Innovative, Cost Effective and Energy Efficient Design for New Construction at a Texas High School

Presented by:

Saleem Khan, P.E.

(TEESI)
1301 S. Capital of Texas Hwy., Suite B-325
Austin, TX 78746
(512) 328-2533
e-mail: Saleem@teesi.com

www.teesi.com
Presentation Overview

- Introduction
- Design for Energy Efficiency
- Brief overview of MEP systems
- HVAC & Controls
 - Dual Duct (DD) VAV System
 - Single Zone (SZ) Systems
 - Chilled water
- Conclusion
- Discussion and/or Questions
Introduction

- TEESI
 - Energy Assessments, MEP Design, Construction Management and Commissioning
- Nixon High School
 - Laredo Independent School District
 - South Texas
- Climatic conditions
 - Predominately cooling required year round. Design features suited for Laredo’s unique climate, where cooling is required the vast majority of the year, while still maintaining acceptable first cost

(www.teesi.com)
Facility Description

- Nixon High School
 - 200,000 sf of new construction replacing around 40 year old structures, two story building
 - Design & construction of temporary campus while constructing new facility
 - Student population approx. 2,000
 - Integrating new facility into other more recently built existing buildings
 - Besides MEP the project includes many Architectural design features
MEP System Description

- Nixon High School New Construction Design Features Overview
 - HVAC - Air Side
 - Unique Dual Duct VAV system application
 - Approximately 60%
 - Single Zone VAV
 - Outside air units
 - All electric heat!
 - HVAC - Water Side
 - Air-cooled chilled water system
 - Large DX system with energy recovery for remote locations
 - Small DX system for specific areas (server / comm. rooms)
 - Dual (DX & Chilled water) Air handler at admin area
 - DDC controls
 - Lighting Systems
 - Interior and exterior all LED
 - Integrated controls
 - Water conservation measures
 - Low flow fixtures
 - Faucets time control

(www.teesi.com)
Dual Duct (DD) VAV

- Traditional DD boxes for separate hot and cold air
- In our design, hot deck side of each box served by separate dedicated outside air unit, while cold deck side served by air handlers for space-sensible loads
 - Pressure-independent boxes allow for precise control of treated outside air delivery
 - Motion activated staging and flow controls
- Traditional VAV system, all zones in the system are dependent on zone requiring highest percentage of outside air, wasting energy on cooling and dehumidification
- Sample illustration figures on following pages
Traditional VAV System

1,400 CFM
OA

2,800 CFM
RA

Mixed Air
AHU

Zone 1
Cooling CFM Required: 1,200
OA CFM Required: 400
%OA Required: 33%
Actual %OA: 33%
Actual Design OA CFM: 400

Zone 2
Cooling CFM Required: 1,400
OA CFM Required: 400
%OA Required: 29%
Actual %OA: 33%
Actual Design OA CFM: 465

Zone 3
Cooling CFM Required: 1,600
OA CFM Required: 400
%OA Required: 25%
Actual %OA: 33%
Actual Design OA CFM: 535
Dual Duct VAV System (Current Design)

Zone 1
Cooling CFM Required: 1,200
OA CFM Required: 400
Actual Design OA CFM: 400

Zone 2
Cooling CFM Required: 1,400
OA CFM Required: 400
Actual Design OA CFM: 400

Zone 3
Cooling CFM Required: 1,600
OA CFM Required: 400
Actual Design OA CFM: 400
Ventilation & Loads

- Analysis of ventilation and cooling CFM correlation for a "worst case" over-ventilation/over-cooling scenario in a typical classroom

Correlation of Ventilation and Cooling Loads

Typical Classroom Assumptions:
- 800 Square Feet
- Space setpoint 75°F
- Supply temperature 55°F
- Occupant Sensible Load 240 BTUh/person
- Low Light 0.5 W/SF; Full Light 1.0 W/SF
- 10 CFM/person, 0.06 CFM/SF ventilation req.
- No shell load or equipment load

(www.teesi.com)
DD VAV Logic Schematic

- Space Dual Duct VAV box control logic schematic in occupied mode when motion is sensed in the zone.

![Diagram showing the control logic for a dual duct VAV box in occupied mode. The diagram includes a PID controller, zone temperature, zone setpoint, fresh and return air dampers, and airflow meters.](www.teesi.com)
DD VAV Summary

- As the cooling load decreases from design (i.e., the maximum CFM), the space sensible air CFM will be reduced as needed to a minimum of zero (damper fully closed).
- As cooling load decreases even further, pre-treated outside air CFM will then be reduced from design levels down to a minimum of zero (when motion sensor detects zero occupants).
- This system allows for essentially zero minimum flow for each VAV zone without violating ventilation codes, something that is unattainable for most traditional VAV systems.
- *When there are relatively few occupants and relatively little ventilation required, two-stage cooling design reduces the amount of hot outside air that has to be cooled, saving energy and money.*
- System employs “economizer mode” when outside conditions are favorable
Single Zone VAV

- Large spaces (gym, library, theater) use variable air volume capable single zone units equipped with VFDs
- System uses two stage cooling approach: As cooling requirement increases, open chill water valve to decrease air temperature. If additional, cooling is required after min. temperature reached, increase fan speed
Hydronic System

- Air-cooled Chilled Water
 - Two primary (total 500 tons) and one small chiller (120 tons)
 - Primary secondary pumping systems, with dynamic differential pressure reset

Secondary CHW DP Reset

- **Constant DP Setpoint**
- **DP Based on Most Open Valve**

![Graph showing relationship between Avg. Daily VFD Spd (%) and Avg. Daily OAT (°F)](graph.png)
Conclusions

- MEP design for Nixon High School strongly considered energy efficiency, while satisfying budget and occupant comfort requirements.
- Customized dual-duct VAV system designed for Laredo climate is anticipated to reduce energy used to treat outside air and provide more precise comfort control.
- Staged cooling and heating design features will reduce energy used to satisfy cooling & heating requirements (dynamic).
- High-efficiency chillers, lighting, and plumbing fixtures provide additional efficiency.
- Maintenance staff training and commissioning recommended.
Discussion and/or Questions?

Saleem Khan, P.E.
Saleem@teesi.com

Texas Energy Engineering Services, Inc. (TEESI)
Facilities Energy, MEP Design & Commissioning Engineering

(www.teesi.com)