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Abstract— Open Automated Demand Response (OpenADR), an 
XML-based information exchange model, is used to facilitate 
continuous price-responsive operation and demand response 
participation for large commercial buildings in New York who 
are subject to the default day-ahead hourly pricing. We 
summarize the existing demand response programs in New York 
and discuss OpenADR communication, prioritization of demand 
response signals, and control methods. Building energy 
simulation models are developed and field tests are conducted to 
evaluate continuous energy management and demand response 
capabilities of two commercial buildings in New York City. 
Preliminary results reveal that providing machine-readable 
prices to commercial buildings can facilitate both demand 
response participation and continuous energy cost savings. 
Hence, efforts should be made to develop more sophisticated 
algorithms for building control systems to minimize customer's 
utility bill based on price and reliability information from the 
electricity grid. 

 
Index Terms—Price response, demand response, dynamic 

pricing, real-time pricing, automated control, energy 
management, load management, load shedding, load forecasting, 
dynamic response.  

 

I.  INTRODUCTION  

In order to ensure reliable and affordable electricity, the 
flexibility of demand-side resources to respond to the grid 
reliability requests and wholesale market conditions is 
required (Borenstein et al., 2002; Hirst et al., 2001). Large 
customers are often the immediate target for demand response 
(DR) because they are major contributors to peak demand for 
electricity and they are equipped with centralized building 
management system (BMS) to adjust electric loads. However, 
much of DR is still manual because most BMS do not have a 
built-in capability to support DR participation (i.e., pre-
programmed DR strategies). Hence, providing frequent DR is 
a daunting task for many customers, which undermines the 
full potential of demand-side management among large 
customers. The customer's ability to perform DR can be 
significantly improved by enabling automated demand 

response (Auto-DR) (Piette et al., 2005). By eliminating the 
human in the loop, Auto-DR eases the operational burden to 
provide frequent DR and reduces the cost associated with 
monitoring and responding. 

It has been argued that Auto-DR and enabling technologies 
would play a critical role in creating price-responsive load 
(Goldman et al., 2002). The application of Auto-DR to 
dynamic pricing has attracted attention since several states and 
utilities deployed full-scale dynamic pricing programs. To 
facilitate price and reliability information exchange among 
various stakeholders in the electric grid, Lawrence Berkeley 
National Laboratory (LBNL) developed Open Automated 
Demand Response (OpenADR) (Piette et al., 20009). 
OpenADR is an open and interoperable standard that uses an 
XML (eXtensible Markup Language) based information 
exchange model to send DR requests and pricing signals from 
a server (i.e., utility, system operator, aggregator) to a client 
(i.e., customer site). Ghatikar et al. (2010) discussed the use of 
OpenADR for price response presenting strategies to 
operationalize dynamic pricing signals into load control 
modes. 

Understanding Auto-DR potential in commercial buildings 
requires examining the capabilities of existing control systems 
and communication protocols. A centralized BMS can 
integrate individual control systems/devices to provide greater 
controllability and efficiency to building managers. Open 
communication protocols allow interoperability between 
different vendors’ systems/devices. Therefore, as more 
buildings adopt the centralized BMS and open communication 
protocols, the cost and time to enable Auto-DR will decrease. 
According to the Energy Information Administration’s 2003 
Commercial Buildings Energy Consumption Survey 
(CBECS), 7% of commercial buildings have BMS which 
represents 31% of the national floor space (Kiliccote and 
Piette, 2006). This percentage has probably increased by now 
since more buildings are built with a BMS or retrofitted with 
it. The recent revisions of building energy efficiency standards 
now include DR in their specifications. Examples are the 
Automated Demand Response section in California’s Title 24-
2013 and the pilot demand response credit in U.S. Green 
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Building Council’s LEED (Kiliccote et al., 2012). Standards 
like these may encourage control vendors to install built-in DR 
capabilities in their BMS. In such case, the efforts to 
customize DR strategies will be significant reduced. 

