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ABSTRACT

In this dissertation, we develop and analyze effective energy management poli-

cies for wireless sensor networks in emerging applications. Existing methods in this

area have primarily focused on energy conservation through the use of various com-

munication techniques. However, in most applications of wireless sensor networks,

savings in energy come at the expense of several performance parameters. Therefore

it is necessary to manage energy consumption while being conscious of its effects

on performance. In most cases, such energy-performance issues are specific to the

nature of the application. Our research has been motivated by new techniques and

applications where efficient energy-performance trade-off decisions are required.

We primarily study the following trade-off cases: energy and node replacement

costs (Case I), energy and delay (Case II), and energy and availability (Case III).

We consider these trade-off situations separately in three distinct problem scenarios.

In the first problem (Case I), we consider minimizing energy and node replacement

costs in underwater wireless sensor networks for seismic monitoring application. In

this case, we introduce mixed-integer programming (MIP) formulations based on a

combined routing and node replacement policy approach and develop effective poli-

cies for large problem instances where our MIP models are intractable. In the second

problem (Case II), we develop a Markov decision process (MDP) model to manage

energy-delay trade-off in network coding which is a new energy-saving technique for

wireless networks. Here we derive properties of the optimal policy and develop in-

sights into other simple policies that are later shown to be efficient in particular

situations. In the third problem (Case III), we consider an autonomous energy-

harvesting sensor network where nodes are turned off from time to time to operate
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in an “energy-neutral” manner. In this case, we use stochastic fluid-flow analysis

to evaluate and analyze the availability of the sensor nodes under effective energy

management policies.

In each of the above problem cases, we develop analytical formulations, and derive

and/or analyze policies that effectively manage the considered energy-performance

trade-off. Overall, our analyses and solution methods make new contributions to

both operations research and communication networking literature.

iii



DEDICATION

To Mom and Dad

iv



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Natarajan Gautam

for providing me continuous guidance, support and encouragement during my years

in the Ph.D. program. I would like to thank my committee members Dr. Georgia-

Ann Klutke, Dr. Kiavash Kianfar, Dr. Richard Gibson and Dr. Srinivas Shakkottai

for their valuable inputs in my research. I would also like to thank Dr. Guy Curry

and Dr. Justin Yates for their academic advice and help on many occasions.

Many faculty and staff members in my department have helped me greatly on

numerous occasions. I particularly thank Mrs. Judy Meeks for her help on ad-

ministrative procedures. I wholeheartedly thank the department for providing me

financial support through teaching assistantship during all these years. I also thank

the Office of Graduate Studies for awarding me the Senator Phil Gramm Doctoral

Fellowship which provided additional financial assistance.

Finally, I am grateful to my parents for their love and support. I also appreciate

the help and encouragement from all my friends and colleagues.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. CASE I: MANAGING ENERGY AND NODE REPLACEMENT COSTS
IN UNDERWATER WIRELESS SENSOR NETWORKS FOR SEISMIC
MONITORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
II.1.1 Seismic Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 6
II.1.2 Combined Routing and Node Replacement Policy . . . . . . . 8

II.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
II.3 Combined Routing and Node Replacement in a Generic Sensor

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
II.4 Seismic Network Model and Assumptions . . . . . . . . . . . . . . . . 16
II.5 Routing and Node Replacement Policies for a Seismic Node Network 19

II.5.1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
II.5.2 Node Replacement Policy . . . . . . . . . . . . . . . . . . . . 22
II.5.3 Combining Routing and Node Replacement Policies . . . . . . 24

II.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
II.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

III.CASE II: MANAGING ENERGY-DELAY TRADE-OFF IN NETWORK
CODING FOR WIRELESS TRANSMISSIONS . . . . . . . . . . . . . . . 34

III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
III.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
III.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

III.3.1 Discounted Cost Formulation . . . . . . . . . . . . . . . . . . 41
III.3.2 Average Cost Formulation . . . . . . . . . . . . . . . . . . . . 42

vi



III.4 Structural Properties of Optimal Policy . . . . . . . . . . . . . . . . . 45
III.5 Computation of Threshold Policy . . . . . . . . . . . . . . . . . . . . 52
III.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
III.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV.CASE III: AVAILABILITY OF ENERGY HARVESTING SENSOR
NODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IV.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
IV.3 Fluid-flow Model of an Energy Harvesting Sensor . . . . . . . . . . . 66
IV.4 Availability of a Single Sensor Node Under Threshold-based

Activation Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
IV.4.1 Computation of Limiting Availability . . . . . . . . . . . . . . 71
IV.4.2 Special Case: Exponential On-Off Environment . . . . . . . . 75
IV.4.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 76

IV.5 Availability of a Multi-sensor System with Infinite Capacity Sensor
Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

IV.6 A Lower Bound for Availability of a Multi-sensor System with Finite
Capacity Sensor Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 81
IV.6.1 Semi-Markov Process Model . . . . . . . . . . . . . . . . . . . 83
IV.6.2 Computation of Limiting Availability . . . . . . . . . . . . . . 85
IV.6.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 88

IV.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

V.1 Research Summary and Contributions . . . . . . . . . . . . . . . . . 92
V.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

APPENDIX A. EXPRESSION FOR PT (f, d) . . . . . . . . . . . . . . . . . . 106

vii



LIST OF FIGURES

FIGURE Page

1 Selected minimum energy routings in grid network . . . . . . . . . . . 21

2 Average maintenance cost (T = 50 years, E0 = 50000 J, K = 5000
and C = 100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Performance comparison of policy combinations (T = 50 years,
E0 = 50000 J, K = 5000 and C = 100) . . . . . . . . . . . . . . . . . 29

4 Minimum average maintenance cost (T = 25 days, E0 = 5000 J,
K = 5000 and C = 100) . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Wireless network coding . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Two-way relay network . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Comparison of long-run average costs of policies in single relay-node
network (ct = 1 and T = 1) . . . . . . . . . . . . . . . . . . . . . . . 58

8 Comparison of coding ratios of policies in single relay-node network
(ct = 1 and T = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9 Comparison of long-run average costs of policies in 4-node line
network (ct = 1 and T = 1) . . . . . . . . . . . . . . . . . . . . . . . 61

10 Fluid-flow model of an energy harvesting sensor . . . . . . . . . . . . 66

11 Sample path of X(t) under threshold-based node activation policy . . 69

12 Sample path of X(t) in an exponential on-off environment . . . . . . 76

13 Limiting availability for different values of threshold (L) . . . . . . . 78

14 Energy flow model of an energy harvesting multi-sensor system . . . . 79

15 Model for computation of lower bound on system-level availability . . 82

16 Markov regeneration epochs in a sample path of X̄(t) . . . . . . . . . 84

viii



LIST OF TABLES

TABLE Page

1 Considered problem cases . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Computed threshold policy . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Computed conditional means and stationary probabilities . . . . . . . 77

4 Computed mean sojourn times and stationary probabilities (N = 3) . 90

5 Computed availability lower bound . . . . . . . . . . . . . . . . . . . 90

ix



CHAPTER I

INTRODUCTION

Over the years, there has been a significant rise in the use of wireless sensor

networks in industrial, environmental, military and other applications (see works by

Akyildiz et al. [5] and Yick et al. [79] for an overview of main applications). Energy-

efficiency in the operation of these networks is well-recognized as an important issue

(Anastasi et al. [6]). This is primarily because these networks are often required to

operate unattended for a long period of time with limited battery energy available

to the sensors (also called nodes). The objective of this research is to develop and

analyze effective policies for energy-efficient operation of such networks in emerging

applications.

The energy consumption in a wireless sensor network can be managed in several

ways depending on the nature of application. Since most of the energy of the sen-

sors is used in wireless data transmission, energy savings are achieved by sending

less data (using data aggregation and network coding techniques) or by schedul-

ing and routing data transmissions in an efficient manner. These tasks are usually

implemented through network communication protocols. However, in long-lived ap-

plications of wireless sensor networks (e.g. see seismic monitoring in Chapter II),

energy conservation through any communication protocol is not sufficient to sustain

network operation for the entire deployment period. In this case, in addition to op-

erating the network with minimal energy, it is also required to replace the sensors

when they run out of battery energy. Such node replacements may not be necessary

in energy-harvesting sensor networks (see Chapter IV) which are now increasingly

used in remote long-lived applications. But, in this case, the main constraint is
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that the average energy generation rate of the sensors is less than their average

energy consumption rate. Hence a resource allocation policy is required here to ef-

ficiently balance energy consumption against the amount of energy generated. This

is commonly done by “sleep-scheduling” where sensors are switched off time to time

according to a policy or schedule.

Based on the nature of application, one or more of the above approaches (i.e.

communication protocol, node replacement and resource allocation) are used for

managing energy in wireless sensor networks. Though energy-efficient communica-

tion methods have received a lot of attention in the literature, there is very limited

work on node replacement and resource allocation policies for managing energy in

sensor networks. Further, the majority of existing methods aim either to minimize

the energy consumption in the network or to maximize the network life. But in most

applications of wireless sensor networks, savings in energy usually come at the ex-

pense of various performance parameters. Therefore it is necessary to make effective

decisions to optimize energy consumption as well as performance. Though certain

energy-performance trade-off issues (e.g. energy-delay trade-off) have been studied

in specific contexts, new application scenarios warrant entirely different analyses.

Also, there is a need to develop decision models for other important trade-off cases.

In this research, we focus on developing effective energy management policies for

important applications of wireless sensor networks. Our work has been motivated

by new techniques and applications where specific energy-performance trade-off de-

cisions are required. We are primarily interested in studying the following trade-off

cases.

• Energy and delay: In certain techniques for wireless networks, energy con-

sumption is reduced by accumulating data for more energy-efficient transmis-
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sions in future. However, the achieved energy savings may be offset by the

delays in transmissions. Hence it is required to have a decision model to effi-

ciently trade-off between low energy consumption and high quality-of-service

(i.e. low delay).

• Energy and availability: In common resource allocation approaches for en-

ergy management in sensor networks, nodes are switched off for certain periods

to conserve energy. Note that, the availability (i.e. proportion of the time for

which the network is operational or available with respect to the total time)

of the network decreases with an increase in the number of sensors that are

off. Therefore the resource allocation policy must try to manage the energy

consumption of the sensors in such a way that availability is maximized.

• Energy and node replacement costs: Recall that, in long-lived applica-

tions of wireless sensor network with battery-powered nodes, it is necessary to

replace the energy-depleted nodes to ensure continuous operation. In multi-

hop wireless sensor networks, energy consumption and node replacement costs

have an interesting interdependence. Note that the node replacement cost in-

cludes both cost of energy (in a new node) and the cost of labor. When a

single sensor node is considered, energy conservation will lead to less number

of replacements of the node, and therefore node replacement costs are reduced.

However, in case of a sensor network, the sensor nodes usually consume energy

at different rates (which depend on the routing strategy), and hence they re-

quire replacement at different times. In this case, when the node replacement

cost structure has a high fixed cost involved, replacing several nodes together

may be cost-effective. This may include preventive replacement of some nodes

that still have some unused energy. Therefore, though it is essential to conserve

3



energy to minimize the node replacement costs, preventive node replacement

(which wastes unused energy) should also be used to an optimal degree.

In this dissertation, we consider the above trade-off cases separately in three dis-

tinct problem scenarios. We summarize these problem scenarios in Table 1. In the

first problem (Case I), we develop effective methods to manage energy and node

replacement costs in underwater wireless sensor networks for seismic monitoring ap-

plication. In this case, we devise a combined routing and node replacement policy

approach which is new to the literature. In the second problem (Case II), we con-

sider energy-delay trade-off issues in network coding which is a new energy-saving

technique for wireless networks. Here we develop effective policies to manage the

energy-delay trade-off in a mobile/ad-hoc wireless sensor network setting. In the

third problem (Case III), we consider an autonomous energy-harvesting sensor net-

work where nodes are turned off time to time to operate in an “energy-neutral”

manner. In this case, we evaluate and analyze the availability of the sensor nodes

under effective energy management policies. Note that though it may be possible to

analyze a combination of all the above scenarios, it is hard to envision a practical

Table 1: Considered problem cases

Case I (Chapter II) II (Chapter III) III (Chapter IV)

Considered trade-off
energy and

energy and delay
energy and

node replacement costs availability

Considered application

seismic monitoring mobile/ad-hoc wireless sensor network

using underwater wireless sensor with energy-harvesting

wireless sensor network network nodes

Energy conservation
routing network coding node activation policy

approach

Energy replenishment
node replacement − recharge process

approach
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application that would justify such an analysis.

Our common objective in all these problems is to develop and/or analyze policies

to manage energy consumption while minimizing the adverse effects on other per-

formance parameters. In problem cases I and II, we develop optimization models to

characterize the optimal policy, study their useful properties and develop tractable

solution methods. In problem case III, our objective is to develop analytical models

to evaluate performance under given policies. Given the diverse nature of the con-

sidered problems and applications, we have presented the related literature review

and problem challenges separately in forthcoming sections.

The remainder of this dissertation is organized as follows. We present the con-

sidered problem cases I, II and III in Chapters II, III and IV respectively. Each of

these chapters provides discussions on problem background, literature review, prob-

lem formulation, solution methods and numerical results. Finally, in Chapter V, we

outline important contributions of this research and present our concluding remarks.
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CHAPTER II

CASE I: MANAGING ENERGY AND NODE REPLACEMENT COSTS IN

UNDERWATER WIRELESS SENSOR NETWORKS FOR SEISMIC

MONITORING∗

II.1 Introduction

Over the last several years, there has been a significant rise in interest in underwa-

ter wireless sensor networks for a wide range of applications (e.g. seismic monitoring

of undersea oilfields (Heidemann et al. [24], Li et al. [46]), marine environment mon-

itoring (Akyildiz et al. [4], Vasilescu et al. [76]) and offshore surveillance (Akyildiz et

al. [4], Pompili and Melodia [55])). As underwater sensor networks have begun to be

deployed in many applications, cost-efficiency in the operation of these networks has

now become an important issue. Unlike most terrestrial sensor networks, underwater

sensors (also called nodes here) are very expensive and are deployed for prolonged

(nearly permanent) monitoring operation. Also, to ensure continuous operation, it

is necessary to replace these nodes when they run out of battery energy. However,

given the remote offshore location of the network, the node replacement costs are

very high and are a major component of the total operating cost. In this chapter, we

develop effective policies to minimize this cost in the seismic monitoring application.

II.1.1 Seismic Monitoring

Our main motivation comes from the need to use underwater wireless sensor net-

works in the petroleum industry which is heavily dependent on seismic methods to

∗ c© 2012 IEEE. Reprinted with permission from A. K. Mohapatra, N. Gautam, and R. L. Gibson,
Combined routing and node replacement in energy-efficient underwater sensor networks for seismic
monitoring, IEEE Journal of Oceanic Engineering, 38(1):80-90, 2013.
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find various changes in oil and gas reservoirs as responses to production. Ocean

bottom seismic systems are emerging as superior information-acquisition methods in

seismic monitoring of undersea oilfields. These systems use a large network of sensor

nodes (known as ocean bottom seismometers (OBS)) that are laid on the ocean floor

to collectively gather and transmit seismic information. At present, a majority of

OBS acquisition methods use a wired underwater node network (known as ocean

bottom cable (OBC) method (Seymour and Barr [66])) wherein nodes are connected

by fiber-optic cables on the ocean floor. However, in this method, installation and

operating costs are extremely high. Further, deploying miles of heavy cable and

sensor packages on the ocean floor causes substantial damage to the marine envi-

ronment. Hence as an alternative, some applications have started using autonomous

data-storage nodes which are required to be retrieved regularly to collect the data

stored in them (SeaBed Geophysical [61]). However, unlike the cable-based acqui-

sition, the inability of this method to retrieve seismic data in real-time is a major

limitation. In fact there is an increasing need for real-time seismic information in the

oil industry to improve reservoir management and optimize production. Thus the

idea of using nodes with wireless data transmission capability has recently gained

interest in this application (Heidemann et al. [24]). This method retains all major

benefits of autonomous nodes and provides opportunity for real-time monitoring.

We consider OBS acquisition by a suitable underwater wireless sensor network.

We mainly focus on the use of this network for passive seismic monitoring (also

known as microseismic monitoring) application where all nodes continuously monitor

signals from microseismic activities in the undersea reservoir. The ability of passive

seismic method to monitor dynamic processes in real time has led to its increasing

use in recent years (Duncan [19], Martakis et al. [49], Maxwell and Urbancic [50]).

The underwater passive seismic network can also be used to conduct conventional
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active seismic surveys to monitor reservoir fluid movements at intervals on the order

of several months to a year. In active seismic data acquisition, “air gun” sources

generate acoustic waves by injecting compressed air into the seawater. These waves

propagate into the earth and the nodes on the seabed (in OBS acquisition) measure

the velocity and pressure of the waves reflected from different undersea rock layers.

