectroscopy, intrinsic tissue fluorescence, and diffuse reflectance.
4, 7, 37

  

However, many other optical measurements of glucose have shown more promise and 

continue to be researched.  Inelastic Raman scattering measurements are also being 

researched as a glucose measurement technique.  However, this approach is susceptible 

to interference from a variety of analytes.  Surface-enhancement is often utilized to 

improve the signal strength but multivariate analysis is still required.
7, 51

  Glucose levels 

can also be measured through changes in the polarimetry of light shone through a 

solution containing optically active glucose.
7
  This type of measurement is limited to the 

aqueous humor of the eye due to the loss of polarization through other tissue regions.
52-57

  

Many other optical glucose measurement techniques such as optical coherence 

tomography and photoacoustic spectroscopy are still in relatively new phases of 

development.
6-7, 58-61
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2.4 Luminescence 

In contrast to the optical methods of glucose measurement mentioned above, a 

variety of luminescence-based techniques have been investigated.  This approach is of 

particular interest because of its speed and potential for high sensitivity due to low 

background.
4, 7

  Most luminescent methods utilize proteins to transduce a signal either 

through binding or enzymatic consumption of glucose.  Proteins that can physically bind 

glucose are used for binding-based assays whereby a measurable signal is transduced 

based on conformational changes of the protein or displacement of a competing ligand.  

Enzymatic sensors, however, often measure glucose indirectly as discussed previously.  

Due to the breadth of these types of sensors, they will be discussed in more detail.   

2.4.1 Binding-Based Glucose Assays 

A variety of proteins have been utilized to develop glucose sensing assays 

including Concanavalin A, glucose-binding protein, and different apo-enzymes.  The 

different transduction mechanisms used with each protein are also quite varied although 

most use luminescence in some form.
4, 8

  In addition to proteins, boronic acids have 

shown the ability to bind glucose and be utilized in measurement assays. 

2.4.1.1 Concanavalin A 

Concanavalin A (Con A) was one of the first proteins to be used for glucose 

binding assays.  This tetrameric protein has four binding sites that can interact with 

glucose making it useful for competitive binding assays.
8
  These assays generally 

transduce a signal using a dual labeled approach
62-68

 or a single label approach.
69-71

  The 

dual label approach often utilizes Förster resonance energy transfer (FRET) where when 



 

13 

 

the donor dye is close to the acceptor dye, energy is transferred to the acceptor 

increasing its fluorescence and decreasing the fluorescence of the donor.
4, 7-8

  Binding of 

glucose to the donor-labeled Con A displaces the acceptor-labeled competing ligand 

reducing the FRET efficiency and causing a shift in emission intensity.Single dye 

approaches utilize movement of the dye, into or out of the excitation pathway.  This is 

controlled by immobilizing the non-labeled component (either the competing ligand or 

Con A) outside of the excitation pathway.  Increases in glucose concentration allow the 

labeled component to enter the excitation pathway causing an increase in measured 

fluorescence.  Although a variety of assays using Con A have been developed, they are 

susceptible to a variety of problems including low range, stability, and specificity 

issues.
8
  Toxicity may also be an issue due to agglutination of biologically relevant 

complexes,
8
 however, the risk can be reduced by carefully selecting the tissue exposure 

site and reducing the concentration of the protein.
72

 

2.4.1.2 Glucose Binding Protein 

Another binding protein often used for glucose sensors is appropriately called 

glucose binding protein or GBP.  Conformational changes in GBP upon binding glucose 

allow FRET-based assays to be used for glucose detection.
8, 73-76

  Single dye approaches 

have also been demonstrated.
74

  Much of the work done with GBP investigates ways to 

reduce the affinity for glucose because it is naturally too high to use as a useful glucose 

sensor.
8, 77-79

  Specificity is another concern with GBP because of its ability to also bind 

galactose.
8
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2.4.1.3 Apo-Enzymes 

Apo-enzymes are enzymes that have had their co-enzyme removed so that the 

enzyme can no longer consume glucose but is still allowed to bind it.
8
  Glucose oxidase, 

which has only one glucose binding site, is often used for this kind of assay.  Glucose 

measurements are made using intrinsic fluorescence of the protein
80-81

 or competitive 

binding assays similar to the ones used with Con A.
82-86

  However, there is some concern 

that apo-enzymes are only moderately stable.
8
 

2.4.1.4 Boronic Acid 

In addition to the binding proteins already discussed, boronic acids are capable of 

binding several diols including glucose.
87-113

  Glucose binding leads to a conformational 

change in the molecule allowing an optical transduction to occur through FRET, 

photoelectron transfer, or internal charge transfer.
4, 7-8

  Much of the work done on these 

types of sensors is spent on improving the selectivity of boronic acid over other diols 

including galactose, allose, mannose, and ethylene glycol.
8, 100

  Although the acid 

dissociation constant of glucose can be tuned by including electron withdrawing or 

donating groups, sensors based on boronic acid are also dependent on the ambient pH.
8
 

2.4.2 Enzymatic Sensors 

Many of the luminescent glucose sensors currently being developed utilize 

glucose oxidase (GOx) similar to commercially available electrochemical methods.  This 

enzyme is often chosen because of its fast reaction rate, reversibility, and specificity.
9
  

As seen in Figure 1.1, glucose levels can be indirectly measured through oxygen 

consumption, hydrogen peroxide, or shifts in pH (glucono-δ-lactone hydrolyzes to 
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gluconic acid).
8, 114

  Intrinsic changes in protein fluorescence can also be monitored.
8
  

Other enzymes that utilize an electron donor other than oxygen have also been used to 

monitor glucose levels but these are not as common.
8
  The reaction of GOx with glucose 

and oxygen follows the following generalized reaction scheme:   

      
      
↔       

  
→        

  
→          2.1 

        
  
→        

  
→          2.2 

where     is the oxidized form of GOx,   is glucose,      is the reduced form of GOx, 

    is glucono-δ-lactone,    is oxygen,      is hydrogen peroxide, and the    terms 

refer to the binding or reaction rates. 

2.4.2.1 Direct, Enzymatic Glucose Sensing 

Intrinsic fluorescence changes often in the co-enzyme allow glucose levels to be 

monitored directly.
7-8

  The advantage of this approach is it does not require labeling the 

enzyme with a dye.
4
  However, intrinsic fluorescence is usually weak and changes are 

often very small.
4, 8

  Direct monitoring can also be performed with a fluorescence 

quencher that competes for binding with glucose.
115

  

2.4.2.2 Indirect, Enzymatic Glucose Sensing 

Enzymatic glucose sensors typically monitor glucose levels indirectly as 

previously mentioned.  There have been relatively few luminescence methods developed 

that measure glucose through hydrogen peroxide production because there are not very 

many transduction mechanisms that allow for measurement of hydrogen peroxide.
8, 116-

118
  Many of these approaches, however, are based on recent work with quantum dots 

which are widely considered toxic without appropriate encapsulation.
119

  In addition, 
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hydrogen peroxide can be toxic to the body and the enzyme leading to decreased 

working lifetime.  To reduce these issues, catalase or another hydrogen peroxide 

consuming enzyme is often included in enzymatic sensors.
31, 120-123

  Glucose 

measurement through changes in pH is also not very common because the initial pH of 

the environment as well as the buffering range may not be known leading to 

unpredictable glucose responses.
8
  Oxygen consumption is a very common method for 

enzymatically measuring glucose levels due to the prevalence of oxygen quenchable 

dyes which provide high sensitivity, long lifetimes, and red to NIR emission.
8, 10-11, 17, 30-

31, 124
 

2.5 Oxygen-Dependence and Compensation of Enzymatic Glucose Sensors 

Although there are numerous advantages to luminescent, enzymatic glucose 

sensors, inaccurate glucose predictions can arise due to variable ambient oxygen 

levels.
18-20, 22-23

  Because the sensor response is highly dependent on reaction and 

diffusion rates of the substrates (glucose and oxygen), shifts in substrate concentration 

can easily lead to shifts in the response resulting in inaccurate glucose predictions.
23

  

This could be especially problematic for in vivo applications where oxygen 

concentrations are actually much lower than glucose levels and cannot be controlled. 

This has led many sensors to be designed such that glucose diffusion is slowed relative 

to oxygen diffusion in order to reduce oxygen-dependence of the sensor response; 

however, changes in the ambient oxygen concentration can still lead to inaccurate 

glucose predictions. 
23

  Despite this issue, there has been relatively little work on 
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methods to perform compensation for changes in the ambient oxygen concentration and 

maintain accurate glucose predictions.   

Zhang et al. were the first to investigate the oxygen-dependence problem using 

amperometric sensors.
23

  They found that by reducing the diffusion of glucose into the 

sensor, oxygen-dependence was also reduced. However, sensitivity is sacrificed in this 

process and low oxygen levels could conceivably still lead to an oxygen-dependent 

response.  Other methods to reduce the oxygen-dependent response of amperometric 

sensors include supplying oxygen internally 
125

 and circumventing the use of oxygen by 

wiring the enzyme directly to an electrode using a mediator.
126

  Despite these attempts to 

reduce oxygen-dependence, the response of these sensors is not completely independent 

of the ambient oxygen concentration.
19, 21

   

Rather than reduce oxygen-dependence of the sensor response, another approach 

is to incorporate a second sensor to monitor ambient oxygen concentrations.
18-19, 21

  This 

method is usually utilized for sensors that monitor consumption of oxygen.  This method 

was first demonstrated using luminescence by Li et al. who used a glucose sensor and a 

reference oxygen sensor in a fiber optic probe.
19

  The oxygen sensor was identical to the 

glucose sensor, with the exception that GOx was excluded from the sensing matrix.  By 

measuring the response of both sensors simultaneously, glucose levels were related to 

the difference in the oxygen concentration at each sensor.
18-19

  They also found that 

sensors with lower glucose sensitivity were less dependent on ambient oxygen 

concentrations.  Pasic et al. used a similar approach where the difference in oxygen 

concentration from the glucose sensor to a reference oxygen sensor was used to 
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determine glucose concentrations.
21

 The amount of oxygen-dependence was then 

determined by analyzing the results using Michaelis-Menten kinetics similar to previous 

methods.
127

  In all cases, this approach was only demonstrated for sensors with a linear 

response and will not be applicable for sensors with non-linear responses.   

Another approach was proposed by Wolfbeis et al. where the difference in 

oxygen concentration at the glucose sensor and at the reference oxygen sensor plays a 

key role.
22

  With this approach, however, several assumptions must be made: the oxygen 

and glucose sensor have similar oxygen responses, the difference in oxygen 

concentration between each sensor is linear with glucose levels, and this difference must 

also be proportional to ambient oxygen concentrations.  Using both linear and non-linear 

Stern-Volmer relationships and these assumptions, equations were derived that could 

calculate glucose concentrations with variable ambient oxygen concentrations.  

Although these equations were straightforward, the authors did not show any in vitro 

testing results; thus, the validity of this method has not been demonstrated. 

These methods are limited to sensors with a specific kind of response because of 

the assumptions made in the compensation algorithm.  For example, these approaches 

generally assume that the difference in the response of the oxygen and glucose is linear.  

However, this is only true for low and moderate glucose levels and cannot be used due to 

the high glucose levels associated with diabetes.
22

  If GOx levels are increased in order 

to improve sensitivity or longevity of the sensor, the linearity of this response will also 

be lost making this approach even less feasible.  Thus, a new oxygen compensation 

technique that can be applied to any glucose sensor with the aid of a reference oxygen 
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sensor will be investigated.  This technique will remove many assumptions, but will 

require more thorough calibration of the glucose sensor so that trends in the oxygen-

dependent glucose response can be found.  In principle, accurate glucose measurements 

can be made at any ambient oxygen concentration.  Once an acceptable oxygen 

compensation method has been developed, there needs to be a method to monitor the 

response of the oxygen and glucose sensor.  Different techniques for measuring 

luminescence for both single and multiple sensors will be discussed in the following 

chapters.    
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3. OXYGEN-DEPENDENCE AND COMPENSATION OF LUMINESCENT, 

ENZYMATIC GLUCOSE SENSORS 

Enzymatic sensors are considered reaction-diffusion systems because the sensor 

response is dependent on the rate of reaction as well as the diffusion of the 

substrate(s).
12, 14-17

  As mentioned above, glucose oxidase (GOx) consumes both glucose 

and oxygen, meaning the response of enzymatic glucose sensors is dependent on both 

substrates.  This makes it more difficult to predict the overall system response as 

discussed below.
15

  Electrochemical sensors are able to make the system quasi-

dependent on a single species, glucose, by slowing glucose diffusion relative to oxygen 

such that the reaction rate of GOx is limited by glucose concentration only, i.e. oxygen is 

always in excess.
23

  This can be done because electrochemical sensors monitor an 

enzymatic product, hydrogen peroxide.  Luminescent, enzymatic glucose sensors, 

however, typically monitor oxygen levels to predict glucose concentration.  This makes 

balancing the reaction-diffusion system more precarious because the sensor’s response 

must be optimized while resolving oxygen-dependence.  As discussed, investigation of 

the oxygen-dependent glucose sensor response has been limited to a few, isolated 

examples.
18-20, 22-23

  The methods reported typically rely on the measured difference 

between the response of a glucose sensor and an oxygen sensor to be linear for all 

glucose and oxygen concentrations.
18-20

  However, this will not always be the case 

resulting in inaccurate glucose predictions. 

To investigate novel methods for compensation of enzymatic glucose sensor 

response due to variations in ambient oxygen concentrations, a model was developed 
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using COMSOL Multiphysics.  This software uses finite element analysis to 

approximate solutions for a set of partial differential equations with a set of boundary 

conditions.  This allows the reaction-diffusion system of an enzymatic sensor to be 

estimated and a sensor response to be determined.
31

  By modeling the sensors with these 

simulations, the influence of a variety of parameters such as enzyme concentration and 

diffusion properties can be estimated very quickly without performing a host of in vitro 

experiments. 

3.1 Theory of Enzymatic Sensor Model 

A reaction-diffusion model was developed utilizing the finite elemental method 

(COMSOL v4.2a) to determine the steady-state response of a luminescent, enzymatic 

glucose assay immobilized in a hydrogel matrix where the base material is poly(2-

hydroxyethyl methacrylate) (pHEMA).
30

  The steady-state response of the sensor will 

depend on the enzymatic reaction rate and the diffusion coefficients of the substrates; in 

this case, glucose and oxygen.  The literature was reviewed in order to determine 

common values for these diffusion coefficients of glucose (  ) and oxygen (  ) in 

hydrogel materials which have been or could be used for immobilization of enzymatic 

glucose assays (see Table 3.1).
30, 93, 128-141

  From these data, an appropriate range of 

diffusion coefficients was determined for modeling purposes.   

Models were run using    values of 1e-15, 1e-13, and 1e-11 m
2
/s while the 

values    tested were 1e-13, 1e-11, and 1e-9 m
2
/s.  This gives a total of nine 

combinations of diffusion coefficients tested.  Modeling the glucose sensor response 

using these values will allow appropriate material properties to be determined for 
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sensors with optimal range and sensitivity.  The enzymatic reaction was determined 

using the following set of simplified reaction equations described by Gibson et al.
142

 

 
     

  
→        

  
→          

3.1 

  
       

  
→       

  
→         

3.2 

where     and      are the oxidized and reduced form of GOx, respectively,   is 

glucose,     is glucono- δ –lactone,    is oxygen,       is hydrogen peroxide and    

Table 3.1  Diffusion coefficients for glucose and oxygen reported for hydrogel materials.  

*Assuming a partition coefficient of 1. 

Material 
   (1e-10 

m
2
/s) 

   (1e-10 

m2/s) 
Reference 

Polyacrylamide 2.7 8.0 30, 132  

Poly(2-hydroxyethyl methacrylate) 
0.081 – 

0.083 
0.14 30,138, 139 

Poly(acrylamide-co-hexyl acrylate) 3.4  93 

poly(N-isopropylacrylamide) 2.7 – 4.7  128 

Nafion 
0.07 – 

0.095* 
 129 

Alginate 6.58 – 6.63  130 

Polyurethane blended with 

poly(vinyl alcohol-co-vinyl butyral) 

0.000095 - 

0.012 
 131 

Poly(hydroxylethyl methacrylate-

co-glycol acrylate> 
 0.1 – 0.5 133 

Poly(N-vinyl-2-pyrrolidone-co- 

hydroxyethyl methacrylate) 
0.01 - 6.62  134 

Polypyrrole 0.00027  135 

Cellulose 0.16  136 

poly(ethylene glycol)/poly(acrylic 

acid)  
2.5  137 

Poly(hydroxyethyl methacrylate-co-

ethylene glycol methacrylate) 

0.022 – 

0.038 
 140 

Polyvinyl alcohol 0.45 – 0.62 3.6 – 9.9 141 
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are the reaction rate values.  The reaction rates utilized were determined by first 

establishing a relationship between rate constants and temperatures using values of 

reaction constants that were previously reported for a few different temperatures.  These 

values were logarithmically transformed and plotted versus temperature, then fitted with 

linear regression to find a trend to predict rate constants at any arbitrary temperature.  

Logarithmic transformation is necessary due to the exponential dependence of the 

reaction rates as a function of temperature as defined by the Arrhenius equation.  For the 

model used, reaction rates at 37°C were estimated similar to a method performed by 

Atkinson et al.
142-145

  These fits and the values utilized can be found in Figure 3.1.  

