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ABSTRACT 

 

Many mechanicstic models aimed at predicting tissue behavior attempt to 

connect constitutive factors (such as effects due to collagen or fibrin concentrations) 

with the overall tissue behavior. Such a link between constitutive and material behaviors 

would allow for a better understanding of the mechanobiology of diseased states and 

how one might return the tissue to a healthy state. Therefore, a literature search into 

present mechanistic models was performed and yielded a variety of models that were 

analyzed in order to determine their uniqueness, a requisite characteristic for this aim. It 

was found that many of these models did not make uniqueness a defining characteristic 

in their development and thus cannot be used for multiscale modeling (connecting 

constitutive behavior to material behavior).The literature search was then extended and 

narrowed  to specifically analyze mechanical models describing vascular wall behavior. 

Once again, it was found that uniqueness was lacking in these models. To develop a 

unique model for inflation strains, an inflation experiment utilizing a bladder, syringe, 

and a pressure sensor was conducted to provide pressure vs. volume data for a sheep 

aorta. The data was then used to develop a unique model for inflation strains in an aorta 

utilizing a constitutive framework developed by Dr. John Criscione. 
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1. INTRODUCTION  

 

 One of the main objectives of biomechanics is to develop mathematical models 

that fully represent and can predict tissue behavior when it is exposed to certain stresses 

or strains. Having read many articles presenting various versions of these models, it has 

become evident that not only is this representation sought, but also how microscale 

constituents such as collagen and fibrin fibers affect this overall behavior. Many models 

attempt to determine this relationship and account for the effects of such constituents in 

their strain energy functions. This link between constituent behavior and material 

behavior would allow for a better understanding of the mechanobiology of diseased 

states and means to return the body to its healthy state. The process by which the overall 

material behavior can be expressed in terms that are influenced by the microscale 

components of the tissue is termed multiscale modeling. Unfortunately, many of the 

models cannot fully characterize the behavior whether it is due to a subset of materials 

that cannot be represented or due to increasing effects of measurement error leading to 

indeterminability. With this in mind, I determined that a discussion on the features of 

mechanistic models that would allow for such an aim to be achieved was desperately 

needed. This thesis lays the groundwork for such a discussion by providing clear 

definitions for the scales of interest, analyses of several models on their applicability to 

multiscale modeling, and the presentation of a model developed from a constitutive 

approach that can allow for uniqueness and multiscale modeling. 
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2. INVESTIGATION INTO DETERMINABILITY 

 

2.1 Introduction 

When modeling any material, it should be evident that data fitting is a necessity. 

The more pertinent question for a specific application is: “is data fitting necessary AND 

sufficient?”  If the answer is yes, then any model that fits the data will be a great choice.  

For a simplified example of an application where data fitting is necessary and sufficient, 

consider the making of sundials. It is irrelevant whether the earth spins as it orbits the 

sun or if the sun is pulled by a chariot across the sky. With any model that fits 

observational data from a particular earthly location, a sun dial can be constructed. 

Likewise, if the designer of an arterial stent is only interested in the luminal forces 

needed to distend an artery, then any arterial model that fits distention data is acceptable.  

If data fitting was necessary and sufficient for all applications, then modeling would not 

require expertise—all a reviewer would need to do is consider how the model fits the 

data, and provided that results are presented appropriately, it does not take much skill to 

compare model results to experimental results. Alas, true applications of modeling (i.e., 

applications where modeling is necessary) are not so simple; data fitting alone is 

insufficient.  This is the case for multiscale modeling when a link between material 

behavior and material composition is sought. For such an endeavor, a model of material 

behavior must be unique and determinable. Simply fitting the data with a non-unique 

model is insufficient because a physical link is sought between constituent behavior and 

constitutive behavior and one cannot link definite constituents to indefinite constitutive 
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relations. The characteristics necessary for multiscale modeling are a focus of this paper; 

yet the results are applicable whenever material behavior is to be “determined” as 

opposed to “fit”. The later can be done with an “indeterminable” representation whereas 

the former cannot. 

 

2.2 Separation of the Scales of Interest 

There are many length and time scales of interest when considering modeling of 

biomedical phenomena. Therefore, when attempting to utilize a mechanical model to 

represent physical phenomena, it is useful to define which scales characterize the 

behavior being modeled (see Table 1). The nano-scale is defined as having primary 

characteristics at lengths of 10
-9

 m. Similarly, the micro-scale is defined as having 

primary characteristics of 10
-6

 m. These two scales, together, will make up what I will 

define as the level for defining the behavior of constituents. After looking into 

alternative definitions of the mesoscale, I offer one more suited for the purposes of 

multiscale modeling. I propose that the mesoscale be defined such that the region of 

interest is large enough to contain all constituents in suitable number to be averaged 

(often referred to as the representative volume element, RVE) but small enough to be 

independent of body geometry. The systemic scale is defined as having characteristics 

on the scale of organ systems and represents lengths that are multiples of the mesoscale. 

The macro-scale represents the length scale of the organism or body of interest. These 

larger length scales, systemic and macro, represent the behavior of the “body” as a 

whole (by body I may mean a material body or perhaps an entire organism). Beyond the 
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macro-scale, physical models tend to be n-Body problems (e.g. populations). Therefore, 

I will consider an appropriate triad of scales that represent behaviors of interest to 

multiscale modeling – the constituent scale (nano and micro scales), the material scale 

(mesoscale), and the body scale (systemic and macro scales). 

 

 

Table 1: Separation of Length Scales of Interest. Summary of the scales of interest to 

multiscale modeling 

 

At the core of this triad is the mesoscale, which is representative of the material 

behavior yet independent of body geometry.  