Here the collected data is primarily used to produce a 3D or 4D (time lapse) seismic

image of the undersea oilfield.

In an underwater passive seismic network, all nodes continuously sense and trans-

mit information to data-gathering sink nodes via multi-hop wireless transfer. How-

ever, as the battery energy available to the nodes is limited, the deployment period

(usually 20-50 years) of the network extends well beyond the lifetimes of the nodes.

Hence nodes must be replaced on or before complete energy loss to ensure continu-

ous monitoring from all node locations. We aim to minimize these node replacement

costs which are very high over the deployment period. To achieve this, we employ a

combined routing and node replacement policy approach which we describe next.

II.1.2 Combined Routing and Node Replacement Policy

The node replacement operation in underwater seismic node networks involves a

fixed setup cost per replacement attempt and an additional cost per individual node

replacement. The fixed setup cost primarily involves sending a crew and equipment

to the remote off-shore location. This implies that costs can be saved by replacing

several nodes together at a time. Note that, in case of an extremely high fixed cost, it

would be optimal to replace all the nodes in the network when a replacement attempt

is made. On the other hand, when this fixed cost component is reasonably low, only

replacing nodes as they fail would be cost-effective. In our application, the fixed set-

up cost is certainly very high, but the variable cost component for individual node
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replacement is not negligible either. Hence there is a need for developing an effective

replacement policy to minimize the replacement costs. This node replacement policy

(or schedule) will specify when to make replacement attempts and which nodes to

replace in every single attempt. However, node replacement decisions alone do not

control the replacement costs. Note that the average rate of replacement of every

node depends on its energy consumption rate which is primarily dependent on the

amount of data transmission handled by the node. Since the data generation rate is

fixed at all the nodes, transmission loads are mainly decided by the routing strategy

that specifies the distribution of packet transmissions on different routes from each

node. Thus the routing method not only needs to be energy-efficient, but it must also

work well with the replacement policy to minimize the replacement costs. Hence the

node replacement costs can be effectively controlled by a combined policy of routing

and node replacement decisions.

Most of the known routing and node replacement techniques developed for ter-

restrial sensor networks are not suitable for our considered seismic monitoring appli-

cation. The main challenges for routing and node replacement in underwater seismic

node networks are: (1) high energy consumption in acoustic transmission, (2) con-

tinuous energy consumption by the nodes, and (3) high cost of the node replacement

combined with the economies of scale in the replacement cost structure. Due to these

challenges and specific requirements, we develop new strategies for routing and node

replacement in underwater seismic networks.

The remainder of this chapter is organized as follows. We present a review of

related works in Section II.2. In Section II.3, we provide combined routing and node

replacement formulations to minimize node replacement costs in a generic sensor net-

work. Section II.4 outlines the network model and assumptions specific to the seismic

monitoring application. In Section II.5, we develop effective methods to minimize
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node replacement costs in our considered seismic node network. We report our com-

putational results in Section II.6. Finally, in Section II.7, we present our concluding

remarks and some future research directions in the domain of this problem.

II.2 Literature Review

Both routing and replacement problems have received a lot of attention in the

literature, but they have mostly been addressed independent of each other. In partic-

ular, many energy-efficient routing algorithms are available for both terrestrial and

underwater networks. The majority of these routing algorithms, mostly available for

terrestrial sensor networks, can be divided into two main categories. Various routing

techniques in the first category try to minimize the overall energy consumption in the

network (Heinzelman et al. [27], Singh et al. [69]). The routings in the second cate-

gory try to maximize network use by balancing energy consumption throughout the

network (Chang and Tassiulas [16], Shah and Rabaey [67]). Further, recent energy-

aware routing approaches by Lin et al. [47] and Zeng et al. [80] consider nodes with

renewable energy sources that can replenish energy at a certain rate. For long-lived

network applications like seismic monitoring, replacement of nodes is unavoidable

since energy conservation through routing (or any other communication protocol) is

not sufficient to sustain network operation for the entire deployment period. Hence

node replacement in wireless sensor networks has received significant attention re-

cently. Tong et al. [74] developed a node replacement policy as well as an algorithm

to schedule the replacement of individual nodes in a replacement attempt. Parikh et

al. [54] developed several node replacement policies to maintain a threshold sensing

coverage in wireless sensor networks.

There are various replacement models available in the operations research litera-

ture on maintenance of multicomponent systems such as our node network. Kobbacy
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et al. [40] provide a comprehensive review of multicomponent maintenance mod-

els developed before 2006. In particular, Assaf and Shanthikumar [9], Dekker and

Roelvink [18], Ritchken and Wilson [59], Wilson and Benmerzouga [77], and Zheng

[81] have developed various important results related to group replacement policies

for multicomponent systems. Most of these models consider a distribution function

for deterioration of the components. The continuous energy loss of the nodes in our

problem is equivalent of such a deterioration process. As the number of states of the

system rise exponentially with the number of components, finding an optimal replace-

ment policy for such a system with sizable number of components is computationally

infeasible (Kobbacy et al. [40]). Recent works by Heidergott [25], Heidergott and

Farenhorst-Yuan [26], and L’Ecuyer et al. [45] have focused on age replacement poli-

cies due to their simplicity and effectiveness. These are state-independent policies

where components are replaced when they attain a certain age threshold (equiva-

lently a residual energy threshold for our nodes). The “FRP” and “FRD” policies

that we introduce in Section II.5 are indeed threshold-based replacement policies.

II.3 Combined Routing and Node Replacement in a Generic Sensor

Network

In this section, we provide mathematical formulations for minimizing node re-

placement costs in a generic sensor network. We will consider the special case for

seismic monitoring application in Section II.4 onwards.

Consider a network of N similar nodes that will be utilized over a long time

period, say T days. Let the data-gathering sink node be denoted as the (N + 1)-st

node. In every data collection round, node-i (i = 1, . . . , N) generates si number of

packets and sends them to the sink node via multihop routing. Assume that there

are D rounds of data collection in a day. Let Ui be the set of nodes from which
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node-i can directly receive data, and let Vi be the set of nodes to which node-i can

directly transmit. Node-i consumes ET
ij amount of energy to transmit a packet to

node-j (j ∈ Vi). Additionally every node consumes ER amount of energy to receive

a packet. The initial amount of energy stored in a new node is E0. Recall that the

nodes must be replaced on or before complete energy loss. Let K be the setup cost

of a replacement attempt and C be the cost of replacing a node.

Our objective is to achieve the minimum average node replacement cost in the

network by joint control of routing and node replacement policies. The routing

decision specifies how every node will distribute its packet transmissions to all nodes

within its range. The node replacement policy or schedule specifies when to make

a replacement attempt and which nodes to replace in an attempt. To reduce the

problem size and increase convenience in network operation, we assume that routing

and node replacement decisions are made at the beginning of every day in the time

horizon instead of every data collection round.

It is not possible to develop a tractable mathematical formulation for our problem

in the given setup. Hence we modified the problem slightly and obtained an equiv-

alent mixed integer programming (MIP) formulation (Wolsey [78]) that we subse-

quently prove optimal for the original problem. In the modified setup, we can replace

an energy-depleted node with a new node with any amount of battery energy up to

E0. However, the cost of replacing the node is kept the same irrespective of the

amount of energy stored in the new node. Note that, in the original setup of our

problem, the new replacement nodes have full battery energy E0. Now we define our

decision variables below.

rtij = number of packets sent in every round from node-i to node-j in day-t,

xt = 1 if a node replacement attempt is made on day-t, else 0,

yti = 1 if node-i is replaced on day-t, else 0.
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Additionally, let eti denote the amount of energy remaining in node-i at the begin-

ning of day-t (just before a possible replacement). Note that it only makes sense to

replace a node with a new node with a higher amount of energy. If node-i is replaced

on day-t, let wti be the additional amount of energy in the incoming new node over

the outgoing node (i.e. the energy stored in the new node is eti + wti). Now, in the

modified setup, the optimal routing and node-replacement decisions minimizing the

total replacement cost (or equivalently minimizing the replacement cost per day) can

be obtained from the solution to the following MIP problem.

(MIP-1):

Min f1(r, x, y) = K
T∑
t=1

xt + C
T∑
t=1

N∑
i=1

yti (1)

s.t.
∑
j∈Vi

rtij −
∑
j∈Ui

rtji = si, i = 1, . . . , N, t = 1, . . . , T (2)

∑
j∈UN+1

rtj,N+1 =
N∑
i=1

si, t = 1, . . . , T (3)

e1i = E0, i = 1, . . . , N (4)

et+1
i = eti + wti −D

(∑
j∈Vi

ET
ij r

t
ij + ER

∑
j∈Ui

rtji

)
,

i = 1, . . . , N, t = 1, . . . , T (5)

eti + wti ≤ E0, i = 1, . . . , N, t = 1, . . . , T (6)

wti ≤ E0 y
t
i , i = 1, . . . , N, t = 1, . . . , T (7)

yti ≤ xt, i = 1, . . . , N, t = 1, . . . , T (8)

rtij ≥ 0, i = 1, . . . , N, j ∈ Vi, t = 1, . . . , T (9)

eti ≥ 0, i = 1, . . . , N, t = 1, . . . , T + 1 (10)

wti ≥ 0, xt ∈ {0, 1}, yti ∈ {0, 1}, i = 1, . . . , N, t = 1, . . . , T. (11)
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In the above formulation, the objective function (1) aims to minimize the total node

replacement cost over the time horizon. In (2)-(3), we present the packet balance

conditions which must hold for any routing in the network. Equation (4) indicates

that network operation is started with nodes with full battery energy. In (5), we

provide energy-balance conditions for each node at the beginning of each day. As

per (6), the incoming new node can have stored energy up to the limit E0. Inequality

(7) stipulates the condition that the additional energy of a new replacement node can

be considered only if a node replacement decision is made. As per (8), replacement of

a node is possible only if a replacement attempt is made. Equations (9)-(11) specify

the nature of the decision variables.

In the following proposition, we show that the solution to MIP-1 is actually the

solution to our node replacement cost minimization problem in the original setup

(i.e. where all new replacement nodes have full battery energy E0).

Proposition 1. The optimal routing and node replacement decisions in MIP-1 (mod-

ified setup) are also optimal in minimizing the node replacement costs in the original

setup.

Proof. Let z∗ and z∗∗ be the optimal total node replacement costs in MIP-1 (mod-

ified setup) and in our original problem respectively. In our original setup, new

replacement nodes have full battery energy, i.e. eti +wti = E0 whenever yti = 1. Note

that such node replacement options are also considered in the formulation MIP-1

(see (6)). In fact MIP-1 minimizes the total node replacement cost over a broader

set of node replacement options than our original problem. In other words, MIP-1

is a relaxed formulation of our original problem. Hence, we have z∗ ≤ z∗∗.

Now consider the optimal solution {rtij∗, xt∗, yti∗, wti∗, eti∗} of MIP-1. Since replac-

ing with a new node with any amount of energy up to E0 costs the same amount C,
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we can construct an alternate optimal solution of MIP-1 (with the same objective

value z∗) as {rtij∗, xt∗, yti∗, wti∗∗, eti∗∗}, where wti
∗∗

+ eti
∗∗

= E0 whenever yti
∗

= 1 and

the relation et+1
i

∗∗
= eti

∗∗
+ wti

∗∗ −D
(∑

j∈Vi E
T
ij r

t
ij
∗

+ ER
∑

j∈Ui r
t
ji
∗
)

is recursively

satisfied. However, since all the new replacement nodes have full battery energy in

this solution, the decision {rtij∗, xt∗, yti∗} is actually a feasible solution to our original

problem. Therefore we have z∗ ≥ z∗∗.

Based on the above arguments, we have z∗∗ = z∗, and {rtij∗} and {xt∗, yti∗} are

the optimal routing and node replacement decisions for our original problem.

When a fixed routing decision over the entire time horizon (i.e. rtij = rij for all t) is

intended in the solution of MIP-1, only one set of routing constraints (see (2)-(3)) will

suffice for all values of t. We will refer to this fixed routing version (of MIP-1) as MIP-

2. When a preselected fixed routing {rij} is used in the network, the optimal node

replacement schedule can be found by solving a reduced version of MIP-1 where the

routing constraints given by (2)-(3) are removed. However, this particular problem

can be more efficiently solved in the original setup. In this case, the lifespan (in days)

of node-i is estimated as Li =
⌊
E0/

(
D
{∑

j∈Vi E
T
ij rij + ER

∑
j∈Ui rji

})⌋
. Now the

node replacement schedule minimizing the total replacement cost (or equivalently

minimizing the replacement cost per day) can be obtained from the solution to the

following integer programming (IP) problem.

(IP-3): Min f3(x, y) = K
T∑
t=2

xt + C
T∑
t=2

N∑
i=1

yti (12)

s.t. yti ≤ xt, i = 1, . . . , N, t = 1, . . . , T (13)

y1i = 1, i = 1, . . . , N (14)
k+Li−1∑
t=k

yti ≥ 1, i = 1, . . . , N, k = 1, . . . , (T − Li + 1) (15)

xt, yti ∈ {0, 1}, i = 1, . . . , N, t = 1, . . . , T, (16)
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where xt and yti are node replacement decisions at the beginning of a day for a re-

placement attempt and an individual node replacement respectively. Inequality (13)

specifies that a node can be replaced only when a replacement attempt is made.

Equation (14) indicates that network operation is started with nodes with full bat-

tery energy. However, note that using new nodes at beginning is not actually node

replacement and hence its cost is ignored in the objective function (12). As per (15),

the i-th node must be replaced at least once in any span of Li days. This ensures

that every node is replaced on or before complete energy loss.

Our combined routing and node replacement formulation MIP-1 as well as its

simpler variant MIP-2 are intractable for a network with large number of nodes (N)

and for a long deployment period (T ). The difficulty is mainly due to large number

of binary decision variables and the constraints given by (7) and (8) in particular.

The formulation IP-3 is also hard to solve for sizable problem instances. Therefore,

to minimize the node replacement costs in the considered seismic node network, we

need to develop methods that are effective and suitable for practical implementation.

II.4 Seismic Network Model and Assumptions

In this section, we explain the structure of the underwater sensor network that

we have considered in our model for seismic monitoring application. We also present

important assumptions that are used in subsequent sections.

The area of the ocean floor covering a petroleum reservoir ranges between 50-

100 km2. In ocean bottom seismic acquisition, nodes (i.e. underwater sensors) are

deployed over this area usually in a square or rectangular grid (Heidemann et al.

[24]). For passive seismic application, the inter-node distance on this grid varies

from a few hundred meters to 1 km. Recall that the seismic data from all the nodes

must be available for analysis in real time. Hence all data from the nodes are sent
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to one or more sink nodes via muitihop wireless transmission. The sink node can be

connected via a high-speed optical link to a node floating on the sea surface, and the

latter can forward the received information to the base station via a radio link. Since

the size of the seismic node network and its coverage area are very large, the whole

network is divided into smaller independent networks with a separate sink node for

each individual network (Heidemann et al. [24]). All our analyses in this chapter are

based on one such independent network of 120 nodes that are positioned on a square

grid. Figure 1 shows the structure of this network along with two routing strategies

that we will discuss in Section II.5.

Observe (in Figure 1) that the nodes in our network can be thought of as being

arranged in concentric squares around the sink node, and nodes on a particular

square can be identified by a level. In our convention, the closer the square is to

the center, the lower is its level. We assume that a node in a particular level can

send data to nodes within its transmission range in the next lower level. Given the

noisy underwater environment and the long distance of separation between nodes,

such one-hop transmission is a reliable option. For every node to have at least one

other node within its range, we set the transmission range of every node at
√

2d for

an inter-node distance d on the grid.

Now we will briefly describe how our model and assumptions meet acoustic trans-

mission requirements. Considering 24 bits per component in a standard 4-component

seismic acquisition (with three geophones and one hydrophone in each node) with a

50 ms sampling rate, and allowing some overhead, every node generates a 2000-bit

packet every second. Then it transmits its own packet and other forwarded packets

to one or more nodes within its transmission range. It can be observed in the forth-

coming Section II.5 that using uniform nodes with 50 kbps output capacity will safely

ensure congestion-free continuous transmission with our proposed routing schemes.
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Note that 50 kbps acoustic transmission is possible with an appropriate frequency

over our selected inter-node distances (Kilfoyle and Baggeroer [39]).