 

Figure 3.1  These graphs show reported reaction rate constants (blue circles) for 

Equations 3.1 and 3.2 versus temperature.  Predicted values at 37°C are estimated (black 

diamonds) using linear regression (red lines) following a logarithmic transformation. 
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 The model developed was based on previously reported sensors consisting of a 

hydrogel matrix with a cylindrical geometry.
30

  The height of the sensor was 750 μm 

while the radius was 2.5 mm.  The sensing assay (i.e. GOx and an oxygen-sensitive 

porphyrin) was uniformly distributed throughout the matrix.  For simplicity, a one-

dimensional mesh was used to model the response of a sensor with this geometry.  This 

was done by assuming a symmetrical response from bulk oxygen and glucose 

concentrations and a semi-infinite boundary in the perpendicular direction, the sensor 

was modeled using a 375 μm linear mesh with a size of 0.5 μm.  Bulk glucose and 

oxygen concentrations were varied at the edge of the sensor matrix within expected 

physiological values in order to determine the expected response for a range of values. 

Glucose levels for a person with diabetes can have a wide range of values but are 

typically expected to be within 40 to 400 mg/dL (2.2 to 22.2 mM).
146

  Normal 

physiological oxygen pressure can vary from 24 mm Hg in the dermis to 100 mm Hg in 

arterial blood.
147

  These values can be converted to concentration using Henry’s law: 

  
     

3.3 

where   is the oxygen concentration,   is the oxygen pressure, and   1.is a solubility 

constant.  Using a reported   of 1.35 μM/mmHg for tissue, the oxygen concentration of 

tissue-integrating, dermally implanted smart tattoo sensors can range from 22.9 to 135 

μm O2.
148

  For modeling purposes, a range of 20 to 140 μm O2 was utilized. 

Using the defined reaction-diffusion system, the finite-element method will 

determine the steady-state oxygen concentration throughout the defined mesh for 

specified bulk oxygen and glucose levels.  Examples of the oxygen distributions 
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acquired can be seen in Figure 3.2.  As expected, in the absence of glucose, oxygen 

concentration is uniform throughout the mesh at the same concentration as the bulk (80 

μM).  However, as glucose is introduced, oxygen levels decrease from the bulk 

concentration at the edge of the mesh to lower values in the center of the sensor.  

Oxygen levels will always be higher near the edge of the matrix due to the smaller 

diffusion distance and thus faster supply of oxygen from the bulk.  However, higher 

glucose concentrations will allow more oxygen depletion inside of the matrix until the 

enzyme reaches a point where it cannot react any faster.  This leads to a saturation point 

where the lifetime response of the sensor reaches a maximum value.  The small 

 

Figure 3.2  Oxygen distributions obtained for different glucose levels for a matrix with 

   and    set to 1e-11m
2
/s, a bulk oxygen concentration of 80 μM, and a GOx 

concentration of 1.8e-10 M. 
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difference in the oxygen distribution from 200 to 400 mg/dL shows that the response of 

this sensor is near the saturation point at these glucose levels.  Although not depicted, 

under the appropriate conditions (faster glucose diffusion, higher GOx concentrations, 

and slower oxygen diffusion) oxygen levels can be depleted within the sensor matrix. 

As mentioned above, luminescent enzymatic glucose sensors can utilize an 

oxygen sensitive dye to measure the glucose response.  The luminescent response, i.e. 

lifetime, is related to oxygen concentration through the Stern-Volmer relationship: 

    
 
      [  ] 

3.4 

where    is the lifetime in the absence of oxygen,   is the lifetime,     is the Stern-

Volmer constant, and [  ] is the oxygen concentration.
149

  The Stern-Volmer properties 

utilized in this study were determined after measuring the response of a hydrogel sensor 

in vitro. Experimental details and results can be found in the following section.  

 To further characterize the modeled sensor response, the Thiele modulus was 

utilized.  This parameter is often used to describe the reaction-diffusion properties of an 

enzymatic system.
14, 16, 36, 150-151

  For glucose, the Thiele modulus is calculated using:  

     √
    [   ]

  [ ]
  3.5 

where      is the catalytic turnover rate (   in Equation 3.1), [   ] is the concentration 

of GOx,    is the diffusion coefficient for glucose, [ ] is the bulk glucose concentration, 

and   is the length of the matrix .
16

  For this study, the glucose concentration was set to 

400 mg/dL, the maximum concentration modeled, for all    calculations.  Inspection of 
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Equation 3.5 reveals that the numerator represents the maximum rate of substrate 

conversion while the denominator represents the maximum rate of substrate transport.
150

  

Thus high values for the Thiele modulus (typically > 1) indicate the system is diffusion-

limited, whereas low values (< 0.3) indicate a reaction-limited system.
15, 123, 151

  A Thiele 

modulus can also be calculated for oxygen in a similar manner:  

     √
    [   ]

  [ ]
  3.6 

where    is the diffusion coefficient for oxygen, and [ ] is the ambient oxygen 

concentration.  A value of 80 μM was utilized for all    calculations.  The ratio of the 

Thiele moduli for oxygen and glucose is also of interest for oxygen-dependence studies.  

This allowed the investigation of oxygen-dependence in relation to the relative 

diffusional properties of the system.  This ratio can be determined by: 

     
  
  
 √

  [ ]

  [ ]
 3.7 

where the catalytic turnover rate, GOx concentration, and matrix length from the original 

moduli cancel out, leaving contributions only from the relative concentrations and 

diffusivity of the two substrates. 

3.2 Oxygen Response Measurements of a Hydrogel Sensor 

Although     and    will change from material-to-material due to diffusion 

properties,
149

 the change in sensitivity to oxygen is expected to be minimal compared to 

dependence on enzymatic reaction rate and diffusion properties.  Thus, to simplify 
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modeling and reduce the number of in vitro experiments, single values for     and    

were utilized for all cases.   

The values utilized for these parameters were determined for a sensor similar to 

one previously reported.
30

  To make this hydrogel, a solution was made by combining 2-

hydroxyethylmethacrylate (HEMA, Polysciences, Inc.) and tetraethylene glycol 

dimethacrylate (Polysciences, Inc.) in a molar ratio of 98:2.  Then 250 μL of this 

solution was mixed with 2.5 mg of the photoinitiator 2,2-Dimethoxy-2-phenyl-

acetophenone (Aldrich).  This was followed by additions of 100 μL of ethylene glycol 

(Sigma), 47.5 μL of de-ionized water, 100 μL of 5 mM tetramethacrylated palladium 

porphyrin dissolved in dimethyl sulfoxide (Sigma).  The porphyrin was synthesized 

using Pd(II) meso-Tetra(4-carboxyphenyl)porphine (Frontier Scientific) as a base.
*
  

After mixing, the solution was added to a mold made by an 0.03” Teflon spacer placed 

between two glass slides.  The solution was then vacuumed to remove any bubbles and 

UV polymerized for 5 minutes on each side.  The resulting pHEMA hydrogel was placed 

in a solution of dichloromethane for 24 hours and then rinsed with acetone. The gels 

were then stored in a solution of 0.01 M phosphate buffered saline (PBS) until testing 

was performed. 

The response of the sensor was tested by removing a sample from the gel using a 

2.5 mm biopsy punch.  The sample was then immobilized in a custom reaction chamber 

previously reported and the luminescence lifetime response to varying oxygen was 

determined.
152-153

  The oxygen concentration was controlled by varying the flow rate of 

 
*
 The methacrylated form of this dye was synthesized and graciously provided by Dr. Soya Gamsey of 

Profusa, Inc. 
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oxygen into a PBS solution.  Chapters 5 as well as the appendices contain further details 

about the testing and measurement system utilized.  The raw data were then analyzed 

using MATLAB (MathWorks, Inc.) to determine the oxygen response which can be seen 

in Figure 3.3.  As expected, the sensor showed a higher sensitivity to oxygen at low 

concentrations.  The Stern-Volmer quenching curve shown in the inset was fit using 

linear regression to determine    .  The values of     and    used for modeling were 

0.104 μM
-1

 and 675 μs, respectively.  

 

 

 

Figure 3.3  The lifetime response of an oxygen-sensitive palladium porphyrin 

immobilized in pHEMA.  The inset shows the resulting Stern-Volmer plot.  Error bars 

represent standard deviation with n = 10. 
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3.3 Results and Discussion 

3.3.1 Modeled Glucose Sensor Response 

Initially sensor responses were modeled using a range of diffusion coefficients 

for glucose and oxygen based on reported values for hydrogels (Table 3.1).  Three 

values were chosen for each diffusion coefficient, representing a total of nine unique 

materials with different diffusional properties, and, hence, different Thiele moduli.  

Enzyme concentration was also varied by selecting different values for    (0.1, 0.5, 1, 5, 

10, and 50).  The response curves obtained for the range of    values can be seen in 

Figure 3.4.  Each graph also shows the results of different    values tested; repeated    

values are due to the ratio of the diffusion coefficients tested (see above).  There was 

very little response seen when    was less than 1, as expected.  However, for response 

where    was 1 or larger and when    is 2 or less, the response of the sensor was also 

very low.  When    is very large (>100), the response becomes saturated at very low 

glucose concentrations (<25 mg/dL) which was observed for all    ≥  1.   These results 

indicate that provided enough GOx, there is a “sweet spot” for    that would yield a 

desirable combination of high sensitivity and response over a wide range of 

concentrations before saturation is reached.  Based on these results, diffusion 

coefficients for glucose and oxygen were both set to 1e-11 m
2
/s so that a suitable range 

and sensitivity could be produced.  Interestingly, these values are close to the reported 

values of pHEMA (Table 3.1).   

In order to have a sensor with suitable response (i.e. range and sensitivity),    

needs to be between 2 and 100 (Figure 3.4).  When    is 16.7, the GOx concentration  
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Figure 3.4  Representative glucose responses for a range of oxygen and glucose 

diffusion coefficients (represented in ratio form) as well as a range of    values. 
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plays more of a role in sensor response as seen in Figure 3.5.  Using these diffusion 

coefficients, the lifetime response for different GOx concentrations was plotted versus 

glucose concentration and fit using: 

       
 [ ]

 ⁄    3.8 

where  ,  , and   are fit parameters.  This was equation was chosen for the calibration 

curve because it showed a high goodness of fit (R
2
) with the data evaluated.  It should be 

noted that any equation can be utilized for calibration purposes (i.e. if the response 

profile follows a different shape) as long as a high quality of fit can be obtained allowing 

accurate predictions of glucose or other analytes.  However, for compensation purposes 

 

Figure 3.5  Modeled response of a sensor using different GOx concentrations and with 

   and    set to 1e-11m
2
/s and a bulk oxygen concentration of 80 μM. 
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where the fit parameters will be determined as a function of the interfering analyte, an 

equation with fewer fit parameters is desired in order to reduce overall complexity of the 

calibration.  This led to the selection of Equation 3.8 for calibration because only three 

fit parameters were required to obtain a high quality of fit. 

Due to the exponential nature of Equation 3.8, parameter   is representative of 

the percent change of the signal while   is representative of the range and sensitivity.  As 

expected, the values for   and   obtained after fitting the data in Figure 3.5 are inversely 

related for different GOx concentrations (Figure 3.6).  As   decreases, the range will 

decrease but the sensitivity will increase and vice versa.   

 

Figure 3.6  Plots of the values obtained for parameters   and   versus transformed GOx 

concentrations.  Parameters were obtained by fitting the results in Figure 3.5.  The black 

line in each graph represents the optimal GOx concentration for a range of 200 mg/dL. 
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To allow easier fitting of   and  , the GOx concentration was transformed 

logarithmically and through shifting (       ([   ])      (  ([   ]))).  Fitting 

was performed using: 

    
 

        
 3.9 

where   is either   or  ,      is the transformed GOx concentration, and  ,  , and   are 

fit parameters.  Fitting of the parameters using this equation allowed the trends in the 

range and sensitivity to be determined for a wide range of GOx concentrations.  By 

defining the range as the point at which 90% of the exponential has decayed, the optimal 

value for   can be found using: 

 

Figure 3.7  This graph shows the oxygen dependent response for three different model 

materials at four different oxygen concentrations. 
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   (      ⁄ )
 

3.10 

where   is the desired range and   is the percentage (90%).  Once      is known, the 

appropriate GOx concentration can be found using the fits for Equation 3.9.  For a 

desired range of 200 mg/dL, the optimal GOx concentration was found to be 1.62e-10 M 

using Equation 3.10. 

3.3.2 Oxygen Dependent Response of Enzymatic, Glucose Sensors 

After finding the appropriate GOx concentration (1.62e-10 M) and diffusion 

coefficients (  =  = 1e-11 m
2
/s), further sensor response modeling was performed for a 

range of oxygen concentrations.  A range of oxygen diffusion coefficients (1e-13, 1e-11, 

and 1e-9 m
2
/s) was again used to see if    would influence the response’s dependency 

on oxygen.  The results obtained can be found in Figure 3.7.  For low values of    (1e-

13 m
2
/s) and high values of    (167), the response saturates at very low glucose 

concentration indicating a low range.  At a higher value of    (1e-9 m
2
/s) or lower 

values of    (1.67), the range is much higher, but the sensitivity is too low.  When    

and    are equal (   = 16.7), however, the response is improved because it shows 

suitable range and sensitivity, similar to the results seen in Figure 3.5. 

Based on analysis of the previous data, a more extensive oxygen-dependence 

study was performed for a sensor with   =  = 1e-11 m
2
/s and a GOx concentration of 

1.62e-10 M.  This was done by modeling the sensor response for a higher resolution 

within the already specified range of glucose and oxygen concentrations (Figure 3.8).  

After modeling, the responses were again fit using Equation 3.8.  Fits were performed 
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for glucose values ranging from 40 to 400 mg/dL in order to increase the accuracy of the 

fit (   > 0.99).  It is assumed that using only the values above 40 mg/dL for the fitting is 

acceptable, as lower values will not affect the clinical treatment (i.e. sugar intake) for 

low glucose concentrations.
154

   

The trends in the fit parameters were investigated by plotting them versus oxygen 

concentration and fitting them using a 4
th

 order polynomial (     
     

     
  

      ).   The complexity of this fit was required in order to ensure a high quality of 

fit (   ≥ 0.9999) for the calibration curves.  The resulting fits of the data in Figure 3.8 

 

Figure 3.8  This graph shows the modeled sensor response for   =  = 1e-11 m
2
/s, 

[GOx]=1.62e-10 M, and a range of oxygen concentrations.  The dashed lines represent 

the fitting of the data for glucose values from 40 to 400 mg/dL. 
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using the parameter values obtained from Figure 3.9 showed good agreement with the 

data in Figure 3.8 (   > 0.98).   

The data in Figure 3.8 were then used to perform preliminary oxygen 

compensation tests by comparing the predicted glucose values with the actual values.   

To determine the predicted glucose levels, Equation 3.8 was solved for the glucose 

concentration and the lifetime values from Figure 3.8 and the appropriate parameters for 

 ,  , and   obtained from the fits in Figure 3.9 were inserted.  These predictions were 

also compared with uncompensated glucose predictions using the calibration curve 

obtained for 80 μM oxygen which is in the middle of the oxygen range tested.   

 

Figure 3.9  Fit parameters of Equation 3.8 as functions of oxygen concentration.  Blue 

circles show actual values obtained and dashed lines represent the fit.  
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 As can be seen in the Clarke error grid in Figure 3.10, many of the 

uncompensated glucose predictions fall within the C, D, and E zones indicating  

potentially dangerous errors in measurement.
154

  Compensated glucose predictions, 

however, generally fall within the A and B zones which are clinically acceptable.  It 

should also be noted that not all glucose predictions are displayed in Figure 3.10.  Due to 

the imperfect nature of the fits, some of the lifetimes used to predict glucose were 

greater than the asymptote of the exponential curve, resulting in an imaginary glucose 

prediction.  High glucose predictions (>400 mg/dL) are not shown either.  In the case of 

 

Figure 3.10  This graph shows a Clarke error grid of predicted glucose versus actual 

glucose concentrations for a range of oxygen concentrations.  Circles show values 

predicted using oxygen compensation and squares show values predicted without 

oxygen compensation, assuming calibration was performed at 80 μM. 
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oxygen compensated glucose predictions, these predictions (high and imaginary) 

occurred at higher glucose levels (≥300 mg/dL) making it less clinically relevant.  

Uncompensated glucose predictions, however, produced high and imaginary predictions 

for the entire range of glucose values tested but this decreased as oxygen levels got 

closer to 80 μM.   

Negative glucose values can also be predicted because the glucose curves were 

only fit from 40 to 400 mg/dL, however, this only occurred when the glucose level was 

40 mg/dL or less.  The clinical treatment in these cases would not change indicating that 

this not likely an issue.  The number of predictions that fall into each region for each 

method can be found in Table 3.2.  In order to assign a region to every prediction, the 

lines of the grid were extended for negative and high (>400 mg/dL) predictions and 

imaginary predictions were assumed to be 400 mg/dL.  These results show that glucose 

predictions without oxygen compensation are only relevant at oxygen concentrations 

near the concentration at which the calibration was performed.  These results indicate 

that compensation is necessary in order to have a viable glucose prediction.  

Table 3.2  Number of glucose predictions that fall within the respective regions for each 

Clarke error grid displayed. 

 Figure 3.10 Figure 3.11 Figure 3.13 

Region Uncomp. Comp. Uncomp. Comp. Uncomp. Comp. 