For illustration of these scales, consider a vessel with fluid flow through it (e.g. a 

blood vessel) that branches at a bifurcation into two, smaller vessels, as shown in Figure 

1. We can see that, when considering the whole bifurcation, the flow varies significantly 

– we can identify distinct directions of flow at different locations. Specifically, the flow 

varies with position or with geometry of the vessel. However, if we limit the 

neighborhood of interest to a small portion of the vessel (e.g. the introductory vessel or 

Scales Triad of Interest

Nano-scale

Micro-scale

Mesoscale Material scale / Tissue scale

Systemic scale

Macro-scale

Constituent scale

Body scale
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either of the bifurcations), we can see that the flow is fairly uniform over the area. This 

is similar to the mesoscale, or material behavior. The behavior is locally uniform even if 

globally heterogeneous. If we further reduce our neighborhood to a nearly molecular 

level, the molecular motion is highly degenerate and rarely in the direction of the bulk or 

average flow. This neighborhood is representative of the constituent scale—on the order 

of constituents that are combined to make material. Despite the fact that the behavior is 

different between the constituents (each of the individual fluid particles has vastly 

different motion), if we integrate the behavior of all of these constituents over a volume 

large enough to include molecules that span the range of possibilities, we get a 

representation of the local blood flow—i.e., the flow for a region large enough to include 

degeneracies of constituents yet small enough to avoid global heterogeneities.  

 

a)    b)    c)  

Figure 1: Graphical Representation of Length Scales of Interest. Flow of a fluid 

through a vessel with a bifurcation at a) the body scale, b) the mesoscale, and c) the 

constituent scale (representation of a molecular component of the fluid) 
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2.3 Variation and Uniformity 

In order to further clarify the concept of the mesoscale I offer the ideas of 

variation and uniformity. Variation is the relative change in behavior across a 

neighborhood of interest and its inverse is defined as uniformity. When we look at the 

entirety of the vessel, we see that there is a high degree of variation in the flow through 

the introductory vessels and bifurcation and, conversely, a low degree of uniformity. 

When we narrow the neighborhood of interest to that of the material scale, variation 

reaches a minimum and uniformity, a maximum – the flow appears to be entirely aimed 

in one, uniform direction. If we, once again, narrow the neighborhood to the particle 

level, we see that the degree of variation between the directions of flow of each of the 

constituents has increased substantially and the degree of uniformity has decreased.  

In essence, I have defined the mesoscale as the scale in which the uniformity of 

the behavior is greatest and the variation is smallest (See Figure 2). This level is the only 

scale at which the material behavior (constitutive behavior) can be uniquely defined 

because it is the only scale that is large enough that we can integrate over the 

degeneracies in constituent behavior yet small enough that it is independent of the body 

geometry or body scale heterogeneities. 
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Figure 2: Degeneracy Plot across Length Scales.  

 

2.4 Uniqueness and Completeness 

With this definition of the mesoscale, let us define “uniqueness” and 

“completeness” in the context of material modeling or constitutive modeling. Given a 

constitutive framework for representing material behavior, uniqueness is assured if the 

framework is invertible, or one-to-one. This means that for every possible set of 

parameters of the model, there is one behavior that is associated with it. Additionally, for 

every behavior that abides by material class restrictions, there is one set of parameters 

that represents it. Given a constitutive framework, completeness is assured if there is at 
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least one representation for every possible behavior that fits all assumptions made in 

developing the model. 

A common aspect of many mechanistic models is to incorporate micro- or 

nanoscale terms together with mesoscale terms—e.g., utilizing a fiber distribution 

function (micro scale term) together with a bulk isotropic response for the matrix (meso-

scale term). This method of formulating a model leads to a characteristic I call “mixed 

formulation” as the model mathematically mixes two or more scales, specifically having 

terms representing the constituents and the constitutive. Given the degeneracies at the 

constituent scale, if a model incorporates a separate constituent term, it is adding 

variation that should not be present if uniqueness is to be optimal at the mesoscale. In 

essence, the inclusion of constituents makes the determination of material behavior a 

multi-body problem — i.e. each constituent is a body and the tissue is composed of 

multiple bodies. Such complexity is surely necessary to determine molecular 

mechanisms for material behavior but such n-body complexities prevent the possibility 

of uniqueness in material behavior — a necessary condition for inverse solutions. 
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3. CRITICAL EVALUATION OF MECHANISTIC MODELS 

 

3.1 Literature Search and Analysis 

In order to determine current trends in mechanistic models and their potential for 

use in mesoscale modeling, several articles by different authors were evaluated. The 

main means of finding these papers was to search key terms including “constitutive, 

mechanistic, multiscale, model,” among others, into the Science Direct search feature. 

After finding multiple articles, additional papers were found by identifying additional 

models through references listed in the initial “seed” papers. 

From over forty articles found, seventeen were selected for further analysis (See 

Table 2). The selected papers were chosen for the wide applicability and potential for 

use amongst them as well as to account for the models developed by differing authors or 

for different applications. 

The articles, and the models contained within, were examined to determine the 

characteristics of the models, most especially in regards to uniqueness. The constitutive 

relations were categorized as: 

 Unique – for every behavior there is one representation and vice versa 

 Incomplete – cannot fully characterize all possible material behaviors that abide 

by material class assumptions 

 Ill-Conceived – choice of principal invariants magnifies measurement error 

unnecessarily or there is an infinite degeneracy due to the use of six strain 

measures for incompressible material (only 5 are independent). 
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 Mixed Formulation – makes the determination of material behavior a multi-body 

problem, and/or mixes the meso and micro scales such that the meso scale 

response cannot be determined. 

 

The method of discovering academic manuscripts for analysis is the same as that 

which is used to provide for a more specified analysis of arterial models. It will also be 

used to determine the definition of a representative volume element and how it compares 

to the definition of the mesoscale. 

 

3.2 Results and Discussion 

 

Table 2: List of Mechanistic Models with Characterizations. Lists a variety of 

mechanistic models, their uniqueness characteristics, and whether or not they can be 

used to represent mesoscale behavior for the purpose of multi-scale modeling. 

