MULTI-DIRECTIONAL RAPIDLY EXPLORING RANDOM GRAPH (MRRG) FOR
MOTION PLANNING

A Thesis

by
SHUVRA KANTI NATH

Submitted to the Office of Graduate and Professional Studies
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Nancy M. Amato

Committee Members, Dezhen Song
Suman Chakravorty

Head of Department, Duncan M. Walker

December 2013

Major Subject: Computer Science

Copyright 2013 Shuvra Kanti Nath

ABSTRACT

The motion planning problem in robotics is to find a valid sequence of motions taking
some movable object from a start configuration to a goal configuration in an environment.
Sampling-based path planners are very popular for high-dimensional motion planning in
complex environments. These planners build a graph (roadmap) by generating robot con-
figurations (vertices), and connecting nearby pairs of configurations according to their
transition feasibility. Tree-based sampling-based planners (e.g., Rapidly-Exploring Ran-
dom Tree, or RRT) start growing a tree outward from an initial configuration of the robot.

In this work, we propose a multi-directional Rapidly-Exploring Random Graph (MRRG)
for robotic motion planning, a variant of the Rapidly-Exploring Random Graph (RRG). In-
stead of expanding a vertex in the tree in a single random direction during each iteration,
MRRG expands im random directions. Our results show that growing in multiple direc-
tions in this way produces roadmaps with more topologically distinct paths than previous
methods. In an environment with dynamic obstacles, moving or new obstacles may inval-
idate a path from the start to the goal. Hence, roadmaps containing alternative pathways
can be beneficial as they may avoid recalculation of new valid paths.

One of the important phases in sampling-based methods involves finding candidate
nearest neighbors to attempt to connect to a node. Generally, the entire graph is considered
to search for the nearest neighbors. In this thesis, we propose a heuristic method for finding
nearest neighbors based on the hop limit, i.e., the maximum number of edges allowed in
the path from a vertex to its neighbor. The candidate nearest neighbors are found by
considering only those vertices within the hop limit. We experimentally show that our hop
limit neighbor finder significantly reduces neighbor searching time over the standard brute

force approach when constructing roadmaps.

To my Family and Friends

ACKNOWLEDGMENTS

First, would like to thank my advisor, Dr. Nancy M. Amato, for her guidance and sup-
port. She has helped me alot to grow as a researcher; without her guidance and continuous
encouragement, this work would not be possible.

| would like to thank my committee members Dr. Dezhen Song and Dr. Suman
Chakravorty for their cooperation, feedback and support.

| would like to thank members of the Algorithms and Applications group in the Parasol
Lab. I have truly enjoyed working with them. | am really grateful to Dr. Shawna Thomas
for her continuous feedback, help and guidance. | would also like to thank Jory Denny,
Chinwe Ekenna, Hsin-Yi (Cindy) Yeh and Aditya Mahadevan for their help and patience
to answer all my questions.

Finally, I must thank my wife Rimi for her constant mental support and love for me. |
am really honored to have her in my life. |1 would also like to thank my parents, Narayan
and Karuna, who taught me to do hard work and provided support and encouragement

throughout my studies.

TABLE OF CONTENTS

Page
ABSTRACT e e ii
DEDICATION o e e e iii
ACKNOWLEDGMENTS e e e iv
TABLE OF CONTENTS o e e e e e e Y
LISTOFFIGURES e e e vii
LISTOFTABLES e e e e e iX
1. INTRODUCTION s e e e e e e e 1
1.1 OurApproach e 2
1.2 Organizationof Thesis 4
2. PRELIMINARIES AND RELATED WORK FOR ROBOTIC MOTION PLAN-
NING . . . 5
2.1 ConfigurationSpace e 5
2.2 Tree-basedPlanners 5
2.3 Nearest Neighbor Finding Methods 7
2.3.1 Data Structures for Approximate Neighbor Finding 8
3. PRELIMINARIES AND RELATED WORK FOR MODELING PROTEIN MO-
TION . 10
3.1 ProteinModel 10
3.2 Potential Functions 11
3.3 EnergylLandscape 12
3.4 ExperimentalMethods 12
3.5 ComputationalMethods 13
4. MULTI-DIRECTIONAL RAPIDLY EXPLORING RANDOM GRAPH mRRG 15
41 mMRRG e 15
411 mRRGComplexity 16
4.2 Hop LimitNeighborFinder 18
5. EXPERIMENTALANALYSIS e 22
5.1 Implementation and Platform 22

5.2 Experimental Study forRobots
521 Environments 22
5.2.2 StudyofnValue 23
5.2.3 StudyofhiValue 26
5.3 Experimental Study for Proteins 32
531 ProteinsStudied 32
5.3.2 Experimental Setup and Evaluation Metrics 32
6. CONCLUSION e s 37
REFERENCES e e 38

vi

LIST OF FIGURES

FIGURE Page
1 Topologically distinct pathways fromstog. 2
2 The native state of protein G. It consists of a central alpha helix and a four
strand beta sheet. This figure is taken from[42]. 11
3 Visualization of the protein’s energy landscape [13]. Theplane repre-
sents the protein’s configuration space, and:tagis is the potential energy. 12
4 An overview of mMRRG with different m values. Instead of a singlg,
for expansionyn random samples are generated to guide expansion from
Gnear- AlONg each direction, .,q,, 8gn.. IS identified (shown in green) and
connected to its nearest neighbors.o 0oL 15
5 Hop limit neighbor finding witht = 2 andh = 2. (a) The subgraph
G’ from ¢,.., Whereh = 2 is outlined in dash. (b) The resulting= 2
connections attempted areshown. 20
6 Environments and robots used for robot experiment. 23
7 Experimental setup for study. L. 25
8 Comparison of total time needed for differentvalues. 26
9 Comparison of query time needed for differemwvalues. 27
10 Comparison of revalidation time needed for differentalues. 27
11 Comparison of generation Time (after new obstacle) for differemlues. 28
12 Comparison of neighbor findingtime. 29
13 Comparison of #local planner attempts. 30
14 Comparison of local planner success (%). 30
15 Comparisonof#edges. 31
16 Comparisonofsameedge (%). oo 31
17 Proteinsstudied. 33

Vii

18 Comparison of #pathways produced for RRT, mRRG witk- 1,3,5,7.. 34
19 Comparisonoftotaltime.

20 Comparison ok-closesttime.

viii

LIST OF TABLES

TABLE Page

3.1 Comparison of computation models for modeling protein motion. 14
5.1 Roadmap generation time (before new obstacle) for different

ENVIFONMENTS. e e 26
5.2 Proteins studied and their secondary structure formation order

'hydrogen out-exchange experiments [2§julsed labeling/competition

experiments [28], and®-value analysis [36]. Brackets indicate no clear

33

order. s

1. INTRODUCTION

In robotics, the motion planning problem involves findingadiar trajectory for a mov-
able object from a start configuration to a goal configuraithoa given environment. Usu-
ally, an environment consists of a robot and a set of obsgabletion planning has a wide
range of applications in a variety of domains including rod[24], gaming [29], compu-
tational biology [43, 45], virtual prototyping [8], compmrtanimation [21] and computer
aided design [8, 29].