A 33 94 10 99 22 77 

B 12 4 38 0 23 20 

C 31 1 44 0 48 1 

D 10 0 2 1 2 2 

E 13 0 6 0 5 0 

% Clinically 

Acceptable 
45% 99% 46% 99% 45% 97% 
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 In order to more fully test the viability and necessity of oxygen compensation 

for enzymatic glucose sensors, 100 glucose predictions were made with and without 

compensation.  The glucose calibration curve obtained at 80 μM was again used for 

uncompensated glucose predictions.  Random concentrations were obtained using a 

reported physiological glucose distribution (μ=133.3 and σ=72.1 mg/dL) and a uniform 

oxygen distribution from 20 to 140 μM.
146

   

 As expected, Figure 3.11 shows that oxygen compensated glucose predictions 

are much more accurate than predictions that do not consider the ambient oxygen level.  

 

Figure 3.11  This Clarke error grid shows glucose predictions obtained from random 

oxygen and glucose values.  Theoretical measurement error is not included.  Blue circles 

show oxygen compensated predictions and red squares show uncompensated 

predictions.  Markers that are filled in represent negative or imaginary glucose 

predictions (see text).  It should be noted that these values only represent the presence of 

an erroneous prediction and not an actual predicted glucose value. 
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Within physiological glucose concentrations, all predicted glucose values using 

compensation were found to be real and positive, i.e. no erroneous predictions were 

made.  However, uncompensated predictions again produced a large number of 

erroneous measurements (44 imaginary and 1 negative).  The difference in the actual and 

predicted glucose values was also plotted versus oxygen concentration, providing insight 

into the importance of oxygen compensation (Figure 3.12).  Values near zero represent 

measurements with higher accuracy; as accuracy decreases the difference moves away 

from zero on the y-axis.   

 

Figure 3.12  This graph shows the difference in actual and predicted glucose values for 

the results in Figure 3.11 as a function of oxygen concentration.  Blue circles and red 

squares again represent, oxygen compensated and uncompensated glucose predictions, 

respectively.  Markers that are filled in represent the presence of an erroneous 

measurement (see text). 
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Erroneous measurements were plotted by substituting 400 mg/dL for imaginary 

glucose predictions and 0 mg/dL for negative glucose predictions.  Compensated values 

showed a near uniform variation across the range of oxygen concentrations with some 

increase at lower oxygen concentrations which is most likely due to a loss in range at the 

lower oxygen concentrations (Figure 3.8).  The mean difference and standard deviation 

for oxygen compensated measurements was 3.3 and 12.8 mg/dL, respectively.  

Uncompensated values had a mean difference of -76.5 mg/dL and a standard deviation 

of 163.1 mg/dL.  Uncompensated glucose predictions showed a linear trend with the 

highest accuracy occurring at 80 μM as expected.  Predictions with less than 80 μM 

oxygen tended to be imaginary due to the low percent change of that calibration curve 

while predictions at higher oxygen concentrations showed a decreasing accuracy.  It is 

expected that if calibration was performed at another oxygen concentration, the results 

would be similar where the highest accuracy should occur near the oxygen concentration 

at which calibration was performed.  

 In a second test, theoretical measurement error was also introduced into the 

system to see how this would affect in vivo glucose predictions.  A pooled standard 

deviation (0.61 μs) was determined using the lifetime results in Figure 3.3 and applied to 

the lifetime response produced by the model.   In addition, an equation for random 

uncertainty was applied to the same results to obtain an oxygen measurement standard 

deviation of 2.17 μM.
155

 

When applied to the model, similar results were seen (Figure 3.13) when 

measurement error was introduced into the system as those made without measurement 
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error.  Glucose predictions did become less accurate for both cases but oxygen 

compensated predictions again showed a higher accuracy than those made without 

compensation.  One erroneous prediction (1 negative value) was made for compensated 

glucose predictions while 50 measurements (47 imaginary, 3 negative) were erroneous 

for uncompensated predictions.  The trends  in accuracy as a function of oxygen 

concentration also showed results similar to those in Figure 3.12 but with slightly lower 

accuracy overall.  The average difference and standard deviation for oxygen 

 

Figure 3.13  This Clarke error grid shows glucose predictions obtained from random 

oxygen and glucose values.  Theoretical measurement error was also considered.  Blue 

circles show oxygen compensated predictions and red squares show uncompensated 

predictions.  Markers that are filled in represent negative or imaginary glucose 

predictions (see text).  It should be noted that these values only represent the presence of 

an erroneous prediction and not an actual predicted glucose value. 
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compensated glucose predictions was -0.9 and 41.2 mg/dL, respectively.  

Uncompensated predictions had a mean and standard deviation of -103.9 and 162.5 

mg/dL, respectively.  

3.4 Conclusions 

The inaccuracy of enzymatic, glucose sensors due to variability in the ambient 

oxygen concentration was demonstrated in silico.  This is a major concern for in vivo 

applications (i.e. self-monitoring of blood glucose levels) where oxygen levels are 

expected to vary.  To overcome this issue, a technique for compensation using an 

oxygen dependent calibration curve was described where the appropriate calibration 

curve was selected based on ambient oxygen concentration.  Using this approach, 

glucose predictions were found to be more accurate than uncompensated predictions 

over a wide range of ambient oxygen concentrations.  Despite the extensive calibration 

that will be required in vitro before implementation in vivo, the improvement in accuracy 

outweighs this drawback.   This oxygen compensation technique addresses a limitation 

of current enzymatic, glucose assays and could also be utilized to improve the accuracy 

of other enzymatic assays.   
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4. BACKGROUND ON TIME-RESOLVED MEASUREMENTS OF 

LUMINESCENCE
*
 

As already mentioned, luminescence is an attractive transduction method for 

measuring sensor response due to its inherent measurement flexibility and sensitivity 

over other types of transduction, specifically electrochemical.
4, 156

  Luminescent sensors 

have been reported for a variety of analytes including oxygen, pH, and temperature.
114, 

157
  The response of these sensors is typically determined by measuring the intensity, 

anisotropy, or lifetime of the luminophore following excitation.
24, 149

 

In the past, intensity measurements have been primarily used to measure 

luminescent sensor response due its simplicity.
24, 114, 158

  In order for intensity 

measurements to be utilized, they must be independent of any other factor except the 

concentration of the analyte.
159

  However, this is not often the case leading to 

inaccuracies in analyte measurement. 
24, 159

   Many of these inaccuracies are attributed to 

the measurement of the intensity in relative units which are difficult to compare without 

some standard or reference measurement.
24

  For example, reproducibility from 

instrument-to-instrument is often difficult to achieve due to variability within the 

hardware itself.  In addition, fluctuations in light source intensity or detector sensitivity 

can lead to erroneous measurements.
24, 160-161

   Errors can also arise from the sensors due 

to non-homogenous distributions, sensor-to-sensor variations in concentration, and 

photobleaching of the luminophore.
158, 162

  Background signal caused by scattering or 

autofluorescence can also lead to inaccuracies.
24

  

 
*
 Reproduced in part with permission from Collier, B. B.; McShane, M. J. J. Lumin. 2013, 144. 180-190.  

Copyright 2013 Elsevier. 
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 To reduce the instrument-related problems, several wavelength ratiometric 

approaches have been developed.
152, 163

  These approaches either utilize a dual emitting 

dye where the peaks respond in opposite directions (i.e. the intensity at one wavelength 

increases while the other decreases) or two luminophores, one of which is an insensitive 

reference (i.e. remains constant) and the other is sensitive to the desired analyte (Figure 

4.1).
164

 Due to the self-referencing nature of these kinds of sensors, the results are 

generally more reproducible from instrument-to-instrument.
24

  However, photo-

bleaching is still a concern for two luminophore systems because the time-dependent 

rate can be different for each luminophore utilized.
24

  Thus if one luminophore bleaches 

faster than the other luminophore, drifts in the ratiometric response will occur.  

Temperature-dependent quenching will also be different for each luminophore again 

leading to a drift in the response as the ambient temperature changes.
24

  In addition, the 

 

Figure 4.1 A) Diagram of an intensity-based ratiometric response where P1 is the peak of 

an insensitive reference and P2 is the analyte sensitive luminophore.  B) Another 

intensity-based ratiometric response where both P1 and P2 respond to the analyte of 

interest but in opposite directions. 
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sensor-related issues discussed above (e.g. variations in concentration from sensor-to-

sensor) will remain an issue with ratiometric systems utilizing two luminophores.  

Although this is less of an issue for dual-emitting or self-referencing luminophores, 

luminophores with the appropriate spectral and sensing properties may not be available. 

Measurements of luminescence anisotropy can also be utilized by exciting a 

luminophore with polarized light.
24, 149

  Analyte-dependent rotational diffusion of the 

luminophore allows measurements of the degree of polarization or anisotropy to be used 

for sensing applications.
24

  Anisotropy can overcome some of the issues of intensity 

measurements; however, this technique is still susceptible to inaccuracies due to 

scattering and any diffusional restriction (e.g. rigid immobilization) of the dye will lead 

to a loss in sensitivity.
24

 

Measurements of the luminescence decay rate or lifetime are of interest because 

they are not susceptible to the errors that hinder intensity and anisotropy 

measurements.
24

  This is because the lifetime response if independent of the 

luminophore concentration and not sensitive to the optical parameters of the 

instrumentation.
24

  In addition, background signal due to scattering or auto-fluorescence 

is often not an issue because these events are present for only a few nanoseconds while 

most luminescent indicators have longer lifetimes (tens of nanoseconds to greater than a 

millisecond).
24

  Lifetime measurements can either be made in the time-domain (TD) 

with pulsed excitation light or in the frequency-domain (FD) with intensity-modulated 

light.  TD-based approaches are attractive for in vivo measurements because they are less 

affected by short-lived scattered excitation light or tissue autofluorescence than FD 



 

48 

 

measurements.  These background signals can be removed in the FD also, but require 

measurement at multiple frequencies which is time consuming.
149, 165-166

 

In addition, the long lifetimes of the luminophores utilized for oxygen and 

glucose sensing allow luminescence decays to be recorded in a single measurement 

rather than re-built using time-correlated single photon counting TCSPC which is often 

used for imaging applications.
149, 161

  The long lifetimes also prevent the need for 

deconvolution of the luminescence from the excitation signal or any instrument 

response. 

Some of the more applicable lifetime calculation techniques will be discussed 

below, but further review of other lifetime calculation techniques for mono- and dual-

exponential decays can also be found elsewhere.
149, 165, 167

 

4.1 Numerical Analysis 

The lifetime of a mono-exponential decay can be calculated using a variety of 

methods including linear and non-linear least squares analysis (LLS and NLLS, 

respectively), the phase-plane method (PPM), the maximum likelihood estimator (MLE), 

the maximum entropy method (MEM) and the rapid lifetime determination (RLD) 

method.
149, 167-170

  Of these methods, NLLS is most often utilized but relies on several 

assumptions and can require extensive computational power making it unsuitable for 

real-time applications.
25, 149, 171-173

  In addition, NLLS does not guarantee a suitable 

solution for the lifetime which can be dependent on the initial guess of the parameters 

for the fit.
25, 173

  Accuracy can be improved by using weighted least-squares analysis 

whereby data points with lower standard deviation are given higher priority towards 
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fitting which is often done in cases where the standard deviation across the data set is 

variable but in a predictable manner.
174

  However, when using a weighted approach, it is 

often assumed that the weights are known exactly which is usually not the case.  If the 

data are improperly weighted, inaccuracies can occur.
175-176

  A closed form solution for 

the lifetime can also be obtained by transforming the data logarithmically (after 

background subtraction) and using LLS analysis.
27, 173

   Usually only a portion of the 

decay is analyzed after logarithmic transformation because errors can occur due to 

inaccurate baseline levels.
29, 177

  Weighting of the response is typically utilized with this 

method which again must be chosen carefully.
178-179

  Lifetime calculations using the 

Guggenheim method eliminate the need for background correction by plotting the 

logarithmic transform of the difference between equally-spaced, paired data points.
177

  

This and other numerical analysis techniques have given way to NLLS analysis, 

however. 

More recently developed techniques tend to utilize window integration to 

perform lifetime calculation.  This is done by dividing the decay data into separate bins 

or windows which are then summed.
171, 180

  Integration can also be performed in real-

time using CCD cameras.
181

  Different methods utilizing window integration are 

discussed below. 

4.2 Phase-Plane Method 

The Phase-Plane Method (PPM) developed earlier by Demas et al. was one of 

the earliest methods to utilize window integration to calculate lifetimes.
182

  This 

approach transforms data obtained using windows and determines the lifetime by finding 
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the slope of a line (Figure 4.2A).  Although this method has been used as a means of 

deconvolution from the excitation signal,
180, 182

 it has also been adapted by Moore et al. 

for study of mono-exponential decays.
171

  The primary equation of interest for this 

approach is: 

 
 ( )    

 

 
 ( )    4.1 

where  ( ) is the integrated values for each window over time and   ( ) is 

approximated by averaging the   value on each side of the interval ((       ) 

(   )).  The plot of  ( ) vs.  ( ) gives data which can be fit using LLS to find the 

values for the lifetime,   and the initial intensity,  .  Error analysis of the PPM was 

performed by Greer et al.
180

  They found the precision and accuracy of PPM to be 

similar to LLS but for mono-exponential decays only.   Jezequel et al. were able to 

demonstrate lifetime measurements in the presence of scattering media by expanding the 

 

Figure 4.2  A) Multi-window technique utilized to determine lifetimes with the PPM and 

MLE methods.  B) Representation of a two-window approach for RLD lifetime 

calculations.  The variables   ,   , and    refer to the start time, integrated intensity and 

initial intensity of the     window.  The length of the window is represented by   . 
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method to examine bi-exponential decays.
183

  They were able to show repeatable lifetime 

measurements when different levels of scattering were introduced.   

4.3 Maximum Likelihood Estimator 

Hall et al. developed the maximum likelihood estimator (MLE) approach to 

determine the lifetime of a probe using integration of several windows similar to PPM 

(Figure 4.2A).
184

  In the equation below, the left-hand side consists of the lifetime,  , and 

the pre-determined sampling parameters while the right-hand side is a function of the 

collected data: 

   (      )    ( 
  
   )

  

 (  )
  ∑   

 

   

 4.2 

where   is the total number of windows,    is the total number of counts,    is the 

number of counts in the     window, and   is the total collection time. Once the data 

have been collected, an iterative solver is used to calculate the lifetime.  This approach 

was found to provide faster calculations and produce similar results compared to NLLS.  

When the signal level was low, MLE even provided more accurate calculations than 

NLLS.
171, 179, 184-186

 

4.4 Rapid Lifetime Determination  

First introduced in 1984 by Woods et al., the rapid lifetime determination or 

RLD method is able to calculate the lifetime of a decay using only two or three windows 

(Figure 4.2B).
29

  The standard approach utilizes two windows to calculate the lifetime,  , 

using:  
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  (     )
 4.3 

where    is the window length,  and    is the integrated intensities for the     

window.
27

  If the background level is unknown and nonzero, a third window may be 

incorporated into the calculation.
28-29

  Because iterative approaches are not utilized, this 

method is significantly faster than LS analysis, allowing real-time sampling of the 

luminophore lifetime.
27, 29

  However, the accuracy of the lifetime calculation has been 

shown to be dependent on the length of the window with respect to the lifetime.
27, 187

  

Waters et al. developed a method to determine the optimal window length based on the 

mean expected lifetime for a dynamically changing luminophore to reduce the effects of 

this problem.
188

 Sharman et al. also determined that overlapping the windows improves 

accuracy of the calculation.
181

 Collier and McShane recently demonstrated a method that 

utilizes windows with dynamically changing lengths; compared to the static window 

lengths previously used.  This real-time adjustment of windows leads to improved 

lifetime accuracies over a wide range of lifetime values.
153

 

Following the development of RLD, several iterative approaches utilizing two 

windows have also been developed.  Rather than implement both windows following the 

end of excitation, Chan et al. developed the Square-Wave RLD (SWRLD) method 

which applies one window during the excitation of the luminophore and one 

immediately following.
187

  They found the precision of this method comparable NLLS 

and superior to the standard RLD approach.  Chan et al. also developed a generalized 

RLD (GRLD) approach that utilizes two overlapping windows of unequal length 

implemented following probe excitation.
189

  Again, this method showed improved 
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accuracy over standard RLD calculations.  Both of these methods, however, require an 

iterative solver which leads to increased computation time compared to RLD.
153

 

Moore et al. compared several of these window-based approached and found the 

precision of MLE, PPM, and GRLD was much better than standard RLD.
171

  They also 

showed that PPM is susceptible to systematic errors at large sampling times which can 

be reduced by increasing the number of windows used.  MLE was found to have 

consistently lower standard deviations than the other methods; however, both MLE and 

RLD were susceptible to errors due to non-zero baselines. 

4.5 Dual-Exponential Lifetime Decay Response Measurement Techniques 

Much like single sensor responses, NLLS is often used to calculate lifetimes 

when multiple emitters are present; in this case, multi-exponential fits are applied 

(similar to equation 12).  In addition, the luminescence acquisition method required for 

multi-exponential response in the TD is often not different than the method used for 

mono-exponential responses, making them easier to implement than multi-luminophore 

FD approaches.  However, in order to distinguish the lifetimes of multiple luminophores, 

they need to be temporally-distinct.
181

 

Hradil et al. developed one of the first methods to utilize temporally-distinct 

luminophores for dual lifetime calculations that does not require multi-exponential LS 

analysis.
190

  This method was utilized for temperature compensation of an oxygen 

sensing film.  In order to resolve the response of both luminophores, the decay time of 

the longer-lived luminophore is approximately three orders of magnitude longer than the 

other luminophore (Figure 4.3).  This is necessary in the TD in order to ensure the 
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contribution from    is constant while measuring the response of    and while measuring 

the response of   , the response of    has decayed to zero.  The response of the longer-

lived luminophore is sampled after a delay to prevent any contamination from the 

shorter-lived luminophore.  NLLS is then used to determine each lifetime.  

