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ABSTRACT

Automatic history matching methods utilize various kinds of inverse modeling

techniques. In this dissertation, we examine ensemble Kalman filter as a stochastic

approach for assimilating different types of production data and streamline-based

inversion methods as a deterministic approach for integrating both production and

time-lapse seismic data into high resolution reservoir models.

For the ensemble Kalman filter, we developed a physically motivated phase

streamline-based covariance localization method to improve data assimilation per-

formance while capturing geologic continuities that affect the flow dynamics and

preserving model variability among the ensemble of models.

For the streamline-based inversion method, we derived saturation and pressure

drop sensitivities with respect to reservoir properties along streamline trajectories

and integrated time-lapse seismic derived saturation and pressure changes along with

production data using a synthetic model and the Brugge field model. Our results

show the importance of accounting for both saturation and pressure changes in the

reservoir responses in order to constrain the history matching solutions.

Finally we demonstrated the practical feasibility of a proposed structured work-

flow for time-lapse seismic and production data integration through the Norne field

application. Our proposed method follows a two-step approach: global and local

model calibrations. In the global step, we reparameterize the field permeability het-

erogeneity with a Grid Connectivity-based Transformation with the basis coefficient

as parameters and use a Pareto-based multi-objective evolutionary algorithm to inte-

grate field cumulative production and time-lapse seismic derived acoustic impedance

change data. The method generates a suite of trade-off solutions while fitting pro-

ii



duction and seismic data. In the local step, first the time-lapse seismic data is inte-

grated using the streamline-derived sensitivities of acoustic impedance with respect

to reservoir permeability incorporating pressure and saturation effects in-between

time-lapse seismic surveys. Next, well production data is integrated by using a gen-

eralized travel time inversion method to resolve fine-scale permeability variations

between well locations.

After model calibration, we use the ensemble of history matched models in an

optimal rate control strategy to maximize sweep and injection efficiency by equalizing

flood front arrival times at all producers while accounting for geologic uncertainty.

Our results show incremental improvement of ultimate recovery and NPV values.
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NOMENCLATURE

RB/D Reservoir Barrel Per Day

Qo Standard Oil Production Rate

Qg Standard Gas Production Rate

Qg,free Reservoir Free Gas Production Rate

Rs Solution Gas Ratio

kro Oil Relative Permeability

krg Gas Relative Permeability

µo Oil Viscosity

µg Gas Viscosity

Bo Oil Formation Volume Factor

Bg Gas Formation Volume Factor

RMS Root Mean Square

OBS Observation Data

OWC Oil Water Contact

NPV Net Present Value

Np Incremental Oil Production Volume
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1. INTRODUCTION AND STUDY OBJECTIVES

In this section, first reservoir modeling is generally described. Second, history match-

ing problem is stated for the scope of this study. Finally, study objectives and the

outline of this dissertation are summarized.

1.1 Reservoir Modeling

Reservoir modeling is an essential tool for petroleum engineers and geoscientists to

approach to the uncertain subsurface phenomena. Under complex geological envi-

ronment, one needs to rely on the numerical simulation to identify or visualize the

flow dynamics in order to control or optimize the field production development.

Reservoir modeling usually begins with the exploration stage where seismic sur-

veys search for the potential reservoir location with hydrocarbon trap structures in

the subsurface. After the reservoir location and fluid types are identified from seismic

images, the reservoir simulation grid domain will be defined. After a few wells are

drilled in the early stage of production, local information such as well logging data

and core data are integrated into the model to include the stratigraphic petrophys-

ical properties such as rock permeability and porosity, the initial fluid saturation

distributions, and the hydrostatic pressure and temperature gradient profiles. At

this point the resolution of the grid needs to be determined because the scale of grid

defines the simulation model size and the computation expense. Usually, the resolu-

tion of the geological model identified by seismic data and well log data are higher

than computationally affordable resolution, we need to upscale the grid resolution in

order to conduct flow simulation. At this stage, also the spatial petrophysical prop-

erties such as permeability and porosity values at each grid needs to be populated by

utilizing geostatistical tools and conditioning the available data at well locations or
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seismic derived data away from well locations. As PVT data and core analysis data

becomes available from laboratory experiments, the rock and fluid properties such as

relative permeability curves, fluid viscosity, and rock and fluid compressibility etc.

are assigned in the reservoir model.

With the initial estimates of grid properties, rock and fluid properties and avail-

able reservoir condition data, we can initialize the reservoir equilibrium conditions

which are the primary variables of flow simulation such as fluid pressures and sat-

urations. After the production strategies are decided or planned, the boundary

conditions of production rates and pressure constraints during the simulation are

defined and finally one can conduct the reservoir simulation.

Over the decades of the development of reservoir simulation, variety of field-scale

applications are possible to this date. Multi-phase/multi component flow simulation,

geothermal simulation, CO2 sequestration and chemical flooding, fractured reservoir

and geomechanics coupling simulation are a few examples of field applications in

practice. Also, recently more complex reservoir structure needs to be modeled such

as mix of structure and unstructured grids, and this is becoming the current standard

of the commercial simulators. With the advancement of the computer capability, the

size of the model increases from multi-million cells to multi-billion-cells (Giga cell),

and such simulation is currently feasible. High performance computing with the

parallel processing and new solver algorithms also expand the capability of reser-

voir simulation to the computational limit. As the affordable simulation grid size

increases, the scale of the spatial discretization approaches to the scale of geologi-

cal model. The demand of coupling seismic data and reservoir simulation has been

increasing and petroleum engineers and geoscientists need to collaborate tightly for

developing the accurate reservoir characterization.
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1.2 History Matching

History matching is a process of reservoir model calibration by reconciling the simu-

lation responses to the actual field observation data. The aims of history matching

are identifying the sensitive reservoir model parameters in order to match the model

responses to the observation data such as production rates and pressure, reducing

the uncertainty of the model descriptions, and increasing the accuracy of model pre-

dictions for the future field development. During the process of history matching, the

previous reservoir modeling is continuously reviewed and vast amount of available

data are utilized to eliminate uncertain model assumptions and modeling mistakes.

This is a demanding process especially for the case of manual procedures of changing

model parameters. Therefore computer guided workflows are necessary to reduce

systematically the workload of the engineers in operational environment.

Over the decades of the inverse modeling development, various automatic history

matching methods have been developed. To the best of the author’s knowledge, the

majority of methods are categorized broadly into three distinctive classes; determin-

istic and stochastic, and heuristic methods.

First, deterministic methods utilize the model sensitivity which quantifies the

model changes to the model response changes and formulate the linearized equation

to solve for the optimal model changes to minimize the misfit between observation

data and simulation responses. Gradient descent is an example of this category. Sec-

ond, stochastic methods utilize the probabilistic point of view to pose the minimiza-

tion problem as maximizing a posterior probability from model prior probability with

likelihood probability via Bayes’ theorem. In the scope of reservoir history match-

ing problem, we characterize prior model probability by using multiple reservoir

models and likelihood will be estimated by each model responses with observation
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data and select or update solutions to maximize the posterior probability by any

statistical estimators. Monte Caro method is an example of this category. Third,

heuristic methods utilize computational power to search for the best combinations of

model parameters or to construct relationship between model parameters and model

responses by linking input and output of reservoir simulation and alter the model

parameters in a systematic way to reduce objective functions in the history matching

problem. Genetic algorithm is one example of this category.

There are more variants of approaches in each category and hybrid ones between

categories, but ultimately the objectives of history matching will determine which

method is suitable, and both advantages and limitations of the selected method

needs to be recognized. Some of general advantages and limitations of each category

of method are as follows.

First, deterministic methods suffer from trapping at local minima of the solution

space because the model sensitivity at local minima becomes zero and cannot im-

prove solution from there. Also the computation of sensitivity calculation needs to

be efficient to achieve fast history matching process. One advantage of deterministic

approach is the ability of incorporating model physics into model calibration. As

a result, the improvement of model can be justified by physical insights on model

changes. Second, stochastic methods suffer from computation expenses for dealing

with multiple reservoir simulation models. For a field scale model, one forward sim-

ulation time can be days or a week long and evaluations of multiple model response

are computationally demanding. Also limiting the number of model size degrades

sample statistics and fails to capture accurate posterior probability estimates. One

advantage of stochastic method is that one can introduce the prior knowledge of

the model with associated probabilities, and after calibration process, the suites of

calibrated model are available and one can easily assess the uncertainty of the model
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parameters and model predictions. As for heuristic methods, similar to stochastic

methods, they will require computational expenses to search solutions in solution

space. Therefore, identifying the sensitive parameters to model response is an im-

portant step to make the entire process efficient. One advantage of heuristic methods

is the flexibility of the application. For example, one can apply the method to cal-

ibrate any parameters even for the situation in which the physics in the system is

difficult or unknown.

1.3 Research Objectives and Dissertation Outline

This research focuses on developing efficient history matching methods for produc-

tion data and 4-D seismic data. Specifically, the developments of automatic his-

tory matching methods are ensemble Kalman filter as the stochastic method and

streamline-based inversion technique as the deterministic method. Main objectives

of this research and corresponding sections of this dissertation are as follows.

• Develop and validate a phase streamline-based localization method of ensemble

Kalman filter for history matching production data (Section 2)

• Develop and validate streamline-based fluid saturation and pore pressure sen-

sitivity calculation algorithms and integrate seismic derived saturation and

pressure map data into reservoir models (Section 3)

• Generate and validate acoustic impedance data by processing a real field seismic

amplitude data and utilize a petro-elastic model to simulate acoustic impedance

accounting for pressure and saturation effects (Section 4)

• Develop a structured workflow for a real field application of 4-D seismic and

production history matching and apply the developed streamline-based inver-

sion algorithms (Section 4)
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2. USE OF PHASE STREAMLINES FOR COVARIANCE LOCALIZATION IN

ENSEMBLE KALMAN FILTER FOR THREE-PHASE HISTORY

MATCHING∗

2.1 Summary

The ensemble Kalman filter (EnKF) has gained increased popularity for history

matching and continuous reservoir-model updating. It is a sequential Monte Carlo

approach that works with an ensemble of reservoir models. Specifically, the method

uses cross-covariance between measurements and model parameters estimated from

the ensemble. For practical field applications, the ensemble size needs to be kept

small for computational efficiency. However, this leads to poor approximations of

the cross-covariance and can cause loss of geologic realism from unrealistic model

updates outside the region of the data influence and/or loss of variance leading to

ensemble collapse. A common approach to remedy the situation is to limit the

influence of the data through covariance localization.

In this study, we show that for three-phase-flow conditions, the region of covari-

ance localization strongly depends on the underlying flow dynamics as well as on the

particular data type that is being assimilated, for example, water cut or gas/oil ra-

tio (GOR). This makes the traditional distance-based localizations suboptimal and,

often, ineffective. Instead, we propose the use of water- and gas-phase streamlines

as a means for covariance localization for water-cut and GOR data assimilation.

The phase streamlines can be computed on the basis of individual phase velocities

which are readily available after flow simulation. Unlike the total velocity stream-
∗Part of this section is reprinted with permission from “Use of Phase Streamlines for Covariance

Localization in Ensemble Kalman Filter for Three-Phase History Matching” by Watanabe, S.,
Datta-Gupta, A. 2012. SPE Reservoir Evaluation & Engineering 15 (3): 273-289. Copyright 2012
Society of Petroleum Engineers.
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lines, phase streamlines can be discontinuous. We show that the discontinuities in

water-phase and gas-phase streamlines naturally define the region of influence for

water-cut and GOR data and provide a flow-relevant covariance localization during

EnKF updating.

We first demonstrate the validity of the proposed localization approach using a

waterflood example in a quarter-five-spot pattern. Specifically, we compare the phase

streamline trajectories with cross-covariance maps computed using an ensemble size

of 2,000 for both water-cut and GOR data. The results show a close correspondence

between the time evolution of phase streamlines and the cross-covariance maps of

water cut and GOR data. A small-size industrial reservoir engineering production

forecasting with uncertainty quantification (the PUNQ-S3) (Floris et al. 2001) model

application shows that our proposed localization outperforms a distance-based lo-

calization method. The updated models show improved forecasts while preserving

geologic realism.

2.2 Introduction

There has been a great deal of progress in developing automatic history matching

methods for reservoir characterization problem during the last couple of decades.

A relatively recent development that combines the uncertainty in the reservoir de-

scription and the reservoir performance predictions is the Ensemble Kalman Filter

(EnKF) (Evensen 1994). Although the amount of literature is overwhelming, the

review of the method in the scope of petroleum engineering was recently published

(Aanonsen et al. 2009).

In the EnKF framework, an ensemble of model realizations is progressively up-

dated as the observation data becomes available using an assimilation sequence com-

prising of a forecast step that propagates the ensemble forward in time and an update
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step that modifies the reservoir variables in order to match the current observations.

Although the EnKF has been applied to field-scale reservoir characterization and

history matching studies (Nævdal et al. 2005; Skjervheim et al. 2007, Seiler et

al. 2009, Chen and Oliver 2010a), there are several outstanding difficulties associ-

ated with the use of the EnKF. The cause of the difficulties roots from the severe

non-linearity of the problem and non-uniqueness of the ill-posed inverse problem in

general. Especially, in the context of history matching problem, Gaussian statistics

is underlying assumption for updating models which can be violated in many situa-

tions for the reservoir characterization such as multi-modal multi-facies or channel-

ized permeability distribution. Some reperameterization techniques were proposed

to address this issue (Jafarpour and McLaughlin 2009; Sarma and Chen 2009).

Several authors have addressed the non-linearity issue and developed variants of

EnKF such as iterative formulations (Gu and Oliver 2007; Li and Reynolds 2009)

and a hybrid formulation (Watanabe et al. 2009). In this study, however, we use the

conventional EnKF formulation to investigate the fundamental issue of inadequate

estimation of cross-covariance because of small ensemble size. The results from this

study also apply to other forms of EnKF.

The EnKF relies on an accurate representation of the ensemble-derived statis-

tical measures, such as the cross-covariance between the reservoir responses (e.g.

flow rates, bottomhole pressures, gas-oil ratios, and water cuts) and the reservoir

variables (e.g. porosity and permeability) to update geological models. However,

sampling error in the ensemble-based estimates can significantly degrade the quality

of model updating, especially with modest ensemble sizes. As a consequence, the en-

semble model responses can collapse towards a single response leading to ‘ensemble

collapse’ and/or the final model responses deviate from the true model trajectory in

a phenomenon known as ‘filter divergence’. One approach to mitigate these effects
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is through covariance localization (Houtekamer and Mitchell 1998).

The commonly applied ‘Distance dependent localization’ originated in the atmo-

spheric science literature. Houtekamer and Mitchell (1998) first used a cutoff distance

such that only the parameters within the specified distance of the observation were

updated. In most practical applications, the distance dependent localization utilizes

a fifth-order compactly supported correlation function of Gaspari and Cohn (1999)

to eliminate spurious correlations far away from the observation points.

In reservoir characterization applications, Arroyo-Negrete et al. (2008) and Deve-

gowda et al. (2010) introduced streamline-based localization approaches that utilize

streamline trajectories to identify the region of ‘influence’ associated with the ob-

served data. Such flow-relevant localization has been shown to naturally follow the

prior geological model heterogeneity and the underlying displacement phenomena.

By targeting and limiting the model updates, the streamline-based approach could

also preserve the prior geological model characteristics and mitigate the parameter

over and undershooting problems.

Anderson (2007) proposed a statistical localization approach based on a hierar-

chical ensemble Kalman filter. The goal here is to minimize the sampling error in

the Kalman gain using ‘groups’ of ensembles that are used to estimate Kalman gain

error. A minimization of the estimation error results in localization multipliers. One

disadvantage of the approach is the computational cost for practical applications

because of the need for multiple ensembles.

Previous studies on cross-covariance estimation with localization have been mostly

limited to two phase flow conditions. Chen and Oliver (2010b) analyzed cross corre-

lation profiles for different types and assimilation times in an attempt to define ap-

propriate distance based localization functions. They concluded that distance based

localization can eliminate spurious correlations with the knowledge of data sensitivity
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and the prior covariance for model variables and the past history of data assimilation.

However, no clear criterion was proposed to define an appropriate distance measure

for localization under dynamic conditions. Emerick and Reynolds (2011) combined

well drainage areas and prior covariance information to define localization for a two

phase synthetic example. Their approach is related to the streamline-based localiza-

tion approach; however, they artificially alter the well drainage regions, making the

localization scheme inconsistent with the underlying flow dynamics.

In this study, we focus on three-phase data assimilation using EnKF. We show

that for three phase flow conditions, the region of covariance localization strongly

depends on the underlying flow dynamics and also, on the particular data type that is

being assimilated viz. water cut or gas-oil ratio. This makes the traditional distance-

based localizations suboptimal and often, ineffective. Unlike previous streamline-

based localization that utilizes total velocity streamlines, we propose the use of water

and gas phase streamlines as a means for covariance localization for water-cut and

GOR data assimilation. The phase streamlines can be computed based on individual

phase velocities which are readily available after flow simulation. Unlike the total

velocity streamlines, phase streamlines can be discontinuous. We show that the

discontinuities in water phase and gas phase streamlines naturally define the region

of influence for water-cut and GOR data and provide a flow-relevant covariance

localization during EnKF updating.

The outline of this section is as follows. First, we give mathematical background

to introduce the EnKF formulation and brief descriptions of various localization

methods. Second, we describe and validate our proposed localization approach by

using an illustrative three-phase synthetic example. Finally, we apply EnKF history

matching for a waterflood example and the benchmark PUNQ-S3 model (Floris et al.

2001). We compare different localization techniques and examine the performance of
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each localization approach to demonstrate the utility and advantage of our proposed

approach.

2.3 Background and Methodology

This section briefly discusses the EnKF formulation and introduces various local-

ization methods. We first review the classical EnKF formulation and introduce the

relevant terminologies. We then discuss localization approaches, mainly categorized

into three groups: distance dependent localization, streamline-based localization,

and statistically-derived localization or hierarchical EnKF.

2.3.1 EnKF Formulation

The EnKF, first introduced by Evensen (1994, 2003), is a sequential Monte Carlo

technique for data assimilation. In the EnKF approach, an ensemble of model states

is recursively conditioned to dynamic data as it becomes available. The details of

the derivation of the EnKF can be found in Evensen (2006). Below, we will focus on

some of the key features of the EnKF equations.

In the EnKF formulation, each ensemble member or realization is represented by

a state vector, yk, at time k, and containing the following: a vector of static variables

ms
k (e.g. permeability, porosity) of length Ns, a vector of dynamic variables md

k (e.g.

pressure, phase saturations) of length Nd, and a vector of model predictions dk (e.g.

bottomhole pressure, water cut and gas-oil ratio at the wells) of length M :

ypk =


ms

k

md
k

dk

 . (2.1)

Here the superscript p denotes the prediction state. The model predictions at time k
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is related to the state vector through the use of a measurement matrix, H as follows:

dk = Hypk. (2.2)

Thus the mapping matrix H is a trivial matrix given by Eq. (2.3) as follows:

H =
[
0Ns 0Nd

IM
]
, (2.3)

where 0Ns and 0Nd
are zero matrix of size M × Ns and M × Nd, and IM is the

identity matrix of size M ×M respectively. The EnKF works with an ensemble of

state vectors denoted as

Ψp
k =

[
ypk,1 ypk,2 . . . ypk,Ne

]
, (2.4)

where Ne is the ensemble size. Each state vector represents an individual member of

an infinite ensemble of possible states that are consistent with the initial measure-

ments from cores, well-logs, seismic surveys and geologic interpretation studies.

