
MULTI-DIRECTIONAL RAPIDLY EXPLORING RANDOM GRAPH (MRRG) FOR

MOTION PLANNING

A Thesis

by

SHUVRA KANTI NATH

Submitted to the Office of Graduate and Professional Studiesof
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Nancy M. Amato
Committee Members, Dezhen Song

Suman Chakravorty
Head of Department, Duncan M. Walker

December 2013

Major Subject: Computer Science

Copyright 2013 Shuvra Kanti Nath

ABSTRACT

The motion planning problem in robotics is to find a valid sequence of motions taking

some movable object from a start configuration to a goal configuration in an environment.

Sampling-based path planners are very popular for high-dimensional motion planning in

complex environments. These planners build a graph (roadmap) by generating robot con-

figurations (vertices), and connecting nearby pairs of configurations according to their

transition feasibility. Tree-based sampling-based planners (e.g., Rapidly-Exploring Ran-

dom Tree, or RRT) start growing a tree outward from an initial configuration of the robot.

In this work, we propose a multi-directional Rapidly-Exploring Random Graph (mRRG)

for robotic motion planning, a variant of the Rapidly-Exploring Random Graph (RRG). In-

stead of expanding a vertex in the tree in a single random direction during each iteration,

mRRG expands inm random directions. Our results show that growing in multiple direc-

tions in this way produces roadmaps with more topologically distinct paths than previous

methods. In an environment with dynamic obstacles, moving or new obstacles may inval-

idate a path from the start to the goal. Hence, roadmaps containing alternative pathways

can be beneficial as they may avoid recalculation of new valid paths.

One of the important phases in sampling-based methods involves finding candidate

nearest neighbors to attempt to connect to a node. Generally, the entire graph is considered

to search for the nearest neighbors. In this thesis, we propose a heuristic method for finding

nearest neighbors based on the hop limit, i.e., the maximum number of edges allowed in

the path from a vertex to its neighbor. The candidate nearest neighbors are found by

considering only those vertices within the hop limit. We experimentally show that our hop

limit neighbor finder significantly reduces neighbor searching time over the standard brute

force approach when constructing roadmaps.

ii

To my Family and Friends

iii

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. Nancy M. Amato, for her guidance and sup-

port. She has helped me a lot to grow as a researcher; without her guidance and continuous

encouragement, this work would not be possible.

I would like to thank my committee members Dr. Dezhen Song and Dr. Suman

Chakravorty for their cooperation, feedback and support.

I would like to thank members of the Algorithms and Applications group in the Parasol

Lab. I have truly enjoyed working with them. I am really grateful to Dr. Shawna Thomas

for her continuous feedback, help and guidance. I would also like to thank Jory Denny,

Chinwe Ekenna, Hsin-Yi (Cindy) Yeh and Aditya Mahadevan for their help and patience

to answer all my questions.

Finally, I must thank my wife Rimi for her constant mental support and love for me. I

am really honored to have her in my life. I would also like to thank my parents, Narayan

and Karuna, who taught me to do hard work and provided support and encouragement

throughout my studies.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . ix

1. INTRODUCTION . 1

1.1 Our Approach . 2
1.2 Organization of Thesis . 4

2. PRELIMINARIES AND RELATED WORK FOR ROBOTIC MOTION PLAN-
NING . 5

2.1 Configuration Space . 5
2.2 Tree-based Planners . 5
2.3 Nearest Neighbor Finding Methods . 7

2.3.1 Data Structures for Approximate Neighbor Finding 8

3. PRELIMINARIES AND RELATED WORK FOR MODELING PROTEIN MO-
TION . 10

3.1 Protein Model . 10
3.2 Potential Functions . 11
3.3 Energy Landscape . 12
3.4 Experimental Methods . 12
3.5 Computational Methods . 13

4. MULTI-DIRECTIONAL RAPIDLY EXPLORING RANDOM GRAPH mRRG 15

4.1 mRRG . 15
4.1.1 mRRG Complexity . 16

4.2 Hop Limit Neighbor Finder . 18

5. EXPERIMENTAL ANALYSIS . 22

5.1 Implementation and Platform . 22

v

5.2 Experimental Study for Robots . 22
5.2.1 Environments . 22
5.2.2 Study ofm Value . 23
5.2.3 Study ofh Value . 26

5.3 Experimental Study for Proteins . 32
5.3.1 Proteins Studied . 32
5.3.2 Experimental Setup and Evaluation Metrics 32

6. CONCLUSION . 37

REFERENCES . 38

vi

LIST OF FIGURES

FIGURE Page

1 Topologically distinct pathways from s to g. 2

2 The native state of protein G. It consists of a central alpha helix and a four
strand beta sheet. This figure is taken from [42]. 11

3 Visualization of the protein’s energy landscape [13]. Thexy-plane repre-
sents the protein’s configuration space, and thez-axis is the potential energy. 12

4 An overview of mRRG with different m values. Instead of a singleqrand
for expansion,m random samples are generated to guide expansion from
qnear. Along each directionqrandi, aqnew is identified (shown in green) and
connected to its nearest neighbors. 15

5 Hop limit neighbor finding withk = 2 andh = 2. (a) The subgraph
G′ from qnear whereh = 2 is outlined in dash. (b) The resultingk = 2
connections attempted are shown. 20

6 Environments and robots used for robot experiment. 23

7 Experimental setup form study. 25

8 Comparison of total time needed for differentm values. 26

9 Comparison of query time needed for differentm values. 27

10 Comparison of revalidation time needed for differentm values. 27

11 Comparison of generation Time (after new obstacle) for differentm values. 28

12 Comparison of neighbor finding time. 29

13 Comparison of #local planner attempts. 30

14 Comparison of local planner success (%). 30

15 Comparison of #edges. 31

16 Comparison of same edge (%). 31

17 Proteins studied. 33

vii

18 Comparison of #pathways produced for RRT, mRRG withm = 1, 3, 5, 7. . 34

19 Comparison of total time. 35

20 Comparison ofk-closest time. 35

viii

LIST OF TABLES

TABLE Page

3.1 Comparison of computation models for modeling protein motion. 14

5.1 Roadmap generation time (before new obstacle) for different
environments. 26

5.2 Proteins studied and their secondary structure formation order
1hydrogen out-exchange experiments [28],2pulsed labeling/competition
experiments [28], and3Φ-value analysis [36]. Brackets indicate no clear
order. 33

ix

1. INTRODUCTION

In robotics, the motion planning problem involves finding a valid trajectory for a mov-

able object from a start configuration to a goal configurationin a given environment. Usu-

ally, an environment consists of a robot and a set of obstacles. Motion planning has a wide

range of applications in a variety of domains including robotics [24], gaming [29], compu-

tational biology [43, 45], virtual prototyping [8], computer animation [21] and computer

aided design [8, 29].