In addition to NLLS, the RLD approach has been also been expanded for multi-

exponential decay calculations by Sharman et al.
181

  Similar to RLD for mono-

exponential decays, two windows for each luminophore are used and are applied either 

contiguously or overlapping (Figure 4.4).  The ratio of the    to    for this approach, 

 

Figure 4.3  Depiction of TD decays for two temporally-distinct dyes with lifetimes of 5 

and 1,000 μs.  Inset is of the same decays but at a smaller period to show the decay of 

the shorter-lived luminophore and the nearly constant signal of the longer-lived 

luminophore. 
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however, needs to be at least 2; the precision of the measurement is reduced as the 

lifetimes get closer.
181

  The calculations for this dual RLD approach, however, are more 

complicated than the traditional RLD calculation and the method seems to be susceptible 

to measurement noise.
191

  

Another method that utilizes the principles of RLD is the Dual Lifetime 

Determination (DLD) method developed by Nagl et al.
156, 162, 192

  Similar to the scheme 

used by Hradil, the probes must be temporally-distinct; however, this method utilizes the 

standard RLD calculation to determine the lifetime rather than NLLS.  Two pairs of 

windows are required (one for each lifetime calculation), where the second pair is 

 

Figure 4.4  Example of a contiguous, equi-width window implementation of dual RLD 

lifetime calculations. 
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applied following decay of the shorter-lived luminophore to zero.  It is important to note 

that the longer-lived luminophore does not necessarily give a constant signal during 

measurement of    as long as the mixed signal behaves monotonously with regards to 

the analyte of interest; this reduces the temporal-distinction requirements of the 

luminophores.  The response was also shown to be heavily dependent on the window 

width utilized.
156

  Stich et al. applied this method for oxygen and temperature sensing 

while also implementing a spectrally separated pH probe to measure three analytes at 

once.
192

 

Becker et al. have developed a unique method to simultaneously record the 

response of a fluorescent probe and a phosphorescent probe.
193

  Using a pulsed laser 

 

Figure 4.5  This is a depiction of the pulsed excitation and emission of a dual 

fluorescence and phosphorescence measurement. 
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with a high repetition rate, they were able to excite both probes simultaneously (Figure 

4.5).  Between excitation pulses of a pulse train, fluorescence decay measurements are 

made (again assuming constant signal from the phosphor).  During the pulse train, 

however, phosphorescence steadily builds up due to its long decay time.  After 

completion of the pulse train, phosphorescence measurements are made.  Lifetime 

calculations are then made using NLLS.  
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5. DYNAMIC RAPID LIFETIME DETERMINATION
*
 

Luminescent sensing and characterization have become widely researched areas 

in biomedical, environmental and food industries because of their ability to provide 

greater sensitivity and measurement flexibility when compared to electrochemical 

analysis schemes.
4, 156

  In the past, intensity measurements have been predominantly 

used to measure analyte concentrations or physical properties; however, these methods 

are susceptible to many sources of error including photobleaching, drift in light source 

intensity, and variations in dye concentrations from sensor to sensor.
156, 194

  These issues 

can be overcome by measuring the rate of luminescence decay or lifetime which is 

independent of the intensity (see Chapter 4 for more details).
195-196

 

Although lifetime measurements can be made using either time-domain or 

frequency-domain techniques, the former can be advantageous because of its ability to 

easily eliminate scattering and shorter lifetime fluorescence from calculations.  For 

example, many proteins found in the body, including collagen and elastin, are known to 

emit nanosecond lifetimes which can effect lifetime calculations of the dye.  In addition, 

time-domain methods have been shown to have a higher precision than frequency-

domain methods especially at lower intensities.
195, 197

  Traditionally, linear and non-

linear least-squares fittings have been used to determine the lifetime during time-domain 

measurements but these methods require extensive computing power due to the large 

number of iterations required to arrive at an accurate estimate.
25, 173

  The lifetimes 

calculated with fittings are also dependent on the initial guesses for each parameter.
25

  If 

 
*
 Reproduced with permission from Collier, B. B.; McShane, M. J. Anal. Chem. 2012, 84. 4725-4731. 

Copyright 2012 American Chemical Society. 
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the initial guesses are not relatively close to the true values, convergence of the fit will 

take more time.  A complex fit can also lead to the selection of the fit parameters at their 

local minima leading to biased estimates.
25

  

To overcome these limitations, several groups have investigated alternative 

processing techniques using gate- or window-sums to calculate lifetimes.
27-29, 181, 188-189

  

The rapid lifetime determination (RLD) method utilizes two windows of equal width 

applied over the decay of a luminophore.
27

  By summing over the width of the window, 

the lifetime can be determined using: 

 
  

  

   (     )
 5.1 

where    is the window width and    and    are the sums for windows 1 and 2, 

respectively (Figure 5.1).  This calculation is much faster than the traditional fitting 

methods but can still be susceptible to errors which occur because a single static window 

width is oftentimes not optimal for lifetimes much shorter or longer than the widths.
27-28, 

181, 188
  For example, this becomes especially problematic for sensing applications where 

dynamic lifetimes of a wide range are utilized.  In order to overcome this problem, 

several methods have been developed in order to appropriately select the window width 

and increase the accuracy of lifetime calculations.  These methods maintain the 

advantage of speed over NLLS but are still limited in range because of the static window 

width.
27-28, 181, 188

   

The original two window-based method, referred to here as the contiguous RLD 

(CRLD) method, utilizes windows of equal width run back-to-back to calculate the 
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lifetime.
27

  The second window of the overlapping RLD (ORLD) method, however, 

begins before the first one ends.
181

  Both of these methods utilize Eqn. 1 to calculate the 

lifetime.  However, the generalized RLD (GRLD) method, utilizes overlapping windows 

of different width which requires a different equation to the calculate lifetime.
189

 

For the current work, rather than use a window with a static width, a computer-

based algorithm to dynamically determine the appropriate window width is evaluated. 

After collecting the data, I hypothesize the lifetime response will then be calculated with 

increased accuracy compared to those methods with a static window width. In practice 

this method will only be limited by the sampling frequency and the number of data 

 

Figure 5.1  Diagram of the basic RLD lifetime determination approach with contiguous 

windows of equal width. 
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points recorded over time, but in theory this method could calculate the lifetime of any 

response.  As with NLLS, however, a larger range of possible lifetimes will lead to an 

increased number of iterations performed and increased computation time.  This 

approach is based on the original two-window RLD where the windows are contiguous 

and of equal width, but will be applicable to a much more extensive range because the 

window widths are allowed to change dynamically as the lifetime changes.  

5.1 Theory 

The optimal window width for lifetime determination is usually described by the 

ratio of the window width,   , to the lifetime,  .27-28, 181, 189
  Ballew and Demas initially 

proposed an optimal ratio for contiguous RLD near           and other groups later 

describe an optimal region from 1 to 3     .27, 181, 189
  To implement DRLD, the ratio of 

window-sums can be correlated to       by re-arranging Eqn. 1: 

 
  

  
  
  

  
  

5.2 

where   is the ratio of the window-sums.  The optimal range for      can then be 

plugged into this equation to get the corresponding optimal range for  .  When 

performing the calculation for data that exhibit significant changes in  , the window 

widths should be adjusted for every lifetime calculation until   is within the optimal 

range or another termination condition is met.   

To implement a dynamic window change, the window width can be adjusted by 

multiplying the previously calculated lifetime by a value that lies in the middle of the 

chosen optimal range of     .  The window size is initially set to a small value so that a 
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maximum window change is only used for increases in window width.  Maximum 

window widths and maximum window changes are also implemented to prevent 

programming errors.  Protection from negative   values, which can occur when the 

decay shows low signal-to-noise ratio, should also be implemented in this algorithm.  

The lifetime is re-calculated until   is in the optimal range, the maximum width is 

reached, or a maximum number of loops has been reached.  A flow-chart of the entire 

algorithm can be seen in Figure 5.2 and an example of the code can be found in 

Appendix C.   

 

 

Figure 5.2  Simplified low chart of dynamic windowing algorithm operation. 
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5.2 Experimental Details 

5.2.1 Lifetime Techniques 

In addition to DRLD and NLLS, the three other static windowing methods 

described previously were used for comparison of lifetime calculations.  The width of 

the windows for CRLD was set to      ̅ which was previously determined to be the 

optimal width for this method where  ̅ is the mean expected lifetime.
188

  Two variations 

of the ORLD method were utilized to calculate the lifetime.  Both utilize a second 

window start time of      ̅ but the window widths were to set to 0.5 ̅ and 1 ̅ for ORLD1 

and ORLD2, respectively.  For GRLD, the equation below was adapted from the original 

equation to incorporate an initial delay of the window start times: 

   
  
 
   (     )     (   )

   (   )      
 5.3 

where   is the fractional delay of    in terms of   ,   is the fractional delay of    

(relative to   ) in terms of   , and   is the width of    in multiples of   . Using an 

iterative solver,   is solved for and then plugged into: 

 
  

  

 
 5.4 

to obtain a lifetime.  The width of    or    was set to      ̅ because an optimal value 

was not previously determined.  Other iterative window-summing methods for lifetime 

calculation are available but often require 10 or more windows.  This number of 

windows means greater complexity and increased computation.  These methods will not 

be compared here but have been elsewhere.
171, 185-186

  For calculations performed, an 

initial delay of window start times was set to 0.8 μs in order to eliminate back-scattered 
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excitation light from the lifetime calculations.  This delay represents a single data point 

collected for each decay (based on the sampling rate) and will not affect lifetime 

calculations or optimal window widths.  Theoretical implementation of each of these 

methods can be seen in Figure 5.3.   

5.2.2 Modeled Lifetime Responses 

Initial modeling investigated the possible calculation errors in static window 

width methods. If a dynamic windowing algorithm is not used and the lifetime response 

changes dramatically, a large error may be observed.  From our calculations, if the 

 

Figure 5.3  Theoretical implementation over three different lifetimes of the four static 

window methods utilized to compare to DRLD.     is represented by a light colored box 

and    is represented by a dark colored box.  Any overlap of the windows is represented 

by a shade in between the two window colors. 
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lifetime response was 25 μs and the windows were 37.6 μs (     = 1.5) the calculated 

lifetimes would have a very good accuracy and repeatability as indicated by a mean 

modeled lifetime calculation of 24.8 μs and a standard deviation of 0.322 μs (n = 10, 

SNR = 10).  However, if the lifetime were to suddenly change to 250 μs, the precision of 

the measurement is greatly reduced as seen by modeled calculations with a mean 

lifetime of 264.2 μs and a standard deviation of 39.2 μs (n = 10, SNR = 10). 

To test the algorithm described above, a lifetime profile was designed in 

MATLAB (Mathworks, Inc.) to simulate a real-time response and test the ability of 

different window-summing lifetime calculation methods to calculate a range of lifetimes.  

A decay for each lifetime was simulated with a SNR of 10 (Figure 5.4), and each of the 

five methods were used to calculate  .  The residuals and R
2
 values for each method 

were also calculated to determine the accuracy of each method.  

5.2.3 Custom Lifetime Measurement System 

 A custom time-domain lifetime measurement system was developed to 

experimentally demonstrate the DRLD technique. For luminophore excitation, a fiber 

optic green LED (530 nm peak, Industrial Fiber Optics, Tempe, AZ) was utilized with a 

driver circuit (see Appendix A) to improve the operating speed (ns rise and fall times) of 

the diode.  The circuit consisted of a transistor and resistors and capacitors.  

Luminescence detection was performed using an avalanche photodiode module (APD, 

C5460, Hamamatsu). Two plano-convex lenses (LA1951-A, Thor Labs) were used to 

collect the luminescence from a bifurcated fiber bundle and focus it onto the active area 

of the APD. A long-pass filter (3RD620LP, Omega Optical) was also used to reduce 
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interference from back-scattered excitation light. A data acquisition board (USB-6259, 

National Instruments) was used to provide an excitation signal to the LED and collect 

the emission signal with a sampling rate of 1.25 MHz. Custom control programs were 

also developed using LabVIEW development software (National Instruments). A 

diagram of the system and its components can be found in a previous publication as well 

as in Appendix A.
198

 

 During dynamic response testing and decay collection, a 40 Hz rectangular 

excitation signal was used to excite the luminophore and 40 raw decays were summed to 

yield one decay for lifetime calculations.  A background signal was also collected at 40 

Hz for 1 second before each excitation and subtracted out of the summed decay.  A total 

 

Figure 5.4  Examples of modeled luminescence decays with an SNR of 10. 
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of 25 summed decays were obtained for each steady-state response.  The summed 

decays with background subtracted out will henceforth be referred to only as decays. 

To implement DRLD, the initial window width was set to 10 μs and the 

maximum number of loops was set to 10.  The maximum window change allowed for 

one loop was set to 50 μs and the maximum window width allowed was set based on the 

1000 μs total acquisition time.  The windows were also delayed 0.8 μs from the end of 

the excitation pulse in order to reduce error from back-scattered excitation light.  Most 

importantly, the range of      was chosen to be from 1 to 2, giving   the corresponding 

range of 2.7 to 7.4. 

5.3 In Vitro Testing and Comparison 

Oxygen sensors were exposed to six different oxygen concentrations in random 

order during testing.  Although real-time calculations were obtained using the proposed 

dynamic windowing algorithm (data not shown), 25 luminescence decays for each 

oxygen concentration were also saved for post-processing to compare the accuracy and 

computation time required for the various methods.  As a standard for comparison, 

lifetimes were calculated with a mono-exponential fit using a non-linear least-squares 

(NLLS) solver.  These lifetimes were determined first and utilized to determine  ̅ by 

averaging the lifetime at the minimum and maximum concentrations measured.  This 

value was used for other lifetime calculation methods to determine the appropriate 

window width.  Mean R
2
 values were obtained for the fittings at each oxygen 

concentration.  The SNR at each concentration was also determined by dividing the 

mean NLLS lifetime by the standard deviation.  The NLLS values were considered as 
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the archetype lifetime measurements and were used to determine the accuracy of the 

other methods.  Programs for each different lifetime calculation were written using 

MATLAB and computation time of each lifetime calculation was determined using the 

tic and toc functions. 

5.3.1 Oxygen Sensors and In Vitro Experimental Setup 

Porous, amine-modified silica microspheres (YMC America, Inc., 10.3 μm 

average diameter, 13.1 nm average pore diameter) were used as the sensor matrix. 

Palladium(II) meso-Tetra(4-carboxyphenyl) porphine (PdP, 710 nm peak emission) from 

Frontier Scientific was utilized as an oxygen-sensitive luminophore to create oxygen 

sensors by covalently coupling to the silica microspheres using a procedure described 

elsewhere.
152

 The particles were then immobilized on a glass slide for testing. Two mass 

Table 5.1  Calculated R
2 

values for the simulated profile. 

Method 

R
2
 for 

Simulated 

Profile 

NLLS -- 

DRLD 0.996 

CRLD 0.888 

ORLD1 0.966 

ORLD2 0.989 

GRLD 0.992 
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Figure 5.5  The lifetimes calculated for each window-sum based method in response to a 

simulated profile can be found in the top portion of each graph while the residuals of 

those calculations can be found on the bottom. The black line represents the simulated 

lifetime for each point in time. 
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 flow controllers and a controller (1179A and PR4000, MKS Instruments) were used to 

mix nitrogen and compressed air as a means to control dissolved oxygen concentration 

in the phosphate buffered saline solution which was used to perfuse oxygen sensors and 

validate the response.  An amperometric oxygen sensor was also used to monitor the 

dissolved oxygen concentration (PA2000, Unisense).  A peristaltic pump (Masterflex 

7550-50, Cole Parmer) was used to deliver the buffer solution to the sensors. 

5.4 Results and Discussion 

 From the simulated response profile (Figure 5.5), all of the methods appear to be  

Table 5.2  Lifetimes calculated using different window-summing techniques for 

simulated decays with different SNR.  Values in parentheses represent one standard 

deviation for n=10. 

Lifetime  

(μs) 
SNR CRLD ORLD1 ORLD2 GRLD DRLD 

50 

5 
49.89 

(2.52) 

48.58 

(1.90) 

50.06 

(1.68) 

49.00 

(3.17) 

50.61 

(2.83) 

10 
50.65 

(1.79) 

50.31 

(0.97) 

49.64 

(1.15) 

49.84 

(1.15) 

50.16 

(1.56) 

20 
50.05 

(0.65) 

50.05 

(0.47) 

49.85 

(0.27) 

49.04 

(0.49) 

49.93 

(0.45) 

150 

5 
151.75 

(14.69) 

150.3 

(13.24) 

145.88 

(5.07) 

144.72 

(5.33) 

148.09 

(6.24) 

10 
143.55 

(13.39) 

152.49 

(7.8) 

149.98 

(4.56) 

146.34 

(3.93) 

148.89 

(4.9) 

20 
150.91 

(3.74) 

150.07 

(2.74) 

150.69 

(0.98) 

147 

(1.02) 

149.5 

(1.12) 

250 

5 
305.99 

(119.69) 

238.65 

(44.99) 

241.85 

(16.66) 

238.64 

(6.49) 

253.52 

(8.7) 

10 
263.71 

(56.8) 

260.81 

(36.11) 

257.05 

(13.25) 

241.24 

(8.81) 

246.99 

(7.61) 

20 
257.01 

(13.51) 

252.7 

(7.14) 

251.61 

(5.34) 

241.7 

(1.96) 

249.99 

(2.64) 
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very accurate at low oxygen concentrations; that is, when the windows are able to cover 

most of the decay.  However, at higher oxygen concentrations, DRLD and GRLD were 

the only methods to keep a high accuracy, as indicated by the high R
2
 values (>0.99) for 

both methods (Table 5.1).  The decrease in accuracy at higher lifetimes is a result of the 

large amount of neglected data, as suggested by Figure 5.3.  The original window-sums 

technique, CRLD, had the worst accuracy out of all of the methods and reinforces the 

limitation of fixed window widths.  This initial testing suggested that DRLD would be 

able to perform well under dynamic testing conditions. 