II.  OBJECTIVES AND SIGNIFICANCE 

This paper reports on the latest efforts to automate 
customer response to price and reliability signals for large 
commercial buildings in New York City (NYC). It is 
significant in two ways. First, the paper raises the awareness 
to key cost challenges for commercial customers who are 
subject to the default day-ahead hourly pricing in New York 
State (NYS) and provides a practical solution that the facility 
can adopt for continuous energy management. Second, it 
provides a framework to develop and test control algorithms 
that optimize energy use and cost in large commercial 
buildings. 

A note on terminology: dynamic pricing is referred to 
energy prices that are available to customers in regular 
intervals no more than a day in advance. In NYS, wholesale 
electricity prices are set day-ahead, hour-ahead or in real-time 
by the New York Independent System Operator (NYISO) 
wholesale markets. In this paper, we focus on day-ahead 
hourly pricing, which is the default tariff for large customers 
in NYS.  

The rest of this paper is organized as follows. In Section II, 
we summarize the existing demand response programs in 
NYS. In Section III, we discuss OpenADR communication 
architecture, prioritization of price and reliability signals, and 
control methods for large commercial buildings that 
participated in our demonstration project. In Section IV, the 
application of Auto-DR under MHP is explored through 
energy simulation and field tests of two demonstration 
buildings in NYC. Preliminary findings from the 
demonstration project are discussed in Section V. Lastly, in 
Section VI, we conclude with suggestions for future research 
directions. 

III.  DEMAND RESPONSE IN NEW YORK STATE 

In NYS, DR is mainly promoted through reliability-based 
programs and dynamic pricing. There are a number of 
reliability-based programs offered to customers by NYISO 
and utilities, commonly referred to as DR programs. Since the 
initial offering in 2001, NYISO's DR program registration has 
grown steadily. In 2001, there were approximately 300 
participants enrolled in reliability-based programs such as 
Special Case Resource/Emergency Demand Response 
Program (SCR/EDRP) with the total participating load of 750 
MW. By 2011, NYISO had a total of 5,807 participants for the 
SCR/EDRP program providing 2,173 MW of curtailable load 
(Patton et al., 2012). Most customers in NYS are enrolled in 
DR programs through Curtailment Service Providers (CSPs). 
CSPs manage a portfolio of DR resources and aggregate 
demand reduction to maximize DR compensation. They help 
customers assess the DR potential and develop load 
curtailment strategies. Contracting a CSP typically means that 

customers meet the minimum shed requirements during the 
DR test/event and receive DR compensation in return. 

Dynamic pricing is offered to induce price-responsive load, 
flattening system demand by applying high prices during peak 
periods and low prices during off-peak periods. Pacific Gas 
and Electric (PG&E) Critical Peak Pricing and Southern 
California Edison's (SCE) Real-Time Pricing are examples of 
dynamic pricing. In 2005, the State of New York Public 
Service Commission ordered utilities to provide day-ahead 
hourly pricing as the default tariff to non-residential customers 
whose demand is roughly over 500 kW (NYPSC, 2005). This 
tariff is also known as Mandatory Hourly Pricing (MHP). 
Although utilities offer MHP as the default service to large 
customers, NYS’s retail access policy allow customers to 
purchase their energy from any retail third party supplier as an 
alternative to the utility. Hence, MHP is not strictly 
‘mandatory’. As of 2011, only 15% of the MHP-eligible 
customers were enrolled in MHP and the rest (85%) were 
retail access customers (Joskon, 2012). The problem of this is 
that flat price retail contracts that hedge against price 
fluctuations and therefore do a poor job of reflecting 
wholesale near-term market prices (day-ahead, hour-ahead and 
real-time) (Goldman et al., 2002). They also tend to be 
expensive due to the inherent risk of offering a less variable 
rate. When retail prices are not tied to wholesale market 
variations, they can “inefficiently increase the level of peak 
demand by underpricing” electricity and can also “discourage 
increased demand during off-peak hours by overpricing it” 
(Joskon et al., 2012). Therefore, switching from MHP to a 
retail rate can hamper the development of price-responsive 
load. 