2.3.2 EnKF Forecast and Update

The EnKF comprises of two main steps: a forecast step and an update step. The

forecast step can be written as

md
k

dk

 = g(ms
k−1,md

k−1), (2.5)

where the forward model operator g (◦) represents a numerical solution of the porous

media fluid flow equations moving forward from time k−1 to time k when new obser-

vations become available. At this time, the update step modifies the reservoir state
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vector for each ensemble member, j = 1, 2, . . . , Ne, using the well-known Kalman

update equation as follows (Evensen 2003):

yuk,j = ypk,j + Kk(dobs,k,j −Hypk,j). (2.6)

The superscript u denotes the updated model. The matrix Kk is known as the

Kalman gain matrix and relates the data misfit to the changes required in the reser-

voir state vector. In Eq. (2.6), dobs,k,j represents a vector of perturbed observations

as defined by the following equation:

dobs,k,j = dobs,k + εj, (2.7)

where εj represents the noise in the observation for the ensemble member j. The

noise associated with the measurements, ε, is assumed to be Gaussian with a zero

mean and covariance, CD. The Kalman gain matrix Kk is expressed as follows:

Kk = Cp
Ψ,kH>(HCp

Ψ,kH> + CD)−1, (2.8)

where Cp
Ψ,k represents an estimate of the state vector covariance matrix at time k and

does not need to be computed from the ensemble explicitly. Instead, we compute the

products of the cross-covariance matrix Cp
Ψ,kH> and the prediction-error covariance

matrixHCp
Ψ,kH> . From Eq. (2.8) in particular, it is obvious that EnKF updating is

largely governed by the cross-covariance term Cp
Ψ,kH>, estimated from the ensemble

by the following expression:

Cp
Ψ,kH> = 1

Ne − 1

Ne∑
i,j=1

(ypk,i − ypk)(Hypk,j −Hypk) (2.9)
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where

ypk = 1
Ne

Ne∑
j=1

ypk,j (2.10)

and

Hypk = 1
Ne

Ne∑
j=1

Hypk,j. (2.11)

2.3.3 Cross-Covariance Localization: Current Approaches

The main aim of covariance localization schemes is to eliminate spurious terms in

the cross-covariance matrix arising from sampling errors caused by finite and small

ensemble sizes and to increase the effective number of ensemble members (Hamill et

al. 2001). In the absence of localization, the covariance matrix is rank deficient which

leads to the spurious correlation and the loss of variance (ensemble collapse). Math-

ematically, the EnKF update equation with covariance localization can be expressed

on the basis of Eq. (2.6) as

yuk,j = ypk,j + (ρ ◦Cp
Ψ,kH>)(HCp

Ψ,kH> + CD)−1(dobs,k,j −Hypk,j). (2.12)

where the localizing function ρ operates on the cross-covariance matrix. The op-

erator (◦) is an element-by-element multiplication also called the ‘Schur product’.

The various localization functions differ in the way we calculate this multiplier ρ. In

this study we investigate three categories of localization methods: distance depen-

dent localization, streamline-based localization and statistically derived hierarchical

localization methods. It is worthwhile to mention that in the absence of covariance

localization, the solution from the EnKF updating is restricted to a linear combi-

nation of the initial ensemble members (Evensen 2003). However, with covariance

localization as in Eq. (2.12), a much larger basis can be accessed and the solution
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is no longer limited to a linear combination of the initial members (Evensen 2003).

Brief descriptions of each localization method are next.

2.3.4 Distance Dependent Localization

Distance based covariance localization schemes (Houtekamer and Mitchell 2001;

Hamill et al. 2001) rely on the assumption that the correlation between model

grid cells and well observation data is a function of the distance between the grid cell

and the observation location. Various distance-based correlation functions have been

discussed by Gaspari and Cohn (1996). In this study, we have used the following

form of the localization function:

Ω(a, b)

=



−1
4

(
b

a

)5

+ 1
2

(
b

a
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8

(
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)
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3

(
b
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)−1

, a < b ≤ 2a;

0, b > 2a.

(2.13)

where a =
√

10/3lc, lc is a length scale, and b is a distance between an observation

point and a grid point (i, j).

2.3.5 Streamline-Based Localization

The assumption that correlation solely depends on the distances is not appropriate

for reservoirs with strong underlying heterogeneity that often dominates the flow

dynamics. To account for the flow dynamics, Arroyo-Negrete et al. (2008) proposed

a streamline based localization method. The basic idea is utilize the streamline

trajectories derived from the total velocities (sum of phase velocities) which are
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naturally obtained as part of the forward flow simulation. To identify the localization

region for a given well data at a given time, only the streamlines leading to the well

at the time of interest are considered. The localization region now consists of the grid

cells intersected by these streamlines. A common localization region is defined for

all ensemble members by the intersection of the localization regions of all individual

members. The covariance calculations are limited to the localization region only.

Devegowda et al. (2010) extended the streamline trajectory based localization by

defining a weighting function that relies on the magnitude of the parameter sensitivity

values derived analytically from the streamline formulations (Vasco et al. 1999; He

et al. 2002; Cheng et al. 2007; Datta-Gupta and King 2007; Oyerinde et al. 2009).

We can trace streamline trajectories from any finite difference simulator by ex-

tracting the flux information. All these previous works on streamline-based local-

ization have utilized the total flux (sum of all phase fluxes) to trace the streamline

trajectories. The advantage of using the total flux is that the streamline trajectories

are continuous. In this work, we will utilize phase streamlines which are trajectories

obtained based on individual phase fluxes. Thus, there will be a set of streamlines

for each individual phase (Kumar et al. 2009).

2.3.6 Hierarchical Ensemble-Filter Localization

Anderson (2007) proposed a hierarchical ensemble filter which estimates sampling

errors in Kalman gain matrix from a group of Ng ensemble and compute a regression

confidence (weighting) factor αn between 0 and 1 to minimize sampling error at each

assimilation timestep n. The factor αn is defined to minimize the expected root mean
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square (RMS) difference in Kalman gain amongst the group as

min O(αn) = min

√√√√√√
Ng∑
l=1

Ng∑
k=l
k 6=l

(αnKk −Kl)2, (2.14)

where Kk is an element of the Kalman gain matrix for the k th group at time n.

This minimization results in the following:

αmin,n = max
({[( Ng∑

i=1
Ki

)2
/
( Ng∑
i=1

K2
i

)]
− 1

}
/(Ng − 1), 0

)
. (2.15)

The localization multiplier matrix ρ is constructed element by element using αmin,n.

The modified Kalman update for each group of the ensemble is given as

yuk,j(i) = ypk,j(i) + (ρ ◦Kk)(dobs,k,j −Hypk,j(i)). (2.16)

where i = 1, 2, . . . , Ng and the localization multiplier is acting not on the cross-

covariance but on the Kalman gain matrix directly.

2.4 Approach

Main objectives of our proposed localization scheme are summarized as follows:

• Eliminating spurious cross correlation calculations arising from small ensemble

statistics

• Localizing the observation data to regions that are based on flow dynamics

• Preserving geological realism through targeted parameter updating

• Maintaining model variability and preventing ensemble collapse and filter di-

vergence
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The major steps in our proposed approach are outlined as follows:

• Ensemble Prediction Step. Given an ensemble of static reservoir simulation

model realizations generated from prior geologic information and/or geostatis-

tical analysis, we conduct reservoir simulation on each of ensemble member

up to the next available observation time. The outcome of this step is the

predictions of the observed data from each ensemble member.

• Phase Streamline Tracing. Based on each ensemble member forward sim-

ulation results, we extract individual phase fluxes for each gridblock. Utilizing

the phase fluxes at the gridblock faces, we trace phase streamline trajectories for

water, oil and gas phases. For streamline tracing, we have used the algorithm

proposed by Jimenez et al. (2007) for its ease of implementation and appli-

cability to corner point grids. The streamline trajectories from each ensemble

member are stored and used to identify the flow relevant regions contributing

to the observed data at the current time for localization purposes.

• Localizing Cross-Covariance Matrix. Using the ensemble model predic-

tions, model parameters and the flow relevant regions identified by the phase

streamline trajectories, we compute the cross-covariance matrix only for the

localized gridblocks.

• Ensemble Correction Step. Finally, we update the ensemble members using

the localized cross-covariance matrix and the Kalman update equation. We

repeat all steps for the next available observation data.

2.4.1 An Illustrative Example

This section illustrates the importance of covariance localization for EnKF using a

simple two dimensional homogeneous reservoir model with a mesh size of 21 × 21
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Fig. 2.1—Homogeneous reference model and ensemble of realizations of
permeability fields.

having permeability of 8.12 md and porosity of 0.1 as shown in Fig. 2.1. To generate

the initial ensemble of realizations, the permeability at each gridblock is perturbed

with an uncorrelated Gaussian noise having variance of 2 md. We generate a total

of 2,000 realizations. Some realizations are shown in Fig. 2.1. This set of 2,000

realizations will constitute our reference case with which we will compare various

other ensemble sizes for the following numerical experiments.

As an initial condition, the reservoir is saturated with oil at the bubble point

pressure of 3,000 psi. A quarter five-spot well configuration with an injector and a

producer is used for this example. The wells are controlled by reservoir rate con-

straints with a production rate of 50 RB/D and an injection rate of 45 RB/D. Our

goal is to create three-phase flow conditions by causing the reservoir pressure to

decline because of the excess production, resulting in the liberation of the solution

gas. The simulation timestep is fixed as 150 days for the total of 1,500 days. The

reference model responses are shown in Fig. 2.2.

In Fig. 2.2, we have the water breakthrough at approximately 250 days and water

cut increases as production proceeds. A comparison of the bottomhole pressure and
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Fig. 2.2—Reference-model responses of water cut at producer (top left),
bottomhole pressure at producer (top right), bottomhole pressure at in-
jector (bottom left), and GOR at producer (bottom right).

GOR responses indicates that in the early period of production, the gas production

is mainly from the dissolved gas from the oil production and results in a flat value of

the response. Once the free gas evolves in the reservoir, the gas production is from

both the dissolved-gas and the free-gas volume that results in increasing GOR.

2.4.2 Spurious Correlations

The fundamental problem of the EnKF that we address here is the accuracy of

the cross-correlation calculations with respect to the ensemble size. Specifically, we

examine the quality of the sample cross-covariance calculations between the gridblock

permeabilities and three different observation data types, (e.g., water cut, bottomhole

pressure and GOR) by changing the ensemble size.

The cross-covariance map is calculated at every assimilation step of the EnKF.
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From these, we select 3 times for comparison purposes: early time (300 days), in-

termediate time (750 days), and late time (1,350 days). The cross-covariance is

computed by the standard statistical means using the ensemble members and the

model predictions in Eq. (2.9). We varied the ensemble size to be 20, 200 and 2,000

members and the results are shown in Figs. 2.3 and 2.4.

Fig. 2.3 shows that the bottomhole pressure and water-cut covariance shows

a severe degradation for the ensemble size of 20 members. This is obvious when

we compare it with the results from 2,000 members (the reference case). The 20-

member results show significant spurious correlations and fail to capture much of the

dominant characteristics of the reference case. If we apply this cross-covariance in

the Kalman update, the updating will result in parameter over- and undershooting

(Arroyo-Negrete et al. 2008). The 200-member case shows some correspondence in

the spatial features with the 2,000-member reference case. However, there are still

spurious correlations away from production and injection wells for the bottomhole-

pressure covariance, and the water-cut covariance is not well defined as in the case of

2,000 members. As for the GOR correlations in Fig. 2.4, similar characteristics are

observed with changing ensemble size, although the profile of the correlation is quite

different from ones in water cut and bottomhole pressure. The role of covariance

localization is to eliminate these spurious correlation calculations while capturing

the dominant characteristics of the data influence.

2.4.3 The Proposed Phase-Streamline-Based Localization and Its Validation

Our validation of the proposed phase-streamline-based localization starts by examin-

ing the characteristics of the cross-correlation between permeability distribution and

different data types: water cut, bottomhole pressure, and GOR. For this, we review

the cross-covariance computed for the 2,000-member case for the synthetic example
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Fig. 2.3—Cross-covariance map comparisons with various ensemble sizes
(20, 200, and 2,000 members from left). Permeability and bottomhole
pressure of P1 at 300 days (top row), permeability and bottomhole pres-
sure of I1 at 300 days (middle row), and permeability and water cut of
P1 at 300 days (bottom row).
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Fig. 2.4—Cross-covariance map comparisons with various ensemble sizes
(20, 200, and 2,000 members from left). Permeability and GOR of P1
at 300 days (top row), permeability and GOR of P1 at 750 days (middle
row), and permeability and GOR of P1 at 1,350 days (bottom row).
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discussed before (Fig. 2.5). The results show that the bottomhole-pressure and

permeability-correlation profiles are mostly concentrated in the vicinity of the ob-

servation wells and do not change significantly over time. The water-cut correlation

shows positive values along the diagonal direction between injector and producer

wells.

The GOR-correlation profile is more complex and contains transitions over time.

At early times, there is a negative correlation band moving radially outward. The

inside and outside of the band have positive correlation values. To explain this

correlation profile, we examine the corresponding pressure and saturation profiles

shown in Fig. 2.6. Also, recall that the GOR is calculated by

GOR = Qg

Qo

= Qg,free +RsQo

Qo

= Qg,free

Qo

+Rs = krgµoBo

kroµgBg

+Rs. (2.17)

Inside the positive-correlation region near the production well, free mobile gas

exists because the pressure has fallen below the bubble point pressure of 3,000 psi.

Thus, the increasing permeability in this region results in increasing free-gas pro-

duction and increased GOR; hence, the correlation is positive. Fig. 2.6 reveals

that the negative-correlation band approximately corresponds to a gas-saturation

contour of 0.03. This value is the critical gas saturation in this example. Thus,

the negative-correlation band is located at the boundary of the mobile and immobile

gas. Increasing the permeability in this region induces faster oil flow, and oil produc-

tion will increase relative to gas production. Therefore, the correlation is negative.

Outside the negative-correlation band toward the injection well, we have only oil

and water phases mobile, and increasing permeability results in preferential water

displacement followed by reduced oil production relative to gas production. This pro-

duces the positive correlation outside the band. As production proceeds, the location
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Fig. 2.5—Cross-covariance map comparisons with ensemble size of 2,000
members at different times (300, 750, and 1,350 days, from top). From
left, permeability and bottomhole pressure of P1, permeability and bot-
tomhole pressure of I1, permeability and water cut of P1, and permeabil-
ity and GOR of P1.

of the negative band moves toward the injector, because the boundary between the

mobile and immobile gas propagates toward the injector. By the time the mobile-gas

saturation appears everywhere (within 1,200 days), the negative-correlation band no

longer exists and the GOR-correlation profile shows close correspondence with that

of water cut, because the flow regime becomes free-gas convective transport along

preferential paths between wells.

Finally, if we compare the GOR-correlation map with the gas-phase streamlines

shown in Fig. 2.7, we can clearly identify the correspondence between the area

covered by gas-phase streamline trajectories and the progression of the location of
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Fig. 2.6—Cross-covariance of permeability and GOR map, as well as
pressure, gas-saturation, and water-saturation contour maps at different
times (300, 600, 900, and 1,200 days, from left).

Fig. 2.7—Cross-covariance of permeability and GOR map and gas-phase
streamlines at different times (300, 600, 900, and 1,200 days, from left).
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Fig. 2.8—Comparison of total-phase streamlines and gas-phase stream-
lines with cross-covariance of permeability and GOR map at different
times (300, 600, and 1350 days, from left).
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the negative correlation band over time. This is because the gas-phase streamlines

are traced naturally from the producer to the boundary between the mobile- and

immobile-gas saturations. For comparison purposes, we have shown in Fig. 2.8 the

total velocity streamlines as well as the gas-phase streamlines at different times. The

total velocity streamlines cover the entire region between the injector and producer

at all times, and they do not capture the correspondence with the cross-covariance

profile as seen with the gas-phase streamlines (Fig. 2.8). This is the primary mo-

tivation in using phase streamlines for localization as opposed to the total velocity

streamlines, as was done in our previous studies (Arroyo-Negrete et al. 2008).

2.5 Applications

In this section, we first present a comprehensive comparison of various localization

methods using a nine-spot waterflooding example with three-phase-flow conditions.

This example highlights the benefits of using phase-streamline localization over other

localization methods. A variety of quality checks of the EnKF performance is pre-

sented to compare the localization methods. We also demonstrate the power and

practical feasibility of the phase-streamline localization approach using a field-scale

three-phase history-matching application.

2.5.1 Nine-Spot Synthetic Model

A heterogeneous reference synthetic model was generated by sequential Gaussian

simulation (Deutsch and Journel 1992) with high-permeability continuity and a prior

anisotropy direction, as shown in Fig. 2.9. The reservoir model domain is discretized

into 51× 51 gridblocks (1,530 × 1,530 ft.) with eight producers and one injector in

a nine-spot well pattern, as shown in Fig. 2.9. Similar to the previously discussed

example, three-phase-flow conditions are set up by starting with undersaturated

conditions and letting the reservoir pressure fall below the bubble point pressure.
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Fig. 2.9—Heterogeneous reference model and ensemble realizations of
permeability fields.

The total simulation time is 4,000 days, which is split into the assimilation period

of 2,000 days and the prediction period for the rest. Observation data are water

cut, bottomhole pressure, and GOR. The data are assimilated at every 50 days for

40 time intervals. For EnKF, we used 50 ensemble members. Some examples of

the initial members are shown in Fig. 2.9. The initial ensemble model predictions

are shown in Fig. 2.10 as gray lines and are compared with the reference-model

response denoted as a red line in the figures.

2.5.2 Comparison of EnKF With and Without Localization

We conduct the EnKF with and without localizations for this synthetic case, and

compare their performances.

First, we examine the distance-based localization, the most commonly used method

in the literature. Because we generally do not have prior knowledge of the correlation

distance, we examine two choices for a in Eq. (2.13) for the localization function:

(Case 1) water cut=1,000 ft., bottomhole pressure=100 ft., GOR=1,000 ft.; (Case

2) water cut=300 ft., bottomhole pressure=100 ft., GOR=300 ft.. Our rationale for
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Fig. 2.10—True-model responses (red line) and initial-ensemble model
response (gray lines) for water cut, bottomhole pressure, and GOR for
three wells. (From left: P3, P5, and P7.)
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these values is based on the previous observation that bottomhole-pressure-data influ-

ence is mainly near the well locations, and water-cut and GOR data cross-correlation

tends to cover the region between the well-pair configuration.

