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ABSTRACT 

 Mycobacterium tuberculosis (M. tuberculosis) contains a wide array of genes 

responsible for the synthesis and secretion of a variety of bioactive lipids. The genes 

represent attractive drug-targets due to their involvement in essential cell cycles, the 

implication in pathogenesis, and the interference with therapeutics. In this thesis, I report 

our efforts to understand the biological functions of, and to develop inhibitors against, 

multiple genes related to M. tuberculosis lipid metabolism. Firstly, dioctylamine, a 

substrate mimic of the mycolic acid cyclopropane synthases, is shown to inhibit CmaA2 

in vitro. Its inhibition action is explained by the structural characterization. Together 

with our collaborators, we have found dioctylamine able to intervene multiple mycolic 

acid cyclopropane synthases in vivo, and hence established the first model study for the 

single-drug-multiple-target strategy to inhibit the mycolic acid biosynthesis of M. 

tuberculosis. In addition, dioctylamine can serve as the platform for the design of more 

potent and selective drugs in the future. Secondly, the action mechanism of isoniazid and 

ethionamide, both of which are pro-drugs targeting the mycolic acid biosynthesis, is 

explored via biochemical, X-ray crystallographic or modeling studies. We have 

determined that the intracellular target of isoniazid is the enoyl reductase InhA; and we 

have discovered the correlation between mycothiol and ethionamide susceptibility. 

Thirdly, I have investigated the function and mechanism of FadD10, an enzyme 

involved in the synthesis of a virulence-related lipopeptide. The results reveal that 

FadD10 was mis-annotated as a fatty acyl-CoA ligase, but it indeed transfers fatty acids 

to an acyl carrier protein (Rv0100). Further crystallographic characterization provides 
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the molecular basis for the mechanism of FadD10, leading to the discovery of a new 

type of adenylate-forming enzyme. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Mycobacterium Tuberculosis Lipid Metabolism Harbor Virulence Factors And 

Drug Targets 

 Tuberculosis (TB), caused by the human pathogen Mycobacterium tuberculosis 

(M. tuberculosis), is a notoriously contagious disease infecting billions of people world-

wide. The World Health Organization (WHO) has estimated that ten percent of this 

population would develop active TB in their lifetimes. Previously, the mortality caused 

by the disease was usually accompanied by immune system deficiency of the patients, e. 

g. the young, the old, and especially the HIV virus carriers. But in recent years the cases 

of Multi-Drug Resistant (MDR) and Extensively-Drug Resistant (XDR) tuberculosis 

spurt world-wide, which has made TB an alarming threat to the global health. The 

typical treatment of TB is the combined use of several first-line drugs including 

ethambutol, isoniazid, pyrazinamide, and rifampicin. Yet almost 40 years after the first 

use of such therapy, the category is not expanded, and the application of most second-

line drugs is limited by availability, low efficacy, side-effect, or short half-life. The 

narrow choices of the chemotherapeutic reagents and lengthy treatment have led to the 

emergence of MDR and XDR-TB. Indeed, in 2010, the TB community had to exclude 

streptomycin, a veteran antibiotic that has ben used to fight against TB for decades, from 

the first-line treatment due to high rates of bacterial resistance to the drug(Roger Clark, 

2010). All these alarming facts have made the development of new anti-TB strategies 
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more urgent than ever. In this respect, extensive efforts have been made to understand 

the basis of M. tuberculosis infection, validate drug-targets, and design new drugs, 

facilitated by advanced informatic, genetic and proteomic tools. 

 M. tuberculosis, as one of the most persistent pathogen in the human society, has a 

very effective strategy to invade and sustain in human body. This is accompanied by a 

network of virulence factors that allow the bacteria to evade the human immune 

response, to adapt a living in host, and to withstand many antibiotics(Marina Forrellad et 

al., 2013). Along with the development of modern technologies, such as comparative 

genetics(Michelle Lopes Ribeiro-Guimarãesa and Maria Cristina Vidal Pessolani, 2007), 

transposon mutant library(Jyothi Rengarajan et al., 2005), high-throughput, 

proteomics(Sang Hyun Choa et al., 2006), numerous virulence factors of M. tuberculosis 

have been identified. The involvement of these factors span from essential metabolism, 

secretion systems, signal transduction, to interaction with host cells and defense against 

aggressive intracellular environment. Hence, many of them are considered promising 

targets for the development of new chemotherapies against TB. Multiple criteria, such as 

the non-homology to host(Baharak Khoshkholgh-Sima et al., 2011), the functional or 

structural acquisition(Solomon Nwaka and Alan Hudson, 2006), the feasibility to 

monitor inhibition in vivo(Tanjore Balganesh and B. J. Furr, 2007), have been taken into 

account to evaluate the duggability of these virulence factors. It is noteworthy that the 

enzymes involved in the mycobacterial lipid metabolism have always turned out as 

favorite picks in different approaches for prioritizing drug targets. 

 The deciphering of the M. tuberculosis genome reveals a large number of genes, 
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accounting for almost 20% of the open reading frames on the genome(Stewart Cole, 

1999), which are involved in the lipid metabolism. They are responsible for the 

biosynthesis of a wide variety of lipophilic products ranging from simple fatty acids to 

very-long-chain or branched species and to complexed lipids associated with multiple 

functional groups(S. T. Cole et al., 1998). A lot of them are unique to mycobacteria 

while absent in human being, and have been shown to play pivotal roles in the M. 

tuberculosis pathogenesis. Taken together with the potentially hydrophobic binding 

pockets implicated by their lipophilic substrates or products, the enzymes involved in the 

mycobacterial lipid metabolic pathways offer highly prioritized targets for the drug 

development against TB. Thus, understanding and eventually targeting these enzymes 

has become an essential and urgent subject in the field of M. tuberculosis studies. 

 

Mycolic Acids 

The biosynthesis and functions of M. tuberculosis mycolic acids 

 Cell wall is the key component in the M. tuberculosis cell envelope that enables 

the bacterium to thrive under the harsh environment inside human macrophage and 

intrinsically resist antimycobacterial agents(Mamadou Daffe and Philip Draper, 1998). 

This highly impermeable layer has a distinctive structure composed of three covalently 

linked macromolecules: peptidoglycan, arabinogalactan, and mycolic acids, as well as 

minor amount of embedded lipids. Mycolic acids are extremely long-chain (70-90 

carbons totally) α-alkyl β-hydroxyl fatty acids unique to mycobacteria. The α–branch of 

mycolic acids is a saturated chain of 22-26 carbons. The C40-C60 meromycolyl chain 



 

 4 

bears two cis-double bonds with different modifications which define the three sub-types 

(α-, keto-, and methoxy-) (Figure 1-1) of mycolates found in M. tuberculosis. 

 

 

 

Figure 1-1. Schematic diagram(Hugues Ouellet et al., 2010) of the architecture and chemical 
composition of the Mycobacterium tuberculosis cell envelope. The chemical structures of three 
sub-types of mycolates (α-, keto-, and methoxy-), as well as the genes responsible for the 
concomitant modifications are shown in the right panel(Daniel Barkan et al., 2009). 
 

 

The biosynthetic pathways of mycolic acids have been largely, but not 

completely, understood over years of extensive studies(Evelyn Schroeder et al., 2002; 

Kuni Takayama et al., 2005) (Figure 1-2). Firstly, the type I fatty acid synthetase (FAS-

I), a modular enzyme elongating fatty acyl chain by repetitive catalytic cycles, produces 

saturated fatty acids up to C26. Secondly, the very long-chain meroacids are generated 

based on further elongation of the FAS-I products. This is performed by the type II fatty 

acid synthetase (FAS-II) system composed of discrete proteins that adopt the same 

catalytic mechanism as FAS-I but with different substrate preferences. How the two 
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double bonds are placed into the meroacids is unclear, however, it is likely to involve 

desaturase and isomerase activities(Evelyn Schroeder et al., 2002; Kuni Takayama et al., 

2005; S. T. Cole et al., 1998). Thirdly, different functional modifications are introduced 

to the distal and proximal double bonds on the meromycolyl chain by 8 paralogous S-

adenosyl-methionine (SAM) dependent methyltransferases, also called cyclopropane 

mycolic acid synthases (CMASs). The last step is the condensation between the fatty 

acyl and meromycolyl precursers, which is mediated by the gene products of fadD32-

pks13-accD4 cluster(Damien Portevin et al., 2005) and cmrA(David Lea-Smith et al., 

2007). The synthesized mycolyl molecules are then transported to the cell wall to 

esterify with arabinogalactan, glycerol or trehalose(John Belisle et al., 1997). 

In addition to a constructive role as one of the cell envelope components, M. 

tuberculosis mycolic acids have also been demonstrated an explicit involvement in 

pathogenesis and interference with clinical practice. First, they weigh in the 

sustainability and persistence of M. tuberculosis within the hostile environment of 

human macrophage. This is via forming biofilms(Anil Ojha et al., 2008), maintaining the 

viscosity of the cell wall(Clifton Barry III et al., 1998), controlling the permeation of 

nutrients(Clifton Barry III et al., 1998; Joaquim Trias et al., 1992), and et al.. Second, 

mycolic acids are heavily implicated in the mycobacterial virulence. The cell wall bound 

mycoloyl-arabinan induces secretion of tumor necrosis factor-α(IAkihiro Ishiwataa et 

al., 2006). The mycolated glycolipids non-covalently associated to the cell wall 

demonstrate strong adjuvant activities, including to inhibit the migration of blood 

leukocytes(Samuel Martin et al., 1950), to produce granulomatous inflammation(Yuriko 
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Ozeki et al., 1997), to induce strong antibody response(Bekierkunst et al., 1971), and et 

al.(Clifton Barry III et al., 1998; Michael Glickman and William Jacobs Jr., 2001). 

Third, the impermeable mycolate layer leads to several important features with respect to 

the diagnosis and treatment of TB, including acid-fast staining(Hajime Fukunaga et al., 

2002) and antibiotic resistance(Clifton Barry III et al., 1998). 

 

 

 

Figure 1-2. Schematic representation of the biosynthetic pathway of Mycobacterium 
tuberculosis mycolic acids. The acyl carrier protein (ACP) or ACP domain are colored blue. The 
enzymes or catalytic domains with β-keto acyl synthase (KS) activity, β-keto acyl reductase 
(KR) acitivity, dehydrase (DH) acitivity, and enoyl acyl reductase (ER) acitivity are  colored red, 
brown, green, and purple, respectively.  
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Direct inhibitors and pro-drugs targeting mycobacterial mycolate biosynthesis 

 Because of their crucial biological functions, the enzymes involved in the 

biosynthesis of mycolic acids represent promising drug targets for combating TB. 

Indeed, a number of effective inhibitors interfering mycolate synthesis have been 

discovered and some used in practice(Evelyn Schroeder et al., 2002), which has further 

convinced the efficacy and prospects to target this pathway. The mode of the inhibition 

by these drugs or candidates can be distinguished as either directly binding at the active 

site of a target enzyme or being structurally modified intracellular to become a direct 

binder to a target enzyme. 

 Multiple direct inhibitors (Figure 1-3), designed or adapted from known 

antiseptics, of the enzymes engaged in the mycolate biosynthesis have potent anti-

mycobacterial activity. For example, thiolactomycin, a natural product inhibitor of the 

keto-acyl-ACP synthase KasA, demonstrates excellent activity in mice(Satohide 

Miyakawa et al., 1982), and its analogues with improved stability and affordability are 

under development(James Douglas et al., 2002; Kanishk Kapilashrami et al., 2013). N-

Octanesulfonylacetamide, designed to mimic the transition state intermediate of keto-

acyl-ACP synthases, has promising antimicrobial activity in vitro(Nikki Parrish et al., 

2001). Several analogues of triclosan, a widely-used antiseptics that binds to enoyl-acyl-

ACP reductases, showed decent improvement in bactericidal effect after structure-

guided modifications(Joel Freundlich et al., 2009). 
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Figure 1-3. Structures of several direct inhibitors and pro-drugs that target the Mycobacterium 
tuberculosis mycolate biosynthesis. 
 

 

 Aside from the direct inhibitors, pro-drugs (Figure 1-3), which are converted to 

bioactive forms intracellular, have gained more pharmacological success in the treatment 
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activated by the M. tuberculosis catalase-peroxidase KatG, it is transformed into 

isonicotinoyl radical, followed by Minisci addition with NAD+ to form the adduct INH-

NAD(Martin Wilming and Kai Johnsson, 1999) which binds to the active site of the 

enoyl-acyl-ACP reductase InhA and strongly inhibits the enzyme (Ki = 0.75 nM)(Richa 

Rawat et al., 2003). (S)-INH-NAD, the bioactive form of INH, can be readied purified 

from the incubation of KatG with INH and NAD+ in vitro(Denise Rozwarski et al., 

1998). The structure of InhA co-crystallized with (S)-INH-NAD has identified the 

chemical structure of the active adduct, interpreted explicitly the molecular basis of the 

binding(Denise Rozwarski et al., 1998), and explained the resistance mechanism of a 

highly frequent clinical isolate M. tuberculosis S94A(Catherine Vilchèze et al., 2006). 

Though the chemically synthesized isomer (R)-INH-NAD showed ability to bind to 

several other enzymes in vitro(Argyrides Argyrou et al., 2006a; Argyrides Argyrou et 

al., 2006b), there is no evidence, up to now, for the presence of such isomer in cell. In 

other word, InhA is the only confirmed molecular target of the prominent anti-tubercular 

activity of INH(Feng Wang et al., 2010), which is elaborated in CHAPTER III. 

 Another clinically effective pro-drug via inhibiting mycolate biosynthesis is 

ethionamide (ETH). It was discovered by screening a series of INH analogues for anti-

tubercular activity(D. Gupta, 1977), and it indeed inhibits the same target (InhA) as INH. 

However, its activation is performed by a different enzyme that is the Baeyer-Villiger 

monooxygenase EthA(Marco Fraaije et al., 2004). Though having been used as a 

second-line chemotherapeutics since 1956 in the TB treatment, the active form of ETH 

was not identified until recently. Using a whole-cell based activation system, where M. 
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tuberculosis EthA and InhA were co-expressed by E. coli in presence of ETH, 

Sacchettini and associates(Feng Wang et al., 2007b) were able to isolate InhA bound to 

the bioactive adduct formed by ETH. Biochemical and structural characterizations have 

elucidated the compound to be ethyl isonicotinoyl-NAD (ETH-NAD). It is very similar 

to INH-NAD in both the structure and the binding mode in the InhA active site(Feng 

Wang et al., 2007b). EthA is clearly not as efficient as KatG to activate the cognate pro-

drug in vitro. The function of EthA can only be realized in vivo, while its in vitro activity 

(Kcat = 0.0063 s-1) is unusually low compared with the other homologous 

monooxygenases. This indicates that other cellular components are involved to complete 

the EthA function. We have found out that one of these factors is the reducing agent 

mycothiol by genetic, biochemical, and modeling studies(Catherine Vilchèze et al., 

2008), which are discussed in CHAPTER III. 

 Isoxyl (ISO) and thiacetazone (TAC), two pro-drugs for treating MDR-TB 

strains, are also implicated to interfere with the synthetic pathway of mycolic acids. Both 

drugs share a thioamide motif and a common activator EthA with ETH(Lynn Dover et 

al., 2007). Spontaneous ISO- and TAC-resistant mutations have been located at multiple 

genes responsible for the mycolate synthesis. They include CMASs (mmaA2, mmaA4) 

and hydroxyacyl-ACP dehydratases (had ABC)(Anna Grzegorzewicz et al., 2012). It is 

also shown that over-expression of CMASs (CmaA2, PcaA)(Anuradha Alahari et al., 

2007) or the desaturase (DesA3)(Benjawan Phetsuksiri et al., 2003) confers certain level 

of resistance to TAC or ISO. Though the bioactive metabolites and the precise 
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mechanism of TAC and ISO are still elusive, it is likely that their cellular targets are 

among the identified relevant enzymes. 

 

Prospects of the M. tuberculosis CMASs as drug targets 

 Certainly pro-drugs have exhibited chemotherapeutic values, but their 

disadvantages in drug development and clinical administration are obvious. First, the 

complication of a pro-drug’s mechanism makes the drug development more challenging. 

As discussed above, we still lack a lot of knowledge regarding their intracellular 

metabolism and functional mode. This has prevented the pursuit of a better inhibition 

and less side effects based on a known pro-drug’s structure. Second, the involvement of 

activating enzymes poses a higher chance for the development of drug-resistant mutants, 

which have been observed in numerous clinical isolates when patients are treated with 

pro-drugs(Andrea DeBarber et al., 2000; Angelo Scorpio et al., 1997; Stephen Gillespie, 

2002; Ying Zhang et al., 1992). Therefore, it is still our hope to pursue antimycrobials 

that can directly inhibit the enzymes in the mycolic acid synthetic pathway. 

 The improper usage of antibiotics and lengthy treatment have led to a steady 

increase of drug-resistant M. tuberculosis strains. The need for new anti-tubercular 

agents is more urgent than ever, especially to enable shorter-course therapy and to delay 

the occurrence of drug resistance. For this purpose, a very promising strategy is to use a 

single inhibitor against multiple targets(Richard Morphy and Zoran Rankovic, 2005). 

This prefers the targeted proteins to have similar binding affinity but non-redundant 

functions, exemplified by acyl-AMP analogues to inhibit several M. tuberculosis FadD 
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proteins which are involved in separate lipid synthetic pathways(Pooja Arora et al., 

2009). The CMASs also satisfy such criteria. 

 Eight SAM dependent CMASs are identified in M. tuberculosis, sharing a high 

sequence homology (~ 50% identity to each other). Cell-based analyses and in vitro 

experiment using radioactive precursors have determined their biochemical activities 

(Figure 1-1), except for CmaA1(Eugenie Dubnau et al., 1997; Laxman Meena et al., 

2013; Michael Glickman et al., 2000; Michael Glickman et al., 2001; Ying Yuan and 

Clifton Barry III, 1996; Ying Yuan et al., 1997). Separate knock-out strains of each 

CMAS have been generated and evaluated the physiological properties(Dee Dao et al., 

2008; Eugenie Dubnau et al., 2000; Michael Glickman et al., 2000; Pascale Peyron et al., 

2008; Vivek Rao et al., 2006; Vivek Rao et al., 2005). The studies reveal that each 

CMAS performs a distinct chemical modification on the meroacyl chain of M. 

tuberculosis mycolate and is implicated at a different stage of infection. In addition, five 

CMASs have been structurally characterized, which exhibit an apparent similarity in 

their active site composition(Chih-chin Huang et al., 2002; Fanny Boissier et al., 2006). 

This, coupled with the distinct biological functions of CMASs, suggests that CMASs are 

applicable as targets of a single drug. Indeed, we(Daniel Barkan et al., 2009) and Lionel 

Mourey et al.(Julien Vaubourgei et al., 2009) have independently showed dioctylamine 

(elaborated in CHAPTER II) and S-adenosyl-N-decyl-aminoethryl, respectively, able to 

inhibit multiple CMASs and consequently the mycobacterial growth. These studies 

together have unequivocally indicated CMASs as promising targets for the drug 
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development and have proven the feasibility to inhibit multiple CMASs simultaneously 

by a single compound. 

 

Complex Surface Lipids 

FASs, PKSs, and NRPSs are responsible for the synthesis of complex lipids 

 Complex lipids are based on simple fatty acids which are incorporated with a 

variety of functional groups including phosphate, glycosidic, peptidyl moieties, and et 

al.. They widely occur in nature, especially in plants and bacteria, as secondary 

metabolites, and demonstrate broad bioactivities such as antibiotics, surfactants, and 

virulence factors(Mohamed Marahiel et al., 1997). The major chemical scaffolds of the 

complex lipids are typically synthesized by three multifunctional enzymes that are fatty 

acyl synthase (FASs), polyketide synthases (PKSs) and non-ribosomal peptide synthases 

(NRPSs). They are similar in the architecture in terms of that all of them can occur as 

either modular multi-enzymes or enzyme clusters with discrete members. They are also 

mechanistically analogous in the way to catalyze repetitive reaction cycles (Figure 1-1, 

Figure 1-4). Together with these “megasynthases”(Timm Maier et al., 2008), other 

enzymes or functional domains are associated in the biosynthetic pathways of complex 

lipids. They are responsible for either the crosswalk between the multi-enzymes(Darren 

Hansen et al., 2007; Debasisa Mohanty et al., 2011) or the introduction of specific 

chemical modifications on the core structures(Deborah Miller et al., 2001; Thomas 

Keating et al., 2002). 
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A B 
 

Figure 1-4. Schematic representation of the catalytic mechanisms of PKSs (A) and NRPSs (B), 
with minimal configuration of domains shown with cognate key active site residues. Both ACPs 
(acyl carrier protein domains) of PKSs and PCPs (peptidyl carrier protein domains) of NRPSs 
are phosphopantetheinated so that to bear free thiol termini. The reactions catalyzed by both 
types of the enzymes undergo a process including: substrate loading, repetitive cycles of 
elongation, and product release. 
(A) For PKSs, in each reaction cycle, a malonoyl group is loaded by AT (acyltransferase 
domain) onto ACP; each elongation step involves decarboxylation of malonoyl followed by 
claisen condensation with the template acyl chain, mediated by KS (β-keto acyl synthase 
domain); the thioesterified product is eventually hydrolyzed and released by TE (thioesterase 
domain). 
(B) NRPSs require three domains to assemble peptides – adenylation (A), PCP, and 
condensation (C) domains. Each A domain selectively activates an amino acid substrate and 
loads in onto the cognate PCP. C domain catalyzes the nucleophilic attack from the downstream 
PCP-carried amino group to the upstream PCP-carried aminoacyl or peptidylacyl moieties, 
forming a new peptide bond. The final products are typically released by TE domain, similar to 
PKSs. 
 