Balzani et al (2005) 4.2 Stored-energy function … : Mixed Formulation No

Criscione et al (2001) (6.5) Unique, Complete Yes

Criscione (2004) (7.1) Unique, Complete Yes

deBotton et al (2009) (12) Mixed Formulation, Ill-Conceived No

Driessen et al (2003) (1) Mixed Formulation, Incomplete No

Gasser et al (2002) (9) Mixed Formulation, (26) Mixed Formulation No

Hill et al (2012) (1) Mixed Formulation, (2) Ill-Conceived No

Holzapfel (2000) (2) Mixed Formulation, Incomplete No

Holzapfel et al (2001) (33) Incomplete, (37) Ill-Conceived, (57) Mixed Formulation No

Holzapfel, Ogden (2007) (4) Ill-Conceived, (5) Ill-Conceived, (6) Ill-Conceived No

Humphrey, Yin (1987) pg 569: Mixed Formulation No

Itskov, Aksel (2004) (68) Ill-Conceived No

Kroon, Holzapfel (2008) (3) Mixed Formulation No

Limbert (2011) (39) Incomplete, (49) Mixed Formulation No

Schroder, Neff (2002) (3.27) Mixed Formualtion, Ill-Conceived No

Stalhand et al (2010) (28) Mixed Formulation, (29) Ill-Conceived No

Zulliger et al (2003) 2.4 Strain energy functions … : Mixed Formulation No

Model Author (Year Published)
(Location of Mechanistic Model in Text) Characteristics 

Identified of the Model

Applicable to 

Mesoscale Modeling?
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Uniqueness, as discussed earlier, is assured only if the representation is one-to-

one with behavior. This characteristic is necessary for representations of mesoscale 

behavior for which further investigations of sub-scale mechanisms are sought. For 

instance, if the effect of collagen content on tendon behavior is sought, then such a link 

is impossible if a framework for representing “tendon behavior” itself is degenerate. It is 

ill-conceived if the framework permits an infinite number of representations for the same 

behavior—i.e., changes in representation can be arbitrary (or immaterial) and not related 

to collagen content for this example.   

Although many specific representations (i.e., particular forms of strain energy) 

are non-degenerate, most are, nevertheless, incomplete. Completeness was defined 

earlier as having at least one representation for every behavior that maintains all 

assumptions. Therefore, an incomplete model, for example, is one that uses too few 

principal invariants to fully characterize all possible material behaviors—i.e., the use of 

I1 and I4 to represent incompressible, transversely isotropic behavior when I1, I2, I4, and 

I5 are needed for completeness. Incomplete models are a restricted formulation of the 

material behavior and cannot generally characterize the behavior at the mesoscale. In 

short, when using incomplete models, a large number of materials that satisfy 

assumptions will be excluded from characterization. 

With regard to non-uniqueness, or degeneracy in representation, two types are 

identified herein. Mixed formulation means two scales are mixed together in the 

representation. Ill-conceived means that the strain parameters (i.e., principal invariants 

or strain components) that are utilized to express the constitutive relation, in turn make 
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the representation degenerate (or too nearly so such that invertability is impossible in 

practice due to magnification of measurement error).  

The first of these is the most common for the models listed: the utilization of 

mico-scale parameters in a meso-scale model. These models represent their strain energy 

function as a sum of the physical behaviors from two or more scales. Because individual 

elements, like fibers, are on the constituent scale or micro-scale, a mixed formulation is 

not a mesoscale model per se. A mixed scale model may fit data; however, degeneracy is 

unavoidable when summing up micro-scale elements, as there are an infinity of micro-

scale combinations with the same mesoscale summation. More importantly, a micro-

scale integration for representing a mesoscale model simply states that yellow + blue = 

yellow + blue and loses the concept of what it means to be “green” (i.e. yellow + blue = 

green). The point here is that the behavior at the material scale is a different entity than 

the behavior at the constituent scale and that representing a model with a term describing 

constituent behavior does not account or provide for this difference and mesoscale 

behavior remains wanting (see Criscione 2008, 2011).  

The second characteristic that makes a model inapplicable to multiscale 

modeling is a model that is ill-conceived for inverse problems. The most common reason 

that a model is ill-conceived is due to a high co-alignment between the principal 

invariants used to develop the model. This co-alignment leads to the magnification of 

measurement error to very large degrees. The co-alignment ratio RC of two tensors, as 

defined in Criscione 2002, 2003 (see covariance ratio), is the absolute value of their 

inner product divided by their magnitude. Mathematically it is represented as: 



 

13 

 

 

    
           

|  ||  |
     (3.2.1) 

For instance, if we let the principal invariants I1 and I2 be such that  
   

  
 is how I1 depends 

on F and  
   

  
 is how I2 depends on F, these principal invariants are highly co-aligned. 

Regarding the equation, it can be seen that the highest co-alignment will occur when the 

invariant responses are collinear whereas the least co-alignment (i.e., zero) is when they 

are mutually orthogonal. Perfect co-alignment of principle invariants makes a model 

non-unique; however, the more co-aligned the principal invariants are, the greater the 

magnification of measurement error. This error will propagate through all subsequent 

calculations and the error will be magnified by a factor of (1 — RC (A1, A2)
2
)
-1/2

 

(Criscione 2003). This increased error effectively makes the model indeterminable. In 

this sense, although models using principle invariants I1 and I2 can be seen as unique, the 

measurement error makes them practically non-unique—i.e., large variations in model 

parameters are associated with small, unmeasureable changes in behavior. Lastly, the 

popular “Fung elastic” model is one that is within a class of functions that are non-

unique. Any function of the form W(E11, E22, E33, E12, E23, E31) for incompressible 

models is non-unique because the six strain components cannot be varied independently 

of each other, making them perfectly co-aligned. Consult Criscione (2002, 2003, 2008) 

for a more detailed discussion of co-alignment. 

Determining the constitutive behavior of biological tissues is experimentally 

challenging, and just fitting test data with a model is a significant achievement that has 
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great utility for many applications. Nevertheless, when a link is sought between meso-

scale (tissue) behavior and micro-scale (cells, fibers, etc) behavior, fitting data is 

insufficient because tissue behavior needs to be determinable. For data fitting, any 

forward solution can be used, whereas for behavior to be determinable, uniqueness needs 

to be established a priori. Except for the works by Criscione, which make 

determinability a defining aspect of model development, all other representations found 

were unsuitable for multiscale modeling because they were ill-conceived, incomplete, 

and / or a mixture of meso and micro scale parameters. 
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4. CRITICAL REVIEW SPECIFIED TO ARTERIAL MODELS 

 

4.1 Introduction 

In order to clearly define the means by which the models included herein are 

characterized (i.e. Incomplete, Ill-Conceived, Mixed-Formulation, etc.), I selected an 

additional 5 models more specifically applied to vasculature to characterize. The models 

were found by the same manner as those of Section 3 but were more critically selected 

for their approach to vasculature. These models and their characterizations can be found 

in Table 3. I wanted to make fully clear the process by which these models were labeled 

and so, for each of the 5 models, I give a brief description of the model, present the 

model in its entirety, and then detail the analysis of the model leading to its 

characterization. Once again, it should be clarified that all of the models discussed can 

fit the data used to develop them and that utilizing the model to this end is a valid and 

substantial aim. However, with regards to applying the model to multiscale modeling, 

none of the models presented below have the requisite characteristics of uniqueness and 

completeness. 
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Table 3: List of Arterial Mechanics Models with Characterizations. Lists several 

mechanistic models specifically tailored for vascular wall mechanics, their uniqueness 

characteristics, and whether or not they can be applied to multiscale modeling. 