The motion planning problem has been actively studied fmades and is known
to be PSPACE-hard [38]. Several approaches have been ptbpaserecent attention
has focused on randomized motion planning methods. Onelgroglass of algorithms,
sampling-based motion planning [20, 25], has been suadédss$olving problems with
high dimensionality. Graph-based approaches exploredhigguiration space [30], the set
of all possible robot configurations within the environméralid or not). These planners
build a graph data structure, called a roadmap, where vahéigurations are encoded as
vertices and edges represent the connectivity among them.

Tree-based sampling-based techniques [25][18] expla@epace by growing one or
more trees outward from an initial configuration in the comfagion space. Incremental
exploration of the space makes tree-based planners wedlddor problems with differen-
tial constraints. Tree-based approaches are largely nssthfjle query planning. Current
tree-based methods are mostly aimed at getting a singldnoatha start configuration to
a goal configuration. However, in some situations, multgaéhs from the start to the goal
can be more desirable. For example, in an environment witlaigiyc obstacles, a moving
or new obstacle may invalidate the current path from the gidhe goal and an alternative

path would need to be selected. We propose a motion planmuati;directional Rapidly

Exploring Random GrapmRRG), which can generate multiple topologically distinct
pathways from the start to the goal. Informally, two pathestapologically distinct if they
pass by different obstacles. For example, in Figure 1, allhinee paths shown from the
start to the goal are topologically distinct from each atAdrese paths can be used as al-
ternative pathways instead of recalculating new ones iftmwmes invalidated for some

reason.

TS

1
B
7

Figure 1. Topologically distinct pathways from s to g.

1.1 Our Approach

MRRG is an extension of Rapidly Exploring Random Graphs (RRGs) [RRG is
a tree-based motion planning method which builds a graptementally by expanding a
configuration in a single random direction. After a sucagisskpansion, connections are
attempted between the new configuration and existing estiiic the graph, either those

identified within a ball of radiug or as thek-nearest neighbors to the new configuration.

2

Our mRRG algorithm is different from traditional RRG in that itpaxds inm dif-
ferent random directions instead of in a single random doec Expansion in multiple
directions allows a single iteration to explore more in iheality of the vertex. This yields
roadmaps containing more topologically distinct paths. mR&&generalization of pre-
vious approaches including RRG (where= 1) and RRT (Rapidly Exploring Random
Tree) [25] (wheren = 1 andk = 0). We initially explored this idea of expanding in
multiple directions for protein folding applications [35\Ve obtained promising results
for several small proteins and were better able to modeldlu#nig space than a standard
RRT.

In RRT, RRG, and mRRG, we found that computing the neighbor corfiguns to
which connections will be attempted consumes a significartign of the computation
time. To address this, we developed a heuristic method fdingnnearest neighbors
that instead of considering all vertices in the graph, restthe candidate neighbors to
vertices that are within edges (hops) from the query vertex. We show that in many cases
restricting the search to the locality of the query vertgngicantly reduces running time
without sacrificing much in result quality.

Our experiments show that mMRRG helps to explore the configurapace better than
RRT using multi-directional search. It also helps to credéeger number of topologically
different paths from a start to a goal. As more paths are egeathorter paths are also
achieved. We also examined the effect of using the hop limtristic during neighbor
finding and found that the hop limit approximation reducess ieighborhood searching
time significantly.

Our Contribution. The main contributions of this work are:
e An extension of RRG, that can create multiple topologicalbtidct pathways.

e A new hop limit neighbor finder to reduce the computation tspent in selecting

candidate vertices for connection.
e Approximation of energy landscape of protein using mRRG.

Some of the protein folding results in this thesis were @it@d in [35]. Another manuscript

is currently under preparation that will include resulnfrthe robotics applications.
1.2 Organization of Thesis

The thesis is outlined as follows. In section 2 and sectiorwegive an overview
of related work and basics for robotics and protein foldikige then present the mRRG
algorithm and our hop limit neighbor finder in section 4. 8atb provides experimental
results showing improved performance of mMRRG and our hop heighbor finder over

prior approaches. Finally, we conclude in section 6.

2. PRELIMINARIES AND RELATED WORK FOR ROBOTIC MOTION
PLANNING

2.1 Configuration Space

In motion planning, the robot is a movable object whose dation (position and
orientation) can be defined by a set of degrees of freedom [@0s$izen, one for each
parameter used to specify the object position. A configomadif a robot can be uniquely
described as a point in anndimensional space, callednfiguration space (C-spacg0].
Configuration space is the space containing all possiblegumafiions (feasible or not) of
the robot. The number of degrees of freedom of a robot is tmeuision of C-space. The
subset of all feasible configurations (i.e., which do nolidelwith obstacles) is called free
C-space (f,..), and the subset of unfeasible ones is cabi&tkedC,,q.. (Cops). With
this notation, the motion planning problem is to find a valkdipin C/,.. from the start to

the goal configuration.
2.2 Tree-based Planners

Sampling-based approaches have been successfully usetimgsvarious motion
planning problems. Both graph-based approaches and teegtbaproaches have demon-
strated their effectiveness for solving motion planningig@ems in high dimensional space.

Tree-based planners build a tree incrementally from aralr@onfiguration outwards
towards unexplored regions of space. One of the first suchadst Ariadne’s Clew [10,
31], grows a tree by alternating between two different peasexplore” and “search”.
In the “explore” phase, the algorithm generates a randonfigamation and attempts to
expand the tree as far as possible towards it. In the “segttdse, the algorithm attempts
to expand the tree towards the goal. While “explore” aims dting the representation

of the space, “search” looks for the target.

5

The Rapidly Exploring Random Tree (RRT) [25], shown in Algamith, is one of the
most popular types of tree-based methods. It biases treetlgto unexplored regions
of the space by iteratively generating a random samplg and expanding the nearest
configuration §,..,) in the tree toward that sample. Typically, iterations asglmuntil the
goal configuration is reached. RRTs are well-suited for nmopianning problems with
obstacles and differential constraints- non-holonomikioodynamic.

There are many variants of the basic RRT algorithm. RRT-Con2&¢tbuilds two
trees, one rooted at the start and one rooted at the godlthmtiwo trees can be con-
nected [23]. RRT-Connect combines RRT with a aggressive grieedsistic to connect
the trees. Rapidly Exploring Random Graph (RRG) [19] builds algrastead of a tree by
attempting additional connections from the expanded no@aeh expansion step. Usu-
ally a radius-based dr-nearest connection method is used. In the radius-bassrer
connections are attempted to all the configurations coadamithin a ball of a given ra-
diusr from the new vertex. In thé-nearest version ([19]), connections are sought to the
k nearest neighbors wheke= kgrrclog(ny)). ny denotes the number of vertices in the
graph andcgre > khre = e(1 + 1/d) whered is the dimensionality of the configuration
space.