For hierarchical EnKF, we also experiment with combinations of the number of

ensemble group and the subensemble member size for two cases with a total ensemble

size of 200 members: (Case 1) 10 groups of 20 members; (Case 2) four groups of

50 members. For the phase-streamline-based localization, we define a localization

region for each observation data type for each ensemble member. Unlike the total-

streamline-based approach (Arroyo-Negrete et al. 2008), the localization region now

varies for each data type (e.g., water cut, GOR) on the basis of the intersection

of the phase streamlines with the grid cells at the time of interest. A common

localization region is defined by the intersection of the localization regions of all

individual members, and we require that a grid cell intersected by phase streamlines

for a minimum of 10 % of the total ensemble members to be included in the common

localization region.

In the results that follow, we denote the conventional EnKF as Plain EnKF, while

EnKF with localizations are denoted as follows: distance-dependent localization as

EnKF-DT1 for Case 1 and EnKF-DT2 for Case 2; hierarchical EnKF as EnKF-HC1

for Case 1 and EnKF-HC2 for Case 2; and phase-streamline-based localization as

EnKF-PST. The water-cut, bottomhole-pressure, and GOR history-matching com-

parisons for the Plain EnKF and EnKF-PST are shown in Fig. 2.11. The Plain

EnKF shows evidence of ensemble collapse. Also, the GOR predictions for P5 show

a systematic bias. The EnKF-PST results show reduced spread in model responses

from the initial models and no systematic bias for the prediction period. The up-

dated permeability fields are shown in Fig. 2.12. The Plain EnKF clearly results in

ensemble collapse, where all ensemble models became almost identical. The EnKF-
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Fig. 2.11—History-matching comparisons of Plain EnKF and EnKF-PST.
True-model response (red line) and initial- and updated ensemble model
responses (gray lines) for water cut of P5, bottomhole pressure of P5, and
GOR of P5.

PST updated ensemble models retain the variability of the permeability distribution

and capture the high-permeability streak in the left upper corner.

For various localization methods, the history-match results are shown in Fig.

2.13, and the updated permeability fields are shown in Fig. 2.14. For history-

matching comparisons, we consider both matching of the data and the prediction

quality for computing the misfit from the true-model response in terms of RMS for

the entire simulation period of 4,000 days. Fig. 2.15 compares the ensemble mean

log-permeability histograms for various localizations. The RMS error summary is

listed in Table 2.1 and shown in Fig. 2.16. Overall, the RMS error results show
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Fig. 2.12—Updated permeability comparisons of Plain EnKF and EnKF-
PST. True-model permeability field (top left) and three realizations of
initial permeability fields (top row), Plain EnKF updated permeability
fields (middle row), and EnKF-PST updated permeability fields (bottom
row).)
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EnKF-DT1 as the best, followed by EnKF-PST and EnKF-HC1. When we use a

shorter correlation distance as in Case 2 (EnKF-DT2), the RMS becomes worse than

EnKF-PST. This clearly indicates that the choice of correlation length is critical for

distance-based localization performance. All localization schemes seem to prevent

ensemble collapse in this example. Eigen spectrum of the updated permeability

covariance matrix is plotted for each case in Fig. 2.17. The results show that

all localization methods maintain the model variability throughout the updating

period. In terms of the updated permeability distributions, EnKF-DT1 and EnKF-

HC1 fail to reproduce the continuity of the high-permeability streak in Fig. 2.14.

Similar results are also obtained for Case 2. In Fig. 2.18a, we have compared the

localization regions for the three different schemes for computing the covariance of

permeability and water cut at 1,200 days. Similarly, in Fig. 2.18b, we have shown

the localization region for computing the covariance of permeability and GOR at

500 days. Clearly, the distance-based localization uses the same localization region

for both the water cut and GOR with the same correlation length. The phase-

streamline-based localization accounts for the underlying physics of flow and seems

to capture the dynamic change in the localization region with respect to time and

space naturally. Finally, because of its statistical nature, the localization region for

EnKF-HC1 appears scattered and somewhat noisy, although there is some underlying

resemblance with the phase-streamline-based localization region.

Thus, localization is necessary to prevent ensemble collapse in EnKF updat-

ing, particularly when the ensemble size is relatively small. The proposed phase-

streamline localization can capture the interactions between the flow dynamics and

the permeability heterogeneity better than other localization schemes. Also, the

method does not require the choice of optimal correlation length as in distance-based

localization, because streamlines naturally define the flow-relevant regions.
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Fig. 2.13—History-matching comparisons of EnKF-PST, EnKF-DT1
(Case 1), and EnKF-HC1 (Case 1). True-model response (red line) and
updated-ensemble model responses (gray lines) for water cut of P5, bot-
tomhole pressure of P5, and GOR of P5.
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Fig. 2.14—Updated permeability comparisons of EnKF-PST, EnKF-DT1
(Case 1), and EnKF-HC1 (Case 1). True-model permeability field (top
left) and three realizations of EnKF-PST updated permeability fields (top
row), EnKF-DT1 updated permeability fields (middle row), and EnKF-
HC1 updated permeability fields (bottom row).
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Fig. 2.15—Updated mean permeability histogram comparisons. From
top left, true-model permeability field, initial model, and Plain EnKF
are shown. From bottom left, EnKF-PST, EnKF-DT1 (Case 1), and
EnKF-HC1 (Case 1) are shown.
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Fig. 2.16—RMS of history-matching and forecasting comparisons of water
cut (left), bottomhole pressure (right), and GOR (bottom). From left,
initial models, Plain EnKF, EnKF-PST, EnKF-DT1 (Case 1), EnKF-DT2
(Case 2), EnKF-HC1 (Case 1), and EnKF-HC2 (Case 2).

Fig. 2.17—Eigen spectrum of updated parameter-covariance matrix:
Plain EnKF, EnKF-PST, EnKF-DT1 (Case 1), EnKF-DT2 (Case 2),
EnKF-HC1 (Case 1), and EnKF-HC2 (Case 2), from top legend.
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Fig. 2.18—Localization multiplier for EnKF-DT1 (Case 1), EnKF-HC1
(Case 1), and EnKF-PST. (a) Localization multiplier for cross-covariance
of permeability and GOR of P1, P2, and P5 at 500 days. (b) Localization
multiplier for cross-covariance of permeability and water cut of P1, P2,
and P4 at 1,200 days.
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2.5.3 PUNQ-Model Application

We now demonstrate the applicability of the proposed phase-streamline localization

for the benchmark PUNQ-S3 model, which is designed after a real field (Barker et al.

2001). The model contains 19×28×5 gridblocks, of which 1,761 are active. The top-

structure map of the field shows that the field is bounded to the east and south by a

fault, and is supported by a fairly strong aquifer in the north and west (Fig. 2.19a).

A small gas cap exists in the center of the dome-shaped structure. The field initially

contains six production wells drilled around the gas/oil contact. Because of the strong

aquifer, no injection wells are present. A geostatistical approach has been used to

generate the reservoir-permeability distribution, consistent with the geological model

in each of the five layers. The production schedule contains a first year of extended

well testing, followed by a 3-year shut-in period before field production starts. The

well testing consists of four 3-month production periods. During field production, 2

weeks of each year are used for a shut-in test to collect shut-in pressure data at each

well.

A reference “true” model was used to generate the production history. For the

production data, Gaussian noise was added to mimic measurement errors. The total

simulation period was 16.5 years. The bottomhole-pressure, water-cut, and GOR

data were generated for each of the wells. Of the total time, we take a history-

matching period of 8 years (0 to 2,936 days) and a forecast period of 8.5 years (2,937

to 6,025 days).

The simulation model is shown in Fig. 2.19b and has a corner point grid sys-

tem. We used 40 ensemble members in the EnKF application. Fig. 2.20 shows the

phase streamlines for this case. From the gas-streamline trajectories, we can identify

the communication between the gas cap and the wells with gas breakthrough. The
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Fig. 2.19—PUNQ-S3 model: (a) top-structure map (from Floris et al.)
and (b) simulation model.

Fig. 2.20—Gas-phase streamlines at 181 days and 1,091 days (left) and
water-phase streamlines at 1,091 days and 2,373 days (right). Coloring is
with respect to the production well.
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aquifer support is depicted by the water streamlines. We conducted Plain EnKF,

EnKF-PST, and EnKF-DT for this case. Observation data for the assimilation are

water cut, bottomhole pressure, and GOR at the production wells with 20 assimi-

lation times. The model parameter updated is the gridblock permeability. For the

distance-based localization, we assigned the same correlation length, a=500 m, for

all data types. History-matching results are compared in Fig. 2.21, and the RMS

errors for all three data types as well as oil-production rate (OPR) are summarized

in Table 2.2 and Fig. 2.22. Updated ensemble average permeabilities for EnKF-

PST and EnKF-DT are shown in Fig. 2.23, and compared with the reference

model. Plain EnKF updated permeability fields suffer from over- and undershooting

problems and are not shown here. Overall, the results seem to be consistent with

the nine-spot synthetic example discussed previously. As for history-matching and

forecasting quality, Plain EnKF performs poorly for water-cut matching, shows ev-

idence of ensemble collapse, and results in unsatisfactory forecast. The EnKF-DT

has slightly better RMS errors than EnKF-PST, but is almost comparable for this

case. However, a comparison of the updated permeability fields in Fig. 2.23 shows

that the EnKF-PST outperforms EnKF-DT in terms of capturing the continuity of

the permeability barriers and the channels. In particular, the EnKF-PST is able

to reproduce the high permeability streaks in Layer 3 and Layer 5, contributing to

aquifer support better than EnKF-DT. Fig. 2.24 compares the corresponding layer-

permeability histograms. The results show that the EnKF-PST results in a broader

spread in permeability compared with the EnKF-DT. Additionally, in order to ana-

lyze the sensitivity of the choice of correlation length for distance-based localization,

we rerun EnKF with a shorter correlation length, a=200 m, for all data types. We

call this case EnKF-DT1. History-matching results in terms of RMS become worse,

as shown in Table 2.2. The corresponding updated permeability fields are shown in
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Fig. 2.21—History-matching comparison of Plain EnKF, EnKF-PST,
and EnKF-DT. True-model response (red line) and initial- and updated-
ensemble model responses (gray lines) for water cut of P4, bottomhole
pressure of P12, and GOR of P1.

Fig. 2.23. These results indicate that the selection of correlation length is critical

for distance-based localization and for dynamically changing production conditions;

this is not a trivial task.

2.6 Conclusions

In this section, we have performed a series of numerical experiments to demonstrate

that for three-phase-flow conditions, the region of covariance localization strongly

depends on the underlying flow dynamics as well as on the particular data type that

is being assimilated, for example, water cut or GOR. Thus, we advocate that the co-

variance localization should be physically motivated, taking into account underlying

physics of flow. For our example cases, the distance-based localization worked well
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Fig. 2.22—RMS of history-matching and forecasting comparisons of water
cut (top left), bottomhole pressure (top right), GOR (bottom left), and
OPR (bottom right). (From left: initial models, Plain EnKF, EnKF-PST,
and EnKF-DT.)
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Fig. 2.23—Updated-ensemble mean permeability comparisons of EnKF-
PST and EnKF-DT for selected layers (from left: reference model,
permeability field, EnKF-PST updated permeability fields, EnKF-
DT with correlation length a=500 m updated permeability fields, and
EnKF-DT1 with correlation length a=200 m updated permeability fields).

Fig. 2.24—Updated-ensemble mean permeability histogram comparisons
for EnKF-PST and EnKF-DT for selected layers (from left: reference-
model permeability field, initial, and EnKF-PST updated permeability
fields, EnKF-DT with correlation length a=500 m updated permeability
fields, and EnKF-DT1 with correlation length a=200 m updated perme-
ability fields).
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for integrating bottomhole-pressure data. However, for water-cut and GOR data,

the phase-streamline-based localization seems to be a better choice because it does

not rely on the selection of correlation length for localization. Also, the region of

covariance localization changes with changing flow conditions such as infill drilling,

and there is no natural way to account for this in distance-based localization. The

hierarchical localization can be computationally demanding and tends to introduce

statistical variations in the localization region. The following is a summary of the

major features of this section:

• We have proposed a novel methodology for covariance localization based on

the reservoir dynamics for three-phase-flow conditions. Specifically, we pro-

pose the use of water- and gas- phase streamlines as a means for covariance

localization for water-cut- and GOR-data assimilation. The phase streamlines

can be computed on the basis of individual-phase velocities, which are readily

available after flow simulation.

• Total velocity streamlines have been used in the past for covariance localization

in two-phase flow. Unlike the total velocity streamlines, phase streamlines can

be discontinuous. We show that the discontinuities in water-phase and gas-

phase streamlines naturally define the region of influence for water-cut and

GOR data and provide a flow-relevant covariance localization during EnKF

updating.

• Our numerical experiments show that the statistical sample cross correlation

for water cut and GOR encompasses the underlying physics of the reservoir

flow, and their spatial patterns can be explained by the phase-streamline tra-

jectories. Also, phase-streamline-based localization can naturally capture the
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dynamically changing localization regions because of changing field conditions

such as infill drilling and pattern conversions.

• Our proposed approach improved EnKF performance in terms of (1) adequately

matching the data while preserving the model variability without ensemble col-

lapse and (2) quantifying the uncertainty in the forecasting period. In the up-

dated permeability distributions, the phase-streamline-based localization seems

to preserve geologic continuities affecting the flow dynamics better than other

localization methods.

• The power and utility of our proposed method have been demonstrated through

a synthetic model and the benchmark PUNQS3 model.
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3. STREAMLINE-BASED TIME LAPSE SEISMIC DATA INTEGRATION

INCORPORATING PRESSURE AND SATURATION EFFECTS∗

3.1 Summary

We present an efficient history matching approach that simultaneously integrates

4-D seismic surveys with well production data. This approach is particularly well-

suited for the calibration of the reservoir properties of high-resolution geologic models

because the seismic data is areally dense but sparse in time, while the production

data is continuous in time but averaged over interwell spacing. The joint history

matching is performed using streamline-based sensitivities derived from either finite-

difference or streamline-based flow simulation. Previous approaches to seismic data

integration have mostly incorporated saturation effects but the pressure effects have

largely been ignored.

We propose, for the first time, streamline-based analytic approaches to com-

pute parameter sensitivities that relate the seismic derived pressure and saturation

changes between two surveys to reservoir properties. The inverted seismic data (e.g.,

changes in pore pressure or fluid saturations), is distributed as a 3-D high-resolution

grid cell property or as a vertically integrated two-dimensional map. We derive pres-

sure drop sensitivities along streamlines in addition to our previous work of water

saturation sensitivity computation. The novelty of the method lies in the analytic

sensitivity computations which make it computationally efficient for high resolution

geologic models.
∗Part of this section is reprinted with permission from “Streamline-Based Time Lapse Seismic

Data Integration Incorporating Pressure and Saturation Effect” by Watanabe, S., Han, J., Datta-
Gupta, A., King, M. J., 2013. Paper 166395 prepared for presentation at the SPE Annual Technical
Conference and Exhibition held in New Orleans, Louisiana, USA, 30 September-2 October. Copy-
right 2013 Society of Petroleum Engineers.
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We demonstrate the versatility of our approach by implementing it in a finite dif-

ference simulator which incorporates detailed physical processes, while the streamline

trajectories provide for rapid evaluation of the sensitivities. The efficacy of our pro-

posed approach is demonstrated with both synthetic and field applications. The

synthetic example is the SPE benchmark Brugge field case. For both the synthetic

and the field cases, the advantages of incorporating the time-lapse variations are

clearly demonstrated through improved estimation of the permeability distribution,

pressure profile, and fluid saturation evolution and swept volumes.

3.2 Introduction

Three-dimensional (3-D) reservoir simulation models play an essential role in the

oil and gas industry. They are routinely utilized to plan the development strategy,

calculate hydrocarbon reserves and predict future production estimates. Due to

sparse well observation data coverage, reservoir models are often poorly constrained

away from well locations. A key challenge for reservoir engineers and geoscientists is

therefore the quantitative data integration of 3-D, and where available 4-D, seismic

data to obtain a more accurate representation of reservoir properties between wells.

Geostatiscal techniques have been widely adapted in the petroleum industry to

construct reservoir models and commercial and research geomodeling software pack-

ages are widespread and available (e.g., GSLIB, Deutsch and Journel 1992). For

example, geostatistical techniques for constraining 3-D reservoir models with seis-

mic information utilize co-kriging and co-simulation. There are several problems

associated with integrating seismic and well data for both 3-D and 4-D reservoir

characterization. First, the seismic data must be converted from time to depth,

while the velocity model is only calibrated at the wells. Second, seismic data is

band-limited, whereas well data has both high and low frequency components. The
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seismic response must be calibrated to the well data, but loses the high frequency

information. The limited vertical resolution of inverted seismic data has been a ma-

jor obstacle to the widespread use of seismic information in 3-D property modeling

(Doyen et al. 1997). Behrens et al. (1998) introduced a geostatistical method to

incorporate seismic attribute maps into a 3-D reservoir model. The method, called

sequential Gaussian simulation with block kriging (SGSBK) accounts for the volume

support differences between the seismic interval-average rock properties and the well

log point-rock properties.

More recently, the concept of time-lapse seismic as the dynamic observation data

has emerged. Time-lapse seismic reservoir monitoring is the process of acquiring and

analyzing multiple seismic surveys, repeated at the same site over months or years,

in order to image fluid flow effects in a producing reservoir. If each survey is “3-D

seismic”, then the resulting set of time-lapse data is often termed “4-D seismic”,

where the extra fourth dimension is time.

The first quantitative time-lapse seismic data found in rock physics studies in

mid 1980s. The laboratory measurement on heavy oil saturated core samples showed

large decreases in seismic rock velocity when the viscous oil was heated (Nur et al.

1984; Wang and Nur 1988; Nur 1989). These rock physics observations have now

been validated by many 4-D seismic field data with steam injection projects (Pullin

et al. 1987; Eastwood et al. 1994; Jenkins et al. 1997). Early lab measurement of

Domenico (1976) showed the presence of free gas in a reservoir without an associated

temperature change can also significantly decrease the rock’s seismic impedance and

this leads to the possibility of monitoring gas-fluid contact movement and injected

gases such as CO2 injection projects (Harris et al. 1996).

Monitoring oil-water system is more technically challenging because the seismic

impedance contrast between oil and water-saturated rock is often much smaller than
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the free-gas or heated oil effects (Wang et al. 1991). Recent developments in seis-

mic processing that improve time-lapse repeatability with noise filtering algorithms

facilitated the use of 4-D seismic for monitoring reservoir waterflood performance

(Burkhart et al. 2000; O’Donovan et al. 2000; Behrens et al. 2002).

Lumley et al. (1997) and Lumley and Behrens (1998) discussed the practical

issues relevant to the successful monitoring of oil-water and other reservoir fluid-

flow systems, and the general technical challenges associated with time-lapse seismic

reservoir monitoring were thoroughly reviewed (Lumley 2001). With these proposed

guidelines, the field applications of time-lapse seismic data has evolved (Fanchi 2001;

Clifford et al. 2003) and 4-D seismic is now recognized as a reservoir management

tool with a number of successful field applications (Landro et al. 1999; Behrens et

al. 2002; Toinet 2004; Foster 2007).