 

 

4.2 Delfino et al. (1997) 

 

In a paper entitled “Residual strain effects on the stress field in a thick wall finite 

element model of the human carotid bifurcation,” Delfino et al. wish to add the effects of 

residual strain to a finite element model of a bifurcation in a carotid artery. In order to do 

this, they present a strain energy function that characterizes an artery assumed to be a 

thick-walled tube made of incompressible, isotropic, and homogeneous material. The 

strain energy function they use is given by: 

 

   
 

 
[   (

 

 
      )   ]   (4.2) 

 

 

where I1 is the first principal invariant of the strain tensor and a and b are material 

constants. The first principal invariant, I1, is the trace of the strain tensor, σ and 

represents volumetric strain in the artery. However, simply defining the strain energy in 

terms of I1 eliminates a large number of material behaviors from consideration. In order 

Delfino et al (1997) (1): Incomplete No

Holzapfel, Gasser, Stadler (2002) (15): Incomplete No

Horgan, Saccomandi (2003)
(77-78): Mixed Formulation, Overexpressed/Incomplete, 

Ill-Conceived
No

Pena et al. (2010) (3-7): Mixed Formulation, Incomplete No

Zulliger et al. (2004) (27): Mixed Formulation, Incomplete No

Model Author (Year Published)
(Location of Mechanistic Model in Text)                                                 

Characteristics Identified of the Model

Applicable to 

Mesoscale Modeling?



 

17 

 

to fully characterize all potential behaviors and materials, additional invariants are 

needed. Therefore, this strain energy function is considered incomplete as it cannot 

provide a one-to-one relationship between representation and behavior; there are 

materials that satisfy all assumptions but are excluded from characterization due to too 

few principal invariants. This incompleteness also eliminates the model from 

consideration for multiscale modeling. 

 

 

4.3 Holzapfel, Gasser, Stadler (2002) 

 

The next model considered was presented by Holzapfel, Gasser, and Stadler in a 

2002 paper: “A structural model for the viscoelastic behavior of arterial walls: 

Continuum formulation and finite element analysis.” The authors make the assumptions 

that the artery is an incompressible, elastic, two-layer fiber-reinforced composite. They 

consider the two layers to be modeled the media, M, and the adventitia, A. They propose 

particularizations of the strain energy function for each of these two layers, which only 

differ in the set of material parameters used. The strain energy functions for the media 

and adventitia respectively are: 

 

    
  

 
        

   

    
∑ {   [           ]   }        (4.3.1) 

 

    
  

 
        

   

    
∑ {   [           ]   }        (4.3.2) 

 

 

Where cM, k1M, k2M and cA, k1A, k2A are the material parameters associated with the 

media and adventitia. Separating the strain energy function in this way, one for each of 
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the layers, does not preclude it from uniqueness; however, its lack of principal invariants 

effectively does. In each of these particular functions, only I1, I4, and I6 are considered 

where I1 characterizes the volumetric stress and I4 and I6 are defined as the squares of the 

stretches in the two families of fibers. Once again, as in the Delfino paper, this is too few 

invariants to fully characterize all possible material behaviors given the assumptions. 

Therefore this model is also incomplete and, subsequently, not applicable to multiscale 

modeling. 

 

4.4 Horgan, Saccomandi (2003) 

 

In the 2003 paper “A description of arterial wall mechanics using limiting chain 

extensibility constitutive models,” Horgan and Saccomandi present a model that is an 

adaptation of a model proposed by Gent in 1996. The model they present is to be used to 

characterize an anisotropic, incompressible, elastic solid with two preferred directions 

which could be due to fiber reinforcement. The adapted model first breaks the strain 

energy function in the following manner: 

 

                                       (4.4.1) 

 

 

where I1 and I4-8 are the first and fourth through eighth principal invariants respectively 

and I is an invariant to describe the relationship between the two preferred directions. 

Breaking up the strain energy function in this manner highlights several non-unique 

characteristics. The first is that the separation of isotropic and anisotropic behaviors 

necessitates a mixing of meso and micro scales in order to characterize mesoscale 

behavior. Therefore, this model is characterized as “mixed formulation.” Additionally, a 
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set of 7 invariants are used when, for this behavior, only 5 non-co-aligned invariants are 

needed to fully characterize the behavior. Therefore, the function is overexpressed and 

leads to several representations for a single behavior, indicating that the function is not 

one-to-one. The last issue with this particular separation is that the anisotropic term is a 

function of I4, I5, I6, and I7. Due to the nature of these principal invariants, I4 and I5 are 

highly co-aligned, as are I6 and I7. Therefore, although not explicitly making the 

formulation incomplete, having such co-aligned invariants will magnify errors that will 

propagate through all subsequent calculations making the model effectively 

indeterminable. Therefore this particular separation is also ill-conceived due to the poor 

choice of principal invariants. 

The paper goes on to claim that a substitution for the first term in (4.4.1) and a 

reduction in the number of principal invariants considered would yield a strain energy 

function of the form: 
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            (  
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       }  (4.4.2) 

 

 

where μ is the shear modulus, Jm0 and Jm1 are the constant limiting value for (I1-3) for 

each of the fiber directions, γ1 and γ2 are material constants, and f
(1)

 and f
(2)

 are the 

functions characterizing the additional reinforcement in each of the fibers’ directions. 

This expression of the strain energy funciton suffers from the opposite issue as (4.4.1) in 

that this representation is lacking in principal invariants and is therefore under expressed. 

Once again, there are materials that fit the assumptions but will not have their behavior 
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represented by the function. Using just I, I1, I4, and I6 when 5 invariants are needed leads 

to incompleteness and prevents the model from application to multiscale modeling. 