RRT* is a variant of RRG that maintains the asymptotic optirgaftthe tree structure
[19]. It removes the “redundant” edges (edges which are adtqgs the shortest path from
the root) of RRG, ensuring minimum cost paths to reachablécesrt

Expansive-Space Trees (EST) [18] expands nodes based aleniséy of C-space.
Nodes in sparsely sampled areas are more likely to be chosergansion. The selected
node is expanded in multiple directions such that the doastcover the sparse areas of
C-space. Sampling-based Roadmap of Trees (SRT) [37] inesglPbbabilistic Roadmap
Methods (PRMs) [20], a graph-based sampling method, with RiRTslilding a roadmap,
or graph, of trees that combines the global sampling pragsedf PRM and the local

6

sampling properties of RRT.

Algorithm 1 Rapidly Exploring Random Tree

Input. An initial placement;,,;;, step distancé, and an evaluataF.

Output. A graphG rooted aty;,;; that satisfies.

1: G.ADD_VERTEX (Ginit)-

2: while G does not satisfyr do

3. Letq...q be arandom sample, valid or not.
4: Let g be the nearest sampteG to ¢runq
5 Gnew = STEER(Gnear Grand; 0)

6: G.ADD VERTEX (¢new)

7. G ADD_EDGE(quear, Gnew)

8: end while

There have been a number of methods, both exact and appteximanearest neighbor

2.3 Nearest Neighbor Finding Methods

Nearest neighbor finding is one of the most important opamatin motion planning.

searching.

nearest neighbors from the query vertex, wheisetypically a small, fixed constant. Using

a brute force approach to compute th@earest neighbors, the running time per node is
usuallyO(kn), totalling O(kn?) overall. Another similar approach is theclosest method
which calculates all neighbors within a radiusf the query vertex using some distance

metric. The size of the neighbor set is dependent on the sagnsity.

The k-closest method is a common exact neighbor finding strategtyfinds thek

In [32], a randomized variant of these methods is proposéd;wfirst selects closest

7

k1 nodes and returnis, of them at random. A small amount of randomness was shown to

produce more edges and better connected roadmap compadhed:tolosest method.
2.3.1 Data Structures for Approximate Neighbor Finding

Another direction in nearest neighbor finding is to use diffé data structures to pro-
vide approximate and/or more efficient solutions. For higtienensions, one suitable
data structure is a KD-tree [9] which recursively partisdhe data set. Each node in the
KD-tree denotes a plane through one of the dimensions ipaitig the set of points into
left/right (up/down) sets. Each child set contains halfelements of the parent node set.
Children are partitioned using different dimensions reigetg. Partitioning stops when
each point is in just one cell. So, after KD-tree construtgti@ach cell contains a small
portion of the input data. A KD-tree can be constructediitnlogn) time by sortingn
points ink dimensions independently.

Nearest neighbor search using KD-trees can eliminate halpbints with a simple
test. The tree is recursively searched starting from a roderuntil a minimum region
containing the target vertex is found. Each parent node exlad to see if there are
other regions to contain a point that is closer. Searchitgrmminated when the algorithm
decides that there is no chance of finding a closer point.ikgnithe nearest neighbor is an
O(logn) operation using a KD-tree.

Different software libraries provide implementation of Ki2zes. CGAL [1] finds an
approximate nearest neighbor by constructing a single B {6] structure in the configu-
ration space of the robot. CGAL approximates nearest neigtiiyochanging proximity to
the query vertex. An approximation parametean be used , wherekanearest-neighbor
search returng neighbors that are guaranteed to be no more fhan ¢) times farther
away than the exaét-th neighbor.

The MPNN [6] library finds an approximate nearest neighbocdaystructing multiple

KD-trees in the configuration space. MPNN extends the ANNalgprithm, developed
by Arya and Mount for Euclidean spaces, to handle topolagiissng in motion planning.
Building multiple trees is particularly helpful as trees agnow from multiple difficult
areas. However, additional trees also create complicatesidn problems in selecting
nearest neighbors.

The Metric Tree [46] organizes the data set in a spatial lebreal manner. The tree
is constructed by recursively subdividing the group of redda@sed on the largest distance.
The search in this tree is done by a guided depth-first seanchde is not explored if it is

far away from the query vertex).

3. PRELIMINARIES AND RELATED WORK FOR MODELING PROTEIN
MOTION

Before describing our mMRRG method, we present some basiceddtathe protein
model, energy function and energy landscape. We also diselsted work on protein
folding, both experimental and computational, regardheyfeatures and quality of solu-

tions of different methods.
3.1 Protein Model

Proteins are biological molecules that are made up of a seguef amino acids. A
protein’s structure can be represented at three diffeegnts: primary structure, secondary
structure (Figure 2) and tertiary structure [11, 40]. Therenacid sequence of a protein
is referred to as primary structure. The secondary straaifia protein consists of regular
sub-structures which link together to form the three-digi@mal tertiary structure (native
state). The major secondary structures are alpha helickseda strands.

Each amino acid has two major flexible bond anglesnd, which determine a
protein’s flexibility. The¢ angle represents the rotation along fiie- C,, bond, and the
1) angle represents the rotation along the— C bond of an amino acid. For each amino
acid of the protein, we model theand« backbone torsional angles as flexible and keep
all other bond lengths and angles fixed. This is a standarchmgdassumption [44].

The protein’s degrees of freedom (DOF) can be expressednstef a set of) andy
angles. IfN is the number of amino acids of a protein, its DOF will ¥ (number of
¢ andvy angles). Thus, the protein is modeled as an articulateddj@akobot with joints

ranging betweefD, 27).

10

Figure 2: The native state of protein G. It consists of a @wipha helix and a four strand
beta sheet. This figure is taken from [42].

3.2 Potential Functions

The validity of a configuration is determined by the energtéptial value of that con-
figuration. Atoms inside a protein interact with the surrdimg solvent and each other.
These interactions, which cause a protein to fold or unfcéah, be represented by poten-
tial functions. A general form of the potential function dam expressed as a summation
of potentials associated with bond length, bond angle,didleangle, electrostatic inter-
actions [26] and van der Waals potentials.

In this work, we consider a coarse potential function asilesd in [3]. Side chains
are modelled as spheres with the same radii. If the side dpdiares are too close (less
than 2.4 during sampling and 18 during connection), the conformation is rejected to

prevent clash of atoms. Otherwise, the energy is calcuksed

Utot = Z Kd{[(di - d0)2 + d?]l/z - dc} + Ehp

constraints

wherekK; is 100 kJ/mold; is the length on théth constraint, and, = d. = 2A as shown

in [26].

11

3.3 Energy Landscape

The energy landscape of a protein represents all the proteifigurations and their
associated energies. In Figure 3, theplane gives simplified representation@tnd
angles of amino acids and theaxis represents associated potential/energy. It is ysuall

thought that native state of a protein is at the bottom of tinmél like energy landscape.

Conformation Space

Potential Energy

Figure 3: Visualization of the protein’s energy landscap®&]| Thexzy-plane represents
the protein’s configuration space, and thaxis is the potential energy.