The motion planning problem has been actively studied for decades and is known

to be PSPACE-hard [38]. Several approaches have been proposed and recent attention

has focused on randomized motion planning methods. One popular class of algorithms,

sampling-based motion planning [20, 25], has been successful in solving problems with

high dimensionality. Graph-based approaches explore the configuration space [30], the set

of all possible robot configurations within the environment(valid or not). These planners

build a graph data structure, called a roadmap, where valid configurations are encoded as

vertices and edges represent the connectivity among them.

Tree-based sampling-based techniques [25][18] explore the space by growing one or

more trees outward from an initial configuration in the configuration space. Incremental

exploration of the space makes tree-based planners well-suited for problems with differen-

tial constraints. Tree-based approaches are largely used for single query planning. Current

tree-based methods are mostly aimed at getting a single pathfrom a start configuration to

a goal configuration. However, in some situations, multiplepaths from the start to the goal

can be more desirable. For example, in an environment with dynamic obstacles, a moving

or new obstacle may invalidate the current path from the start to the goal and an alternative

path would need to be selected. We propose a motion planner,multi-directional Rapidly

1

Exploring Random Graph(mRRG), which can generate multiple topologically distinct

pathways from the start to the goal. Informally, two paths are topologically distinct if they

pass by different obstacles. For example, in Figure 1, all the three paths shown from the

start to the goal are topologically distinct from each other. These paths can be used as al-

ternative pathways instead of recalculating new ones if onebecomes invalidated for some

reason.

Figure 1: Topologically distinct pathways from s to g.

1.1 Our Approach

mRRG is an extension of Rapidly Exploring Random Graphs (RRGs) [19]. RRG is

a tree-based motion planning method which builds a graph incrementally by expanding a

configuration in a single random direction. After a successful expansion, connections are

attempted between the new configuration and existing vertices in the graph, either those

identified within a ball of radiusr or as thek-nearest neighbors to the new configuration.

2

Our mRRG algorithm is different from traditional RRG in that it expands inm dif-

ferent random directions instead of in a single random direction. Expansion in multiple

directions allows a single iteration to explore more in the locality of the vertex. This yields

roadmaps containing more topologically distinct paths. mRRGis a generalization of pre-

vious approaches including RRG (wherem = 1) and RRT (Rapidly Exploring Random

Tree) [25] (wherem = 1 andk = 0). We initially explored this idea of expanding in

multiple directions for protein folding applications [35]. We obtained promising results

for several small proteins and were better able to model the folding space than a standard

RRT.

In RRT, RRG, and mRRG, we found that computing the neighbor configurations to

which connections will be attempted consumes a significant portion of the computation

time. To address this, we developed a heuristic method for finding nearest neighbors

that instead of considering all vertices in the graph, restricts the candidate neighbors to

vertices that are withinh edges (hops) from the query vertex. We show that in many cases

restricting the search to the locality of the query vertex significantly reduces running time

without sacrificing much in result quality.

Our experiments show that mRRG helps to explore the configuration space better than

RRT using multi-directional search. It also helps to create alarger number of topologically

different paths from a start to a goal. As more paths are created, shorter paths are also

achieved. We also examined the effect of using the hop limit heuristic during neighbor

finding and found that the hop limit approximation reduces the neighborhood searching

time significantly.

Our Contribution. The main contributions of this work are:

• An extension of RRG, that can create multiple topologically distinct pathways.

• A new hop limit neighbor finder to reduce the computation timespent in selecting

3

candidate vertices for connection.

• Approximation of energy landscape of protein using mRRG.

Some of the protein folding results in this thesis were published in [35]. Another manuscript

is currently under preparation that will include results from the robotics applications.

1.2 Organization of Thesis

The thesis is outlined as follows. In section 2 and section 3,we give an overview

of related work and basics for robotics and protein folding.We then present the mRRG

algorithm and our hop limit neighbor finder in section 4. Section 5 provides experimental

results showing improved performance of mRRG and our hop limitneighbor finder over

prior approaches. Finally, we conclude in section 6.

4

2. PRELIMINARIES AND RELATED WORK FOR ROBOTIC MOTION

PLANNING

2.1 Configuration Space

In motion planning, the robot is a movable object whose specification (position and

orientation) can be defined by a set of degrees of freedom (DOF) of sizen, one for each

parameter used to specify the object position. A configuration of a robot can be uniquely

described as a point in ann-dimensional space, calledconfiguration space (C-space)[30].

Configuration space is the space containing all possible configurations (feasible or not) of

the robot. The number of degrees of freedom of a robot is the dimension of C-space. The

subset of all feasible configurations (i.e., which do not collide with obstacles) is called free

C-space (Cfree), and the subset of unfeasible ones is calledblockedCspace (Cobs). With

this notation, the motion planning problem is to find a valid path inCfree from the start to

the goal configuration.

2.2 Tree-based Planners

Sampling-based approaches have been successfully used in solving various motion

planning problems. Both graph-based approaches and tree-based approaches have demon-

strated their effectiveness for solving motion planning problems in high dimensional space.

Tree-based planners build a tree incrementally from an initial configuration outwards

towards unexplored regions of space. One of the first such methods, Ariadne’s Clew [10,

31], grows a tree by alternating between two different phases: “explore” and “search”.

In the “explore” phase, the algorithm generates a random configuration and attempts to

expand the tree as far as possible towards it. In the “search”phase, the algorithm attempts

to expand the tree towards the goal. While “explore” aims at building the representation

of the space, “search” looks for the target.

5

The Rapidly Exploring Random Tree (RRT) [25], shown in Algorithm 1, is one of the

most popular types of tree-based methods. It biases tree growth to unexplored regions

of the space by iteratively generating a random sample (qrand) and expanding the nearest

configuration (qnear) in the tree toward that sample. Typically, iterations are made until the

goal configuration is reached. RRTs are well-suited for motion planning problems with

obstacles and differential constraints- non-holonomic orkinodynamic.