The next logical step of this technology is to use the time-lapse seismic data to

infer reservoir permeability and porosity heterogeneity through the reservoir model

calibration process, also known as history matching. The traditional history match-

ing process mainly involves production data and the solution is highly non-unique,

as production data provides limited information about permeability and porosity

variations away from the well locations. The possibility of incorporating 4-D seismic

information into history matching as additional dynamic data is therefore attractive

as it provides images of fluid movements between wells, albeit at a vertically average

scale compared to the layers in the flow simulation model. Time-lapse seismic images

can identify the bypassed oil regions to be targeted for infill drilling, and add major

reserves to production to extend a field’s economic life. Also, 4-D seismic can map

the reservoir compartmentalization and identify the fluid flow properties of faults

(sealing versus leaking), which can be extremely useful for the optimal design of well

trajectories in complex reservoir flow systems.
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Previous studies have made several attempts in quantitative 4-D seismic history

matching. However, the reconciliation of reservoir model heterogeneity with tem-

poral changes in seismic attributes remains a particularly complex task (Gosselin

et al. 2001). Several dynamic data integration algorithms have been proposed in

the literature, which can be broadly categorized into three data integration levels:

(1) reservoir simulation based integration between the pressure and saturation esti-

mates inverted from seismic observation data and the direct simulated saturation and

pressure responses, (2) petro-elastic modeling based integration between the seismic

inverted rock elastic properties derived from a geophysical inversion (e.g., acoustic

impedance, compressional velocity) and the simulated rock elastic responses from the

simulated saturation and pressure responses via petro-elastic models, and (3) seismic

forward modeling based integration between the direct seismic traces attributes (e.g.,

reflection amplitude) and the simulated seismic responses via seismic wave propaga-

tion modeling. The diagram of the differing seismic data integration levels is shown

in Fig. 3.1.

The seismic forward modeling based seismic data integration approach uses di-

rect seismic trace data, and circumvents the uncertainties associated with the seismic

inversion process. The general workflow for generating synthetic seismic data from

a reservoir simulation model generally involves (1) static reservoir properties on the

simulation grid, (2) simulation of dynamic pressure and fluid saturations at each

cell, (3) computation of seismic elastic properties (e.g., P and S wave velocities), and

finally, (4) simulation of the seismic attribute (e.g., reflection amplitude) by apply-

ing a seismic wave propagation model over the reservoir interval and the overburden

rock (Mavko et al. 1998; Falcone et al. 2004). This is a computationally demanding

process, because it requires the iterative process between the seismic propagation

modeling and flow simulation and may be prohibitively expensive for an inversion
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Fig. 3.1—Seismic data integration levels, (1) reservoir simulation level of
data integration, (2) petro-elastic modeling level of data integration, and
(3) seismic forward modeling level of data integration.

workflow (Gosselin et al. 2003). Despite this, there are a number of publications

that use direct seismic attributes for model calibration. Huang et al. (1997) used

the reflection amplitude obtained from seismic forward modeling over a volume of

synthetic acoustic impedance and matched production and seismic data by updating

porosity and permeability maps using a simulated annealing optimization method.

Vasco et al. (2004) also used the reflection amplitude to update the grid cell poros-

ity and permeability with a gradient-based algorithm in which the sensitivity of

seismic amplitude to reservoir properties is analytically computed using streamline

trajectories. Kjelstadli et al. (2005) used the convolution of a wavelet with the seis-

mic reflection coefficients, creating a set of synthetic amplitude traces and generate

maps of the summation of negative amplitude (SNA) as the observation data and

calibrated zonal heterogeneity multipliers with a genetic algorithm. Dadashpour et

al. (2008, 2009, and 2010) used the propagator-matrix method (Stovas and Arntsen

2006) to generate the seismic traces from a stack of plane layer and calibrate reservoir
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properties by a Gauss-Newton optimization technique.

The petro-elastic modeling and the reservoir simulation based approaches to seis-

mic data integration are workflows that evaluate the seismic match quality in terms

of the inverted seismic responses. The type of time-lapse seismic data considered to

be observation data varies among different researchers. The inverted responses can

be derived from traditional post-stack data inversion techniques such as the sparse

spike inversion (e.g., seismic volumes of acoustic impedance), or from the direct satu-

ration and pressure front detection using an amplitude versus offset (AVO) inversion

of pre-stack seismic data (Tura and Lumley 2000; Landro et al. 2001). From a com-

putational standpoint, these methods are more efficient, because they perform the

geophysical inversion of the seismic volumes as a separate process from the model

calibration workflow. Gosselin et al. (2003) emphasized the need to maintain con-

sistency between the geophysical inversion and the calibration workflow when the

data misfit is expressed in terms of rock elastic properties. There are a significant

number of publications that apply seismic inverted responses for the reservoir model

calibration compared with those that apply the direct seismic attributes. For exam-

ple, Landa and Horne (1997) used saturation changes obtained directly from inverted

time-lapse seismic data. Gosselin et al. (2001) applied synthetic acoustic impedance

maps generated with a rock physics model, and calibrate model with a heterogeneity

parameterization based on the grad zone analysis. Arenas et al. (2001) used the

compressional velocity to calibrate the permeability field at a set of pilot points used

as conditioning data by kriging in a gradient-based optimization loop. Dong and

Oliver (2005) assumed the availability of differences in acoustic impedance from a

geophysical seismic inversion and calibrated the grid cell porosity and permeability

using a quasi-Newton method with the objective function gradient calculated by an

adjoint method. In stochastic approaches, Skjervheim et al. (2007) used the ensem-
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ble Kalman smoother to assimilate the time-lapse seismic data of changes in acoustic

impedance and compressional velocity. Fahimuddin et al. (2010) similarly used the

seismic derived impedance data with the ensemble Kalman filter with a covariance

localization method. Feng and Mannseth (2010) applied a pseudo seismic data in

the form of maps of saturation changes and investigated the impact of the seismic

data in the presence of noise on permeability estimation. Finally, Rey et al. (2012)

applied a streamline based sensitivity calculation to integrate the seismic derived

water saturation changes and the acoustic impedance differences and demonstrated

field-scale applications.

Our current study examines both reservoir simulation based calibration and

petro-elastic modeling based calibration. In the first instance we calibrate against

both time lapse changes in pressure and in saturation and this is the scope of this

section. In the second instance we calibrate against the time lapse change in acoustic

impedance and this is the scope of next section. In both cases, the inversion will pro-

vide local updates to the reservoir model using analytic streamline-based sensitivity

calculations. This is the major new result of our study. As with most previous stud-

ies, we will calibrate against changes in properties over the interval of the time lapse

survey, instead of the properties themselves. This minimizes systematic biases intro-

duced by lack of calibration of the initial model. In addition, we will also integrate

this approach in a sequential fashion with other forms of data calibration. In both

cases we will follow the seismic data integration with a fairly conventional stream-

line based integration of water-cut field performance. This data is high resolution in

time, but only available at the production wells.

The outline of this section is as follows. First, we review the previous work

of streamline-based data integration techniques in the literature. Second, we start

with the mathematical background to determine the streamline-based analytic sen-
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sitivities for fluid saturation and pressure data integration. These sensitivity results

are validated by numerical experiments. Finally, we illustrate the history match-

ing applications of time-lapse pressure and saturation changes by using a synthetic

model and the SPE benchmark Brugge field model. This combination of examples

demonstrates the utility and the effectiveness of our approach.

3.3 Background and Methodology

Our approach relies on the use of streamlines to relate the reservoir properties to the

dynamic reservoir responses: production, pressure and time lapse seismic response.

Establishing these relations, also called sensitivities, is crucial to the data integration

process. We make extensive use of streamlines to describe the flow field and to

calculate the fluid tracer time of flight along each streamline. The time of flight acts

as a spatial coordinate along the lines. However, our proposed approach does not

rely on the use of a streamline simulator, and is well-suited for both conventional

finite difference reservoir simulators and streamline simulators. In fact, most of the

examples presented in this section utilize a commercial finite difference simulator for

flow simulation. For streamline simulators, the streamline trajectories and time of

flight are readily available. However, for finite difference simulator, the streamline

and time of flight are obtained via a post processing of the finite difference velocity

field.

In this section, we first review the previous work of streamline-based data inte-

gration techniques in the literature and discuss the mathematical details related to

sensitivity computations in streamline-based seismic data integration. The deriva-

tions of sensitivity formulation include time of flight sensitivity, saturation front

arrival time sensitivity, generalized travel time sensitivity, water saturation sensitiv-

ity and pressure drop sensitivity. Also, we discuss the objective function formulation
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for data misfit quantification and its minimization.

3.3.1 Streamline-Based Data Integration: Literature Review

Integrating dynamic data into high-resolution reservoir models typically requires the

solution of an inverse problem. Such inverse modeling is computationally intensive,

often requiring orders of magnitude more computational effort compared to forward

modeling or flow simulation. Streamline models have shown significant potential in

this respect (Datta-Gupta et al. 1998, Vasco and Datta-Gupta 1999, Vasco et al.

1999). Streamline models are advantageous primarily in two ways. First, streamline

simulator offers an efficient approach to fluid flow modeling in the reservoir. Second

and more importantly, sensitivities of the production response with respect reservoir

parameters such as porosity and permeability can be computed analytically using a

single streamline simulation. These sensitivities quantify the change in production

response because of a small perturbation in reservoir parameters and constitute an

integral part of most inverse modeling algorithm.

Vasco and Datta-Gupta (1999) derived an asymptotic approach to the transport

equation and proposed an efficient formalism for the inversion of tracer data. The

technique provides tracer concentration sensitivities to porosity, permeability, and

pressure gradient variations and has several advantages over existing approaches.

First, the technique utilizes an extremely efficient semi-analytic approach to trans-

port modeling that is quite fast even for three-dimensional problem (Datta-Gupta

and King 1995). Second, the sensitivities are formulated in terms of one-dimensional

integrals of analytic functions along streamlines. The computation of sensitivities for

all model parameters requires only a single simulation run to construct the stream-

lines from the velocity field.

Vasco et al. (1999) extended the analytic approach to compute the sensitivity of
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water cut production data with respect to reservoir properties. They also presented a

two-step linearized inversion scheme for production data. In particular, the matching

of the “first arrival” or breakthrough time followed by amplitude matching speeds

up computation, facilitates convergence of the algorithm.

Initial efforts towards dynamic data integration using streamline models were

limited to tracer concentration history and multiphase production response such as

water-cut data at the wells. This is because initial streamline formulations are par-

ticularly well-suited for modeling tracer transport and waterflooding as the velocity

field remains relatively static and the streamlines need to be updated only infre-

quently. Under such conditions streamline models can be order of magnitude faster

than conventional finite difference simulators (Datta-Gupta and King 1995; Batycky

and Blunt et al. 1997). A key development in streamline modeling has been the in-

troduction of the concept of time-of-flight that has trivialized generalization to three

dimensional flows (Datta-Gupta and King 1995). The time of-flight formulation ef-

fectively decouples pressure from saturation and concentration calculations during

flow simulations.

Datta-Gupta et al. (2001) exploited the analogy between streamlines and seismic

ray tracing and utilized concepts from asymptotic ray theory to derive the stream-

line time-of-flight equations. They have then generalized the streamline approach to

compressible flow by introducing a ‘diffusive’ time of flight based upon an asymptotic

solution of the diffusion equation for integrating transient pressure data. They sim-

ply compute the ‘diffusive’ time of flight along streamlines and relate the ‘diffusive’

time of flight to the time at which the pressure response for an impulse source/sink

(drawdown or build up) reaches a maximum at a location. Then they have derived

the sensitivity of ‘diffusive’ time-of-flight with respect to reservoir permeability and

porosity analytically.
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Wu and Datta-Gupta (2002) and He et al. (2002) utilized the concept of “gen-

eralized travel time” from the work by Luo and Schuster (1991) in the context of

waveform inversion in seismology and generalized the travel-time inversion method

for production data integration and actually reduced the previously proposed two-

step inversion approach (travel time and amplitude) into a single-step procedure

while retaining most of the desirable features of the travel-time inversion. This “gen-

eralized travel-time inversion” reduces the entire production history misfit at a well

to a single “optimal travel-time shift”. Instead of matching the production data di-

rectly, they minimize a travel-time shift derived by maximizing a cross-correlation

between the observed and computed production response at each well. This makes

the approach extremely computationally efficient and well suited for large-scale field

applications.

He et al. (2002) utilized the generalized travel-time inversion to extend streamline-

based production data integration methods to changing field conditions involving rate

changes and infill drilling. They analytically compute the sensitivity of generalized

travel time with respect to reservoir properties such as permeability including pres-

sure updates and gravity effects. The practical feasibility of the method has been

demonstrated by a field example from the Goldsmith San Andres Unit (GSAU) in

west Texas.

Vasco et al. (2004) applied the streamline trajectory based approach for inverting

time lapse seismic amplitude change data. Using Gassman’s equation, the seismic

amplitude response in the reservoir is a function of the saturation, pressure, and

porosity. One application to actual time-lapse data from Bay Marchand field in the

Gulf of Mexico indicated that the method is robust in the presence of noise.

Cheng et al. (2005a) showed nonlinearities in the inverse problems related to

travel time, generalized travel time, and amplitude matching during production data
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integration and their impact on the solution and its convergence. They quantified

that commonly used amplitude inversion can be order of magnitude more nonlinear

compared to the travel time inversion. They showed that the travel time inversion

exhibits superior convergence characteristics and the travel time sensitivities are

more uniform between the wells compared to the amplitude sensitivities that tend

to be localized near the well. They have demonstrated their results using a field

application involving a multiwall, interwell tracer injection study in the McClesky

sandstone of the Ranger field in Texas.

He et al. (2006) showed an efficient trajectory-based approach to integrate pres-

sure data into high-resolution reservoir and aquifer models. The method involves

alternating travel time and peak amplitude matching of pressure response using in-

verse modeling using hydraulic tomography or pressure interference tests. They de-

veloped analytical approaches to estimate the sensitivities for travel time and peak

amplitude of pressure response to subsurface properties. In the field application to

a naturally fractured reservoir, an orthogonal fracture pattern was imaged from an

interference test which was found to be consistent with independent experimental

observations and interpretations.

The generalized travel time history matching technique has been applied in a large

number of field cases (Cheng et al. 2004; Hohl et al. 2006), however most of these

applications have been limited to two phase water and oil flow under incompressible

or slightly compressible conditions. Cheng et al. (2007) extended the streamline

approach to history matching three-phase flow using a novel compressible streamline

formulation and streamline-derived analytic sensitivities. Streamline models were

generalized to include compressible flow by introducing an “effective density” of

total fluids along streamlines. They formulated analytic expressions for sensitivity

of water-cut and GOR to reservoir properties and combined with the generalized

60



travel-time inversion.

Oyerinde et al. (2009) proposed a transformation method of the field production

data that facilitates the generalized travel-time inversion technique especially for the

non-monotonic profile of the GOR data. Also the proposed approach incorporates

matching the flowing bottomhole pressure (BHP) using a low frequency asymptotic

approach (Vasco and Karasaki 2006) for computing pressure sensitivities. They

showed the practical feasibility of the method using a field west Africa reservoir

application.

Rey et al. (2011) proposed an efficient technique in computing travel time shift

in the presence of production data discontinuity due to frequent field well interven-

tion. The method removes the high frequency components of production data by

resampling in terms of equal volumes of oil produced at surface condition and makes

the production response more amenable for the travel time inversion. The proposed

approach has been applied to an offshore turbidite reservoir with highly detailed

production information.

3.3.2 Quantifying Data Misfit: Amplitude vs. Travel-Time Inversion

Production data integration typically involves the minimization of a least squares

differences between the observed data and the calculated response from a simulator.

Production data misfit is most commonly represented as

Ep =
Nw∑
j=1

Ndj∑
i=1

wij
(
ycalj (ti)− yobsj (ti)

)2
, (3.1)

for i = 1, ..., Ndj and j = 1, ..., Nw. In the given equation, yj denotes the production

data, for example, water cut or tracer response at the producing well j; Ndj repre-

sents the number of observed data at well j; and Nw is the number of producing

wells, respectively. The wij are weights that can be used to increase or decrease
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the influence of the data or to account for measurement errors. We refer the mini-

mization of Eq. (3.1) as “amplitude inversion”. Instead, the “travel-time inversion”

attempts to match the observed data and model responses at some reference time

for example, the breakthrough time or the peak arrival time. Figs. 3.2a and 3.2b

illustrate the amplitude vs. travel time inversion for tracer response in a well.

There are several advantages of travel-time inversion compared to amplitude in-

version. It can be shown that the amplitude inversion is highly nonlinear when

compared with travel-time inversion, which has quasilinear properties (Cheng et al.

2005a). As a result, the travel-time inversion is more robust and is less likely to be

stuck in local minima. This is well known in the geophysics and seismic tomogra-

phy literature (Lou and Schuster 1991). However because the travel-time inversion

entails matching only a single data point, e.g., the breakthrough time or the peak

arrival time, the overall match to the production data may be less than satisfactory.

We can actually combine the travel-time inversion and amplitude inversion into

one step via “generalized travel-time inversion” (He et al. 2002). In this approach,

we seek an optimal time shift ∆t̃ of the data at each well so as to minimize the

production data mismatch at the well. This is illustrated in Fig. 3.2c in which the

calculated tracer response is systematically shifted in small time increments toward

the observed response and the data misfit is computed for each time increment. The

optimal time shift will be given by the ∆t̃ that minimizes the misfit function:

E(∆t̃) =
Nd∑
i=1

(
ycal(ti + ∆t̃)− yobs(ti)

)2
. (3.2)

Or, alternatively, we can maximize the coefficient of determination given by the
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following:

R2(∆t̃) = 1−
∑Nd
i=1

(
ycal(ti + ∆t̃)− yobs(ti)

)2

∑Nd
i=1

(
yobs(ti)− yobs

) (3.3)

Thus, the “generalized travel time” at well j is given by the optimal time shift, ∆t̃j

that maximizes the correlation coefficient as illustrated in Fig. 3.2d. By defining the

generalized travel time, we retain the desirable properties of the travel-time inversion

and at the same time accomplish amplitude matching of the production data. It is

important to note that the computation of the optimal travel-time shift does not

require any additional flow simulation. It is carried out by post-processing the data

at each well after the production response has been computed.