The primary barriers to the adoption of MHP are identified 
as the insufficient resources (both labor and equipment) to 
monitor hourly prices and inflexible labor schedule (KEMA, 
2012). This is not surprising since most customers rely on 
manual approach to provide DR. Providing DR manually is a 
resource-intensive process. If customers are not capable of 
monitoring and responding to hourly price variations, they are 
likely to choose a more conventional rate such as a fixed rate. 
Moreover, customers have not yet found a compelling 
business case to stay with MHP. Many customers presume 
that the cost of monitoring and automation outweighs the 
potential savings. Even if the savings exist under day-ahead 
hourly prices, they are not as obvious and repeatable as the 
DR payments because the savings are a function of the market 
and are embedded in the total electricity bill.  Therefore, in 
order to increase the adoption of MHP and dynamic-price 
retail contracts, we not only need to make the prices broadly 
available and automate customers’ price response but also 
effectively communicate potential savings to customers and 
ways to achieve it. 

In NYC, MHP is billed under Rider M: Day-Ahead Hourly 
Pricing from Con Edison where the cost of energy is 
calculated based on the customer's actual hourly energy usage 
multiplied by NYISO's day-ahead zonal locational based 
marginal price (LBMP) (Con Edison). In addition, customers 
pay demand charge imposed on the maximum demand of each 
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billing cycle. The demand charge varies depending on the 
Time-of-Day (TOD) and season (Con Edison). Based on our 
billing analysis, the demand charge accounts for 19% - 55% of 
the customer's electric bill depending on time of use. To 
reduce the total electric bill, customers need to control their 
electric consumption according to the hourly price variations 
and limit the building's peak demand during expensive hours. 

IV.  APPROACH 

Since October 2011, the Demand Response Research 
Center (DRRC) at LBNL and New York State Energy 
Research and Development Authority (NYSERDA) have 
conducted a demonstration project enabling automated DR 
and price response in large commercial buildings located in 
NYC using OpenADR. The recruitment efforts were focused 
on large commercial buildings in NYC. Preferences were 
given to the buildings that represented the typical construction 
of commercial buildings in NYC and previously participated 
in DR programs. Four facilities were recruited for the 
demonstration project. All of them previously participated in 
one or more DR programs through CSPs providing manual 
control of HVAC, lighting, and other systems during DR 
events. Some also provided manual peak load management. 
But because DR was manually performed, the buildings did it 
only on hot days or DR event days. They did not do any price 
response prior to the demonstration project. The customer’s 
participation in this project was driven by the motivation to 
automate the control strategies that they used for DR events. 
Automation allows building operators to automatically 
respond to DR events without having to manually activate 
individual control strategies. All facilities are on a retail rate 
and are not enrolled in MHP. In this paper, we set out to 
investigate a hypothetical scenario wherein the demonstration 
buildings purchase electricity under the MHP tariff and 
therefore have to respond to the variability of day-ahead 
hourly prices. 

A.  OpenADR Communication Model 

To automate price and demand response using OpenADR, 
three basic technologies are required: an OpenADR server to 
receive reliability and price signals; an OpenADR client at the 
facility to receive the reliability and price signals; and a BMS 
to program and activate control strategies (Wikler et al., 

2008). We used OpenADR version 1.0 for the demonstration 
project. OpenADR version 2.0, available currently, was not 
released at the time of the project implementation. Figure 1 
shows the OpenADR communication architecture for the 
demonstration project. Day-ahead hourly prices are obtained 
from NYISO's website and DR test/event notifications are 
received from the customer's CSP. Based on the price and 
reliability signals, an operation mode is determined for each 
hour of the following day. Once the signals are processed, the 
OpenADR server sends twenty-four hourly prices and 
corresponding operation modes to the facility to activate 
preprogrammed control strategies for next day. The OpenADR 
server also logs the building’s 15-minute meter data via kyz 
pulses and monitors the electric demand throughout the day. 
All information exchange is accomplished through a secure 
Internet connection with 128-bit Secure Sockets Layer (SSL) 
encryption. The facilities can opt-out of Auto-DR at any time 
via the OpenADR server’s client interface accessible over the 
Internet. The opt-out can be scheduled in advance for a 
specified period which can be a few hours or days depending 
on the facility's operational needs.  