 

4.5 Pena et al. (2010) 

 

The model proposed by Pena et al. in “A constitutive formulation of vascular 

tissue mechanics including viscoelasticity and softening behavior” published in 2010 

considers an artery as an anisotropic, incompressible, elastic tube with fibers along two 

preferential directions. The authors first separate the volumetric and isochoric terms of 

the strain energy function. This separation does not make the model non-unique; 

however, further separating the isochoric term into isotropic and anisotropic terms does, 

as discussed earlier, accounting for the “mixed formulation” characterization. Their 

model is then broken up further into several different terms as shown below: 
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where J is the determinant of the deformation gradient tensor, Dm is a variable 

expressing damage associated with I1, Df1 and Df2 are the damage variables associated 

with the two fibers, Qm is a tensor expressing the elastic response of the material 

associated with I1, and Qf1 and Qf2 are stress tensor expressing the direction elastic 
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response associated with the fiber directions and the related invariants, I4 and I6 

respectively. Additionally, 
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where μ is a stress-like constant, k1 and k3 are stress-valued constants, and k2 and k4 are 

dimensionless constants. Putting this all together shows that the strain energy function 

ends up being solely in terms of I1, I4, and I6 thereby making the formulation incomplete 

for the same reasons as many of the other models presented herein. 

 

4.6 Zulliger et al. (2004) 

 

The final model to be considered is one presented by Zulliger et al. in “A strain 

energy function for arteries accounting for wall composition and structure,” published in 

2004. For this model, they assume the artery to be elastic, incompressible, and double 

fiber-reinforced (collagen and elastin). The authors, like several of the others already 

presented, separate the strain energy function in to isotropic and anisotropic terms. 

Separating the strain energy function into these components, as with the others, leads to 

the “mixed formulation” characterization for the formulation and its non-uniqueness. 

They then characterize each of separated terms with functions relating that component of 

the strain energy function to collagen and elastin fractions. The final model is then 

summed to be: 
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where felast and fcoll are the fractions of elastin and collagen, respectively, Ψelast and Ψcoll 

are the strain energy functions representing the mechanical properties of elastin and 

collagen, respectively, I1 is the trace of the Cauchy-Green deformation tensor, C, I4 is the 

principal invariant characterizing the first fiber’s preferential direction, and I4’ 

characterizes the second fiber’s preferential direction (often seen as I6). It should be 

readily apparent by now that, in addition to its “mixed formulation” characterization, this 

model is incomplete due to a lack of principal invariants. The model is only in terms of 

I1, I4, and I6 and is, therefore, incomplete and cannot be used for multiscale modeling. 

 

4.7 Conclusion 

 

 Providing an in-depth analysis of the models and the reasons behind the 

characterizations determined for each allows for a better understanding of some of the 

features of mechanistic models that make them inapplicable to multiscale modeling. 

Therefore, future models, if a potential aim might be an application to multiscale 

modeling, might take the features into account in the development of the models. It is 

also worth noting that for many of the models utilizing the usual set of principal 

invariants (I1-7), if the models were determined to be complete (i.e. they utilize the 

necessary 5 invariants to characterize incompressible material behavior) the likelihood 

that the models would then be ill-conceived is high due to the high degree of co-

alignment between many of the invariants. This would dramatically increase the effects 
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of measurement error to the point that the model would effectively be indeterminable. 

Therefore, the strain energy function needs to be established with a better set of 

invariants to minimize the co-alignment between, like those used by Criscione (2001, 

2004). 
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5. MESOSCALE AND THE REPRESENTATIVE VOLUME ELEMENT 

 

5.1 Defining the Representative Volume Element 

During the search for a definition of the mesoscale that was well-suited for 

multiscale modeling, I came across the term representative volume element (or RVE) 

used commonly in biomaterials. Not finding a definition for the mesoscale well-suited 

for the aim of multiscale modeling, an alternative definition was provided herein. 

However, due to their similarity, it would be helpful to expound upon how these terms 

compare. 

The first expression of representative volume element that I was able to find was 

in a 1963 paper by Hill (Hill 1963). In this paper, he stated that “this phrase will be used 

when referring to a sample that (a) is structurally entirely typical of the whole mixture on 

average, and (b) contains a sufficient number of inclusions for the apparent overall 

moduli to be effectively independent of the surface values of traction and displacement, 

so long as these values are macroscopically uniform.” The first part of this definition is a 

statement concerning the statistics of the material and the selected volume—that the 

selected volume must contain enough of the composite’s microheterogeneities (i.e. 

grains, inclusions, voids, cracks, fibers, etc.) to be statistically representative of the 

composite as a whole. The second part of the definition states that the RVE must be 

wholly independent of the forces applied to the surface of the composite. This second 

aspect necessitates that rigorous boundary conditions be applied to the selected volume 

so that its behavior best simulates the actual deformation within the composite. 
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 Depending on which assumptions are made, varying values of material 

parameters may be attained for the same representative sample. For instance, if strain 

were assumed to be constant throughout the composite this would lead to a Voigt 

estimate of the parameter (as Voigt first proposed the assumption). Alternatively, if 

stress were assumed to be uniform throughout the composite, the parameter would be 

estimated by a Reuss estimate. These estimates represent the upper and lower bounds, 

respectively, of the material parameters for the selected volume (Hill 1963). These 

material parameters are dependent on constituent parameters like volume fraction, size, 

and distance between constituents all of which are statistically represented by the 

volume selected as the RVE. Because all of these factors are volumetrically dependent, 

the moduli and behavior of the composite can  then be found by summing across all the 

RVE’s contained within the composite. 

However, there are two other well-known and accepted definitions for the RVE, 

one by Drugan and Willis and the other by Kanit et al. Drugan and Willis state that the 

Hill interpretation of the RVE is qualitative in its approach and that the RVE must be 

chosen “sufficiently large” compared to the size of constituents in order to be 

statistically representative of all of the composite’s microheterogeneities and therefore, 

to be valid. They therefore propose that the RVE be “the smallest material volume of the 

composite for which the usual spatially constant overall modulus macroscopic 

constitutive representation is a sufficiently accurate model to represent mean constitutive 

response” (Drugan and Willis 1996). This varies from Hill’s definition as Hill’s aims to 

determine the parameters of the composite from those of a selected statistically 
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representative volume. Drugan and Willis’, however, aims to determine the smallest 

volume at which the material parameters match, to a sufficient degree, those of the 

whole composite. This definition for the RVE has a significantly differing aim from both 

Hill’s definition and the definition for the mesoscale described in this paper and, thus, 

this will be the last mention of it herein. Kanit et al. state that this definition does not 

take into account statistical variations of the material parameters across finite domains. 

