

Presentation Overview

- 1. Definition of Monitoring-Based Commissioning (MBCx)
- The need for and benefits of MBCx
- 3. The commissioning process with a monitoring-based approach
- 4. Process and infrastructure for data acquisition and analysis
- 5. Energy Management and Information System (EMIS) analytical capabilities
- 6. Types of system faults commonly encountered
- 7. Case Study Carson Graham Secondary School
- 8. Case Study Abbotsford Collegiate Secondary School

MBCx Defined

Commissioning supported by comprehensive data acquisition and analysis

A holistic
 process for
 optimizing
 building
 performance
 outcomes

Energy Management

> Performance Targeting

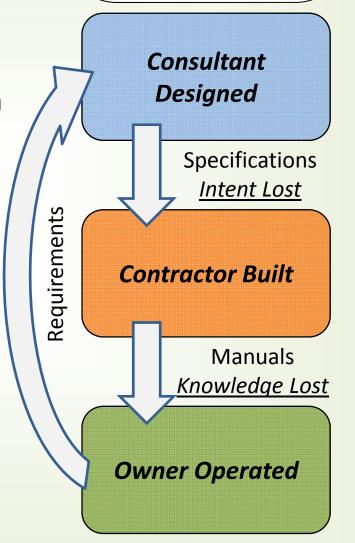
Commissioning

Functional Validation

MBCx

Measurement and Verification

Data Analysis


MBCx Demand

Monitoring-Based Commissioning ensures performance objectives are maintained from design into operation

Advantages of MBCx

- Operational intent is maintained and communicated
- 2. Systems complexity is managed
- 3. Operational issues are minimized
- 4. Energy performance is maximized
- 5. Improved operator education and support
- 6. Infrastructure created for long-term performance monitoring and fault detection

New Construction Process

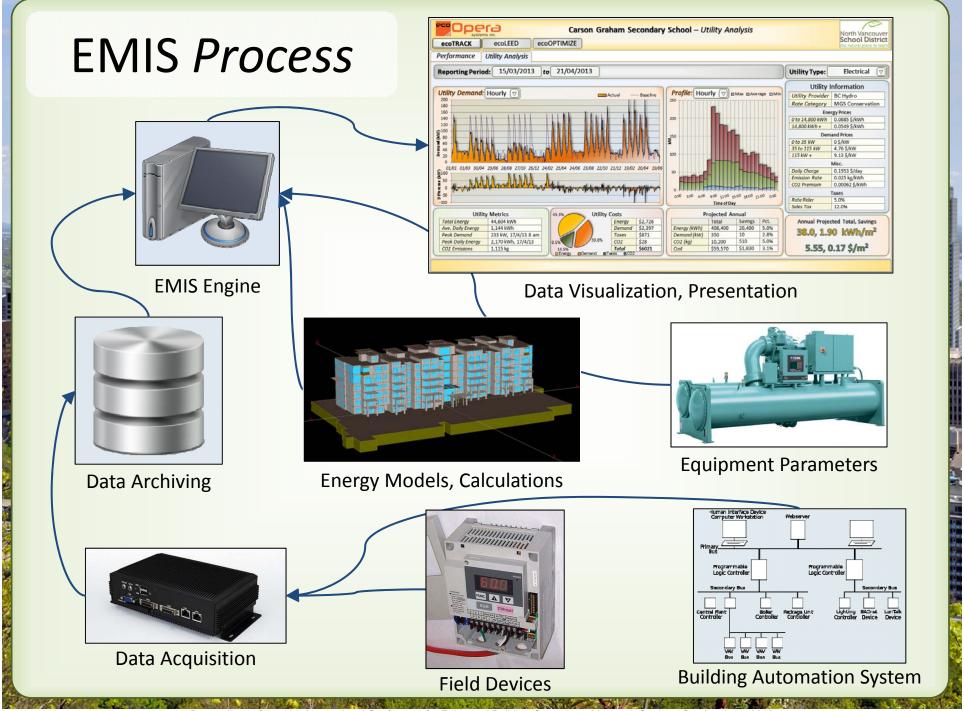
MBCx Process

Design

- Owner's Project Requirements
- Basis of Design
- Commissioning Plan
- M&V, Metering Plan
- Design Review
- Preliminary Energy Model

Construction

- Installation Checks
- Site Reviews
- Design Energy Model
- Meters, Data Acquisition System Installation


Continuous Optimization

1st Year Operation

- Energy Model Calibration
- Operator Training
- Performance Analysis
- Fault Identification
- Building Optimization

Acceptance

- EMIS Configuration
- Systems Functional Testing
- Operations and Maintenance Manual
- Performance Targeting

EMIS *Analysis*

Analysis- Type	Building Level	Systems Level
Data Collected	Total electrical energyTotal gas energyDistrict energy meters	 Energy sub-meters Thermal/Btu meters BAS Data points – equipment status, speed, temperature, flow, position, etc.
Analysis Conducted	 Primary energy benchmarking Measurement and verification of savings Energy trending (daily, weekly, monthly profiles) 	 Full energy end-use breakdown Equipment performance – efficiency, run-times, cycling, average operating conditions Systems faults
Pros/Cons	 Relatively inexpensive Easy quality control Cannot directly uncover optimization opportunities Limited insight into building operation 	 Full operation visibility All key optimization opportunities can be identified Sub-meters add cost Data quality management Limited EMIS vendors