3.3.3 Time of Flight Sensitivity Calculation

We start with the definition of the streamline time of flight which is the travel time

of a neutral tracer along a streamline (Datta-Gupta and King 2007),

τ =
∫
ψ
s(x)dr. (3.4)

Here the integral is along the streamline trajectory ψ, x is the vector containing

position: (x, y, z), and r is distance along the streamline, and s is the slowness

defined by the reciprocal of the interstitial velocity along the streamline,

s(x) = 1
|~v(x)| . (3.5)

Using Darcy’s law, the slowness can be written as

s(x) = φ(x)
λrt(x)k(x)|∇P (x)| . (3.6)
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Fig. 3.2—Illustration of (a) travel-time inversion, (b) amplitude inversion,
(c) generalized travel-time inversion, and (d) best time shift (from Cheng
et al. 2005a).
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Here λrt(x) is the total relative mobility, λrt(x) = λro(x) +λrw(x) +λrg(x), which is

the sum of oil, water, and gas phase mobility respectively, and |∇P (x)| is the pressure

gradient along the streamline. Because slowness is a composite quantity involving

reservoir properties, its first order variation, assuming a fixed pressure gradient, will

be given by

δs(x) = ∂s(x)
∂k(x)δk(x) + ∂s(x)

∂φ(x)δφ(x), (3.7)

From Eq. (3.6) the partial derivatives are

∂s(x)
∂k(x) ≈

−φ(x)
λrt(x)k2(x)|∇P (x)| = − s(x)

k(x) , (3.8)

∂s(x)
∂φ(x) ≈

1
λrt(x)k(x)|∇P (x)| = s(x)

φ(x) . (3.9)

The approximation in Eq. (3.8) and Eq. (3.9) is that the local perturbations in

permeability or porosity generate negligible pressure changes. This approximation

implies that to leading order streamlines do not shift because of these small pertur-

bations. Now we can relate the change in time of flight δτ to the change in slowness

by integrating along each streamline trajectory as

δτ =
∫
ψ
δs(x)dr =

∫
ψ

[
∂s(x)
∂k(x)δk(x) + ∂s(x)

∂φ(x)δφ(x)
]
dr. (3.10)

Thus, the tracer travel time sensitivity along a single streamline, ψ with respect to

permeability and porosity at location x follows Eq. (3.10) by integrating from the

inlet to the outlet of the streamline within the gridblock,

δτ(ψ)
δk(x) =

∫ outlet

inlet

[
− s(x)
k(x)

]
dr = −∆τ(x)

k(x) , (3.11)

δτ(ψ)
δφ(x) =

∫ outlet

inlet

[
s(x)
φ(x)

]
dr = ∆τ(x)

φ(x) . (3.12)
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Here ∆τ(x) is the time-of-flight across the gridblock at location x.

3.3.4 Saturation Front Arrival Time Sensitivity

In the previous section we developed expressions for sensitivity of the streamline

time of flight to reservoir porosity and permeability. We now relate the time of flight

sensitivity to the travel time sensitivity of the water saturation. For two phase flow,

this sensitivity is used after water breakthrough at a producing well to calibrate the

reservoir properties to water cut response, and can be generalized to three phase

flow. First, we consider two phase incompressible flow of oil and water described

by the Buckley-Leverett equation written using the streamline time of flight as the

spatial coordinate (Datta-Gupta and King 2007),

∂Sw
∂t

+ ∂Fw
∂τ

= 0. (3.13)

The velocity of a given saturation Sw along a streamline ψ is given by the slope of

the fractional flow curve, (
∂τ

∂t

)
Sw

= dFw
dSw

. (3.14)

This equation relates the travel time of a saturation, t(Sw, τ;ψ) to the time of flight,

τ as τ

t
= dFw
dSw

. We can now compute the sensitivity of the saturation arrival time

using that of the streamline time of flight as follows:

δt(Sw, τ;ψ)
δk(x) = δτ(ψ)

δk(x)
/dFw
dSw

, (3.15)

δt(Sw, τ;ψ)
δφ(x) = δτ(ψ)

δφ(x)
/dFw
dSw

. (3.16)

After water breakthrough on a streamline, these arrival times are evaluated at the

total time of flight, τ(ψ), for the streamline.
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3.3.5 Generalized Travel Time Sensitivity

Now, consider a small perturbation in reservoir properties, δm so that it results in a

time shift δt for the entire computed water cut responses at the producing well, that

is, every data point of well j has a common time shift. We then have the following

relationship for the observed times (t1, ..., tNd
):

δt = δti =
[
∂ti
∂m

]>
δm, (3.17)

for i = 1, ..., Nd where m represents the reservoir parameter vector. Summing Eq.

(3.17) over all the data points, we can arrive at the following simple expression for

the sensitivity of the travel-time shift with reservoir parameter, m, which represents

a component of the vector m (He et al. 2002),

δt

δm
= 1
Nd

Nd∑
i=1

(
δti
δm

)
. (3.18)

Also, based on the definition of the generalized travel time, we have the following:

δ∆t̃
δm

= − δt

δm
. (3.19)

The negative sign in Eq. (3.19) reflects the sign convention adopted for defining the

generalized travel-time shift, which is considered positive if the computed response

is to the left of the observed data as shown in Fig. 3.2c. We now obtain a rather

simple expression for the sensitivity of the generalized travel time with respect to

reservoir parameters as follows:

δ∆t̃
δm

= − 1
Nd

Nd∑
i=1

(
δti
δm

)
. (3.20)
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In the equation given here, the travel time sensitivity with respect to reservoir pa-

rameters, δti/δm are given by Eq. (3.15) for permeability and Eq. (3.16) for porosity

respectively.

3.3.6 Water Saturation Sensitivity Calculation

We now derive expressions for the sensitivity of water saturation with respect to

variations in permeability. For two phase flow, water saturation is a function of the

streamline time of flight, τ and time, t. First consider self-similar solutions to Eq.

(3.13), as have just been derived. Along a streamline the saturation is a function

of the dimensionless ratio τ/t. This allows us to relate the partial derivative of

saturation with respect to time to the partial derivative with respect to τ as follows:

∂Sw
∂t

= − τ

t2
dSw(τ/t)
d(τ/t) , (3.21)

∂Sw
∂τ

= 1
t

dSw(τ/t)
d(τ/t) . (3.22)

Hence:
∂Sw
∂τ

= − t
τ

∂Sw
∂t

. (3.23)

From this we have the water saturation sensitivity by a chain rule:

δSw(τ, t)
δk(x) = ∂Sw

∂τ

δτ

δk(x) = − t
τ

∂Sw
∂t

δτ

δk(x) . (3.24)

The partial derivative of water saturation with respect to time in Eq (3.24) can be

calculated numerically by a backward time difference as

∂Sw(τ, t)
∂t

≈ Sw(τ, t)− Sw(τ, t−∆t)
∆t . (3.25)
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Here ∆t is the timestep size. This requires saving the saturation information for the

timestep immediately prior to the time lapse survey time. Therefore, the saturation

sensitivity at location τ at a given time t can be calculated by:

δSw(τ, t)
δk(x) = − t

τ

Sw(τ, t)− Sw(τ, t−∆t)
∆t

δτ

δk(x) , (3.26)

where the last functional variation of travel time with respect to permeability can

be obtained from Eq. (3.11)

The derivation in Eq. (3.26) assumes that the streamline trajectories do not

change with time. This is an incorrect assumption considering the large time inter-

vals typically used in time lapse seismic surveys. Also, most often we are calibrating

against the changes in saturation, rather than the saturation itself. The general-

ization of the sensitivity calculation to account for these effects is discussed in the

Appendix A.

3.3.7 Pressure Data Integration

Pressure data integration is performed by converting the spatial distribution of pres-

sure to a spatial distribution of the viscous pressure drop along a streamline from

each location, to the producing well where that streamline terminates. Specifically,

for a particular location i, and pressure Pi then the pressure drop, ∆P |iw along the

streamline passing through the location i and leading to well w with bottomhole

pressure Pw (Fig. 3.3) is:

Pi = Pw + ∆P |iw. (3.27)

This utilizes the (known) bottomhole flowing pressure at the time at which the spatial

distribution of pressure data was obtained. If distributed time lapse pressure data

and well bottomhole pressure are available, we can compute the pressure drop from
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Fig. 3.3—A streamline between well pairs connecting gridblocks.

Eq. (3.27) and use it as our observation data,

∆P |iw,obs = Pi,obs − Pw,obs. (3.28)

Now, the data misfit between the simulation response and observation can be written

as

δdi = ∆P |iw,obs −∆P |iw,cal

= (Pi,obs − Pw,obs)− (Pi,cal − Pw,cal)

= (Pi,obs − Pi,cal)− (Pw,obs − Pw,cal). (3.29)

The first term is the pressure difference at location i, and the second term is the

bottomhole pressure difference at well w.

3.3.8 Pressure Drop Sensitivity Calculation

The pressure drop along a streamline can be expressed as

∆P =
∫
ψ

v̂ · ∇P (x)dr. (3.30)
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This is the integral of the projection of pressure gradient, ∇P (x) on the unit direc-

tion vector from downstream, v̂ along the streamline with r is distance along the

streamline. This can be computed by simply summing up the pressure drop across

the gridblocks that intersect the streamline as shown in Fig. 3.3. Further, we can

express the local pressure drop along a streamline using Darcy’s law as

∆P (x) = v̂ · ∇P (x)dr = q(x)
A(x)λrt(x)k(x) , (3.31)

where A(x) is the cross sectional area, q(x) is the flow rate along a streamline, λrt(x)

is the total relative mobility. The pressure drop is a composite quantity involving

reservoir properties. We assume that the streamline trajectories, flow rate along

streamline and the total mobility do not change because of small perturbations in

permeability. We can now relate the change in local pressure drop to a small change

in permeability as

δ∆P (x) = v̂ · δ∇P (x)dr = ∂∆P (x)
∂k(x) δk(x), (3.32)

where the partial derivative is

∂∆P (x)
∂k(x) ≈

−q(x)
A(x)λrt(x)k2(x) = −∆P (x)

k(x) . (3.33)

The pressure drop to a location i, ∆P |iw will be given by integration along the

streamline trajectory passing through i to well w,

δ∆P |iw =
∫
ψ

v̂ · δ∇P (x)dr =
∫
ψ

∂∆P (x)
∂k(x) δk(x) (3.34)
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and the pressure drop sensitivity for a particular gridblock at location x follows from

Eq. (3.34),
δ∆P |iw(ψ)
δk(x) =

∫ location

producer

[
v̂ · δ∇P (x)
δk(x)

]
dr = −∆P (x)

k(x) . (3.35)

3.3.9 Objective Function Minimization Formulation

After we compute the sensitivities of the seismic derived data and/or the production

data with respect to the gridblock permeability, we perform the data integration by

minimizing a penalized misfit function consisting of the following three terms (He et

al. 2002):

o(δm) = ‖δd− Sδm‖+ β1‖δm‖+ β2‖Lm‖. (3.36)

In the above expression, δd is the data misfit between the observation and simu-

lated response, and S is the sensitivity matrix containing the sensitivities of model

responses with respect to reservoir parameters. Also δm corresponds to the reservoir

parameter change vector and L is a second spatial difference operator matrix. The

first term ensures the difference between the observed and calculated model response

is minimized. The second term, called a “norm constraint”, penalizes deviations

from the prior model. This prevents large changes and maintains geologic realism by

preserving major features of the prior model during the model calibration process.

Finally, the third term, a “roughness constraint”, constrains the model changes to be

spatially smooth. The weights β1 and β2 determine the relative strengths of the norm

and smoothness constraints; guidelines exist in the literature for their selection. An

iterative sparse matrix solver, LSQR (Paige and Saunders 1982), is used for solving

the augmented linear system efficiently.

In this section, we carry out the data integration in a sequential manner starting

with pressure data first followed by the saturation changes and then the well produc-
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Fig. 3.4—A 1-D simulation model.

tion information. The sequential framework is analogous to the structured approach

used in the industry (Williams et al. 1998; Cheng et al. 2008) and accounts for the

different length scales associated with different data types. The sequential frame-

work also facilitates convergence of the inversion algorithm. The norm constraint in

Eq. (3.36) maintains consistency between different steps in the sequential process

by limiting the changes and thus, preserves the calibration results from the previous

step.

3.4 Sensitivity Calculation Validations

In this section, numerical experiments are conducted to verify the proposed water

saturation and pressure drop sensitivity calculations.

3.4.1 Water Saturation Sensitivity Validation

We set up a simple model which is a 1-D homogeneous model with one injector and

one producer at the two ends as shown in Fig. 3.4. It is similar to a core flood

experiment. The system is two phase oil and water. Rock and fluid properties are

summarized in Table 3.1 and relative permeability curves are shown in Fig. 3.5.

Wells are controlled by bottomhole pressure constraints. We conduct the simulation

for 50 days with 10 timesteps of 5 days. Simulation specification is summarized in

Table 3.2.
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∗PVT values are at the reference pressure of 5,000 psi.

We compare the proposed sensitivity calculation with a numerical perturbation

method. The numerical perturbation method calculates the sensitivity as

d = g(m), (3.37)
∂d

∂m
≈ g(m+ δm)− g(m)

δm
. (3.38)

Here d is the observed quantity, g(◦) is the non-linear function of reservoir simu-
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Fig. 3.5—Relative permeability curves.

lation and m is the perturbed reservoir property. Therefore the total computation

requires Ng+1 simulations, where Ng is the number of gridblocks, while the proposed

analytic sensitivity calculation requires only a single simulation. For the following

experiment, the perturbation value is 10 % of the original parameter value for nu-

merical sensitivity calculations.

Water saturation sensitivities with respect to reservoir permeability are shown in

Fig. 3.6. The proposed streamline based sensitivity calculation shows very good

agreement with the numerical perturbation values. The peak value of the sensitivity

profile corresponds to the water saturation front location where a sharp saturation

change occurs. Behind the water saturation front location, the sensitivity profile

decays because the saturation changes diminish.
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Fig. 3.6—Water saturation sensitivity with respect to reservoir perme-
ability comparisons. (a) Sensitivity values with respect to the permeabil-
ity of gridblock no. 15 at a time of 25 days. Red line is the analytic
streamline based calculation, green line is the numerical perturbation.
(b) Water saturation profile at a time of 25 days. (c) Sensitivity values
with respect to permeability of gridblock no. 15 at a time of 50 days. (d)
Water saturation profile at a time of 50 days.
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3.4.2 Pressure Drop Sensitivity Validation

The pressure drop sensitivity calculation is verified using the same model as in the

previous section. However, the boundary condition is now changed to rate constraints

as shown in Table 3.3. Pressure drop sensitivities with respect to reservoir perme-

ability are shown in Fig. 3.7. The proposed streamline based sensitivity calculation

shows very good agreement with the numerical perturbation values. The sensitivity

profile shows that the sign of the sensitivity contains both positive and negative val-

ues symmetrically with respect to the perturbation point (Gridblock No. 15). Also

the comparisons of sensitivity profile at different time shows that the shape of the

sensitivity profile does not change significantly with time. However, the magnitude

of the sensitivity value does change because the local pressure gradient changes when

water displaces oil providing a change in the total mobility.
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Fig. 3.7—Pressure drop sensitivity with respect to reservoir permeability
comparisons. (a) Sensitivity values with respect to the permeability of
gridblock no. 15 at a time of 25 days. Red line is the analytic streamline
based calculation, green line is the numerical perturbation. (b) Pressure
profile at a time of 25 days. (c) Sensitivity values with respect to per-
meability of gridblock no. 15 at a time of 50 days. (d) Water saturation
profile at a time of 50 days.
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∗PVT values are at the reference pressure of 5,863.8 psi.

3.5 History Matching Applications

3.5.1 Five-Spot Synthetic Case

Our first example of seismic history matching is a synthetic 2-D model to illustrate

the proposed inversion approach. The model contains 50 × 50 × 1 cells with a five-

spot well configuration: one injector in the center and 4 producers at the corners.

Wells are constrained by the historical (constant) reservoir flow rates. The rock and

fluid properties and the simulation specifications are summarized in Table 3.4 and

Table 3.5 respectively. The relative permeability curves are the same as Fig. 3.5.

The reference permeability model is generated by sequential Gaussian simulation

with well permeability values as conditioning data as shown in Fig. 3.8a. The

prior permeability model is shown in Fig. 3.8b. It is also generated by sequential

Gaussian simulation but with different geostatistical parameters from the reference

model. The observation data is generated from the reference model using a com-

mercial reservoir simulator. These include well production data and 2-D maps of

pressure and saturation changes between 260 days and 1,560 days from the start of

production (Fig. 3.9a and Fig. 3.9b).
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Fig. 3.8—Five-spot permeability models. (a) Reference model, and (b)
Initial model.

Fig. 3.9—Time-lapse observation data between 260 days and 1560 days.
(a) Pressure change map, and (b) Water saturation change map.
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The production data is available as water cut and bottomhole pressure at the

wells. This choice of data follows that of the Brugge field case, which will be described

in the next section.

Our approach involves first matching of the time-lapse pressure changes followed

by matching of the saturation changes, using the pressure and saturation sensitivity

calculations just discussed. Finally, well by well water cut matching is performed

using the generalized travel time inversion method (He et al. 2002). Our reason-

ing behind the sequential approach is that the pressure data is well-suited to cap-

ture large-scale (global) variation whereas saturation and production data capture

small-scale (local) variation. This is analogous to the structured approach to history

matching that is widely practiced in the industry (Williams et al. 1998; Cheng et al.

2008).

Pressure change data integration results are shown in Fig. 3.10a and shows

significant reduction in the objective function within a few iterations. The updated

permeability field shown in Fig. 3.11c appears to identify the low permeability

barrier located in the right lower side. Also, the time-lapse pressure change response

improved significantly as shown in Fig. 3.12c compared to the initial model (Fig.

3.12b). Next, saturation changes are integrated into the updated model from the

previous step. The reduction of the objective function with the number of iterations

is shown in Fig. 3.10b. The time-lapse saturation change from this stage is shown

in Fig. 3.13d and reveals further improvement over the pressure data integration

as shown in Fig. 3.13c. Finally, the generalized travel time inversion is applied to

match the well by well water cut data. The objective function reduction is shown

in Fig. 3.10c and the production data history matching results are shown in Figs.

3.14 and 3.15.

The final model responses are well matched to the reference model both for bot-
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Fig. 3.10—Objective functions during inversion iterations. (a) Pressure
change data integration, (b) Saturation change data integration and (c)
Generalized travel time production data integration.

Fig. 3.11—Updated permeability fields comparisons. (a) Reference
model, (b) Initial model, and (c) After pressure change data integration,
(d) After water saturation change data integration, and (e) Final model
after generalized travel time production data integration.
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Fig. 3.12—Time-lapse pressure change comparisons. (a) Reference
model, (b) Initial model, and (c) After pressure change data integration,
(d) After water saturation change data integration, and (e) Final model
after generalized travel time production data integration.

Fig. 3.13—Time-lapse water saturation change comparisons. (a) Refer-
ence model, (b) Initial model, and (c) After pressure change data inte-
gration, (d) After water saturation change data integration, and (e) Final
model after generalized travel time production data integration.
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Fig. 3.14—Bottomhole pressure data history matching results. Reference
model responses are plotted as dot points, initial model responses are in
blue lines, and final updated model responses are in red lines.

Fig. 3.15—Water cut data history matching results. Reference model
responses are plotted as dot points, initial model responses are in blue
lines, and final updated model responses are in red lines.
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Fig. 3.16—Structure of the Brugge field showing the elevation depth (in
feet) and 30 wells: producers (red color), and injectors (blue color).

tomhole pressure and water cut data with corresponding improvements of time-lapse

pressure and saturation change responses as shown in Figs. 3.12 and 3.13. The

permeability model updates during the inversion steps are compared in Fig. 3.11.

These results confirm that the consistent integration of both time-lapse pressure and

saturation changes together with production data can constrain the history matching

solution effectively with our proposed approach.

3.5.2 The Brugge Field Case

The Brugge field case was designed for a SPE benchmark project to test the combined

use of history matching and waterflooding optimization methods in a closed-loop

workflow (Peters et al. 2010). The structure of the Brugge field consists of an

east/west elongated half-dome with a large boundary fault at its northern edge and

one internal fault with a modest throw as shown in Fig. 3.16.