Because of the chemotherapeutic values and physiological significance of 

complex lipids, tremendous efforts have been made to decipher their biosynthesis. Yet 

the territory seems borderless while novel mechanisms are discovered time after time. 

One example is the discovery of an acyl loading mechanism alternative to the 

predominant O-fatty acyl transferases (AT). The latter are found either as a catalytic 

domain of a multi-enzyme (mostly a FAS or PKS) or an individual enzyme. They use 
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selective fatty acyl-CoAs as substrates and are able to uptake the fatty acyl moieties by 

esterification with the conserved active site serine residue. The acyl chains are then 

transferred to ACPs for transport to other catalytic centers in a biosynthesis (Figure 1-5 

A). This acyl-CoA and acyltransferase dependent mode was the only recognized acyl 

loading mechanism for the biosynthesis of naturally occurred complex lipids, until 

recently an alternative scheme is discovered. In the new mechanism, an adenylate-

forming enzyme directly uses fatty acids to generate fatty acyl-AMPs as intermediates 

and transfer fatty acyl moieties to cognate ACPs for further process (Figure 1-5 B). The 

first biochemical presentation of such a mechanism was reported when the M. 

tuberculosis adenylate-forming enzymes FadD26, FadD30, FadD32 were shown to 

transfer the cognate fatty acid substrates to their cooperative PKSs, which are PpsA, 

PKS6, and PKS13, respectively(Omita Trivedi et al., 2004). The function of this 

subclass of adenylate-forming enzymes is further established with the demonstration of 

fatty acyl transfer by Bacillus subtilis ATP dependent acyl ligase AL onto the acyl 

carrier protein ACP1. Both proteins were isolated from the lipopeptide mycosubtilin 

synthetic pathway, and the acyl transfer occurred in absence of CoenzymeA or 

derivatives(Darren Hansen et al., 2007). This newly discovered activity of adenylate-

forming enzymes has been classified as fatty acyl-AMP ligases (FAALs) which are 

discussed more detailed later in this CHAPTER and CHAPTER IV. 
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Figure 1-5. Acyl loading mechanisms discovered in the biosynthesis of complex lipids. They 
can be catalyzed by, respectively, (A) a fatty acyl transferase (AT), and (B) a fatty acyl-
AMP ligase (FAAL). 
 

Complex lipids in M. tuberculosis 

 Analyses of the M. tuberculosis genome reveal the presence of a fas I gene, a fas 

II gene cluster, 2 nrps containing gene clusters, and 25 pks genes(S. T. Cole et al., 1998). 

Consistent with the variety of these genes related to lipid metabolism, an unusually large 

amount and diversity of complex lipids have been discovered in M. tuberculosis, which 

outweigh any other pathogenic bacteria. All of these complex lipids are found in the 

extract of M. tuberculosis cell envelope, and hence are likely to function in determining 

the physical properties of the cell envelope or mediating specific host-pathogen 

interactions. The lipid components anchoring at M. tuberculosis capsule are at minor 
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amount and their identities remain elusive. Other than that, multiple complex lipids 

associated to the plasma membrane and the cell wall are present at reasonable amount to 

be isolated and chemically characterized (Figure 1-6). 

 

 

Figure 1-6. Schematic diagram(Hugues Ouellet et al., 2010) of the architecture and chemical 
composition of the Mycobacterium tuberculosis cell envelope. The chemical structures of 
complex lipids, identified up to date, are shown in the right panel. 
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two major mycobacterial glycolipids, are found to be non-covalently associated to the 

plasma membrane and extend their lipidic tails beyond the cell wall. Defects in 

LM/LAM synthesis result in an increased susceptibility of M. tuberculosis to β-lactam 
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al., 2013). The mannosyl cap of LAM is suggested to interact with the mannose receptor 

of human macrophage so that to induce cell entry at the early stage of infection(Jordi 

Torrelles and Larry Schlesinger, 2010). Complex lipids intercalated in the cell wall, as 

identified up to date, include phthiocerol dimycocerosates (PDIMs), sulfolipids (SLs), 

polyacyl trehaloses (PATs), mannosyl phosphomycoketides (MPMs), and phenolic 

glycolipids (PGLs). PDIMs are heavily implicated in the M. tuberculosis virulence 

especially at the early stage of infection(Cécile Rousseau et al., 2004). They can insert 

into the membrane of human macrophage and alter the lipid organization on the surface 

of the macrophage, which eventually facilitates the invasion of M. tuberculosis baccili 

into the host(Catherine Astarie-Dequeker mail et al., 2009). SLs are also abundant 

complex lipids, second to PDIMs, found in the M. tuberculosis cell wall. Apart from a 

role in maintaining the cell wall integrity, their precise function in virulence is not yet 

established as the compounds induce a wide-profile of transcriptional effects in human 

immature dendritic cells(Sarah Gilmore et al., 2012). PATs are located on the exterior 

surface of the cell wall. They have a wax nature to prevent the mycobacterial cells to 

clump with each other(Vinod Dubey et al., 2002). Yet there is no evidence for their 

contribution to virulence, the production of PATs responds to different stress 

environments in vivo(Kyle Rohde et al., 2007). MPMs are produced at a low amount in 

the slow-growing pathogenic mycobacteria. They display antigenicity via interacting 

with the human CD1 proteins that are produced by antigen expressing cells(Isamu 

Matsunaga and Masahiko Sugita, 2012). This has been delineated by the crystal structure 

of human CD1 protein in complex with the M. tuberculosis MPM(Louise Scharf et al., 
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2010). Mycobacterial PGLs are not observed in M. tuberculosis except for the 

hypervirulent Beijing strains. The lipids directly suppress the release of three different 

pro-inflammatory mediators of human macrophage, and consequently lead to the 

hyperlethality of certain M. tuberculosis strains(Michael Reed et al., 2004). M. 

tuberculosis Mycobactins are present either as associates to the cell wall or secreted 

molecules. The secreted mycobactins are responsible to extract extracellular iron, while 

the cell wall associated mycobactins store the iron for following acquisition into the 

cell(Minkui Luo et al., 2005).  

 The biosynthesis of complex lipids is as complicated as their structures, but 

genome sequencing, knock-out studies, and biochemical demonstrations have provided 

chances to decipher the synthetic pathways of the M. tuberculosis complex lipids. 

Except for LM and LAM, they all engage at least one PKS or NRPS multi-enzyme. 

Multiple PKSs annotated as PpsA-E are responsible to elongate and incorporate diol 

groups onto the phthiocerol chain of PDIMs; the mycocerosic chains are synthesized by 

another PKS annotated as Mas; and the phthiocerol dimycocerosyl transferase PapA5 

catalyzes the condensation between the mycocerosic and phthiocerol chains. The 

synthesis of PGLs shares the same core steps as PDIMs, except that a gene cluster of 

Rv2949-pks15-pks1 generates the phenolic precursor prior to the action of PpsA-E. 

PKS2 produces the long acyl moieties of SLs, and the acyltransferases PapA1, PapA2 

and Chp1link different acyl chains to the trehalose hydroxyl groups(Jessica Seeliger et 

al., 2012). PATs have similar chemical scaffolds, as well as synthetic scheme as SLs, 

just involving a different set of PKS (PKS3/4) and acyltransferase (PapA3). 
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Mycobacterial PKS12 is responsible to synthesize the long mycoketide chain of MPMs. 

Consistent with the discovery of MPMs, PKS12 is only found in the pathogenic 

mycobacteria. It catalyzes alternative and repetitive cycles of reactions to incorporate 

ethylene and isopropyl moieties into the growing chain(Tarun Chopra et al., 2008). 

However, no enzymes have been identified for the reduction, phosphorylation, or 

mannosylation step to generate the final products MPMs. The biosynthesis of 

mycobactins is carried out by a hybrid system of PKSs (annotated as MbtC/D) and 

NRPSs (MbtB/E/F) cooperated with the ligase MbtA, the salicylate synthases MbtI, the 

hydroxylase MbtG, and four lipid binding proteins (MbtK, MbtL, FadD33, and 

FadE14)(Matthew McMahon et al., 2012). 

 

Other virulence factors related to complex lipids biosynthesis in M. tuberculosis 

 The composition of surface lipids is an important feature that distinguishes 

pathogenic and non-pathogenic mycobacteria. For example, MPMs and PGLs are only 

found in pathogenic species while glycopeptidyl lipids are only produced by some 

opportunistic pathogenic species(Jeffrey Schorey and Lindsay Sweet, 2008). It is 

tempting to believe that surface lipids are one of the predominant factors among all the 

virulence effectors of the pathogenic mycobacteria, such as M. tuberculosis. Therefore, 

to better understand the survival mechanism of this notorious bacteria against the human 

immune system, it is critical for us to identify these surface lipids and elucidate their 

biosynthesis. However, our knowledge in both aspects remains at large. As discussed 

above, most PKSs found in the M. tuberculosis genome have not been attributed to the 
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synthesis of known metabolites. In addition, there are wide array of probable lipid 

binding proteins that have been shown to contribute the M. tuberculosis pathogenesis. 

They together indicate the presence of many other virulence related lipids to be 

identified, and also highlight the need to functionally characterize the proteins likely 

involved in the biosynthesis of surface lipids. At lease three categories of targets should 

be deliberately investigated in this respect. 

 First, 15 among the 25 PKSs discovered in the M. tuberculosis genome have 

been confirmed with functions in the biosynthesis of mycolate, cell wall complex lipids, 

and mycobactins, respectively, while the functions of the other 10 PKSs remain 

ambiguous. The prevailing strategy to explore the roles of PKSs is to generate the 

knock-out strains followed by analyses of the change in lipid composition. This method 

has provided valuable insights as well as some biased outputs. The challenge of the 

method lies in the complicated cellular activities associated with many unknown 

regulation mechanisms. For example, pks12 was once linked to the synthesis of PDIMs 

as the gene deletion caused deficient PDIMs in the cell wall(Tatiana Sirakova et al., 

2003). However, explicit biochemical demonstration later on amended the true function 

of PKS12 as a mycoketide synthase(Tarun Chopra et al., 2008), though its regulatory 

role in PDIM production is still mysterious. In addition to the in vivo approach, 

structural and biochemical characterization has shown potential to imply the function of 

a PKS. It is exemplified by the studies on M. tuberculosis PKS11(Kuppan Gokulan et 

al., 2013). When expressed by M. smegmatis, a soil organism closely related to M. 

tuberculosis, PKS11 is naturally bound to palmitic acid which is likely to be the 
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biological substrate. A more revealing observation is that the addition of malonyl-CoA 

and methylmalonyl-CoA leads to the formation of methylbranched alkylpyrone (Figure 

1-7) which is bound at the active site of PKS11, clearly evidenced by both X-ray 

structure and mass spectra. Though there is no reported isolation of methylbranched 

alkylpyrones from M. tuberculosis, the studies of PKS11 has strongly indicated the 

presence of such lipids. Moreover, it proves the hypothesis that versatile lipids still 

remain to be identified and functional characterization of the enzymes related to lipid 

metabolism is highly applicable to address the issue. 

 

 

Figure 1-7. Structural and biochemical characterization of M. tuberculosis PKS11 led to the 
discovery of a new type of mycobacterial complex lipids- methylbranched 
alkylpyrones(Kuppan Gokulan et al., 2013). 
 

Second, there are two NRPS containing gene clusters identified in M. 

tuberculosis(S. T. Cole et al., 1998). While one of them has been attributed to synthesize 

the peptidyl moiety of mycobactins, the function of other one, Rv0096-Rv0101 operon, is 

yet understood. Rv0096 belongs to the PE/PPE family which is a immunogenetic 

protein. Rv0097 is a putative oxidoreductase. Rv0098 is a fatty acyl-CoA 

thioesterase(Feng Wang et al., 2007a). Rv0099 (fadD10) is a lipid binding enzyme. 
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Rv0100 encodes an acyl carrier protein. Rv0101, annotated as nrp, is an NRPS which is 

highly conserved in the human pathogen M. bovis and M. leprae. While the operon is not 

required for the survival of M. tuberculosis in vitro(Christopher Sassetti et al., 2003), 

each of the genes correlates to the mycobacterial virulence(Christopher Sassetti and Eric 

Rubin, 2003; Swati Joshi et al., 2003). The precise product of the operon and its exact 

biological function are yet elucidated. In a transposon mutagenesis study, mutation of 

Mb0100 in the M. bovis BCG strain (equivalent to M. tuberculosis Rv0097) was shown 

to disrupt the biosynthesis of PDIMs and glycosylphenol-PDIMs(Grant Hotter et al., 

2005), but whether the components of the operon have a direct role in PDIM synthesis is 

uncertain. Others have argued that the product of the PPE-nrp operon would function 

via de-repressing the sigma factor SigM which further regulates synthesis of a series of 

surface lipids including PDIMs(Nisheeth Agarwal et al., 2007). Nrp shares significant 

similarity with an M. smegmatis NRPS-encoding gene mps which is involved in the 

production of glycopeptidyl lipids. However, no glycopeptidyl lipids or close analogues 

have been reported in the pathogenic mycobacteria, and hence a role of M. tuberculosis 

Nrp similar to M. smegmatis Mps has been ruled out. Yet the roles of Rv0098 and 

FadD10 in lipid metabolism suggest that the products of the operon are likely to be 

lipopeptides. We have determined the structure and function of FadD10, which shines 

light on the identification of the virulence-associated lipopeptides and the understanding 

of the biological role. These studies are discussed in CHAPTER IV. 

Third, associated with mycobacterial lipid metabolism, are a notable variety of 

lipid binding proteins, which can be exemplified by 14 transmembrane lipid transport 
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proteins (MmpLs), 36 possible fatty acyl-CoA dehydrogenases (FadEs), and 34 possible 

fatty acyl-CoA synthetases (FadDs). Surely the versatility of complex lipids necessitates 

the diversity of the supportive proteins, but such a wide array of redundancy still induces 

doubt on a rough functional classification. Indeed, the annotation of FadD enzymes has 

been amended after further investigations into individual members. M. tuberculosis 

FadDs were initially thought to be engaged in the fatty acid degradation, analogous to E. 

coli FadD(David Clark and John Cronan, 1996). Yet soon several FadDs were found 

important for the synthesis of cell wall lipids, such as FadD32 for mycolates, FadD26 for 

PDIMs, FadD23 for SLs(Tarun Chopra and Rajesh Gokhale, 2009). A series of genetic, 

biochemical, and structural analyses have then been conducted to elucidate the 

distinctive functions of M. tuberculosis FadDs, which has led to the recent discovery of 

fatty acyl-acyl carrier protein synthetase activity in some of the them(Omita Trivedi et 

al., 2004; Pooja Arora et al., 2009). These FadDs which are likely to be responsible in 

anabolism instead of metabolism have been re-annotated as fatty acyl-AMP ligases 

(FAALs). However, the new annotation is solely based on sequence similarity which has 

been proven to be a rough criteria. As elaborated in CHAPTER IV, we have found that 

FadD10, mis-annotated as fatty acyl-CoA synthetase, is indeed an FAAL to transfer fatty 

acyl chains to an acyl carrier protein (Rv0100)(Zhen Liu et al., 2013). This contradicts 

the current sequence-based paradigm for the classification of FadDs, and necessitates 

further investigations into the enzymes of the newly identified FAAL subclass. 
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CHAPTER II 

MYCOLIC ACID CYCLOPROPANATION IS ESSENTIAL FOR VIABILITY, DRUG 

RESISTANCE AND CELL WALL INTEGRITY OF MYCOBACTERIUM 

TUBERCULOSIS* 

 

Summary 

Mycobacterium tuberculosis infection remains a major global health problem 

complicated by escalating rates of antibiotic resistance. Despite the established role of 

mycolic acid cyclopropane modification in pathogenesis, the feasibility of targeting this 

enzyme family for antibiotic development is unknown. We show through genetics and 

chemical biology that mycolic acid methyltransferases are essential for M. tuberculosis 

viability, cell wall structure, and intrinsic resistance to antibiotics. The tool compound 

dioctylamine, which we show acts as a substrate mimic, directly inhibits the function of 

multiple mycolic acid methyltransferases, resulting in loss of cyclopropanation, cell 

death, loss of acid fastness, and synergistic killing with isoniazid and ciprofloxacin. 

These results demonstrate that mycolic acid methyltransferases are a promising 

antibiotic target and that a family of virulence factors can be chemically inhibited with 

effects not anticipated from studies of each individual enzyme. 

 

                                                
* This work has been published in and is reprinted with permission from: 
Daniel Barkan#, Zhen Liu #, James Sacchettini, and Michael Glickman (# equal 
contribution). “Mycolic acid cyclopropanation is essential for viability, drug resistance 
and cell wall integrity of Mycobacterium tuberculosis” Chemistry & Biology 2009, 
16(5), 499-509 Copyright 2009 (Elsevier Inc.) 
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Introduction 

Human infection with Mycobacterium tuberculosis continues to cause 

unrelenting suffering. Although infection with M. tuberculosis is a curable with 

prolonged multidrug antibiotic therapy, the drug regimens are often toxic or difficult to 

complete. In the developing world, curative therapy for M. tuberculosis is difficult to 

execute, leading to two million deaths per year worldwide(Christopher Dye, 2006). 

Infection with antibiotic-resistant M. tuberculosis is an increasing problem and requires 

more prolonged antibiotic therapy for cure(World Health Organization, 2008). In the 

case of extensively drug-resistant tuberculosis, therapy is often impossible(Neel Gandhi 

et al., 2006). This dire reality has prompted a significant worldwide effort to discover 

new drugs to treat M. tuberculosis infection. Although any new agent active against M. 

tuberculosis would be welcome, of particular interest are new drugs that would allow 

shortening of tuberculosis chemotherapy through rational targeting of gene products 

important for persistent infection. An increasing number of potential drug targets in M. 

tuberculosis are cell wall biosynthetic enzymes, including enzymes involved in mycolic 

acid biosynthesis and modification. 
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Figure 2-1. Chemical structures of the major mycolic acids of M. tuberculosis and BCG-
R. Cyclopropane rings and methyl branches are shown and annotated with the methyltransferase 
responsible for their synthesis. BCG-P lacks methoxymycolates due to a mutation in MmaA3. 
 

Mycolic acids are α-alkyl, β-hydroxy fatty acids that are produced by all 

mycobacteria and are the signature lipid of the hydrophobic mycobacterial cell wall. 

Mycolic acid biosynthesis has been intensely studied due to the unique structure of these 

lipids and their importance for tuberculosis antibiotic therapy and M. tuberculosis 

pathogenesis(Clifton Barry III et al., 1998). M. tuberculosis and Mycobacterium bovis 

produce three major mycolic acid types: alpha mycolate, methoxymycolate, and 

ketomycolate. The chemical structures of these lipids shown in Figure 2-1 were 

determined over years of exhaustive study(Clifton Barry III et al., 1998; Motoko 

Watanabe et al., 2002; Motoko Watanabe et al., 2001). Although the core mycolate 

structure is conserved among mycobacteria, only pathogenic slow growing mycobacteria 

produce significant amounts of cyclopropanated mycolic acids. Alpha mycolic acids 
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contain two cis cyclopropane rings on the meromycolate chain. Oxygenated mycolates 

contain either a distal methoxy or ketone group and a proximal cis or trans cyclopropane 

ring. The cyclopropane rings and methyl branches of these lipids are synthesized by a 

family of S-adenosyl methionine-dependent methyltransferases. The enzymes of this 

family are highly homologous both in primary sequence and tertiary structure(Chih-chin 

Huang et al., 2002). Despite this structural similarity, genetic deletion of each methyl- 

transferase in M. tuberculosis has revealed highly specific biosynthetic roles of each 

enzyme. PcaA and MmaA2 are required for alpha mycolate cyclopropanation(Michael 

Glickman, 2003; Michael Glickman et al., 2000), CmaA2 for trans cyclopropanation of 

the oxygenated mycolates(Michael Glickman et al., 2001), MmaA4 and MmaA3 for 

distal functionality of the oxygenated mycolates(Eugenie Dubnau et al., 2000; Marcel 

Behr et al., 2000), and MmaA1 for methyl branch formation preceding the 

cyclopropanation step by CmaA2 (M.S.G., unpublished data). 

M. tuberculosis strains deficient for cyclopropanation have revealed an important 

role for this lipid modification in pathogenesis. Loss of pcaA in M. tuberculosis causes 

an early growth defect in the lungs, defective persistence during late infection, and 

failure to activate macrophage innate immune responses(Michael Glickman et al., 2000; 

Vivek Rao et al., 2005). In contrast, loss of cmaA2 results in hypervirulence and 

hyperinflammatory innate immune activation in macrophages(Vivek Rao et al., 

2006)and loss of mmaA4 causes excessive IL-12 production(Dee Dao et al., 2008). 

These phenotypes are due to altered inflammatory activity of cyclopropane-deficient 

trehalose dimycolate, implicating cyclopropanation as an immunomodulatory lipid 
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modification(Dee Dao et al., 2008; Vivek Rao et al., 2006; Vivek Rao et al., 2005). 

However, these results do not clearly define mycolic acid methyltransferases as an 

attractive drug target in M. tuberculosis because the consequences of complete 

cyclopropane loss are unknown and targeting of CmaA2 alone in preference to other 

methyltransferases might be deleterious to the host. 

In this study we address the suitability of mycolic acid methyltransferases as M. 

tuberculosis drug targets. We show that the mycolic acid methyltransferase enzyme 

family can be targeted by a single tool compound and that this inhibition has pleiotropic 

effects on M. tuberculosis cells, including loss of cell wall integrity and eventual cell 

death. 