B.  Prioritization of DR signals 

Three types of DR signals are issued: 1) reliability, 2) 
demand limiting, and 3) day-ahead hourly price signals. These 
signals are prioritized differently depending on the next day's 
DR test/event status as described in Figure 2. For non-DR 
test/event days, the facilities respond to price signals until the 
building's electric demand exceeds a pre-set threshold, in 
which case, the OpenADR server would switch the signal type 
from price to demand limiting. When a DR test/event is 
issued, the facilities only respond to reliability signals during 
the DR test/event period. If the building’s demand exceeds a 
pre-set threshold, demand limiting signals would be issued to 
reduce the demand. We decided to turn off price signals 
during DR test/event days to prevent curtailment activities 
affecting the customer baseline. This is applicable to 
customers who use morning adjustments to calculate their 
energy compensation (i.e., the NYISO's Weather-Sensitive 
Customer Baseline) (NYISO). 

The reliability, demand limiting, and price signals are 
mapped into four levels of operation mode that are tied to 
preprogrammed DR strategies via the facility’s BMS. 
OpenADR version 1.0 supports following operation modes: 
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Figure 1.  OpenADR communication architecture for the New York City demonstration project. 
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Normal, Moderate, High, and Special (which we call Critical 
for the demonstration project). 

 Normal indicates the normal operation triggered when 
the energy price is acceptable and there is no DR 
test/event issued. 

 Moderate indicates the first level of load shed triggered 
when the energy price is moderately expensive. 

 High indicates the intermediate level of load shed 
triggered when the energy price is highly expensive.  
High is also triggered when electric demand exceeds 
the pre-set threshold. 

 Critical indicates the highest level of load shed 
triggered when the DR test/event is issued and electric 
loads need to be curtailed at the maximum reduction 
level. 

C.  Auto-DR Control Logic 

Using OpenADR, the facilities can control electricity usage 
and cost by responding to both price and demand limiting 
signals. The Auto-DR intelligence can reside 1) within the 
facility or 2) in the cloud (i.e., the OpenADR server). While 
the first option has the advantage of unrestricted building data 
retrieval and direct control over the building systems/devices, 
it requires on-site development and operation of Auto-DR 
software. Locating the intelligence in the cloud has the 
advantage of flexible energy monitoring and DR management.  
Cloud computing also offers remote data storage and 
processing capabilities. However, the availability of building 
control and real-time feedback may be restricted if the 
building does not want to open their network firewall.  
Moreover, building managers may be opposed to the idea of 
their building being controlled by remote intelligence. For our 
demonstration project, we located the Auto-DR intelligence 
within the facilities to obtain full access to building data and 
avoid potential threats to the building network security. 

If the building data retrieval and direct control over the 
building systems/devices are available, the customer's energy 
cost for a given day can be minimized through load 
optimization in response to NYISO's day-ahead zonal LBMP (

tC ), as expressed in (1). 

),,(min
1

ttt

k

t
t wxugC


              (1) 

Optimal electricity usage (kWh) is determined by the 
objective function ( g ) based on following variables: u  is the 

input constraints for control strategies; x  is the building 
system states (i.e., HVAC set points, operation schedules); and 
w  is the weather (i.e., outside air temperature, relative 

humidity). t  represents the time interval and k  indicates the 
total number of time intervals in a day. The demand charge 
can be minimized by reducing the building’s peak demand 
during a billing cycle, as expressed in (2). 
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


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




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,...,1
iii

Ni
wxuh             (2) 

h  represents the electric load (kW) at a given time interval ( i ) 
and N indicates the total number of time intervals in a billing 
cycle. 