The dimensions of the field are roughly 10 km × 3 km. The reservoir model

contains more than 40,000 active grid cells, 20 producers located in the center of the

dome and 10 infill water injectors located in the surrounding aquifer to provide addi-

tional pressure support. A total of 104 realizations were generated by four different
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classes of geologic parameters: (1) facies association, (2) facies modeling, (3) porosity,

and (4) permeability. The detailed descriptions of the realization construction can

be found in Peters et al. (2010). In order to account for the uncertainty of the prior

models in history matching, we test the proposed inversion method for four distinct

realizations, namely realization 1, 33, 67 and 103 as shown in Fig. 3.17. Production

data are given in the form of water and oil rates, and also bottom-hole pressure at

each of the 20 producers for the 10 years of production. The reservoir is an under

saturated oil reservoir (i.e., no solution gas). Inverted 4-D seismic data in terms of

pressure and saturation changes between time-lapse of 10 years are also provided.

Pressure and saturation changes were calculated as vertically averaged values over

the four reservoir zones in total 9 layers (i.e., the Scheld, Maas, Wall, and Schie),

representative for the seismic resolution with added noise (Fig. 3.18). We use these

data sets as observation data to calibrate reservoir permeability to minimize the dif-

ferences of the observed and simulated time-lapse pressure and saturation changes

as well as the production data. One of the challenging aspects of this application is

the long gap of the time-lapse data. During the 10 years of production, the reservoir

drive mechanism has evolved from primary depletion to secondary recovery with the

down-dip water injection. The streamlines depict this transition of the reservoir flow

dynamics clearly as shown in Fig. 3.19. Accordingly, we need to account for the

dynamic changes of the reservoir pressure and saturation to integrate the available

time-lapse data (Rey et al. 2012).

First, pressure change data is utilized to calibrate the models. The inversion

performance is shown in Fig. 3.20a for each of the four models. Next, water

saturation change is integrated to update the models as shown in Fig. 3.20b.

Finally, the generalized travel time inversion is applied to integrate water cut data

into the models (Fig. 3.20c). The improvements in well by well production response
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Fig. 3.17—Four realizations of the selected layers: namely Realization 1,
33, 67, and 103.

Fig. 3.18—Time-lapse pressure and water saturation changes vertically
averaged over the four reservoir zones (from top Scheld, Maas, Waal, and
Schie formations).
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Fig. 3.19—Streamlines during the 10 years of production depicting
reservoir flow dynamics: primary depletion (initial to 625 days) to
secondary recovery with down-dip water injection (940 days to 10 years).

Fig. 3.20—Objective functions during inversion iterations. (a) Pressure
change data integration, (b) Saturation change data integration, and (c)
Generalized travel time production data integration.
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Fig. 3.21—Water cut data history matching results. Data misfit compar-
isons between the initial models and the final updated models for four
realizations.

match are shown in Fig. 3.21. In particular, some improved well matching results

from the realization No.67 are shown in Fig. 3.22. The final updated models are

shown in Fig. 3.23. Compared to the initial models, major permeability changes

occur in the Waal formation (layer 6, 7, 8), but overall geologic continuity is preserved

for all realizations. The final model response in terms of pressure change and water

saturation change for the Waal formation are compared in Figs. 3.24 and 3.25.

Overall, the magnitude of pressure changes reduced from initial model responses for

all realizations. As for water saturation changes, the improvements of the magnitude

of changes and the distribution of water fronts are more evident in the final updated

models. With these updated models, we can assess various schemes for production

optimization, although this is not within the scope of this section (Alhuthali et al.

2008).
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Fig. 3.22—Production data history matching comparisons between the
initial model and the final updated model of realization No. 67.

Fig. 3.23—Four final updated models of the selected layers: namely real-
ization 1, 33, 67, and 103.
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Fig. 3.24—Time-lapse pressure change comparisons between initial
models and final updated models (from Waal formation).

Fig. 3.25—Time-lapse water saturation change comparisons between ini-
tial models and final updated models (from Wall formation).
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3.6 Conclusions

In this section we have presented an efficient history matching approach that in-

tegrates the time-lapse seismic derived pressure and saturation change data with

well production data. Although our approach relies on streamline-based sensitivity

calculations to relate pressure and saturation responses to the reservoir parameters,

it can be applied with either streamline simulators or conventional finite difference

simulators. For finite difference simulators, the streamline and time of flight can be

computed via post processing of the velocity field (Cheng et al. 2005). We have

demonstrated the effectiveness of our proposed approach through synthetic and the

Brugge field applications. Some of the conclusions from this section are summarized

below.

• We have proposed a novel methodology for streamline-based analytic approaches

to compute parameter sensitivities that relate the time-lapse seismic derived

pressure and saturation changes to reservoir properties.

• Our numerical experiments validate the proposed sensitivity calculations for

the saturation and pressure drop by comparison with numerical perturbation

method. However, unlike numerical perturbation, our proposed approach to

sensitivity computations only requires a single forward simulation.

• Five-spot synthetic example shows the importance of accounting for both sat-

uration and pressure changes in the reservoir responses in order to constrain

the history matching solutions.

• The proposed approach can account for the model geologic uncertainty by

updating ensemble of realizations as demonstrated in the Brugge field case.
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4. INTEGRATION OF 4D SEISMIC AND PRODUCTION DATA FOR

RESERVOIR MANAGEMENT-APPLICATION TO THE NORNE FIELD∗

4.1 Summary

This section summarizes a structured workflow for time-lapse seismic and production

data history matching and field-scale production optimization thorough the Norne

field application. Our proposed method follows a two-step approach: global and

local model calibrations. In the global step, we reparameterize the field permeability

heterogeneity, at grid cell resolution, with a Grid Connectivity-based Transformation

(GCT) as basis coefficient parameters and use a Pareto-based multi-objective evolu-

tionary algorithm to integrate field cumulative production responses and time-lapse

seismic derived acoustic impedance change data. The method generates a suite of

solutions accounting for the trade-off in fitting production and seismic data.

In the local step, first the time-lapse seismic data is integrated using semi-

analytical, streamline-derived sensitivities of acoustic impedance at grid cell reso-

lution to perturbations in gridblock permeability, thus, capturing fluid movement

in-between time-lapse seismic surveys. Next, well by well production data is in-

tegrated by using a generalized travel time inversion method to resolve fine-scale

permeability variations between well locations.

For production optimization, we use the ensemble of history matched models and

develop an optimal rate control strategy to maximize sweep efficiency by equalizing

flood front arrival times at all producers while accounting for geologic uncertainty.
∗Part of this section is from “Multiscale Parameterization and Streamline-based Dynamic Data

Integration for Production Optimization: Application to the Norne Field” by Watanabe, S., Han,
J., Ekkawong, P., Datta-Gupta, A., 2013. A presentation prepared for at the SPE Workshop
“Integration of 4D Seismic & Production Data for Reservoir Management-Application to Norne”
held in Trondheim, Norway 25-27 June. The view expressed in this section are the views of the
authors and do not necessarily reflect the views of Statoil and the Norne license partners.
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4.2 Introduction

The Norne field was discovered in December 1991 and development drilling began

in August 1996. Oil production started in November 1997 and the field has been

operated by Statoil. The field has high quality 4-D seismic data, production data

and well logs in addition to the reservoir model. The geological model consists of five

reservoir zones. They are the Garn, Not, Ile, Tofte and Tilje. Oil is mainly found

in the Ile and Tofte Formations, and gas in the Garn formation. The sandstones are

buried at the depth of 2,500-2,700 m. The porosity is in the range of 25-30% while

permeability varies from 20 to 2,500 md (Steffensen and Karstad 1995; Osdal et al.

2006).

We demonstrate the practical feasibility of our approach by carrying out full field

history matching of the Norne field. The reservoir model consists of 44,431 active

cells and it contains 36 wells (9 injectors and 27 producers) as shown in Fig. 4.1.

We consider the time frame from 1997 to 2006 as the history matching period. The

actual simulation model containing all information and properties was provided by

the operator. In addition, production and injection data from 1997 to the end of

2006, and multiple sets of 4-D seismic data for the same period (2003-2001, 2004-

2003, 2006-2004) were provided. The production data include water, oil, and gas

rates and bottom-hole pressures at the producers. The seismic data were externally

processed and provided for the model calibration as near, mid, far, and full offset

stacked 3-D volumes of the reflection amplitude together with the corresponding

horizons for the top and base of the reservoir. Also, the time-lapse differences of the

reflection amplitude were provided with interpreted horizons used for identification

of movement of the water-oil contacts. The details of the data set can be found in

Rwechugura et al. (2012).
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Fig. 4.1—Structure of the Norne field showing reservoir permeability.

4.3 Approach

4.3.1 Petro-Elastic Model

Unlike the Brugge field case in the previous section, where interpreted saturation

and pressure changes are provided as part of the field data, this is a much more

realistic case in which seismic response is provided instead. To our strategy of using

streamline-based sensitivities to the inversion problem, we now need to introduce

a petro-elastic model (PEM) and develop seismic response (acoustic impedance)

sensitivities to changes in reservoir properties, as we have done for pressure and

saturation sensitivities in the previous section.

A petro-elastic model is a set of equations which relates reservoir properties (pore

volume, pore fluid saturations, reservoir pressures and rock composition) to seismic

rock elastic parameters (P-wave and S-wave velocities, VP and VS, respectively).

Variations in rock elastic properties are functions of temperature, compaction, fluid

saturation and reservoir pressure, although we may neglect the effects of tempera-
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ture in this field. The Gassman equation (1951) and Hertz-Mindlin contact theory

(Mindlin 1949) are used to estimate seismic rock elastic parameter changes caused

by fluid saturation and reservoir pressure changes, respectively. The Hertz-Mindlin

model is used to compute seismic rock elastic parameter changes from pressure

changes (Mavko et al. 1998). The effective bulk modulus of a dry random iden-

tical sphere pack are given by

KHM = Kma
n

√
Peff

/
(Pext − Pi), (4.1)

where KHM is the bulk modulus at critical porosity (Dadashpour et al. 2009, 2010).

Here, Peff is the effective pressure, which is the difference between the lithostatic

pressure, Pext and the hydrostatic pressure, P (Christensen and Wang 1985), Kma is

the bulk modulus of the matrix, and n is the coordination number. For the Norne

field application, the initial pressure, Pi is set to 270 bar and the lithostatic pressure

depends on the true vertical depth (TVD) as given by

Pext = 0.0981× (9× 10−5 × TVD + 1.7252)× TVD. (4.2)

The Hertz-Mindlin theory assumes that velocity varies with Peff raised to the 1/6

th power, while some laboratory measurements on samples suggest other values. We

use n equal to 5 in Eq. (4.1) from the literature (Dadashpour et al. 2009) for this

field application.

The Gassman equation expresses the bulk modulus of a fluid saturated rock from

three terms: (1) the bulk modulus of the mineral matrix, KHM , (2) the bulk modulus

of the porous rock frame, Kfr , (3) the bulk modulus of the pore-filling fluids, Kf as
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given by the following formula (Dadashpour et al. 2009),

Ksat = Kfr + (KHM −Kfr)2

KHM

(
1− φ+ φ

KHM

Kf

− Kfr

KHM

) . (4.3)

Here φ is the effective porosity of the medium and the bulk modulus of the pore

fluids (oil, water, and gas), Kf is estimated by Wood’s law given (Reuss 1929) as

1
Kf

= So
Ko

+ Sw
Kw

+ Sg
Kg

. (4.4)

Here So, Sw and Sg are oil, water and gas saturations, respectively, and Ko, Kw,

and Kg are bulk moduli for oil, water, and gas, respectively. For the Norne field

application, the rock elastic properties are provided in Table 4.1. The density of

the saturated rock is given by the weighted average of the densities of the components:

ρsat = (1− φ)ρma + φ(Soρo + Swρw + Sgρg). (4.5)

Here ρo, ρw, ρg and ρma are the densities of oil, water, gas and the rock matrix,

respectively. With the saturated rock bulk modulus and shear modulus and density,

we can compute the compressional (p-wave) velocity for an isotropic, layered, elastic

medium (Kennett 1983) as

VP =

√√√√√Ksat + 4
3Gfr

ρsat
. (4.6)

Here the shear modulus, Gfr is the frame shear modulus which is not affected by
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fluid saturations. The acoustic (p-wave) impedance can be computed as

ZP = ρsatVP =

√√√√ρsat
(
Ksat + 4

3Gfr

)
. (4.7)

With the above PEM model for the Norne field application, we examined the sen-

sitivity of the acoustic impedance calculation with pressure and saturation changes.

In a simple two phase (oil, water) system, Fig. 4.2a shows the increase of acoustic
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Fig. 4.2—Acoustic impedance calculation sensitivity by PEM model in oil
and water 2 phase system, (a) with respect to water saturation changes
under a fixed pressure (270 bar) and (b) with respect to pressure changes
under a fixed saturation value (Sw=0.5).

impedance with increasing water saturation for a fixed pressure. Fig. 4.2b shows

the decrease of acoustic impedance with increasing pressure with fixed saturation

values.

4.3.2 Seismic Data Processing

The first step in our data calibration procedure is to invert the seismic volumes of

reflection amplitude to changes in acoustic (p-wave) impedance. Using a commercial

software, we conduct seismic data processing which consists of (1) time to depth

data conversion, (2) well log quality check and acoustic impedance log calculation,

and (3) genetic inversion for generating an acoustic impedance map from the seismic

amplitude data. The detail procedures are described in APPENDIX C. As for the

post-stack seismic sections, we decided to use near-offset stacked data set, because the

acoustic (p-wave) impedance changes are more evident in the small angle reflection

waves in AVO analysis (Aki and Richards 1980). A mathematical justification is

explained in APPENDIX B.4.
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Fig. 4.3—Time to depth data conversion. (a) Reservoir model intersected
by the depth domain seismic amplitude inline and crossline slices, (b) the
Inline slice with reservoir model layer horizons, and (c) the crossline slice
with reservoir model layer horizons.

Time to depth data conversion is achieved by using a velocity model that the

operator used for the reservoir model construction. The layering of the reservoir

model is consistent with the depth converted seismic amplitude data as shown in

Fig. 4.3. Well log data quality is reviewed especially for the density logs and the

P-wave sonic logs with the aim of computing P-wave acoustic impedance at the well

locations shown in Fig. 4.4. We adapt a genetic inversion of the seismic amplitude,

as proposed by Veeken et al. (2009). The method only requires the post-stack seismic

cube as input. The acoustic impedance logs at the wells are used as training data

for a neural network to construct the non-linear operator that transforms the seismic

traces into the equivalent acoustic impedance response. The weights of the operator

are updated by a genetic algorithm to minimize the difference between the predicted

acoustic impedance response and the training acoustic impedance logs at wells.

The neural network derived operator is applied to the seismic cube to generate

acoustic impedance map estimates as shown in Fig. 4.5. The acoustic impedance

changes correspond to the interpreted motion of the water oil contact between sur-

veys. They are consistent with the PEMmodel responses: the positive change reflects
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Fig. 4.4—The acoustic impedance log comparisons. The calculated
acoustic impedance log (black) and the response extracted from the
acoustic-impedance cube as a result of genetic inversion (red).

Fig. 4.5—Acoustic impedance change data in an inline slice between 2003
and 2001 surveys from genetic inversion. Water oil contact interpretations
are superimposed (red line is at 2001 survey and black line is at 2003
survey). The water saturation and pressure changes from the initial model
are compared.
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the aquifer encroachment and the negative changes below the water oil contact cor-

responds to the simulated pressure increases in Fig. 4.5. The cross validation of

the predicted acoustic impedance values from the genetic inversion and the training

acoustic impedance logs show overall agreement (Fig. 4.4).

4.3.3 Global to Local Hierarchical History Matching Workflow

The reservoir model provided by the operator was already calibrated to match the

reservoir energy (regional pressure and pore volume). They adjusted fault transmissi-

bility multipliers, regional relative permeability parameters, and large-scale absolute

permeability and porosity heterogeneity using regional and constant multipliers. Our

objective was to minimally update the permeability at locations and scales required

to improve large scale transport within the reservoir induced by the production, wa-

ter injection and aquifer support, but to otherwise leave the prior unchanged. We

apply a hierarchical history matching workflow that consists of two stages (Yin et

al. 2011): a global update and a local update. For the global update, the geological

model is first parameterized using a Grid Connectivity Transform (GCT) (Bhark

et al. 2011). It is a linear transformation where the heterogeneity is updated in a

transform domain that is characterized by the spectral modes of the reservoir model

grid. This change of basis from the spatial to spectral domain is performed by mul-

tiplication of the heterogeneity field with the GCT basis, which is constructed from

the eigenvectors of a grid Laplacian. This parameterization method is efficient for

parameter estimation by reducing the parameter dimensionality. A discrete spatial

field is mapped to the transform domain using orthogonal transforms,

v = Φ>u⇐⇒ Φv, (4.8)
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where u represents a spatial field and has dimension N×1, where N is the discretiza-

tion of the property field. The column vector v is M -length spectrum of transform

coefficients, or parameter set in the transform domain, and Φ is a (N ×M) matrix

containing M -columns that define the discrete basis functions, each of length N .

For model calibration, a spatial multiplier field has been posed in the multiplicative

formulation as follows,

u = u0 ◦Φv, (4.9)

where u0 is the prior property field, also called initial model, and Φv defines the

multiplier field in the spatial domain and (◦) is the element-wise multiplication (Schur

product). This honors the prior permeability heterogeneity in the model updates.

Further, we utilize a Pareto-based multi-objective history matching workflow pro-

posed by Park et al. (2013) to update the GCT coefficients leading to the global

changes in the geologic model. This approach is particularly well suited for minimiz-

ing the multiple, and potentially conflicting, objectives involved in matching both

seismic data and production data. For the local update, the gridblock permeability

changes are introduced via the streamline-based inversion algorithm, introduced in

the current study. The time-lapse acoustic impedance changes and well by well water

cut production data are further integrated and the fine scale permeability variations

between well locations are refined. The diagram of the workflow is shown in Fig.

4.6.

Before the permeability adjustment, based on the previous history matching re-

port of E-segment of Norne field (Rwechungura et al. 2012), the history improvement

at well E-3AH required lowering of the WOC in layers 1 through 3 from 2,618.0 m

to 2,648.2 m TVD, increasing the oil rim by this difference. The initial oil and water

phase rates at this well were grossly under- and over-predicted, respectively. The gas
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Fig. 4.6—Global to local hierarchical history matching workflow.

rate was approximately matched. In the simulation model, E-3AH has seven com-

pletion intervals in layers 1 and 2 that intersect the WOC. Therefore, adjustment

of permeability, relative permeability or other transport parameters was unable to

change the produced phase proportions. The well is fluid volume rate controlled in

the simulation model, and because this net volume target was met, the evident choice

to re-apportion the water and oil phase rates was to lower the WOC. Similarly, for C

and D segment of Garn formation, we changed the WOC from 2,692.0 m to 2,658.2

m TVD to increase the level of initial water cut response at well D-4AH.