There are many variants of the basic RRT algorithm. RRT-Connect[23] builds two

trees, one rooted at the start and one rooted at the goal, until the two trees can be con-

nected [23]. RRT-Connect combines RRT with a aggressive greedyheuristic to connect

the trees. Rapidly Exploring Random Graph (RRG) [19] builds a graph instead of a tree by

attempting additional connections from the expanded node at each expansion step. Usu-

ally a radius-based ork-nearest connection method is used. In the radius-based version,

connections are attempted to all the configurations contained within a ball of a given ra-

diusr from the new vertex. In thek-nearest version ([19]), connections are sought to the

k nearest neighbors wherek = kRRGlog(nV)). nV denotes the number of vertices in the

graph andkRRG > k∗RRG = e(1 + 1/d) whered is the dimensionality of the configuration

space.

RRT* is a variant of RRG that maintains the asymptotic optimality of the tree structure

[19]. It removes the “redundant” edges (edges which are not part of the shortest path from

the root) of RRG, ensuring minimum cost paths to reachable vertices.

Expansive-Space Trees (EST) [18] expands nodes based on thedensity of C-space.

Nodes in sparsely sampled areas are more likely to be chosen for expansion. The selected

node is expanded in multiple directions such that the directions cover the sparse areas of

C-space. Sampling-based Roadmap of Trees (SRT) [37] integrates Probabilistic Roadmap

Methods (PRMs) [20], a graph-based sampling method, with RRTsby building a roadmap,

or graph, of trees that combines the global sampling properties of PRM and the local

6

sampling properties of RRT.

Algorithm 1 Rapidly Exploring Random Tree

Input. An initial placementqinit, step distanceδ, and an evaluatorE.

Output. A graphG rooted atqinit that satisfiesE.

1: G.ADD V ERTEX(qinit).

2: while G does not satisfyE do

3: Let qrand be a random sample, valid or not.

4: Let qnear be the nearest sample∈ G to qrand

5: qnew = STEER(qnear, qrand, δ)

6: G.ADD V ERTEX(qnew)

7: G.ADD EDGE(qnear, qnew)

8: end while

2.3 Nearest Neighbor Finding Methods

Nearest neighbor finding is one of the most important operations in motion planning.

There have been a number of methods, both exact and approximate, for nearest neighbor

searching.

The k-closest method is a common exact neighbor finding strategy that finds thek

nearest neighbors from the query vertex, wherek is typically a small, fixed constant. Using

a brute force approach to compute thek-nearest neighbors, the running time per node is

usuallyO(kn), totallingO(kn2) overall. Another similar approach is ther-closest method

which calculates all neighbors within a radiusr of the query vertex using some distance

metric. The size of the neighbor set is dependent on the sampling density.

In [32], a randomized variant of these methods is proposed, which first selects closest

7

k1 nodes and returnsk2 of them at random. A small amount of randomness was shown to

produce more edges and better connected roadmap compared tothek-closest method.

2.3.1 Data Structures for Approximate Neighbor Finding

Another direction in nearest neighbor finding is to use different data structures to pro-

vide approximate and/or more efficient solutions. For higher dimensions, one suitable

data structure is a KD-tree [9] which recursively partitions the data set. Each node in the

KD-tree denotes a plane through one of the dimensions partitioning the set of points into

left/right (up/down) sets. Each child set contains half theelements of the parent node set.

Children are partitioned using different dimensions recursively. Partitioning stops when

each point is in just one cell. So, after KD-tree construction, each cell contains a small

portion of the input data. A KD-tree can be constructed inO(knlogn) time by sortingn

points ink dimensions independently.

Nearest neighbor search using KD-trees can eliminate half the points with a simple

test. The tree is recursively searched starting from a root node until a minimum region

containing the target vertex is found. Each parent node is checked to see if there are

other regions to contain a point that is closer. Searching isterminated when the algorithm

decides that there is no chance of finding a closer point. Finding the nearest neighbor is an

O(logn) operation using a KD-tree.

Different software libraries provide implementation of KD-trees. CGAL [1] finds an

approximate nearest neighbor by constructing a single KD-tree [5] structure in the configu-

ration space of the robot. CGAL approximates nearest neighbors by changing proximity to

the query vertex. An approximation parameterǫ can be used , where ak-nearest-neighbor

search returnsk neighbors that are guaranteed to be no more than(1 + ǫ) times farther

away than the exactk-th neighbor.

The MPNN [6] library finds an approximate nearest neighbor byconstructing multiple

8

KD-trees in the configuration space. MPNN extends the ANN [4]algorithm, developed

by Arya and Mount for Euclidean spaces, to handle topologiesarising in motion planning.

Building multiple trees is particularly helpful as trees cangrow from multiple difficult

areas. However, additional trees also create complicated decision problems in selecting

nearest neighbors.

The Metric Tree [46] organizes the data set in a spatial hierarchical manner. The tree

is constructed by recursively subdividing the group of nodes based on the largest distance.

The search in this tree is done by a guided depth-first search (a node is not explored if it is

far away from the query vertex).

9

3. PRELIMINARIES AND RELATED WORK FOR MODELING PROTEIN

MOTION

Before describing our mRRG method, we present some basics related to the protein

model, energy function and energy landscape. We also discuss related work on protein

folding, both experimental and computational, regarding the features and quality of solu-

tions of different methods.

3.1 Protein Model

Proteins are biological molecules that are made up of a sequence of amino acids. A

protein’s structure can be represented at three different levels: primary structure, secondary

structure (Figure 2) and tertiary structure [11, 40]. The amino acid sequence of a protein

is referred to as primary structure. The secondary structure of a protein consists of regular

sub-structures which link together to form the three-dimensional tertiary structure (native

state). The major secondary structures are alpha helices and beta strands.

Each amino acid has two major flexible bond angles,φ andψ, which determine a

protein’s flexibility. Theφ angle represents the rotation along theN − Cα bond, and the

ψ angle represents the rotation along theCα − C bond of an amino acid. For each amino

acid of the protein, we model theφ andψ backbone torsional angles as flexible and keep

all other bond lengths and angles fixed. This is a standard modeling assumption [44].

The protein’s degrees of freedom (DOF) can be expressed in terms of a set ofφ andψ

angles. IfN is the number of amino acids of a protein, its DOF will be2N (number of

φ andψ angles). Thus, the protein is modeled as an articulated linkage robot with joints

ranging between[0, 2π).

10

Figure 2: The native state of protein G. It consists of a central alpha helix and a four strand
beta sheet. This figure is taken from [42].

3.2 Potential Functions

The validity of a configuration is determined by the energy/potential value of that con-

figuration. Atoms inside a protein interact with the surrounding solvent and each other.