3.4 Experimental Methods

Numerous experimental methods have been applied to stotgipmotion including
circular dichroism [39], fluorescence experiments [39]dimgen exchange [47], pulse
labeling, and NMR spectroscopy [33]. Circular dichroism (Qi2atra) use UV light to
inspect absorption of polarized light by protein configimas. Fluorescence experiments
measure change in fluorescence as a function of denaturgmirofen exchange mass
spectrometry and pulse labeling experiments are used mbifigenost exposed/protected
parts of protein structures. NMR spectroscopy is anothefulisool to study side-chain

motion and backbone motion.

12

3.5 Computational Methods

Experimental methods are not only complex and costly, bisgtalso hard to inspect
the fast moving folding process using these methods. Thuspatational simulation
techniques are needed to study these process by providedistic model of the folding
process. Table 3.1 provides a summary of different comjounalt methods, their compu-
tational requirements, solution quality, etc.

Traditional simulation methods such as molecular dynaf2@s15, 16], Monte Carlo
methods [14, 22], and simulated annealing [27] can provElagle, detailed, high-quality
folding pathway but at a high computational expense. Siedisnechanical models [34,
2, 7] provide statistics about the global energy landscapecénnot provide individual
pathways. Lattice models [12] are theoretical models artdused on real proteins in
practice. Robotic motion planning methods such as the PigdiebRoadmap Method
(PRM) [20] and rapidly Exploring Random Tree (RRT) [25] haverbadapted to model
the folding process. These robotics-based methods aeemoitnising as they can produce
multiple folding pathways using a short amount of time (fesuis). This helps to study

both individual folding trajectories and global propest@ the protein energy landscape.

13

Landscape # Paths | Path Computationall Native
Approach Properties| Produced Quality | Time Required Needed
Trajectory-Based Poor 1 Good | Long No
Coverage
Statistical
Mechanical Good 0 N/A Short Yes
Model Coverage
Robotics-Based
PRM Good
Coverage | Many Approx | Short Yes
T-RRT Poor
Coverage | Many Approx | Very Short Yes

Lattice Model

Not used on real proteins

Table 3.1: Comparison of computation models for modelingganamotion.

14

4. MULTI-DIRECTIONAL RAPIDLY EXPLORING RANDOM GRAPH mRRG

We begin this chapter by introducing the mRRG method that egplihe configuration
space in multiple directions. Then we discuss the hop limighbor finder which can be

used to reduce nearest neighbor searching time.
4.1 mRRG

The multi-directional Rapidly Exploring Random Graph (mRRG)eexls the RRG
algorithm by steering the parent vertex in multiple dispdrdirections at each expansion
step instead of with a single bias towargs,,. Expansion in multiple directions allows
the planner to search more densely near the locality, Qf. Figure 4 compares RRT with

MRRG growth withm values 3 and 5.

U ' and
Dncar Drand, . 2

(a) RRT(m=1) (b) m=3 (c) m=5

Figure 4: An overview of mMRRG with different m values. Insteddaasingleq,,,q for
expansionyn random samples are generated to guide expansiondsam Along each
directiong,qnq4;, & gnew 1S identified (shown in green) and connected to its neareghne
bors.

In each iteration of MRRG (see Algorithm 2), a random configomnag, .. iS gen-
erated. The nearest vertgx... t0 q¢...q IS Selected for expansion, ang... is steered
towardsg,.,q t0 getg,..,. A connection is attempted frog),.., t0 ¢,..., and added to the
graph if valid. If the graph type is not required to be a tree¢anected graph without cy-
cles), CONNNEIGHBORS (see Algorithm 4) is then called with the query camfagion

15

gnear 10 Select a set of candidate neighbors. For each candidiateglaplanning method is
used to evaluate if there is a feasible trajectory conngdtiem. An edge is added if it is
feasible.

Unlike traditional RRGy — 1 additional directions (see Algorithm 3) are then selected
towards which to expand,.... Just as before, multiple connections are attempted from
each expanded vertex. The directions are chosen such thatth dispersed, i.e., not
near, from already expanded directions. Multiple randoredadions are chosen and the
direction with the most dispersion is chosen. The mRRG gragiementally grows until

a set of evaluation criteria is met.

Lemma 1. mRRG withm = 1 is the same as RRT and RRG when all other aspects

(connection method, local planner, distance metric, ete)same.

Proof. Whenm = 1, mRRG performs all the operations in Algorithm 2 except line 12
22. RRG algorithm also performs the same operations. It ksesarest or radius based
connection method. So, mMRR@G:(= 1) with all other aspects the same as RRG wiill
produce the same graph. If the graph type is a treenand 1, then mRRG performs all

the operations in Algorithm 2 except line 12-22. RRT also @enfthe same operations.

So, RRT and mRRG will produce the same tree if all aspects are.same O

4.1.1 mRRG Complexity

The mRRG algorithm consists of the following basic operati@@mpling a point in
C-space and determining feasibility of a configurationsh# €-space id dimensional,
choosing a random point (line 3, 13) in C-space will takél) time. Let the time to
check the feasibility of a sample ig(/) time. The feasibility checking depends on the
dimensionality of the robot and the geometric model of theotcand obstacles in the
environment. Let us assume that nearest vertex calcultl®sO(¢,) time (depends

on neighbor finder). Let the average number of feasibilityais for edge connection be

16

Algorithm 2 mRRG

Input. An initial configurationg;,.;;, a path step\q, a number of expansion directions
a neighbor findern f, a local plannetp, and an evaluatolf/
Output. A graphG rooted aty;,;; that satisfiesy
1. G.V = Qinit
2: while G does not satisfyz do

3. Grana = RAND_CONF()
4. Quear = NEARESTVERTEX(¢,and, G)
S Onew = STEERQneam Qrand; AQ)
6: if Ip.ISCCONNECTABLE@car; ¢new) then
7 G.ADD_VERTEX(¢new)
8: G.ADD_EDGE@ncar; Gnew)
9: if G.type #treethen
10: CONN.NEIGHBORS@,e0;s n.f, Ip, G)
11: end if
12: fori=2...mdo
13: qaisp = SELECT.DIRECTION(Gncqr, G)
14: Qnew = STEEROnearu Qdisp) AQ)
15: if Ip.IS.CONNECTABLE@,car; Gnew) then
16: G.ADD_VERTEX(¢,ew)
17: G.ADD_EDGE@,car; @new)
18: if G.type # treethen
19: CONN.NEIGHBORS,,c, n.f, Ip, G)
20: end if
21: end if
22: end for
23: endif
24: end while
25: return G

O(l). Let the number of nearest neighbors/eLet the maximum number of trials in
Algorithm 3 bec. Letng be the number of edges in graph

In the STEER function in line 5 and/S.CONNECTABLE function in line 6,
feasibility is checked for intermediate nodes between taaeas at a fixed resolution. The
expected cost of total feasibility checks(gif). CONN_NEIGHBORS is called in
line 10. Line 1 of Algorithm 4 take®)(t,,s) time. Line 2-6 of Algorithm 4 take® (k! f)