 

Figure 5.6  Example decays obtained from the custom lifetime measurement system for 

each oxygen concentration tested. 
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 The results from simulations that tested the effects of SNR can be found in Table 

5.2.  As expected, increasing the SNR leads to a decrease in the variability for each 

window-sum lifetime calculation method.  However, as suggested by the results in 

Figure 5.5, this does not mean that the accuracy of the calculation increases.  For 

example, the GRLD calculations for the 250 μs decay were not within one standard 

deviation of the actual lifetime for any SNR.  The DRLD method, however, was always 

within one standard deviation of the actual lifetime and showed variability that was the 

same order of magnitude or less than the other methods.  The variability for higher 

lifetime values was generally less than the other window sum methods with equal 

window width and more accurate than the GRLD method.  This suggests that the DRLD 

method is better suited to determine the lifetime response for a range of values. 

Table 5.3  R
2
 values for NLLS exponential fittings of lifetime decays and calculated 

SNR at each concentration.  Percent difference from NLLS for the different window-

summing methods is also shown for each oxygen concentration. 

[O2]  

(μM) 
R

2
 SNR 

NLLS 

Lifetime 

(μs) 

Percent Difference from NLLS 

DRLD CRLD ORLD1 ORLD2 GRLD 

0 0.97 43.2 277.07 0.680 -15.4 -13.5 -11.8 -10.0 

27.3 0.89 22.6 117.28 2.50 -10.6 -8.61 -4.68 -2.43 

52.1 0.78 15.7 91.48 0.295 -13.0 -9.30 -4.87 -0.420 

76.4 0.56 8.95 62.24 8.21 -3.77 -1.44 5.65 5.42 

101 0.51 6.45 58.45 1.49 -8.47 -2.35 2.13 2.34 

125 0.33 5.24 46.84 2.13 -1.56 -1.73 2.89 -5.38 
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Using decays experimentally obtained using the custom lifetime measurement 

system (Figure 5.6); the lifetimes were calculated for each method and plotted for 

comparison (Table 5.3, Figure 5.7).  It appears that the lifetimes calculated from the real-

time decay data follow the trends observed from to the simulated profiles.  The NLLS 

calculations did not have very high R
2
 values at higher oxygen concentrations due to 

increased quenching of the dye’s luminescence intensity which lead to a lower SNR 

(Table 5.3).  From these fittings,  ̅ was found to be 162 μs.  When comparing the  

window-summing techniques, DRLD showed a much higher accuracy than the other 

methods and was not significantly different than NLLS lifetimes (α = 0.05).  The other 

 

Figure 5.7  Lifetime response profile of the different window-sum methods compared to 

the lifetime calculated using traditional fittings.  Error bars represent 95% confidence 

interval with n=25. 



 

74 

 

methods tended to underestimate the lifetimes at lower oxygen concentrations.  GRLD 

did not show the high level of accuracy expected, especially at 0 μM oxygen, and the 

confidence intervals (uncertainty) increased with oxygen concentration.  Neither of these 

observations agrees with modeling results.  The high mean R
2
 value for the NLLS 

calculation at 0 μM suggests that the fitting calculation is correct and the decrease with 

increasing oxygen levels is most likely due to low SNR from the decays obtained.  It is 

important to appreciate that the accuracy of all static window methods is expected to 

decrease for a larger range of oxygen values.  Although larger windows can be utilized 

for GRLD to increase accuracy at lower concentrations, it would most likely result in 

decreased accuracy at higher concentrations.  The accuracy of DRLD will most likely 

increase further with a decrease in the optimal range of   but this could lead to an 

increase in computation time. 

Following investigation of lifetime accuracy, the mean computation time was 

determined for the same set of data (Table 5.4).  As expected, the non-iterative methods 

were found to be much faster than the iterative methods.  The speed of DRLD, CRLD, 

and ORLD is two orders of magnitude greater than GRLD and four orders greater than 

NLLS.  This lifetime calculation speed will allow these window-summing techniques to 

overcome their reduced accuracy by making more measurements in the same period of 

time.  For example, with high speed excitation and collection, it could be possible to 

make over 100 DRLD lifetime measurements in the time it takes to make 1 NLLS 

measurement.  

The speed and accuracy of DRLD has been shown capable of measuring a wide 
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range of lifetimes for a common oxygen sensing system.  These calculations displayed a 

high degree of accuracy and precision over a variety of oxygen concentrations.  The 

DRLD technique can be easily implemented with a wide variety of current and future 

sensor technologies for analyte measurement. 

5.5 Conclusions 

After investigation, DRLD was found to be more accurate than other window-

summing lifetime calculation techniques with fixed window sizes when a wide range of 

lifetime values were considered.  For the static window-summing methods, it is 

necessary to know beforehand the average expected lifetime to make accurate lifetime 

predictions. In contrast, DRLD is always accurate because it adjusts the window size 

and, despite this iterative approach, it is still more than one thousand times faster than 

traditional NLLS calculations.  It is noteworthy that this algorithm may also be used with 

charge-coupled device (CCD) detectors with the window change not occurring until the 

Table 5.4  Real-time computation data for each window-based lifetime measurement 

technique.  Values in parentheses represent standard deviation with n = 25. 

Method 

Mean 

Computation 

Time (ms) 

NLLS 307 (65.6) 

DRLD 0.197 (0.043) 

CRLD 0.143 (0.045) 

ORLD1 0.137 (0.010) 

ORLD2 0.149 (0.055) 

GRLD 13.6 (0.200) 
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next lifetime measurement.  This dynamic windowing algorithm can be implemented 

additional degrees of freedom, such as with overlapping windows in order to increase 

the optimal range of      or with a three-window-sum calculation which does not 

require the background signal to be measured beforehand.
28, 181

  With the aid of current 

microprocessor technology, it is anticipated that this method can be utilized within 

numerous sensing applications to enable accurate dynamic lifetime predictions using 

low-cost mobile devices. 
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6. DUAL DYNAMIC RAPID LIFETIME DETERMINATION 

Luminescent sensing has become an area of interest in a variety of industries due 

to the greater sensitivity and measurement flexibility offered over other measurement 

methods including electrochemical. 
4, 156

  Oftentimes, multiplexed sensors or multi-

sensors capable of measuring several analytes are needed for diagnostic and/or 

compensation purposes.
26

  For example, temperature compensation is often needed of 

luminescent oxygen sensors.
162, 190, 192, 199-206

  A key issue of multiplexing, however, is 

the separation of the individual sensor responses.
26

  In the past, sensors capable of 

monitoring multiple analytes or multi-sensors were measured using intensity 

measurements; however, spectral cross-talk or overlap must be avoided.
26

  Finding 

luminophores with adequate sensitivity, selectivity, and stability while still maintaining 

this spectral distinction may be difficult.
207

  Even if appropriate luminophores are found, 

additional optical hardware will be required in order to separate the emission signals 

and/or excite the respective luminophores.  In addition, intensity measurements are 

susceptible to errors due to photobleaching of the luminophore, optoelectronic drift, or 

variations in luminophore concentrations from sensor-to-sensor (see Chapter 4 for more 

details).
24, 114

  Luminescence lifetime measurements are able to overcome these problems 

by determining the rate of luminescence decay using temporally-resolved measurements 

in the time- or frequency-domain (TD and FD, respectively).  Advances in technology in 

recent years have allowed these types of measurements to become more common. 
24

  

Several methods have already been reported which temporally-resolve the 

response of multiple sensors with distinct lifetimes.  Although multi-sensor lifetime 
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measurements can be made by optically filtering the signal from spectrally-distinct 

luminophores, this again requires spectrally-distinct luminophores.
162

  As an alternative, 

many TD and FD methods have been developed which utilize luminophores with 

distinct decay times.
156, 162, 190, 192

  These and other approaches that utilize temporal-

based measurements have been recently reviewed elsewhere; only dual lifetime 

calculation techniques will be discussed herein.
165

    

Multi-lifetime calculations in the frequency-domain (FD) require phase or 

modulation measurements at multiple frequencies.  Non-linear least-squares analysis 

(NLLS) is used to fit the frequency dependent response data and determine the 

lifetimes.
149

  Fittings, however, are computationally intense and dependent on the initial 

guesses which can be an issue for highly sensitive luminophores where the lifetime and 

intensity are expected to have a wide dynamic range.
25

  The increased computational 

intensity can affect the speed of calculation and thus the real-time measurement 

capabilities.  In addition, FD calculations can suffer from errors in vivo due to scattered 

excitation light and tissue autofluorescence.  TD measurements, however, can easily 

remove these short-lived signals (typically ≤10 ns) by delaying the lifetime calculation 

of the longer-lived luminophores until after these events have decayed to zero.   

In the TD, the decay data obtained are typically fit using NLLS to a multi-

exponential curve: 

 

 ( )     
  

  ⁄     
  

  ⁄  
6.1 

where    and    refer to the initial intensity and lifetime of the response of the 

luminophore with a shorter lifetime,   .  Similarly,    and    describe the response of 
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the luminophore with the longer lifetime,   .  An example of a multi-exponential decay 

can be seen in Figure 6.1. 

 As with mono-exponential lifetime calculations, several methods have been 

developed to simplify multi-exponential lifetime measurements.  This can be done by 

separating the response of    from the combined response (Figure 4.3).  This allows 

mono-exponential calculations to be used for each response assuming the contribution 

from    is constant during the decay of    (see Figure 4.3).  This technique has been 

demonstrated with a windowed calculation technique (Dual Lifetime Determination) and 

NLLS.
156, 162, 190, 192

  However, this may not be practical in cases where the lifetimes are 

 

Figure 6.1  Diagram showing the combined response of a shorter-lived luminophore,   , 
and a longer-lived luminophore,   . 
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not different by three orders of magnitude which will result in    being dependent on the 

response of   .  A similar approach utilizes four equi-width windows, either contiguous 

or overlapping, to calculate both lifetimes without separation of the signal (Figure 

4.4).
181

  However, the accuracy of this method has been shown to be highly dependent 

on signal level
181

.
191

  The requirement of equi-width windows for both lifetime 

measurements also means lifetimes must be similar in value (      ≈  3 to 4) to ensure 

that the window width is optimal and accurate lifetimes can be calculated. 

Due to the limitations of these approaches, a new approach for dual lifetime 

calculations was investigated.  This method combines the Dynamic Rapid Lifetime 

Determination (DRLD) discussed above and a window sum correction which will allow 

accurate lifetime calculations of both dyes.  

6.1 Theory 

As an alternative to least-squares analysis, there have been several methods 

developed which utilize window-sums to determine the lifetime responses.
27-29, 171, 179-181, 

183, 185, 188-189, 208
  Window-sums are calculated by performing integration or adding the 

data found in each windowed segment.  Of the various methods reported, DRLD is of 

particular interest for dual lifetime calculations because of its speed and simplicity (see 

Chapter 5).  This method calculates lifetimes using the traditional Rapid Lifetime 

Determination (RLD) equation: 

 

  
  

   (     )
 6.2 
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where   is the lifetime,    is the window width, and       is the ratio of the window 

sums from the respective windows.
27-28

  In addition, an algorithm is used to dynamically 

select the appropriate window width.  Without such a selection algorithm, the window 

widths and start times remain constant during an experiment, leading to sub-optimal 

sampling parameters and inaccuracies in many cases.
27, 181, 188-189

  For example, windows 

that are too large will lead to sampling data that contains very little signal while 

windows that are too small will be more greatly affected by the signal noise.  However, 

by optimizing the window width, the accuracy of lifetime calculation can be improved 

 

Figure 6.2  Depiction of a dual-exponential decay and the window sums utilized to 

calculate the lifetime response using DDRLD.  The black dashed line represents the 

combined response, while the blue and red dashed lines represent response of    and   , 
respectively.  Example window sums are shown in the shaded regions.  



 

82 

 

over a wider dynamic range which is necessary for applications where the lifetime is 

expected to vary (e.g. oxygen sensitive luminophores).  In addition, this method retains 

the speed of other approaches that utilize window sums when compared to the speed of 

traditional NLLS calculations.
153

 

To calculate the lifetimes of two luminophores, DRLD is utilized for each dye 

where the windows for the calculation of    were delayed until    had decayed to zero 

(Figure 6.2).  In order to determine   , the initial intensity of    is calculated using: 

    
  

    (  
  

  
⁄ ) 

   
  ⁄

 
6.3 

where    is the lifetime calculated using Equation 6.2,    is the sampling frequency used 

during measurement,    is the time delay incorporated before sampling, and    is the 

respective window sum for each window.  The time delay was incorporated to remove 

unwanted scattering and instrument response.  After    is determined, the response of    

can be subtracted from the measured (combined) signal; the resulting decay will be 

representative of    and is used to calculate    with DRLD.  Adjustment of the window 

delay of the second set of windows to 5 times    will allow improved accuracy of the    

and subsequently improved accuracy of   .  This delay was chosen because the signal 

from    will be less than 1% of the original signal level    and thus assumed to be 

negligible during calculation of   .   
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Dual lifetime calculations are done recursively until the window delay is no 

longer changing.  The initial window delay time for the second set of windows for both  

calculation algorithms is initially set to a value greater than ten times the maximum 

expected lifetime of    (in this case 1000 μs) in order to ensure that there is not any 

contribution from    in the initial    calculation.  In addition, the maximum number of 

 

Figure 6.3  Diagram showing a simplified version of the DDRLD algorithm. 
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iterations set for each algorithm is 10 in order to prevent infinite loops in the software 

where lifetimes bounce back and forth between two values.  However, in most cases less 

iteration are needed.  A simplified algorithm for this approach, which will be referred to 

as dual DRLD (DDRLD), can be found in Figure 6.3.  An example of the MATLAB 

code used for DDRLD calculation can also be found in Appendix C.  It should be noted 

that for the algorithm to work properly, the decay of    must behave mono-

exponentially.   

6.2 Materials and Methods 

In order to evaluate the potential of this method to accurately calculate the 

lifetime response of two luminophores simultaneously, an oxygen and temperature 

sensing system was employed.  These analytes were chosen because of their biological 

significance.  In addition, temperature compensation of oxygen sensitive luminophores 

is often necessary.
162, 190, 192, 199-206, 209

  Platinum porphyrins are attractive for oxygen 

sensing due to their high sensitivity, large Stokes’ shift, good photostability, long 

lifetimes, and emission in the red to NIR wavelengths.
210-218

  Platinum(II) 

octaethylporphyrin (PtOEP) has excitation peaks close to 400, 500, and 550 nm and 

emission peaks near 650 nm.
203, 219

  The lifetime of this dye in the absence of oxygen is 

also expected to be approximately 100 μs.
219

  An inorganic phosphor, manganese(IV)-

doped magnesium fluorogermanate (MFG), was used for temperature sensing because it 

does not display oxygen sensitivity.
220

  The phosphor has an excitation peak near 400 

nm, emits at 665 nm, and has a lifetime greater than 3 ms.
220-221

  These luminophores 

were chosen because they both showed a large Stoke’s shift and can be excited with a 
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single LED at 400 nm.  The large difference in lifetime will also reduce the chance of 

inaccuracies occurring as was seen with similar approaches.
181

  The overlap in emission 

spectra is not a concern because the response from each luminophore is resolved 

temporally. 

Although DDRLD would ideally be performed with oxygen and glucose sensors 

in order to demonstrate in vitro the oxygen compensation method discussed in Chapter 

3.  However, due to the degradation often associated with enzymatic sensors, 

repeatability may be an issue.  The dual sensing system described above will serve as an 

analogue of the desired oxygen and glucose sensing system because of its simplicity and 

higher expected repeatability (due to the absence of enzymatic components).  Further 

considerations for employing DDRLD for measuring the response of glucose and 

oxygen sensors simultaneously will be discussed in Chapter 7. 

6.2.1 Modeling of Dual Exponential Decays 

Due to the large difference in lifetimes expected from PtOEP and MFG, dual 

exponential decays were also modeled using MATLAB to test the ability of DDRLD to 

distinguish decays from one another for a range of lifetimes and pre-exponential factors.  

This was done by setting    and    to 1 and 10 μs, respectively, while    and    were 

varied from 0.01 to 100 and 15 to 100 μs, respectively.  This allows for the accuracy to 

be estimated as a function of the ratios       and      .  For each possible combination 

of decay parameters, ten decays were modeled using a sampling frequency of 2 MHz 

and a signal-to-noise ratio (SNR) of 10 in order to simulate real decays obtained.  