 

Results 

Deletion of cmaA2 from BCG pasteur is only possible after complementation with a 

functional mmaA3 

Previous work from our laboratory and others has shown that mycolic acid 

methyltransferases are individually nonessential for growth in vitro(Dubnau et al., 1998; 

Eugenie Dubnau et al., 2000; Marcel Behr et al., 2000; Michael Glickman, 2003; 

Michael Glickman et al., 2000; Michael Glickman et al., 2001), including the trans 

cyclopropane synthase of the oxygenated mycolates CmaA2. As we have shown that 

deletion of cmaA2 from M. tuberculosis produces a hypervirulent strain(Vivek Rao et 

al., 2006), we attempted to delete this gene from BCG Pasteur (BCG-P) to study its 

effect on BCG immunogenicity. To delete cmaA2, we infected BCG-P with a 
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temperature-sensitive special- ized transducing phage designed to replace the entire 

cmaA2 coding sequence with a hygromycin resistance gene. To our surprise, despite our 

prior deletion of cmaA2 from M. tuberculosis using the same technique, we were unable 

to obtain hygromycin-resistant transductants on multiple attempts (data not shown). We 

have successfully deleted multiple genes from BCG-P using specialized transduction 

(data not shown;(Hideki Makinoshima and Michael Glickman, 2005; Michael Glickman 

et al., 2000), indicating that our failure to obtain a cmaA2 knockout was not due to a 

general failure of this technique in this strain. BCG-P, along with many other BCG 

substrains, lacks methoxymycolates due to a point mutation in mmaA3, the gene 

encoding the methyltransferase that adds the methoxy group to 

methoxymycolates(Marcel Behr et al., 2000). BCG Russia (BCG-R) has a functional 

MmaA3 and therefore synthesizes methoxymycolates. We were able to delete cmaA2 

from BCG-R using the same specialized transducing phage that failed in BCG-P (Figure 

2-2 A), indicating that lack of methoxymycolates may be the factor preventing cmaA2 

deletion in BCG-P. To test this idea, we complemented BCG-P at the chromosomal attB 

site with the mmaA3 gene (BCG-P attB::mmaA3). As previously reported(Adam Belley 

et al., 2004; Dubnau et al., 1998; Marcel Behr et al., 2000), BCG-P attB::mmaA3 

synthesized methoxymycolates (Figure 2-2 B). Transduction of BCG-P attB::mmaA3 

with the cmaA2 knockout phage resulted in successful deletion of cmaA2 (Figure 2-2 C). 

To confirm that the function of cmaA2 in BCG is to synthesize trans cyclopropane rings, 

as previously shown in M. tuberculosis(Michael Glickman et al., 2001), we isolated total 

mycolic acids from the BCG attB::mmaA3 cmaA2::hyg strain and analyzed them by 
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nuclear magnetic resonance (NMR). Trans cyclopropane rings were not detected in the 

ΔcmaA2 strain, confirming that the function of CmaA2 is identical in BCG and M. 

tuberculosis. This data suggested that null mutations in mmaA3 and cmaA2 may be 

synthetically lethal for slow growing mycobacteria. 

 

 

 

Figure 2-2. Genetic analysis of mycolic acid methyltransferase synthetic phenotypes. 
(A) Southern blot showing the deletion of cmaA2 from BCG-R. Genomic DNA was cut with 
EcoRI and probed with a DNA fragment flanking cmaA2. The predicted size for wild-type is 3.8 
kb and for ΔcmaA2 is 1.8 kb. 
(B) Radio TLC from BCG-P and BCG-P attB:: mmaA3, showing the appearance of 
methoxymycolates in the complemented strain. α, alpha mycolates; m, methoxymycolates; k, 
ketomycolates. 
(C) Southern blot showing deletion of cmaA2 from BCG-P attB::mmaA3. Fragment sizes are as 
in (A). 
(D) BCG-P was complemented at the attB site with mmaA3 gene under an AHT-sensitive 
promoter and mycolic acids were analyzed from strains grown with (+AHT) and without (-AHT) 
inducer. After the deletion of cmaA2 or mmaA1 from this strain (while supplementing with 
AHT), AHT was withdrawn and mycolic acids were prepared. 
(E) Radio TLC showing the removal of mmaA3 by zeocin marker exchange. Mycolates from 
parent strains and zeocin-resis- tant transformants were analyzed by TLC. 
(F) Growth curve (represented as OD600 measure- ments) at 32.5°C of BCG-P (u), BCG-P 
ΔcmaA2 (MGM1919;n), BCG-R (▴), and BCG-R ΔcmaA2 (MGM295; ▾). 
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To further confirm synthetic lethality, we created an mmaA3 depletion strain that 

expressed mmaA3 from a tetracycline- inducible promoter. This strain displayed 

anhydrotetracycline (AHT)-dependent synthesis of methoxymycolates (Figure 2-2 D, 

left). Using specialized transduction, cmaA2 and mmaA1 were deleted from this strain in 

the presence of AHT. Southern blotting confirmed successful deletion of cmaA2 and 

mmaA1 (data not shown) and NMR of total mycolic acids from these strains confirmed 

lack of trans cyclopropane rings. To our surprise, depletion of mmaA3 by AHT 

withdrawal did not result in cell death (data not shown). Examination of these strains 

revealed minimal methoxymycolate production without AHT (Figure 2-2 D, right), 

ruling out constitutive expression of mmaA3 due to a mutation in the tetracycline 

repressor. This result could indicate that mmaA3/mmaA1 and mmaA3/cmaA2 are not 

synthetically lethal. However, the tetracycline regulation is somewhat leaky, which 

could allow survival due to the low-level methoxymycolate production that is visible in 

Figure 2-2 D. To completely remove the mmaA3 cassette from the ΔmmaA1 and 

ΔcmaA2 strains, we used marker exchange(Carey Pashley and Tanya Parish, 2003). A 

zeocin marked vector replaced the mmaA3 cassette after transformation and the resulting 

zeocin-resistant transformants lacked methoxymycolates (Figure 2-2 E), indicating that 

sequential deletion of cmaA2/mmaA3 or mmaA1/mmaA3 is possible. Taken together, one 

interpretation of these genetic studies is that compensatory changes in membrane fluidity 

in the tetracycline depletion and zeocin strains allowed isolation of the double mutants, 

possibly due to the order in which the genes were deleted. To test whether the 

cmaA2/mmaA3 double mutants have alterations in membrane fluidity that would support 
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this model, we grew these strains in low temperature. We found that deletion of cmaA2 

from BCG-R moderately impaired growth at 32° (Figure 2-2 F). Strikingly, BCG-P grew 

poorly at 32° and inactivation of cmaA2 in BCG-P abolished growth (Figure 2-2 F). 

These findings support the genetic data indicating that loss of cmaA2/ mmaA3 impairs 

viability due to alteration in membrane fluidity. 

 

Dioctylamine inhibits multiple pathways of mycolic acid modification 

To investigate the phenotypic consequences caused by loss of mycolic acid 

modification, we sought a chemical inhibitor of these enzymes. Dioctylamine was 

recently identified as an inhibitor of Escherichia coli CFAS, an enzyme that 

cyclopropanates the membrane fatty acids of E. coli(Dennis Grogan and John Cronan, 

1997; Dominique Guianvarc'h et al., 2006). The IC50 of dioctylamine for CFAS was 4 

µM. Dioctylamine is chemically similar to didecyldimethylammonium bromide 

(DDDMAB), which we have previously crystallized in the active site of CmaA2(Chih-

chin Huang et al., 2002) (see Figure 2- 3A for structures), suggesting that dioctylamine 

might also inhibit mycolic acid methyltransferases by acting as a substrate mimic. To 

test whether dioctylamine is an inhibitor of cyclopropanation, we grew BCG-R (which 

has a mycolic acid profile highly similar to that of M. tuberculosis) with 14C acetic acid 

and in escalating concentrations of dioctylamine ranging from 0.125 to 10 µM or vehicle 

control. After 6 hr, 14C -labeled mycolic acid methyl esters were prepared and analyzed 

by radio thin layer chromatography (TLC). We observed that 2 µM dioctylamine 

completely inhibited methoxymycolate production, consistent with loss of MmaA3 
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function (see arrowhead in Figure 2-3 B). 

 

 

 

Figure 2-3. Dioctylamine inhibits multiple pathways of mycolic acid modification. 
(A) Chemical structures of dioctylamine and DDDMAB. DDDMAB was previously identified in 
the active site of crystals of CmaA2. 
(B) One-dimensional TLC of mycolates isolated from BCG-R treated with the concentration of 
dioctylamine (µM) indicated under each lane. Alpha mycolate (α), methoxymycolate (m), and 
ketomycolate (k) are indicated at the left edge. The arrowhead marks the position of 
methoxymycolate, which is absent from the 2 µM sample. The arrow marks hydroxymycolate. 
(C) Two-dimensional Argentation TLC of BCG-R treated with 0.5 µM dioctylamine. The 
sample was separated without silver (dimension 1) and then with silver (dimension 2). The silver 
dimension retards lipids on the basis of unsaturation. Two unsaturated derivatives of alpha 
mycolate are visible, as well as unsaturated ketomycolates and methoxymycolates (arrowhead). 
(D and E) Two-dimensional Argentation TLC of BCG-R treated with 2 µM (D) and 10 µM (E) 
dioctylamine. Unsaturated derivatives of the alpha mycolates and ketomycolates are marked with 
arrowheads, as are the positions of mature alpha mycolate (α), ketomycolate (k), and 
hydroxymycolate (hy). 
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In addition, treatment with 4 and 10 µM dioctylamine caused accumulation of a 

mycolic acid migrating slower than ketomycolate (see arrow in Figure 2-3 B), consistent 

with the previously reported hydroxymycolate that accumulates in the absence of 

functional MmaA3(Annaik Quemard et al., 1997). This polar lipid migrated slower than 

authentic epoxymycolate from Mycobacterium smegmatis (data not shown), confirming 

its likely identity as hydroxymycolate. At 10 µM, there is substantial but incomplete 

inhibition of ketomycolate biosynthesis (compare 0.125 to 10 µM in Figure 2-3 B). The 

observed mycolic acid profiles with dioctylamine treatment are consistent with loss of 

MmaA3 and MmaA4 function, suggesting that dioctylamine inhibits these enzymes. 

 Whereas inhibition of MmaA3 and MmaA4 leads to loss of an entire mycolate 

class and is therefore easily detected on one-dimensional TLC, chemical inhibition of 

other cyclopropane synthases produces unsaturated lipids that are identical in polarity to 

their parent lipids and therefore not detectable on one-dimensional TLC. This phenotype 

was previously demonstrated in M. tuberculosis strains lacking the mycolic acid 

cyclopropane synthases PcaA, MmaA2, and CmaA2(Michael Glickman, 2003; Michael 

Glickman et al., 2000; Michael Glickman et al., 2001). To test the inhibition of these 

enzymes by dioctylamine, we performed two-dimensional argentation TLC on mycolic 

acids isolated from dioctylamine-treated BCG-R. In this technique, lipids are first 

separated by polarity and then by degree of any type of unsaturation in the second 

(silver) dimension. After treatment of BCG-R with 0.5 µM dioctylamine, we observed 

two unsaturated derivatives of the alpha mycolate, consistent with inhibition of alpha 

mycolate cyclopropanation (Figure 2-3 C, arrow- head to the left of mature alpha). We 
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also observed unsaturated derivatives of methoxymycolates and ketomycolates, 

consistent with impaired cyclopropanation of the proximal position of these lipids 

(Figure 2-3 C). Cells treated with 2 mM dioctylamine produced no mature alpha 

mycolate and two species of unsaturated alpha mycolate, the more abundant of which 

was more fully retarded (arrowheads in Figure 2-3 D). The ketomycolate appeared as 

three species, mature keto and two unsaturated species, likely cis and trans unsaturated. 

At 10 µM, almost no mature ketomycolate was observed (Figure 2-3 E). These data 

strongly indicate that dioctylamine is a dose-dependent inhibitor of multiple mycolic 

acid methyltransferases. These TLC data, combined with extensive prior genetic 

characterization of mycolic acid modifications, indicate that dioctylamine inhibits the 

lipid modifications performed by MmaA4, MmaA3, PcaA, MmaA2, and CmaA2. 

 

Mycolic acid methyltransferases are direct targets of dioctylamine 

The data presented above strongly indicate that dioctylamine inhibits multiple 

pathways of mycolic acid cyclopropanation and methylation. However, this effect could 

be due to direct inhibition of mycolic acid methyltransferase enzymes or an indirect 

effect. To prove that the methyltrasferases are direct dioctylamine targets, we 

overexpressed hemagglutinin-tagged versions of MmaA1, MmaA3, CmaA2, PcaA, 

MmaA2, and MmaA4 on a multicopy episomal plasmid and tested the effect on 

dioctylamine sensitivity. 
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Figure 2-4. Mycolic acid methyltransferases are direct targets of dioctylamine. 
(A) Wild-type BCG-R (plus empty vector) or BCG-R carrying a multicopy plasmid expressing 
MmaA4 (MmaA4 OE) were treated with vehicle (left lanes) or dioctylamine (right lanes) and 
radiolabeled mycolic acids were analyzed by TLC. 
(B) Wild-type BCG-R (plus empty vector) (top panel) or BCG-R carrying a multicopy plasmid 
expressing CmaA2 (CmaA2 OE) (bottom panel) were treated with dioctylamine and 
radiolabeled mycolates were analyzed by two-dimensional argentation TLC. 
(C) Wild-type BCG-R (plus empty vector) (upper left) or BCG-R carrying a multicopy plasmid 
expressing PcaA (PcaA OE) (upper right) or MmaA2 (MmaA2 OE) (lower left) were treated 
with dioctylamine and radiolabeled mycolic acids were analyzed by two-dimensional argentation 
TLC. The black arrowhead indicates alpha mycolate with two double bonds and the white 
arrowhead indicates mature alpha mycolate with two cyclopropane rings. 

 
 

The expression of these proteins was confirmed by western blotting in M. 

smegmatis and BCG-R. Overexpression of MmaA4 strongly reversed the inhibition of 
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ketomycolate synthesis observed with dioctylamine (Figure 2-4 A). Similarly, 

overexpression of CmaA2 reversed the accumulation of unsaturated ketomycolates seen 

with dioctylamine treatment (Figure 2-4 B). Overexpression of MmaA2 and PcaA also 

reversed the accumulation of unsaturated alpha mycolate in dioctylamine-treated cells. 

In MmaA2-expressing cells, the predominant alpha mycolate that accumulated was fully 

saturated (white arrowhead in Figure 2-4 C), whereas in PcaA-expressing cells, the alpha 

mycolate was mixture of monounsaturated and dicyclopropanated lipids (Figure 2-4 C). 

Although diunsaturated alpha mycolate is the major lipid in dioctylamine-treated cells 

(black arrowhead in Figure 2-4 C), none of this lipid was visible in the PcaA 

overexpressor. In contrast, although the lack of methoxymycolate in dioctylamine-

treated cells is consistent with loss of MmaA3 function, overexpression of MmaA3 did 

not reverse this effect. This suggests that MmaA3 may be an indirect target of 

dioctylamine, possibly through other mycolic acid methyltransferases. 

 

Dioctylamine inhibits the methyltransferase activity of CmaA2 in vitro 

To examine the in vitro activity of M. tuberculosis mycolic acid 

methyltransferases and their inhibition of dioctylamine, we developed a new enzymatic 

colorimetric assay that detects conversion of S-adenosylhomocysteine (SAH) to 

homocysteine by SAH hydrolase (SahH) (Lozada-Ramirez et al., 2006). This assay is 

diagrammed in Figure 2-5 A. Using this assay, we screened unsaturated fatty acids, 

including oleic, nervonic, arachidonic, and cis-11,14-eicosadienoic acid as substrates of 

M. tuberculosis CmaA2. Although none of these substrates are close in structure to the 
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authentic substrate (i.e., a long chain acyl-ACP), we were able to demonstrate 

cyclopropanation of double bonds and determine kinetic parameters using a Lineweaver-

Burk plot (Figure 2-5 B). Of these, Eicosadienoic acid (Km = 16.8 µM and kcat = 0.0027 

s−1) was the best candidate to test the inhibitory effect of dioctylamine. An accurate IC50 

was not obtainable because we had to use a relatively large amount of protein (4 µM) in 

order to observe the reaction progress. However, the inhibition from dioctylamine was 

obvious as it reduced the activity of CmaA2 in a concentration-dependent manner 

(Figure 2-5 C). When 2 µM dioctylamine was added to the reaction, the rate was reduced 

by 50%, indicating a fairly potent inhibition against the enzyme and consistency with 

dioctylamine inhibition of the cyclopropane fatty acid synthase from E. coli. These data 

demonstrate that dioctylamine is a direct inhibitor of mycolic acid methyltransferases. 

 

 
A 

 

Figure 2-5. Dioctylamine inhibits CmaA2 in vitro. (A) Scheme of the enzymetic assays for M. tb 
CMASs. DTNB, dithiobis-(2-nitrobenzoic acid); TNB, 2- nitro-5-thiobenzoic acid. (B) 
Lineweaver–Burk plot using eicosadienoic acid as substrate. (C) The in vitro inhibitory action of 
dioctylamine on CmaA2 activity. 
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B 

 

C 

 

Figure 2-5 continued. 
 

The structure of CmaA2 with bound dioctylamine reveals the molecular basis for activity 

To further demonstrate that dioctylamine is a direct inhibitor of mycolic acid 

methyltransfer and explore the molecular basis for its activity, we solved the structure of 

the CmaA2 protein in complex with the compound. The structure was solved by 

molecular replacement at 2.67 Å resolution (Table 2-1). The overall fold is largely 

similar to the previously reported structure of CmaA2 complexed with DDDMAB and 

SAH (PDB code 1KPI)(Chih-chin Huang et al., 2002), showing an rmsd of 0.315 Å after 

superimposition (Figure 2-6 A). Moreover, the lipophilic ligands in the two structures 

are similarly oriented in the binding site of the mycolic acyl substrate. Like DDDMAB, 
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dioctylamine adopts a U-shape conformation with the nitrogen pointing to the previously 

revealed SAM binding pocket and the two aliphatic chains extending to the catalytic site 

entrance. Modeling SAM into the active site by superimposing the MmaA4-SAM 

structure (PDB code 2FK8) with CmaA2-SAH and dioctylamine complex, we see the 

nitrogen of dioctylamine is approximately 3.1 Å away from the active methyl group of 

SAM, indicating that the nitrogen is situated at the position of the substrate double bond 

to be modified. Whereas the hydrophobic binding pocket binds the aliphatic chains of 

DDDMAB and dioctylamine similarly, the ammonium or amine nitrogens differ 

substantially in their interaction with the protein (Figure 2-6 B). For both of the species, 

the residues within 5 Å distance from nitrogen include Tyr24, Tyr41, Gly145, Glu148, 

and Tyr247. Tyr41 stabilizes the ammonium of DDDMAB through cation-π interaction. 

In contrast, when dioctylamine binds to the same site, its nitrogen drifts 0.5 Å away from 

the face of Tyr41. Gly145 tilts toward the nitrogen at the same time, with its backbone 

oxygen forming a van der Waals interaction with the nitrogen atom at a 3.2 Å distance. 

This distance is 4.0 Å in the structure in complex with DDDMAB, which is likely the 

result of the steric repulsion from the two methyl groups of the ammonium. Thus, this 

structural analysis of the dioctylamine-CmaA2 interaction predicts that amine-based 

inhibitors of these will be more potent than ammonium-based inhibitors. 
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Table 2-1. Data collection and refinement statistics for CmaA2 in complex with dioctylamine. 

Data collection 

Space group I4122 

Unit cell dimensions (Å) a = b = 106.86 c = 224.98 

Molecules/asymmetric unit 1 

Wavelength (Å) 0.9795 

Resolution (Å) 50−2.68 

Completeness (%)1 99.7 (98.1) 

No. of reflections 287,172 

I/σI1 20.1 (1.62) 

Rsym
1 0.0413 (0.76) 

Refinement statistics 

Resolution (Å2) 38.74−2.68 

No. of reflection work 18,719 

No. of protein atoms 2,380 

No. of water molecules 41 

No. of heteroatoms 21 

Rcryst (%) 22.29 

Rfree (%) 24.30 

Rmsd bond lengths (Å) 0.012 

Rmsd angles (Å) 1.157 

Mean temperature factor (Å2) 61.33 
1. Numbers in parenthesis indicate data for highest-resolution shell. 
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Figure 2-6. Structures of M. tuberculosis CmaA2 in complex with dioctylamine and 
DDDMAB/SAH. 
(A) The α-Carbon traces and ligands of the two structures are shown with dioctylamine colored 
pink and DDMAB/SAH colored green. The two structures show similar overall folding. All the 
ligands including bicarbonate are represented as ball and stick. The surface of the protein is 
shown with transparency. 
(B) Stereo diagram of the active site residues in proximity to dioctylamine or DDDMAB 
nitrogens. Dioctylamine and the cognate bicarbonate are represented as ball and stick, while 
DDDMAB and the cognate bicarbonate are represented as stick. The specific van der Waals 
interaction between the backbone oxygen of Gly145 and the nitrogen of dioctylamine is shown 
as dotted line. 
 

Dioctylamine is a growth inhibitor of BCG and M. tuberculosis 

To test the hypothesis that simultaneous inhibition of multiple mycolic acid 

methyltransferases is lethal to mycobacteria, we grew BCG-R and M. tuberculosis 
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Erdman in 7H9 media or 7H10 plates supplemented with different concentrations of 

dioctylamine. We found that M. tuberculosis growth was partially inhibited by 4 µM and 

completely inhibited by a 6 µM (Figure 2-7 A). Similar results were obtained with M. 

tuberculosis grown on solid media containing dioctylamine (Figure 2-7 B) and with 

BCG-R in liquid and solid media (data not shown). We did find that there was a 

considerable inoculum effect, and at higher inoculums the inhibitory effect was seen at 

higher concentrations of dioctylamine (data not shown). As the growth inhibitory 

concentration of dioctylamine is similar to the concentration active against mycolic acid 

methyltransferases, this data, coupled with the genetic data presented above, strongly 

suggest that mycolic acid modification may be an essential function for slow growing 

mycobacteria. 