These interactions, which cause a protein to fold or unfold,can be represented by poten-

tial functions. A general form of the potential function canbe expressed as a summation

of potentials associated with bond length, bond angle, dihedral angle, electrostatic inter-

actions [26] and van der Waals potentials.

In this work, we consider a coarse potential function as described in [3]. Side chains

are modelled as spheres with the same radii. If the side chainspheres are too close (less

than 2.4̊A during sampling and 1.0̊A during connection), the conformation is rejected to

prevent clash of atoms. Otherwise, the energy is calculatedas:

Utot =
∑

constraints

Kd{[(di − d0)
2 + d2c]

1/2 − dc}+ Ehp

whereKd is 100 kJ/mol,di is the length on theith constraint, andd0 = dc = 2Å as shown

in [26].

11

3.3 Energy Landscape

The energy landscape of a protein represents all the proteinconfigurations and their

associated energies. In Figure 3, thexy plane gives simplified representation ofφ andψ

angles of amino acids and thez axis represents associated potential/energy. It is usually

thought that native state of a protein is at the bottom of the funnel like energy landscape.

Figure 3: Visualization of the protein’s energy landscape [13]. Thexy-plane represents
the protein’s configuration space, and thez-axis is the potential energy.

3.4 Experimental Methods

Numerous experimental methods have been applied to study protein motion including

circular dichroism [39], fluorescence experiments [39], hydrogen exchange [47], pulse

labeling, and NMR spectroscopy [33]. Circular dichroism (CD spectra) use UV light to

inspect absorption of polarized light by protein configurations. Fluorescence experiments

measure change in fluorescence as a function of denaturant. Hydrogen exchange mass

spectrometry and pulse labeling experiments are used to identify most exposed/protected

parts of protein structures. NMR spectroscopy is another useful tool to study side-chain

motion and backbone motion.

12

3.5 Computational Methods

Experimental methods are not only complex and costly, but itis also hard to inspect

the fast moving folding process using these methods. Thus, computational simulation

techniques are needed to study these process by providing a realistic model of the folding

process. Table 3.1 provides a summary of different computational methods, their compu-

tational requirements, solution quality, etc.

Traditional simulation methods such as molecular dynamics[26, 15, 16], Monte Carlo

methods [14, 22], and simulated annealing [27] can provide asingle, detailed, high-quality

folding pathway but at a high computational expense. Statistical mechanical models [34,

2, 7] provide statistics about the global energy landscape but cannot provide individual

pathways. Lattice models [12] are theoretical models and not used on real proteins in

practice. Robotic motion planning methods such as the Probabilistic Roadmap Method

(PRM) [20] and rapidly Exploring Random Tree (RRT) [25] have been adapted to model

the folding process. These robotics-based methods are quite promising as they can produce

multiple folding pathways using a short amount of time (few hours). This helps to study

both individual folding trajectories and global properties of the protein energy landscape.

13

Landscape # Paths Path Computational Native
Approach Properties Produced Quality Time Required Needed

Trajectory-Based Poor 1 Good Long No
Coverage

Statistical
Mechanical Good 0 N/A Short Yes
Model Coverage

Robotics-Based
PRM Good

Coverage Many Approx Short Yes
T-RRT Poor

Coverage Many Approx Very Short Yes
Lattice Model Not used on real proteins

Table 3.1: Comparison of computation models for modeling protein motion.

14

4. MULTI-DIRECTIONAL RAPIDLY EXPLORING RANDOM GRAPH mRRG

We begin this chapter by introducing the mRRG method that explores the configuration

space in multiple directions. Then we discuss the hop limit neighbor finder which can be

used to reduce nearest neighbor searching time.

4.1 mRRG

The multi-directional Rapidly Exploring Random Graph (mRRG) extends the RRG

algorithm by steering the parent vertex in multiple dispersed directions at each expansion

step instead of with a single bias towardsqrand. Expansion in multiple directions allows

the planner to search more densely near the locality ofqnear. Figure 4 compares RRT with

mRRG growth withm values 3 and 5.

(a) RRT(m=1) (b) m=3 (c) m=5

Figure 4: An overview of mRRG with different m values. Instead of a singleqrand for
expansion,m random samples are generated to guide expansion fromqnear. Along each
directionqrandi, a qnew is identified (shown in green) and connected to its nearest neigh-
bors.

In each iteration of mRRG (see Algorithm 2), a random configuration qrand is gen-

erated. The nearest vertexqnear to qrand is selected for expansion, andqnear is steered

towardsqrand to getqnew. A connection is attempted fromqnew to qnear and added to the

graph if valid. If the graph type is not required to be a tree (aconnected graph without cy-

cles), CONNNEIGHBORS (see Algorithm 4) is then called with the query configuration

15

qnear to select a set of candidate neighbors. For each candidate, alocal planning method is

used to evaluate if there is a feasible trajectory connecting them. An edge is added if it is

feasible.

Unlike traditional RRG,m−1 additional directions (see Algorithm 3) are then selected

towards which to expandqnear. Just as before, multiple connections are attempted from

each expanded vertex. The directions are chosen such that they are dispersed, i.e., not

near, from already expanded directions. Multiple random directions are chosen and the

direction with the most dispersion is chosen. The mRRG graph incrementally grows until

a set of evaluation criteria is met.

Lemma 1. mRRG withm = 1 is the same as RRT and RRG when all other aspects

(connection method, local planner, distance metric, etc.)are same.

Proof. Whenm = 1, mRRG performs all the operations in Algorithm 2 except line 12-

22. RRG algorithm also performs the same operations. It usesk-nearest or radius based

connection method. So, mRRG (m = 1) with all other aspects the same as RRG will

produce the same graph. If the graph type is a tree andm = 1, then mRRG performs all

the operations in Algorithm 2 except line 12-22. RRT also perform the same operations.

So, RRT and mRRG will produce the same tree if all aspects are same.