D.  Open-Loop and Closed-Loop Control 

There are two types of controls that can be used for Auto-
DR: open-loop and closed-loop (Kiliccote et al., 2006). In 
open-loop control, the OpenADR server sends DR signals to 
the facility but does not use real-time feedback to track the 
performance target determined by the objective functions in 
(1) and (2). Closed-loop control, on the other hand, uses the 
real-time feedback to reach the performance target. As such, it 
is more advantageous if the DR performance has to be 
guaranteed. However, it requires more granularity of control 
over the building systems/devices and real-time decision 
making capabilities. For the demonstration project, open-loop 
control is used to respond to price and reliability signals and 
closed-loop control is used to provide demand limiting. The 
feedback is provided via electric meter readings to generate 
demand limiting signals and calculate load prediction. To 
estimate DR performance under different operation mode, we 
simulated whole building energy usage using EnergyPlus. 
EnergyPlus is an energy analysis and thermal load simulation 
software which allows calculating heating and cooling loads 
based on building geometry, building envelope, internal loads, 
HVAC systems, and weather (EnergyPlus, DOE). Based on 
the energy simulation results, we selected control strategies 
and inputs for each operation mode that would produce the 
target load reduction and thermal comfort level. 

V.  APPLICATION 

Implementing Auto-DR is a multi-step process. First, we 
need to understand the building's current and historic electric 
use patterns and evaluate building systems, DR capabilities, 
and operational constraints (Mathieu et al., 2011). Then, we 
identify DR opportunities and develop control strategies for 
each facility. Finally, proposed control strategies need to be 
tested and modified to improve the DR outcome. In this 
section, we explain the process of developing control 
strategies for two of the participating buildings from our 
demonstration project. 

A.  Site Description 

The first building, located in NYC, is a 32-storey office 
building with a glass curtain-wall extending the full height of 
the building (here in called "office building"). The office 
building has a total conditioned floor area of 130,000 m2 (1.4 
Million ft2). The building's HVAC consists of multiple-zone 
reheat systems with constant air volume and air-handling units 
(AHUs) controlled by variable frequency drive (VFD). There  

Figure 2.  OpenADR signal prioritization. 

Non DR Test/Event
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Limiting Demand
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are three 1,350-ton centrifugal chillers with constant speed and 
one 900-ton centrifugal chiller with variable speed that 
supplies chilled water to AHUs. Each zone temperature is 
controlled via direct digital control (DDC). Currently, the 
office building does not have the Global Temperature 
Adjustment (GTA) capabilities to change zone temperature 
setpoints for the entire facility (Motegi et al., 2007). The 
facility is heated via Con Edison steam. The building is 
equipped with Honeywell's Enterprise Buildings Integrator™ 
for HVAC control. Multi-zone control is available for lighting 
through relays but it is not connected to the BMS. The facility 
is in operation from 6am to 6pm during weekdays and closes 
during weekends. 

The second building is a 14-storey university building also 
located in NYC (herein called "campus building"). The 
campus building recently went through a complete renovation 
and system upgrades and was recently occupied in September 
2011. The newly renovated building has the total floor space 
of 11,330 m2 (122,000 ft2) containing classrooms, computer 
labs, offices, and conference rooms. There are eleven AHUs, 
each equipped with VFDs. The building is equipped with a 
400-ton chiller supplying chilled water to AHUs. Heating is 
provided with steam, which is used for AHU reheat, unit 
heaters, and stairwell heating. The campus building has an 
Automated Logic Corporation’s WebCTRL® system used for 
HVAC control. The indoor space is largely lit by T5 
fluorescent fixtures located within hallways, offices, and the 
lobby. Office lighting is on motion sensors. The campus 

building is equipped with the NexLight two-way digital 
lighting control system but this system was not used for DR in 
the past. There are three elevators in the campus building: two 
passenger elevator and one passenger/freight elevator. 
Previously, one of the three elevators was shut off during DR 
events. The facility is open from 7am to 11pm for seven days 
a week.  