To further substantiate that growth inhibition effect of dioctylamine on 

mycobacteria is indeed related to its effect on cyclopropanation, we used another tool 

compound, hexadecyltrimethylammonium bromide (CTAB). This compound, which has 

some detergent properties, was previously found to crystallize in the active site of 

CmaA1 and shares an ammonium head group similar to DDMABB, suggesting that it 

should be a weaker inhibitor than dioctylamine if growth inhibition is attributable to 

binding to mycolic acid methyltransferases. Consistent with this structure-activity 

prediction, we found CTAB to be 5-fold less active than dioctylamine in inhibiting 

mycobacterial growth (Figure 2-7 C). CTAB was also approximately 5-fold less active 

than dioctylamine in inhibiting methoxymycolate synthesis in vivo (Figure 2-7 D). 
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Figure 2-7. Dioctylamine inhibits growth of M. tuberculosis 
(A) M. tuberculosis Erdman was grown in 7H9 media, supplemented with 0 (vehicle)(●), 2 (■), 
4 (▴), and 6 µM (▾) dioctylamine. OD600 measurements were taken daily. A representative 
experiment out of five is shown. 
(B) M. tuberculosis Erdman was grown on 7H10 plates, impregnated with 0, 4, or 10 µM 
dioctylamine. The plates were kept at 37°C with 5% CO2 for 4 weeks. 
(C) BCG-R was grown in the indicated concentrations of CTAB and bacterial growth was 
measured by OD. 
(D) Radiolabeled mycolic acids from BCG-R treated with the indicated concentrations of CTAB 
(µM) were separated by one-dimensional TLC. 
(E) BCG-R overexpressing six methyltransferases (MmaA1-4, PcaA, and CmaA2) (MGM1950) 
is more resistant to dioctylamine than BCG-R with vector alone (MGM1910). A representative 
experiment out of four is shown. 
(F) The ratio of growth in the presence of dioctylamine to without dioctylamine at the 192 hr 
time point from the experiment in (E). 
 

To further demonstrate that inhibition of growth by dioctylamine is the direct 

result of inhibition of multiple mycolic acid methyltransferases, we overexpressed these 

enzymes and tested for resistance to dioctylamine. None of the strains overexpressing a 
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single enzyme (either MmaA1, MmaA2, MmaA3, MmaA4, CmaA2, or PcaA) were 

resistant to dioctylamine (data not shown), which is consistent with the nonessentiality 

of these gene products in prior genetic experiments. We then overexpressed 

simultaneously, from a single plasmid, six different enzymes of this family: MmaA1, 

MmaA2, MmaA3, MmaA4, CmaA2, and PcaA. The strain overexpressing these six 

enzymes (mgm1950) grew three times as fast as the control strain (mgm1910) in 6.5 µM 

dioctylamine, indicating partial resistance (Figure 2-7 E and Figure 2-7 F). This data 

indicates that dioctylamine kills M. tuberculosis by inhibiting multiple 

methyltransferases. 

 

Mycolic acid modification is required for acid fastness and intrinsic resistance to 

antibiotics 

The activity of dioctylamine against mycolic acid methyltransferases allowed us 

to probe the physiologic function of this unique lipid modification in a way not possible 

using the previously isolated single gene mutants or, as in prior studies, using 

overexpression of individual enzymes(Ying Yuan et al., 1998). To test whether 

cyclopropanation contributes to antibiotic resistance, we tested sublethal concentrations 

of dioctylamine in combination with sublethal concentrations of isoniazid (INH), 

ciprofloxacin, and kanamycin. We found strong synergy between dioctylamine and both 

INH and ciprofloxacin (Figures 2-8 A and B), but no synergy with kanamycin (data not 

shown). To show that this synergy is related to increased drug penetration in 

dioctylamine-treated cells, we measured the uptake of radiolabeled ciprofloxacin in 
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bacteria treated with 4 µM dioctylamine. We found a significant increase in 

ciprofloxacin penetration into dioctylamine-treated cells, an effect that was most evident 

after 5 min, but was sustained after 40 min (Figures 2-8 C). These results suggest that 

the mechanism of synergy between these two antibiotics facilitated uptake of 

ciprofloxacin by dioctylamine's effects on the mycobacterial membrane. A similar 

mechanism may explain synergy between INH and dioctylamine, although it is possible 

that the INH synergy is also a result of their combined effect on mycolic acid synthesis. 

 

 

Figure 2-8. Mycolic acid methyltransferases are required for drug resistance and acid fastness of 
Mycobacteria. 
(A) BCG-R was treated with INH, dioctylamine (Dio), or both at the indicated concentrations 
and growth was measured by OD at 600 nm. 
(B) BCG-R was treated with ciprofloxacin (Cipro), dioctylamine (Dio), or both at the indicated 
concentrations and growth was measured by OD at 600 nm. 
(C) Accumulation of 14C ciprofloxacin in untreated (white bar) or dioctylamine treated (4 µM; 
black bar) at the indicated time points after 14C ciprofloxacin addition. The y axis is counts per 
minute. 
(D) Untreated or dioctylamine (4µM)-treated cells were examined by acid fast staining using the 
modified Kinyoun technique. 
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Acid fastness of mycobacteria, a hallmark of this genus, is thought to reflect the 

hydrophobicity and structure of mycolic acids in the cell wall. This idea is supported by 

prior findings that M. tuberculosis lacking kasB display both loss of acid fastness and 

attenuation(Apoorva Bhatt et al., 2007). We tested the effect of 4 µM dioctylamine on 

the acid fastness of BCG-R and found that most of the bacteria lost their acid fastness 

(Figure 2-8 D), despite only partial growth inhibition. 

 

Discussion 

Cyclopropanation is a common membrane modification in bacteria and 

plants(Dennis Grogan and John Cronan, 1997; Xiaoming Bao et al., 2002). In most 

cases, the physiologic function of cyclopropanation is poorly defined, although 

cyclopropanation clearly has substantial effects on membrane fluidity in model 

systems(James McGarrity and John Armstrong, 1981; Nagamachi et al., 1991). 

Pathogenic mycobacteria have an extensive set of cyclopropane modifications that 

decorate the signature lipid of the mycobacterial cell wall, the mycolic acid. Recent 

studies have strongly implicated mycolic acid cyclopropanation in M. tuberculosis 

pathogenesis through its effect on the immunomodulatory properties of trehalose 

dimycolate(Vivek Rao et al., 2006; Vivek Rao et al., 2005). However, these studies did 

not clearly establish mycolic acid methyltransferases as an attractive drug target. Here 

we demonstrate that chemical inhibition of multiple mycolic acid methyltransferases is 

lethal to mycobacteria and causes pleiotropic alterations in cell envelope structure and 

drug susceptibility. These studies provide strong scientific basis for targeting mycolic 
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acid cyclopropanation as an antibiotic strategy against M. tuberculosis. 

Our findings also reveal novel physiologic roles of cyclopropanation in 

mycobacteria. Although some prior studies have indicated a role for cyclopropanation in 

membrane fluidity and permeability(Kathleen George et al., 1995; Ying Yuan et al., 

1998), the exact role of cyclopropanation in the physiology of pathogenic mycobacteria 

was unclear. A prior study indicated that the antitubercular thiacetazone may affect 

cyclopropanation, but this study concluded that the growth inhibitory effect of this drug 

was unrelated to its effect on cyclopropanation(Anuradha Alahari et al., 2007). This 

conclusion was based on the difference between the minimum inhibitory concentration 

of thiacetazone and the concentration required to affect cyclopropanation. In a more 

recent paper, the authors show that MmaA4 is required for activity of thiacetazone and 

that deletion of mmaA4 confers resistance, rather than hypersensitivity, to the 

drug(Anuradha Alahari et al., 2009). Using dioctylamine as a tool compound, we 

suggest that pharmacologic inhibition of this enzyme class causes loss of viability, a 

novel and unanticipated finding. Our finding that mycolic acid methyltransferases are 

essential for viability suggests an unanticipated role for mycolic acid modification in 

some essential cellular process. The most likely cause of this essentiality is lethal 

dysregulation of membrane fluidity leading to impaired protein localization or cell 

division. Although an off-target effect of dioctylamine causing cell death is possible, we 

believe this is unlikely because: (1) cell death is observed at the same concentration 

required to inhibit multiple methyltransferases in vivo; (2) overexpression of multiple 

enzymes can partially reverse the growth defect; (3) the structure of CmaA2 protein with 
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dioctylamine both reveals that this enzyme is a direct target and that dioctylaimine is 

acting as a substrate mimic rather than a general SAM antagonist. This makes 

nonspecific inhibition of other SAM-dependent methyltransferases (such as DNA 

methyltransferases) with nonlipid substrates unlikely. The essential physiologic role of 

mycolic acid methyltransferases is an area of interest that will be the subject of future 

investigations. 

Although dioctylamine is unlikely to be a useful antimicrobial due to host 

toxicity (data not shown), our data provide strong support for targeting mycolic acid 

methyltransferases for inhibitor development and provides a structural framework for 

optimizing active site binding through structure guided design. The structures of CmaA2 

reveal different binding determinants for ammonium or amine-based inhibitors. The 

ammonium ion mimics the carbocation intermediate of the cyclopropanation reaction 

and is stabilized by cation-π interaction. In contrast, through mimicking an electron-

donating double bond, the amine nitrogen atom of dioctylamine forms a van der Waals 

interaction with Gly145. This interaction will not occur in a mycolate substrate and 

provides a structural explanation for the successful competition of dioctylamine with the 

natural mycolate substrates. Moreover, this interaction may contribute more than cation-

π interaction to enhancing inhibitor binding, evident from our finding that acylamine 

compounds are more potent than ammonium compounds (CTAB) at inhibiting 

cyclopropanation. This indicates that amine-based inhibitors may serve as a template for 

further drug development. 
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Experimental Procedures 

Bacterial strains and growth conditions 

M. smegmatis mc2155 was grown in 7H9 liquid media supplemented with 0.05% 

Tween 80, 0.5% glycerol, and 0.5% dextrose. BCG-R (kindly provided by M. Behr), 

BCG-P, and M. tuberculosis Erdman were grown in 7H9 media supplemented with 

0.05% Tween 80, 0.5% glycerol, and 10% OADC (for M. tuberculosis) or ADS (for 

BCG). Growth on plates was done on 7H10 plates supplemented with glycerol and 

OADC or ADS at the same concentrations. 

Growth in 7H9 media was monitored by optical density (OD) at 600 nM 

measurement. Antibiotic concentrations were 20 µg/ml for kanamycin, 50 µg/ml for 

hygromycin, and 12.5 µg/ml for zeocin. 

 

Construction of mutant strains 

Deletion of mmaA1 and cmaA2 was done as described previously(Hideki 

Makinoshima and Michael Glickman, 2005; Michael Glickman et al., 2001). Briefly, a 

temperature-sensitive mycobacteriophage (phAE87) was used to introduce a 

hygromycin-resistance cassette interrupting the candidate gene at 39°C. The bacteria 

were plated on 7H10 plates with hygromycin. The resulting colonies were analyzed by 

southern blotting using a probe flanking the gene of interest. Removal of mmaA3 

previously introduced via the attB site on the pMV306kan plasmid (marker exchange) 

was done be electroporating a pMV306zeo (pMV306kan with a zeocin-R cassette 

replacing the kanamycin-R) and plating the bacteria on plates supplemented with zeocin. 
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 Mycolic acid preparation and analysis 

Mycobacteria were grown in 7H9 media to an OD600 of 0.3–0.5 in a volume of 

50–200 ml. 14C-labeled acetic acid was added to the media at a concentration of 

1µCi/ml, and the bacteria were allowed to grow for 6 hr (in the presence of 

dioctylamine) or 24 hr (without dioctylamine) more. The bacteria were harvested, and 

mycolic acids were extracted as previously described(Michael Glickman et al., 2001). 

Single dimension separation of mycolic acid classes was done on a normal phase silica 

gel HPTLC plate (Analtech) and run in a 95:5 mixture of hexanes/ethyl acetate for five 

to six developments. Two-dimensional separation was done by immersing 90% of the 

TLC plate in 10% silver nitrate, activating at 130°C for 20 min, running the sample along 

the line with no silver nitrate (first dimension), rotating the TLC plate 90°, and running 

for five to six additional developments into the silver nitrate impregnated area. After 

completion, autoradiograms were developed using a Kodak BioMax Transcreen LE 

intensifying screen at 80C. NMR analysis was done as previously described(Michael 

Glickman et al., 2001). Bacteria were grown to an OD600 of 0.8, in a volume of 400–500 

ml. Bacteria were harvested and mycolic acids were prepared as before and resuspended 

in d-chloroform for the NMR analysis. 

 

Radiolabeled ciprofloxacin permeability 

14C-ciproflixacin (15 mCi/mmol) was purchased from Moravek biochemicals. 

Permeability testing was done as described previously(Jacqueline Chevalier et al., 2000; 
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Jun Liu et al., 1996). Fifty milliliters total volume of BCG-R was grown with or without 

4 mM dioctylamine to an OD600 of 0.5. The cells were concentrated and resuspended in 

1 ml to 1.5*1010cfu/ml and left to rotate at 8 rpm at 37°C for 45 min. Carbonyl cyanide 

3-chlorophenyl hydrazone (Sigma-Aldrich) was added to a final concentration of 0.1 

mM for 30 min, 14C -ciprofloxacin was added to a concentration of 25 µM, and cells 

were left rotating at 37°C. Samples of 200 µl were removed at 5, 20, and 40 min. Each 

sample was washed five times with PBS, filtered through a 0.45 µm GF/C filter on a 

Unifilter-96 plate (Perkin-Elmer), washed again, and left to dry overnight. Radioactivity 

was measured by scintillation reader (Packard). 

 

Production of M. tuberculosis CmaA2 

Cloning, protein expression, and purification of CmaA2 were performed 

similarly as previously reported(Chih-chin Huang et al., 2002), except that a modified 

pET28b vector was used to incorporate TEV cleavage sequence right ahead of the N-

terminus of the protein. The protease TEV was consequently used to remove the His6 

tag. 

 

Crystallization and data collection 

2 mg mL-1 CmaA2 in 25 mM Tris-HCl (pH 8.0) was incubated in ice with 50 

mM dioctylamine for 20 min. The protein was then concentrated to 10 mg mL-1 and 

crystallized at 18°C by hanging drop vapor diffusion. Each drop contained an equal 

volume of the protein solution and reservoir solution (2 M ammonium sulfate and 0.1 M 
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CAPS [pH 9.0]). The crystal of binary CmaA2 was flash- frozen in liquid nitrogen using 

cryoprotectant paratone. The diffraction data were collected at beamline 19-ID at the 

Advanced Photon Source, Argonne National Laboratory, and then was processed and 

reduced using HKL2000(Zbyszek Otwinowski and Wladek Minor, 1997). 

 

Structure determination and model refinement 

The structure of CmaA2 was solved by molecular replacement using 

Molrep(Alexei Vagin and Alexei Teplyakov, 1997) in CCP4. CmaA2-SAH-DDDMAB 

(PDB code 1KPI) with all nonprotein molecules removed, was used as the search model. 

The crystal was in a space group of I422. There was one protein molecule in each unit 

cell with dimensions of a = b = 106.86 Å, c = 224.98 Å , and a = b = c = 90°. A single 

solution for the molecular replacement was obtained. After rigid-body and restrain 

refinement by Refmac5(Murshudov et al., 1997) in CCP4, the Rcryst and Rfree were 24.6% 

and 26.8%, respectively. These values were reduced to 23.5% and 26.0% once 

dioctylamine and bicarbonate ion were manually built in the model by examining the Fo 

- Fc map in XtalView (McRee, 1999). The final model containing residues 9–302 as 

well as 41 water molecules was obtained after further cycles of model building and 

PHENIX refinement(Afonine et al., 2005) yielding R factors of 22.3% and 24.3%. The 

full crystallization statistics are given in Table 2-1. 

 

Enzymatic assay for CmaA2 

M. tuberculosis sahH (Rv3248c) was amplified by PCR, cloned into pET15b 
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vector, and then transformed into Novagen BL21(DE3) cells. The cells were cultured at 

37° till OD600 reached ~ 0.8. Then 1 mM IPTG was added to induce protein expression 

for 20 hours at 18°. After purified by Ni column, the protein was made apo-form by 

ammonium sulfate precipitation, and then dissolved in 20 mM phosphate buffer with pH 

= 7.5. 

All assays were performed in the presence of a 100 mM (pH 7.5) phosphate 

buffer. Twenty-five micromoles of SahH, 250 µM NAD, and unsaturated fatty acid were 

preequilibrated for more than 5 min. After 400 µM DTNB was added, the solution was 

blanked and added to preincubated 4 µM CmaA2/100 µM SAM to start the reaction. To 

examine the inhibition by dioctylamine, the dioctylamine/DMSO solution was added 

together with DTNB to the reaction mixture containing 20 µM cis-11,14-eicosadienoic 

acid. 

 

Additional Unpublished Results 

Dioctylamine binds to CmaA2 in vitro 

Analyses of known CMASs structures reveal the presence of a few tryptophans 

and tyrosines in the vicinity of active site, allowing us to use fluorescence quenching 

assay to determine the binding affinity of dioctylamine. The total fluorescence and 

specific tryptophan fluorescence were monitored at excitation wavelength of 279 nm 

(Figure 2-9 A) and 295 nm, respectively, for both CmaA2 and MmaA4 (data not shown). 

Titration of dioctylamine induced a more significant fluorescence change of CmaA2 

than that of MmaA4 at either wavelength, indicating a higher affinity of the compound 



 

 56 

to the former. Indeed the manner of fluorescence decrease of MmaA4 suggests it likely 

to be caused by nonspecific interaction. Further treatment of the data by both nonlinear 

regression and double reciprocal method indicate a single binding site for dioctylamine 

in CmaA2 with Kd ≅ 0.2 µM (Figure 2-9 B). 

 

A 

 

B 

 

Figure 2-9. Dioctylamine binds to CmaA2 in vitro. (A) Fluorescence titration of CmaA2 by 
dioctylamine at the excitation wavelength of 279nm. (B) Double reciprocal curve fitting is 
applied to the normalized fluorescence change of CmaA2. Filled and unfilled spots represent 
data obtained at excitation 279 nm and excitation 295 nm respectively. 
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Fragment-based screening of ligands for CmaA2 

 In search for chemical scaffolds and pharmacophores that can bind to the 

CMASs, we have applied the fragment-based drug design approach. First, the selected 

compounds are screened in a high-throughput manner using differential scanning 

fluorimetry (DSF), a technique particularly efficient in identifying low-molecular-weight 

ligands that bind to a target protein (Figure 2-10 A)(Frank Niesen et al., 2007). Second, 

saturation transfer difference (STD)-NMR, a technique typically used in compensation 

to DSF in the fragment-based drug design approach (Figure 2-10 B)(Aldino Viegas et 

al., 2011; Lawrence Kuo, 2011), is carried out to verify the hits identified by DSF. A 

total of 823 compounds from Enamine Fragment Library 2012(Herman Verheij, 2006; 

Miles Congreve et al., 2003) were screened for binding to CmaA2 by DSF, which 

yielded 18 compounds that caused the melting temperature of CmaA2 to increase by 

more than 2.95°C (Table 2-2). We repurchased 8 out of the 18 hit compounds based on 

their commercial availability, and performed STD-NMR to confirm the binding for 6 of 

them (Figure 2-10 C and D, Table 2-2). These lead fragment compounds will serve for 

the design of specific and potent inhibitors against M. tuberculosis CMASs with rational 

chemical modifications guided by further structural characterizations. 
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A 

 

B 

 

 

Figure 2-10. Fragment-based screening for ligands that bind to CmaA2. 
(A) Schematic diagram of DSF(Frank Niesen et al., 2007). The solid and dashed curves 
represent the dissociation curves of a target protein in the absence and presence, respectively, of 
a ligand. The molecules of SYPRO Orange dye are shown as orange particles. 
(B) Schematic diagram of STD-NMR(Aldino Viegas et al., 2011). 
(C) The example of typical fluorimetry obtained for a hit compound identified by DSF. 
(D) The example of typical spectra obtained for a hit compound verified by STD-NMR. The 
assignment of the peaks is marked with the same-color arrows. 
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Table 2-2. Lead fragments identified by DSF followed by STD-NMR. 

Hit compounds identified by DSF ΔTm (°C) Repurchased Confirmed binding by 
STD-NMR 

 

5.4 YES YES 

 

C 

 

D 

 

Figure 2-10 continued. 
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Table 2-2 continued. 

Hit compounds identified by DSF ΔTm (°C) Repurchased Confirmed binding by 
STD-NMR 

 

5.4 YES NO 

 

5.0 YES YES 

 

5.0   

 

4.9 YES YES 

 

4.9 YES YES 

 

4.85   

 

4.4 YES NO 
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Table 2-2 continued. 

Hit compounds identified by DSF ΔTm (°C) Repurchased Confirmed binding by 
STD-NMR 

 

4.35   

 

4.35   

 

4.05   

 

3.85   

 

3.85   

 

3.35   
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Table 2-2 continued. 