They, therefore, offer another definition: that “the RVE must ensure a given accuracy of 

the estimated property obtained by spatial averaging of the stress, strain, or the energy 

fields in a given domain V.” They go on to say that if smaller volumes are considered, 

averages must be taken over several values in order to get the same accuracy, if bias is 

not introduced by edge effects due to boundary conditions. Their definition, then, aims 

to take the variations of material parameters into account and the size of the RVE then 

depends on the particular property being investigated. 

 

5.2 Comparing RVE and the Mesoscale 

Now that a detailed description of RVE has been provided, I can compare this 

concept with that of the mesoscale provided in this paper. The definition for the 

mesoscale in this paper takes some aspects of Hill’s definition for the RVE and builds 

upon them. The primary similarity is that the for both terms, the volume of interest, 

termed neighborhood for the mesoscale, must be statistically representative in that they 

must contain all constituents and in appropriate number that they are wholly 

characteristic of the entire body.  This allows the averaging across the neighborhoods to 
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determine the overall body behavior. Comparing to Kanit et al.’s definition of the RVE, 

the mesoscale also takes into account the variations in material parameters as it is 

characterized by a minimization in the variation within the neighborhood of interest. The 

mesoscale, then, encompasses certain characteristics of both Hill and Kanit et al.’s 

definitions for the RVE. However, the RVE’s size is determined by restrictive boundary 

conditions and assumptions whereas the mesoscale’s size is determined by minimizing 

the variation and maximizing the uniformity of the area of interest.  

Another difference between the definitions for the RVE and the mesoscale is that 

the RVE’s across the composite are considered identical and will therefore exhibit 

identical stress and strain fields (Sun and Vaidya 1996). Alternatively, the mesoscale 

neighborhoods, although having a minimized variation within, may vary from each other 

according to the body geometry of the macroscale.  

A last point must be made here as it concerns a definition for the mesoscale 

differing from that presented earlier and intimately related to the RVE. Ostoja-

Starzewski, in a 2002 paper, denotes the scale of the microstructures as d, the scale of 

the macroscopic body as Lmacro, and L as some scale of the material domain, large 

enough compared to the microscale so that it is independent of body geometry. In order 

to separate the scales of interest, he defines a term, δ, as L/d and then separates the scales 

in the following manner: δ< ∞ is considered the mesoscale, δ→∞ is considered the 

macroscale, and δ≈1 is considered the microscale (Ostaja-Starzewski, 2002). This 

characterization of the scales of interest is very different from that provided earlier. The 

mesoscale defined in this paper ensures a statistical representation of the material body 
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and that variation within is at a minimum. Contrasted, the separation of scales provided 

by Ostoja-Starzewski does not take these factors into consideration, nor does it account 

for the variation in material parameters. For these reasons, the separation of scales 

defined  in Section 2 is more suited for multiscale modeling than that provided by 

Ostaja-Starzewski. 

Therefore, although the terms for the mesoscale and representative volume 

element are similar, there are some clear differences. The differences outlined in this 

section are evidence that a new definition for the mesoscale, tailored for multiscale 

modeling, was needed. Some elements of the RVE, which is mostly used in biomaterials, 

are similar to those of the mesoscale defined herein. However, the mesoscale builds on 

many of these elements and makes it well-suited for multiscale modeling. 
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6. ENERGY FUNCTION FIT TO SHEEP AORT INFLATION DATA 

 

6.1 Method of Data Collection 

I was given two lengths of sheep aorta to be used for mechanical testing and 

analysis. The aortas were suspended in a phosphate buffered solution (PBS) and kept 

cool in a refrigerator. I cut 5 shortened lengths from the aortas and stretched their axial 

length to approximately 110% of their original lengths. This was done by suturing 

toothpicks along the length of the aorta but the sutures were separated by a length 10% 

longer than that of the aorta, thereby stretching it. This provided the aorta with axial 

stretch and strain characteristics analogous to the behavior that would be seen in a 

functioning aorta. Stretching the aorta in this manner allows a focus on how radial 

stretch affects the behavior of the aorta in vivo. 

Using a hand-made bladder apparatus with a pressure sensor and a means of 

filling the bladder, the original volume was found by expanding the bladder inside the 

aorta by injecting water until the pressure was non-zero. The volume of the bladder at 

the point at which the pressure became non-zero was logged as the original volume. 1mL 

boluses of water were then injected steadily into the bladder and the pressure and 

volume were recorded. The bladder apparatus was used so that it was not necessary for 

the vertebrals coming off the aorta to be sutured closed, the bladder applied the pressure 

to the interior of the aorta without exposing the aorta, itself, to any fluid. The bladder 

was made to be larger in radius than the aorta when fully expanded in order to ensure 

that it would not bear any of the load due to the its inflation. Therefore, it was assured 
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that the pressure read was due solely to the wall of the aorta. The pressure data from the 

pressure sensor was read and interpreted by a Labview program which then established a 

plot for Pressure vs. Time. The point at which the pressure plateaued post bolus 

injection, the steady-state pressure, was logged as the pressure for that particular volume. 

In this way, the volume was steadily increased and the corresponding pressures were 

recorded. The volume was increased until the pressure within the aorta approached 

140mm Hg at which point the test was ended to protect the aorta for future testing. This 

sequence was performed three times for each aorta. The pressure/volume data points for 

all tests were then used collectively for subsequent calculations. 

 

6.2 Constitutive Framework 

The constitutive framework used to develop the model was that presented by 

Criscione in 2004 (Criscione 2004). The six principal invariants used, as opposed to the 

more commonly used I1-7, were Criscione’s stretch-like parameters γ1-6. F is defined as 

the deformation gradient and R, Q, and Z are defined as unit vectors corresponding to 

the radial, circumferential, and axial directions of a cylindrical coordinate system in a 

strain-free state, respectively. Similarly, r, q, and z represent the radial, circumferential, 

and axial directions in the current, or strained, state. With these terms defined, the six 

scalar strain attributes are: 

         ,          
 

 
       ,         ,   

         ,              ,              (6.2.1)1-6 
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where:   

         ,                  
   

      .  (6.2.2)1-2 

 

φZR is the ratio of Z displacement increment with R increment, φQZ is the ratio of hoop 

displacement increment with Z increment, and φQR is the ratio of hoop displacement 

increment with R increment. Each of these six strain attributes has a physical 

interpretation and each is associated with a particular type of deformation. By carefully 

applying strains to a straight axis-symmetric tube, one can produce deformations in 

which just one of the six attributes is non-zero, providing useful physical interpretations. 