B.  Load Characteristics 

Approximately two years of 15-minute whole building 
electric load data was made available to the project team for 
the office building and the campus building. Table 1 
summarizes the data over one year period (Sep 2011 - Aug 
2012). To characterize the behavior of building energy use, we 
plotted the load profile against different time scales. First, 
weekly electric demand and consumption was plotted from 
January 2011 to August 2012 in Figure 3. Examining these 
plots revealed following findings: 1) both the office and 
campus buildings had relatively constant minimum demand 
throughout the year; 2) the maximum demand was higher in 
summer than in winter for both buildings; and 3) maximum 
demand (kW) varied more significantly from season to season 
than electric consumption (kWh). Next, the buildings' interval 
load was plotted over a one-week period for summer months 
(May to Aug 2012) in Figure 4 and for winter months (Nov 
2011 to Feb 2012) in Figure 5. The scatter plots reveal 
following things. 1) The office building was in use during 
weekdays while the campus building was in use for seven 
days a week, confirming the operation schedule of the two 
buildings provided to the project team. 2) In both facilities, the 
spikes shown at the beginning of each weekday during 
summer months indicated precooling activities and the system 
overload. For the office building, precooling typically started 
at midnight and for the campus building, it started at 7am. The 
campus building had a start-up electric surge during the first 
hour of the building operation which marked the highest 

TABLE I 
LOAD SUMMARY* 

Facility Peak 
Load 
(kW) 

Peak Load 
Intensity 

(W/m2) 

Load 
Factor 

Annual 
Consumption 

(kWh)

Office Bldg 6,200 48.0 0.51 27,612,000

Campus Bldg 600 53.0 0.40 2,150,000

*Computed for Sep 2011 - Aug 2012, with 15-minute interval data. 

 

 

 
 
Figure 3.  Demand usage and electric consumption from Jan 2011 to Aug 2012. 
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demand of the day. In summer, starting precooling at 7am 
would add more loads to the morning ramp-up and increase 
the demand even higher. 3) Both buildings showed a wide 
range of daily demand during summer months versus winter 
months while the base load stayed relatively constant 
throughout the year. This was more prevalent in the office 
building than the campus building. Since both buildings were 
heated with steam, the difference in summer and winter 
demand was likely to be influenced by the amount of cooling 
loads. To understand the dependence of the building demand 
on outside weather, we plotted the electric load for occupied 
hours during weekdays against outdoor air temperature and 
relative humidity as shown in Figure 6. From the National 
Climatic Data Center, we acquired hourly outdoor air 
temperature data for each facility from the nearest weather 
station (NOAA). Some of the missing data were filled in by 
linear interpolation. As seen in Figure 6, both the office and 
campus buildings’ electric loads were highly sensitive to the 
outside air temperature. However, some of the peak loads 
shown in the campus building’s scatter plot were more 
influenced by the classroom schedule than outside weather. 
Both buildings did not show a significant relationship between 
building load and relative humidity.  

C.  Demand Limiting and Price Thresholds 

In order to determine operation mode for each hour of the 
day, customers need to establish the demand and price 

thresholds to which the selection of a particular operation 
mode can be based upon. These thresholds can be updated as 
frequently as required (i.e., weekly, quarterly, or yearly). To 
help customers choose the appropriate demand and price 
thresholds for their facility, we first evaluated the buildings' 
load duration curves to look for demand reduction 
opportunities. Figure 7 shows the one-year load data (from 
September 2011 to August 2012) plotted in descending order 
over the proportion of time. For the office building, the 
weekday load duration curve descended at a gradual slope and 
there was no unusual peaks observed in the plot. The 
weekend/holiday curve was much lower than the weekday's 
since the office building was not in service during 
weekend/holidays. However, the weekend/holiday load during 
the top one percent was "peakier" than the rest. This was 
probably caused by night flushing and precooling of thermal 
mass performed during Sunday evenings in preparation for the 
next business day or occasional use of the facility over the 
weekends. For the campus building, the difference between 

 
Figure 4.  Scatter plot: time-of-week from May to Aug 2012 excluding
holidays (Memorial Day and Independence Day). 
 

 
Figure 5.  Scatter plot: time-of-week from Nov 2011 to Feb 2012 excluding
holidays (Veterans Day, Thanksgiving Day, Christmas Day, New Year’s
Day, Birthday of Martin Luther King, Jr., and Washington’s Birthday). 