Hit compounds identified by DSF ΔTm (°C) Repurchased Confirmed binding by 
STD-NMR 

 

3.40   

 

3.35 YES YES 

 

2.97   

 

2.95 YES YES 
 

 

Additional Unpublished Experimental Procedures 

Determination of dissociation constant by fluorescence titration 

All measurements were performed in 100 mM HEPES buffer (pH 7.5). Emission 

profiles were obtained by using excitation at either 279 nm or 295 nm, and monitoring 

emission from 250 nm to 450 nm. Maximum emission appeared at ~ 335 nm for CmaA2 

and ~ 343 nm for MmaA4. Titration experiments were carried out by adding increasing 

amount of dioctylamine/DMSO to 1.5 µM protein/HEPES buffer. Fluorescence 
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intensities were corrected for DMSO dilution. Fluorescence intensity was normalized by 

ΔF/ΔFmax, in which ΔF was the corrected fluorescence change of each titration and ΔFmax 

was the maximum change through the experiment. Assuming each protein has n 

equivalent binding sites for dioctylamine, we determined the binding affinity (Kd) and 

binding sites (n) using the fomula: ΔFmax/ΔF = n-1*Kd
-1*[dioctylamine]-1 + n-1. 

 

Differential scanning fluorimetry (DSF) 

 All the experiments (20 µL) were performed in 96-well RT-PCR plated by 

Stratagene Mx3005P QPCR system. Each reaction mixture contained 10 µM CmaA2 in 

presence of 100 mM MES buffer (pH 6.5), 500 µM SAM, and 2.5* SYPRO Orange 

protein gel stain from Life Technologies. The fragments were added in an amount of 

5mM, which were later compared with the control reaction mixtures with addition of 1 

µL DMSO. 

 

Saturation transfer difference (STD)-NMR 

 All the experiments were performed on Bruker Avance III 400MHz NMR 

spectrometer. Each experiment (600µL) contained 20 µM CmaA2 in presence of 50 mM 

phosphate buffer (pH 7.5), 10% D2O, and 2 mM of the fragment compound. 

 

  



 

 64 

CHAPTER III  

CRYSTALLOGRAPHIC AND MODELING STUDIES AID THE UNDERSTANDING 

OF PRODRUG MECHANISM* 

 
 
Introduction 

Isoniazid (INH) and ethionamide (ETH) have been used extensively in the first-

line and second-line treatment of TB, respectively, since 1950s. Both reagents are pro-

drugs that undergo modifications in vivo to become bactericidal adducts. Complicated by 

the involvement of intracellular activation and metabolism, the action mode of INH and 

ETH remained mysterious for a long period until late 1990s. The mechanism of the two 

pro-drugs have been gradually unraveled in the past 15 years, aided by genomic and 

biochemical studies, especially explicated by structural demonstrations at an atomic 

resolution. 

INH must first be activated by KatG, an endogenous catalase/peroxidase(Martin 

Wilming and Kai Johnsson, 1999). The mode of INH action remained unclear until an 

                                                
* Portions of this work have been published in and are reprinted with permission from: 
Feng Wang, Paras Jain, Gulcin Gulten, Zhen Liu, Yicheng Feng, Krishna Ganesula, 
Alifiya Motiwala, Thomas Ioerger, David Alland, Catherine Vilchèze, William Jacobs 
Jr. and James Sacchettini. “Mycobacterium tuberculosis dihydrofolate reductase is not a 
target relevant to the antitubercular activity of isoniazid.” Antimicrobial Agents and 
Chemotherapy 2010, 54 (9), 3776-3782 Copyright 2010 (American Society for 
Microbiology). 
And 
Catherine Vilchèze, Yossef Av-Gay, Rodgoun Attarian, Zhen Liu, Manzour H. Hazbón, 
Roberto Colangeli, Bing Chen, Weijun Liu, David Alland, James C. Sacchettini, 
William R. Jacobs Jr. “Mycothiol biosynthesis is essential for ethionamide susceptibility 
in Mycobacterium tuberculosis.” Molecular Microbiology 2008, 69 (5), 1316-1329 
Copyright 2008 (John Wiley & Sons, Inc). 
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INH-NAD adduct was identified as the bound inhibitor in the active site of InhA, the 

enoyl-acyl ACP reductase involved in long-chain fatty acid biosynthesis, by protein 

crystallography(Denise Rozwarski et al., 1998). It was hypothesized that KatG cleaves 

the hydrazide on INH to an isonicotinoyl radical, which then reacts with NAD to form 

an adduct that binds to and inhibits InhA(Graham Timmins and Vojo Deretic, 2006). 

The crystal structure of InhA bound with the adduct indicates that an isonicotinoyl 

moiety was covalently attached to the 4-position of the nicotinamide ring of NAD 

cofactor in an S configuration. The chemical structure of the INH-NAD adduct was 

found to be consistent with the molecular weight obtained by the mass analysis(Denise 

Rozwarski et al., 1998). Later studies demonstrated that INH-NAD adduct could be 

generated by a KatG-catalyzed oxidation in the presence of NAD+(Benfang Lei et al., 

2000; Martin Wilming and Kai Johnsson, 1999), which strongly inhibits InhA (Ki = 5 

nM) to block mycolic acid biosynthesis(Catherine Vilchèze et al., 2006; Denise 

Rozwarski et al., 1998; Richa Rawat et al., 2003). 

ETH, a thioamide analogue of INH, also functions via inhibiting InhA and 

subsequently the mycolate biosynthesis(Asesh Banerjee et al., 1994). Yet its activation is 

not performed by KatG as the KatG mutant strains resistant to INH remain sensitive to 

ETH(Glenn Morlock et al., 2003). Various spontaneous mutations and clinical isolates 

have indicated that the Baeyer-Villiger monooxygenase EthA is essential to activate 

ETH(Alain Baulard et al., 2000; Andrea DeBarber et al., 2000; Marco Fraaije et al., 

2004). While multiple in vitro biochemical studies failed to interpret the action of EthA 

on ETH(Andrea DeBarber et al., 2000; Tommaso Vannelli et al., 2002), a whole-cell 
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based activation strategy and the subsequent biophysical analyses have delineated the 

bioactive form of ETH(Feng Wang et al., 2007b). In this study, M. tuberculosis EthA 

and InhA are co-expressed by E. coli in presence of ETH. The following mass spectra 

and a 2.2 Å-resolution crystallography clearly show that the purified InhA is complexed 

to ethyl isonicatinoyl-NAD (ETH-NAD) in a way similar to the binding to isonicatinoyl-

NAD (INH-NAD). The isolated ETH-NAD compound exhibits potent inhibition to 

native InhA (Ki = 7 nM), which has further established itself as the bioactive metabolite 

of ETH. 

The active forms of INH and ETH have been defined, still there are 

contradictions regarding their intracellular action and metabolism. For INH, though 

“genetic and biochemical studies have provided convincing evidence that InhA is the 

primary target of INH(Amalio Telenti, 1998; Hongling Guo et al., 2006), other putative 

targets of INH have also been proposed(Graham Timmins et al., 2004; Khisimuzi Mdluli 

et al., 1998). Recently, 17 proteins other than InhA were identified from M. tuberculosis 

lysate that could tightly bind to an affinity matrix derived from INH-NADP or INH-

NAD adducts by proteomic analysis(Argyrides Argyrou et al., 2006a). Among these 

proteins, M. tuberculosis dihydrofolate reductase (DhfR) was shown to be strongly 

inhibited by an INH-NADP adduct in vitro (Kiapp = 1 nM) in a separate study(Argyrides 

Argyrou et al., 2006b). This INH-NADP adduct was synthesized by incubating INH and 

NADP+ in the presence of Mn(III) as a catalyst. The crystal structure of the complex 

indicated that an acyclic 4R INH-NADP adduct was selectively bound in the active site 

of DhfR. In addition, overexpression of dfrA in M. smegmatis caused a 2-fold increase 
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of resistance to INH compared to the wild-type(Argyrides Argyrou et al., 2006b). These 

observations were taken to suggest that M. tuberculosis DhfR is also a target of 

INH(Argyrides Argyrou et al., 2006a; Argyrides Argyrou et al., 2006b). 

For ETH, it is puzzling that its activation is only feasible in vivo, while in vitro 

incubation with EthA only resulted in a number of inactive metabolites(Alain Baulard et 

al., 2000; Andrea DeBarber et al., 2000; Marco Fraaije et al., 2004). This is consistent 

with the unusually low in vitro activity of EthA(Marco Fraaije et al., 2004), which 

suggests the presence of other cellular factors essential for the function of EthA or the 

formation of ETH-NAD. 

Understanding the prodrug action is critical for designing more potent inhibitors 

and strategies to resolve the drug resistance issues. Therefore, together with 

collaborators, we have (i) confirmed that InhA rather that DhfR is the cellular target 

responsible for the antitubercular activity of INH(Feng Wang et al., 2010); (ii) 

discovered that mycothiol is essential for ETH susceptibility in M. 

tuberculosis(Catherine Vilchèze et al., 2008). These are demonstrated by multiple 

genetic and biochemical evidence, among which structural biological has played an 

important role. To determine whether InhA or DhfR is a molecular target of INH, we 

activated the pro-drug in whole-cell based system and observed that only InhA was 

complexed with the INH-NAD adduct using X-ray crystallography. To validate the 

correlation between mycothiol and ETH susceptibility, we interpreted the rationale for 

the inactivation of mycothiol biosynthesis in the spontaneous mutants by homology 

modeling, and we also examined the effect of mycothiol on EthA activity. 
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Results and Discussion 

INH-NADP adduct formation was not observed in an E. coli-based activation system 

coexpressing katG and dhfR. 

In the previous study, a synthetic INH-NADP adduct derived from INH 

demonstrated strong inhibition of M. tuberculosis DhfR in vitro (Kiapp = 1 

nM)(Argyrides Argyrou et al., 2006b). However, the INH-NADP adduct was 

synthesized by using an inorganic catalyst, Mn(III). Thus, the yield of adduct generated 

from this approach might not truly reflect an enzyme-mediated process inside the cell. 

To better mimic the in vivo activation of INH, a cell-based activation system was 

designed to examine the KatG-catalyzed adduct formation and the inhibition of DhfR by 

the adduct. This E. coli-based activation system is similar to the one used previously to 

activate the prodrugs ETH and protionamide (PTH)(Feng Wang et al., 2007b). In this 

system, katG and dfrA were coexpressed in E. coli in the presence of INH to investigate 

whether the activated drug would inhibit DhfR. To construct this system, katG and dfrA 

were cotransformed into the E. coli BL21(DE3) strain and selected on 50 µg of 

kanamycin and carbenicillin/ml. The E. coli strain containing katG and dfrA genes was 

grown and induced in the presence and absence of INH, respectively. After the 

coexpression of both genes was confirmed by SDS-PAGE, recombinant KatG and DhfR 

proteins were readily purified. 

An enzyme assay was performed to determine the activity of purified DhfR. 

DhfR isolated from the experimental sample was found to be fully active (specific 

activity of 12 µmol mg−1 min−1) compared to the enzyme purified from expression in the 
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absence of INH. Since the acyclic 4R INH-NADP adduct is extremely potent against 

DhfR in vitro, it would tightly bind to DhfR if the adduct is indeed generated by KatG 

catalysis inside the cell. However, both the activity assay result and the mass analysis 

indicated that no detectable amount of the INH-NADP adduct had bound to DhfR. The 

coexpressed KatG from the same experimental sample was purified and assayed for its 

activity in vitro. The specific catalase activity of isolated KatG was 17 mol mg−1 min−1, a 

finding comparable to published data (21 mol mg−1 min−1)(Benfang Lei et al., 2000), 

which confirmed that the lack of the INH-NADP adduct did not result from the absence 

of KatG activity. Therefore, the acyclic 4R INH-NADP adduct is not an activated INH 

product generated by KatG catalysis inside the E. coli cell-based system. 

 

INH-NAD adduct was detected in the E. coli based activation system co-expressing katG 

and inhA. 

It has been shown that KatG activates INH and catalyzes the formation of an 

INH-NAD adduct in vitro(Graham Timmins and Vojo Deretic, 2006; Martin Wilming 

and Kai Johnsson, 1999). In order to demonstrate that this KatG-catalyzed INH-NAD 

adduct formation and its inhibition of InhA can be reproduced in the E. coli-based 

system, both katG and inhA were transformed into BL21(DE3) cells and coexpressed in 

the presence of INH. InhA was rapidly purified by a Ni-NTA affinity column, and an in 

vitro enzyme assay was performed. InhA isolated from the experimental sample had 

<15% of the specific activity of InhA purified without the addition of INH under the 

same assay condition. The bound inhibitor was isolated by denaturing the InhA purified 
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from the experimental sample, and a 1 µM concentration of the inhibitor led to complete 

inhibition of native InhA. The crystal structure of InhA in complex with the inhibitor 

was solved to 2.4-Å resolution (Table 3-1). In the active site of InhA, an unbiased 

electron density map (Figure 3-1) clearly indicated the presence of a modified NAD with 

an isonicotinic-acyl group covalently attached to the 4-position of the nicotinamide ring 

in a 4S configuration, which is consistent with the previously identified INH-NAD 

adduct(Denise Rozwarski et al., 1998). This is the first time that the activation of INH by 

KatG and the formation of the INH-NAD adduct has been demonstrated in a whole-cell 

environment. This confirms that our E. coli cell-based system is capable of activating the 

pro-drug INH. 

 

 

Figure 3-1. The Fo – Fc map that is used to model the INH-NAD adduct (cyan) into the active 
site of InhA (pink). The difference map is contoured at 3 sigma level. 
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Table 3-1. Data collection and refinement statistics for InhA in complex with INH-NAD. 

Data collection 

Space group P6222 

Unit cell dimensions a=b=98.85Å, c=138.84Å 
α=β=90.0°, γ=120.0° 

Molecules/ASU 1 

Wavelength (Å) 1.542 

Resolution (Å) 50-2.44 

Completeness (%)1 99.9 (99.5) 

No. of reflections 15560 

I/σI* 41.02 (5.46) 

Rsym
* 0.0157 (0.1915) 

Refinement statistics 

Resolution (Å) 26.96-2.43 

No. of reflection work 15675 

No. of protein atoms 1994 

No. of water molecules 169 

No. of heteroatoms 52 

Rcryst (%) 20.84 

Rfree (%) 25.62 

RMSD bond length (Å) 0.01 

RMSD angle (°) 1.47 

Mean temperature factor (Å2) 55.27 
*. Numbers in parenthesis indicate data for highest-resolution shell. 
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Spontaneous mutants of M. tuberculosis, co-resistant to INH and ETH, map to mshA 

 

Table 3-2. Point mutations in and deletion of mshA cause different levels of resistance to INH 
and ETH in M. tuberculosis.(Catherine Vilchèze et al., 2008) 

 

Parent 
strain 

 

Mutant 
 

mshA mutation   
 

MIC (mg/l) 
 

MIC (mg/l) 
pMV361::mshA 

 

  Nucleotide Amino acid INH ETH INH ETH 
 

H37Rv  - - 0.06 2.5 0.06 2.5 
 mc24930 a124del Stop codon 0.5 20 0.12 2.5 
 mc24931 c382t Stop codon 0.6 20 0.06 2.5 
 mc24932 c817t R273C 0.4 10 0.06 2.5 
 mc24933 g985t G299C 0.6 20 0.12 2.5 
 mc24934 c991t Stop codon 1 10 0.5 2.5 
 mc24935 g1071a G356D 1 10 0.06 2.5 
 mc24936 a1082c E361A 0.25 20 0.06 2.5 
 mc24937 c1265del Frameshift 1 10 0.25 7.5 
 mc24938 ΔmshA  0.06 > 20 0.06 2.5 
 

 Numerous studies have demonstrated that there exist strains of M. tuberculosis 

that are resistant to INH and do not have mutations in the genes associated with INH 

resistance (katG, inhA structural gene and promoter, ndh)(Amy Piatek et al., 2000; 

Hazbon et al., 2006; Rosilene Fressatti Cardoso et al., 2004; Srinivas Ramaswamy et al., 

2003; Telenti et al., 1997).To eliminate the majority of spontaneous mutants of 

M. tuberculosis that are singly resistant to INH and map to katG, we chose to isolate 

mutants that were co-resistant to INH and its structural analogue ETH. Samples of three 
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independent M. tuberculosis H37Rv cultures were plated on media containing low 

concentrations of both INH and ETH [≤ 4-fold the minimum inhibitory concentration 

(MIC)]. Seven mutants were isolated at low frequencies (1–4 × 10−8). DNA sequence 

analysis of targeted genes in these seven strains revealed the absence of mutations in the 

genes known to mediate co-resistance to INH and ETH, namely inhA (the gene or its 

promoter region) and ndh. This analysis provided the evidence that these strains 

possessed mutations that conferred INH and ETH resistance and had not been previously 

identified in M. tuberculosis. The mutants were transformed with a cosmid genomic 

library of the drug-susceptible M. tuberculosis parent. The frequency of transformation 

was extremely low for most of the mutants (less than 100 transformants per 

transformation), and only one mutant, mc24936, which had the lowest level of INH 

resistance, yielded more than 1000 transformants. The cosmid transformants were 

screened for restoration of INH and ETH susceptibility. One potential complementing 

cosmid was isolated, sequenced and shown to contain the mshA gene, a gene 

characterized as mediating the first step in the biosynthesis of mycothiol(Gerald Newton 

et al., 2006; Gerald Newton et al., 2003), a key thiol in the family of Actinomycetes 

bacteria(Newton et al., 1996). A link between mycothiol biosynthesis and resistance to 

INH and ETH had been previously established in Mycobacterium smegmatis when 

transposon mutants in mshA were found to be resistant to INH (more than 25-fold) and 

ETH (sixfold)(Gerald Newton et al., 1999; Gerald Newton et al., 2003; Mamta Rawat et 

al., 2003). Subsequent sequence analysis of mc24936 and the other mutants showed that 

all the M. tuberculosis H37Rv mutants had missense, nonsense or frameshift mutations 
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in mshA (Table 3-2). The mshA mutants had various levels of resistance to INH (2- to 

16-fold) and ETH (four- to eightfold). This is the first report that mshA mutations confer 

co-resistance to INH and ETH in M. tuberculosis. 

 

Comparison of the MshA structures of M. tuberculosis and Corynebacterium 

glutamicum establishes a rationale for the inactivation of MshA in the mutants 

The mshA mutant strains used in this study are found to be defective in the 

synthesis of mycothiol. This can be explained by that the mutations lead to the loss of 

MshA function based on our modeling studies. “Given the sequence identity (45.9%) 

between M. tuberculosis MshA and Corynebacterium glutamicum MshA (CgMshA) 

whose structure was recently determined(Matthew Vetting et al., 2008), the monomeric 

homology model of M. tuberculosis MshA was created using CPHmodels 2.0(O. Lund et 

al., 2002) with the UDP-complexed CgMshA (PDB code 3C4Q) as template. 

Superimposition of the model of M. tuberculosis MshA (consisting of Arg46–Ile445) 

and the chain B from UDP/inositol-phosphate-bound CgMshA (PDB code 3C4V) yields 

an RMSD of 0.65 Å, indicating a high homology between each other (Figure 3-2 A). 

Four of the mshA mutants have single amino acid mutation (Table 3-2). These 

four amino acids (Arg273, Gly299, Gly356 and Glu361) are conserved in CgMshA (as 

Arg231, Gly263, Gly319 and Glu324) (Figure 3-2 A and B). Each of these amino acids 

plays an important role in either the substrate binding or the domain interaction (Figure 

3-2 B). The side-chain amines of Arg273 interact with the β-phosphate of UDP via 

hydrogen bonding. This arginine is also one of the major determinants of the orientation 
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of the inositol-phosphate as its side-chain lies against the face of inositol. Gly299 is not 

in the vicinity of the active site, but should be important for the protein stability as the 

next residue, Gly300, forms the only interdomain hydrogen bond with Gly61. Although 

not directly seen in the model, Gly356 was proposed to be involved in the binding of the 

N-acetyl-glucosamine moiety which shall be transferred from UDP to inositol(Matthew 

Vetting et al., 2008). In mc24936, the Glu361Ala mutation removes the side-chain 

carboxylate that forms hydrogen bonds with the 2′- and 3′-hydroxyls from the ribose 

moiety of UDP, which could result in the inactivation of MshA. 

The other mshA mutants had either nonsense or frameshift mutations (Figure 3-2 

C). In mc24931 and mc24934, the nonsense mutations caused the loss of active-site 

elements. In mc24937, the truncation of the protein was close to the C-terminus and the 

active site was unlikely to be affected. Herein the inactivation of MshA could be 

explained by the protein's characteristic folding. Based on the homology model of 

MshA, each monomer is composed of N-terminal and C-terminal domains. Towards the 

end of C-terminus, a large α-helix spanning Cys409 to Ile445 crosses back to the N-

terminal, which is likely to stabilize the overall folding of the protein. Therefore the 

mutations within this α-helix, such as in mc24937, would detrimentally affect the 

conformation of MshA leading to its inactivation. 
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Figure 3-2. Comparison of the MshA structures of M. tuberculosis and Corynebacterium 
glutamicum establishes a rationale for the inactivation of MshA in the mutants.(Catherine 
Vilchèze et al., 2008) 
(A) Ribbon representation of the superimposed M. tuberculosis MshA model (green) and 
CgMshA structure (blue) complexed with UDP/inositol-phosphate. Both UDP and inositol-
phosphate are shown as stick with transparent surface. Four amino acids, whose mutation led to 
M. tuberculosis MshA inactivation, are represented as CPK structures and labeled accordingly. 
(B) Active-site architecture of the superimposed MshA structures shown in (A). UDP and 
inositol-phosphate are shown as ball and stick. The four amino acid mutations R273, G299, 
G356 and E361, highlighted in (A), are shown as stick in white scheme, and the conserved 
residues in CgMshA are in white scheme, and the conserved residues in CgMshA are in blue 
scheme. Hydrogen bonds between the side-chain amines of Arg273 and the β-phosphate of UDP, 
as well as those between the side-chain carboxylate of Glu361 and the ribosyl hydroxyl groups 
of UDP are shown as black dotted lines. The residue numbers are for M. tuberculosis MshA. 
(C) Alignment of the M. tuberculosis and C. glutamicum mshA sequences. The mutations 
identified in the M. tuberculosis mshA mutants are indicated. The four amino acid changes are in 
bold. The stop codons or frameshift are pointed by arrows. The residues in the α-helix crossing 
from C-terminal to N-terminal domain are underlined. 
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Mycothiol promotes ETH activation by the ethA-encoded mono-oxygenase 

As the null mutants showed low (twofold the MIC) to no resistance to INH but 

showed a high level of resistance to ETH (≥ 6-fold the MIC), we therefore postulated 

that mycothiol could be involved in either ETH activation or ETH-NAD adduct 

formation in M. tuberculosis. ETH is activated by the NADPH-specific FAD-containing 

mono-oxygenase EthA(Alain Baulard et al., 2000; Andrea DeBarber et al., 2000; 

Tommaso Vannelli et al., 2002).” The activity can be evaluated by monitoring the 

oxidation of NADPH aerobically (Figure 3-3 A). We have found a higher activity of 

EthA in the presence of mycothiol (Figure 3-3 B), and observed “an increase in the 

reaction rate directly proportional to the increase in mycothiol concentration (Table 3-3), 

suggesting that mycothiol plays a role in the activation steps rather than in the formation 

of the ETH-NAD adduct. Furthermore, replacing mycothiol by a different thiol, such as 

reduced glutathione, had no effect on the oxidation rate of NADPH (data not shown). 