We will now provide mathematical expressions to calculate energy consumption

at the nodes. Since most of the energy of a node is consumed in the underwater

acoustic data transmission, energy consumed in sensing is negligible, and we have

ignored it in our model. Energy consumption in acoustic transmission depends on

both distance (d) and frequency (f) of transmission. In our energy consumption

model, we have adapted the calculations to the radio transmission case (Heinzelman

et al. [27], Kalpakis et al. [31]). In our model, energy consumed (in J/bit) at a node

per bit of data transfer is given by

(For sending) ET (f, d) = Eelec +
PT (f, d)

B
, (17)

(For receiving) ER = Eelec, (18)

where ET (f, d) is the amount of energy to transmit 1 bit of data over a distance of

d at frequency f in terms of Eelec, PT (f, d) and B which we define next. In (17), the

fixed component Eelec [J/bit] is the energy consumed by the electronic circuitry and

PT (f, d) [W] is the power at which the transmitter operates specific to the frequency

and the distance of transmission. The output capacity of a node for the acoustic

transmission is B bits/sec. By (18), a node will consume ER amount of energy for

receiving 1 bit of information. We have assumed a nominal value of 50 nJ/bit for

Eelec. We have set the frequency (f) at 75 kHz for all transmissions. We earlier

explained our choice of 50 kbps for B. We derive an expression to compute PT (f, d)

in Appendix A.

Having described the network structure and the data transmission model, now

we will consider certain costs for our model. Recall from Section II.1 that the nodes
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are to be replaced when they run out of battery energy. However, the sink node is

externally powered and hence will not need replacement. Node replacement implies

that a new battery must be provided, but in the harsh deep water environment, it is

most practical to replace the entire node. In this case, the node can be reused later

with a new battery. We assume that the total cost in a replacement attempt is of

the form K + Cx, where K is the fixed set-up cost of a replacement attempt, C is

the cost of replacing a node and x is the number of nodes replaced in an attempt.

The parameter C includes the cost of a new battery and cost for labor time in an

individual node replacement.

II.5 Routing and Node Replacement Policies for a Seismic Node Net-

work

In this section, we develop effective methods to minimize the average mainte-

nance (for node replacement) cost in a passive seismic node network. Recall from

Section II.1 that, in a passive seismic network, all nodes continuously monitor the

microseismic events and send the recorded information periodically to the sink node

via multi-hop wireless transfer. For this application, we consider a 120-node grid-

structured network (see Figure 1(a)) with an inter-node distance of 200 m.

Given the size of the considered network and its long period of operation (20-50

years), it is not possible to solve its MIP-1 formulation to attain the optimal average

node replacement cost. Also note that the formulations MIP-2 (for fixed routing

decision) and IP-3 (with a given fixed routing) are hard to solve in this case. Hence

we will now develop new techniques taking advantage of the special structure of the

seismic node network. We know that the node replacement costs can be effectively

controlled by both routing and node replacement decisions. Based on this idea, in the

following subsections, we introduce efficient routing and node replacement policies
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and use them in combinations to minimize the average maintenance cost of the

network. To maintain consistency with Section II.3, routing and node replacement

decisions are considered on a per day basis instead of per round.

II.5.1 Routing

As we have mentioned in Section II.2, routing in sensor networks has been well-

studied. However, given the focus on minimizing the node replacement costs in

our application, we investigate new strategies for routing packets in the network.

Our aim is to minimize the number of replacement attempts as well as the total

number of nodes replaced in all attempts. Hence a suitable routing scheme must

have two major characteristics. First, it should have groups of large number of nodes

having closest possible energy dissipation rates so that the nodes in these groups can

be replaced at the same time. This will ensure a smaller number of replacement

attempts. Secondly the routing should be energy-efficient to minimize the total

number of node replacements. For our grid network, the minimum energy (also

called minimum total energy (MTE) (Chang and Tassiulas [16])) routing schemes

that are symmetric about the center best satisfy these two requirements. These

routings minimize the total energy consumed in all transmissions in a data collection

round (which, in our case, leads to the receipt of 120 packets at the sink node and

repeats every second).

In our grid network case, there are multiple minimum energy routing solutions

available. From these solutions, considering symmetry around the center, we selected

ME-1 (Figure 1(a)) and ME-2 (Figure 1(b)) routings which we describe next. In the

ME-1 routing scheme, every node sends all its packets to the nearest node in its next

lower level. Similarly in the ME-2 routing, most of the nodes send all their packets to

the farthest node in the next lower level. The number of packets sent per round from
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Figure 1: Selected minimum energy routings in grid network

each node in the network is shown in Figure 1 for both routings. In the following

proposition, we present an important difference between ME-1 and ME-2 routings.

Proposition 2. When most nodes in the network have sufficient energy, ME-2 rout-

ing sustains network operation for a longer period of time than ME-1 routing until a

node requires replacement.

Proof. Suppose u1i and u2i are energy consumption rates of the i-th node (i =

1, . . . , N) in ME-1 and ME-2 routings respectively. Also, let Ei be the amount

of energy remaining in node-i at a particular time. From this point, the time until

next node replacement in case of ME-1 and ME-2 routings will be T1 := mini bEi/u1i c

and T2 := mini bEi/u2i c respectively.

We can see (in Figure 1) that the number of packet transmissions increases to-

wards the center both in case of ME-1 and ME-2 routings. Hence the nodes close to

the center consume energy at a faster rate than the nodes far from the center. How-

ever, an increasingly large number of packets are sent over the diagonal inter-node

distance (
√

2d) in ME-1 routing whereas this happens over the lateral inter-node
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distance (d) in ME-2 routing. Hence we have maxi u
1
i > maxi u

2
i . Therefore, when

Ei’s are sufficient, we have T1 < T2.

Now, by running a combination of ME-1 and ME-2 routings (while keeping the

total energy consumption in a round still minimum), we can increase the network

survivability further. For such a hybrid routing which we will call ME-H, the optimal

combination of ME-1 and ME-2 routings can be found from the solution to the

following integer programming problem.

(IP-4): Max X1 +X2 (19)

s.t. u1iX1 + u2iX2 ≤ Ei, i = 1, . . . , N (20)

X1, X2 ≥ 0, integer, (21)

where u1i and u2i are the per-day energy consumption rates of node-i in ME-1 and

ME-2 routings respectively, Ei is the amount of energy in node-i at the time of

consideration, and X1 and X2 are the number of days for which the ME-1 and ME-2

routings will be run respectively. We will use these energy-efficient ME-1, ME-2 and

ME-H routings for all our models in subsequent sections.

II.5.2 Node Replacement Policy

A node replacement policy for our problem is a rule to decide when to make

a replacement attempt and which nodes to replace in an attempt. Recall from

Section II.1 that the economies of scale in the replacement cost model lead to cost

savings when several nodes are replaced during a replacement attempt. So, while

replacing the completely energy-exhausted nodes, it will be cost-effective to replace

some additional nodes that have low residual energy. Hence a node replacement

policy for our problem will essentially try to use this preventive replacement option
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to an optimal degree to minimize the average maintenance cost.

Note that the formulations MIP-1, MIP-2 and IP-3 do allow preventive node re-

placement when it is optimal to do so. However, besides the known intractability of

these formulations for sizable problem instances, the possible optimal replacement

schedules in these cases may be highly irregular and hence are not suitable for prac-

tical implementation. In fact we require replacement policies to be fixed, simple and

easy to implement. Based on these considerations, we propose the following three

replacement policies to decide when to make replacement attempts and which nodes

to replace in every attempt.

1. Fixed Interval Replacement (FI): Here the time interval between replacement

attempts is fixed. If we fix this interval as F days, a replacement attempt can

be made on days numbered kF (for k = 1, 2, . . .). On any replacement attempt,

all nodes that will not survive until the next possible attempt will be replaced.

Also, a replacement attempt will not be made if all nodes are known to survive

until the next possible attempt.

2. Fixed Residual Energy - Percentage-based Replacement (FRP): With this pol-

icy, a replacement attempt is made only when a node fails, and all nodes with

residual energy less than a fixed threshold level are replaced. Here we specify

this energy threshold as a percentage (p%) of initial battery energy E0.

3. Fixed Residual Energy - Day-based Replacement (FRD): This policy is similar

to FRP. In this case, a replacement attempt is made only when a node fails, and

all nodes with residual energy not sufficient to survive for at least another FFRD

(fixed) number of days are replaced. Note that the residual energy threshold

here is the amount of energy just sufficient for FFRD number of days.
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In each of above policies, either the decision for a replacement attempt or the

decision on individual node replacement is based on a simple fixed strategy. Note

that both FRP and FRD are threshold-based replacement policies. However, un-

like FRP, the residual energy threshold levels in FRD are different for nodes with

different energy consumption rates. Also, the main difference between FI and FRD

replacement policies is in the decision about when to make a replacement attempt.

II.5.3 Combining Routing and Node Replacement Policies

Now we will describe how our proposed replacement policies (FI, FRP and FRD)

can be used with ME-1, ME-2 and ME-H routings. It can be observed from the

definitions of FI, FRP and FRD policies that they are easily implementable with

a fixed routing such as ME-1 and ME-2. Note that, when a fixed routing is used,

any replacement schedule over a time period of T days is a feasible solution to the

problem IP-3. Hence for ME-1 and ME-2 routings, the replacement schedules given

by FI, FRP or FRD policies will not be any better than the IP-3 solution schedule.

However, we seek to answer the question how good they are. In fact these schedules,

unlike the IP-3 solution, are easy to find, and they always have some regularity

associated with them.

The ME-H routing is easy to use only with the FRP replacement policy. When

it is used with the FI or FRD policy, it is not clear which nodes to replace in a

replacement attempt. This is because X1 and X2 values (following a replacement)

are not known at the time of replacement, and hence the knowledge of whether a node

will last for additional F (FFRD for FRD policy) number of days is not available at

that time. Recall thatX1 andX2 are the number of days for which the ME-1 and ME-

2 routings will be run respectively. We propose the following integer programming

model that helps decide which nodes to replace in a replacement attempt in case of
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ME-H routing with FI policy (use FFRD in place of F for FRD policy):

(IP-5): Min f5(y) =
N∑
i=1

yi (22)

s.t. u1iX1 + u2iX2 ≤ Ei(1− yi) + E0 yi, i = 1, . . . , N (23)

X1 +X2 ≥ F (24)

X1, X2 ≥ 0, integer (25)

yi ∈ {0, 1}, i = 1, . . . , N, (26)

where yi is the decision whether or not to replace the i-th node. All other parameters

and variables remain the same as those defined for the formulation IP-4 (given by

(19)-(21)). The objective function given in (22) aims to minimize the number of

nodes that are to be replaced in the current attempt. Inequality (23) provides the

constraint on the available energy for each node (E0 if the node would be replaced,

else Ei). Inequality (24) specifies that the next replacement attempt is no sooner than

F days. As an alternative to solving the formulation IP-5 to find the replacement

decision in FI policy, we can use a relaxed approach where we will replace the i-th

node in a replacement attempt if Ei < F max{u1i , u2i } (use FFRD in place of F for

FRD policy). This ensures that none of the nodes will run out of energy in the next

F days for any combination of X1 and X2. However, this may lead to preventive

replacement of a few additional nodes.

We can now use our proposed node replacement policies when any of the ME-1,

ME-2 and ME-H routing is used for packet transmission in the network. Since all

these combined policies are intractable to study analytically for a network of our

size, we take a numerical approach to study their properties. We provide detailed

numerical results in the following section.
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II.6 Numerical Results

We implemented the proposed routing and node replacement policy combinations

on the grid-structured passive seismic network with an inter-node distance of 200

m. Most of the results that we discuss in this section are based on our MATLAB

simulations of the given network operation for a time period T = 50 years. All

MIP/IP formulations are solved using the CPLEX 12 solver. The initial battery

energy of a new node is taken as E0 = 50000 J which is close to the amount of

energy stored in a MEMS-based compact node currently used in seismic monitoring

(SeaBed Geophysical [61]). Considering the cost of this battery and the labor cost

associated with the node replacement in deep underwater conditions, the cost of an

individual node replacement is approximately estimated as C = 100 in appropriate

currency units (for example, 100 US dollars). Since the fixed cost of a replacement

attempt K is unknown and difficult to estimate, we consider three different cases:

K = 1000, 5000 and 15000. We will assume K = 5000 to be a reasonable estimate

of a likely cost, and the lower and higher values of K are considered to verify that

our approach is still effective for all other values of K.

It is important to see how different routings perform with a particular replacement

policy over the range of its fixed parameter (i.e. F in FI, FFRD in FRD and p in FRP).

Figure 2 shows such performance comparisons in terms of average maintenance cost

of the network for K = 5000. The results for the cases K = 1000 and K = 15000

are found very similar to those for the case K = 5000 and hence are not shown.

Figure 2(a) shows how the average maintenance cost changes when we change the

replacement interval (F days) in the FI replacement policy. In ME-1 routing, the four

nodes at the corners of the lowest level square (see Figure 1(a)) have the fastest energy

consumption rate, and they exhaust full battery energy in 70 days. This primarily
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Figure 2: Average maintenance cost (T = 50 years, E0 = 50000 J, K = 5000 and
C = 100)
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means that the maximum possible interval in the FI policy for ME-1 routing is 70

days. Similarly, in ME-2 and ME-H routings, only the fastest energy consuming

nodes impact the range of F . It can be observed that ME-H routing achieves the

lowest average cost among all routings for FI replacement policy. The sharp jumps

right after the mid-point of the maximum possible interval can be attributed to more

nodes with high residual energy being replaced for those values of F .

Figure 2(b) shows the variations in the average maintenance cost when the thresh-

old energy level (in terms of percentage parameter p) is changed in FRP replacement

policy. As expected, with the increase in p value, the average cost first decreases and

then increases. The average maintenance cost in FRD policy follows a similar trend

(see Figure 2(c)) as we change the fixed parameter FFRD. Based on our argument in

the FI policy case, it does not make sense to increase the value of the fixed parameter

FFRD in FRD policy beyond the corresponding maximum F values in FI policy for

each routing. For example, in the ME-1 routing case, we must make a replacement

attempt at least once in every 70 days. Though it is possible to take value of F more

than 70 days for this routing with FRD replacement policy, we can see in the plot

that the average cost only increases beyond this value of FFRD.

Our idea is ultimately to use the value of the fixed parameter (in the node re-

placement policy) with which a routing attains the minimum average maintenance

cost. We present in Figure 3(a) a comparison of the minimum average maintenance

costs obtained from all combinations of our proposed routings and replacement poli-

cies for the case K = 5000. We have shown that the lowest average maintenance

cost is achieved with the ME-H routing in every replacement policy. The ME-2 rout-

ing provides a lower average cost than ME-1 routing in most cases, but the ME-H

routing is significantly better than both ME-1 and ME-2 routings in all cases. These

observations are consistent with our discussions related to network survivability in
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Figure 3: Performance comparison of policy combinations (T = 50 years, E0 = 50000
J, K = 5000 and C = 100)
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Section II.5. Since the fixed cost of a replacement attempt (K) is very high com-

pared to the individual node replacement cost (C), the minimum energy routing

that achieves a higher degree of network survivability is also expected to produce a

lower average node replacement cost. It can also be observed that FRD replacement

policy results in a lower average maintenance cost than FI and FRP policies when a

particular routing is kept fixed. Again FI does better than FRP and is close to FRD

in minimizing the average replacement cost.

In addition to providing the minimum average maintenance cost, a replacement

policy (or schedule) may be required to meet certain service-level criteria. In Figure

3(b)-(d), we present the performance comparison of our proposed policies in terms of

important service level parameters for K = 5000. The node replacement service will

require minimum number of replacement attempts over the period of operation. The

inter-replacement interval is also desired to be as long as possible. It can be observed

that, in case of most replacement policies, ME-2 routing results in less number of

replacement attempts compared to ME-1 routing, but ME-H routing achieves the

lowest number of replacement attempts. The ME-H routing also achieves a longer

inter-replacement interval with all replacement policies. The observations in Figures

3(a)-3(d) are similar for the cases K = 1000 and K = 15000 and hence are not

shown.

As we know, though the formulation MIP-1 is optimal in minimizing the node

replacement costs, this approach can be employed when the number of nodes in the

network (N) and the time horizon (T ) are small. However, to compare the results of

our proposed methods with this optimal solution case, we repeated our experiments

for time horizon T = 25 days. This was one of the largest instances for which we

could solve MIP-1 to optimality within 30 minutes. Also, to ensure a good number

of node replacements during this small period of operation, we considered initial
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Figure 4: Minimum average maintenance cost (T = 25 days, E0 = 5000 J, K = 5000
and C = 100)

battery energy E0 = 5000 J. For this network setup with K = 5000 and C = 100, we

present in Figure 4 a comparison of minimum average maintenance costs achieved by

different approaches that we have considered. As expected, MIP-1 solution provides

the lowest average maintenance cost among all approaches considered. As MIP-2

approach considers only fixed routing decisions, the minimum average maintenance

cost increases in this case over the MIP-1 solution. When a given fixed routing (e.g.

ME-1 and ME-2) is used in the network, IP-3 based solution provides the best results.

Also, observe that ME-H routing, when used in combination with our proposed node

replacement policies, provides a minimum average maintenance cost that is close to

the optimal MIP-1 case. Though this cost gap may look to be considerable in the

presented scenario (in Figure 4), this will significantly improve when large values

would be considered for the time horizon (T ).