Mon Tue Wed Thu Fri Sat Sun
0

2000

4000

6000

Of f ice Bldg
Lo

ad
 (

kW
)

Mon Tue Wed Thu Fri Sat Sun
0

200

400

600

Campus Bldg

Lo
ad

 (
kW

)

Mon Tue Wed Thu Fri Sat Sun
0

2000

4000

6000

Of f ice Bldg

Lo
ad

 (
kW

)

Mon Tue Wed Thu Fri Sat Sun
0

200

400

600

Campus Bldg

Lo
ad

 (
kW

)

 

Figure 7.  Load duration curves. Data shown are from Sep 2011 to Aug 2012.
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Figure 6.  Scatter plot of load versus temperature and humidity. Data shown
are from May to Aug 2012. 
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the weekday and the weekend/holiday load duration curves 
was small since the building was in operation for seven days a 
week. Both curves showed a significant increase in load 
during the top one percent of the time. This behavior was 
probably caused by the system overload experienced during 
the first hour of the building operation. This issue can be 
resolved by shifting some loads to earlier times in the morning 
or later during the day and limiting demand below the level 
corresponding to the top one-percent of the time.   

Similarly, price thresholds can be established by analyzing 
hourly price distribution over time. Figure 8 displays a price 
duration curves over the time period of September 2011 - 
August 2012. We used NYISO's day-ahead LBMP for Zone J: 
NYC since both the office building and the campus building 
were located in NYC (NYISO). Day-ahead LBMP did not 
vary significantly between weekdays and weekend/holiday 
and most of the time the price stayed below $100 per MWh. 
Only significant deviation was seen during the top one percent 
of the time where the price increased up to $363 per MWh. 
The loads corresponding to the top one percent of the time are 
concentrated in summer and winter months. When plotted 
against the time of day, it was clear that the expensive hours 
were either cooling hours (mid-day) or heating hours (morning 
and evening). Therefore, limiting the building’s demand 
during the top one percent of the time via Auto-DR can help 
customers reduce energy cost.   

D.  DR strategies 

Both the office and campus buildings currently participate 
in NYISO's SCR/EDRP through separate CSPs. For the 

NYISO initiated DR test/event, the office building have a 
minimum shed requirement of 2,000 kW. The shed 
requirement of the campus building has not yet been 
established. To help the facilities meet their DR targets, CSPs 
developed DR strategies for their clients that were used for 
previous DR test/events. Based on the customers' existing DR 
strategies, we selected the ones that could be automated and 
grouped them into Critical, High, and Moderate operation 
mode, as shown in Table 2. The project team added GTA 
capabilities to the office building to enhance DR control. 
Automating lighting control in auxiliary space such as 
hallways and lobby was discussed but was put on hold due to 
budget constraints. As for elevators, we recommended that the 
facilities maintain manual control over their elevators for both 
DR and non-DR days. To minimize the post-DR rebound 
effects, Normal operation mode returns slowly with sequential 
equipment recovery. If there is less than one hour left until the 
end of occupancy period, DR is extended to the end of the 
occupancy period and then the building returns to Normal 
operation mode.  

VI.  EVALUATING DR PERFORMANCE 

In this section, we show how Auto-DR can be performed 
on a non-DR event day and on a DR event day through field-
test results and energy simulation. First, we examined the load 
data taken from the actual DR event day on June 20, 2012 that 
the office building participated, as illustrated in Figure 10. The 
DR event was called between 2pm and 6pm, during which the 
minimum 2,000 kW reduction was expected in reference to 
NYISO's Average Coincident Load (ACL) baseline (NYISO).1 
The office building achieved the reduction target only during 
the last two hours of the event period by activating all DR 
strategies listed under Critical operation mode. It experienced 
a post-DR rebound effect with an average spike of 12% from 
the baseline load over a one hour period. The maximum 

                                                           
1  NYISO's ACL baseline averages customer's 20 highest loads of 40 

highest system load hours excluding hours in which DR events were 
previously activated. 
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Figure 8.  Price duration curves. Data shown are from Sep 2011 to Aug 2012. 
 