This suggests that the increase in EthA activity upon the addition of mycothiol is 

specific to mycothiol, and does not occur in the presence of another thiol. To test if 

mycothiol was also required for the formation of the ETH-NAD adduct, the rate of 

inhibition of InhA by ETH in the presence of NAD+, NADPH, EthA and mycothiol was 

also measured. No formation of the ETH-NAD adduct was observed in these conditions 

(data not shown), which suggests that mycothiol is not involved in the formation of the 

ETH-NAD adduct. Two other anti-TB drugs, isoxyl and thiacetazone, are also activated 

by EthA(Lynn Dover et al., 2007). We therefore tested if the mshA mutants (null and 

point mutants) were also resistant to isoxyl and thiacetazone and found that they were 
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fully sensitive to both drugs (data not shown). This implies that mycothiol is solely 

involved in the activation of ETH. We could hypothesize that mycothiol either stabilizes 

the intermediates formed upon activation of ETH or forms a complex with the active 

form of ETH, which allows for the formation of the ETH-NAD adduct. More in-depth 

studies are necessary to fully understand which role mycothiol plays in the activation 

step. 

 

A 

 

B 

 
 

Figure 3-3. Mycothiol promotes ETH activation by the ethA-encoded mono-oxygenase. 
(A) EthA mediated NADPH oxidation aerobically(Bruce Palfey and Claudia McDonald, 2010). 
(B) Lineweaver–Burk plots for the NADPH oxidation catalyzed by EthA in the absence or 
presence of mycothiol. Without the additive, kcat = 0.0063 s-1 which was comparable with the 
previous report(Marco Fraaije et al., 2004). When 26 µM mycothiol was added in the reaction, 
the kcat was increased to 0.0115 s-1. 
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Table 3-3. The effect of mycothiol on EthA activity.(Catherine Vilchèze et al., 2008) 

[mycothiol] (µM) [NADPH]/s (µM /s) NADPH/EthA (mmol/s/mg protein) 

0 0.0071 1.24*10-4 

4.38 0.0074 1.29*10-4 

17.5 0.0094 1.64*10-4 

26.2 0.0111 1.94*10-4 

43.8 0.0127 2.23*10-4 

 

Experimental Procedure 

Cloning, expression, and purification 

The M. tuberculosis dfrA and katG genes were cloned as previously 

described(Argyrides Argyrou et al., 2006b). The plasmids of M. tuberculosis katG and 

dfrA were singly and doubly transformed into E. coli BL21(DE3) (EMD Bioscience, 

catalog no. 69387-3). The strain containing plasmids of katG and dfrA was cultured in 

LB-Miller medium containing 50 µg of kanamycin/ml and 50 µg of carbenicillin/ml at 

37°C until the optical density (OD) at 600 nm reached 0.5. Expression of both genes was 

carried out by induction for 20 h at 18°C by the addition of 1 mM IPTG. At the same 

time of induction, 100 µg of INH/ml was also added to the culture. The same protocol 

was used for the strain containing just the dfrA plasmid. Recombinant M. tuberculosis 

DhfR was purified according to a previously described method(John Belisle et al., 1997). 

The M. tuberculosis inhA and katG genes were cloned into pET30b and 

pDEST17 vectors, respectively, and then co-transformed into E. coli BL21(DE3). The 

strain containing both plasmids was cultured in LB medium containing 50 µg of 
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kanamycin/ml and 50 µg of carbenicillin/ml at 37°C until OD600 reached 0.5. Expression 

of both genes was carried out by induction for 20 h at 18°C by the addition of 1 mM 

IPTG. At the same time of induction, 100 µg of INH/ml was also added to the culture. 

The proteins of InhA and KatG were co-purified by Ni-column followed by octyl 

sepharose hydrophobic column. 

 

Enzymatic assays 

All assays were carried out on a Cary 100 Bio Spectrophotometer at 25°C. DhfR 

assays are performed by monitoring the oxidation of NADPH and reduction of 

dihydrofolate (DHF) at 340 nm. Reactions were initiated by adding DhfR (10 nM) to 

assay mixtures containing NADPH (10 µM), DHF (4.5 µM), and phosphate buffer (pH 

7.5, 50 mM). The KatG activity was assayed as previously described(Xiangbo Zhao et 

al., 2006). The InhA activity was assayed as previously described(Feng Wang et al., 

2007b). 

 

Mass spectroscopy analysis 

Purified DHFR was heated for 60 s at 100°C. After the heat treatment, denatured 

enzyme was separated by filtration, using a Centricon (cutoff, 3 kDa). The filtrate was 

used for mass analysis. The matrix-assisted laser desorption ionization (MALDI) mass 

spectrometry experiment was carried out on an ABI Voyager-DE STR. 
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Crystallization of InhA in complex with INH-NAD adduct and data collection 

Crystallization was accomplished by the hanging-drop vapor diffusion method. 

M. tuberculosis InhA in complex with INH-NAD was obtained in hanging droplets 

containing 2 µl of protein solution at 10 mg/ml and with 2 µl of buffer (12% 2-methyl-

2,4-pentanediol, 4% dimethyl sulfoxide, 0.1 M HEPES, and 0.025 M sodium citrate) at 

16°C in Linbro plates against 1 ml of the same buffer. To obtain a good occupancy of 

the INH-NAD adduct, 500 µL of InhA (10 mg/mL) co-expressed with KatG was 

denatured by heating to release INH-NAD. The denatured proteins were removed by 

centrifugation. The resulted INH-NAD solution was incubated with 50 µL InhA (10 

mg/mL) on ice for 30 min, and the mixture was concentrated to a volume of 50 µL for 

purpose of crystallization. Diamond shaped protein crystals formed about 4 days later. 

Diffraction data of single InhA crystal was collected to at the wavelength of 

1.542 Å using Rigaku R-AXIS IV++ at home source. All the data were processed and 

reduced using HKL2000(Zbyszek Otwinowski and Wladek Minor, 1997). It is in the 

space group P6222, with one molecule in each asymmetric unit (Table 3-1). 

 

Structure determination and model refinement 

The structure of InhA was solved by molecular replacement using Molrep(Alexei 

Vagin and Alexei Teplyakov, 1997) in CCP4. InhA (PDB code 1ZID) with all 

nonprotein molecules removed, was used as the search model. A single solution for the 

molecular replacement was obtained. Isonicotinoyl-NAD (INH-NAD) was manually 

built in the active site of the model by examining the Fo - Fc map in Coot(Paul Emsleya 
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and Kevin Cowtan, 2004). The final model containing residues 2–269 as well as 16 

water molecules was obtained after further cycles of model building and PHENIX 

refinement(Afonine et al., 2005) yielding R factors of 20.8% and 25.6%. The full 

crystallization statistics are given in Table 3-1. 

 

Isolation of INH- and ETH-resistant spontaneous mutants 

Mycobacterium tuberculosis H37Rv mutants were isolated from non-

mutagenized cultures grown in the media described above. The cultures were incubated 

by shaking at 37°C to late log phase. Ten-fold serial dilutions were then plated on agar 

plates (media described above) containing INH (0.2 µg ml−1) and ETH (5 or 10 µg ml−1). 

The plates were then incubated at 37°C for 6 weeks. 

 

MIC determination 

The strains were grown to an OD600≈ 1.0. Ten-fold serial dilutions were plated on 

plates containing INH (0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, 1 µg ml−1) or ETH (0, 2.5, 

5, 10, 15, 20 µg ml−1). The MIC was determined as the concentration of drug that 

reduced the number of colony-forming units (cfu) ml−1 by 99%. MICs were also 

determined using the MTT assay(Martin et al., 2005). 

 

EthA enzymatic activity assay 

The his-tagged EthA was produced, as previously described(Lynn Dover et al., 

2007). The activity of EthA was determined by monitoring the absorbance decrease of 
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NADPH at 340 nm (ε340 nm = 6.22 mM−1 cm−1). All the reactions were catalysed by ∼1 µM 

EthA and performed in 50 mM Tris/HCl, pH 7.5. Double reciprocal plots were used to 

determine the kcat of the oxidation of NADPH. For measuring the effect of mycothiol, 

reaction mixtures contained 200 µM NADPH and varying mycothiol concentrations. 
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CHAPTER IV 

STRUCTURES OF MYCOBACTERIUM TUBERCULOSIS FADD10 PROTEIN 

REVEAL A NEW TYPE OF ADENYLATE-FORMING ENZYME* 

 

Summary 

Mycobacterium tuberculosis has a group of 34 FadD proteins that belong to the 

adenylate-forming superfamily. They are classified as either fatty acyl-AMP ligases 

(FAALs) or fatty acyl-CoA ligases (FACLs) based on sequence analysis. FadD10, 

involved in the synthesis of a virulence-related lipopeptide, was mis-annotated as a 

FACL, however, it is in fact a FAAL that transfers fatty acids to an acyl carrier protein 

(Rv0100). In this study, we have determined the structures of FadD10 in both the apo 

and the complexed form with dodecanoyl-AMP, where we see for the first time an 

adenylate-forming enzyme that does not adopt a closed conformation for catalysis. 

Indeed, this novel conformation of FadD10, facilitated by its unique inter-domain and 

intermolecular interactions, is critical for the enzyme to carry out the acyl transfer onto 

Rv0100 rather than Coenzyme A. This contradicts the existing model of FAALs that rely 

on an insertion motif for the acyl transferase specificity, and thus makes FadD10 a new 

type of FAAL. We have also characterized the fatty acid preference of FadD10 through 

                                                
* This work has been published in and is reprinted with permission from: 
Zhen Liu, Thomas Ioerger, Feng Wang, and James Sacchettini. “Structures of 
Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming 
enzyme” The Journal of Biological Chemistry 2013, 288 (25): 18473-83 Copyright 2013 
(American Society for Biochemistry and Molecular Biology). 
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biological and structural analyses, and the data indicate long chain saturated fatty acids 

as the biological substrates of the enzyme. 

 

Introduction 

Adenylate-forming enzymes are found in a variety of important biological 

processes in both eukaryotes and prokaryotes(Stefan Schmelz and James Naismith, 

2009). They show wide diversity in their catalytic activities and biological functions. 

The adenylate-forming superfamily of enzymes is composed of luciferases, amino acid 

adenylation domains of non-ribosomal peptide synthetases (NRPSs), acyl-Coenzyme A 

(acyl-CoA) synthetases, and acyl-acyl carrier protein (acyl-ACP) synthetases. These 

enzymes first use ATP to adenylate the carboxylate group of the cognate substrate, 

which is then followed by the transfer of the acyl moieties to the corresponding 

acceptors, for example, luciferyl to oxygen, amino acyl to peptidyl carrier protein (PCP) 

domains, and fatty acyl to CoA or ACPs. The fatty acyl-CoA synthetases (EC 6.2.1.3) 

and fatty acyl-ACP synthetases (EC 6.2.1.20) have also been referred to as fatty acyl-

CoA ligases (FACLs) and fatty acyl-AMP ligases (FAALs), respectively(Benjamin 

Duckworth et al., 2012; Omita Trivedi et al., 2004; Pooja Arora et al., 2009; Zhening 

Zhang et al., 2011). Both enzymes have acyl-AMP ligase activity. However, FACLs 

transfer fatty acyl chains to Coenzyme A, while FAALs transfer fatty acyl chains to 

ACPs. 

Within the genome of Mycobacterium tuberculosis (M. tuberculosis), there are 

34 fadD genes that have been annotated to be members of the adenylate-forming 
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superfamily(Jean-Christophe Camus et al., 2002). Although the precise functions of 

most are unclear, several have been shown to be involved in the synthesis of bioactive 

lipids that are essential for bacterial survival or virulence(Israël Casabon et al., 2012; 

Kathleen Y. Dunphy et al., 2010; Laura Rindi et al., 2004; Roxane Siméone et al., 2010), 

and thus represent potential targets for drug discovery. Multi-sequence alignment of the 

34 M. tuberculosis FadDs revealed two subclasses: 12 FAALs and 22 FACLs(Omita 

Trivedi et al., 2004). The 12 FAALs share a much higher sequence homology (70%-80% 

identity) than the FACLs (20%-30% identity). Interestingly, 10 of the 12 M. tuberculosis 

FAAL-encoding genes are located in close proximity to multienzyme polyketide 

synthases. Biochemical studies have shown that three of the FAALs (FAAL26, 

FAAL30, and FAAL32) transfer long chain fatty acyl moieties to the polyketide 

synthases: PpsA, PKS6, and PKS13, respectively(Mathieu Léger et al., 2009; Omita 

Trivedi et al., 2004; Sabine Gavalda et al., 2009). Therefore, it has been suggested that 

FAAL enzymes activate fatty acids as adenylate derivatives and sequentially transfer 

acyl moieties to cognate modular enzymes, particularly their ACP domains, to be further 

processed into complex lipids(Omita Trivedi et al., 2004; Pooja Arora et al., 2009). 

Recent structural and biochemical studies of M. tuberculosis FAAL28(Pooja Arora et 

al., 2009) and FAALs from E. coli, and L. pneumophila(Zhening Zhang et al., 2011) 

have provided a molecular basis for their catalytic mechanism. These studies have 

identified a signature sequence motif, consisting of an insertion of about 20 amino acids, 

that defines the function of this newly recognized subclass of the adenylate-forming 
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superfamily and distinguishes them from FACLs(Aneesh Goyal et al., 2011; Pooja Arora 

et al., 2009). 

FadD10 (Rv0099) is present on an operon consisting of Rv0096 – Rv0101. The 

operon has been the subject of many studies(Arush Chhabraa et al., 2012; Feng Wang et 

al., 2007a; Grant Hotter et al., 2005) because it is involved in making a virulence-

essential lipopeptide using an NRPS (Rv0101, nrp). M. smegmatis has a similar NPRS, 

called mps, which synthesizes a glycopeptidolipid(Helen Billman-Jacobe et al., 1999). 

We have shown that Rv0098(Feng Wang et al., 2007a) is a fatty acyl-CoA thioesterase. 

While the identity of the lipopeptide produced by M. tuberculosis Rv0096-Rv0101 

operon is not known, its biological significance was indicated in several studies. For 

example, Rv0096 was demonstrated to be required for M. tuberculosis survival in mouse 

macrophages(Jyothi Rengarajan et al., 2005), and Rv0098-Rv0101 were predicted, using 

transposon site hybridization, to be required for M. tuberculosis survival in a mouse 

model of infection(Christopher Sassetti and Eric Rubin, 2003). It has been suggested that 

the products of the operon repressed the SigM factor that further regulates a series of 

metabolic pathways and modulates the host-bacteria interactions(Sahadevan Raman et 

al., 2006). In spite of the biological significance of the lipopeptide produced by the 

Rv0096-Rv0101 operon, neither the isolation nor the identity of this lipopeptide have 

been reported; therefore, an alternative approach to define its chemical structure is to 

characterize the function and mechanism of the individual proteins involved in its 

synthesis. 
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Rv0098-Rv0101 are essential for M. tuberculosis survival in the mouse model of 

infection(Christopher Sassetti and Eric Rubin, 2003). Hence they likely to have direct 

enzymatic roles in the synthesis of the virulence-related lipopeptide product of the 

operon. As mentioned above, our biochemical and structural characterization of Rv0098 

has shown that it encodes a thioesterase capable of hydrolyzing a long chain fatty acyl-

CoA to release a fatty acid and Coenzyme A(Feng Wang et al., 2007a). Rv0100 is 

clearly an ACP according to sequence analysis, and it shares 24.4% sequence identity to 

the primary M. tuberculosis ACP  (Rv0033) involved in type II fatty acid biosynthesis. 

Rv0101 is a two-module NRPS, with the first module of an undefined amino acid 

specificity and the second module to incorporate phenylalanine(Marc Röttig et al., 

2011). M. tuberculosis FadD10 (Rv0099) was designated as an FACL based on 

sequence analysis(Omita Trivedi et al., 2004). However, the presence of a thioesterase 

(Rv0098) immediately upstream suggests that fadD10 is unlikely to function as an acyl-

CoA sythetase because this would put two enzymes with opposing functions next to each 

other in the operon. Indeed, the fact that fadD10 is located in close proximity with a 

multi-function enzyme (Rv0101) is analogous to the M. tuberculosis  FAALs. These 

findings suggest that M. tuberculosis FadD10 activates and transfers the fatty acyl chain 

to the cognate ACP - Rv0100. Chhabraa et al. recently showed that FadD10 does not 

acylate CoA, but is able to transfer a radioactively labeled dodecanoyl moiety to Rv0100 

in vitro(Arush Chhabraa et al., 2012). This suggests that FadD10 has FAAL activity 

even though it has a primary sequence more similar to FACLs. FadD10 has much lower 

sequence similarity to the members of the M. tuberculosis FAALs cluster and moreover 
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lacks the signature motif critical for FAAL activity (Figure 4-1); hence, it is intriguing to 

delineate the molecular basis underlying this discrepancy. 

 

 

Figure 4-1. Mutisequence-alignment of M. tuberculosis FadDs reveals a signature insertion 
(boxed) for FAALs cluster. 

 

In this study, we have solved the structures of both apo and dodencanoyl-AMP 

bound M. tuberculosis FadD10, leading to the characterization of a novel ligand bound 

conformation for the adenylate-forming superfamily. Instead of undergoing 

conformational rearrangement between the N- and C-terminal domains, as observed in 

all the other reported adenylate-forming homologues(Andrew Gulick, 2009), FadD10 

retains a single open conformational state for both the apo- and ligand-bound forms. We 

find that FadD10's FAAL activity can be explained by its unique inter-domain and 
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intermolecular interactions, a mechanism distinct from that known for the other FAALs. 

Our modeling studies identify the binding site of the ACP (Rv0100) onto FadD10 in the 

acyl transfer reaction. Also, our studies provide a structural basis for the fatty acid 

preference of M. tuberculosis FadD10, which may eventually aid in elucidating the 

chemical structure of the virulence-related lipopeptide produced by the Rv0096-Rv0101 

operon. 

 

Results and Discussion 

Crystal structures of M. tuberculosis FadD10 subunit 

In order to understand the molecular basis of the FAAL activity of FadD10 

arising from a primary sequence more similar to FACLs, we have determined the 

structures of FadD10 in both apo and complexed forms. The full-length apo M. 

tuberculosis FadD10 crystallized in space group P21 and its structure was solved using 

Selenium-Single-wavelength Anomalous Dispersion. The asymmetric unit contains a 

dimer (Figure 4-2 A), consistent with the gel filtration analysis. The two subunits are 

very similar with an RMSD of 0.68 Å for 491 α carbons after superimposition (Figure 4-

2 C). For the chains designated as A and B, a total of 508 and 502 out of 540 residues, 

respectively, were visible and built into the electron density. Residues S178, T181, 

E183, and K185 of chain A and residues E426, R451, S474, E476, and L477 of chain B 

were built as alanine due to ambiguous side chain electron density. The structure was 

refined to 2.2 Å resolution with a final R-factor of 22.7% and a R-free of 27.3%. 

Statistics of the refined structures are listed in Table 1. 
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FadD10 complexed with the half-reaction product dodecanoyl-AMP crystallized 

in space group P3121. Its structure was solved by molecular replacement using chain A 

of our refined apo structure as the search model. Dodecanoyl-AMP was built into a clear 

electron density (Fo – Fc map) located at the active site (Figure 4-2 B). In this crystal, 

M. tuberculosis FadD10 packed with one molecule per asymmetric unit, and the two 

subunits of the dimer are related to each other by a crystallographic 2-fold symmetry. 

The structure, with 508 residues built into the electron density, was refined to 2.8 Å 

resolution with a R- factor of 22.6% and a R-free of 27.9%. Superposition of the 

complexed M. tuberculosis FadD10 subunit with the chain A and chain B from the apo 

crystal yields an RMSD of 0.596 Å and 0.637 Å, respectively, for the α-carbons (Figure 

4-2 C). 