We also applied our methods to minimize node replacement costs in an inte-

grated active-passive seismic application. Here passive seismic monitoring is done

continuously, and active seismic surveys are conducted once in every few months.

Due to closer inter-node spacing requirement for active seismic, we considered a 50
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m separation between nodes on our grid network. Note that this network with the

reduced inter-node distance is also suitable for passive seismic. The results for this

special case are similar to the passive seismic application and hence are not separately

presented.

II.7 Conclusion

In this chapter, we developed methods to minimize node replacement costs in

underwater wireless sensor networks used in seismic monitoring of undersea oilfields.

We introduced the combined routing and node replacement approach to minimize

the replacement costs, and developed mathematical formulations that provide the

optimal solution. However these MIP/IP formulations become intractable for sizable

networks with prolonged seismic monitoring operation. Hence we introduced effective

routing and node replacement policies and used them in combinations to achieve the

minimum average node replacement cost.

As our numerical results indicate, the ME-H routing with FI or FRD replace-

ment policy provides significantly lower average node replacement cost and meets

higher service-level requirements than other joint policies. Though the use of FRD

replacement policy with ME-H routing provides the best results, FI policy can still

be preferred given its higher degree of simplicity. Also, the difference in the per-

formances of the considered minimum-energy routings ME-1, ME-2 and ME-H is

attributed to the varied degree of energy-balancing they achieve. Among the pro-

posed node replacement policies, though the threshold-based FRD policy performs

as good as expected, the results also show that using the simple policies like FI in this

application is not a bad idea at all. Overall, the main result is that the combined

routing and node replacement policy approach is effective and suitable for practi-

cal implementation. This approach will also apply to similar permanent monitoring
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applications that use remotely located large sensor networks.

We envision many interesting extensions of this work for future research. As an

immediate extension, effective methods can be developed to minimize node replace-

ment costs in a generic sensor network. It would also be interesting to see how our

methods can be applied to networks that can work with a certain percentage of failed

nodes. Additional re-routing routines will be required in this case. The nature of

our problem is analogous to a multicomponent maintenance model where the com-

ponents have both structural and economic dependence. New replacement policies

can also be explored in this area.
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CHAPTER III

CASE II: MANAGING ENERGY-DELAY TRADE-OFF IN NETWORK

CODING FOR WIRELESS TRANSMISSIONS

III.1 Introduction

In recent years, there has been an increasing interest in the applications of network

coding in multihop wireless networks (see book by Médard and Sprintson [51] for

important application areas). Network coding techniques can significantly reduce the

transmission load in wireless networks (Katti et al. [35]). For example, consider the

two-way relay network shown in Figure 5(a). Here nodes 1 and 2 want to exchange

a pair of packets x1 and x2 through node 3 which works as a relay node. In the

conventional store-and-forward approach, node 1 sends its packet x1 to node 3 which

then forwards it to node 2. Similarly packet x2 is sent from node 2 to node 1 via

node 3 in two transmissions. However, in the network coding approach, once the

two packets x1 and x2 are received at node 3, they are combined by a bit-wise

XOR operation, and then the coded packet x1 ⊕ x2 is broadcast to nodes 1 and

2 simultaneously (for example, if x1 = 00111100 and x2 = 11001100, bit-wise XOR

operation on x1 and x2 results in x1⊕x2 = 11110000). Now, since x1⊕(x1⊕x2) = x2

and x2⊕(x1⊕x2) = x1, nodes 1 and 2 can get their required packets by decoding the

coded packet. Note that, in this case, a total of 3 transmissions are required compared

to 4 transmissions in the conventional approach. In another example, consider a line

network with two information flows in opposite directions (see Figure 5(b)). In this

case, network coding at successive nodes (known as “reverse carpooling” (Effros et al.

[20])) allows both flows to share one common path and achieves significant reduction
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Figure 5: Wireless network coding

in the number of transmissions in the network.

Given the ability of network coding to reduce transmission load greatly, high

energy savings are possible by using this technique. This can lead to significant

improvements in the energy-efficiency of multihop wireless sensor networks where

most of the energy of the nodes is consumed in wireless transmissions. However,

in most of these networks, data flows on different links vary significantly. Hence

coding opportunities are not always available, and waiting for such opportunities can

cause substantial delay in transmission. In fact, the energy savings achieved through

network coding may be offset by delays incurred by waiting for coding opportunities.

Therefore it is required to decide whether to wait for a coding opportunity or to

transmit without coding. To make such decisions, we aim to develop a model to

optimally trade-off between low energy consumption and high quality-of-service (i.e.

low delay).

In this chapter, we consider the energy-delay trade-off issue in network coding

in a two-way relay network (see Figure 5(a)) which is a basic component of larger

networks. Our objective is to make network coding decisions at the relay node in

such a way that the average energy and delay costs are minimized over the long-run.

To achieve this, we formulate our problem as a Markov decision process (MDP) that
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takes into account the energy and delay costs as well as the uncertainty in packet

arrival processes. A policy for this MDP specifies how many coded and uncoded

transmissions are to be made at a transmission opportunity based on the queue

backlogs at the relay node. We aim to find the optimal policy in this MDP and

develop insights into other simpler policies that can be effective. We will also apply

these policies in other network settings such as the one in Figure 5(b).

The remainder of this chapter is organized as follows. We present a brief literature

review in Section III.2. In Section III.3, we provide MDP formulations of our problem

and show that an optimal stationary policy exists in the average cost MDP. In

Section III.4, we derive important structural properties of the optimal policy. In

Section III.5, we develop an approach to compute the threshold policy that is optimal

in certain cases and is effective (and possibly optimal) in other cases. We report

our computational results in Section III.6. Finally, in Section III.7, we present our

concluding remarks and some future research directions.

III.2 Literature Review

Network coding has attracted significant interest from the research community

since its introduction in the seminal work of Ahlswede et al. [2]. However, the energy-

delay trade-off issue in network coding has received attention only very recently.

He and Yener [23] used a queueing model to analyze this trade-off in a two-way

relay network when a first-come-first-serve (FCFS) policy is used for transmission at

the relay node. Ciftcioglu et al. [17] developed game-based distributed policies to

optimize such trade-off in a different relay network setup. Hsu et al. [28] developed

an MDP based energy-delay trade-off model in a simpler case with a maximum

transmission capacity of one packet per time-slot at the relay node.

MDPs serve as efficient methods to optimize cost-performance trade-off in a

36



stochastic environment (Puterman [56]). There is a rich body of literature on MDPs

for various applications. Arapostathis et al. [8] provide an extensive survey of works

on discrete-time average cost MDPs. In particular, as in our case, it is usually dif-

ficult to find an optimal policy (which may also not exist) in average cost MDPs

with countably infinite states (hereafter we will say “countable” to mean countably

infinite) and unbounded costs. The works by Borkar [12], Cavazos-Cadena [14],

Cavasoz-Cadena and Sennott [15], Schäl [60] and Sennott [62, 63, 64] are major

contributions to the theory of MDPs with countable state space. In particular, Sen-

nott [63] has provided conditions for existence of an optimal stationary policy in an

average cost MDP with countable state space and unbounded costs.

III.3 Model Formulation

We consider network coding in a two-way relay network shown in Figure 6. The

relay node R transmits packets between two of its adjacent nodes which have flows

in opposite directions. The relay node maintains two queues Q1 and Q2 to store

packets received from nodes 1 and 2 respectively (i.e. intended for nodes 2 and 1

respectively). Packets arrive at Q1 and Q2 according to independent Poisson pro-

cesses with mean rates λ1 and λ2 respectively. The relay node gets opportunity to

transmit at fixed time intervals. Let T be the fixed time gap between two consecutive

transmission opportunities. The relay node can send any number of packets during

a transmission opportunity. However, to save energy, it tries to reduce the number

of packet transmissions through network coding. As long as both the queues Q1

and Q2 are nonempty, it selects one packet at a time from each queue and combines

them as one coded packet which is then broadcast to nodes 1 and 2. When a packet

cannot be coded (due to shortage of a packet in the other queue), the relay can

transmit it uncoded or hold it for transmission in future. To make this decision, we
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Figure 6: Two-way relay network

consider some costs associated with transmission and delay. Let ct be the cost of

transmitting a coded or uncoded packet, and let c̄h be the cost of holding a packet

per unit time. The cost of holding a packet from one transmission opportunity to the

next is ch := c̄hT . We will consider only the case ch < ct since holding will not be a

cost-effective option otherwise. However, our analytical results are derived without

this assumption.

When each of the queues Q1 and Q2 has n packets at a transmission opportunity,

it is optimal to transmit n coded packets. When Q1 has n1 packets and Q2 has

n2 (6= n1) packets, min(n1, n2) coded packets will be sent. However, in this case, since

the remaining |n1− n2| packets (that are left in one of the queues) cannot be coded,

it is required to decide whether to transmit some of them uncoded. Therefore, our

objective is to develop a strategy for the relay to decide how many packets (coded

and uncoded) to transmit at every transmission opportunity so that the average

transmission and holding cost is minimized over the long-run. To develop such a

strategy, we formulate our problem as an MDP which we describe next.

In our MDP setup, the state of the system is described by a two-dimensional

vector (s1n, s
2
n), where s1n and s2n are the number of packets in queues Q1 and Q2

respectively just before the n-th (n = 0, 1, . . .) transmission opportunity. The state
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space is S = {(i, j) : i = 0, 1, . . . , j = 0, 1, . . .}. Based on the state of the system at

every stage of the MDP (i.e. at every transmission opportunity), a certain number

of coded and uncoded packets are transmitted. Here the total number of packets

transmitted is defined as the action which is denoted by an in the n-th stage. Note

that the action space in state (i, j) is Ai,j = {min(i, j), . . . ,max(i, j)}. The complete

action space is A = ∪(i,j)∈S Ai,j. When an action a is taken in state (i, j), the number

of coded and uncoded transmissions are min(i, j) and a − min(i, j) respectively.

Let pzy be the probability of y packet arrivals to queue Qz (z = 1, 2) between two

transmission opportunities. Note that p1y and p2y (y = 0, 1, . . .) are Poisson probability

distributions with means λ1T and λ2T respectively. Now, if an action a is taken

in state (i, j), the system will be in state (k, l) in the next stage with probability

p(i,j)(k,l)(a) := p1k−(i−a)+ p
2
l−(j−a)+ , where (x)+ = max(x, 0).

In every stage of the MDP, a transmission cost is incurred depending on the

action selected. Further, there is a cost for holding the remaining packets (after

transmission) as well as the new arriving packets until the next transmission oppor-

tunity. When an action a is taken in state (i, j), the total cost, denoted by c(i, j, a),

is computed as

c(i, j, a) = cta+ ch
(
(i− a)+ + (j − a)+

)
+ c̄hE

 2∑
z=1

Nz(T )∑
y=1

(T − Szy)

 , (27)

where Nz(T ) is the random number of new packet arrivals to queue Qz (z = 1, 2) in

time T (i.e. in the time between the current and next transmission opportunities),

and Szy is the time of arrival (measured from the current transmission opportunity) of

the y-th packet (y = 1, . . . , Nz(T )) to queue Qz (z = 1, 2). Conditional on Nz(T ) =

m (z = 1, 2), the arrival times Sz1 , . . . , S
z
m are distributed as the order statistics

U(1), . . . , U(m) of m independent random variables, each uniformly distributed over
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(0, T ) (Resnick [58]). Using this property of Poisson arrivals, the expression in (27)

is simplified as c(i, j, a) = cta+ch ((i− a)+ + (j − a)+)+ chT
2

(λ1 +λ2). Note that the

cost component chT
2

(λ1 + λ2) is a constant and will not have any effect on deciding

the action in any state. Hence we will ignore it in our model and use the following

function for cost per stage.

c(i, j, a) = cta+ ch
(
(i− a)+ + (j − a)+

)
. (28)

Having described the components of the MDP, we need to find a policy that will

decide the action at every stage in such a way that the average cost over infinite

time horizon will be minimized. A stationary policy for our MDP is a mapping

θ : S → A, where θ(i, j) is the action selected when the state of the system is

(i, j). We consider only stationary policies since no better results can be achieved

by considering non-stationary policies in time-homogeneous infinite-horizon MDPs

(Puterman [56]). The long-run average cost under any policy θ is defined as

g(θ) = lim
N→∞

1

N + 1
Eθ

[
N∑
n=0

c(S1
n, S

2
n, an)

∣∣∣∣∣(S1
0 , S

2
0) = (0, 0)

]
, (29)

where (S1
n, S

2
n) is random state in the n-th stage. Note that, though we start the

system in state (0, 0), the average cost is independent of this choice. Our objective is

to find a stationary policy that minimizes the average cost function g(θ). However,

given the countable state space and unbounded costs in our problem, such a policy

would exist only under specific conditions.

In the following subsections, we present our analysis to show that an optimal sta-

tionary policy exists in our MDP. First, we introduce the discounted cost formulation

which is used to derive results for the average cost problem.
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III.3.1 Discounted Cost Formulation

In our MDP setup, when a discount factor of β (0 < β < 1) is considered, the

total expected discounted cost incurred under a policy θ is given by

vβ,θ(i, j) = Eθ

[
∞∑
n=0

βnc(S1
n, S

2
n, an)

∣∣∣∣∣(S1
0 , S

2
0) = (i, j)

]
, (30)

where the initial state of the system is (i, j). The optimal discounted cost in an

initial state (i, j) is given by the discounted cost function vβ(i, j) := infθ vβ,θ(i, j). As

per the following proposition, vβ(i, j) values are finite.

Proposition 3. The discounted cost function vβ(i, j) is finite for every state (i, j) ∈

S and discount factor β (0 < β < 1).

Proof. Consider a policy θ where the decision is to transmit all the queued packets

at every transmission opportunity. Note that, under this policy, a total number of

max(i, j) packets will be transmitted in state (i, j). As per (30), the total discounted

cost under this policy θ is given by

vβ,θ(i, j) = ct max(i, j) + E

[
∞∑
n=1

βnct max(A1
n, A

2
n)

]
,

where A1
n and A2

n are the number of packet arrivals to queues Q1 and Q2 respectively

between the (n− 1)-st and n-th transmission opportunities. Note that

vβ(i, j) ≤ vβ,θ(i, j) ≤ ct max(i, j) + E

[
∞∑
n=1

βnct(A
n
1 + An2 )

]

= ct max(i, j) +
βctT (λ1 + λ2)

1− β <∞.

Since our initial state (i, j) and discount factor β are arbitrary, vβ(i, j) <∞ for every
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(i, j) and β.

Proposition 3 implies that the discounted cost function vβ(i, j), for (i, j) ∈ S,

satisfies the discounted cost optimality equation (DCOE) (Sennott [63]):

vβ(i, j) = min
a∈Ai,j

{
c(i, j, a) + β

∑
k,l

p1kp
2
l vβ

(
(i− a)+ + k, (j − a)+ + l

)}
. (31)

Any stationary policy that realizes the minimum in the right side of (31) is discounted

cost optimal. We will use properties of the discounted cost optimal stationary policy

to characterize the optimal stationary policy in the average cost case.

III.3.2 Average Cost Formulation

Recall that our objective is to find a stationary policy that minimizes the long-

run average cost defined in (29). In this subsection, we show that an average cost

optimal stationary policy exists in our MDP, and it can be computed as the limit of

discounted cost optimal stationary policies. We will need the following propositions

to prove this main result in Theorem 1.

Proposition 4. The discounted cost function vβ(i, j) is nondecreasing in i and j.

Proof. We will prove this result by using method of induction on the steps of the value

iteration algorithm (Puterman [56]). Based on (31), the discounted cost function (for

(i, j) ∈ S) in the n-th step of value iteration is given as

vβ,n(i, j) = min
a∈Ai,j

{
c(i, j, a) + β

∑
k,l

p1kp
2
l vβ,n−1

(
(i− a)+ + k, (j − a)+ + l

)}
. (32)

At the start of value iteration, vβ,0(i, j) = 0 for every state (i, j). Hence, for n = 0

case, vβ,n(i, j) is nondecreasing in i and j.
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Now, suppose n−1 case is true, i.e. vβ,n−1(i, j) is nondecreasing in i and j. Using

(32), select an action a ∈ Ai+1,j such that

vβ,n(i+ 1, j) = c(i+ 1, j, a) + β
∑
k,l

p1kp
2
l vβ,n−1

(
(i+ 1− a)+ + k, (j − a)+ + l

)
. (33)

For the same action a, we must have from (32):

vβ,n(i, j) ≤ c(i, j, a) + β
∑
k,l

p1kp
2
l vβ,n−1

(
(i− a)+ + k, (j − a)+ + l

)
. (34)

Note that a /∈ Ai,j when a = i+ 1 > j, but (34) will still hold. Since vβ,n−1(i, j) and

c(i, j, a) (see (28)) are nondecreasing in i, we use (33) and (34) to show that

vβ,n(i+ 1, j)− vβ,n(i, j) ≥ c(i+ 1, j, a)− c(i, j, a)

+β
∑
k,l

p1kp
2
l

{
vβ,n−1

(
(i+ 1− a)+ + k, (j − a)+ + l

)
−vβ,n−1

(
(i− a)+ + k, (j − a)+ + l

)}
≥ 0.