17

Algorithm 3 SELECT.DIRECTION

Input. A vertexq and a graphts
1: LetmaxTrial be a data member denoting number of trials to make
2. Let MAX_ANGLE denotes the maximum angle
3: fori=1...maxTrial do
Let MIN_ANGLE denote the minimum angle
Grana = RAND_CONF()
for eachv adjacent tgy in G do
angle =CALCULATE_ANGLE (30 , 4Gran)
if MIN_ANGLE > angle then
MIN_ANGLE = angle
10: end if
11: end for
122 it MAX_ANGLE < MIN_ANGLE then
13: MAX ANGLE = MIN_ANGLE

© o N g

14: Gbest = Grand
15 endif
16: end for

17: return qpest

time. Algorithm 3 take®)(cFE)) time.
The operations in line 3-11 of Algorithm 2 are repeatedfor 1 times in line 12-22.
If the algorithm runs fod number of iterations, total running time beconi&dm(l f+

toy +ELf +d+cE)).
4.2 Hop Limit Neighbor Finder

The cost of finding the nearest neighbors of a given configura one of the most ex-
pensive operations for sampling based motion planning.essiibed in Section 2.3, the
standard approach is a brute force method that computesstia@ces from the configura-
tion in question to every vertex in the graph and sorts thecoraingly, see Algorithm 5.
It takesO(kn) time wheren is the number of vertices in the graph ani the number of
neighbors to find.

We propose a heuristic method we cladip limit Instead of considering the entire

18

Algorithm 4 CONN_NEIGHBORS

Input. A connecting vertey, a neighbor finden f, a local plannetp and a grapldz
1: N =nf.FIND_NEIGHBORS(, G)
: for eachn # ¢ € N do
if I[p.IS.CONNECTABLE({, n) then
G.ADD _EDGE(g, n)
end if
end for

o9k wd

Algorithm 5 BruteForce.FINDNEIGHBORS

Input. A connecting vertey and a graplts
Output. A set of neighboring vertices
. Let k£ be a data member denoting the number of neighbors to find
: X = () with maximum allowed sizé
. for eachw € G.V do
D=PAIR(v, distanceq, v))
InsertD into X in sorted order
end for
return X

N aArRw®hR

graph in the nearest neighbor search, we only examine tlesgees withink edges (hops)
of the parent node of query configuration. By only looking atlaggaph of the original
graph, the candidate set for distance calculations is dreatlst reduced while still pre-
serving locality. Other neighbor finders, either exact geragimate, can be used in com-
bination to search the neighbors from this reduced set.ré&ig(a) shows the subgragh
that is within~ = 2 hops ofr outlined in dash. Then, for each of the expanded configura-
tions, connections are attempted to kh@earest neighbors in the subgraph. Here, the brute
force neighbor finder is called to identify thenearest neighbors from’. Figure 5(b) dis-
plays the connection attempts whiers- 2 . Algorithm 6 sketches the approach.

The user has control over the size of the candidate set bygaiwthe hop limith.

There are many ways to compute the subgraph induced by thérhibpHere we use a

19

J“//_,,». ql‘(l”dz

Expanded
Nodes

T qrand1
qr'(mds .

@) (b)

Figure 5: Hop limit neighbor finding withk = 2 andh = 2. (a) The subgrapl&’ from
Gnear Whereh = 2 is outlined in dash. (b) The resultirig= 2 connections attempted are
shown.

e Drand o

Expanded
= Nodes

r'r-i‘:

s

S
i Gnear @
init

o
e

- G e ‘\\. Q!'andl
Y init near qr‘1m(13 ®

Algorithm 6 HopLimit.FIND_NEIGHBORS

Input. A connecting vertex a graphG;

Output. A set of neighboring vertices

: Let h be a data member denoting the hop limit

: Letnf be a member denoting another neighbor finder
r = PARENT.VERTEX(q, G)

. G' = SUBGRAPHWITHIN _HOP.LIMIT(r, G, h)

return nf.FIND_NEIGHBORSg, G)

simple breadth first search (BFS) with search depth equal ©alculating the parent in
line 1 takesD(1) time. In our case; = g,.q- IS the parent off = ¢,.., for NRRG.

Calculating the subgraph také¥b") time whereb denotes the maximum branching
factor (the out-degree) of the graph. As thevalue is usually small and the average
branching factor of the graph is small, this time is much $enas compared to a BFS of
the entire graph@(ny + ng) time, whereny andn i denote number of vertices and edges
respectively). Computing the-nearest neighbors (brute force) in this subgrépphakes
O(kny-) time whereny- is the number of vertices in the subgraph. Usually is much
less tham;,.

So, the overall running time of the hop limit neighbor findethahe brute force neigh-
bor finder isO (b + kny-), which is much smaller than ti@(kn) running time of the brute

force neighbor finder alone.

20

Notice that the same subgraph is induced during each werafithe loop in line 12 of

Algorithm 2.

21

5. EXPERIMENTAL ANALYSIS

In this chapter, we study the performance of mMRRG under diffargut parameters
and compare against RRT and RRG. We run experiments for botlisrabd proteins to
study the effect ofn andh. We study hown value effects on number of pathways. We
show that growing in multiple directions help to find a patbtéa compared to RRT in
different environments. We also study the computationat ead accuracy of hop limit
neighbor finder and compare with brute force neighbor finti¢g. show that a hop limit

value of 2 results in a large savings in terms of time withostrig much accuracy.
5.1 Implementation and Platform

The algorithm was implemented and tested using the C++ maii@nning library
(PMPL) developed in the Parasol Lab at Texas A&M Universitg aesults are averaged
over a series of 10 runs. We used the collision detectioafpPQP [17] for our experi-

ments. For RRGk is automatically tuned as in [19] (see Section 2.2).
5.2 Experimental Study for Robots

In this section, we describe the different environmentsrabdt types that were used
for the experiments with robots. These were selected twal®to study the effect oh

and hop limit performance.
5.2.1 Environments

e 2D cluttered (2DOF cube/6 DOF articulated linkage). The 2D cluttered environ-
ment in Figure 6(a) has 256 randomly positioned obsta6lesq{ 0.2 x 0.2 cube) in a
bounding box that i30 x 10.

e 3D cluttered (9 DOF articulated linkage). The 3D cluttered environment in Fig-

ure 6(b) has 125 randomly positioned obstacle8 & 0.2 x 0.2 cube) in a bound-

22

. RGPS

P tied

HN mm

| | |
(a)2D cluttered (b) 3D cluttered (c) S-Tunnel

(d) Rigid (e) 4-link articulated
body cube

Figure 6: Environments and robots used for robot experiment

ing box that is10 x 10 x 10. We consider two different robots: (82 x 0.2 x 0.2
cube (Figure 6(d)) and a 4-link articulated linkage (Fig@(e)) where each link is
0.2 x 0.03 x 0.03. The cube robot has 2 DOF (Planar Translational) and theudated

linkage robot has 6 DOF (Planar Rotational).

e S Tunnel (6DOF cube/9 DOF articulated linkage). The S-Tunnel environment in
Figure 6(c) has a long tunnel (widil) created by 4 big obstacles in a bounding box
that is40 x 1 x 10. We consider the same two different robots but in a 3D enwirent:
a0.5 x 0.5 x 0.5 cube (Figure 6(d)) and a 4-link articulated linkage wherehdak is
0.2 x 0.03 x 0.03 (Figure 6(e)). The cube robot has 6 DOF , and the articulat&dde
robot has 9 DOF.