For the global update, we first parameterize the permeability field by each layer

individually to preserve the vertical stratification. The GCT parameterization of a

multiplier field is shown in Fig. 4.7. In this case, we used a total of 420 coeffi-

cients (20 basis vectors per layer × 21 active layers) to represent the geologic model

consisting of 44,431 active cells.
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Fig. 4.7—Parameterization of the permeability multiplier field as the
weighted linear combination of leading GCT basis vectors.

As for the Pareto-based multi-objective minimization, we define three objective

functions: (1) gridblock acoustic impedance change misfit (AI = Zp), (2) cumula-

tive field water production (FWPT ) misfit, and (3) cumulative field gas production

(FGPT ) misfit expressed as

obj1 =
3∑

time=1

√√√√Ncell∑
i=1

(
δAI

obs
i,time − δAI

cal
i,time

)2
, (4.10)

obj2 =
Nwell∑
j=1

√√√√Ntime∑
i=1

(
FWPT

obs
i,j − FWPT

cal
i,j

)2
, (4.11)

obj3 =
Nwell∑
j=1

√√√√Ntime∑
i=1

(
FGPT

obs
i,j − FGPT

cal
i,j

)2
, (4.12)

Here time is the time-lapse period, Ncell is the total number of gridblocks, Nwell

is the total number of history matching wells, and Ntime is the total number of

timesteps. Fig. 4.8 shows the results of the multi-objective function minimization

in the global step of the model calibration. The Pareto-based evolutionary algorithm

produces a suite of optimal solutions from the diverse initial population around the

prior model in a multi-dimensional objective space. In the two-dimensional projection
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Fig. 4.8—Multi-objective function comparisons between initial models
and the final models in the global step model calibration.

spaces in Fig. 4.8, the Pareto-fronts are clearly shown to depict the trade-off between

objectives.

4.3.4 Time-Lapse Acoustic Impedance Change and Production Data Integration

After the global calibration step, we select a few candidate models for the local

updates by a cluster analysis in the objective space as shown in Fig. 4.8. For

the local update, we need the sensitivity of the acoustic impedance with respect to

gridblock permeability. This can be obtained via a chain rule,

SZP
= δdZP

δk
=
[
∂ZP
∂Sw

δSw
δk

+ ∂ZP
∂Sg

δSg
δk

+ ∂ZP
∂P

δP

δk

]
. (4.13)
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Here the partial derivatives of acoustic impedance, ∂ZP
∂Sw

, ∂ZP
∂Sg

, and ∂ZP
∂P

are com-

puted by numerical perturbation from the current saturation and pressure gridblock

values using Eq. (4.7), while water saturation sensitivity δSw
δk

is computed by Eq.

(3.26). Notice that we have ignored porosity dependence in Eq. (4.13) and assumed

that the changes in porosity because of compaction are not significant. For the gas

saturation sensitivity, δSg
δk

, we follow the same derivation as for the water satura-

tion sensitivity in Eq. (3.26). This assumption applies mainly for gas-oil two phase

system near the top layers of the Norne field where the free gas cap and oil rim are

located. For the pressure sensitivity we utilize the pressure drop sensitivity given by

Eq. (3.35).

As discussed before, our history matching follows a sequential approach. To

start with, the pressure effects on acoustic impedance changes are integrated to

calibrate the model. Next, the saturation effects on the acoustic impedance changes

are integrated to update the model. Water saturation sensitivity and gas saturation

sensitivity are separately integrated in the inversion process. The diagram of the local

step model calibration workflow is shown in Fig. 4.9. The inversion performance for

acoustic impedance change is shown in Fig. 4.10 for one of the models. The majority

of the reduction of the acoustic impedance change data misfit was achieved in the

global step of the model calibration. Finally, the generalized travel time inversion

is applied to integrate water cut data. The well by well water cut responses are

improved as shown in Fig. 4.11. The final updated model is shown in Fig. 4.12.

The final model responses in terms of acoustic impedance changes are compared in

Fig. 4.13.

For the second time-lapse period (2004-2003), a large negative time-lapse acoustic

impedance change (red color) misfit in the prior model in the north right part of
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Fig. 4.9—Local step streamline-based model calibration workflow.

Fig. 4.10—The objective function misfit for acoustic impedance change
data integration comparisons among the prior model, global step cali-
brated model, and the final updated model from the local step calibration.
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Fig. 4.11—Water cut production data history matching comparisons
between the initial model and the final updated model.
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Fig. 4.12—Permeability model update comparison by layers. The prior
model (Top), The final updated model (middle), and the model changes
between the prior and the final models.
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Fig. 4.13—Time-lapse acoustic impedance changes comparisons in se-
lected layers among the observation data, the prior model responses and
the final updated model responses.
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Fig. 4.14—Time-lapse acoustic impedance changes between 2003 and
2004 comparisons in selected layers among the observation data, the prior
model responses and the final updated model responses and correspond-
ing pressure change responses.

reservoir (G-segment) was corrected by the inversion. This resulted from an improved

matching of the time-lapse pressure change in the final updated model as shown in

Fig.4.14. Also for the third time-lapse period (2006-2004), there is a correspondence

between the negative changes of acoustic impedance data (red color) and the gas

saturation change model responses shown in Fig.4.15. Overall, the misfit of the

time-lapse acoustic impedance change and well production response are improved

substantially from the prior model.
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Fig. 4.15—Time-lapse acoustic impedance changes between 2004 and
2006 comparisons in selected layers among the observation data, the prior
model responses and the final updated model responses and correspond-
ing gas saturation change responses.
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4.3.5 Streamline-Based Rate Optimization

After the models are calibrated from the history matching process, the production

and the injection rates of each well are optimized with the streamline-based rate

optimization algorithm (Alhuthali et al. 2007). The reference base case for this

optimization problem assumes all wells keep production/injection rates as their latest

history rates at the end of history matching period from Jan. 2007 to Dec. 2016.

The optimization is based on two scenarios: improving sweep efficiency to maximize

oil recovery and accelerating production to maximize NPV. To account geologic

uncertainty, the optimization is performed with three different calibrated models

simultaneously. The economic and production constraints during the optimization

are listed in Table 4.2 and Table 4.3 respectively.

The optimal rate strategy is developed with the objectives of (1) improving sweep

efficiency by equalizing flood front arrival time at all producers and (2) production
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acceleration by reducing arrival time at all producer for NPV improvement. The

objective function consists of the following two (Taware et al. 2010):

p(q) = min
Nprod∑
i=1

(
t(q)− t′i(q)

)2
+ η

Nprod∑
i=1

(
t′i(q)

)2
. (4.14)

The variable ti is the calculated arrival time of producer i. The term t is an arithmetic

average of all arrival time ti from all producers. The arrival time is a function of the

vector q, which contains production/injection rates and has the dimension equal to

the number of well rates, Nprod, to be optimized.

Minimization of the first term of Eq. (4.14) ensures that the flood front arrives

nearly at the same time within the well pattern, thereby maximizing sweep efficiency.

The second or acceleration term ensures that the magnitude of the arrival time is

also reduced, with the effect of accelerating injection/production rates, and ensures

that the optimization doesn’t over-penalize highly productive wells in the attempt

to improve sweep. The trade-off between equalizing arrival time and production

acceleration can be controlled by the norm weight, η.

After water/gas breakthrough, the optimization is performed by incorporating

the effect of unfavorable phase production into the objective function in order to

reduce the allocation of production rates to wells with high water/gas production.

The arrival time (ti) is modified to include effect of unfavorable phase production as

follows.

t′i(q) = ti(q)× (1− UF)0.5, (4.15)

and

UF = ratiow × costw,inj × qw,inj + ratiog × costg,inj × qg,inj
gas price× qg,prd + oil price× qo,prd

, (4.16)
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where

ratiow = water flux from injector
water flux from injector+water flux from expansion , (4.17)

ratiog = gas flux from injector
gas flux from injector+gas flux from expansion . (4.18)

Here the utility factor (UF) is the ratio of the total cost of injection to the profit from

hydrocarbon production. The money from production can be calculated directly from

a product of each phase production price and individual phase production rate while

the money from injection is required to multiply by normalizing ratios (Eq. (4.17)

and Eq. (4.18)) to separate between the flux from injected fluids and the one from the

reservoir fluid expansions (e.g., aquifer and gas cap). These ratios can be acquired by

individual phase streamlines tracing to identify the sources of production. From the

expression in Eq. (4.15), the arrival time (ti) is re-scaled to incorporate the defined

utility factor. Before water/gas breakthrough, the utility factor is equal to zero since

there is no gas and water fluxes from injectors and ratios are calculated as zero in

Eq. (4.17) and Eq. (4.18). The modified arrival time (t′i) is then the same as the

original arrival time. After water/gas breakthrough, the utility factor is greater than

zero. Then the original arrival time (ti) is reduced. This reduction of arrival time

makes the algorithm allocate relatively smaller production to the well with high UF.

In this study, the economic factors are summarized to Table 4.2.

To account for the geologic uncertainty, Eq. (4.14) needs to be generalized with

multiple realizations. This is accomplished in terms of an expected value of the misfit

values from multiple realizations penalized by its standard deviation as

f(q) = E
[
p(q)

]
+ rσ

[
p(q)

]
, (4.19)
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and this can be derived within the decision analysis framework (Alhuthali et al.

2008). The variable r is the risk coefficient that weights the trade-off between the

expected value and the standard deviation. A positive r means that the decision

maker is risk averse, while a negative r means that the decision maker is risk prone.

In this work, the optimization is done based on the risk neutral assumption (r = 0)

which means the objective function is an arithmetic average from all realizations.

This optimization workflow to reduce the objective function in Eq. (4.19) is

performed with five major steps as follows (Fig. 4.16):

1. Running forward simulation: run forward simulations with current rate

conditions for all realizations from the current timestep to generate phase

fluxes.

2. Tracing streamlines: use phase fluxes to trace streamlines and calculate time

of flight (TOF) (Datta-Gupta and King 2007). The time of flight is utilized

for computing the arrival time of the flood front to all producers.

3. Sensitivity computation: we compute sensitivity of arrival time to the cur-

rent well rates. The calculation can be done analytically which provide signif-

icant advantages for calculation efficiency (Alhuthali et al. 2007).

4. Stochastic objective function computation: the model responses from

multiple realizations are gathered to calculate stochastic objective function,

and its gradient and Hessian.

5. Minimization and optimal rate allocation: Sequential Quadratic Pro-

graming (SQP) technique (Nocedal and Wright 2006) is used to minimize the

objective function under operational constraints in Table 4.3 and update the

rate conditions.
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Fig. 4.16—Streamline-based rate optimization under geologic uncertainty
workflow.

6. Repeat 1.-5. until the convergence criteria meet and go to the next optimization

timestep.

The improvements in the recovery factor (RF) and the net present value (NPV)

from rate optimization are shown in Figs. 4.17a and 4.17b, respectively and Table

4.4 summarizes the optimization results. When the acceleration term is ignored

(η = 0), the arrival time equalization results in the improved sweep efficiency and

the increased oil recovery. In case of imposing production acceleration (η = 100), the

algorithm increases more on production rates at the early time of optimization period
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Fig. 4.17—Rate optimization results: (a) ultimate recovery factor com-
parisons of base case and two optimized cases: η = 0 and η = 100, (b)
final NPV comparisons of base case and two optimized cases: η = 0 and
η = 100.

and less emphasize on the sweep efficiency improvement. This situation provides

better NPV result but with smaller ultimate oil recovery. During the early period,

the case with the acceleration term (η = 100) produced more oil than the case with

only maximized flood efficiency (η = 0) as shown in Fig. 4.18b. However, in the

later time, the maximize flood efficiency case provides more oil production than the

production acceleration scenario resulting in more ultimate oil recovery. In term of

NPV, the production acceleration case maintained better NPV than the maximized

flood efficiency case through the optimization period. Even though the (η = 0) case

provides more oil production in the later time, we found that the optimization also

results in higher water injection/production rates than the acceleration case which

are expensive and deteriorate economic response in the later time as shown in Fig.

4.18a. As a comparison, the total cumulative production of oil and water and gas

from each case are shown in Fig. 4.19.

In conclusion, this application shows the feasibility of field scale rate optimization

using the streamline based algorithm under geologic uncertainty. We can maximize

the sweep efficiency and/or accelerate production rate by using the norm constraint.
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Fig. 4.18—Rate optimization results: (a) NPV comparison with respect
to optimization period for base case and two optimized cases: η = 0 and
η = 100, (b) Incremental oil production comparison with respect to op-
timization period from base case and two optimized cases: η = 0 and
η = 100.
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Fig. 4.19—Rate optimization results: Cumulative production rate com-
parison from each case.

4.4 Conclusions

The Norne field application demonstrates the practical feasibility of the structured

workflow of time-lapse seismic data and production data integration using seismic

data processing, petro-elastic modeling, and the efficient streamline-based data in-

tegration. The calibrated model shows the targeted global and fine scale model

updates and improvement of the acoustic impedance changes between time-lapse

surveys. The well by well water cut data matching also improved substantially.

For production optimization, we use the ensemble of history matched models and

develop an optimal rate control strategy to maximize sweep and injection efficiency by

equalizing flood front arrival times and accelerating production at all producers while

accounting for geologic uncertainty. Our results show the incremental improvement

of ultimate recovery factor and NPV values from calibrated model responses.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This study summarized two distinct classes of inversion methods: stochastic and

deterministic approaches.

For stochastic inversion method development, ensemble Kalman filter data assim-

ilation performances were improved by the use of phase streamline based covariance

localization that physically relates the underlying reservoir flow dynamics and ex-

tracts flow relevant cross correlation between model parameters and model responses.

Our developed algorithm was compared to other localization method through syn-

thetic history matching applications and outperformed those in capturing high con-

trast of reservoir heterogeneity in the geologic continuities that affect the flow paths

between well locations.

For deterministic inversion method development, streamline-based analytic sen-

sitivity calculations are reviewed and derived for fluid saturation and pressure drop

changes with respect to reservoir parameters along streamline trajectories. The accu-

racy of the derived sensitivity calculation was validated with numerical experiments

and the efficiency of the calculations was confirmed through field scale applications.

History matching examples of time-lapse seismic derived saturation and pressure

map integration showed the importance of both pressure and saturation matching

to further constrain the uniqueness of parameter estimation. Norne field application

demonstrated the feasibility of the proposed structured workflow to integrate both

production and time-lapse seismic data into high resolution reservoir model. The

hierarchical approach of global to local model calibration defines the different level

of data integration.
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The global step accounts for reservoir energy matching by a global adjustment

of permeability using a Grid Connectivity Transform parameterization and Pareto-

based multi-objective minimization. Local model calibration resolves the fine scale

variation of permeability between wells through streamline derived sensitivities. The

systematic combination of genetic algorithms in the global step and gradient-based

inversion in the local step retain both the flexibility and the consistency of the entire

workflow.

Also, through the field seismic data integration, we are able to incorporate the

seismic data in the form of acoustic impedance data and relate the reservoir simula-

tion responses of pressure and fluid saturation via petro-elastic modeling.

After the model calibration process, we utilized the ensemble of reservoir models

to develop an optimal production strategy via streamline-based flow rate optimiza-

tion. Our results show increased ultimate recovery and NPV values in the future

predictions that can facilitate decision making process in the field development.

5.2 Recommendations

There are several recommendations that can be drawn from this study.

1. The phase streamline based covariance localization in ensemble Kalman filter

needs to be applied for a real field scale model such as Norne field for the

further investigation of the benefits and the limitations of the method. Relevant

questions are as follows:

• What are the good combinations of various localization methods to dy-

namically improve the data assimilation under changing field conditions

(ex. shut-in wells, injection production well conversion etc.)?

• How can we determine an appropriate probability threshold value to iden-

tify the common localization region intersected by phase streamlines from
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all ensemble models?

• Can we extend the phase localization method to seismic data integration

with EnKF using derived pressure and saturation sensitivities?

2. The streamline-based inversion methods need to be improved in several aspects.

Some of the topics are as follows:

• Rigorous comparisons of simultaneous and sequential data integration

with pressure and saturation sensitivities to identify the pros and cons

of both approaches such as computation expense and convergence speed

and solution stability.

• Comparisons of different objective function minimization algorithms with

streamline sensitivities (e.g., LSQR, LBFGS, Gauss-Newton, PSO (parti-

cle swarm optimization))

• Adaptive adjustment algorithm development of relative weights of norm

and smoothness regularization terms in the objective function.

• Efficient treatment of three-phase conditions (ex. data localization, data

transformation (ex. frequency domain), and pressure and saturation ef-

fects separation during inversion iterations.)

3. Time-lapse seismic data integration needs a systematic comparison between

time domain time delay data analysis and amplitude changes as discussed

in APPENDIX B. The acoustic impedance responses should be modeled

stochastically with uncertainty in petro-elastic model parameters rather than

deterministically as treated in this study. Scale differences between reservoir

grid, well log and seismic grid needs to be accounted in the proposed mul-

tiscale data integration workflow in a quantitative manner such as changing
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the basis number in the global step with different data scales and/or upscal-

ing/downscaling of streamline sensitivity calculations in the local step.

4. For optimal flow rate development, include well placement optimization using

streamline flow dynamics to identify the unswept and undrained locations with

time-lapse seismic signatures of bypassed oil pockets or gas preferential flow

regions, pressure barriers etc.
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APPENDIX A

WATER SATURATION CHANGE SENSITIVITY

In the water saturation sensitivity derivation, we assumed that the streamline trajec-

tory is fixed from the initial condition to the particular time of interest for calculating

the sensitivity. Also, we used the self-similar solution to estimate partial derivatives

in Eq.(3.21) and Eq. (3.22), which assumes uniform initial conditions. In order to

generalize the formulation to account for changing field conditions, we separate the

total time t into small timestep sizes as

t =
N∑
i=1

∆ti (A.1)

and the total change in the arrival time as the weighted average of arrival time change

for each timestep as follows

δt =
N∑
i=1

∆ti
t
δti. (A.2)

Then, the arrival time sensitivity becomes
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Substituting Eq. (A.3) into Eq. (3.26), we obtain the generalized form of saturation

sensitivity at grid block location x as

δSw(τ0, t)
δk(x) = ∂Sw(τ0, t)

∂t
·
N∑
i=1

∆ti
t

δti
δk(x)

∣∣∣∣∣
τ0,ti


≈ Sw(τ, t)− Sw(τ, t−∆t)

∆t

N∑
i=1

− ∆ti
τ0,i

δτ

δk(x)

∣∣∣∣∣
τ0,ti

. (A.4)

To account for the changing field conditions, the streamlines are traced for every time

interval ∆ti and the saturation sensitivity in Eq. (A.4) is computed by integrating

the sensitivity values for the entire time interval. Also, if the streamlines do not

change, Eq.(A.4) reverts back to Eq. (3.26). Now the saturation change sensitivity

can be computed by calculating the saturation sensitivities at two different times

(t = t1, t = t2, t1 < t2) as follows

δ∆Sw(τ0)
δk(x)

∣∣∣∣∣
t2

t1

= δSw(τ0, t2)
δk(x) − δSw(τ0, t1)

δk(x)
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∂t
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− ∆ti
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− ∂Sw(τ0, t1)
∂t

N1∑
i=1

− ∆ti
τ0,i

δτ
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∣∣∣∣∣
τ0,ti


(A.5)

where the saturation time partial derivatives can be approximated by a backward

differencing from the simulation responses as in Eq. (A.4).
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APPENDIX B

TIME-LAPSE SEISMIC DATA ANALYSIS∗

Seismic surveys acquired at different stages in the life of an oil or gas reservoir can

provide time-lapse snapshots of the fluid distribution over production time. This

technique, called four-dimensional (4D) seismic reservoir monitoring, is helping the

E&P industry delineate bypassed hydrocarbons and optimize recovery. Our objective

here is to show that the difference between the two surveys acquired at different

stages in the life of an oil or gas reservoir can be analyzed and characterized using

the second- and third-order correlations.