1. γ1 is associated with dilatation strain because for a pure dilatation, the other 

attributes are zero whereas γ1 will always be ln(J). 

2. γ2 is associated with distorted, axial strain. When exposed to uniaxial, isochoric 

stretch of λz in the Z direction, the other attributes are zero whereas γ2 is ln(λz
3/2

). 

3. γ3 is associated with luminal inflation because in this instance the hoop direction 

increases but the wall thins. If the hoop direction increases by the stretch ratio λQ 

then the radial direction will thin by λQ
-1

 and the other attributes will be zero 

whereas γ3 will be ln(λQ
2
). 

4. γ4 is associated with axial or telescopic shear – the inner wall is displaced axially 

relative to the outer wall. For this type of deformation, all other attributes will be 

zero but γ4 will equal φQR. 

5. γ5 is associated with torsion of the tube. For this deformation, all other attributes 

will be zero but γ5 will equal to φQZ. 
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6. γ6 is associated with circumferential shear – the inner wall is rotated relative to 

the outer wall. In this case, all other attributes will be zero whereas γ6 will equal 

φQR. 

Please consult Criscione (2004) for more information regarding these attributes. 

Utilizing these attributes, as opposed to the principal invariants I1-7, allows one to 

develop a model that has a one-to-one relationship between them and the components of 

the Right Cauchy-Green deformation tensor. The reason for this is that the model will be 

characterized in terms of six attributes that can be individually varied allowing for a 

complete characterization of the behavior. Additionally, the attributes listed have very 

low co-alignment measures and are mostly orthogonal (14 out of the 15 inner products 

vanish). 

For the purposes of modeling the data collected, the aorta is considered a 

hyperelastic, incompressible, homogeneous tube. Due to these assumptions, γ1 = 0, as is 

the case for all incompressible materials, leaving 5 strain attributes to characterize the 

behavior of the aorta. Additionally, because the only strain applied to the aorta was that 

of inflation, neither axial or circumferential shears nor any torsion were applied, all of 

the attributes listed in (6.2.1)4-6 are zero. Therefore, the dependence of the strain energy 

function on γ4-6 cannot be determined from this test as the testing is focused only on 

determining the dependence on the inflation parameter, γ3. The hoop stretch, λQ, is 

dependent only on the radius and is represented as λQ(R) and the axial stretch is 

represented simply by λZ. The attributes for this testing procedure are therefore: 



 

33 

 

    ,              
    ,                  

            ,       

    ,          ,               .           (6.2.3)1-6 

Because the aorta was pre-stressed in the Z direction to in vivo levels and was not 

stretched further in the testing of the aorta, the length, l, of the vessel during testing is 

equal to the length, L, prior to inflation. Therefore, the ratio of these two parameters, λZ , 

is equal to one. With λZ known, γ2 is be found to be zero. In this way, the only part of W 

or W(0, γ3, 0, 0, 0, 0), the strain energy function, that can be determined from this test is 

that of γ3, as desired. 

Because the material is considered incompressible, the volume of the aorta wall 

remains constant and therefore: 

 

               →   (      
 )           

    (6.2.4) 

 

where the lowercase letters represent the current configuration (the stressed state) and 

the uppercase letters represent the reference configuration (original state). R and r are the 

radial length to the same, arbitrary point in the wall but in the reference and current 

configurations respectively and L is the length of the vessel. It can be shown that (6.2.4) 

can be manipulated to become (6.2.5), the reason for which will is to ease future 

substitutions. 
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The hoop stretch, λQ(R) = r/R can then be substituted into (6.2.5) to give: 

     
    [       

   ] (
   

 
)
 
    (6.2.6) 

 

a change of variables is useful here wherein β(R) = λZλQ
2
(R) - 1 where λz = 1. Therefore, 

β(R) = λQ
2
(R) – 1 is substituted into (5.2.6) to give: 

 

           (
   

 
)
 

      (6.2.7) 

 

With this change of variable, W(0, 0, γ3, 0, 0, 0) can be expressed as w(β), where            

β = exp(γ3) – 1. From this expression, it follows that powers of β are related to powers of 

βin by: 

      
 
(
   

 
)
  

      (6.2.8) 

 

which becomes useful when we wish to express δw/δβ as a power series: 

  

  
 ∑     

 
          (6.2.9) 

 

6.3 Results 

Using the original volume, the volume in the stressed state, and the equation 

established for β, a plot of Pressure vs. Beta could be produced for each aorta tested. 

Then, the power series: 

  ∑      
   

 
         (6.3.1) 

can be estimated by fitting a polynomial to the plot. A polynomial fit was chosen 

because it is a reasonable estimation for the power series listed above and the only 
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problem that is invertible, a necessary characteristic for future calculations. A fifth order 

polynomial fit was specifically chosen because such a fit would minimize measurement 

error while still ensuring a best fit. The plots of the fifth order polynomial fits for each of 

the aortas also did not systematically deviate from the data, indicating the quality of the 

fit. The polynomial fit was forced through the origin (0,0) because when β=0 the 

pressure should also be zero as this represents the original volume. The Pressure vs. Beta 

plots, along with the fifth order polynomial fits and correlation coefficients can be seen 

in Figure 3. 

Utilizing the polynomial fit, Pi from (6.3.1) can be found for each of the five 

terms. When Pi is known, the corresponding value for Bi in (6.2.9) can be found by 

inverting: 

   {

     (
    

   
)                        

  

 
((

    

   
)
  
  )               

    (6.3.2) 

 

The values for Pi and the calculated Bi for each of the five terms and each of the 

five aortas, in addition to the average Bi are shown in Table 4. 
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Figure 3: Pressure vs. Beta for Sheep Aortas Tested in Inflation. Fifth order 

polynomial fit and correlation coefficient are shown as well. 
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Figure 3 Continued. 