Hence vβ,n(i, j) is nondecreasing in i for any fixed j. Similarly we can show that

vβ,n(i, j) is nondecreasing in j for any fixed i. Thus vβ,n(i, j) is nondecreasing in both

i and j. Therefore the discounted cost function vβ(i, j) is nondecreasing in i and j,

as vβ,n(i, j)→ vβ(i, j).

Proposition 5. The MDP has a stationary policy inducing an irreducible, ergodic

Markov chain with a finite average cost.

Proof. Consider again the policy θ where the decision is to transmit all the queued

packets at every transmission opportunity. Under this policy, the state of the system

{(S1
n, S

2
n), n ≥ 0} can be described by an irreducible and ergodic Markov chain with
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transition probabilities p(i,j)(k,l) := p1kp
2
l for (i, j), (k, l) ∈ S. Note that the stationary

distribution of this Markov chain is πi,j := p1i p
2
j for (i, j) ∈ S. Therefore the long-run

average cost under policy θ is given by

g(θ) =
∑

(i,j)∈S

πi,j ct max(i, j) ≤ ct

∞∑
i=0

∞∑
j=0

p1i p
2
j(i+ j) = ct(λ1 + λ2)T <∞.

This shows that the average cost in the considered policy is finite.

Theorem 1. (a) There exist a constant g = limβ↑1 (1−β)vβ(i, j) for every (i, j) ∈ S,

and a function h(i, j) satisfying the average cost optimality inequality (ACOI):

g + h(i, j) ≥ min
a∈Ai,j

{
c(i, j, a) +

∑
k,l

p1kp
2
l h
(
(i− a)+ + k, (j − a)+ + l

)}
. (35)

The constant g is the optimal average cost, and any stationary policy that realizes

the minimum in the right side of (35) is average cost optimal.

(b) There exists an average cost optimal stationary policy θ∗ that is a limit point of

a sequence of discounted cost optimal stationary policies {θβk}k≥1, where βk → 1.

Proof. To prove (a) and (b), we will first show that the following conditions (provided

by Sennott [63]) are satisfied.

1. The discounted cost function vβ(i, j) is finite for every state (i, j) and discount

factor β.

2. There exists a nonnegative number N such that −N ≤ hβ(i, j) for all (i, j) and

β, where hβ(i, j) = vβ(i, j)− vβ(0, 0).

3. There exist nonnegative numbers Mij such that hβ(i, j) ≤ Mij for every (i, j)

and β. Also, for every state (i, j), there exists an action a(i, j) such that∑
(k,l)∈S p(i,j)(k,l)(a(i, j)) Mkl <∞.
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Condition 1 is satisfied through Proposition 3. Condition 2 is implied by Proposition

4 and is therefore satisfied. Based on Proposition 5 in Sennott [63], Proposition 5

satisfies Condition 3. Now that Conditions 1-3 are satisfied, the result in (a) follows

from Theorem 7.2.3 (and its proof) in Sennott [65].

Now, let {βn}n≥1 be any sequence of discount factors converging to 1, and let

{θβn}n≥1 be the corresponding sequence of discounted cost optimal stationary poli-

cies. By Lemma 1 in Sennott [63], there exists a subsequence of discount factors

{βnk}k≥1 (also converging to 1) and a stationary policy θ∗ that is a limit point of

the subsequence {θβnk}k≥1. Further, as Conditions 1-3 are satisfied, the stationary

policy θ∗ is average cost optimal by Theorem 1 in Sennott [63].

III.4 Structural Properties of Optimal Policy

In this section, we derive structural properties of the optimal policy in both

discounted cost and average cost problems. In Theorem 1, we showed that an average

cost optimal stationary policy in our MDP can be found as a limit point of discounted

cost optimal stationary policies. Therefore structural properties of the discounted

cost optimal stationary policies will remain the same in this average cost optimal

stationary policy.

Before formalizing our main results, we would like to introduce certain concepts

of convexity of a function defined over discrete points. First, we define a univariate

“discrete convex function” for our purpose.

Definition 1. The function f : Z+ → R is defined to be convex if and only if

f(i+ 1)− f(i) is nondecreasing in i.

If f : Z+ → R is convex (by Definition 1), a point i in the domain of f is a global

minimum if it is a local minimum in the sense that f(i) ≤ min{f(i − 1), f(i + 1)}.

This function will also satisfy other natural properties of a convex function (Murota
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[52]). Now we extend the idea in Definition 1 to a bivariate discrete function in which

we are primarily interested in analyzing convexity in the direction of one variable.

Definition 2. The function f : Z2
+ → R is defined to be convex in i if and only if

f(i + 1, j) − f(i, j) is nondecreasing in i for every j. Similarly, f is defined to be

convex in j if and only if f(i, j + 1)− f(i, j) is nondecreasing in j for every i.

Note that, if f(i, j) is convex in i (by Definition 2), then for a fixed j (say j1),

the function f1(i) := f(i, j1) is convex. Similarly, if f(i, j) is convex in j, then for a

fixed i (say i1), the function f2(j) := f(i1, j) is convex. Additionally, if f(i, j) and

g(i, j) are convex in i (resp. in j), the function c1f(i, j) + c2g(i, j) is convex in i

(resp. in j) for c1 ≥ 0, c2 ≥ 0. We will use these properties in the proofs of various

results presented in this section.

Definition 2 helps check convexity of a bivariate discrete function in only one

variable (while the other is fixed), which is useful for deriving our results. However

note that, even if a function is convex in each variable separately, it is not sufficient

to identify the function as convex unless it is additively separable.

Now we present in the following Lemma 1 and Proposition 6 that are required to

prove the main result of this section in Theorem 2.

Lemma 1. Suppose f(i, j) : Z2
+ → R is convex in i and j. For c > 0, the function

g(i, j) = mina∈{min(i,j),...,max(i,j)}{ca+ f ((i− a)+, (j − a)+)} is convex in i and j if

min{f(1, 0)− f(0, 0), c}+ min{f(0, 1)− f(0, 0), c} ≥ c. (36)

Proof. When i ≥ j, we have

g(i, j) = min
a∈{j,...,i}

{ca+ f(i− a, 0)} = ci+ min
k∈{0,...,i−j}

f1(k),
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where f1(k) = −ck + f(k, 0). Since the functions −ck and f(k, 0) are convex (by

Definition 1), f1(k) is convex. Let k∗1 = arg min{f1(k) : k ≥ 0} be a global minimum

of the function f1. Using convexity of f1, we have

g(i, j) =

 ci+ f1(i− j) if 0 ≤ i− j < k∗1,

ci+ f1(k
∗
1) if i− j ≥ k∗1.

(37)

Similarly, when i ≤ j, we can show that there exists a k∗2 ≥ 0 such that

g(i, j) =

 cj + f2(j − i) if − k∗2 < i− j ≤ 0,

cj + f2(k
∗
2) if i− j ≤ −k∗2,

(38)

where f2(k) = −ck + f(0, k). Also note that f1(0) = f2(0) = f(0, 0).

Now, by Definition 2, the function g(i, j) will be convex in i and j, if

g(i+ 1, j)− g(i, j) ≥ g(i, j)− g(i− 1, j), i ≥ 1, j ≥ 0, (39)

g(i, j + 1)− g(i, j) ≥ g(i, j)− g(i, j − 1), i ≥ 0, j ≥ 1. (40)

We will show that (39) and (40) hold in all the following cases: (a) i > j, (b) i < j,

and (c) i = j.

First, in case (a) i > j, we consider two sub-cases: (a1) 0 < i− j < k∗1, and (a2)

i− j ≥ k∗1. In sub-case (a1) 0 < i− j < k∗1, using (37) and convexity of f1, we show

in the following that (39) and (40) are satisfied.

g(i+ 1, j)− g(i, j) = c(i+ 1) + f1(i− j + 1)− ci− f1(i− j)

≥ [ci+ f1(i− j)]− [c(i− 1) + f1(i− j − 1)]

= g(i, j)− g(i− 1, j).
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g(i, j + 1)− g(i, j) = ci+ f1(i− j − 1)− ci− f1(i− j)

≥ [ci+ f1(i− j)]− [ci+ f1(i− j + 1)]

= g(i, j)− g(i, j − 1).

Also, in sub-case (a2) i− j ≥ k∗1, we show below that (39) and (40) are satisfied.

g(i+ 1, j)− g(i, j) = c(i+ 1) + f1(k
∗
1)− ci− f1(k∗1)

= [ci+ f1(k
∗)]− [c(i− 1) + f1(k

∗
1)]

≥ g(i, j)− g(i− 1, j).

g(i, j + 1)− g(i, j) ≥ [ci+ f1(k
∗)]− [ci+ f1(k

∗
1)]

= g(i, j)− g(i, j − 1).

Thus both (39) and (40) are satisfied in case (a) i > j. Similarly, by using (38)

and convexity of f2, we can show that these conditions are also satisfied in case (b)

i < j. In case (c) i = j, note that (37) will hold if

g(i+ 1, i)− g(i, i) ≥ g(i, i)− g(i− 1, i),

i.e. min{ci+ f(1, 0), c(i+ 1) + f(0, 0)} − ci− f(0, 0)

≥ ci+ f(0, 0)−min{c(i− 1) + f(0, 1), ci+ f(0, 0)},

i.e. min{f(1, 0)− f(0, 0), c}+ min{f(0, 1)− f(0, 0), c} ≥ c,

which is the condition specified in (36). Similarly it can be shown that, when this

condition holds, we also have g(i, i+ 1)− g(i, i) ≥ g(i, i)− g(i, i− 1).

Thus, given that (36) holds, g(i, j) satisfies (39) and (40) at all points. Therefore

g(i, j) is convex in i and j.
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Proposition 6. If ch ≥ ct/2, the cost function vβ(i, j) is convex in i and j.

Proof. We will prove this result by using method of induction on the steps of the

value iteration algorithm. The discounted cost function in the n-th step of value

iteration is given by

vβ,n(i, j) = min
a∈Ai,j

{
cta+ ch

[
(i− a)+ + (j − a)+

]
+β
∑
k,l

p1kp
2
l vβ,n−1

(
(i− a)+ + k, (j − a)+ + l

)}
, (i, j) ∈ S. (41)

At the start of value iteration, vβ,0(i, j) = 0 for every state (i, j). Hence, for n = 0

case, vβ,n(i, j) is convex in i and j. Now, suppose n−1 case is true, i.e. vβ,n−1(i, j) is

convex in i and j. Therefore the function fn−1(i, j) :=
∑

k,l p
1
kp

2
l vβ,n−1(i+ k, j + l)

is convex in i and j. Now we can write (41) as

vβ,n(i, j) = min
a∈Ai,j

{
cta+ gn−1

(
(i− a)+, (j − a)+

)}
, (42)

where gn−1(i, j) = ch(i+ j) + βfn−1(i, j). Since ch(i+ j) and fn−1(i, j) are convex in

i and j, gn−1(i, j) is convex in i and j. Therefore by Lemma 1, in (42), vβ,n(i, j) is

convex in i and j if

min{gn−1(1, 0)− gn−1(0, 0), ct}+ min{gn−1(0, 1)− gn−1(0, 0), ct} ≥ ct. (43)

Since vβ,n(i, j) is nondecreasing in i and j in every stage of value iteration (see proof

of Proposition 4), we have

gn−1(1, 0)− gn−1(0, 0) = ch + β
∑
k,l

p1kp
2
l [vβ,n−1(k + 1, l)− vβ,n−1(k, l)] ≥ ch,

(44)
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gn−1(0, 1)− gn−1(0, 0) = ch + β
∑
k,l

p1kp
2
l [vβ,n−1(k, l + 1)− vβ,n−1(k, l)] ≥ ch.

(45)

Using (44) and (45), the sufficient condition for (43) to hold is 2ch ≥ ct. However, this

is the necessary condition in case n = 1 where (44) and (45) are satisfied at equality.

Thus vβ,n(i, j) is convex in i and j if ch ≥ ct/2. Therefore, under the same condition,

the discounted cost function vβ(i, j) is convex in i and j, as vβ,n(i, j)→ vβ(i, j).

Theorem 2. If ch ≥ ct/2, then (a) there exist constants L1, L2 ≥ 0 (corresponding

to every discount factor β) such that the optimal action in state (i, j) ∈ S in the

discounted cost problem is given by

a∗(i, j) = min(i, j) + (i−min(i, j)− L1)
+ + (j −min(i, j)− L2)

+ . (46)

(b) There is an average cost optimal policy which has the same structure as the

discounted cost optimal policy specified in (46).

Proof. Since a ∈ Ai,j = {min(i, j), . . . ,max(i, j)}, we can write a = max(i, j)− (i−

a)+ − (j − a)+. Using this, (31) can be written for every (i, j) ∈ S as

vβ(i, j) = ct max(i, j) + min
a∈Ai,j

{
− (ct − ch)

[
(i− a)+ + (j − a)+

]
+β
∑
k,l

p1kp
2
l vβ

(
(i− a)+ + k, (j − a)+ + l

)}
. (47)

Since ch ≥ ct/2, the discounted cost function vβ(i, j) is convex in i and j by Propo-

sition 6. Therefore the function f(i, j) :=
∑

k,l p
1
kp

2
l vβ(i + k, j + l) is convex in i

and j. Also, it can be shown that −(ct− ch)(i+ j) is convex in i and j. Now we can
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write (47) as

vβ(i, j) = ct max(i, j) + min
a∈Ai,j

{
g
(
(i− a)+, (j − a)+

)}
, (48)

where g(i, j) = −(ct − ch)(i+ j) + βf(i, j). Note that g(i, j) is convex in i and j.

Now, we will prove result (a) by considering the following cases: (i) i ≥ j, and

(ii) i ≤ j. In case (i) i ≥ j, (48) can be written as

vβ(i, j) = ct max(i, j) + min
a∈{j,...,i}

g(i− a, 0) = ct max(i, j) + min
b∈{0,...,i−j}

g1(b), (49)

where b = i − a, and g1(b) = g(b, 0). Note that g1(b) is convex. Let L1 =

arg min{g1(b) : b ≥ 0} be a global minimum of g1(b). Hence the value of b that

minimizes g1(b) in (49) is given by

b∗(i, j) =

 i− j if 0 ≤ i− j < L1,

L1 if i− j ≥ L1.

Therefore, in case (i) i ≥ j, the optimal action in state (i, j) can be found as

a∗(i, j) = i− b∗(i, j) =

 j if 0 ≤ i− j < L1,

i− L1 if i− j ≥ L1.
(50)

Similarly, in case (ii) i ≤ j, it can be shown that there exists a constant L2 ≥ 0

such that the optimal action in state (i, j) is given by

a∗(i, j) =

 i if 0 ≤ j − i < L2,

j − L2 if j − i ≥ L2.
(51)
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Note that (50) and (51) can be combined into one expression as presented in (46).

This completes the proof of the result (a). Result (b) follows from Theorem 1(b).

Theorem 2 shows that, if ch ≥ ct/2, the optimal transmission policy for the relay

node is a special kind of threshold policy whose structure is specified in (46). Observe

that, under such a policy, min(i, j) coded packets are sent in state (i, j) as in any

other policy. However, once the coded packets are sent, packets from the nonempty

queue are sent uncoded until the number of remaining packets in the queue reaches

an optimal threshold level (say L∗1 for Q1 and L∗2 for Q2 in the average cost case).

Notice that the condition ch ≥ ct/2 is only sufficient, but not necessary, for the

optimal policy to be threshold-based. We have not shown whether such threshold

policy is optimal when ch < ct/2. However, in this case, we expect the optimal

action a∗(i, j) to be nondecreasing in i and j in a way similar to this threshold policy.

Hence, when ch < ct/2, we believe that the threshold policy will be very effective, if

not optimal. We provide evidence for this in our numerical results (Section III.6).

Note that an individual packet incurs a transmission cost of ct/2 if it is coded,

and ct if it is sent uncoded. Hence a packet cannot reduce its own cost by waiting for

a coding opportunity if ch + ct/2 ≥ ct or ch ≥ ct/2. Therefore, under the condition

ch ≥ ct/2, the individually optimal average cost policy is to always transmit (coded

if possible, else uncoded) at a transmission opportunity. However, it is clear from

Theorem 2 that this policy may not be optimal at the system level.

III.5 Computation of Threshold Policy

Given the countable state space in our MDP, computing the optimal stationary

policy (in both discounted cost and average cost problems) by standard value iter-

ation or policy iteration procedures is intractable. However, now we know that the

average cost optimal policy is threshold-based if ch ≥ ct/2. Also, such a threshold
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policy will be efficient (and possibly optimal) in the case ch < ct/2. Therefore we are

primarily interested in computing the threshold policy in all cases. Here, by thresh-

old policy, we mean the best threshold policy, i.e. optimal values of the thresholds

are used. In this section, we develop an approach to compute the optimal threshold

values L∗1 and L∗2 which completely characterize the threshold policy.