5.2.2 Study ofn Value

We compare the effect of changing thevalue on finding alternative pathways. Our
goal is to get more topologically distinct pathways. We gtadange of values of: that
we determined resulted in qualitatively different patheiayhese were determined for

each environment/scenario separately.

23

5.2.2.1 Experimental Setup and Evaluation Metrics

Below is the description of the experiments we conducted fof BRI mMRRG:

e Roadmap Generation. For RRT/mRRG, we first generate roadmap (Figure 7(a)) for
a fixed amount of time.

e Arrival of New Obstacle and Revalidation. A new obstacle is added to the environ-
ment (Figure 7(b)). The roadmap is revalidated to removevéingces and edges that
are invalidated by the new obstacle. Next, all the connectadponents that do not

contain the start are removed.

e Continue Roadmap Generation. After revalidation of the roadmap, RRT/mMRRG

starts growing (Figure 7(c)) the current roadmap.

e Query for a Path. A valid path from the start to the goal is searched. If not thun
roadmap generation is continued. The metrics that areatetlfor the experiments

are listed below.

e Revalidation Time. Time to remove newly invalid nodes/edges after the new clesta

is inserted.

e Roadmap Generation Time (after new obstacle). Time to generate the roadmap

after newly invalid nodes/edges are removed.
e Query Time. Time to find a valid path from the start to the goal.

e Total Time. The sum of the time spent in roadmap generation (before netadke),
revalidation time of roadmap, roadmap generation times(afew obstacle) and the

query time.
5.2.2.2 Results fom Study
In our experiments, we used 2d-cluttered/3d-clutteredenments with a 2 DOF cube

and a 4-link (6 DOF, 9DOF) robot. As described in Sectionb2.both methods (RRT,

24

(a) Initial roadmap (b) New obstacle

_ :@@3

(c) Valid path

Figure 7: Experimental setup for study.

MRRG) are first run for the same amount of time (see Table 5.1gn Tline new obstacle
(2 x 2 x 2) is inserted and the roadmap is revalidated. The roadmagniergted again
until a valid path from the start to the goal is found.

For all the timing figures, we also show the standard dewnatio Figure 8, the value
m = 3 helps to find a path faster compared to RRT and otherlues of mMRRG. The
qguery time (see Figure 9), revalidation time (see Figure @8peration time after new
obstacle (see Figure 11) are also lowestfoe 3.

Form = 5, the roadmap was bushier and all the expanded directionsadidisperse
much from the start position to find a valid path. For= 2, in most of the cases, all the
valid paths became invalid after the new obstacle was ideih a few cases, there was
still a valid path. That is why the standard deviation is Vieigh for this value ofn. For
m = 3, In most cases there was still a valid path after the new olest@as inserted into

the environment.

25

Environment| robot | #Generation Time(s
before new obstacle
2D_cluttered| cube | 20

2D_cluttered| 4-link | 60

3D_cluttered| 4-link | 40

Table 5.1: Roadmap generation time (before new obstacl@)fferent
environments.

600

Total Time(s)

100

2D_clut_cube 2D_clut_4link 3D_clut_4link
Environments

Figure 8. Comparison of total time needed for differenvalues.

Thus, overall, for the environments shown in the experisient= 3 is the best value

of m based on these timing statistics.
5.2.3 Study ok Value

In this section, we compare the performance of our hop limighbor finder with

standard brute force neighbor finding for the RRG algorithm.
5.2.3.1 Experimental Setup and Evaluation Metrics

Below is the description of experimental setup for RRT/mRRG:

26

3

250

333
monoH
(AN N

|

200

Query Time(s)

50

ol e—— ﬂ_]:_‘——i_
2D_clut_cube 2D_clut_4link 3D_clut_4link
Environments

Figure 9: Comparison of query time needed for differentalues.

Revalidation Time(s)

2D_clut_cube 2D_clut_4link 3D_clut_4link
Environments

Ol ——

Figure 10: Comparison of revalidation time needed for défern values.

e Roadmap Generation. For RRT/mRRG, we first generate a roadmap with a fixed

number of vertices and stop. In this experiment we use 2Qicesr

27

500

.
o
o

(933
(=
(=]

Generation Time(s) after New Obs

2D_clut_cube 2D_clut_4link 3D_clut_4link
Environments

Figure 11: Comparison of generation Time (after new obs}detalifferentm values.

e k Value. k is automatically tuned as in [19]. For the experimehtsanges between 1

and 28.

The goal of our hop limit neighbor finder is to find neighborshAtow computational
cost with high accuracy compared to an exact neighbor findiathod. To compare the
quality of the solution, we used a variety of performancedabmetrics to evaluate the: (a)
computational cost and (b) accuracy of the methods. We a&sd some other metrics to

understand the effect of thievalue in neighbor finding. The metrics are listed below:

e Neighbor Finding Time: The total time spent to find neighbors for all the nodes. This
metric tells us how costly the different neighbor finding huets are.

e SameEdge (%): The percentage of the edges the hop limit method found apad
to the brute force neighbor finding method. This metric tedshow accurate our

heuristic based method is compared to the exact neighbandimalethod.

e Local Planner Attempts. The total number of connection attempts made by the local

planner. This metric is correlated with how many neighborda be found by different

28

methods.

e Local Planner Success (%): The percentage of successful local planner connections.
This metric indicates the effectiveness of each method dinfgnconnectible neigh-

bors.
e Number of Edges: The total number of roadmap edges. This metric tells us hawm

edges are produced by different methods.

5.2.3.2 Results fok Study

0.25 , ,
I Exact : :
I HLNF (h=1)
[IHLNF(h=2) 5
02 W EIHUNF(=3) |
|| Il HLNF(h=5)

D8 B SRRk

O 1F i e e —

Neighbor Finding Time(s)

005 - L.

2D_clut_cube 2d_clut_dlink STunnel_cube STun_dlink
Environments

Figure 12: Comparison of neighbor finding time.

We compare the performance of different neighbor finderstédorce neighbor finder
and hop limit neighbor finder with different hop values) i tBD cluttered environment
and S-Tunnel environment with the cube robot and 4-linkcalited robot for RRG . As
expected, the neighbor finding time is significantly redu¢sek Figure 12) as the hop

limit allows the finder to search for neighbors in a reduceattodate set. As the hop limit

29

5000

Il Exact
EIHLNF(h=1)
45001 T [IHLNF(h=2)
EHLNF(h=3)
40001 EHLNF(h=5)
3500 -
& 3000 -
g
& 2500} -
=
(=] [—
£ 2000
1500 |- .
1000 - -
500 -
0 2D_clut_cube 2d_clut_dlink STunnel_cube STun_dlink
Environments
Figure 13: Comparison of #local planner attempts.
100 ! I Exact
f I HLNF(h=1)
: T HLNF(h=3)
8ol : I HLNF (h=5)

70~

40

Local Planner success%

30~

20~

2D_clut_cube 2d_clut_dlink STunnel_cube STun_4link

Environments

Figure 14: Comparison of local planner success (%).