Lifetimes were then calculated using DDRLD with the first window delay set to 1 μs and 
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the second window delay set to five times    (50 μs) which is where it ideally remain 

due to the algorithm restrictions (Figure 6.3).  Initial widths of each window pair were 

set to 10 μs.  From these data, the relative standard deviation (RSD) of each lifetime was 

determined for each set of decay parameters by dividing the standard deviation by the 

average lifetime calculated.  Absolute percent difference was also investigated by 

comparing the mean lifetime at each   and   value to the modeled value.  These 

parameters characterized the precision and accuracy of lifetime calculations, respectively 

and allowed analysis of the results to determine the optimal relative pre-exponential 

factors and lifetimes similar to previous reports.
27-28, 181, 188-189

 

6.2.2 Sensor Formulation 

PtOEP was purchased from Frontier Scientific and MFG was obtained from 

Global Tungsten & Powders Corp. (GTP Type 236).    Similar to previously reported 

oxygen sensors, polystyrene (PS, Sigma, Mw=280,000) was utilized to slow oxygen 

diffusion through the matrix leading to higher lifetimes of the oxygen-quenchable 

dye.
213, 216

  Toluene (Macron Chemicals) was used as a solvent for PtOEP and PS.  A 

Sylgard 184 silicone elastomer kit (Dow Corning) was used to make 

polydimethylsiloxane (PDMS) films for support of each phosphor during testing.   

Temperature sensing gels were made by mixing 3 mg of MFG in 2 mL of PDMS 

precursor and 200 μL of PDMS initiator.  The solution was sonicated and then placed 

under vacuum until all bubbles were removed and then poured on a glass wafer.  The 

wafer was then placed on a hot plate at 100°C to facilitate PDMS curing.  The resulting 

film was approximately 4 cm in diameter.  Although films were thoroughly mixed 
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before curing, aggregation of the phosphor was visible after curing and resulted in 

inhomogeneities in the film.  The oxygen sensing film was made using a similar 

procedure.  Fifteen μL of PtOEP solution (1 mg/mL of toluene) and 700 μL of 

polystyrene solution (250 mg/mL of toluene) were mixed with 1 mL of PDMS precursor 

and 100 μL of PDMS initiator.  After vacuuming and heat curing, the resulting film was 

again approximately 4 cm in diameter.  For individual film testing, a 2.5 mm biopsy 

punch was used to remove samples from each film for testing.  Dual sensor measurement 

was performed by cutting the previously tested films in half and placing MFG and 

PtOEP films side-by-side (Figure 6.4). 

6.2.3 Instrumentation and Measurement 

The luminescent response of each of the sensors tested was measured using a 

custom TD measurement system.
153

  Excitation of the dye was performed using an LED 

with a peak wavelength of 405 nm (LED 405E, Thorlabs).  Square wave excitation with 

a frequency of 10 Hz and a duty cycle of 0.2 was utilized.  Luminescence was detected 

 

Figure 6.4  This picture shows examples of films tested.  The sensor on the far left is an 

oxygen sensing film containing PtOEP and the sensor on the right is a temperature 

sensing film containing MFG.  The sensor in the middle consists of halves of each film 

placed side-by-side. 
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using a photo-multiplier tube module from Hamamatsu (H10721-20) after the light was 

passed through a longpass filter (3rd Millenium 620 nm, Omega Optical) using spherical 

lenses (LA-1951B).  Decays were recorded for 15 ms with a sampling frequency of 2 

MHz after the LED was turned off.  For MFG and dual film experiments, the PMT 

control voltage was set to 0.85 V.  Due to the wide range of intensities observed, a lower 

control voltage, 0.75 V, was used with PtOEP films to prevent saturation of the detector.  

During measurement, one hundred raw decays were summed to improve SNR and the 

resulting decay was used to calculate the lifetime.  Further details of this measurement 

system can be found in Appendix A. 

The gas-phase response of the sensors was measured using a custom reaction 

chamber.
152-153

  The sensing films were immobilized in the reaction chamber by placing 

them on a glass slide which was then placed inside of an incubator (Torrey Pines 

Scientific, Echotherm IN35) used to control the temperature (25 to 65°C).  Gas of 

various oxygen concentrations (0 to 21%) were exposed to the sensors by controlling 

compressed air and nitrogen flow rates using two mass flow controllers (MKS 

Instruments, 1179A) and a digital power supply (MKS Instruments, PR4000).  The total 

flow rate was held constant at 2000 standard cubic centimeters per minute while the 

contribution from each gas was varied.  All parts of the test-bench were automated and 

controlled using custom LabVIEW software (National Instruments).  Further details of 

this test system can be found in Appendix B. 

For this work, lifetime calculations for calibration purposes (single and dual 

films) were performed after data collection with MATLAB (MathWorks, Inc.).  DRLD 
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was used to calculate the mono-exponential lifetimes for individual films while lifetimes 

of dual films were calculated using DDRLD.  NLLS analysis with a mono-exponential 

fit was used to calculate lifetimes for individual films for comparison purposes.  Real-

time calculations utilizing DDRLD were performed with LabVIEW during a dynamic 

response experiment.  In order to calculate lifetimes, windows used for MFG and PtOEP 

were set to an initial width of 200 and 5 μs, respectively.  All single film experiments 

had an initial window delay of 1 μs while dual film experiments had 1 μs delay for 

PtOEP and an initial delay of 1000 μs for MFG as discussed above.   

6.2.4 Film Testing and Analysis 

Initially, individual PtOEP and MFG films were each tested in triplicate.  For 

each test, ten lifetimes were averaged for each environmental condition (i.e. oxygen 

concentration and temperature) tested.  The response of the three individual films was 

then averaged to determine the expected response from dual film measurements.  For 

MFG films, the lifetime response of MFG films was recorded at five different 

temperatures (25 to 65°C in 10° increments) using an oxygen concentration of 21%.  

Linear regression was then used to fit the averaged film responses and obtain a 

calibration for the temperature sensitive MFG response.   

To keep testing time to a minimum, calibration of the PtOEP films was 

performed at only three temperatures (25, 45, and 65°C) but for a range of oxygen 

concentrations at each temperature.  These concentrations (0, 2.625, 5.25, 10.5, and 21% 

oxygen) were skewed towards lower oxygen levels where sensitivity of the porphyrin is 
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higher.  The response at each temperature was fit with NLLS using a two-site Stern-

Volmer equation: 

 
  
 
 (

 

      [  ]
 

   

      [  ]
)
  

 6.4 

where   , is the lifetime in the absence of the quencher (in this case oxygen   ),   is the 

lifetime,   is the fractional contribution from each site, and      is the respective Stern-

Volmer constant.
19, 211, 214, 222

  After initial fittings, the fractional contribution was 

averaged and used to re-fit the data to allow more accurate temperature-dependent trends 

to be determined.  It is assumed that this value remains constant despite temperature 

changes.  The temperature-dependent trends of the parameters (  ,     , and     ) in 

Equation 6.4 were then determined using linear regression. 

As previously mentioned, dual film responses were measured using the same 

measurement system with a side-by-side approach where halves of the previously tested 

films were utilized.  Testing of the dual film response was performed similar to testing 

of PtOEP films.  The validity of DDRLD was investigated by comparing the lifetimes 

obtained from the dual films with the response of the individual films.   

A dynamic experiment was also performed to demonstrate the ability of DDRLD 

to measure the response of a dual luminescent system.  This was done by exposing the 

dual films to random, un-calibrated temperatures and oxygen concentrations.  When 

temperature was changed, the experimental setup was held there (i.e. temperature and 

oxygen was not changed) for 2 hours to ensure the temperature throughout the reaction 

chamber reached equilibrium.  Changes in oxygen concentration were only held for 15 
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minutes because the changes within the reaction chamber were almost immediate.  Dual 

lifetime measurements were recorded for the duration of this experiment and converted 

to predictions of oxygen and temperature levels after the experiment.  Although 

predictions could be made in real-time, dynamic tracking abilities could be assessed 

based on the accuracy of the lifetime responses.  This accuracy was quantified by 

 

 

Figure 6.5  Contour maps showing RSD values lifetimes calculated using DDRLD for 

modeled decays with a range of       and       values.  RSD for    is in the left graph 

while RSD for    is shown in the graph at the right.   
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calculating the percent difference for n = 10 predictions at each oxygen and temperature 

combination tested.   

6.3 Results and Discussion 

6.3.1 Results of Modeled Dual-Exponential Lifetime Calculations 

RSD and absolute percent difference values obtained after modeling DDRLD 

calculations for a range of values for       and       can be seen in Figure 6.5.  These 

graphs showed good agreement about the relative parameters needed for optimal dual 

lifetime calculations.  Accuracy appears to be highest when       is between 0.1 and 1 

where the blue regions of each absolute percent difference contour map overlap.  

Lifetime calculations are also more accurate when       is greater than 3.  RSD contour 

maps display similar trends but with a slightly larger optimal area (values represented by 

blue).   

When the relative decay parameters fall outside of this region, DDRLD suffers 

from a drastic reduction in accuracy for modeled decays with an SNR of 10.  A higher 

SNR will likely lead to wider optimal regions, but these results clearly indicate the 

limitations of this method under normal working conditions.  These results should be 

utilized to select luminophores with the appropriate lifetimes.  Intensity is less of a 

concern when selecting luminophores because it is not an inherent property of the 

luminophore and can be adjusted by changing the concentration. 

6.3.2 Calibration of Individual Film Responses 

The response of individual MFG films can be seen in Figure 6.6.  Although the 

response from film-to-film was statistically different, each response follows the same 
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general trend.  Variability may be a result of variations in the signal-to-noise ratio due to 

non-uniform dispersal in the PDMS.  The averaged response, however, showed good 

linearity (R
2
 > 0.99) with a slope of -8.28 μs/°C and an intercept of 3647.8 μs.  The 

averaged lifetimes calculated using NLLS were not significantly different than averaged 

lifetimes calculated using DRLD (α = 0.05, data not shown).  

In contrast to the MFG response, PtOEP films showed much less variability.  In 

addition, the lifetimes calculated using NLLS were on average only 0.77 μs less than 

those calculated using DRLD despite being statistically different (α = 0.05, data not 

 

Figure 6.6  This graph shows the response of three individual MFG films (Runs 1-3) and 

the averaged response.  The red dotted line represents the linear fit of the averaged 

response.  Error bars represent the 95% confidence interval with n = 10 for individual 

films and n = 3 for the averaged response. 
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shown).  The difference is most likely due to the multi-exponential nature of the decays 

for PtOEP which is often dependent on the immobilization matrix.
222-224

  Similar to 

reports of other oxygen sensitive luminophores, the oxygen sensitivity was higher at 

lower oxygen concentrations and increases in temperature lead to decreases in the 

lifetime response.
162, 190, 200

  Due to the non-linear nature (see Equation 6.4) of the 

oxygen response as well as the temperature dependency, calibration of the PtOEP films 

required more thorough analysis in order to predict oxygen concentrations accurately 

(Figure 6.7).   

 

Figure 6.7  Response of individual PtOEP films to oxygen and temperature.  Error bars 

represent the 95% confidence interval with n = 10 for individual films (Runs 1-3) and n 

= 3 for averaged data. 
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First, the Stern-Volmer plot for the response at each temperature was determined 

using the appropriate values for    (Figure 6.8).  After initial fitting using Equation 6.4, 

the mean fractional intensity,  , was found to be 0.278.  This value was used to re-fit the 

Stern-Volmer responses and the resulting trends of      and      as a function of 

temperature ( ) were found.  These values along with the temperature dependent values 

for    can be found in Figure 6.9.  The linear fits used for calibration of   ,     , and 

     all had an R
2
 value greater than 0.99.  This indicates that these trends can be used to 

estimate the oxygen concentration for all temperatures within or near the tested range as 

long as the ambient temperature is accurately predicted.  When these values were  

 

Figure 6.8  Stern-Volmer response of the PtOEP films.  The red line represents the fit 

obtained using Equation 6.4 which was used for calibration. 
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plugged into Equation 6.4 and compared to the original data, R
2
 remained greater than 

0.99. 

6.3.3 Dual Film Responses 

Following calibration of the individual film responses, the lifetimes of dual films 

calculated using DDRLD were compared to the response of individual films where the 

lifetimes were calculated using DRLD.  As can be seen in Figure 6.10, the MFG 

response calculated using DDRLD for dual film measurements was not significantly 

different than the average DRLD response for any condition tested.  Although it appears 

 

Figure 6.9  Temperature ( ) dependent trends for   ,     , and      can be seen in the 

top left, bottom left, and bottom right images, respectively.  The red lines show the 

linear fit obtained for each set of data.  The top right image shows the initial fractional 

intensities obtained where the red line represents mean value that was used to obtain 

     and     .  
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that the lifetime increases slightly with increasing oxygen concentration, this is not 

statistically significant and is actually due to a decrease in the noise as luminescence 

decays (data not shown).  Increasing delay in the windows used for    calculation, as is 

done for DDRLD calculation, results in a slight shift in the calculated lifetime.  

Improvements in SNR throughout the decay are expected to reduce this issue. 

As expected, PtOEP lifetimes calculated using DDRLD for dual film 

measurements followed the same trends as individual film data (Figure 6.11).  However, 

the lifetimes calculated for dual films were statistically different than results calculated 

for individual films.  Despite this, the average percent difference for the dual film 

 

Figure 6.10  Comparison of the MFG lifetime response for individual and dual film 

experiments where lifetimes were calculated using DRLD and DDRLD, respectively.  

Error bars represent the 95% confidence interval for n = 3 films. 
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lifetimes was only 2.04% above the expected (i.e. individual film) values suggesting 

DDRLD is still a valuable tool.  The largest percent difference, 8.41%, occurred at 21% 

oxygen and 25°C where the SNR of the response of    is the lowest compared to the 

response of   .  Overall, lifetimes calculated using DDRLD for dual film measurements 

were in good agreement with the response of individual films containing MFG and 

PtOEP. 

6.3.4 Dynamic Testing 

Using the calibration curves obtained above, a dynamic experiment was 

performed where ambient oxygen levels and temperature were predicted.  The real-time 

 

Figure 6.11  Comparison of lifetimes calculated for dual film experiments using 

DDRLD and individual film experiments where lifetimes were calculated using DRLD.  

Error bars represent 95% confidence intervals for n = 3 films. 
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temperature prediction from the MFG response compared to the temperature 

programmed into the incubator can be seen in Figure 6.12, and as expected, the MFG 

response is able to track the ambient changes in temperature.  Calculating the percent 

difference for n = 10 predictions at each concentration and temperature, the average 

percent difference for all concentrations and temperatures was found to be 0.72% 

suggesting an accurate prediction of temperature.  It is important to note that the slow 

response time observed for MFG is due to the long equilibration time of the incubator 

and reaction chamber and not the sensor film. 

Oxygen predictions performed with compensation showed a similar ability to 

 

Figure 6.12  Results of a dynamic test showing programmed and predicted temperatures.  

DDRLD was utilized to monitor the lifetime responses of the two films simultaneously.  

Temperature predictions were determined from a linear calibration curve. 
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track oxygen levels as temperature predictions; however, predictions tended to be lower 

than the actual levels (Figure 6.13).  At 15.75% oxygen, the relative error for 

compensated predictions was found to be 8.77% but at the lowest levels tested (2.1% 

oxygen), the response was off by only 0.63% (Table 6.1).  This improved accuracy at 

lower oxygen levels is due to an increase in intensity from the PtOEP resulting in a  

higher SNR.  The reduced accuracy in oxygen prediction at higher oxygen 

concentrations is due to the exponential shape of the oxygen response curve and the 

difference in PtOEP lifetimes calculated using DRLD and DDRLD (discussed above).   

 

Figure 6.13  This graph depicts the programmed and predicted oxygen concentrations 

from a dynamic test.  DDRLD was utilized to monitor the lifetime responses of the two 

films simultaneously.  A temperature compensating PtOEP calibration curve was used to 

predict oxygen levels. 
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For example, the expected response of    at 25°C and 21% oxygen is 22.3 μs, however, 

if    was measured to be 1 μs lower than the expected, the predicted oxygen 

concentration would be 22.8%.  Similarly, if the expected response of    at 25°C and 0% 

oxygen (89.3 μs) was low by 1 μs, the predicted oxygen concentration would be 0.04%.  

Table 6.1  Percent differences calculated for n = 10 predictions during the dynamic 

testing of dual film responses.  Calibration type refers to calibrations made using either 

single or dual film responses.  Uncompensated results utilized the calibration curve at 

40°C while compensated results utilize a variable calibration curve as discussed in the 

text. 

Oxygen (%) 
Calibration 

Type 
Compens. 

Temp. 

(°C) 
  

30 40 50 

2.1 

Single N 17.3 0.468 -17.8 

Single Y -2.60 0.919 -0.200 

Dual Y -4.35 -0.560 -1.59 

4.2 

Single N 18.1 4.59 -12.8 

Single Y 0.82 3.42 3.72 

Dual Y -1.17 1.46 1.65 

6.3 

Single N 20.2 6.18 -10.6 

Single Y 3.93 5.66 5.14 

Dual Y 1.61 3.10 2.14 

8.4 

Single N 20.7 6.70 -9.60 

Single Y 5.46 7.07 5.90 

Dual Y 2.64 3.75 1.84 

15.75 

Single N 21.3 9.00 -3.64 

Single Y 7.09 9.07 10.14 

Dual Y 2.16 3.04 3.04 
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These differences in predicted and actual oxygen levels indicate the greater effect 

inaccurate lifetime calculations have at higher oxygen concentrations. 