Consider in our MDP an arbitrary threshold policy with threshold values L1

and L2 (where L1 ≥ 0, L2 ≥ 0). In this (L1, L2) threshold policy, the action in

state (i, j) ∈ S is specified in (46). Under this policy, let Z1
n and Z2

n denote the

number of packets in queues Q1 and Q2 respectively just after all transmissions are

completed in the n-th transmission opportunity. Note that the stochastic process

{(Z1
n, Z

2
n), n ≥ 0} is an irreducible discrete-time Markov chain with state space S ′ =

{(0, L2), (0, L2 − 1), . . . , (0, 1), (0, 0), (1, 0), . . . , (L1 − 1, 0), (L1, 0)}. The transition

probabilities in this Markov chain are given by

p̄(i,0)(k,0) = q(k−i), 0 ≤ i ≤ L1, 0 ≤ k < L1,

p̄(i,0)(L1,0) =
∑

m≥L1−i

qm, 0 ≤ i ≤ L1,

p̄(i,0)(0,l) = q−(i+l), 0 ≤ i ≤ L1, 0 ≤ l < L2,

p̄(i,0)(0,L2) =
∑

m≤−(i+L2)

qm, 0 ≤ i ≤ L1,

p̄(0,j)(0,l) = q−(l−j), 0 ≤ j ≤ L2, 0 ≤ l < L2,

p̄(0,j)(0,L2) =
∑

m≤−(L2−j)

qm, 0 ≤ j ≤ L2,

p̄(0,j)(k,0) = q(j+k), 0 ≤ k < L1, 0 ≤ j ≤ L2,

p̄(0,j)(L1,0) =
∑

m≥j+L1

qm, 0 ≤ j ≤ L2,

where qm is the probability of Q1 receiving m (where m is an integer in (−∞,∞))

more packets than Q2 between two transmission opportunities. Note that qm is
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the probability distribution of the difference of two independent Poisson random

variables, and it is specified by the Skellam distribution (Skellam [70]):

qm = e−(λ1+λ2)T
(
λ1
λ2

)m/2
I|m|(2T

√
λ1λ2),

where I(·)(·) is the modified Bessel function of the first kind.

Note that the long-run average cost incurred in the considered Markov chain is

precisely the average cost under (L1, L2) threshold policy in our MDP. The expected

cost incurred in state (i, j) ∈ S ′ of the Markov chain is given by

cij(L1, L2) =
∑
k,l

p1kp
2
l

{
ch(i+ j) + ct

[
min(i+ k, j + l)

+ (i+ k −min(i+ k, j + l)− L1)
+

+ (j + l −min(i+ k, j + l)− L2)
+
]}
.

Now the long-run average cost under (L1, L2) threshold policy can be calculated as

ḡ(L1, L2) =
∑

(i,j)∈S′
π̄ijcij(L1, L2), (52)

where {π̄ij : (i, j) ∈ S ′} is the set of stationary probabilities of the Markov chain satis-

fying the equations
∑

(k,l)∈S′ π̄klp̄(k,l)(i,j) = π̄ij, for all (i, j) ∈ S ′, and
∑

(i,j)∈S π̄ij = 1.

Now the optimal values of the thresholds, L∗1 and L∗2, can be found by minimizing

the discrete function ḡ(L1, L2) in (52). As a simple approximation method, the

global minimum of ḡ(L1, L2) can be found by evaluating this function over a finite set

{0, 1, . . . , N1}×{0, 1, . . . , N2}, where N1 and N2 are suitably large integers. However,

in our numerical experiments, a local minimum of ḡ(L1, L2) was found to be the

global minimum in all cases. Assuming that ḡ(L1, L2) has this property, any discrete
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gradient search method can be applied to find the minimum (L∗1, L
∗
2) more efficiently.

III.6 Numerical Results

In this section, we present our numerical results to demonstrate the effectiveness

of the threshold policy in network coding decisions. Most of the results presented

in this section are based on our MATLAB simulations of node/network operation

covering a large number of transmission opportunities. The objective in these ex-

periments is to compare the threshold policy against other simple policies, and test

these policies in situations where assumptions do not hold. We mainly study the

performance of the following policies.

1. Transmit-all Policy : Under this policy, the relay node transmits all the queued

packets at every transmission opportunity. In this case, like every other policy,

when the relay has i and j packets in queues Q1 and Q2 respectively, min(i, j)

coded packets are sent. Then all the remaining packets (that are left in one of

the queues) are sent uncoded.

2. Rate-based Policy : This policy is based on λ1 and λ2 which are the mean rates

of packet arrivals (Poisson distributed) to Q1 and Q2 respectively. Under this

policy, upon transmission of coded packets, all the remaining packets in Q1 (if

it is nonempty) are sent uncoded if λ1 > λ2, and are held if λ1 < λ2. Similarly,

if Q2 is nonempty following transmission of coded packets, all its remaining

packets are sent unocoded if λ1 < λ2, and are held if λ1 > λ2. We will not use

this policy when λ1 = λ2.

3. Threshold Policy : Here we mean the best (L1, L2) threshold policy, i.e. optimal

values of the thresholds (L∗1 and L∗2) are used. Recall that this is the optimal

transmission policy for the relay node if ch ≥ ct/2.
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Note that both “transmit-all” and “rate-based” policies are special instances

of the (L1, L2) threshold policy (see (46)). In the “transmit-all” policy, we have

(L1, L2) = (0, 0). In the “rate-based” policy, (L1, L2) = (0,∞) if λ1 > λ2, and

(L1, L2) = (∞, 0) if λ1 < λ2. Since these policies are specific threshold policies,

they will not perform any better than the best threshold policy (which we call just

the “threshold policy”). However, since these policies are easy to implement (as the

values of the thresholds L1 and L2 are already known), we would like to find out how

efficient they are.

We computed the threshold policy for a relay node using our approach described

in Section III.5. Table 2 presents the threshold values (L∗1 and L∗2) in the computed

threshold policy for different values of mean arrival rates λ1 and λ2, and cost param-

eters ct and ch. We use ct = 1 and T = 1 in all our results. Notice that L∗1 > L∗2

whenever λ1 < λ2. This is because, when λ1 < λ2, packets in Q1 have higher chances

of being coded than those in Q2, and therefore the holding option is more appealing

to Q1 than Q2. Likewise we have L∗1 < L∗2 if λ1 > λ2, though instances of this case

are not shown. Observe that, for fixed values of ct and ch, as λ2 increases over λ1,

value of L∗1 increases, and value of L∗2 decreases. Similarly, if λ1 increases over λ2,

value of L∗1 will decrease, and value of L∗2 will increase. This trend suggests that the

threshold policy will be close to the “rate-based” policy when λ1 << λ2 or λ1 >> λ2.

Also observe that, when values of λ1 and λ2 are fixed, both L∗1 and L∗2 values de-

crease as the holding cost quantity ch increases. This is expected since fewer packets

will be held when the holding cost is more. When ch is considerably high, we have

L∗1 = L∗2 = 0. In this case, the threshold policy is precisely the “transmit-all” policy.

Based on our simulation results, Figure 7 presents comparison of the long-run

average costs of the policies in different instances of λ1 and λ2. Since the holding

cost quantity ch is usually not known explicitly, we compare the average costs of
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Table 2: Computed threshold policy

λ1 λ2 ch ct L∗1 L∗2 Avg. cost

5 5 0.05 1 8 8 5.4931

5 5 0.1 1 5 5 5.6875

5 5 0.2 1 3 3 5.9439

5 5 0.4 1 1 1 6.2138

5 5 0.6 1 0 0 6.2455

5 5.5 0.05 1 14 4 5.7952

5 5.5 0.1 1 8 3 5.9814

5 5.5 0.2 1 4 2 6.2331

5 5.5 0.4 1 1 0 6.4996

5 5.5 0.6 1 0 0 6.5422

5 6 0.05 1 21 2 6.1750

5 6 0.1 1 11 1 6.3270

5 6 0.2 1 6 1 6.5510

5 6 0.4 1 2 0 6.7908

5 6 0.6 1 0 0 6.8669

5 7.5 0.05 1 48 0 7.5480

5 7.5 0.1 1 23 0 7.5960

5 7.5 0.2 1 11 0 7.6908

5 7.5 0.4 1 4 0 7.8520

5 7.5 0.6 1 2 0 7.9542

the policies over different possible values of ch/ct. Notice that, as expected, the

threshold policy always achieves the minimum average cost among the considered

policies. However, the “transmit-all” and “rate-based” policies perform as good as

the threshold policy in certain situations. When both arrival rates λ1 and λ2 are

very small, the “transmit-all” policy is very effective at almost all values of ch (see

Figure 7(a)). When the difference between λ1 and λ2 is large, the “rate-based” policy

performs very close to the threshold policy at most values of ch (see Figure 7(d)). In

all other cases of λ1 and λ2, the “rate-based” policy is effective at very low values of
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Figure 7: Comparison of long-run average costs of policies in single relay-node net-
work (ct = 1 and T = 1)

ch, and the “transmit-all” policy is very effective at higher values of ch (see Figure

7(b) and Figure 7(c)). Further, when either λ1 or λ2 is very large, the overall holding

costs are insignificant compared to the transmission costs. Therefore, in such a case

(e.g. see Figure 7(d)), there is little difference in the performances of the considered

policies.

It is also important to see how effective our policies are in availing network coding

opportunities. We measure this performance by the “coding ratio” which we define
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Figure 8: Comparison of coding ratios of policies in single relay-node network (ct = 1
and T = 1)

as the long-run proportion of coded packets in the total number packet transmis-

sions. Figure 8 presents comparison of the coding ratios attained by our policies

over different possible values of ch/ct in a single relay node network. Notice that

the coding ratio of the threshold policy always lies between the coding ratios of the

“transmit-all” and “rate-based” policies. The “transmit-all” policy has the lowest

coding ratio since it never holds packets for possible network coding opportunities.

In case of “rate-based” policy, if λ1 < λ2, the total number of coded packets over
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the long-run is equal to the total number of packet arrivals to Q1. Also, the total

number of packet transmissions is equal to the total number of packet arrivals to Q2.

Hence the coding ratio in this case is expected to be λ1/λ2, which can be observed

in Figure 8. Similarly, if λ1 > λ2, the coding ratio in the “rate-based” policy will

again be a constant and is equal to λ2/λ1. It is also important to note that any other

policy that tries to achieve a coding ratio higher than the “rate-based” policy will

make the system unstable by building up at least one of the queues.

Finally, to study the performance of our policies at a network level, we used them

separately in a 4-node line network (see Figure 5(b)). In this case, packets in the

input flows f1 and f2 (to Q1 of node 1, and Q2 of node 4 respectively) arrive as per

independent Poisson processes with mean rates λ1 and λ2 respectively. Note that

the mean rates of packet arrivals to Q1 and Q2 of each node are also λ1 and λ2

respectively. However, the corresponding arrival processes (except for Q1 of node 1,

and Q2 of node 4) are not Poisson anymore. Now we consider a transmission schedule

in which nodes 1 and 3 transmit together during a transmission opportunity, nodes

2 and 4 transmit together during the next opportunity, and this cycle repeats. In

this case, if the time period between consecutive transmission opportunities is T for

the network, the corresponding time period for an individual node is 2T . Therefore

the holding cost quantity is 2ch for each node. In this network setup, Figure 9

presents comparison of the long-run average costs of our considered policies at the

network level when they are used locally at each node of the network. Notice that the

threshold policy achieves the minimum average cost among the considered policies in

most cases. Further, the ‘transmit-all” and “rate-based” policies perform as good as

the threshold policy in specific situations, and these observations are similar to those

we discussed in the single node network case. Notice that the effect of holding cost

quantity ch on the average cost is significantly more in the network level compared
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Figure 9: Comparison of long-run average costs of policies in 4-node line network
(ct = 1 and T = 1)

to the single node case (see Figure 7). This is primarily because the proportion of

the holding costs in the total costs is more in the network level in our considered

network case compared to the single node case.

III.7 Conclusion

In this chapter, we developed an MDP based model to manage energy-delay

trade-off in network coding decisions in a two-way relay network. We proved that an
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optimal stationary policy exists in our average cost MDP. But computing this policy

is difficult due to countable number of states in the MDP. However, we showed

that, in a certain case, an optimal stationary policy in our MDP is a special type

of threshold-based policy. We developed a method to compute this threshold policy.

We also found such threshold policy to be very effective in other possible cases.

Further, based on the structure of the threshold policy, we developed insights into

other simple policies that we showed to be efficient in particular situations.

As our numerical results indicate, the threshold policy performs the best among

our considered policies in all situations. However, the “transmit-all” and ”rate-

based” policies perform as good as the threshold policy in certain situations. These

policies are also attractive due to their simplicity and ease in implementation. The

“transmit-all” policy is mostly effective when the difference between the mean arrival

rates λ1 and λ2 is small, and the “rate-based” policy is effective when this difference

is considerably large. In other cases of λ1 and λ2, the “rate-based” policy performs

well when the holding cost ch is very small compared to the transmission cost ct, and

the “transmit-all” policy performs very well at higher values of ch.

Many extensions of this work can be considered for future research. The time

period T between consecutive transmission opportunities can be considered as a

random variable. It would be also worthwhile to see if our results can be extended

to the case of a relay that serves as a connection between multiple pairs of nodes.

Finally, more effective distributed policies can be explored for managing the energy-

delay trade-off in network coding in large wireless networks.
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CHAPTER IV

CASE III: AVAILABILITY OF ENERGY HARVESTING SENSOR NODES

IV.1 Introduction

Recent advances in sensor technologies have enabled sensors with renewable en-

ergy sources to be used in various applications. In particular, autonomous wireless

sensor networks with energy harvesting sensor nodes are gaining prominence in long-

lived remote surveillance applications (Kansal et al. [32], Kansal and Srivastava [33],

Raghunathan et al. [57]). These sensors are capable of harvesting energy (such as

solar, thermal, vibrational) from the environment. However, in most cases, the rate

of energy harvesting is limited. Further, the flow of harvested energy is not fixed

and is dependent on the condition of the environment. In fact, in certain environ-

mental conditions, energy generation may not be possible at all. When the energy

supply to the sensor is insufficient or unavailable, it is forced to be powered off.

The performance of the sensor network is affected when one or more sensor nodes in

the network are powered off. Therefore the availability (i.e. proportion of the time

that the sensor spends in the ON state with respect to the total time) of the sensor

nodes is an important factor in the design and operation of energy harvesting sen-

sor networks. Our objective in this chapter is to evaluate and analyze the long-run

availability (also called “limiting availability”) of the sensor nodes in such networks.

In an energy harvesting sensor network, every sensor must balance its energy

consumption against the amount of energy generated. This is known as “energy-

neutral operation” (Kansal et al. [32]). In most applications, this is achieved by

switching off the sensors from time to time using a node activation policy or schedule.

63



Note that the sensors consume a negligible amount of energy in the OFF state;

however they are still capable of harvesting energy. Under free operation (i.e. when

no activation policy or schedule is used), a sensor will be ON when it has sufficient

energy supply and will be considered OFF otherwise. In this case, the limiting

availability of the sensor is the limiting probability of the sensor having a positive

energy level. However, the availability of the sensor under a node activation policy

will depend on the structure of the activation policy. In this chapter, we develop

a model to evaluate the limiting availability of the sensor under a threshold-based

node activation policy which has several advantages over free operation.

Recall that the average energy generation rate of an energy harvesting sensor is

usually less than its energy consumption rate. Hence, in the long-run, the availability

of this sensor (under free operation or any node activation policy) is strictly less than

1. Further, it may not be possible to achieve a desired level of availability with only

one sensor node. In such a case, it is appropriate to use a multi-sensor system where

it is sufficient to keep only one sensor ON at any time while the remaining “backup”

sensors are OFF. However, the question arises how many sensors are required in this

system and how they will be operated to achieve the required level of availability. We

aim to develop analytical models to compute and analyze the combined availability

in such multi-sensor systems.

The remainder of this chapter is organized as follows. We present a review of

important related works in Section IV.2. In Section IV.3, we model the energy flow

in an energy harvesting sensor as a stochastic fluid-flow queue. In Section IV.4, we

develop an approach to compute the limiting availability of an energy harvesting

sensor under threshold-based node-activation policy. In Sections IV.5 and IV.6, we

consider limiting availability of multi-sensor systems. Finally, in Section IV.7, we

present our concluding remarks and outline some future research directions.
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IV.2 Literature Review

In recent years, there has been an increasing interest in the research community in

energy management policies for energy harvesting wireless sensor networks. Kansal et

al. [32] introduced various energy management techniques to ensure energy-neutral

operation in such networks. Sharma et al. [68] proposed a throughput-optimal energy

management policy for a single energy harvesting node. Srivastava et al. [71] focused

on analyzing the node-level performance in such a policy. Jaggi et al. [29] and Kar

et al. [34] considered utility of an energy harvesting sensor network with continuous

charging. They considered a different kind of threshold policy which tries to keep

a fixed number of sensors in the ON state. The availability measure has not been

considered for any similar system. However, various models exist in the reliability

and maintenance literature (e.g. see works by Kharoufeh et al. [36] and Kiessler et

al. [38]) to compute the availability of different maintainable systems.