To facilitate our discussion here, let us consider the geophysical model in Fig.

B.1a. The response to this model is given in Fig. B.2a. We consider this response

to correspond to the baseline survey (or reference survey). Fig. B.1b shows the

same geophysical model after a couple of months. The data corresponding to the

monitoring survey are given in Fig. B.2b. We can see that the two datasets are

quite similar, yet there are differences between the two surveys, as we can see in

Fig. B.2c. In real cases, the differences between surveys are often affected by

changes in the acquisition systems between the two surveys and by the difficulties

involved in duplicating the geographical positions of sources and receiver positions

and environmental conditions from one survey to another. Fig. B.3 shows that

these errors can color the differences between surveys and lead to erroneous analysis.
∗Part of this section is reprinted with permission from the preparation of the second edition of

“Introduction to Petroleum Seismology” by Ikelle, L.T., Amundsen, L, 2005., Society of Exploration
Geophysicists Tulsa, OK.
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Fig. B.1—Geophysical models: (a) at baseline survey time, (b) at
monitoring survey time, (c) differences between two survey times.

Fig. B.2—Geophysical model responses: (a) baseline survey, (b) moni-
toring survey and (c) differences between two surveys.
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Fig. B.3—Geophysical model responses of differences between two sur-
veys affected by different errors in the receiver positions: (a), (b), and
(c).

B.1 Correlation

In addition to computing the differences between the two surveys, one can also ana-

lyze the similarities between surveys. The coherence correlation allows us to measure

the similarities between signals. Because of the characteristics of coherence correla-

tion, it is useful to separate the analysis of the traveltime from that of amplitude

similarities.

One way of measuring traveltime differences between the baseline survey and the

monitoring survey is to estimate the time delays between the two fields. At each

point (x, t) of the data, we can obtain this time delay by computing the coherence

correlation between the baseline survey and the monitoring survey for a small portion

of data, made of J time samples and I traces, around the point (x, t). The time lag

corresponding to the maximum value of the coherence correlation provides the desired

142



time delay. For the cases in which the crosscorrelation is too small for an accurate

calculation of the coherence correlation, because the data are almost zero, the time

delay is set to zero. Fig. B.4 shows the time delay between the baseline survey

and the monitoring surveys. We have used the data of the monitoring surveys with

the errors in the receiver positions described in Fig. B.3. The window used for our

computations of the coherence correlation, and subsequently for the computation of

time delays between the two fields, was 20 ms × 9 traces around each point (x, t) of

data. We can see that the time delays between the baseline survey and the monitoring

survey, which are due to the changes in the geophysical model, are clearly detected

by the coherence correlation.

Notice that time differences between the baseline survey and the monitoring sur-

veys, which are due to variations in acquisition systems between the two surveys,

are smoothed over by the crosscorrelation and therefore almost undetectable by this

approach. In other words, by using the difference in Fig. B.3 and the time delays

in Fig. B.4, we can separate the regions of the data in Fig. B.3 related to data

acquisition errors from the regions associated with changes in the physical model.

One way of measuring amplitude differences between the baseline survey and the

monitoring survey is to compute the correlation energy between these two surveys.

This energy can be obtained from the coherence correlation used in the computation

of the time delay in Fig. B.4. Fig. B.5 shows the correlation energy between the

baseline survey and the monitoring surveys. Again, we have used the data of the

monitoring surveys with the errors in the receiver positions described in Fig. B.3.

The window used for the computation of time delays between the baseline survey

and the monitoring survey is the same as in Fig. B.4. Notice that the range of

variation of the correlation energy between the surveys is about 5 dB.
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Fig. B.4—Time delay between the baseline survey and the monitoring
surveys affected by different errors in the receiver positions: (a), (b), and
(c).

Fig. B.5—The correlation energy between the baseline survey and the
monitoring surveys affected by different errors in the receiver positions:
(a), (b), and (c).
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B.2 Phase Extension

Seismic data are today uniformly sampled in time at 2 ms- or 4 ms-intervals. How-

ever, the time delays between the baseline and monitoring surveys are not necessarily

integer multiples of these sampling periods. Moreover, they can be even smaller than

2 ms. So the question is how we can estimate time delays which are not integer mul-

tiples of the sampling period or smaller than the sampling periods.

One approach is to use the fact that the data are not aliased in time. Therefore

we can interpolate the data using the following formula:

xc(t) = ∆t
+∞∑

n=−∞
x(n)sin 2πfN(t− n∆t)

π(t− n∆t) , (B.1)

where xc(t) is the continuous signal and x(n) is the discrete signal, ∆t is the time

interval, and fN = 1/2∆t. We can then use the interpolated data for more-precise

time-delay estimation.

B.3 The Signal-To-Noise Ratio

The signal-to-noise ratio is a particularly abused concept, not only in petroleum

seismology but in other disciplines, too. It is an attempt to compare the “size” of a

signal embedded in noise with the size of that noise. The problem is that there is no

unique definition for a signal-to-noise ratio. Here are the two definitions generally

cited in petroleum seismology literature (e.g., Hatton et al. 1986):

R = RMS of the signal
RMS of the noise (B.2)

and

R = average absolute amplitude of the signal
average absolute amplitude of the noise . (B.3)
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These two ratios can differ markedly, depending on the spectrum and distribution of

the noise.

The practical problem associated with the definitions in Eq. (B.2) and Eq. (B.3)

is that they assume that for their computation, the signal and the noise can be

separated, whereas the seismic trace contains a signal plus noise. Fortunately, we

can show that, under reasonable assumptions, signal-to-noise ratios can be related

to correlation functions.

Assume that there are at least M seismic traces which contain the same source

signature, perhaps with some relative time shifts and different realizations of additive

noise. The general composite trace, which is the time reflection signal plus noise,

can be written

u(t, k) = a(k)w(t− τk) + n(t, k), k = 1, ...,M, (B.4)

where w(t) is the (noise-free) time-reflection signal, τk is the time shift on trace k,

a(k) is the weight of the time reflection signal on trace k, and n(t, k) is the additive

noise on trace k.

For the case in which the noise is zero-mean and uncorrelated with the signal, we

have the following properties:

E[u(t, k)n(t+ τ, l)] = 0, k 6= l, (B.5)

E[a(k)w(t)n(t+ τ, l)] = 0, for all k and l. (B.6)

Also we define the continuous-time crosscorrelation of traces u(t, k) and u(t, l) as a

function of lag, τ, as

ruk,ul
(τ) = E[u(t, k)n(t+ τ, l)]. (B.7)
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Then, using Eq. (B.4), Eq. (B.5), and Eq. (B.6), we arrive at

ruk,ul
(τ) = a(k)a(l) E[w(t− τk)w(t− τl + τ)]

= a(k)a(l)rw,w[τ− (τl − τk)], (B.8)

where r(w,w)(τ) is the autocorrelation function of the time reflection signal, w, at

τ. Similarly, from Eq. (B.4) , the autocorrelation of trace u(t, k) is

ruk,uk
(τ) = E[u(t, k)u(t+ τ, k)]

= a2(k)rw,w(τ) + rnk,nk
(τ), (B.9)

where rnk,nk
(τ) is the autocorrelation of the noise at lag τ .

The continuous-time normalized crosscorrelation (coherence correlation) may be

defined using Eq. (B.8) and Eq. (B.9) as

γuk,ul
(τ) = ruk,ul

(τ)√
ruk,uk

(0)rul,ul
(0)

= a(k)a(l)rw,w[τ− (τl − τk)]√
[a2(k)rw,w(0) + rnk,nk

(0)][a2(k)rw,w(0) + rnl,nl
(0)]

. (B.10)

As we have already noted, the autocorrelation has its maximum value when the lag

is zero; hence γuk,ul
is a maximum for τ = τl − τk, and the maximum value is given

by

[γuk,ul
]M = a(k)a(l)rw,w(0)√

[a2(k)rw,w(0) + rnk,nk
(0)][a2(k)rw,w(0) + rnl,nl

(0)]
. (B.11)

This is the desired result, but there remains the question of how it can be used. Let

us recall that our objective is to relate the crosscorrelation to a signal-to-noise ratio,

R. Consider choice Eq. (B.3). Since the zero-lag value of the autocorrelation is no
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more than the sum of squared magnitudes, it follows that

[R]k = average absolute amplitude of the signal
average absolute amplitude of the noise = a(k)

√√√√ rw,w(0)
rnk,nk

(0) . (B.12)

for trace k. Combining Eq. (B.11) and Eq. (B.12) gives

[γuk,ul
]M = 1√√√√[1 + 1

[R]2k

][
1 + 1

[R]2l

] . (B.13)

Note that since

0 ≤ [R]k,l ≤ +∞, (B.14)

then

0 ≤ |γuk,ul
| ≤ 1, (B.15)

as before.

As it stands, Eq. (B.13) gives one equation and two unknowns, the two signal-

to-noise ratios. One solution is that

[R] = [R]k = [R]l; (B.16)

That is, if the signal-to-noise ratios on traces k and l are assumed to be identical,

then

[R] =

√√√√ [γuk,ul
]M

1− [γuk,ul
]M
. (B.17)

B.4 Norne Field Seismic Data Cross Correlation

We are provided sets of post-stack seismic amplitude section from Norne field, namely

near-, mid-, far-, full-offset stacked data. Each stacking process uses a different
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Fig. B.6—Different angle stacking data processing configurations.

distance in the offset (or incident angle) from CMP (common midpoint) gather data

shown in Fig. B.6.

Approximate expression of transmission and reflection coefficients can be derived

using, for instance, the impedance matrix formulation.

Let VP , VS, and ρ be arithmetic averages of velocities and densities above and

below the interface, defined as follows:

VP = VP2 + VP1

2 , (B.18)

VS = VS2 + VS1

2 , (B.19)

ρ = ρ2 + ρ1

2 . (B.20)

If we assume that the incident and transmitting media have similar properties, the
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following ratios,

∆VP
VP

= VP2 − VP1

VP
, (B.21)

∆VS
VS

= VS2 − VS1

VS
, (B.22)

ρ = ρ2 + ρ1

ρ
, (B.23)

are all much less than unity. Therefore based on the linearized Zoeppritz’s equations

near small angle (∼ 30◦), P-wave reflection coefficient, RPP , can be approximated as

(Aki and Richards 1980):

RPP ≈
1
2

∆Z
Z

+
(

1
2

∆VP
VP
− 2V

2
S

V 2
P

∆µ
µ

)
sin2 θi, (B.24)

where
∆Z
Z

= ∆ρ
ρ

+ ∆VP
VP

,
∆µ
µ

= ∆ρ
ρ

+ 2∆VP
VP

, (B.25)

are the relative differences change in P-wave impedance and in shear modulus re-

spectively and θi is the incident wave angle. Thus, we can express Eq. (B.24) as

RPP = APP +BPP sin2 θi. (B.26)

This means for the smaller incident angle the second term contribution becomes

smaller and ultimately at the normal incident (θi = 0◦), it becomes

RPP = ρ2VP2 − ρ1VP1

ρ2VP2 + ρ1VP1
, (B.27)

which is the ratio of p-wave acoustic impedance differences to the sum of the p-wave

acoustic impedance across two different rock layers.
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Fig. B.7—An inline slice of near-offset staked seismic amplitude data: (a)
baseline survey at 2001, (b) monitoring survey at 2003.

Therefore we decided to use near-offset staked data to extract the p-wave impedance

change between two surveys effectively. Fig. B.7 shows the one inline slice of near-

offset staked seismic amplitude data from base line survey at 2001 and monitoring

survey at 2003. Visually, two datasets are quite similar, but the difference will be

shown up in time delays from the cross correlation of two survey data shown in Fig

8a.
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Fig. B.8—Cross correlation calculations of an inline slice of near-offset
staked seismic amplitude data between baseline survey at 2001 and mon-
itoring survey at 2003: (a) time delay (b) coherence correlation.

The window used for our computations of the coherence correlation, and subse-

quently for the computation of time delays between the two fields, was 16 ms × 8

traces around each point (x, t) of data. Coherent correlation is also computed and

shown in Fig. 8b. These time shift and amplitude change can indicate the fluid

saturation movement and acquisition errors between two time-lapse surveys and be

utilized to improve time-lapse seismic data integration for reservoir model calibra-

tion.
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APPENDIX C

SEISMIC DATA PROCESSING

Procedures of acoustic impedance mapping from seismic data of Norne field in Petrel

(ver. 2009.2/2010.2) are as follows:

1. Input well data.

• Well heads (\wells\well_header\norne-ntntu46-WellHeaders-only.ASC)

DATA FORMAT:

Wellname - X-position[m] - Y-position[m] - Total Length(measured depth)[m]

• Well path/deviation (ex. \wells\position\norne-660810-E-2_H-PosLog.ASC)

DATA FORMAT:

Measure Depth: Measured Depth [m] MD: 2

TVD-Depth: True Vertical Depth [m] TVD: 3

TVDSS Depth: True Vertical Depth Subsea Depth [m]

X-offset: measured from starting point(0) in x-direction [m] DX: 5

Y-offset: measured from starting point(0) in y-direction [m] DY: 6

Input the reference depth which is recorded in the first depth.

• Well logs (ex. \wells\well_logs\660810-E-2H.LAS)

DATA FORMAT:
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Depth: Measured Depth [m]

TVD: True Vertical Depth [m]

TVDSS: True Vertical Depth Subsurface [m]

DT: Delta T[us(micro seconds)/ft]

DTS: Delta T Shear [us(micro seconds)/ft]

GR: Gamma Ray [API]

KLOGH: Horizontal Permeability [mD]

NPHI: Neutreon Porosity [v/v_desimal]

PHIF: Effective Fracture Porosity of Dual Porosity System [v/v_decimal]

RHOB: Bulk Density [g/cm3]

Sw: Water Saturation [v/v_decimal]

VSH: Volumetric fraction of shale [v/v_decimal]

2. Input seismic volume SEG-Y format data.

• Survey data (ex. \SEISMIC\2001\ESEG-NORNE-2001-FULL.SGY)

• Survey difference data (ex. \SEISMIC\Differences\ESEG-NORNE-03-

01-FULL.SGY)

3. Input seismic interpretation data (horizons).

• Top of the reservoir in time domain (\horisons\horisons\Top_Not2_2003_Time.txt)

(Seisworks 3D interpretation ASCII format)

• Base of the reservoir in time domain (\horisons\horisons\Top_Aare_2003_Time.txt)
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(Seisworks 3D interpretation ASCII format)

• Oil water contact in depth domain (\horisons\horisons\bosd-4D_OWC

2001_OFFICIAL_DEPTH) (Seisworks 3D interpretation ASCII format)

4. Import average velocity data in time domain.

• Input the file

(time-depth-conversion\St0103_Norne_2003_depthconversion.AVF) as

Petrel points with attributes (ASCII)∗

∗Eliminate #comment lines and keep the check on negate depth z box.

DATA FORMAT:

Function ID - X-position[m] - Y-position[m] - Z-position(Time) - Average

Velocity

After inputting the value, change the attribute setting from elevation

depth to elevation time. Look at the value of T and chop the data from

0 ms to 4000 ms for the reservoir part of the analysis by calculations tub

in the property setting.

5. Make an interpolation 3D grid.

Go to Processes window and click to Utilities tub.

• Make/edit polygons

Open a new 2D window in the top tub panel and click one seismic sur-

vey data. Create a boundary that covers the seismic area by start new

rectangle button in the right tub panel.

• Make/edit surface
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Put one seismic interpretation horizon data as Input data and create sur-

face plane by using the created polygon as boundary data and in the ge-

ometry tub click the automatic grid size and position. Copy and paste this

surface to replicate for top and bottom surfaces of the 3D grid. Change

the depth of the surfaces by settings of the icon and in calculations tub

assign Z=0(ms) for top surface and Z=-4000(ms) for the bottom surface.

Also in “More” tub, expand surfaces to the widest by clicking Expand

button.

• Make simple grid

Create new 3D grid by inserting created top and bottom surfaces in re-

spective order in Input data tub. In Geometry tub, assign Automatic grid

size (ex. 100m × 100m) and position and click OK button.

Go to Processes window and click to Corner point gridding tub.

• Layering

Create number of layers of 3D grid by changing the value in zone division

blank and click OK. (ex. 200)

6. Scale up point velocity data to 3D grid.

Go to Processes window and click to Property modeling tub.

• Scale up well logs Input point attribute of seismic average velocity data

as Vave.

7. Interpolate average velocity in 3D grid.

Go to Processes window and click to Property modeling tub.

• Petrophysical Modeling Input upscaled seismic average velocity data. Choose
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method for interpolation as Moving average with default parameters and

click OK. Change the property template as average velocity.

8. Make a velocity model with interpolated velocity 3D grid.

Go to Processes window and click to Geophysics tub.

• Make velocity model

Create new Velocity model that converts time domain to depth domain.

Insert top and bottom surfaces as Base column and input average property

of interpolated velocity 3D grid and click OK.

9. Time to Depth conversion of seismic volume data by the created velocity model.

Go to Processes window and click to Geophysics tub.

• Volume attributes

Select the tub to “Depth conversion methods” and click “General depth

converter”. In input/output tub, select Realize and input the seismic

volume data z and in parameters tub, input the created velocity model

and interpolation is smooth and the direction is forward and click OK.

Right click on the converted seismic volume object and click Insert vir-

tual cropped volume to crop the domain for the inversion calculation by

cropping the depth in the settings (ex. [ -2300 ∼ -3200]).

10. Genetic inversion of acoustic impedance volume with converted seismic volume

and global well log.

• Acoustic impedance calculation from global well log

Right click on the Global well logs object under wells input, create acoustic

impedance by checking on density log and sonic log boxes and click OK.
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Notice the unit is KPa.s/m.

Go to Processes window and click to Geophysics tub.

• Volume attributes

Select the tub to “Stratigraphic methods” and click “Genetic inversion”.

In input/output tub, select Realize and input the cropped seismic volume

data and in parameters tub, input the seismic cube and well folder of well

logs (only well logs with density log and sonic log and eliminate others) and

calculated acoustic impedance to global well log blank and with following

default parameters and click OK.

11. Map the acoustic impedance volume on reservoir model.

Go to Processes window and click to Property modeling tub.

• Geometrical Modeling

Create new property by setting “Seismic resampling” as Select method and

property template is “Seismic(default)”. And input Acoustic impedance

volume and Quality tub as “Exact” and Average method as “Arithmetic”

and click OK.

12. Smoothing operation.

Copy the generated the acoustic impedance maps as original results under

properties object. Double click the copied object. And go to Operation tab

and expand Property operations. And click Smooth icon and chose as many

iterations as you want in the below box to smooth the property values.

13. Output the results.
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