To improve the accuracy of lifetime predictions, calibration curves of the PtOEP 

response using DDRLD data from Figure 6.11 were determined (data not shown).  These 

calibration curves were then utilized to make oxygen predictions for the same 

dynamically obtained lifetimes utilized to obtain the predictions in Figure 6.13.  As can 

be seen in Figure 6.14 and Table 6.1, these results show a higher accuracy at higher 

oxygen levels than predictions made using calibrations obtained from individual film 

responses.  Again, this is due to the difference in the lifetime response calculated for 

 

Figure 6.14  Real-time dynamic oxygen predictions made using calibration curves 

obtained from a dual film PtOEP response.  The same lifetimes obtained from the 

previously described dynamic experiment were utilized. 



 

103 

 

individual and dual film measurements using DRLD and DDRLD, respectively. 

 Oxygen predictions made with temperature compensation were also compared to 

predictions made without compensation (assuming calibration was performed at 40°C).  

As expected for predictions made when the programmed temperature was 40°C, the 

compensated and uncompensated predictions have similar accuracy (Table 6.1).  

However, when the actual temperature is not 40°C, uncompensated oxygen predictions 

are much less accurate.  This demonstrates the need for temperature compensation of a 

luminescent oxygen sensor response when a range of ambient temperatures are expected. 

 Despite the inaccuracies of oxygen prediction, which could be reduced by 

improving SNR, the usefulness of this approach is evident based on the predictions for  

un-calibrated temperatures and oxygen concentrations.  It is also interesting to note that 

the oxygen predictions do not appear to be temperature dependent because the responses 

at the same oxygen concentration but different temperatures appear to be the same.   

6.4 Conclusions 

A dual dynamic rapid lifetime determination (DDRLD) algorithm was 

investigated that is able to calculate the lifetime response of two temporally-distinct 

luminophores simultaneously.  Using modeled decays, this dual lifetime calculation 

approach was found to be limited multi-exponential decays where       is greater than 3 

and       is between 0.1 and 1.  This approach was demonstrated in vitro by performing 

temperature compensation of an oxygen-sensitive porphyrin after calibrating an oxygen 

sensing film at three different temperatures and determining the linear temperature 

dependency of the calibration fit parameters.  Lifetimes calculated for dual films using 
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DDRLD were compared to lifetimes calculated for individual films using DRLD.  The 

response of the temperature sensing films was not found to be statistically different.  

Lifetimes of oxygen sensing films did display some difference but is considered to be 

quite low on average (2%).  Temperature compensation was then applied with DDRLD 

to demonstrate real-time, dynamic predictions of oxygen and temperature.   

 Individually, each of the techniques demonstrated (a compensation algorithm 

and a method for measuring two lifetimes simultaneously) can be applied to a variety of 

sensing applications.  The compensation method demonstrated will allow improved 

accuracy in oxygen measurements.  The simplicity of the approach will also lend its 

usefulness to other applications where compensation is needed to improve the accuracy 

of measurements of the desired analyte (such as oxygen compensation of enzymatic 

glucose sensors).  DDRLD can also be utilized with a variety of biomedical, 

environmental, and food industry applications due to its ability to perform real-time 

measurements without sacrificing accuracy. 
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7. CONCLUSIONS AND FUTURE WORK 

Different computational and algorithmic techniques to improve the accuracy and 

thus viability of luminescent, enzymatic sensors were proposed and demonstrated within 

this work.  These techniques will assist in the progression of these sensors toward in vivo 

use by people with diabetes. 

Due to the co-consumption of glucose and oxygen during the reaction of glucose 

oxidase (GOx), an enzyme commonly used by glucose sensors, the dependence of the 

response on ambient oxygen concentration was investigated in silico using COMSOL 

Multiphysics.  After confirmation of inaccurate glucose predictions due to variations in 

the ambient oxygen concentration, a novel compensation technique was developed and 

demonstrated.  This approach utilized a variable calibration curve where the fit 

parameters were determined as a function of oxygen levels which will be measured 

separately.  Using randomized oxygen and glucose levels based on expected in vivo 

values, glucose predictions using the proposed compensation technique and un-

compensated predictions were compared.  Even when measurement error was 

considered, compensated predictions were located within the clinically acceptable 

regions (A and B) of the standard Clarke error grid more than 95% of the time while un-

compensated predictions were within this region less than 50% of the time. 

The compensation algorithm demonstrated utilizes a variable calibration curve 

which is dependent on the interfering species.  Due to its nature, this mechanism is 

broadly applicable to a variety of enzymatic and other kinds of sensors where the 

response follows predictable trends for both analytes.  However, extensive calibration 



 

106 

 

will need to be performed for both analytes in order to understand these trends.  In 

addition, this approach may only be applied in instances where the confounding analyte 

can be measured separately from the analyte of interest.  Nevertheless, this approach will 

lead to improved accuracy of a variety of analytes in instances where confounding 

analytes are present.   

This large improvement in accuracy using oxygen compensation led to the 

investigation of a novel technique for monitoring two sensors simultaneously.  Due to 

the advantages of time-domain luminescence lifetime measurements over intensity and 

frequency-domain lifetime measurements in vivo, this approach is ideal for measuring 

the response of implantable luminescent sensors.  The development of this approach was 

first limited to the measurement of the response of a single sensor.   

Building on the principles of Rapid Lifetime Determination, the Dynamic Rapid 

Lifetime Determination (DRLD) method utilizes integration of two temporal windows in 

order to quickly calculate the lifetime response.  However, due to the inaccuracies that 

result when static window widths are used for a wide range of lifetime responses, a 

dynamic windowing approach was implemented.  This resulted in improved accuracy of 

lifetime calculations over a wider dynamic range as demonstrated by monitoring the 

response of a luminescent oxygen sensor.  In addition, DRLD displayed a calculation 

time that was six orders of magnitude less than traditional non-linear least-squares 

calculations of lifetime. 

Due to the need for measurement of ambient oxygen concentration while 

performing compensation of an enzymatic glucose sensor, DRLD was extended to 
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measurement of two lifetimes (and thus two sensors) simultaneously.  The Dual DRLD 

(DDRLD) approach requires luminophores with temporally-distinct lifetimes (at least 

three times different) in order to separate the response of each sensor.  Two pairs of 

windows are required in order to calculate the lifetime of each luminophore.  Initially, 

the lifetime and initial intensity of the longer-lived luminophore is calculated by 

delaying the second pair of windows until after the response of the shorter-lived dye has 

decayed to zero.  The response of this luminophore can then be removed from the total 

signal allowing the lifetime of the shorter-lived luminophore to be calculated.   

DDRLD was demonstrated using temperature and oxygen sensing films.  These 

analytes were chosen as a model system due to the temperature dependency of oxygen-

quenchable porphyrins.  Similar to a glucose and oxygen sensing system, a variable 

oxygen calibration curve that is dependent on the ambient temperature was utilized.  An 

inorganic phosphor was chosen as the temperature sensitive luminophore due its long 

lifetimes (~3.5 ms) and insensitivity towards oxygen.  Responses measured for films 

containing a single luminophore showed good agreement with the responses measured 

during measurement of both films simultaneously.  In the case of the inorganic 

phosphor, the single and dual film measurements were not significantly different.  

Although oxygen sensitive films did display a statistical difference (α = 0.05) in the 

response measurement for single and dual films, the average percent difference was only 

2.04%.  Using the results obtained, dynamic tracking of un-calibrated temperature and 

oxygen values was demonstrated.  As expected, compensated oxygen predictions 



 

108 

 

displayed more accuracy over a range of temperatures than un-compensated predictions 

made using a static calibration curve.   

The development of DDRLD provides a unique tool for the determination of 

multiple luminescence lifetimes which can be employed with a variety of luminescent, 

multi-analyte sensors which are often needed for compensation or diagnostic purposes.  

The variety of implementations may be limited to the ability to find luminophores or 

develop luminescent sensors (e.g. enzymatic sensors where the response is measured 

indirectly) with enough temporal-resolution between the lifetimes (see Chapter 6).  

However, it will be easier to implement sensors using DDRLD because actual lifetime 

responses are measured which allows calibration of these sensors to be performed 

individually unlike many ratiometric-based time-resolved measurements.  In addition, 

the speed of computation over non-linear least-squares calculations will allow 

implementation of this algorithm with low-cost, portable electronics.  Furthermore, the 

development of DDRLD provides a mechanism whereby oxygen compensation of 

enzymatic glucose sensors can be measured in vivo. 

Employing DDRLD to perform oxygen compensation in the future will require 

the use of two oxygen-sensitive dyes will not to be utilized; one for glucose sensing and 

one for oxygen sensing.  However, the lifetime of these luminophores must remain 

sufficiently distinct as discussed above.  This can be achieved by utilizing porphyrins 

with different metal ions (i.e. platinum and palladium) bound to the center.  Palladium 

porphyrins have been shown to have a lifetime that is an order of magnitude longer in 

the absence of oxygen than platinum porphyrins with the same structure.
219

  Assuming 
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the glucose concentration never reaches zero, the ambient oxygen concentration will 

always be greater than oxygen levels inside glucose sensors which will allow oxygen 

and glucose sensors to utilize a platinum and palladium porphyrin, respectively.  The 

glucose sensor must utilize the longer-lived palladium porphyrin because the 

consumption of oxygen within the sensor will lead to increases in the lifetime.  This will 

help ensure that each luminophore response can be resolved at lower oxygen 

concentration where the lifetimes have less temporal distinction (see below).  

 

Figure 7.1   Measured lifetime responses of a palladium porphyrin and the estimated 

lifetime response of a platinum porphyrin of the same structure and immobilized in the 

same matrix (see text).  The inset shows the response of the platinum porphyrin in 

greater detail. 
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Modeling was again utilized to predict the simultaneous response of these 

oxygen and glucose sensors.  The relative response of a platinum porphyrin to a 

palladium porphyrin with the same molecular structure and immobilized in the same 

matrix was estimated by reviewing the literature.  For both     and   , palladium 

porphyrins were found to have values that were approximately seven times larger than 

values for platinum porphyrins.
224-226

  Using this information, the response of a platinum 

porphyrin immobilized in a pHEMA matrix was estimated using the data from Chapter 3 

(Figure 7.1).   

 

Figure 7.2  Values in circles represent the modeled response of an enzymatic glucose 

sensor utilizing a palladium porphyrin to a range of glucose and oxygen values.  Lines 

are used to represent the response of an oxygen sensor utilizing a platinum porphyrin 

because the response is independent of glucose concentration.  Circles and lines with the 

same color represent the response to a specific oxygen level shown in the legend. 
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Following estimation of a platinum porphyrin response, modeling was utilized to 

determine the combined response for a dual oxygen and glucose sensing system.  Similar 

to the work performed in Chapter 3, a GOx concentration of 1.62e-10 M was utilized 

with the diffusion coefficients of glucose and oxygen each set to 1e-11 m
2
/s.  Using 

these parameters, the lifetime responses were predicted for a range of glucose (0 to 400 

mg/dL) and oxygen (20 to 140 μM) concentrations.  The results can be found in Figure 

7.2 where the line represents the expected oxygen response which is independent of 

glucose concentration and the circle markers show the expected glucose sensor response.  

As expected, the lifetime of the glucose sensor was always higher than the response of 

the oxygen sensor.  However, higher oxygen concentrations and lower glucose values 

produced lifetimes that were not sufficiently distinct as determined in Chapter 6 (Table 

7.1).  The predicted results at 0 mg/dL are not a concern because in vivo glucose levels 

are not expected to get this low.  However, glucose values greater than 40 mg/dL this 

remains an issue which will lead to less accurate glucose predictions when oxygen is 

greater than 50 μM.  This suggests that the current formulation will be viable for only 

Table 7.1  Ratio of the glucose sensor lifetime response to the oxygen sensor lifetime for 

the oxygen and glucose values modeled. Shaded areas represent values that are below 

the required ratio needed to obtain accurate results (      > 3).  

[glucose] 

(mg/dL)  

[O2] (μM) 

20 50 80 110 140 

0 2.95 1.97 1.65 1.49 1.39 

40 4.82 3.25 2.46 2.04 1.80 

100 5.08 3.89 3.18 2.71 2.37 

200 5.17 4.16 3.59 3.19 2.88 

400 5.21 4.31 3.84 3.51 3.26 
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low oxygen concentrations (< 50 μM).  However, variability and baseline oxygen 

concentrations at in vivo implantation sites are still not widely characterized, unlike 

oxygen pressure (see Chapter 3).  A better understanding of these values and additional 

tailoring of the response of each sensor will lead to improve the temporal distinction 

leading to glucose measurements with a higher degree of accuracy. 

Future work will entail the in vitro validation of the proposed method for oxygen 

compensation of enzymatic glucose sensors.  After thorough characterization of oxygen-

dependence of the sensor through testing at a range of oxygen and glucose levels, 

development of a dual sensing matrix or configuration for oxygen and glucose will be 

investigated.  I hypothesize that DDRLD can then be used in conjunction with the 

oxygen compensation algorithm to accurately predict in vivo glucose levels.  The 

development of these techniques will lead to improved glucose monitoring and thus 

reduced risk of health complications related to diabetes. 
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  TIME-DOMAIN LIFETIME MEASUREMENT SYSTEM APPENDIX A.

Different combinations of hardware have been utilized for the experiments 

described within this work.  Changes in hardware were made either in an effort to 

improve the overall system (e.g. more sensitive detectors) or to customize it for work 

with specific luminophores (e.g. different excitation/emission spectra).  For simplicity, 

only the latest version of the hardware will be described herein but the setup will be 

similar to all other configurations utilized in the past.  A generalized block diagram of 

these systems can be seen in Figure A.1. 

 

Figure A.1  This block diagram shows the general workings of the custom time-domain 

lifetime systems utilized in this work.  Green represents the pulsed excitation signal 

while red represents the luminescence emission from the sample. 



 

127 

 

A.1 Circuitry 

As can be seen in Figure A.1, a data acquisition (DAQ) board from National 

Instruments (USB-6361) is used to provide excitation signal as well as collect signals 

from the detector.  In addition to these functions, the DAQ board switches power onto 

the circuitry controlling the hardware and provides a control voltage to control the 

detector gain.  Connections from the DAQ board to the circuitry (see below) was 

performed using 4 pair shielded twisted wire.  A list of the types of connections used and 

for what purpose can be found in Table A.1 along with other signals referenced in this 

work.  Each connection will be discussed in further detail in the appropriate section 

below.  

A.1.1 Device Power 

To provide consistent power to the detector and the LED control circuit, an AC 

to DC converter (RECOM RAC15-05DA) was utilized.  This component is connected to 

a standard wall outlet in the U.S. through a three prong cable and converts the 115 V AC 

Table A.1  This table lists different signals found in the circuitry of the TD system and 

the abbreviations utilized throughout the text.  *This describes connections made 

through the DAQ board only. 

Connection Abbreviation Line Type* 

Signal input from detector VSIG Analog Input 

LED excitation signal VEX Counter 

Circuit power VON Analog Output 

Detector control voltage VC Analog Output 

Switch ground SG -- 
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to ±5 V DC.  For this device, only the +5 V signal is utilized.  A 2A fuse is also included 

on the input to protect against power surges as suggested by the manufacturer.  

To give power to the custom circuitry utilized by the system, a common NPN 

transistor (2N3904) was utilized as seen in Figure A.2.  When power is applied to VON 

 

Figure A.2  This circuit shows the use of a common transistor as a switch to turn power 

on and off to the remaining circuits. 

 

Figure A.3  This circuit is used to drive the LED and ensures that the on/off speed is 

much faster than the lifetimes measured. 
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through the DAQ board, the transistor is saturated allowing the rest of the circuit to be 

grounded through SG.  

A.1.2 Excitation Circuit 

To drive power to the LED, a fast digital drive circuit was utilized similar to one 

previously described where the capacitors in the circuit are utilized to improve the on/off 

speeds of the LED (Figure A.3).
227

  This is needed in order to make the edges of the 

square wave used for excitation as sharp as possible.  Ground for the circuit is again 

provided by the switch circuit shown in Figure A.2. 

A.1.3 Detector Connections 

The connections made for the detector can be seen in Figure A.4.  The 

decoupling capacitors shown on the control voltage and input power serve to reduce any 

noise present on these lines.  The 100 Ω resistor is needed to convert the current signal 

output from the detector into a voltage signal that is measurable by the DAQ board on 

VSIG. 

A.2 Optical Components 

Although this system is utilized to measure optical responses of luminescent 

materials, only two parts of the device utilize optical components.  The optical 

components are used for excitation of the luminophore and detection of luminescence 

following excitation.  These two sections are coupled to the sample of interest through a 

custom 2x1 fiber bundle (CeramOptec Industries, Inc.). 

A.2.1 Excitation Signal 

For the luminescence measurement of porphyrin responses, green excitation (525 
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nm) is often utilized.  In order to improve the LED intensity at the sample, a series of 

lenses with appropriate anti-reflection coatings were used to focus light from the LED 

onto the fiber bundle.  The parts utilized can be found in Table A.2. 

A.2.2 Emission and Collection 

Similar to the optics utilized for excitation of the sample, lenses were utilized to 

focus light from the fiber bundle onto the detector and increase efficiency.  Anti-

reflective coatings for the appropriate wavelengths were again utilized for the spherical 

lenses.  In addition, an optical longpass filter was implemented to ensure that any 

 

Figure A.4  The connections including decoupling capacitors and a resistor for current-

to-voltage conversion for the detector are depicted above. 
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scattered excitation light did not reach the detector.  Luminescence was then measured 

using a photomultiplier tube (PMT) because of to its high sensitivity compared to other 

detectors.  The parts utilized can be found in Table A.3.   