4.1.1 mRRG Complexity

The mRRG algorithm consists of the following basic operations: sampling a point in

C-space and determining feasibility of a configurations. If the C-space isd dimensional,

choosing a random point (line 3, 13) in C-space will takeO(d) time. Let the time to

check the feasibility of a sample beO(f) time. The feasibility checking depends on the

dimensionality of the robot and the geometric model of the robot and obstacles in the

environment. Let us assume that nearest vertex calculationtakesO(tnf) time (depends

on neighbor finder). Let the average number of feasibility checks for edge connection be

16

Algorithm 2 mRRG

Input. An initial configurationqinit, a path step∆q, a number of expansion directionsm,
a neighbor findernf , a local plannerlp, and an evaluatorE

Output. A graphG rooted atqinit that satisfiesE
1: G.V = qinit
2: while G does not satisfyE do
3: qrand = RAND CONF()
4: qnear = NEARESTVERTEX(qrand, G)
5: qnew = STEER(qnear, qrand,∆q)
6: if lp.IS CONNECTABLE(qnear, qnew) then
7: G.ADD VERTEX(qnew)
8: G.ADD EDGE(qnear, qnew)
9: if G.type 6=treethen

10: CONN NEIGHBORS(qnew, nf, lp, G)
11: end if
12: for i = 2 . . . m do
13: qdisp = SELECTDIRECTION(qnear, G)
14: qnew = STEER(qnear, qdisp,∆q)
15: if lp.IS CONNECTABLE(qnear, qnew) then
16: G.ADD VERTEX(qnew)
17: G.ADD EDGE(qnear, qnew)
18: if G.type 6= treethen
19: CONN NEIGHBORS(qnew, nf, lp, G)
20: end if
21: end if
22: end for
23: end if
24: end while
25: return G

O(l). Let the number of nearest neighbors bek. Let the maximum number of trials in

Algorithm 3 bec. LetnE be the number of edges in graphG.

In the STEER function in line 5 andIS CONNECTABLE function in line 6,

feasibility is checked for intermediate nodes between two nodes at a fixed resolution. The

expected cost of total feasibility checks isO(lf). CONN NEIGHBORS is called in

line 10. Line 1 of Algorithm 4 takesO(tnf) time. Line 2-6 of Algorithm 4 takesO(klf)

17

Algorithm 3 SELECTDIRECTION

Input. A vertexq and a graphG
1: LetmaxTrial be a data member denoting number of trials to make
2: LetMAX ANGLE denotes the maximum angle
3: for i = 1 . . .maxTrial do
4: LetMIN ANGLE denote the minimum angle
5: qrand = RAND CONF()
6: for eachv adjacent toq in G do
7: angle =CALCULATE ANGLE(−→qv , −−−→qqrand)
8: if MIN ANGLE > angle then
9: MIN ANGLE = angle

10: end if
11: end for
12: if MAX ANGLE < MIN ANGLE then
13: MAX ANGLE =MIN ANGLE
14: qbest = qrand
15: end if
16: end for
17: return qbest

time. Algorithm 3 takesO(cE)) time.

The operations in line 3-11 of Algorithm 2 are repeated form− 1 times in line 12-22.

If the algorithm runs forI number of iterations, total running time becomesO(Im(lf+

tnf + klf + d+ cE)).

4.2 Hop Limit Neighbor Finder

The cost of finding the nearest neighbors of a given configuration is one of the most ex-

pensive operations for sampling based motion planning. As described in Section 2.3, the

standard approach is a brute force method that computes the distances from the configura-

tion in question to every vertex in the graph and sorts them accordingly, see Algorithm 5.

It takesO(kn) time wheren is the number of vertices in the graph andk is the number of

neighbors to find.

We propose a heuristic method we callhop limit. Instead of considering the entire

18

Algorithm 4 CONN NEIGHBORS

Input. A connecting vertexq, a neighbor findernf , a local plannerlp and a graphG
1: N = nf .FIND NEIGHBORS(q,G)
2: for eachn 6= q ∈ N do
3: if lp.IS CONNECTABLE(q, n) then
4: G.ADD EDGE(q, n)
5: end if
6: end for

Algorithm 5 BruteForce.FINDNEIGHBORS

Input. A connecting vertexq and a graphG
Output. A set of neighboring vertices

1: Let k be a data member denoting the number of neighbors to find
2: X = ∅ with maximum allowed sizek
3: for eachv ∈ G.V do
4: D=PAIR(v, distance(q, v))
5: InsertD intoX in sorted order
6: end for
7: return X

graph in the nearest neighbor search, we only examine those vertices withinh edges (hops)

of the parent node of query configuration. By only looking at a subgraph of the original

graph, the candidate set for distance calculations is dramatically reduced while still pre-

serving locality. Other neighbor finders, either exact or approximate, can be used in com-

bination to search the neighbors from this reduced set. Figure 5(a) shows the subgraphG′

that is withinh = 2 hops ofr outlined in dash. Then, for each of the expanded configura-

tions, connections are attempted to thek nearest neighbors in the subgraph. Here, the brute

force neighbor finder is called to identify thek nearest neighbors fromG′. Figure 5(b) dis-

plays the connection attempts whenk = 2 . Algorithm 6 sketches the approach.

The user has control over the size of the candidate set by changing the hop limith.

There are many ways to compute the subgraph induced by the hoplimit. Here we use a

19

(a) (b)

Figure 5: Hop limit neighbor finding withk = 2 andh = 2. (a) The subgraphG′ from
qnear whereh = 2 is outlined in dash. (b) The resultingk = 2 connections attempted are
shown.

Algorithm 6 HopLimit.FIND NEIGHBORS

Input. A connecting vertexq a graphG
Output. A set of neighboring vertices

1: Let h be a data member denoting the hop limit
2: Let nf be a member denoting another neighbor finder
3: r = PARENT VERTEX(q,G)
4: G′ = SUBGRAPHWITHIN HOP LIMIT(r,G, h)
5: return nf .FIND NEIGHBORS(q,G′)

simple breadth first search (BFS) with search depth equal toh. Calculating the parent in

line 1 takesO(1) time. In our case,r = qnear is the parent ofq = qnew for mRRG.

Calculating the subgraph takesO(bh) time whereb denotes the maximum branching

factor (the out-degree) of the graph. As theh value is usually small and the average

branching factor of the graph is small, this time is much smaller as compared to a BFS of

the entire graph (O(nV +nE) time, wherenV andnE denote number of vertices and edges

respectively). Computing thek-nearest neighbors (brute force) in this subgraphG′ takes

O(knV ′) time wherenV ′ is the number of vertices in the subgraph. UsuallynV ′ is much

less thannV .

So, the overall running time of the hop limit neighbor finder with the brute force neigh-

bor finder isO(bh+knV ′), which is much smaller than theO(kn) running time of the brute

force neighbor finder alone.

20

Notice that the same subgraph is induced during each iteration of the loop in line 12 of

Algorithm 2.

21

5. EXPERIMENTAL ANALYSIS

In this chapter, we study the performance of mRRG under different input parameters

and compare against RRT and RRG. We run experiments for both robots and proteins to

study the effect ofm andh. We study howm value effects on number of pathways. We

show that growing in multiple directions help to find a path faster compared to RRT in

different environments. We also study the computational cost and accuracy of hop limit

neighbor finder and compare with brute force neighbor finder.We show that a hop limit

value of 2 results in a large savings in terms of time without losing much accuracy.