System Faults

HVAC Systems

- Over-enabling/unoccupied run-time
- Deficient pressure/fan speed reset
- Sub-optimal SAT reset
- Over-ventilation
- Simultaneous heating and cooling
- Faulty, disconnected zone sensors

HVAC Plants

- Equipment rapid cycling
- Sub-optimal equipment sequencing
- Lack of or deficient SWT reset
- Lack of pressure/pump speed reset
- Pump over-enabling

Lighting

- Excessive unoccupied use
- Unresponsive occupancy sensor switching
- Faulty photocells

- Complex systems give rise to more points of failure
- Occupant comfort may be maintained while faults persist, wasting \$\$\$

Case Study 1

Performance Features

- 9,300 m², targeting LEED Gold
- High performance envelope
- BAS-integrated lighting with occsensor and photocell control
- VAV Energy-Recovery-Ventilators with VFDs and occ-sensor enabling
- Reversible ASHPs with condensing boiler backup and VFD pumping

Deficiencies Identified

- Systems over-enabling
- Deficient air system pressure reset
- ASHPs greatly under-utilized
- No HW temperature reset
- VFD pumps at 100% continuously
- Pump false-starting
- MUA continuous operation

Carson Graham Secondary School

Performance Metrics		
Baseline Projected EUI*	102	
NRCan Database EUI	180	
Proposed Energy Model EUI	82	
Reference Energy Model EUI	121	
Proposed EUI After MBCx	88	
Baseline Annual Utility Cost	\$83,000	
Life-Cycle Savings NPV (30 yr)	\$334,000	

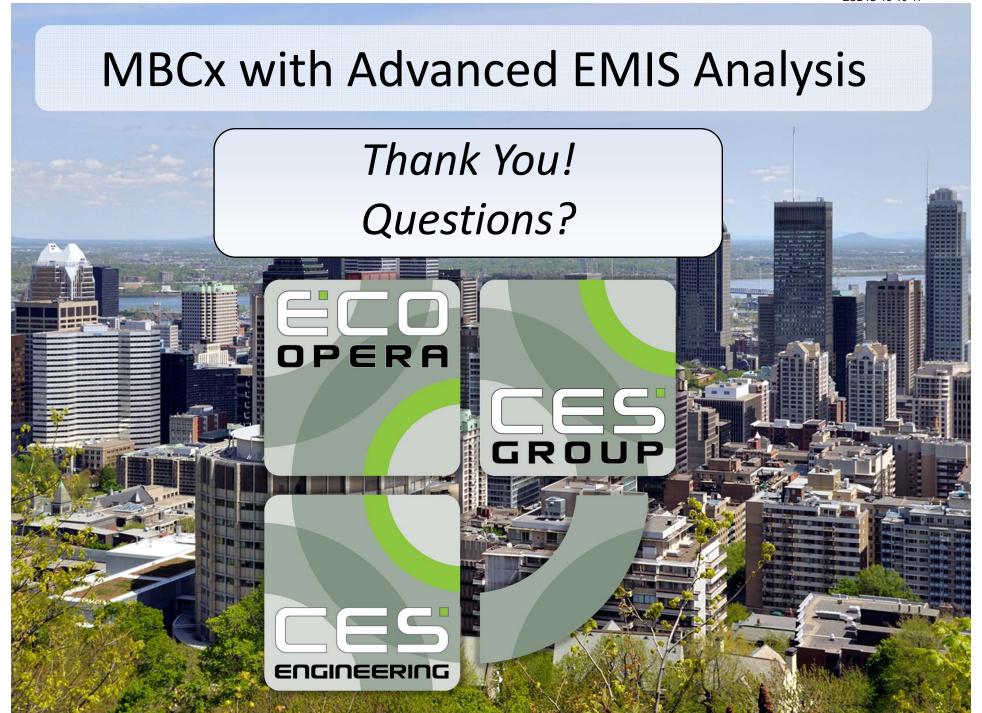
^{*}kWh/m2/year

Case Study 2

Performance Features

- 10,700 m², targeting LEED Gold
- Extensive lighting controls via occsensors and photocells
- VAV Energy-Recovery-Ventilators with VFDs and occ-sensor enabling
- WSHPs served by an reservoir with condensing boiler backup
- Distributed water-loop heat-pumps

Deficiencies Identified


- Systems over-enabling
- Deficient hydronic pressure reset
- ASHPs greatly under-utilized
- Deficient SWT reset
- Pumps enabled continuously
- Continuous exhaust fan operation

Abbotsford Senior Secondary

Performance Metrics		
Baseline Projected EUI*	89	
NRCan Database EUI	180	
Proposed Model EUI	85	
Reference Model EUI	128	
Proposed EUI After MBCx	81	
Baseline Annual Utility Cost	\$79,000	
Life-Cycle Savings (30 year)	\$222,000	

^{*}kWh/m2/year

Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013