In this chapter, we model the energy flow in an energy harvesting sensor as a

stochastic fluid-flow queue. Jones et al. [30] used a similar fluid queue model for

a rechargeable battery. They computed the battery life period from fully charged

state to no-charge state while considering two different energy discharge rates. There

are also various fluid-flow models available in the literature for different applications.

In particular, there has been a lot of interest in such models for telecommunication

applications since the seminal work by Anick et al. [7]. However, most of the works

in this area have so far focused on the steady-state analysis of the buffer content

process. There are a few important works on first passage times which we use in

our analyses. Narayanan and Kulkarni [53] developed general expressions for first

passage times in a stochastic fluid-flow queue where the input flow rate is controlled

by a continuous-time Markov chain. Kulkarni and Tzenova [43] developed a method
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for directly calculating the mean first passage times in such a system. Using a similar

fluid-flow model, Kharoufeh and Gautam [37] derived analytical expressions for travel

time distribution for a vehicle traversing a freeway link of arbitrary length. Recent

works in this area (e.g. Ahn and Ramaswamy [3], Barbot et al. [11], Es-Saghouani

and Mandjes [21]) have focused on developing methods to compute the busy period

distribution in stochastic fluid-flow models. Various performance measures of fluid

flow queueing systems under different operating policies have also been studied in

the literature. In different problem setups, Aggarwal et al. [1], Baek et al. [10], and

Mahabhashyam et al. [48] have analyzed the performance of threshold-based policies

in such systems.

IV.3 Fluid-flow Model of an Energy Harvesting Sensor

We model the energy flow in an energy harvesting sensor as a stochastic fluid-flow

queue as shown in Figure 10. The environment (which acts as the energy source)

is described by an irreducible continuous-time Markov chain {Z(t), t ≥ 0} with a

finite state space S = {1, . . . ,M}, infinitesimal generator Q = [qij], and stationary

distribution π. We assume that the environment is stationary in the beginning, i.e.

the distribution of Z(0) is π. When the environment is in state i ∈ S, energy flows

into the sensor at a rate ri ≥ 0. The maximum amount of energy that can be stored

in the sensor is K (which can also be ∞). The rate of energy consumption of the

sensor is fixed and is denoted by c. For ease in exposition, we assume that ri− c 6= 0

c
Z(t)

K

X(t)
rZ(t)

Figure 10: Fluid-flow model of an energy harvesting sensor
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for all i ∈ S. However, a model without this assumption is still analytically tractable.

We also assume
∑

i∈S πiri < c since the average recharge rate of a sensor is typically

lower than the average discharge rate in energy harvesting sensor networks (Jaggi et

al. [29]). For this reason, each sensor is forced to be in the OFF state from time to

time to operate in an energy-neutral manner.

Suppose X(t) is the amount of energy available in the sensor at time t. Under

free operation of the sensor, the dynamics of {X(t), t ≥ 0} are described by

dX(t)

dt
=


rZ(t) − c if X(t) > 0,

max(rZ(t) − c, 0) if X(t) = 0,

min(rZ(t) − c, 0) if X(t) = K.

(53)

This is a Markov fluid-flow model where {(X(t), Z(t)), t ≥ 0} is a Markov process

(Kulkarni [42]). When K =∞, this process is stable under the condition
∑

i∈S πiri <

c, which holds in our application. Under free operation, the sensor is ON when

X(t) > 0, and is considered to be OFF when X(t) = 0. Hence, in this case, the

limiting availability of the sensor is Ā = limt→∞ P(X(t) > 0), which can be computed

from the limiting distribution of {(X(t), Z(t)), t ≥ 0} process (Gautam [22]).

In the free operation, observe from (53) that the input energy is actually wasted

in two cases: (1) when X(t) = K and rZ(t) > c, and (2) when X(t) = 0 and rZ(t) < c.

In the first case, energy loss can be reduced by selecting the energy capacity K as

large as possible (this loss is avoided if K =∞). The energy loss in the second case

is entirely avoidable through node activation policies that allow the input energy to

be stored in such situation by switching off the sensor for certain time period. In

the following section, we consider a threshold-based node activation policy which has

several advantages over free operation.
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IV.4 Availability of a Single Sensor Node Under Threshold-based Acti-

vation Policy

Under a threshold-based node activation policy, a sensor is switched on when its

energy level rises to a fixed threshold level L (< K) and is switched off when its

energy level falls to zero. When a proper threshold level L is set, this policy will lead

to less frequent on-off cycles compared to the free operation. Further, L can be set to

ensure (with certain probability) an ON time period long enough to detect a series

of events. Now we will develop an approach to compute the limiting availability of

a sensor node under threshold-based activation policy.

In one of the important related works, Kiessler et al. [38] developed an approach

to compute the limiting average availability of a periodically inspected system sub-

ject to Markovian degradation. The idea of limiting availability in our formulation

in this section is essentially derived from their work. However, the energy level in

our considered system can go up and down, thereby requiring a different analysis.

Also, we find the limiting availability in our case instead of limiting average avail-

ability. Further, we use a different approach based on first passage time analysis to

compute the limiting availability. In fact, the methods used by Kiessler et al. [38]

and Kharoufeh et al. [36] in their problems will not work in our case.

Now let X(t) be the amount of energy in the sensor at time t under the threshold-

based policy. The state of the sensor is described by Y (t), which is equal to 1 if the

sensor is ON at time t, else is 0. In this case, the dynamics of the energy flow in the

sensor are described by

dX(t)

dt
= rZ(t) − cY (t).

Figure 11 shows a sample path of X(t) over one on-off cycle of the sensor. Let

Un and Dn denote the ON and OFF time periods of the sensor during the n-th
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X(t)

Un Dn

Sn−1 Sn

−(c− rZ(t))

rZ(t)

K

t

Figure 11: Sample path of X(t) under threshold-based node activation policy

cycle. Let Sn denote the end time of the n-th cycle with S0 = 0. We also define

ξn = Z(Sn), which is the state of the environment at Sn. It can be shown that

the process {ξn, n ≥ 0} is an irreducible discrete-time Markov chain. We denote its

transition probability matrix and stationary distribution by P̂ and π̂ respectively

(though they are yet to be determined). Now we present the main results of this

section in Theorems 3 and 4.

Theorem 3. The sequence {(ξn, Sn), n ≥ 0} is a Markov renewal sequence, and the

process {Y (t), t ≥ 0} is Markov regenerative with respect to this Markov renewal

sequence.

Proof. Note that the random variables {Sn, n ≥ 0} are stopping times with respect

to the history generated by the environment process {Z(t), t ≥ 0}. Hence the strong

Markov property holds at these times. Therefore, for all n ≥ 0, we have

P{ξn+1 = j, Sn+1 − Sn ≤ t| ξn = i, Sn, ξn−1, Sn−1, . . . , ξ0, S0}

= P{ξn+1 = j, Sn+1 − Sn ≤ t| ξn = i}

= P{ξ1 = j, S1 ≤ t| ξ0 = i},
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which shows that {(ξn, Sn), n ≥ 0} is a Markov renewal sequence (Kulkarni [41]).

Also, the conditional distribution of {Y (Sn+ t), t ≥ 0} given {Y (s), 0 ≤ s ≤ Sn, ξn =

i} is same as that of {Y (t), t ≥ 0} given ξ0 = i. Therefore {Y (t), t ≥ 0} is Markov

regenerative with respect to the Markov renewal sequence {(ξn, Sn), n ≥ 0}.

Theorem 4. The limiting availability Ā of the sensor under threshold-based node

activation policy is given by

Ā = lim
t→∞

∫ t
0
Y (w) dw

t
=

∑
i∈S π̂i E[U1|ξ0 = i]∑
i∈S π̂i E[S1|ξ0 = i]

. (54)

Proof. Suppose ξ0 = j for some j ∈ S. Let {Sjn, n ≥ 0} be the sequence of consecutive

Sn at which ξn = j. Note that {Sjn, n ≥ 0} is a renewal sequence with Sj0 = 0. Using

a renewal reward process argument (Resnick [58]), we have

Ā = lim
t→∞

∫ t
0
Y (w) dw

t
=

E[
∫ Sj1
0
Y (w) dw]

E[Sj1]
. (55)

Now, using Theorem 3, it can be shown that (see proof of Theorem 2 in Kiessler et

al. [38])

E[
∫ Sj1
0
Y (w) dw] =

∑
i∈S

π̂i
π̂j

E[U1|ξ0 = i], (56)

E[Sj1] =
∑
i∈S

π̂i
π̂j

E[S1|ξ0 = i]. (57)

Now, using the results (56) and (57) in (55), we have

Ā =

∑
i∈S(π̂i/π̂j) E[U1|ξ0 = i]∑
i∈S(π̂i/π̂j) E[S1|ξ0 = i]

=

∑
i∈S π̂i E[U1|ξ0 = i]∑
i∈S π̂i E[S1|ξ0 = i]

,

which proves the result in (54).
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IV.4.1 Computation of Limiting Availability

To compute the limiting availability given in (54), we need to find the conditional

expectations E[U1|ξ0 = i] and E[S1|ξ0 = i] for all i ∈ S, and also the stationary

distribution π̂ of the Markov chain {ξn, n ≥ 0}. In the following subsections, we

present our approach to compute these quantities.

IV.4.1.1 Distribution of U1

When the sensor node is in the ON state, we define the first passage time to the

OFF state as U := inf{t > 0 : X(t) = 0}. Now consider the joint distribution

HU
ij (x, t) = P{U ≤ t, Z(U) = j|X(0) = x, Z(0) = i}

for i, j ∈ S, x ≥ 0 and t ≥ 0. Our objective here is to compute HU
ij (L, t) which is

precisely the conditional distribution of U1, defined as GU1
ij (t) = P(U1 ≤ t, Z(U1) =

j|ξ0 = i). The distribution HU(x, t) = [HU
ij (x, t)] is known to satisfy the following

partial differential equation (Gautam [22]).

∂HU(x, t)

∂t
−D∂HU(x, t)

∂x
= QHU(x, t), (58)

whereD is a diagonal matrix with [D]ii = ri−c for i = 1, . . . , |S|. At the first passage

time U , the environment cannot be in a state j with rj > c. Hence HU
ij (x, t) = 0 for

all j with rj > c. Moreover, the following boundary conditions hold for HU
ij (x, t).

HU
ij (0, t) = 1 if i = j and ri < c, (59)

HU
ij (0, t) = 0 if i 6= j and ri < c. (60)
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Taking the Laplace-Stieltjes Transform (LST) on both sides of (58) with respect to

t, we obtain the following ordinary differential equation (ODE).

D
dH̃

U
(x,w)

dx
= (wI −Q)H̃

U
(x,w), (61)

where H̃
U

(x,w) = [H̃U
ij (x,w)] and H̃U

ij (x,w) =
∫∞
0
e−wt dHU

ij (x, t). The differential

equations (58) and (61) hold in both finite and infinite energy storage capacity cases.

However, in the finite capacity case (i.e. K <∞), if the energy level reaches K in a

state i (which will happen if ri > c), it will stay there until the environment changes

to some other state k. This leads to an additional condition which we can write in

the LST domain as

H̃U
ij (K,w) =

∑
k 6=i

qik
−qii + w

H̃U
kj(K,w). (62)

To solve the ODE (61), we use the spectral decomposition technique (Gautam

[22]) which provides the solution in the following form.


H̃U

1j(x,w)

...

H̃U
|S|j(x,w)

 =

|S|∑
i=1

aij(w)esi(w)xφi(w), j ∈ S, (63)

where aij(w) are unknown coefficients (to be found using boundary conditions (59)-

(60) and (62)), and si(w) and φi(w) are the eigenvalues and eigenvectors satisfying

the equations si(w)Dφi(w) = (wI −Q)φi(w) for i ∈ S.

Once H̃
U

(x,w) is determined, we can find the LST of the conditional distribu-

tion of U1 as G̃U1
ij (w) = H̃U

ij (L,w). Also, we can compute the required conditional
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expectation E[U1|ξ0 = i] in the following way.

E[U1|ξ0 = i] = − d

dw

∑
j∈S

H̃U
ij (L,w) at w = 0.

IV.4.1.2 Distribution of S1

To compute the distribution of S1, we will first compute the distribution of D1.

When the sensor node is in the OFF state, we define the first passage time to the

ON state as D := inf{t > 0 : X(t) = L}. Now consider the joint distribution

HD
ij (x, t) = P{D ≤ t, Z(D) = j|X(0) = x, Z(0) = i}

for i, j ∈ S, x ≥ 0, t ≥ 0. Our objective here is to compute HD
ij (0, t) which is same

as the conditional distribution of D1, defined as GD1
ij (t) = P(S1 − U1 ≤ t, Z(S1) =

j|Z(U1) = i) = P{D1 ≤ t, Z(D1) = j|Z(0) = i} (by the strong Markov property at

U1). The distribution HD(x, t) = [HD
ij (x, t)] satisfies the following partial differential

equation.

∂HD(x, t)

∂t
−R∂H

D(x, t)

∂x
= QHD(x, t), (64)

where R is a diagonal matrix with [R]ii = ri for i = 1, . . . , |S|. The following

boundary conditions hold for HD
ij (x, t).

HD
ij (L, t) = 1 if i = j and ri > 0, (65)

HD
ij (L, t) = 0 if i 6= j and ri > 0. (66)
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By taking the LST on both sides of (64) with respect to t, we obtain

R
dH̃

D
(x,w)

dx
= (wI −Q)H̃

D
(x,w), (67)

where H̃
D

(x,w) = [H̃D
ij (x,w)] and H̃D

ij (x,w) :=
∫∞
0
e−wt dHD

ij (x, t). As in the

previous subsection, we can solve the differential equation (67) using the spectral

decomposition technique where the solution is of the same format as in (63). How-

ever, in this case, the boundary conditions in (65)-(66) may not be always sufficient

to find all the unknown coefficients aij(w) in (63). There we need to use additional

conditions including aij(w) = 0 if si(w) > 0 (Narayanan and Kulkarni [53]).

Once H̃
D

(x,w) is determined, we can find the LST of the conditional distribution

of D1 as G̃D1
ij (w) = H̃D

ij (0, w). Now the following theorem provides the conditional

distribution of S1, which we define as GS1
ij (t) = P(S1 ≤ t, Z(S1) = j|ξ0 = i).

Theorem 5. G̃
S1

(w) = G̃
U1

(w) G̃
D1

(w), where G̃
(·)

(w) = [G̃
(·)
ij (w)].

Proof. Since the strong Markov property holds at time U1, we show that

GS1
ij (t) = P{S1 ≤ t, Z(S1) = j|Z(0) = i}

=
∑
k

∫ s

o

P{S1 ≤ t, Z(S1) = j|Z(0) = i, Z(U1) = k, U1 = s} dGU1
ik (s)

=
∑
k

∫ s

o

P{S1 − U1 ≤ t− s, Z(S1) = j|Z(U1) = k} dGU1
ik (s)

=
∑
k

∫ s

o

P{D1 ≤ t− s, Z(D1) = j|Z(0) = k} dGU1
ik (s)

=
∑
k

∫ s

o

GD1
kj (t− s) dGU1

ik (s)

= [GU1 ∗GD1(t)]ij. (68)

The result follows when LST is taken on both sides of (68).
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Now we can compute the required conditional expectation E[S1|ξ0 = i] in the

following way.

E[S1|ξ0 = i] = − d

dw

∑
j∈S

G̃S1
ij (w) at w = 0.

Further, note that the transition probability matrix of the Markov chain {ξn, n ≥ 0}

is P̂ = GS1(∞) = G̃
S1

(0). Therefore the stationary distribution π̂ of this Markov

chain can be found by solving the equations π̂ = π̂G̃
S1

(0) and
∑

i∈S π̂i = 1.

IV.4.2 Special Case: Exponential On-Off Environment

Consider an alternating exponential on-off process for the environment which acts

as the energy source. In this case, the environment is described by a continuous-time

Markov chain with state space {0, 1} and infinitesimal generator matrix

Q =

−β β

α −α

 .
Energy flows into the sensor at rate r when the environment is in state 1, and at rate

0 when the environment is in state 0. Since the average recharge rate of the sensor

is usually lower than its average discharge rate, we assume rβ
α+β

< c.