 

 

Table 4: Pi and Bi for Tested Sheep Aortas. Pi and Bi for each of the five terms and 

each of the five aortas tested as well as the average Bi for each term are shown. 

Average

i Pi Bi Pi Bi Pi Bi Pi Bi Pi Bi Bi

1 15.16 13.52 33.78 25.54 56.71 47.27 51.81 43.63 71.59 61.52 38.30

2 -21.01 -12.01 -16.98 -7.73 -76.83 -36.05 -30.77 -14.65 -56.53 -27.69 -19.62

3 58.13 20.41 21.00 5.47 75.81 20.54 25.52 7.05 40.21 11.53 13.00

4 -29.93 -6.22 -9.70 -1.38 -29.58 -4.43 -8.25 -1.27 -12.69 -2.04 -3.07

5 4.95 0.59 1.58 0.12 4.11 0.33 0.89 0.07 1.48 0.13 0.25

Aorta 1 Aorta 2 Aorta 3 Aorta 4 Aorta 5
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Using the values shown in Table 4 and equation (6.2.9), an approximation for 

δw/δβ can be found for each aorta. These approximations can be seen graphically in 

Figure 4. However, for the sake of space I will only present the equation for the 

averaged approximation across all five aortas here: 

 
  

  
                                       .  (6.3.3) 

 

 

Figure 4: δw/δBeta vs Beta. 

 

 Analyzing Figure 4, one can make the determination that the behavior for Aorta 

1 looks markedly different from the others shown. There are potential factors that could 

be the cause of such differing behavior. The first is that the elasticity of Aorta 1 could be 

greater over the range when compared to the other aortas. To test this hypothesis, the 
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physiologic pressure range of 80mmHg – 120 mmHg was specifically considered. The 

data representing this range of pressures was plotted and linearly fit for each aorta to 

give an estimation for the comparable elasticity. This can be seen in Figure 5.  

 

 

Figure 5: Pressure vs Beta Fit for 80mmHg – 120mmHg Range. 

 

The data seems to support this hypothesis as it can be seen that the linear fit for 

Pressure vs Beta for Aorta 1 is noticeably higher than for any of the other aortas. The 

fact that it was the first segment cut from its stretch of aorta means that, for the stretch of 

aorta, it could be either the most proximal or the most distal sample (the direction was 

not accounted for in the removal of the aortas). Nelson et al. (Nelson et al. 2011) present 
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data that indicates that the proximal ends of aortas are typically stiffer and more elastic 

than distal aortas. This seems to support the hypothesis that Aorta 1 was likely the most 

proximal section as it has been shown to be more elastic than the other samples. This 

higher elasticity could be the reason for its differing behavior. The other possible 

explanation is that Aorta 1 was the only aorta tested on that particular date whereas 

Aortas 2-5 were each tested at a later time. This could indicate a relative decay in the 

samples over the time period or a potential difference in testing procedure or 

environment (although attempts were made to prevent this). 

In any case, a representation for the strain energy function for inflation in terms 

of γ3 is sought. Using the chain rule to relate W(0, 0, γ3, 0, 0, 0) to w(β), one can show 

that: 

 
  

   
 

  

  
          .       (6.3.4) 

 

Then, substituting each of the 
  

  
  representations (i.e. 6.3.3) into (6.3.4), we are able to 

find how W depends on γ3. Again, for the sake of space, only the average representation 

across all 5 aortas is shown here: 

 
  

   
 (                                    )          (6.3.5) 

 

where β = λQ
2
-1 = exp(γ3)-1, γ3 = ln(λQ

2
), and λQ is a stretch ratio describing the 

deformation in the hoop direction, and its inverse represents the thinning of the wall in 

the radial direction. However, the representations for 
  

   
 for each of the five aortas can be 
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easily found from Table 4 and equations (6.3.1) and (6.3.4) and are shown, graphically, in Figure 

6. 

 

Figure 6: δW/δGamma3 vs Gamma3. 

 

6.4 Concluding Remarks 

It should be pointed out that (6.3.5), for inflation strains on hyperelastic, 

incompressible, homogeneous tubes, is both unique and complete. Unlike many of the 

other models presented herein, rather than completely neglecting particular principal 

invariants, I found them to be zero and therefore identified that they would have no 

effect on the strain energy function under these conditions. Therefore, it was reasonable 
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to represent the strain energy function as W(γ3). However, the model does not represent 

responses of the aortas to any other types of strain (i.e. shear). For the dependency of the 

strain energy function under other conditions, additional experiments must be conducted 

and additional models developed. This is a major benefit of the use of principal 

invariants γ1-6, as they can be varied independently of each other. Therefore, by similar 

methods as I found the response under inflation strains, the response to other types of 

strains can be found utilizing the Criscione framework. In this way, the response to 

every type of strain and combinations of them can be found and unique and complete 

models can be developed for each. Because (6.3.5) is both complete and unique for the 

conditions of interest, it is applicable to multiscale modeling and applying it in this 

manner is advocated by the author for future work. Additionally, experiments to test the 

responses to other types of strains in terms of the other γ principal invariants should be 

devised and conducted to enable the characterization of these behaviors.  
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7. CONCLUSION 

 

It is important to recognize that, although a great deal of effort and research has 

gone into this thesis, it is but the beginning to the discussion on multiscale modeling that 

needs to continue in the future. If a truly representative model is sought, one that can 

represent the tissue behavior across several length scales including the constituent and 

material scales, uniqueness and completeness must be a defining aspect in the production 

of the model. These characteristics are a necessity if the model is to be used to 

“determine” the response of tissue and not simply “fit” it. For this reason, I analyzed 

several models and determined their applicability to multiscale modeling and identified 

any features that might limit this aim. I also developed a complete, unique model for 

inflations strains on a sheep aorta using a constitutive framework outlined by Criscione 

(Criscione 2004). This particular framework differs from that of the usual framework 

expressed in terms of the principal invariants I1-7 in that the parameters are nearly all 

orthogonal and can be varied independently. Future work into mechanistic models for 

the purposes of multiscale modeling, then, would do well to utilize this framework and 

to ensure uniqueness and completeness of the model throughout its development. A fully 

representative model that is both unique and complete and fully characterizes responses 

to all possible strains could, potentially, be developed utilizing this framework. Such a 

model could allow for a thorough understanding of tissue behavior, even taking into 

account the effects of constituent factors. 
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