5.1 Implementation and Platform

The algorithm was implemented and tested using the C++ motionplanning library

(PMPL) developed in the Parasol Lab at Texas A&M University and results are averaged

over a series of 10 runs. We used the collision detection library PQP [17] for our experi-

ments. For RRG,k is automatically tuned as in [19] (see Section 2.2).

5.2 Experimental Study for Robots

In this section, we describe the different environments androbot types that were used

for the experiments with robots. These were selected to allow us to study the effect ofm

and hop limit performance.

5.2.1 Environments

• 2D cluttered (2DOF cube/6 DOF articulated linkage). The 2D cluttered environ-

ment in Figure 6(a) has 256 randomly positioned obstacles (0.2× 0.2× 0.2 cube) in a

bounding box that is10× 10.

• 3D cluttered (9 DOF articulated linkage). The 3D cluttered environment in Fig-

ure 6(b) has 125 randomly positioned obstacles (0.2 × 0.2 × 0.2 cube) in a bound-

22

(a) 2D cluttered (b) 3D cluttered (c) S-Tunnel

(d) Rigid
body cube

(e) 4-link articulated

Figure 6: Environments and robots used for robot experiment.

ing box that is10 × 10 × 10. We consider two different robots: a0.2 × 0.2 × 0.2

cube (Figure 6(d)) and a 4-link articulated linkage (Figure6(e)) where each link is

0.2×0.03×0.03. The cube robot has 2 DOF (Planar Translational) and the articulated

linkage robot has 6 DOF (Planar Rotational).

• S-Tunnel (6DOF cube/9 DOF articulated linkage). The S-Tunnel environment in

Figure 6(c) has a long tunnel (width1) created by 4 big obstacles in a bounding box

that is40×1×10. We consider the same two different robots but in a 3D environment:

a0.5× 0.5× 0.5 cube (Figure 6(d)) and a 4-link articulated linkage where each link is

0.2×0.03×0.03 (Figure 6(e)). The cube robot has 6 DOF , and the articulated linkage

robot has 9 DOF.

5.2.2 Study ofm Value

We compare the effect of changing them value on finding alternative pathways. Our

goal is to get more topologically distinct pathways. We study a range of values ofm that

we determined resulted in qualitatively different pathways. These were determined for

each environment/scenario separately.

23

5.2.2.1 Experimental Setup and Evaluation Metrics

Below is the description of the experiments we conducted for RRT and mRRG:

• Roadmap Generation. For RRT/mRRG, we first generate roadmap (Figure 7(a)) for

a fixed amount of time.

• Arrival of New Obstacle and Revalidation. A new obstacle is added to the environ-

ment (Figure 7(b)). The roadmap is revalidated to remove thevertices and edges that

are invalidated by the new obstacle. Next, all the connectedcomponents that do not

contain the start are removed.

• Continue Roadmap Generation. After revalidation of the roadmap, RRT/mRRG

starts growing (Figure 7(c)) the current roadmap.

• Query for a Path. A valid path from the start to the goal is searched. If not found,

roadmap generation is continued. The metrics that are collected for the experiments

are listed below.

• Revalidation Time. Time to remove newly invalid nodes/edges after the new obstacle

is inserted.

• Roadmap Generation Time (after new obstacle). Time to generate the roadmap

after newly invalid nodes/edges are removed.

• Query Time. Time to find a valid path from the start to the goal.

• Total Time. The sum of the time spent in roadmap generation (before new obstacle),

revalidation time of roadmap, roadmap generation time (after new obstacle) and the

query time.

5.2.2.2 Results form Study

In our experiments, we used 2d-cluttered/3d-cluttered environments with a 2 DOF cube

and a 4-link (6 DOF, 9DOF) robot. As described in Section 5.2.2.1, both methods (RRT,

24

(a) Initial roadmap (b) New obstacle

(c) Valid path

Figure 7: Experimental setup form study.

mRRG) are first run for the same amount of time (see Table 5.1). Then the new obstacle

(2 × 2 × 2) is inserted and the roadmap is revalidated. The roadmap is generated again

until a valid path from the start to the goal is found.

For all the timing figures, we also show the standard deviation. In Figure 8, the value

m = 3 helps to find a path faster compared to RRT and otherm values of mRRG. The

query time (see Figure 9), revalidation time (see Figure 10), generation time after new

obstacle (see Figure 11) are also lowest form = 3.

Form = 5, the roadmap was bushier and all the expanded directions didnot disperse

much from the start position to find a valid path. Form = 2, in most of the cases, all the

valid paths became invalid after the new obstacle was inserted. In a few cases, there was

still a valid path. That is why the standard deviation is veryhigh for this value ofm. For

m = 3, in most cases there was still a valid path after the new obstacle was inserted into

the environment.

25

Environment robot #Generation Time(s)
before new obstacle

2D cluttered cube 20
2D cluttered 4-link 60
3D cluttered 4-link 40

Table 5.1: Roadmap generation time (before new obstacle) fordifferent
environments.

Figure 8: Comparison of total time needed for differentm values.

Thus, overall, for the environments shown in the experiments,m = 3 is the best value

of m based on these timing statistics.

5.2.3 Study ofh Value

In this section, we compare the performance of our hop limit neighbor finder with

standard brute force neighbor finding for the RRG algorithm.

5.2.3.1 Experimental Setup and Evaluation Metrics

Below is the description of experimental setup for RRT/mRRG:

26

Figure 9: Comparison of query time needed for differentm values.

Figure 10: Comparison of revalidation time needed for differentm values.

• Roadmap Generation. For RRT/mRRG, we first generate a roadmap with a fixed

number of vertices and stop. In this experiment we use 200 vertices.

27

Figure 11: Comparison of generation Time (after new obstacle) for differentm values.

• k Value. k is automatically tuned as in [19]. For the experiments,k ranges between 1

and 28.

The goal of our hop limit neighbor finder is to find neighbors with low computational

cost with high accuracy compared to an exact neighbor findingmethod. To compare the

quality of the solution, we used a variety of performance-based metrics to evaluate the: (a)

computational cost and (b) accuracy of the methods. We also used some other metrics to

understand the effect of theh value in neighbor finding. The metrics are listed below:

• Neighbor Finding Time: The total time spent to find neighbors for all the nodes. This

metric tells us how costly the different neighbor finding methods are.