 
Figure 9.  LBMP distribution against month and time-of-day during the top
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rebound was recorded as 19% higher than the baseline load. 
To avoid the post-DR rebound effects, we recommended the 
development of DR recovery strategies for participating 
buildings. Next, we compared the load reduction with two 
different baselines to evaluate customer's DR performance: 1) 
NYISO's Average Customer Baseline (CBL) and 2) the 
weather regression baseline developed by LBNL (Coughlin et 
al., 2009).2 NYISO's CBL has a tendency to underestimate or 
overestimate the building's power usage for the days with 
unusual weather conditions. In general, the weather regression 
baseline provides a more accurate prediction of weather-
sensitive loads than NYISO's CBL. As seen in Figure 10, 
NYISO's CBL underestimated the baseline load because the 
DR event day was warmer than previous days. As such, DR 
payments would have been smaller if the compensation was 
calculated based on NYISO's CBL instead of the weather 
regression baseline.  

Figure 11 illustrates the office building's response to price 
signals on a non-DR event day. The load data were taken from 
August 9, 2012, representing a typical weekday. The building 
underwent three hours of Moderate operation mode from 2pm 
to 5pm based on the price thresholds set at LBMP ≥ $98 for 
Moderate operation mode and LBMP ≥ $200 for High 
operation mode. We used EnergyPlus simulation to predict the 
effects of DR strategies for Moderate operation mode and 
compared the simulated load to the actual load which was 
unaffected by Auto-DR. According to the simulation results, 

                                                           
2  NYISO's CBL averages customer's five highest of the previous ten 

weekdays excluding holidays and previous DR event days.  

the office building can reduce demand up to 700 kWh by 
implementing DR strategies listed under Moderate operation 
mode for this day. 

It is noted that continuous energy management in response 
to hourly prices can impact the customer's DR baseline, 
potentially reducing DR payments due to lowered baseline 
usage. This can make DR programs less attractive to energy 
efficient customers under the day-ahead hourly pricing. 
However, DR program events are called only a few days a 
year and the incentives collected from DR programs are likely 
to be small compared to the utility savings achieved under 
day-ahead hourly pricing due to continuous energy 
management. Hence, as the commercial buildings move 
towards more dynamic response to prices, the applicability of 
baseline-based DR payments should be re-evaluated. 

VII.  CONCLUSIONS AND FUTURE STUDIES 

We presented the process of automating continuous energy 
management with day-ahead hourly prices and demand 
response for large commercial buildings in New York who 
were subject to the default MHP tariff. OpenADR version 1.0 
was used to facilitate the communication of price and 
reliability signals. Based on the preliminary findings from the 
New York demonstration project, we concluded that: 1) price 
response to day-ahead hourly pricing can be made easier 
through Auto-DR; 2) understanding customer's financial 
goals, such as reduction in utility bills including demand 
charges, and curtailment requirements by CSPs was critical in 
establishing Auto-DR goals and performance targets; and 3) 
price and demand response opportunities were unique to 
customer's electric load characteristics, control capabilities, 
and operational constraints. 

Future studies include: 1) creating dynamic optimization 
capabilities in buildings given the availability of price and DR 
signals; 2) monitoring and evaluating the effects of control 
strategies on load and occupant comfort during operations; 3) 
increasing the customer's ability to modify and change 
individual control strategies within the facility; and 4) 
evaluating benefits and drawbacks of having Auto-DR 
intelligence in the cloud versus inside the facility. Finally, we 
recommend a comparative study on customer economics 
between MHP and retail rates to be conducted and the role of 
Auto-DR in cost savings to be further explored. 

ACKNOWLEDGMENT 

The work described in this report was conducted by the 
Lawrence Berkeley National Laboratory and funded by the 
New York State Energy Research and Development Authority 
under the Agreement No. 20723. This work was supported in 
part by the California Energy Commission (CEC) under 
Contract No. 500-03-026 and by the U.S. Department of 
Energy (DOE) under Contract No. DE-AC02-05CH11231. 

The authors give special thanks to Duncan Callaway and 
Anthony Abate for great advice and feedback. We also thank 
Con Edison Company for the electric load data. 

 

Figure 10. Load and price data of the sample DR event day. 
 

Figure 11. Load and price data of the sample non-DR event day. 
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