A.3 Software 

The system and all of its components described above are controlled by a custom 

LabVIEW (National Instruments) program or virtual instrument (VI) which allows the  

Table A.1  The parts below were utilized for the excitation optics.  All parts are 1” 

diameter components (i.e. lenses have a diameter of 1”).  Values listed with the lens tube 

refer to the length.  The parts are listed in order of the final assembly so that they can be 

re-assembled if needed. 

Part Description Part Number Company 

Green LED LED528EHP Thorlabs 

LED Mount S1LEDM Thorlabs 

0.5” Lens Tube  SM1L05 Thorlabs 

Retaining Ring SM1RR Thorlabs 

Plano-Convex Spherical 

Lens 
LA1951-A Thorlabs 

0.3” Lens Tube SM1L03 Thorlabs 

Adjustable Lens Tube SM1V05 Thorlabs 

Retaining Ring SM1RR Thorlabs 

Plano-Convex Spherical 

Lens 
LA1951-A Thorlabs 

Locking Ring SM1NT Thorlabs 

Coupler SM1T1 Thorlabs 

SMA Connector SM1SMA Thorlabs 
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user to extensively control functionality of the system.  These functions can be separated 

into several different sections described below. 

Table A.3  The parts below were utilized for the emission optics.  Unless mentioned, all 

parts are 1” diameter components (i.e. lenses have a diameter of 1”).  Values listed with 

the lens tube refer to the length.  The parts are listed in order of the final assembly so 

that they can be re-assembled if needed. 

Part Description Part Number Company 

SMA Connector SM1SMA Thorlabs 

Coupler SM1T1 Thorlabs 

Locking Ring SM1NT Thorlabs 

Threaded Union SM1T2 Thorlabs 

Retaining Ring SM1RR Thorlabs 

Plano-Convex Spherical 

Lens 
LA1951-B Thorlabs 

Retaining Ring SM1RR Thorlabs 

0.5” Lens Tube SM1L05 Thorlabs 

Retaining Ring SM1RR Thorlabs 

Longpass Optical Filter 3RD620LP Omega Optical 

Retaining Ring SM1RR Thorlabs 

Retaining Ring SM1RR Thorlabs 

Plano-Convex Spherical 

Lens 
LA1951-B Thorlabs 

1” Lens Tube SM1L10 Thorlabs 

0.5” Lens Tube SM1L05 Thorlabs 

C-Mount to 1” Lens Tube 

Adapter 
SM1A9 Thorlabs 

C-Mount Adapter A9865 Hamamatsu 

PMT H10721-20 Hamamatsu 
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A.3.1 Excitation Signal Control 

The parts of the excitation signal provided to the sample that can be controlled 

include the excitation frequency, duty cycle, number of decays collected, and the period 

between measurements.  The excitation frequency controls how fast the excitation pulses 

of the square wave occur during measurement.  The duty cycle refers to the amount of 

time the LED is on relative to the excitation period.  It should be noted that the time the 

LED is on should be long enough to allow the luminescence to reach steady state to 

improve the signal-to-noise ratio (SNR) of the decays.  Also, the length of data 

collection is typically a fraction of the time that the LED is off.  Longer sampling will 

not help because the signal will decay to zero.  To further improve the SNR of the 

luminescence decay, multiple decays were often collected and summed for a single 

lifetime calculation.  The measurement period must be greater than the number of decays 

collected divided by the excitation frequency in order to prevent overworking of the 

computer.  A depiction of these parameters can be found in Figure A.5.  

A.3.2 Data Acquisition 

The start of data collection for each decay is timed through the software to begin 

when the clock pulse used for excitation turns the LED off.  Through the software, the 

user is able to control the sampling frequency and the acquisition time.  The sampling 

frequency will be limited by the specifications of the DAQ board which in this case is 2 

MHz.  The acquisition time, however, will be limited by the amount of time the LED is 

off which is dependent on the excitation frequency and the duty cycle. 
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A.3.3 Lifetime Calculation 

After data collection, decays are sent to a LabVIEW sub-VI which calculates the 

lifetime(s) using one of the algorithms previously discussed.  Generally, the user is not 

given much control over this portion of the software because the algorithm is not 

expected to change from experiment-to-experiment.  However, the user is capable of 

choosing a delay for lifetime calculation.  This delay removes a small portion (~ 1 μs) at 

the beginning of the decay data which may have interference from scattering or 

instrumental response of the DAQ board. 

 

 

Figure A.5  This figure depicts an example of a 10 Hz excitation signal with a duty cycle 

of 0.5.  During the 0.5 s measurement period, three decays are collected for lifetime 

calculation. 
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A.3.4 Data Storage 

Following data collection, the lifetimes calculated and any other appropriate 

information such as time of measurement are written to a spreadsheet file for later 

analysis. 
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 CUSTOM TESTING BENCH APPENDIX B.

Oftentimes, the response to of luminescent sensors needs to be characterized for 

a variety of environmental conditions.  Usually this entails testing at a range of analyte 

concentrations.  In order to simplify data collection, automated test benches are often 

utilized.  These systems are pre-programmed by a user to expose the sensors to the 

desired conditions while the response is recorded and saved for later data analysis.  

Ultimately, this saves time because the user does not need to be present to constantly  

monitor the response of the sensor or manually change the environment.   

A general overview is provided for the test benches utilized in this and previous 

works (Figure B.1).
30-31, 152-153

  This includes control of three environmental conditions 

(glucose and oxygen concentration as well as temperature) and the measurement system.  

 

Figure B.1  A general diagram of the test-bench is shown with glucose, oxygen, and 

temperature control.  A computer with custom software (not shown) is used to control 

the MFCs, pumps, incubator, and the lifetime measurement system. 
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Control of the system was again performed using custom LabVIEW software (National 

Instruments).  Initially, programs were developed for each environmental element and 

the measurement system.  After validation, these programs were combined to create a 

single program which encompassed the function of each.  The sections below describe 

the hardware and software used for each environmental entity.  Details of the 

measurement system can found in Appendix A. 

B.1 Glucose Concentration Control 

As seen in Figure B, control of glucose concentration requires two reservoirs 

usually containing a phosphate-buffered saline solution.  One reservoir also contains 

glucose at the maximum concentration of interest.  Using a pump for each reservoir, 

solutions from each reservoir are combined to obtain the glucose concentration of  

interest.  This is done by holding the total flow rate constant while varying the flow rate 

from each reservoir.  For example, in order to get a concentration of 100 mg/dL for a 

reservoir concentration of 400 mg/dL and a total flow rate of 4 mL/min the buffer pump 

is run at 3 mL/min while the glucose pump is run at 1 mL/min.  The concentrations 

available will be dependent on the resolution of the pumps as well as the maximum and 

minimum flow rates.   

Three different kinds of pumps have been used in the past with this system.  

Initially, peristaltic pumps (Cole Parmer, Masterflex 7550-50 and 77800-60) were 

utilized, however, due to the need for frequent calibration, new pumps were sought.  

Positive displacement piston pumps (VICI Valco Instruments Co., M50) were then 

integrated into the system to overcome the issue of constant calibration and provide a 
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much higher resolution.  However, the stainless steel parts and the PBS solutions utilized 

are not very compatible for long-term use without rinsing frequently.  The third set of 

pumps (KNF, STEPDOS 03RC) were utilized positive displacement but with a 

diaphragm mechanism.  Although, they do not provide the resolution as the piston 

pumps, they have a higher chemical inertness for use with PBS solutions. 

Solutions were pumped through standard 1/8” tubing using ¼”-28 threaded 

ferrules (IDEX Health and Science) and the appropriate adapters when needed.  The 

sensor being tested was immobilized on a glass slide and placed in a custom reaction 

chamber that contained ports for the tubing coming from the supply reservoirs and out to 

a waste reservoir.  When the chamber was sealed a channel was formed between the top 

of the chamber and the glass slide using a gasket.  This channel allowed solution to flow 

from the supply over the sensor and out to the waste.  The chamber also has a port on the 

bottom for a fiber optic bundle (see Appendix A) to allow interrogation of the sensor. 

All three sets of pumps were controlled through USB connections on the computer and 

LabVIEW software.  The software utilized the Virtual Instrument Software 

Archietecture (VISA) in conjunction with the driver functions provided by the 

manufacturer for each pump.  The functions utilized were able to start and stop the 

pumps as well as set the flow rates which were calculated based on the desired glucose 

concentration, total flow rate, and glucose reservoir concentration. 

B.2 Oxygen Concentration Control 

Control of oxygen concentration is provided in a similar fashion as that for 

glucose.  Rather than utilize liquid pumps, two mass flow controllers (MFCs, MKS 
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Instruments, 1179A) are used to control the flow of gas.  Typically, compressed nitrogen 

and air were supplied to each MFC, however, nitrogen and oxygen can be used for a 

wider range of concentrations.  The MFCs were controlled through an intermediate 

controller (MKS Instruments, PR4000) which also provided power to the devices.  Two 

solenoid valves (Omega, SV3106) were placed inline before the MFCs because the 

MFCs are not rated for use as valves only to control flow rate.   

Using ¼” air brake tubing and the appropriate ferrules (Swagelok), gas was 

flown into the supply reservoirs and dispersed using gas dispersion tubes (Chemglass, 

CG-203-01) in the case of liquid testing.  In the case of dry testing, the gas was allowed 

to flow directly into to the reaction chamber.  USB connections and VISA commands 

were again used to control flow rates through the MFCs.  The solenoids, however, were 

controlled using a USB I/O Board (Phidgets, Inc., 1011_0) and a pair of relays (Omega, 

SSRL240AC10).  Using LabVIEW and the digital outputs of the I/O Board, the 

appropriate relays are switched on or off as needed using the AC voltage from a standard 

U.S. wall outlet.  Software provided by Phidgets, Inc. was modified in order to control 

the digital outputs.   

Dissolved oxygen concentrations can be monitored in the reservoir using an 

amperometric oxygen sensor (PA2000, Unisense).  This will ensure that the system is 

working as desired and allow measurements of the actual oxygen concentration to be 

made for calibration purposes, if necessary.  A two point calibration using air and 

nitrogen or some other inert gas is required for this device. 
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B.3 Temperature Control 

Temperature control of the system was more straightforward than the other 

environmental elements.  This was done by placing the reaction chamber inside of a 

programmable incubator (Torrey Pines Scientific, IN35).  A port on the side of the 

incubator was necessary to allow tubing for the solutions and the fiber bundle to connect 

to the reaction chamber.  The incubator was connected to a USB port on the computer 

and controlled through a VISA interface in LabVIEW.  It is important to note that while 

glucose and oxygen concentrations can be changed almost instantaneously, it takes much 

more time for the incubator to reach steady-state and even more time for the reaction 

chamber to reach that temperature throughout. 

B.4 Miscellaneous 

In case of power outages, most components were connected to an uninterruptible 

power supply (UPS) which will provide power for a period of time.  This will help 

prevent the loss of data and time since tests run using this system can take several hours 

to several days depending on the experiment. 
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 LIFETIME CALCULATION SOURCE CODE APPENDIX C.

On the following pages, the MATLAB source code for both single and dual 

dynamic rapid lifetime determination is included.  Commented lines not part of the 

function of the code begin with a percent symbol (“%”).  Each lifetime calculation 

function begins with a comment section that describes the functions purpose, the inputs 

required, and the outputs received. 

C.1 Dynamic Rapid Lifetime Determination Source Code 

% ------------------------------------------------------------------------- 
% DRLD.m 
%   Calculates lifetime and pre-exponential factor of a luminescence decay 
% 
% Syntax: 
%  
% [tau k] = DRLD(t, int, w1_delay, w_width1) 
%  
% Inputs:  
% t = time array of decay  
% int = time-dependent intensity array of decay  
% w1_delay = initial time-delay before windows are implemented 
%   (utilized to throw out back-scattered light or auto-fluorescence) 
% w_width1 = initial window width utilized 
%  
% Outputs:  
% tau = calcualted mono-exponential lifetime of decay provided  
% k = calculated pre-exponential factor of decay provided 
% ------------------------------------------------------------------------- 
  
function [tau k] = DRLD(t, int, w1_delay, w_width1) 
  
ts = 1e-6;  %magnitude of time array, in this case microseconds (1e-6) 
fs = 2e6;   %sampling frequency of time-array, 1/fs gives time resolution  
            %which is 0.5 microseconds in this case 
  
w_scale = 1.5;  %factor by which to scale windows to calculate lifetime 
range1 = 2.7;   %acceptable range of window sum ratios 
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range2 = 7.4; 
  
%convert initial window width from time to next highest indexed value 
%if not equal 
w_width1_i = ceil(w_width1*ts*fs);   
%convert window delay from time value to next highest indexed value 
%if not equal 
w1_delay_i = ceil(fs*w1_delay*ts)+1;     
%max window set based on length of time array and window delay previously 
%determined 
max_window_i = floor((length(t)-w1_delay_i)/2); 
%makes sure initial width selected is not larger than max width allowed 
w_width1_i = min(max_window_i, w_width1_i); 
  
%max number of iterations allowed before stopping, prevents infinite loops 
max_loop = 10; 
%initialize iterations number to zero 
i = 0; 
  
%loop performed until the ratio of window sums is within the desired 
%or another ending condition is met 
while(true) 
    %increment the iteration number 
    i=i+1; 
            
    %determine the start and end times for window (in indices, not time) 
    t1 = w1_delay_i; 
    t2 = w_width1_i+w1_delay_i; 
    t3 = 2*w_width1_i+w1_delay_i; 
     
    %calculate the window sums for each window and the ratio 
    w1 = sum(int(t1:t1+w_width1_i)); 
    w2 = sum(int(t2:t2+w_width1_i)); 
    R = w1./w2; 
  
    %determine the window width in time value 
    dif1 = w_width1_i/fs; 
    %calculate the lifetime using RLD equation 
    tau = abs((dif1)/log(R)); 
     
    %checks if max loop # reached or R within desired range 
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    if( (i >= max_loop) || ( (R >= range1) && (R <= range2) ) ) 
        %exit loop  
        break;       
         
    %checks for negative R value indicative of windows being too long 
    elseif(R < 0) 
        % cut window length in half 
        w_width1_i = floor(w_width1_i/2); 
  
    %check if window has reached max width but needs to be larger in order 
    %to reach optimal width 
    elseif((R < range2)&&(w_width1_i == max_window_i)) 
        %exit loop because cannot improve further 
        break; 
     
    else 
        %adjust window width based to estimated optimal value or max 
        w_width1_i = min([floor(fs*w_scale*tau), max_window_i]); 
    end 
  
end    
  
%determine actual window delay using time value 
t1 = t1/fs; 
%calculate pre-exponential factor using calculated lifetime, window delay, 
%and sampling frequency 
k = w1/(tau*(1-1/R)*exp(-t1/tau))/fs; 
%convert lifetime to appropriate magnitude 
tau = tau/ts; 
 

C.2 Dual Dynamic Rapid Lifetime Determination Source Code 

% ------------------------------------------------------------------------- 
% DDRLD.m 
%   Calculates lifetimes and pre-exponential factors of a dual-exponential 
%   luminescence decay of the form I(t) = k1*exp(-t/tau1)+k2*exp(-t/tau2) 
%   where k1 and tau1 refer to the lifetime and pre-exponential factor of 
%   the shorter-lived dye, and k2 and tau2 refer to the same parameters of 
%   the longer-lived dye 
% 
% Syntax: 
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%  
% [lt1 k1 lt2 k2] = DDRLD(t, int, w1_delay, w2_delay, w1, w2) 
%  
% Inputs:  
% t = time array of luminescence response  
% int = time-dependent intensity array of dual-exponential decay  
% w1_delay = initial time-delay before windows are implemented 
%   (utilized to throw out back-scattered light or auto-fluorescence) 
% w2_delay = initial time-delay of 2nd pair of windows, set high enough 
%   to prevent initial interference from shorter-lived luminophore 
% w1 = initial window width of 1st set of windows used for tau1 calculation 
% w2 = initial window width of 2nd set of windows used for tau2 calculation 
%  
% Outputs:  
% lt1 = calcualted lifetime of shorter-lived dye 
% k1 = calculated pre-exponential factor of shorter-lived dye 
% lt2 = calculated lifetime of longer-lived dye 
% k2 = calculated pre-exponential factor of longer-lived dye 
% ------------------------------------------------------------------------- 
 
function [lt1 k1 lt2 k2] = DDRLD(t, int, w1_delay, w2_delay, w1, w2) 
  
% maximum number of iterations to perform 
max_loop = 10; 
% maximum delay for 2nd set of windows 
max_w2_delay = 1000; 
  
%iterative loop which solves for lifetimes and pre-exponential factors  
for i=1:max_loop; 
     
    %calculate lifetime of longer-lived dye using DRLD and assigned width 
    %and delay values 
    [lt2, k2] = DRLD(t, int, w2_delay, w2); 
     
    %subtract calculated response of longer-lived dye from total response 
    %to obtain decay representative of only shorter-lived dye 
    f = int-k2.*exp(-t/lt2); 
     
    %calculate response of shorter-lived dye from new decay using DRLD 
    [lt1, k1] = DRLD(t, f, w1_delay, w1); 
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    %adjust delay of 2nd set of window to improve lifetime accuracy of both 
    %lifetimes 
    w2_delay2 = min([5*lt1 max_w2_delay]); 
     
    %if the delay does not change, optimal window widths and delays  
    %reached, break from loop 
    if(w2_delay2==w2_delay) 
        break; 
    end 
     
    %assign new delay value for next iteration 
    w2_delay = w2_delay2; 
    
end 
 
 