increases, this set also increases and thus neighbor fitidiagncreases. The hop limited
BFS takesO(b") time and thus the total neighbor finding time increases axreases.
The number of local planner attempts is much lower (see Eig®) forh = 1 as the

neighbor finder may not find enough neighbots) within the hop limit. For higherh

30

6000

5000

4000

3000

#average edge

2000

1000

I Exact

I HLNF(h=1)
[JHLNF(h=2)
EHLNF(h=3)
EHLNF (h=5)

2D_clut_cube 2d_clut_dlink STunnel_cube STun_dlink
Environments
Figure 15: Comparison of #edges.
100 — T == I HLNF(h=1)
90 : [HLNF(h=2)
: [IHLNF(h=3)
: : B HLNF(h=5)
80 ; :
701 : -
ﬁ 60_ . . 5 HEEY FPeN —
[H H
= : :
x 50 | —
£ :
% 40 -0 || | - . : . e ! -
30 A T -
200 |l [N] . . -
10k . s ! Y RN -
0 i | |

values, the local planner attempts increase as the subfpafiiding the neighbors grows
bigger. The local planner success rate is very higlifer 1, as the vertices within this hop
limit are very near to the query vertex and the chance of nga&uccessful connections

with these vertices is high. As the hop limit grows, the logknner success rate (see

I
2D_clut_cube

i
2d_clut_4link

STunnel_
Environments

Cube

STun_4link

Figure 16: Comparison of same edge (%).

31

Protein pdb # Residues Secondary | Experimental For+
Structure | mationOrder
Makeup
G 1PGA 56 la+4p [o,31,33,34],52
[a,54],[81,52,53]?
G Variant| NuG1/NuG2 57 la+45 £1-2,33-43
A 1BDD 60 3o [@2,03],1*
[al,02,03]?

Table 5.2: Proteins studied and their secondary structure formartitam
from: 'hydrogen out-exchange experiments [2§julsed labeling/competition experi-
ments [28], and®-value analysis [36]. Brackets indicate no clear order.

\/(h
/
/

%\%“k
R

(a) Protein G (b) G Variant NuG1 (c) G Variant NuG2 (d) Protein A

Figurel7: Proteins studied.

helices and3-sheets form) along the pathways does not vary between iterations by
more than some threshold (10 %). This is the same evaluation scheme used previously
in applying PRMs to study protein folding [41]. For the results presented here, we

evaluate the secondary structure formation order after every 250 samples.We use diff-
erent evaluation metrics to evaluate the quality of the roadmap for RRIM&RIG.
e Secondary Structure Formation Order:

We validate a method’s results by comparing its dominant secondary structure forma-

33

tion order to the experimentally determined order from logén out-exchange [28],

pulse-labeling data [28], and/@rvalue analysis [36].

e # Folding Pathways. Folding pathways can be extracted by calculating the most e
ergetically feasible path (shortest path) from every wwstired conformation to the

native state of the protein.

5.3.2.1 Study aof: Value

40 T ! !

B m=s| i i : i

301

0 | | |

i i i
1GB1 NuG1 NuG2 1BDD
Proteins

#Pathways
[a=]
(=]
T

Figure 18: Comparison of #pathways produced for RRT, mMRRGwith 1, 3,5, 7.

We compare the running time and resulting graph size for sathod for the proteins
with m = {1, 3,5, 7}. Every method was able to reproduce the correct secondaotste
formation order as seen in the experiment. We see thatiasreases, the more pathways
were generated (see Figure 18). Fhelosest time (neighbor finding time) (see Figures 19,
20) also decreases asincreases as expansions are done for eacltlosest call (nearest

neighbor finding) instead af expansion in the RRT. As the-closest time is significant,

34

350 ! .

Elm=1|
Em=3| :
=7 - —
200 : — Q -
) : :
T ;
E i :
F 150 f : .
100 : ; B
0

i | I i
1GB1 NuG1 NuG2 1BDD

Proteins

Figure 19: Comparison of total time.

18 T T T
Il m=1
16| | m=3 .
[Cm=5 : : :
14l I =7 i
& :
5 :
E 10 H B :]
'_ N B H :
= : : : :
$ 8 H B : : —
o :
Qo : : : :
2 : ; ; :
61 f : ; : i
4t : ; ; .
1 H H | ﬂ]
0 i . i . i l i L
1GB1 NuG1 NuG?2 1BDD
Proteins

Figure 20: Comparison df-closest time.

it is beneficial to make multiple expansions. From Figurevi®can see that mMRRG can
make more pathways but uses almost the same amount of tinergmaced to RRT. For

all the proteins shown in the experiment,= 7 is the best value as it generates the most

35

pathways and the running time is comparable to RRT.

36

6. CONCLUSION

We propose a multi-directional Rapidly Exploring Random GrédmRRG) motion
planner which explores the configuration space more thdrigumgpmpared to prior meth-
ods such as RRT and RRG. mRRG achieves this by expanding in muirplgtions in
a single iteration of the algorithm. This exploration alsdgs to generate multiple topo-
logically distinct paths from a start to a goal given the sammunt of computation time
for robots and thus helps to reduce replanning time when aatestacle appears, inval-
idating paths in the environment. For proteins, we show thatmethod is effective in
achieving more unfolded pathways compared to RRT. We alsw shat our hop limit
neighbor finder can significantly reduce running time whil@maining a similar number
of roadmap edges.

In the future, we plan to develop a method to automaticatigtu based on the locality
of the vertex under expansion. We also plan to apply mRRG foemadyots with complex
shapes and to scenarios with moving obstacles. We also plapgly mRRG to more
complex proteins of larger size and to other types of pratemements such as transitions

between two conformations.

37

REFERENCES

[1] CcAL, Computational Geometry Algorithms Library, 1997. httpuiAv.cgal.org.

[2] E. Alm and D. Baker. Prediction of protein-folding meclgns from free-energy
landscapes derived from native structufdsc. Natl. Acad. Sci. US®6(20):11305—
11310, 1999.

[3] N. M. Amato and G. Song. Using motion planning to studytpiofolding pathways.
J. Comput. Biol.9(2):149-168, 2002. Special issue of Int. Conf. Comput. iaker
Biology (RECOMB) 2001.

[4] S. Arya and D. M. Mount. Approximate nearest neighborripgein fixed dimen-
sions. InProc. 4th ACM-SIAM Sympos. Discrete Algorithmages 271-280, 1993.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and AWU. An optimal
algorithm for approximate nearest neighbor searching gdflimensionsJournal

of the ACM 45(6):891-923, 1998.

[6] A. Atramentov and S. M. LaValle. Efficient nearest neighlsearching for motion

planning. InProc. IEEE Int. Conf. Robot. Autom. (ICRAJges 632-637, 2002.
[7] D. Baker. A surprising simplicity to protein foldindNature 405:39—-42, 2000.

[8] O. B. Bayazit, G. Song, and N. M. Amato. Enhancing randochiz®tion planners:
Exploring with haptic hints. IfProc. IEEE Int. Conf. Robot. Autom. (ICRAjages
529-536, 2000.