• Same Edge (%): The percentage of the edges the hop limit method found as compared

to the brute force neighbor finding method. This metric tellsus how accurate our

heuristic based method is compared to the exact neighbor finding method.

• Local Planner Attempts: The total number of connection attempts made by the local

planner. This metric is correlated with how many neighbors could be found by different

28

methods.

• Local Planner Success (%): The percentage of successful local planner connections.

This metric indicates the effectiveness of each method at finding connectible neigh-

bors.

• Number of Edges: The total number of roadmap edges. This metric tells us how many

edges are produced by different methods.

5.2.3.2 Results forh Study

Figure 12: Comparison of neighbor finding time.

We compare the performance of different neighbor finders (brute force neighbor finder

and hop limit neighbor finder with different hop values) in the 2D cluttered environment

and S-Tunnel environment with the cube robot and 4-link articulated robot for RRG . As

expected, the neighbor finding time is significantly reduced(see Figure 12) as the hop

limit allows the finder to search for neighbors in a reduced candidate set. As the hop limit

29

Figure 13: Comparison of #local planner attempts.

Figure 14: Comparison of local planner success (%).

increases, this set also increases and thus neighbor findingtime increases. The hop limited

BFS takesO(bh) time and thus the total neighbor finding time increases ash increases.

The number of local planner attempts is much lower (see Figure 13) forh = 1 as the

neighbor finder may not find enough neighbors (< k) within the hop limit. For higherh

30

Figure 15: Comparison of #edges.

Figure 16: Comparison of same edge (%).

values, the local planner attempts increase as the subgraphfor finding the neighbors grows

bigger. The local planner success rate is very high forh = 1, as the vertices within this hop

limit are very near to the query vertex and the chance of making successful connections

with these vertices is high. As the hop limit grows, the localplanner success rate (see

31

Protein pdb # Residues Secondary
Structure
Makeup

Experimental For-
mationOrder

G 1PGA 56 1α + 4β [α,β1,β3,β4],β21

[α,β4],[β1,β2,β3]2

G Variant NuG1/NuG2 57 1α + 4β β1-2,β3-43

A 1BDD 60 3α [α2,α3],α11

[α1,α2,α3]2

Table 5.2: Proteins studied and their secondary structure formationorder
from: 1hydrogen out-exchange experiments [28],2pulsed labeling/competition experi-
ments [28], and3Φ-value analysis [36]. Brackets indicate no clear order.

(a) Protein G (b) G Variant NuG1 (c) G Variant NuG2 (d) Protein A

Figure17: Proteins studied.

helices andβ-sheets form) along the pathways does not vary between iterations by

more than some threshold (10 %). This is the same evaluation scheme used previously

in applying PRMs to study protein folding [41]. For the results presented here, we

evaluate the secondary structure formation order after every 250 samples.We use diff-

erent evaluation metrics to evaluate the quality of the roadmap for RRT and mRRG.

• Secondary Structure Formation Order:

We validate a method’s results by comparing its dominant secondary structure forma-

33

tion order to the experimentally determined order from hydrogen out-exchange [28],

pulse-labeling data [28], and/orΦ-value analysis [36].

• # Folding Pathways: Folding pathways can be extracted by calculating the most en-

ergetically feasible path (shortest path) from every unstructured conformation to the

native state of the protein.

5.3.2.1 Study ofm Value

Figure 18: Comparison of #pathways produced for RRT, mRRG withm = 1, 3, 5, 7.

We compare the running time and resulting graph size for eachmethod for the proteins

withm = {1, 3, 5, 7}. Every method was able to reproduce the correct secondary structure

formation order as seen in the experiment. We see that asm increases, the more pathways

were generated (see Figure 18). Thek-closest time (neighbor finding time) (see Figures 19,

20) also decreases asm increases asm expansions are done for eachk-closest call (nearest

neighbor finding) instead of1 expansion in the RRT. As thek-closest time is significant,

34

Figure 19: Comparison of total time.

Figure 20: Comparison ofk-closest time.

it is beneficial to make multiple expansions. From Figure 18,we can see that mRRG can

make more pathways but uses almost the same amount of time as compared to RRT. For

all the proteins shown in the experiment,m = 7 is the best value as it generates the most

35

pathways and the running time is comparable to RRT.

36

6. CONCLUSION

We propose a multi-directional Rapidly Exploring Random Graph (mRRG) motion

planner which explores the configuration space more thoroughly compared to prior meth-

ods such as RRT and RRG. mRRG achieves this by expanding in multipledirections in

a single iteration of the algorithm. This exploration also helps to generate multiple topo-

logically distinct paths from a start to a goal given the sameamount of computation time

for robots and thus helps to reduce replanning time when a newobstacle appears, inval-

idating paths in the environment. For proteins, we show thatour method is effective in

achieving more unfolded pathways compared to RRT. We also show that our hop limit

neighbor finder can significantly reduce running time while maintaining a similar number

of roadmap edges.

In the future, we plan to develop a method to automatically tunem based on the locality

of the vertex under expansion. We also plan to apply mRRG for more robots with complex

shapes and to scenarios with moving obstacles. We also plan to apply mRRG to more

complex proteins of larger size and to other types of proteinmovements such as transitions

between two conformations.

37

REFERENCES

[1] CGAL, Computational Geometry Algorithms Library, 1997. http://www.cgal.org.

[2] E. Alm and D. Baker. Prediction of protein-folding mechanisms from free-energy

landscapes derived from native structures.Proc. Natl. Acad. Sci. USA, 96(20):11305–

11310, 1999.

[3] N. M. Amato and G. Song. Using motion planning to study protein folding pathways.

J. Comput. Biol., 9(2):149–168, 2002. Special issue of Int. Conf. Comput. Molecular

Biology (RECOMB) 2001.

[4] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimen-

sions. InProc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 271–280, 1993.

[5] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal

algorithm for approximate nearest neighbor searching in fixed dimensions.Journal

of the ACM, 45(6):891–923, 1998.

[6] A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for motion

planning. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 632–637, 2002.

[7] D. Baker. A surprising simplicity to protein folding.Nature, 405:39–42, 2000.

[8] O. B. Bayazit, G. Song, and N. M. Amato. Enhancing randomized motion planners:

Exploring with haptic hints. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages

529–536, 2000.

[9] J. L. Bentley. Multidimensional binary search trees usedfor associative searching.

Commun. ACM, 18(9):509–517, September 1975.