Each subunit of M. tuberculosis FadD10 is composed of two domains (Figure 4-2 

D). The N−terminal domain consists of 420 amino acids (residue 1-420), forming a 

central α/β structure surrounded by a distorted β−sheet on one side and three β−strands 

with intervening α−helices on the other side. The loop containing the residues 

421KGRSS425 extends from the β−strand B15 and continues into the C-terminal domain, 

consisting of 115 amino acids (residue 426-540). This domain is composed of three β-

strands surrounded by two α-helices and a pair of short anti-parallel β-strands at the 

beginning of the domain. 
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Figure 4-2. The structures of apo- and complexed FadD10 with dodecanoyl-AMP. 
(A) Ribbon representation of the dimeric FadD10. The N-terminal domains of the two subunits, 
designated as A and B, are colored yellow and green, while the corresponding C-terminal 
domains are colored orange and cyan, respectively. 
(B) Fo – Fc map is calculated when dodecanoyl-AMP and magnesium ion are omitted from the 
model, and is contoured at 2 sigma level. 
(C) FadD10 (grey) in complex with dodecanoyl-AMP (pink) is superimposed with the two 
subunits (colored as in Figure 2A) from the apo structure. 
(D) Cylinder representation of FadD10 that demonstrates the 2-domain organization and the 
secondary structure elements of each subunit. The inter-domain loop is colored in black. 
(E)	
  The inter-domain hydrogen bonds shown as dotted lines. The residues involved in the 
interactions are shown in stick. The identity of the helices involved in forming the hydrogen 
bonds is marked in color. 
 

Analysis of the complexed FadD10 subunit structure using VAST (Vector 

Alignment Search Tool)(Jean-Francois Gibrata et al., 1996) revealed that the highest 

structural similarity was with adenylate-forming enzymes, namely Alcaligenes sp. 4-

chlorobenzoate-CoA synthetase (CBL), the M. tuberculosis very-long-chain fatty acyl-
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CoA synthetase FACL13, and the N. lolii NRPS activation domain SidNA3. 

Superposition of the full-length M. tuberculosis FadD10 with these structures yielded 

fairly poor alignments. For instance, superposition between M. tuberculosis FadD10 and 

FACL13 (PDB ID: 3R44) showed an alignment with only part (301 out of 420 α-

carbons) of the N-terminal domain (RMSD 2.61 Å).  When the N-terminal domains were 

aligned, the C-terminal domains were found to be in a completely different orientation, 

even though the secondary structural elements of their C-terminal domains were quite 

similar. Indeed, dividing FadD10 into N-terminal and C-terminal domains allowed 80% 

of its N-terminal structure and 70% of the C-terminal structure to align with FACL13, 

yielding RMSD of 2.80 Å for 345 N-terminal domain α-carbons and 4.24 Å for 101 C-

terminal domain α-carbons. A similar result was observed when M. tuberculosis FadD10 

was compared with the other adenylate-forming homologues identified by VAST, i. e. 

structural superposition could only be obtained when the N-terminal and C-terminal 

domains were overlaid independently.  While all of the adenylate-forming enzymes 

complexed with adenylate (including analogs) share a similar inter-domain orientation, 

M. tuberculosis FadD10 adopts a distinctive inter-domain conformation (Figure 4-3 A). 

As expected, similar alignments were obtained with the apo structure of FadD10. 

The adenylate-forming superfamily of proteins that have been structurally 

characterized revealed remarkable conformational flexibility between the N- and C-

terminal domains(Andrew Gulick et al., 2004; Charlotta S. Andersson et al., 2012; Elena 

Conti et al., 1996; Grazyna Kochan et al., 2009; Jurgen May et al., 2002; Manish Shah et 

al., 2009; Yuko Hisanaga et al., 2004). The inter-domain orientations of these proteins 
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vary noticeably among the apo structures as well as between the apo and the respective 

ligand bound structures of the individual proteins. Such variations are not correlated to 

the functions of different subclasses. They likely arise because the two domains form no 

significant protein-protein inter-domain contacts and are connected by only a flexible 

loop. This feature allows the two domains to rearrange upon substrates binding in order 

to desolvate the active site, a process that has been referred to as the “domain 

alternation” mechanism for the adenylete-forming superfamily(Andrew Gulick, 2009). 

This mode of ligand binding is exemplified by the Thermus thermophilus long chain 

fatty acyl-CoA synthetase (LC-FACS)(Yuko Hisanaga et al., 2004). When this protein 

binds AMPPNP or myristyl-AMP, its C-terminal domain rotates almost 180° relative to 

the inter-domain linkage loop (432DRLK435) and moves towards the N-terminal domain 

forming a lid over the active site. A similar rearrangement, with varying extents of 

rotation, has also been observed for P. pyralis luciferase(Elena Conti et al., 1996), the 

aryl acid adenylation domain of bacillibactin synthetase (DhbE)(Jurgen May et al., 

2002), Alcaligenes sp. CBL(Andrew Gulick et al., 2004), and H. sapiens medium chain 

acyl-CoA synthetase(Grazyna Kochan et al., 2009), for which both apo and ligand-

bound structures are available. Thus, the closure of the C-terminal domain toward the N-

terminal domain is believed to be a common substrate binding event for the adenylate-

forming superfamily. In this respect, M. tuberculosis FadD10 is clearly unique in 

comparison to other homologous adenylate-forming proteins, as it maintains an “open” 

conformation for the apo structure, as well as for FadD10 complexed to the half-reaction 

product dodecanoyl-AMP.  
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A novel ligand-bound conformation of M. tuberculosis FadD10 

 

 

Figure 4-3. The unique inter-domain interaction of FadD10 contributes to the conformational 
maintenance. 
(A) FadD10 (yellow) complexed with dodecanoyl-AMP (ball and stick) is aligned with human 
medium chain acyl-CoA synthetase (gray, PDB ID: 3DAY) at their N-terminal domains. The 
latter is shown only the C-terminal domain, and the N-terminal domain of FadD10 is shown in 
carbon trace for clarity. 
(B) The variation of the secondary structure equivalent to FadD10 helix A11 (i), among 
adenylate-forming enzymes, is exemplified by ii. M. tuberculosis FACL13 (PDB ID: 3R44), iii. 
M. tuberculosis FAAL28 (PDB ID: 3E53), and iv. B. brevis PheA (PDB ID: 1AMU). E340 in 
FadD10 is shown as ball and stick. A11 and its equivalents are colored red. 

 

The apo and complexed structures of M. tuberculosis FadD10 have provided 

several insights into the structural determinants for its unique “open” ligand bound 

conformation. The first factor that contributes to the maintenance of the open 

conformation in the M. tuberculosis FadD10 structures is the inter-domain interactions 

between the α-helix A15 from the C-terminal domain and the three-helix (A9, A10, 
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A11) cluster from the N-terminal domain (Figure 4-2 E).  Specifically, the side-chain 

oxygen of Ser524 forms hydrogen bonds with both the side-chain oxygen of Glu340 (2.5 

Å) and the backbone nitrogen of Ala301 (3.3 Å). More inter-domain hydrogen bonds are 

formed by the backbone nitrogens of Ala523 (3.1 Å) and Ser524 (3.3 Å) with the side-

chain carboxylate of Glu340, as well as between the side-chain amine of Lys279 and the 

side-chain oxygen atoms of Asp511 (3.1 Å and 3.3 Å). These interactions are maintained 

in both the apo M. tuberculosis FadD10 structure and the complexed structure with 

dodecanoyl-AMP, which greatly limits the inter-domain movement of the protein. A 

similar inter-domain contact has not been observed in the other adenylate-forming 

proteins. The reason is likely due to the absence of the structural elements found in M. 

tuberculosis FadD10 accounting for this interaction. While A9, A10, and A15 are 

structurally conserved, the structural equivalent to helix A11 of FadD10 (Figure 4-3 B i) 

notably varies among adenylate-forming proteins. A short helix equivalent to A11 is 

found present in only four members, including the adenylation domains DhbE(Jurgen 

May et al., 2002) and DltA(Huma Yonus et al., 2008), as well as the acyl-CoA 

synthetases LC-FACS(Yuko Hisanaga et al., 2004) and M. tuberculosis 

FACL13(Charlotta S. Andersson et al., 2012). However, the glutamate residue (E340) 

essential to forming inter-domain hydrogen bonds in M. tuberculosis FadD10 is replaced 

by non-polar residues in these four homologous proteins (Figure 4-3 B ii). A significant 

structural alteration of A11 is observed in FAALs, including the N-terminal domain of 

M. tuberculosis FAAL28(Pooja Arora et al., 2009), the full-length E. coli, and L. 

pneumophila FAALs(Zhening Zhang et al., 2011), where the helix A11  is replaced by a 
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β-strand followed by an α-helix or a loop (Figure 4-3 B iii). This is the location where 

the ~20-amino-acid insertion motif occurs in FAALs, which has been implicated in 

determining FAAL activity. In all of the other structures that have been determined for 

the adenylate-forming superfamily, the region equivalent to the helix A11 is disordered 

(Figure 4-3 B iv). 

The second factor contributing to the rigidity of M. tuberculosis FadD10 open 

conformation arises from the quaternary organization of the dimer. According to the 

current understanding of adenylate-forming proteins, most of them, including 

FAALs(Zhening Zhang et al., 2011), are functional as monomers. The only subclass that 

can form dimers are the acyl-CoA synthetases, and for these proteins the dimerization 

interface is always limited to the N-terminal domains. This observation is consistent with 

the acyl-CoA synthetic mechanism, which requires the C-terminal domain to move 

freely relative to the N-terminal domain in order to bind ATP and then Coenzyme A in 

the step-wise reactions. M. tuberculosis FadD10 is also shown to be a dimer in solution 

based on both gel filtration analysis (data not shown), and PISA (Protein Interfaces, 

Surfaces and Assemblies) calculation(Evgeny Krissinel and Kim Henrick, 2007). In both 

the apo structure of M. tuberculosis FadD10 and its complexed structure with 

dodecanoyl-AMP, the two subunits of the dimer form an extensive network of 

intermolecular interactions, including 8 hydrogen bonds and many van der Waals 

interactions. All of the hydrogen bonds and most of the van der Waals interactions are 

between residues from the C-terminal domain of one subunit and residues from the N-

terminal domain of the other subunit. This confers a contact area of about 1600 Å2 per 
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22000 Å2 for each subunit. FadD10 is the first adenylate forming enzyme other than 

acyl-CoA synthetases, to be identified as a dimer. More importantly, the two subunits of 

the dimer interact in a manner which was previously unseen in the other homologs, and 

we propose this dimerization mode has played a role in maintaining the “open” 

conformation of M. tuberculosis FadD10 upon binding dodecanoyl-AMP. 

  

The conformation of M. tuberculosis FadD10 prevents Coenzyme A binding 

The adenylate-forming proteins, as a superfamily, share 10 conserved sequence 

motifs(Mohamed Marahiel et al., 1997), a similar structural scaffold(Andrew Gulick, 

2009), and a common half reaction -the adenylation of the carboxylate group of a 

substrate. Moreover, structural characterization of the superfamily revealed that a 

phosphopantetheine binding cavity is structurally conserved in the N-terminal domain. 

This is consistent with the notion of an evolutionary relationship within the adenylate-

forming superfamily, and strongly argues that the ubiquitous acyl-CoA synthetases are 

likely to be ancestral(Aneesh Goyal et al., 2011; Hugo Fraga et al., 2004; Uwe Linnea et 

al., 2007). Functional conservation of acyl-CoA synthesis activity has also been reported 

in other sub-classes of the adenylate-forming superfamily. For example, firefly 

luciferase(Hugo Fraga et al., 2004) as well as five different adenylation domains of 

NRPSs(Uwe Linnea et al., 2007) were shown to synthesize luciferyl-CoA and 

aminoacyl-CoAs, respectively, when their genuine acyl acceptors were absent and 

Coenzyme A was added as substrate. In contrast, M. tuberculosis FAALs (acyl-ACP 

synthetases) that have been studied, to date, which have also been proposed to be 
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descendants of acyl-CoA synthetases, lack acyl-CoA synthesis activity(Aneesh Goyal et 

al., 2011; Pooja Arora et al., 2009), even though they retain the binding elements of 

phosphopantetheine. This was demonstrated as well for FadD10. 

Structural comparison and analyses of relative domain orientation of FAALs and 

FadD10 with acyl-CoA synthetases provides a plausible explanation to their inability to 

turnover acyl-CoA. The structures of three acyl-CoA synthetases, Alcaligenes sp. CBL, 

human medium chain fatty acyl-CoA synthetase, and E. coli acetyl-CoA synthetase have 

all been reported in complex with Coenzyme A or derivatives(Andrew Gulick et al., 

2003; Andrew Gulick et al., 2004; Grazyna Kochan et al., 2009). When these proteins 

bind to Coenzyme A, their C-terminal domains all rotate about 140° relative to the 

position in the adenylate bound form.  Also, for all of these proteins, the C-terminal 

domain is explicitly engaged in the binding of Coenzyme A through hydrophobic 

interactions with its nucleotide moiety. This domain reorganization is believed to be 

requisite for Coenzyme A binding by the adenylate-forming enzymes, and hence for the 

formation of acyl-CoA. 

 Sequence analysis of M. tuberculosis FadD proteins reveals an N-terminal 

domain insertion of 10 to 24 amino acids only present in the FAAL cluster (Figure 4-1). 

Using the sequence insertion as an indicator, a number of putative FAALs can be 

identified in various organisms. Structural studies of E. coli FAAL, L. pneumophila 

FAAL(Zhening Zhang et al., 2011), and the N-terminal domain of M. tuberculosis 

FAAL28(Pooja Arora et al., 2009) indicate that the inserted sequence flanks the 

interface of the two domains. In M. tuberculosis FadD28 and E. coli FAAL, the insertion 
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folds into a β-strand followed by a short α-helix and a short extension of β-strand; in L. 

pneumophila FAAL, the insertion folds into a β-strand and then a loop. The structural 

insertion does not appear to interfere with the closure of the C-terminal domain to form 

the adenylate bound conformation(Zhening Zhang et al., 2011). However, it prevents the 

FAALs from undergoing the large-scale inter-domain rotation associated with 

Coenzyme A binding. The functional role of the insertion was further established, by 

showing that its deletion and addition manipulated the gain and loss of acyl-CoA 

synthesis activity in M. tuberculosis FAALs and FACLs, respectively(Aneesh Goyal et 

al., 2011; Pooja Arora et al., 2009). 

M. tuberculosis FadD10 does not have the FAALs insertion; therefore, the lack 

of acyl CoA synthesis activity for M. tuberculosis FadD10 must be based on a different 

mechanism. We propose that it is the unique inter-domain and intermolecular 

interactions of FadD10, as described above, that prevent the required inter-domain 

rearrangement for Coenzyme A binding. The introduction of an acyl moiety into a 

natural product made by. a PKS or NRPS is a well-recognized function of the acyl-CoA 

synthetases. While the acyl-CoA synthetases have been extensively studied, the CoA 

independent acyl transfer function has only been recently discovered and the 

understanding of its mechanism is limited to FAALs(Debasisa Mohanty et al., 2011). 

Functionally analogous to FAALs, M. tuberculosis FadD10 has revealed a distinct 

strategy to prevent acyl-CoA synthesis. It contradicts the existing model for the catalysis 

of FAALs dependent on an insertion motif, therefore establishes M. tuberculosis FadD10 

as a new type of FAAL. 
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Modeling studies of the interactions between M. tuberculosis FadD10 and Rv0100 

We have identified the likely binding interface for ACP (Rv0100) on FadD10. 

Because the transfer of a fatty acyl chain to the ACP by FadD10 is analogous to the 

transfer of amino acyl groups to peptidyl carrier proteins by NRPS adenylation domains, 

we have compared FadD10 with the structure of P. aeruginosa PA1221, which is a 

didomain construct containing an adenylation domain and a peptidyl carrier 

protein(Carter Mitchell et al., 2012). When the N-terminal domains of FadD10 and 

PA1221 adenylation domain (21% identity) are superimposed, their C-terminal domains 

are in different orientations as expected.  Interestingly, the peptidyl carrier protein of the 

didomain structure is positioned in an orientation poised for the FadD10 substrate to 

bind. Specifically, the side chain of the active site serine residue of the peptidyl carrier 

protein is directed toward and is approximately the correct distance to the 

phosphopantetheine binding cavity of FadD10 (Figure 4-4 A). When the interaction 

between FadD10 and the PA1221 peptidyl carrier protein is examined over the surface 

of the FadD10 dimer, we observe a relatively good fit of the carrier protein onto the 

intermolecular space of the dimer. Because ACPs are highly functionally and 

structurally homologous to the peptidyl carrier proteins, we have generated a homology 

model of Rv0100 based on the structure of PA1221 peptidyl carrier protein (19% 

identity)(Christophe Lambert et al., 2002). When the ACP model is overlaid on top of 

the superposition of FadD10 and PA1221, the interaction of ACP to FadD10 is similar to 

that of the PA1221 peptidyl carrier protein to FadD10 (Figure 4-4B), which suggests that 
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the open conformation of FadD10 has room for the ACP (Rv0100) to bind for acyl 

transfer. 

 

 

Figure 4-4. Modeling studies of the interactions between M. tubercuosis FadD10 and Rv0100. 
(A) Ribbon representation of the superposition of FadD10 subunit A with the didomain structure 
of PA1221 (PDB ID: 4DG9). The N-terminal and C-terminal domains of FadD10 are colored in 
yellow and orange, respectively. The N-terminal domain of the PA1221 adenylation domain is 
colored in white and its C-terminal domain is hidden for clarity. The PA1221 peptidyl carrier 
protein is colored in blue and its active site residue Ser533 is shown in stick. 
Phosphopantetheine, shown in green stick, is modeled based on comparison with human medium 
chain fatty acyl synthetase in complex with butyl-CoA (PDB ID: 3EQ6). 
(B) Surface representation of the interaction between the ACP (Rv0100) and FadD10 dimer. The 
subunit A of FadD10 dimer and PA1221 peptidyl carrier protein are colored as in panel A. The 
N-terminal and C-terminal domains of the FadD10 subunit B are colored in green and cyan, 
respectively. The Rv0100 model is shown as pink ribbon. 
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Substrate binding site of M. tuberculosis FadD10 

Several structures of adenylate-forming proteins in complex with adenylated 

derivatives (including three proteins bound to different long chain acyl-AMPs(Yuko 

Hisanaga et al., 2004; Zhening Zhang et al., 2011)) have been reported, wherein multiple 

residues from both the N-terminal and C-terminal domains are involved in the binding of 

adenylate moiety. However, the interactions between the amino acids of the C-terminal 

domain to the adenylate moiety are missing in M. tuberculosis FadD10, due to its open 

conformation. Conserved between FadD10 and the other homologous structures are 

primarily the interactions between the residues from the N-terminal domain of the 

enzyme and the adenylate group. The adenosine moiety, which is coordinated by a 

network of both hydrophobic interactions and hydrogen bonding (Figure 4-5 A), sits at 

the entrance to the catalytic cavity. The planar adenine is sandwiched by the 

hydrophobic side-chains of Tyr317 and Val344 on one side, and the backbone atoms of 

294GGSR297 on the other side. The exocyclic nitrogen forms hydrogen bonds with the 

side-chain oxygen of Gln315 (3.2 Å) and the backbone oxygen of Val316 (3.2 Å). The 

major binding determinants of ribose are Gly295 and Asp408. Specifically, the backbone 

oxygen of the former forms hydrogen bond (3.3 Å) with the ribose ring oxygen, and a 

side chain oxygen of the latter interacts with the 3’ (3.2 Å) ribosyl hydroxyl via 

hydrogen bond. The α-phosphate of AMP interacts with Ser320 by forming hydrogen 

bonds between the O2 of the phosphate and the backbone nitrogen (3.3 Å) of this 

residue. 
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The dodecanoyl aliphatic chain is buried inside a preformed narrow closed-end 

tunnel by β-strands B9, B10, B11, and α-helix A7 (Figure 4-5 B). In the apo structure of 

FadD10, this fatty acyl binding cavity is vacant. The tunnel that contains the aliphatic 

chain is lined primarily by the backbone atoms of B9, B10, and B11 (i.e. 264TCLV267, 

291VGYGG295, and 317YG318), while only three hydrophobic side chains, Val316, Ile226, 

and Trp231, are within van der Waal’s distance to the aliphatic chain. Approximately 11 

Å from the portal of the fatty acyl binding cavity, which is near the C12 of the 

dodecanoyl chain, the tunnel splits into two directions. In one direction, it extends along 

strand B9 to Leu290, whose dimethyl carbons are 5.5 Å from C12 of the dodecanoyl 

chain. In the other direction, it bends into a highly hydrophobic groove made by the side-

chains of Leu201, Val209, Trp211, Trp230, and Tyr348. At the distal end, it is 

terminated by the side chains of Val197 and Pro198. The bottom of this groove is about 

9.4 Å from C12 of the dodecanoyl chain, raising the possibility that the enzyme could 

accommodate a longer fatty acid substrate. We compared the fatty acid binding tunnels 

of the very long chain fatty acyl-CoA synthetase M. tuberculosis FACL13 (active on 

fatty acid with up to 26 carbons)(Charlotta S. Andersson et al., 2012), FadD10, and the 

human medium chain fatty acyl-CoA synthetase (active on fatty acid with up to 10 

carbons)(Grazyna Kochan et al., 2009). The linear distance between the distal end and 

the portal of their fatty acyl binding tunnels are approximately 17 Å, 14 Å, and 10 Å, 

respectively, which indicates that the biological substrate of FadD10 is probably a long 

chain fatty acid. Based on the geometric modeling and taking into account of the contact 
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distance associated with atomic van der Waals radii, the fatty acid binding tunnel in 

FadD10 could accommodate at most 16 carbons (i. e. hexadecanoic acid).   