[9] J. L. Bentley. Multidimensional binary search trees ug@mdassociative searching.

Commun. ACM18(9):509-517, September 1975.

38

[10] P. Bessiere, J. M. Ahuactzin, E. G. Talbi, and E. Mazere Aniadne’s clew algo-
rithm: Global planning with local methods. Rroc. IEEE Int. Conf. Intel. Rob. Syst.
(IROS) volume 2, pages 1373-1380, 1993.

[11] C. Branden and J. Toozmtroduction to Protein StructureGarland Pub., New York,
2nd edition, 1999.

[12] J.D. Bryngelson, J.N. Onuchic, N.D. Socci, and P.G. Wel. Funnels, pathways,
and the energy landscape of protein folding: A synthe$sotein Struct. Funct.
Genet 21:167-195, 1995.

[13] H. S. Chan and K. A. Dill. Protein folding in the landscgperspective: Chevron
plots and non-arrhenius kineticsProteins: Structure, Function, and Genetics

30(1):2-33, 1998.

[14] D.G. Covell. Folding proteim-carbon chains into compact forms by Monte Carlo

methods.Proteins: Struct. Funct. Genetl4(4):409-420, 1992.

[15] V. Daggett and M. Levitt. Realistic simulation of naipeetein dynamics in solution

and beyondAnnu. Rev. Biophys. Biomol. Stry@&2:353-380, 1993.

[16] Y. Duan and P.A. Kollman. Pathways to a protein foldintermediate observed in a

1-microsecond simulation in aqueous soluti®tience282:740-744, 1998.

[17] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree: A hieracal structure for
rapid interference detectio@omput. Graph.30:171-180, 1996. Proc. SIGGRAPH
'96.

[18] D. Hsu, J-C. Latombe, and R. Motwani. Path planning in espa configuration
spaces. IProc. IEEE Int. Conf. Robot. Autom. (ICRAJ)ages 2719-2726, 1997.

39

[19] S. Karaman and E. Frazzoli. Incremental sampling-tbadgorithms for optimal
motion planning. IrProc. of Robotics: Science and Systedaragoza, Spain, June

2010.

[20] L. E. Kavraki, P.Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configoratipacesIEEE Trans.

Robot. Automat.12(4):566-580, August 1996.

[21] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe. Planningtions with intentions.
In Proc. ACM SIGGRAPHpages 395-408, 1995.

[22] A. Kolinski and J. Skolnick. Monte Carlo simulations afgtein folding. Proteins
Struct. Funct. Genet18(3):338—-352, 1994.

[23] J. J. Kuffner and S. M. LaValle. RRT-Connect: An Efficienpgtoach to Single-
Query Path Planning. IRroc. IEEE Int. Conf. Robot. Autom. (ICRA)ages 995—
1001, 2000.

[24] J.-C. LatombeRobot Motion PlanningKluwer Academic Publishers, Boston, MA,
1991.

[25] S. M. LaValle and J. J. Kuffner. Rapidly-exploring ramddrees: Progress and
prospects. IMNew Directions in Algorithmic and Computational Robotipages
293-308. A. K. Peters, 2001. book contains the proceedihgiseolnternational
Workshop on the Algorithmic Foundations of Robotics (WAFR)gndver, NH,
2000.

[26] M. Levitt. Protein folding by restrained energy mination and molecular dynam-

ics. J. Mol. Biol, 170:723-764, 1983.

[27] M. Levittand A. Warshel. Computer simulation of protéatding. Nature 253:694—
698, 1975.

40

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. Li and C. Woodward. The hydrogen exchange core andiprtikding. Protein
Sci, 8(8):1571-1591, 1999.

Jyh-Ming Lien, O. B. Bayazit, R.-T. Sowell, S. Rodriguezdaw. M. Amato. Shep-
herding behaviors. IRroc. IEEE Int. Conf. Robot. Autom. (ICRARges 4159-4164,
April 2004.

T. Lozano-Rrez and M. A. Wesley. An algorithm for planning collisioreé paths
among polyhedral obstacleSommunications of the ACM2(10):560-570, October
1979.

E. Mazer, J. M. Ahuactzin, and P. Bessiere. The Ariadde'w algorithm. InJournal
of Artificial Robotics Research (JAIR)olume 9, pages 295-316, 1998.

Troy McMahon, Sam Jacobs, Bryan Boyd, Lydia Tapia, anddyakmato. Eval-
uation of the k-closest neighbor selection strategy for pamstruction. Technical

Report TR12-002, Texas A&M, College Station, 2011.

Anthony Mittermaier and Lewis E. Kay. New tools providew insights in NMR

studies of protein dynamic&cience312(5771):224-228, 2006.

V. Mufioz, E. R. Henry, J. Hoferichter, and W. A. Eaton. A statistioachanical
model forg-hairpin kinetics.Proc. Natl. Acad. Sci. USA5:5872-5879, 1998.

Shuvra Nath, Shawna Thomas, Chinwe Ekenna, and Nancyrivaté. A multi-
directional rapidly exploring random graph (mrrg) for gt folding. INACM Con-
ference on Bioinformatics, Computational Biology and Bidioge, Orlando,FL,

USA, October 2012.

S. Nauli, B. Kuhlman, and D. Baker. Computer-based redesia protein folding
pathway.Nature Struct. Biol.8(7):602—-605, 2001.

41

[37] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. KaviraBampling-based

roadmap of trees for parallel motion planningEE Trans. Robot. AutomaR005.

[38] J. H. Reif. Complexity of the mover’s problem and geneations. InProc. IEEE
Symp. Foundations of Computer Science (FOQ@&yes 421-427, San Juan, Puerto
Rico, October 1979.

[39] Heinrich Roder, Kosuke Maki, and Hong Cheng. Early evemtprotein folding
explored by rapid mixing method&€hem. Rey.106:1836-1861, 2006.

[40] G.E. Schulz and R. H. SchirmePrinciples of Protein StructuteSpringer-Verlag,
New York, 1979.

[41] G. Song.A Motion Planning Approach to Protein Folding’h.D. dissertation, Dept.

of Computer Science, Texas A&M University, December 2004.

[42] G. Song and N. M. Amato. A motion planning approach talifieg): From paper
craft to protein structure prediction. Technical Report TROQ, Department of

Computer Science, Texas A&M University, January 2000.

[43] G.Songand N. M. Amato. Using motion planning to studygtpm folding pathways.
In Proc. Int. Conf. Comput. Molecular Biology (RECOMPB#ages 287-296, 2001.

[44] M. J. Sternberg.Protein Structure Prediction OIRL Press at Oxford University
Press, 1996.

[45] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. AmatUsing motion
planning to study RNA folding kinetics.J. Comput. Biol. 12(6):862—-881, 2005.
Special issue of Int. Conf. Comput. Molecular Biology (RECOMB) 200

[46] J. K. Uhlmann. Satisfying general proximity/similgriqueries with metric trees.

Information Processing Letterd0(6):175-179, 1991.

42

[47] Thomas E. Wales and John R. Engen. Hydrogen exchangespessometry for the
analysis of protein dynamic#dass Spec. Rew25(1):158-170, 2006.

43