38

[10] P. Bessiere, J. M. Ahuactzin, E. G. Talbi, and E. Mazer. The Ariadne’s clew algo-

rithm: Global planning with local methods. InProc. IEEE Int. Conf. Intel. Rob. Syst.

(IROS), volume 2, pages 1373–1380, 1993.

[11] C. Branden and J. Tooze.Introduction to Protein Structure. Garland Pub., New York,

2nd edition, 1999.

[12] J.D. Bryngelson, J.N. Onuchic, N.D. Socci, and P.G. Wolynes. Funnels, pathways,

and the energy landscape of protein folding: A synthesis.Protein Struct. Funct.

Genet, 21:167–195, 1995.

[13] H. S. Chan and K. A. Dill. Protein folding in the landscapeperspective: Chevron

plots and non-arrhenius kinetics.Proteins: Structure, Function, and Genetics,

30(1):2–33, 1998.

[14] D.G. Covell. Folding proteinα-carbon chains into compact forms by Monte Carlo

methods.Proteins: Struct. Funct. Genet., 14(4):409–420, 1992.

[15] V. Daggett and M. Levitt. Realistic simulation of naive-protein dynamics in solution

and beyond.Annu. Rev. Biophys. Biomol. Struct., 22:353–380, 1993.

[16] Y. Duan and P.A. Kollman. Pathways to a protein folding intermediate observed in a

1-microsecond simulation in aqueous solution.Science, 282:740–744, 1998.

[17] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree: A hierarchical structure for

rapid interference detection.Comput. Graph., 30:171–180, 1996. Proc. SIGGRAPH

’96.

[18] D. Hsu, J-C. Latombe, and R. Motwani. Path planning in expansive configuration

spaces. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2719–2726, 1997.

39

[19] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal

motion planning. InProc. of Robotics: Science and Systems, Zaragoza, Spain, June

2010.

[20] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces.IEEE Trans.

Robot. Automat., 12(4):566–580, August 1996.

[21] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe. Planningmotions with intentions.

In Proc. ACM SIGGRAPH, pages 395–408, 1995.

[22] A. Kolinski and J. Skolnick. Monte Carlo simulations of protein folding. Proteins

Struct. Funct. Genet., 18(3):338–352, 1994.

[23] J. J. Kuffner and S. M. LaValle. RRT-Connect: An Efficient Approach to Single-

Query Path Planning. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 995–

1001, 2000.

[24] J.-C. Latombe.Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,

1991.

[25] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and

prospects. InNew Directions in Algorithmic and Computational Robotics, pages

293–308. A. K. Peters, 2001. book contains the proceedings of the International

Workshop on the Algorithmic Foundations of Robotics (WAFR), Hanover, NH,

2000.

[26] M. Levitt. Protein folding by restrained energy minimization and molecular dynam-

ics. J. Mol. Biol., 170:723–764, 1983.

[27] M. Levitt and A. Warshel. Computer simulation of proteinfolding. Nature, 253:694–

698, 1975.

40

[28] R. Li and C. Woodward. The hydrogen exchange core and protein folding. Protein

Sci., 8(8):1571–1591, 1999.

[29] Jyh-Ming Lien, O. B. Bayazit, R.-T. Sowell, S. Rodriguez, and N. M. Amato. Shep-

herding behaviors. InProc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 4159–4164,

April 2004.

[30] T. Lozano-Ṕerez and M. A. Wesley. An algorithm for planning collision-free paths

among polyhedral obstacles.Communications of the ACM, 22(10):560–570, October

1979.

[31] E. Mazer, J. M. Ahuactzin, and P. Bessiere. The Ariadne’sclew algorithm. InJournal

of Artificial Robotics Research (JAIR), volume 9, pages 295–316, 1998.

[32] Troy McMahon, Sam Jacobs, Bryan Boyd, Lydia Tapia, and Nancy Amato. Eval-

uation of the k-closest neighbor selection strategy for prmconstruction. Technical

Report TR12-002, Texas A&M, College Station, 2011.

[33] Anthony Mittermaier and Lewis E. Kay. New tools providenew insights in NMR

studies of protein dynamics.Science, 312(5771):224–228, 2006.

[34] V. Muñoz, E. R. Henry, J. Hoferichter, and W. A. Eaton. A statistical mechanical

model forβ-hairpin kinetics.Proc. Natl. Acad. Sci. USA, 95:5872–5879, 1998.

[35] Shuvra Nath, Shawna Thomas, Chinwe Ekenna, and Nancy M. Amato. A multi-

directional rapidly exploring random graph (mrrg) for protein folding. InACM Con-

ference on Bioinformatics, Computational Biology and Biomedicine, Orlando,FL,

USA, October 2012.

[36] S. Nauli, B. Kuhlman, and D. Baker. Computer-based redesign of a protein folding

pathway.Nature Struct. Biol., 8(7):602–605, 2001.

41

[37] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki. Sampling-based

roadmap of trees for parallel motion planning.IEEE Trans. Robot. Automat., 2005.

[38] J. H. Reif. Complexity of the mover’s problem and generalizations. InProc. IEEE

Symp. Foundations of Computer Science (FOCS), pages 421–427, San Juan, Puerto

Rico, October 1979.

[39] Heinrich Roder, Kosuke Maki, and Hong Cheng. Early eventsin protein folding

explored by rapid mixing methods.Chem. Rev., 106:1836–1861, 2006.

[40] G.E. Schulz and R. H. Schirmer.Principles of Protein Structure. Springer-Verlag,

New York, 1979.

[41] G. Song.A Motion Planning Approach to Protein Folding. Ph.D. dissertation, Dept.

of Computer Science, Texas A&M University, December 2004.

[42] G. Song and N. M. Amato. A motion planning approach to folding: From paper

craft to protein structure prediction. Technical Report TR00-001, Department of

Computer Science, Texas A&M University, January 2000.

[43] G. Song and N. M. Amato. Using motion planning to study protein folding pathways.

In Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pages 287–296, 2001.

[44] M. J. Sternberg.Protein Structure Prediction. OIRL Press at Oxford University

Press, 1996.

[45] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato. Using motion

planning to study RNA folding kinetics.J. Comput. Biol., 12(6):862–881, 2005.

Special issue of Int. Conf. Comput. Molecular Biology (RECOMB) 2004.

[46] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.

Information Processing Letters, 40(6):175–179, 1991.

42

[47] Thomas E. Wales and John R. Engen. Hydrogen exchange massspectrometry for the

analysis of protein dynamics.Mass Spec. Rev., 25(1):158–170, 2006.

43