To further determine the fatty acid specificity of FadD10, we incubated M. 

tuberculosis FadD10 and the holo-ACP (Rv0100), with fatty acids of varying chain 

length and degree of saturation, and then analyzed the results for the acylation of ACP 

(Rv0100) using ESI-QTOF mass spectrometry. We observed acylated ACP even when 

hexadecanoic acid was used as a substrate (Figure 4-5 C). This is consistent with the 

modeling study that shows a hexadecyl chain can be accommodated in the fatty acid 

binding tunnel of FadD10, and Chhabraa et al.’s study(Arush Chhabraa et al., 2012) 

showing that FadD10 could utilize fatty acids with up to 16 carbons in the adenylation 

reaction. The lower product yield for hexadecanoic acid could reflect differences in 

solubility or affinity. We have also observed a higher activity of FadD10 with 

hexadecanoic acid than 2-trans-hexadencenoic acid, which suggests that FadD10 prefers 

saturated fatty acid substrates. We previously identified Rv0098 as a long chain (C12-

C18) fatty acyl-CoA thioesterase. It, taken together with the structural analyses and 

enzymatic characterization of FadD10 (Rv0099), suggests that the lipopeptide produced 

by the M. tuberculosis Rv0096-Rv0101 operon incorporates a long chain fatty acid, 

particularly tetradecanoic acid that demonstrated the highest activity to acylate the ACP 

(Rv0100). 
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Figure 4-5. Biochemical and structural analyses suggest the biological substrate of FadD10. 
(A) Schematic representation of the hydrogen bonds (dotted lines) and hydrophobic interactions 
(bows) between dodecanoyl-AMP and FadD10.  
(B) The fatty acid binding tunnel of M. tuberculosis FadD10. The hydrophobic, positive, 
negative, and neutral surfaces of FadD10 are colored yellow, blue, red, and grey, respectively. 
Dodecanoyl-AMP is shown in stick and colored in pink. The arrows indicate the distance from 
the terminal carbon of dodecanyl chain to the molecular surface of the binding tunnel, taking into 
account of atomic van der Waals radii.  
(C) ESI-QTOF mass spectrometry of the holo-ACP (Rv0100) acylated by M. tuberculosis 
FadD10, in addition of fatty acids with varying chain length and degree of saturation. The ratio 
of abundance between the unreacted holo-ACP and the acylated ACP is approximately 1:5.5, 
1:6.9, 1:1.5, 1:0.6, and 1:0, respectively, for C12, C14, C16, 2-trans-C16, and C17 fatty acid. 
(D) FadD10 was incubated with dodecanoic acid, ATP, and cysteine, and then analyzed by LC-
MS. The result is simplified for clarity by only showing the elution of dodecanoic acid, 
dodecanoyl-AMP, and dodecanoyl-cysteine. 
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ATP-dependent amide bond synthesis activity has been previously reported for 

the short chain acyl-CoA synthetases as well as for firefly luciferase(Tomoko Abe et al., 

2008). Specifically, this was observed when cysteine analogues, including D-cysteine, 

homocysteine, and L-cysteine, were used as substrates to react with the preferred acid 

substrate of each enzyme. N-acylated cysteine derivatives were detected(Tomoko Abe et 

al., 2008). We have observed a similar activity in FadD10 using cysteine as a substrate 

(Figure 4-5 D). Unlike the side reactions observed in short chain acyl-CoA synthetases 

and firefly luciferase, whose amide forming activity is limited to cysteine 

analogues(Tomoko Abe et al., 2008), FadD10 is promiscuous with respect to other 

amino acids, specifically histidine, aspatate, glycine, and phenylalanine as we have 

tested (data not shown). Other amide synthetases belonging to the adenylate-forming 

superfamily have been reported. NovL, CloL, CouL, and SimL involved in novobiocin, 

clorobiocin, coumermycin A1, and simocyclinone D8 synthesis, respectively, can 

catalyze the formation of an amide bond between the amino group on the 

aminocoumarin ring and a carboxylate moiety through forming an adenylated 

intermediate(Elisabeth Schmutz et al., 2003; Florence Pojer et al., 2002; Marion 

Steffensky et al., 2000; Thomas Luft et al., 2005). Similar to fadD10, these four enzymes 

are in proximity to and cooperate with NRPS encoding genes. This suggests that amide 

formation, a side reaction to thioesterification of adenylate-forming enzymes, may 

evolve into a major biological function. 

Superposition of FadD10 with acyl-CoA synthetase complexed with Coenzyme 

A derivatives shows that the phosphopantetheine binding cavity is in the N-terminal 
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domain of FadD10. In our two structures, the continuity between the phosphopantetheine 

cavity and the fatty acyl binding tunnel is blocked by the side-chain of H225. A 

conserved aromatic residue (either histidine, phenylalanine, or tryptophan), equivalent to 

H225 in FadD10, is found in the sequences of all of the adenylate-forming enzymes. It is 

thought to function in the proper positioning of a fatty acid substrate into its cognate 

binding tunnel instead of extending into the phosphopantetheine binding site. More 

clearly described in the human medium chain fatty acyl CoA synthase(Grazyna Kochan 

et al., 2009), the indole ring of W265 (equivalent to H225 in FadD10) rotates about 180 

degrees relative to the main chain in the ATP or Coenzyme A binding state. This action 

switches off and on the connection between the fatty acid binding tunnel and the 

phosphopantetheine binding cavity. FadD10 should adopt a similar scheme to reorient 

H225 in the context of the overall reaction in order to allow for the extension of the 

phosphopantetheine terminus of the ACP (Rv0100) in to the fatty acid binding site. 

 

Conclusion 

We have determined the apo and dodecanoyl-AMP bound structures of M. 

tuberculosis FadD10, leading to the characterization of a new type of adenylate-forming 

enzyme. FadD10, independent of the presence of ligand, adopts and maintains an “open” 

conformation wherein the inter-domain orientation prevents the binding of Coenzyme A. 

Although M. tuberculosis FadD10 has a primary sequence similar to FACLs, we have 

clearly shown that it is indeed an FAAL that is only able to acylate an ACP (Rv0100) 

rather than Coenzyme A. This activity is consistent with the structural features of 
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FadD10; and is in agreement with the operon organization of M. tuberculosis Rv0099 

(FadD10) – Rv0101 (nrp), an assembly line for the production of lipopeptide(s). 

Because many similar gene clusters, involving an FAAL, an ACP, and an NRPS, have 

been observed in the synthetic pathways for bioactive lipopeptides(Darren Hansen et al., 

2007; Erwin Duitman et al., 1999; Eva Heinzelmann et al., 2005; Richard Baltz et al., 

2006), therefore it is very likely that enzymes with similar mechanisms and structures to 

M. tuberculosis FadD10 will be discovered in nature. 

 

Experimental Procedure 

Cloning, protein expression, and purification 

The M. tuberculosis fadD10 (Rv0099) gene was amplified by PCR, incorporated 

into the pDEST17 vector by gateway cloning (Invitrogen), and then transformed into 

either Novagen BL21(DE3)pLys E. coli cells for expression of native protein or 

Novagen B834(DE3)pLys cells for selenomethionine-incorporated protein expression. 

The cells were cultured at 37 °C until an OD600 of 0.8 was reached. For native 

protein expression, 1mM isopropyl-1-thio-β-D-galactopyranoside (IPTG) was added to 

induce expression and the cells were grown overnight at 20 °C. For selenomethionine-

incorporated protein expression, the cells were collected at an OD600 of 0.8, centrifuged, 

then resuspended and transferred into minimal media with selenomethionine. Induction 

of expression and growth were the same as for the native protein. 

After harvesting, the cells were resuspended in 25 mM Tris (pH 8.0), 500 mM 

NaCl and 2 mM β-mercaptoethanol, and lysed by French press. Recombinant FadD10 
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with an N-terminal poly-His tag was purified by nickel affinity chromatography 

followed by gel filtration. The His6 tag was then cleaved by TEV protease and the 

untagged protein was passed through another nickel column in 25 mM Tris (pH 8.0), 

100 mM NaCl and 2 mM β-mercaptoethanol. It was then concentrated to 15 mg mL-1, 

flash-frozen, and stored at -80 °C. 

The M. tuberculosis Rv0100 gene was amplified by PCR, ligated into the 

Novagen pET28b vector. The E. coli phosphopantetheine transferase Sfp was cloned into 

Novagen pETduet-1 vector. The plasmids containing Rv0100 and Sfp, respectively, were 

co-transformed into Novagen BL21(DE3) E. coli cells, and then expressed as described 

for the native FadD10. Recombinant holo-Rv0100 with a His6 tag was purified by nickel 

affinity chromatography in 25 mM Tris (pH 8.0), 100 mM NaCl and 2 mM β-

mercaptoethanol. 

 

Crystallization 

Crystals of Se-FadD10 (selenomethionine incorporated) were grown at 18 °C by 

hanging drop vapor diffusion. Each drop contained an equal volume of the protein 

solution and reservoir solution (0.32-0.36 mM LiSO4 and 15-30% polyethylene glycol 

6000). 

FadD10 in complex with dodecanoyl-AMP was obtained by incubating the 

protein solution for one hour with the reaction mixture in a 10:1 volume ratio. The 

reaction mixture was made by incubating 10 µM FadD10 with 2.5 mM ATP, 10 mM 

MgCl2, and 1 mM dodecanoic acid for one hour at 37 °C, then filtering out the protein 
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and concentrating the mixture ten-fold. Crystals formed in hanging drops after four days 

in 4 M potassium formate. 

 

Data collection and processing 

Diffraction data from a single apo Se-FadD10 crystal was collected at 120 K 

using a cryo-protection solution consisting of the crystallization condition with the 

addition of 30% glycerol. Crystals diffracted to 2.20 Å at beam line 5.0.2 at the 

Advanced Light Source (ALS). A total of 180° diffraction data were collected at the 

wavelength of 0.9795 Å, which is the absorption peak of Se-FadD10 crystals. 

Diffraction data of FadD10 in complex with dodecanoyl-AMP were collected to 2.44 Å 

at the wavelength of 1.542 Å using Rigaku R-AXIS IV++ at home source. All the data 

were processed and reduced using HKL2000(Zbyszek Otwinowski and Wladek Minor, 

1997). The crystals of apo Se-FadD10 are in the space group P21, with two molecules in 

each asymmetric unit. The crystals of FadD10 binding dodecanoyl-AMP are in the space 

group P3121, with one molecule in each asymmetric unit (Table 4-1). 
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Table 4-1. Data collection and refinement statistics for FadD10 structures. 

PDB ID 4ISB 4IR7 

Crystal Se-FadD10 C12-FadD10 

Ligands SO42- dodecanoyl-AMP 

  Mg2+ 

Data collection 

Space group P21 P3121 

Unit cell dimensions 

 

a=57.32Å, b=107.91Å, 
c=85.69Å 
a=90.0°, b=106.9°, g=90.0° 

a=b=138.16Å, c=82.47Å 
a=b=90.0°, g=120.0° 
 

Molecules/ASU 2 1 

Wavelength (Å) 0.9795 1.542 

Resolution (Å) 48.57-2.20 39.84-2.80 

Completeness (%)1 99.3 (98.9) 100.0 (99.7) 

No. of reflections 49204 24707 

I/σI* 9.50 (1.94) 14.01 (2.15) 

Rsym* 0.103 (0.703) 0.0567 (0.504) 

Refinement statistics 

Resolution (Å) 48.50-2.20 39.03-2.80 

No. of reflection work 49014 22632 

No. of protein atoms 7422 3734 

No. of water molecules 59 32 

No. of heteroatoms 20 36 

Rcryst (%) 22.69 22.61 

Rfree (%) 27.28 27.95 

RMSD bond length (Å) 0.01 0.002 

RMSD angle (°) 1.26 0.60 

Mean temperature factor (Å2) 25.5 62.0 

*. Numbers in parenthesis indicate data for highest-resolution shell. 
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Structure determination and model refinement 

The phase of Se-FadD10 was determine by single-wavelength anomalous 

dispersion using Autosol in PHENIX(Paul Adams et al., 2010). Twenty-two selenium 

atoms were located and refined per asymmetric unit till the overall figure of merit 

reaches 0.32. An initial model was built by Autobuild in PHENIX(Paul Adams et al., 

2010). Manual rebuilding was then performed to improve the model using Coot(Paul 

Emsleya and Kevin Cowtan, 2004). The final model was obtained after further cycles of 

model building and PHENIX refinement yielding Rcryst and Rfree of 22.69% and 27.28%, 

respectively. There are two subunits, designated as A and B, as well as 4 sulfate ions and 

59 water molecules per asymmetric unit in the refined model. A total of 508 and 502 out 

of 540 residues for chain A and B, respectively, were visible and built into the electron 

density. The missing residues are due to the absence of interpretable electron density. 

They include the N-terminal residues 1-8, the C-terminal residues 532-540, and the loop 

residues 145-154, 424, 477-480 of chain A; and the N-terminal residues 1-3, the C-

terminal residues 532-540, and the loop residues 125-131, 145-154, 161-164, 179-183 of 

chain B. Residues S178, T181, E183, and K185 of chain A and residues E426, R451, 

S474, E476, and L477 of chain B were built as alanine due to ambiguous side chain 

electron density. 

The structure of FadD10 in complex with dodecanoyl-AMP was solved by 

molecular replacement using MOLREP (Alexei Vagin and Alexei Teplyakov, 1997) in 

CCP4. A single solution for the molecular replacement was obtained using the chain A 

of apo FadD10 as the search model. Dodecanoyl-AMP was manually built in the model 
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by examining the Fo – Fc map in Coot(Paul Emsleya and Kevin Cowtan, 2004). The 

final model was obtained after further cycles of model building and PHENIX 

refinement, to 2.80 Å, yielding Rcryst and Rfree of 22.61% and 27.95%, respectively. 

There are one subunit of FadD10, one dodecanoyl-AMP, and 32 water molecules in each 

asymmetric unit. A total of 508 residues are built into the refined model. The N-terminal 

residues 1-10, the C-terminal residues 532-540, and the loop residues 124-128, 147-152, 

179-180 are missing from the model due to the absence of interpretable electron density. 

The complete refinement statistics are given in Table 1. 

 

Enzymatic assays to detect acylation of Rv0100 

FadD10 (1.5 µM) and Rv0100 (20 µM) were incubated with 2 mM ATP, 5 mM 

MgCl2, in presence of 200 µM different fatty acids, in 25 mM ammonium bicarbonate 

buffer at pH 7.8, for 1 hour. The salts were removed by diluting and concentrating the 

solutions by 10-fold in 25 mM ammonium bicarbonate buffer, for 3 cycles. The resulted 

samples were mixed with acetonitrile and formic acid in a ratio of 1:1:0.002, and then 

analyzed by Bruker microQTOF-QII. 

 

HPLC-MS analysis of dodecanoyl-amino acids 

FadD10 (10 µM) was incubated with 2 mM ATP, 8 mM MgCl2, 200 µM 

dodecanoic acid, in presence of 2 mM different amino acids, in 50 mM phosphate buffer 

at pH 6.5, for 1 hour. The macromolecues were removed by passing the solutions 

through 5 kDa cutoff filters. 100 µL of each reaction product were injected in to HPLC 
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coupled with ESI-MS analysis. The HPLC was performed with an Atlantis T3 5 µM 

column (4.6, 250 mm), using a 5% acetonitrile/0.1% TFA wash for 10 minutes followed 

by a 5%-80% acetonitrile/0.1% TFA gradient over 1 hour. 

 

Additional Unpublished Results 

Kinetics of the adenylation activity of FadD10 

The adenylation activity of M. tuberculosis FadD10 was monitored by a 

phosphate detecting enzymatic assay. The enzyme displayed Km values of 106 µM 

(Figure 4-6 A and B) and 46 µM (Figure 4-6 C) for ATP and dodecanoic acid, 

respectively. The Kcat was determined to be 0.005 s-1 (Figure 4-6 B). These kinetic 

parameters are comparable to those reported for the adenylation reaction catalyzed by 

FAAL enzymes. For example, Mycobacterium smegmatis FAAL32 showed Km of 20 

µM and 250 µM for dodecanoic acid and ATP, respectively(Ségolène Galandrin et al., 

2013); E. coli FAAL showed Kcat of 0.001 s-1 using octyldecanoic acid as 

substrate(Zhening Zhang et al., 2011). We have also examined the overall acyl transfer 

activity of FadD10 by incubating the enzyme, ATP, dodecanoic acid (C12 acid), in 

addition to both Coenzyme A and the holo-ACP (Rv0100). The resulted adducts were 

analyzed by ESI-QTOF mass spectrometry, where no dodecanoyl-CoA but only 

dodecanoyl-ACP was detected (data not shown). 
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Figure 4-6. Kinetics of the adenylation activity of FadD10. (A) The absorbance spectrometry 
with 50 µM dodecanoic acid and varying concentration of ATP. (B) and (C) The Lineweaver-
Burk plots to determine the Km of ATP and dodecanoic acid, respectively. 
 

Gel filtration analysis of the interaction between FadD10 and Rv0100 

 The interaction between M. tuberculosis FadD10 and the ACP (Rv0100) in 

solution has been examined by gel filtration chromatography using Sephacryl S-200 HR 

from GE Healthcare. When equimolar mixture of FadD10 (~5 mg/mL) and holo-Rv0100 

(~1 mg/mL) was passed through the column, part of Rv0100 was associated to FadD10 

(Figure 4-7); but pure holo-ACP only eluted at the volume as observed for the free 

Rv0100 in Figure 4-7. This confirms our modeling studies of the interaction between the 

two proteins. The same was observed for apo-Rv0100 (the wide-type Rv0100 without 
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phosphopantetheination) as well (data no shown), which suggests that the interaction 

between FadD10 and Rv0100 is likely driven by interactions at the inter-molecular 

interface or a desolvation process, rather than being determined by phosphopantetheine 

binding. 

 

 

Figure 4-7. Gel filtration analysis of the interaction between FadD10 and Rv0100. The first peak 
corresponds to FadD10 associated with Rv0100, and the second peak corresponds to free 
Rv0100. 
 

Additional Unpublished Experimental Procedures 

Enzymatic assays for adenylation activity 

The adenylation reaction catalyzed by FadD10 is monitored by measuring the 

released pyrophosphate(Martin Webb, 1992). Each reaction (180 µL) contained FadD10, 
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dodecanoic acid, ATP, and 50mM Tris-HCl (pH 7.5), 10 mM MgCl2, 550 mM 2-amino-

6-mercapto-7-methylpurine riboside, which was coupled to 0.1 unit pyrophosphatase 

(Sigma-Aldrich) and 0.2 unit purine nucleoside phosphorylase (Sigma-Aldrich). The Km 

of dodecanoic acid was determined with 7 µM FadD10, 1mM ATP, and dodecanoic acid 

varying from 0 to 100 µM; and the Km of ATP was determined with 3.3 µM FadD10, 50 

µM dodecanoic acid, and ATP varying from 100 µM to 3 mM. All the reactions were 

read at 360 nM by Thermo Scientific Multiskan GO microplate spectrophotometer. 
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CHAPTER V 

CONCLUSION 

 

 In this thesis, I highlighted my work with peers on the proteins involved in the 

lipid metabolism of M. tuberculosis. In CHAPTER I, I presented the literature review on 

the physiological significance of lipid metabolism in M. tuberculosis, and the prospects 

of lipid metabolic pathways as targets for anti-tubercular drug design. In CHAPTER II, I 

characterized the binding of dioctylamine with the methyltransferase CmaA2, designed 

an enzymatic assay, and demonstrated the inhibition action of dioctylamine on CmaA2 

in vitro. This work, coupled with my collaborators’ in vivo examination, showed that 

dioctylamine had tentative antimicrobial activity and could serve as a framework to 

design more potent inhibitors. This research also validated the mycobacterial 

methyltransferases (CmaA2 and homologues) as promising drug targets. In CHAPTER 

III, I presented my work with peers on the understanding of the action of INH and ETH. 

They are pro-drugs that are metabolized intracellular and thus the action is largely 

complicated. Using technologies covering microbiology, structural biology, 

enzymology, and computation, we confirmed the target of INH and found out a new 

cellular component to affect ETH susceptibility. In CHAPTER IV, I showed the 

characterization of the enzyme FadD10. It is virulence associated yet its function was 

previously mysterious. Through delicate analyses of its sequence, activity, and structure, 

I identified the enzyme as a fatty acyl-ACP synthetase and elucidated the molecular 

basis of its action. 
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Since the bacterium of M. tuberculosis was discovered more than a century ago, 

TB continues to reign as the single leading cause of death by an infectious disease. 

Instead of being eliminated from the human society, the bacterium has developed into 

more fatal formats, i. e. MDR- and XDR-TB strains. This is largely due to a chronicle 

use of a small category of anti-tubercular drugs. Therefore scientists from different 

fields, such as microbiology, enzymology, biophysics, and informatics, have been 

thriving to come up with new strategies to fight against this persistent bug. I hope our 

efforts to try to understand and target the lipid metabolism of M. tuberculosis will 

provide a new perspective in the understanding of infection mechanism, the validation of 

new drug targets, and the design of new drugs. 
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APPENDIX 

AUTHOR CONTRIBUTIONS FOR THE REPRINTED ARTICLES 

 
CHAPTER II: 

Daniel Barkan analysed the whole cell response (including M. tuberculosis, M. 

smegmatis, and BCG strains) to dioctylamine, in terms of the mycolic acid profiles and 

susceptibility to antibiotics. 

Zhen Liu carried out in vitro characterizations including fluorescence titration, 

enzymatic assays, and crystallography; performed the fragment-based screening for 

CmaA2. 

CHAPTER III: 

Feng Wang carried out the biochemical and structural characterization for DhfR. 

Catherine Vilchèze isolated the spontaneous mutants of M. tuberculosis, co-resistant to 

INH and ETH, and located the mutations to mshA. 

Zhen Liu carried out the biochemical and structural characterization for InhA co-

expressed with KatG; analyzed the model of M. tuberculosis MshA; and performed the 

enzymatic assays for EthA. 

 