Figure 12 shows a sample path of the sensor energy level X(t) during one on-off

cycle of the sensor when a threshold-based activation policy is used. Here an on-

off cycle of the sensor will always begin in the environment state 1. Therefore, in

this case, {Y (t), t ≥ 0} is a regenerative process, and the limiting availability of the

sensor is given by (Resnick [58]):

Ā = lim
t→∞

∫ t
0
Y (w) dw

t
=

E[U1]

E[S1]
, (69)

75



−(c− r)

−c

−c

−(c− r)

−(c− r)
r

r

r

LL

X(t)

Un Dn

Sn
Sn−1

K

t

Figure 12: Sample path of X(t) in an exponential on-off environment

which is a special case of the expression in (54). To find the availability Ā in (69),

the quantities E[U1] and E[S1] can be computed using our approach described in the

previous subsection.

IV.4.3 Numerical Example

In this subsection, we demonstrate the computation of limiting availability of a

sensor node. All computations in the presented example were performed in MAT-

LAB, and we used numerical procedure for differentiation.

We consider a sensor node with energy storage capacity of K = 50. The environ-

ment is described by a continuous-time Markov chain with state space {1, 2, 3, 4, 5}

and infinitesimal generator matrix given by

Q =



−1 0.4 0.3 0.2 0.1

0.4 −0.7 0.1 0.1 0.1

0.5 0.4 −1.1 0.1 0.1

0.2 0.3 0.3 −1 0.2

0.3 0.3 0.3 0.3 −1.2


.

76



Table 3: Computed conditional means and stationary probabilities

i E[U1|ξ0 = i] E[S1|ξ0 = i] π̂i

1 13.6790 20.2584 0.0767

2 13.5887 20.1682 0.1938

3 15.6396 22.2190 0.2790

4 16.7978 23.3772 0.2569

5 16.8318 23.4112 0.1937

The energy inflow rates in environment states 1 to 5 are given by the vector r =

[2, 4, 12, 14, 16]. The energy consumption rate of the sensor is c = 10. A threshold

level L = 40 is considered in the threshold-based activation policy.

Using our approach described in Section IV.4.1, the conditional means E[U1|ξ0 =

i] and E[S1|ξ0 = i], and the stationary probabilities π̂i are calculated and are shown

in Table 3. Now, using (54), the limiting availability is found as

Ā =

∑5
i=1 π̂i E[U1|ξ0 = i]∑5
i=1 π̂i E[S1|ξ0 = i]

= 0.7036.

We repeated our computations for different values of the threshold L between 0

and K = 50. For these values of L, we also computed the limiting availability in the

case K =∞. Figure 13 shows how the limiting availability of the sensor changes over

the range of L in the cases K = 50 and K =∞. Observe that, in the finite capacity

case K = 50, the limiting availability decreases as the threshold L increases towards

K. This is because energy loss due to overflow increases (hence less amount of energy

is available to the sensor) at higher values of L. However, note that such energy loss

does not occur in the case K = ∞. In this case, the sensor receives energy at an

average rate
∑5

i=1 πiri, where π is the stationary distribution of the environment

process and is found to be π = [0.2725, 0.3438, 0.1652, 0.1315, 0.0870]. Since the
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Figure 13: Limiting availability for different values of threshold (L)

sensor consumes energy at rate c during ON periods, the limiting availability is

expected to be
∑5

i=1 πiri/c = 0.7136 (based on energy flow balance). Note that the

availability in this case is independent of the threshold L, which can also be observed

in Figure 13.

IV.5 Availability of a Multi-sensor System with Infinite Capacity Sensor

Nodes

In this section, we consider availability of an energy harvesting multi-sensor sys-

tem used for continuous monitoring of events or environmental conditions over an

area. In particular, we consider an application where there are N sensors, but only

one sensor is ON at a time. In this case, the sensor system is considered to be oper-

ational or available if at least one of the sensor nodes is in the ON state. In most of

such applications, all sensors receive energy from the same environment (e.g. solar-

powered sensors). Hence the energy recharge processes at the sensors are completely

correlated. Also, all sensors have the same fixed energy discharge rate. Note that,
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Figure 14: Energy flow model of an energy harvesting multi-sensor system

in this case, if all sensors in the system are deployed at the same time, and each

sensor is operated independently under free operation or under an activation policy,

the sensors will always turn on or off at the same time. So the combined availability

Ānet of all the sensors at the system level will be the same as the availability of a

single sensor node Ā. Therefore, the idea is to manage the energy consumption in the

sensors in a coordinated manner so that the sensors will have disjoint on-periods,

and their individual availability measures will add up at the system level. Based

on this idea, we introduce simple policies to operate such a system and analyze its

limiting availability Ānet under these policies.

Figure 14 shows the energy flow model of the considered system with N energy

harvesting sensors which receive energy from the same environment. The descrip-

tions of the Markovian environment and stochastic fluid-flow model of the sensor

remain the same as in the single sensor case. Note that energy flows into all sensors

simultaneously. However, it is sufficient to keep only one sensor ON at any time.

Now we introduce the following policies to operate this system.

1. Exhaustive Service Policy : In this policy, sensors are switched on in a cyclic

order (1, . . . , N, 1, . . .). From the time of switching on, a sensor is kept in
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the ON state until its energy level reaches zero. It is then switched off and

the transition to next sensor is made. Note that this policy is similar to the

exhaustive service policy in a polling system (Takagi [73]).

2. Threshold-based Exhaustive Service Policy : This policy is similar to the ex-

haustive service policy. However, upon transition to a particular sensor, if its

energy level is found to be is zero (note that energy levels of all other sensors

are also zero at this time), it is kept in the OFF state until its energy level

reaches a threshold value L. It is then turned on, and regular cyclic service

order is followed.

In this section, we consider the case where the sensors have infinite energy storage

capacity, i.e. K =∞. To ensure stability, we assume here that the average combined

recharge rate is lower than the average discharge rate, i.e. N
∑

i∈S πiri < c. In this

case, suppose Xk(t) is the amount of energy in the k-th sensor (k = 1, . . . , N) at

time t under exhaustive service policy. Note that the considered system is available

when X(t) :=
∑N

k=1Xk(t) > 0 and is considered to be unavailable when X(t) = 0.

Thus the limiting availability Ānet of the system is equal to the limiting availability

of an equivalent single sensor node under free operation. Note that energy flows into

this single sensor at the rate NrZ(t), where Z(t) is the state of the environment at

time t. Its availability can be computed as discussed in Section IV.3.

Now consider the given system under threshold-based exhaustive service policy

with threshold L. In this case, it can be shown that the total energy in the system

X(t) :=
∑N

k=1Xk(t) is equal to the amount of energy in an equivalent single sensor

node under threshold activation policy with threshold NL. Therefore, Ānet of the

system is equal to the limiting availability of this single sensor node under threshold-

based activation policy, which can be computed as discussed in Section IV.4.
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IV.6 A Lower Bound for Availability of a Multi-sensor System with Fi-

nite Capacity Sensor Nodes

In the previous section, we introduced an approach to compute the limiting avail-

ability of an energy harvesting multi-sensor system (Figure 14) under selected policies

when the sensor nodes have infinite energy capacity. It is however difficult to develop

tractable methods to compute the availability of such a system when the sensors have

finite energy capacity. In this case, knowledge of a good lower bound on system-level

availability is useful since it can provide a reasonable estimate of the number of sen-

sors required to achieve a desired level of availability. In this section, we develop a

method to compute such a lower bound when an exhaustive service policy is used.

Consider again the multi-sensor system in Figure 14 with N energy harvesting

sensor nodes. The energy storage capacity of each sensor is K < ∞. Under an

exhaustive service policy, let X(t) :=
∑N

k=1Xk(t) denote the total amount of energy

in the system at time t, where Xk(t) is the amount of energy in the k-th sensor

(k = 1, . . . , N) at time t. To find a good lower bound on the availability of this

system, we consider a close enough but fictitious system that operates in identical

conditions. Let X̄(t) be the total amount of energy in this new system at time t.

Here we assume that, when iK ≤ X̄(t) < (i + 1)K (for i = 0, . . . , N − 1), exactly i

sensors are full to capacity K. Note that, in this situation in our original system (i.e.

when iK ≤ X(t) < (i+1)K), at most i sensors will be full to capacity. Since the new

system rejects more harvested energy than the original system, we have X̄(t) ≤ X(t)

for t ≥ 0. Therefore, the availability of the new system is a lower bound on the

availability of our original system.

Figure 15 shows the equivalent single sensor model of our new system. In this

case, the energy inflow rate at time t is given by r̄(t) = (N− i+1)rj when (i−1)K ≤
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Figure 15: Model for computation of lower bound on system-level availability

X̄(t) < iK (for i = 1, . . . , N), and the state of the environment is j ∈ S. Here the

distinct energy levels 0, K, 2K, · · · , NK are called thresholds. When the energy level

in the system X̄(t) lies between the thresholds (i − 1)K and iK, it is said to be in

region i (i = 1, . . . , N).

Note that the energy inflow to the considered system is dependent on the energy

level in the system as well as the state of the environment. However, the output rate

remains constant at c at all times. When the energy level X̄(t) is in region i and

Z(t) = j, the energy inflow rate is (N − i+ 1)rj. For ease of exposition, we assume

that (N − i+ 1)rj − c 6= 0 for every i ∈ {1, . . . , N} and j ∈ S. Now, for region i, we

define the sets of positive drift and negative drift environment states respectively as

S+
i = {j ∈ S : (N − i+ 1)rj − c > 0},

S−i = {j ∈ S : (N − i+ 1)rj − c < 0}.

Note that X̄(t) will increase in region i if Z(t) ∈ S+
i , and will decrease if Z(t) ∈ S−i .

Now, consider a region i and and an environmental state j such that j ∈ S+
i , but

j ∈ S−i+1. In this case, while the environment remains in state j, the energy level in

the system will cross the threshold iK from below and enter region i+1. At this point,

if the environment continues to be in state j, the energy level will instantaneously
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cross threshold iK from above and go back to region i. This process will repeat as

long as the environment remains in state j. To address this issue, we assume r̄(t) = c

whenever X̄(t) = iK and Z(t) = j such that j ∈ S+
i and j ∈ S−i+1. This is justified

because the effective input flow rate in this case is c (since X̄(t) is forced to remain

at threshold iK). However, this leads to the distribution of {X̄(t), t ≥ 0} having a

mass at the threshold iK. Now, similar to (53), the dynamics of the energy flow in

the considered system are described by

dX̄(t)

dt
=


r̄(t)− c if X̄(t) > 0,

max(r̄(t)− c, 0) if X̄(t) = 0,

min(r̄(t)− c, 0) if X̄(t) = NK.

We will now develop an approach to compute the limiting availability of this system.

IV.6.1 Semi-Markov Process Model

In this subsection, we use a semi-Markov process (SMP) to model our system.

Here we define the Markov regeneration epochs {Sn, n ≥ 0} as the times when the

energy level in the system X̄(t) crosses a threshold (i.e. enters or leaves a region), or

the environment changes from one state to another when the energy level is stuck at a

threshold. This means that a Markov regeneration epoch can occur when one of these

two possible events occur. Figure 16 shows instances of such Markov regeneration

epochs in a sample path of X̄(t). We now define a random variable Wn which

captures important information about the system at the Markov regeneration epoch

Sn (assume S0 = 0). We let Wn = (i, j) if X̄(Sn) = iK and Z(Sn) = j. The state

space of Wn is T := {0, . . . , N}×S. The first component of Wn tells us the threshold

where the energy level is at time Sn. The second component of Wn tells us the state

of the environment at Sn.
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Figure 16: Markov regeneration epochs in a sample path of X̄(t)

Theorem 6. The sequence {(Wn, Sn) : n ≥ 0} is a Markov renewal sequence.

Proof. Proof is similar to the proof of Theorem 3.

Let N(t) = sup{n ≥ 0 : Sn ≤ t}. Thus N(t) is the number of Markov renewals

in time t. Now we consider the process Ŵ (t) := WN(t) for t ≥ 0. Note that this

process {Ŵ (t), t ≥ 0} is a semi-Markov process (SMP) (Kulkarni [41]). We denote

the kernel of this SMP as G(t) = [G(i,j)(k,l)(t)], where G(i,j)(k,l)(t) is defined as

G(i,j)(k,l)(t) = P{W1 = (k, l), S1 ≤ t|W0 = (i, j)}, (i, j), (k, l) ∈ T .

Note that {Wn, n ≥ 0} is an irreducible discrete-time Markov chain embedded

in the SMP {Ŵ (t), t ≥ 0}. Given Wn = (i, j), we can find out whether the energy

level in the system is going to enter a region (which will be either region i or region

i+ 1) after crossing the threshold iK or remain stuck at the threshold iK until the

next regeneration epoch Sn+1. For example, if Wn = (i, j) such that 0 < i < N ,

j ∈ S+
i , and j ∈ S+

i+1, the energy level will increase and move into region i+ 1 after

crossing the threshold iK. In another example, if Wn = (i, j) such that 0 < i < N ,

j ∈ S+
i , and j ∈ S−i+1, the energy level is going to be stuck at the threshold iK until
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the next regeneration epoch Sn+1. In all such cases where Wn = (i, j) indicates that

the energy level is going to to be stuck at the threshold iK, we call the state (i, j) a

sticky state. The set of all sticky states is denoted by T1 and is given as

T1 = {(i, j) ∈ T : i = 0, j ∈ S−1 ; or i = N, j ∈ S+
N ; or 0 < i < N, j ∈ S+

i , j ∈ S−i+1}.

We will call the states in the set T \ T1 as non-sticky states.

Let us now denote the transition probability matrix and stationary distribution

of the embedded Markov chain {Wn, n ≥ 0} by P̂ and π̂ respectively. Also, let τij

be the expected sojourn time of the SMP {Ŵ (t), t ≥ 0} in state (i, j) for (i, j) ∈ T .

Note that our system is considered to be unavailable when X̄(t) = 0, i.e. when

the energy level of the system is stuck at the threshold 0. Therefore the limiting

availability of the system is precisely equal to the limiting probability that the SMP

{Ŵ (t), t ≥ 0} is not in a sticky state (i, j) such that i = 0 and j ∈ S−1 . By Theorem

9.27 in Kulkarni [41], we can compute the limiting availability of the system as

Ā = lim
t→∞

P
(
Ŵ (t) /∈ {(0, j) : j ∈ S−1 }

)
= 1−

∑
j∈S−1

π̂0jτ0j∑
(i,j)∈T π̂ijτij

. (70)

IV.6.2 Computation of Limiting Availability

To compute the limiting availability in (70), we need to find the stationary dis-

tribution π̂ of the Markov chain {Wn, n ≥ 0}, and the mean sojourn times τij of

the SMP {Ŵ (t), t ≥ 0}. These quantities can be computed if the SMP kernel G(t)

(or its LST G̃(w) = [G̃(i,j)(k,l)(w)]) is known. The expected sojourn times τij can be

computed as

τij = − d

dw

∑
(k,l)

G̃(i,j),(k,l)(w) at w = 0.
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Further, note that the transition probability matrix of the Markov chain {Wn, n ≥ 0}

is P̂ = G(∞) = G̃(0). Therefore the stationary probabilities π̂ of this Markov chain

can be found by solving the equations π̂ = π̂G̃(0) and
∑

(i,j)∈T π̂ij = 1.

Thus, to compute the limiting availability, we mainly need to find the kernel ele-

ments of the SMP {Ŵ (t), t ≥ 0}. In the following subsections, we provide approaches

to compute the SMP kernel elements in LST form.

IV.6.2.1 Computing Kernel Elements for Sticky Initial States

Note that, when the SMP {Ŵ (t), t ≥ 0} is in a sticky state (i, j) ∈ T1, the energy

level of the system is stuck at the threshold iK for the entire sojourn time of the

SMP in state (i, j). In this case, the SMP can only go to another state (k, l) such

that k = i and l 6= j. This change is only due to the change of state from j to l in

the environment process which is described by a continuous time Markov chain with

infinitesimal generator Q = [qij]. Therefore, for l 6= j, we have in this case

G(i,j),(i,l)(t) =
qjl
−qjj

(
1− eqjjt

)
and G̃(i,j),(i,l)(w) =

qjl
−qjj + w

.

IV.6.2.2 Computing Kernel Elements for Non-sticky Initial States

Now we will show how to compute the remaining non-zero kernel elements that

correspond to transition from a non-sticky state. Note that, if the SMP is in a non-

sticky state, it means that energy level of the system is drifting through a region

(which can be found by analyzing the non-sticky state). In this case, the SMP will

change state when the energy level will hit either the top or bottom threshold of this

region. For example, suppose the SMP is currently in a non-sticky state (i, j) such

that 0 < i < N , j ∈ S−i , j ∈ S−i+1. This means the energy level was at threshold iK

at the beginning of this state and is currently in region i. The SMP will change to
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state (i, l) when the energy level hits the upper threshold iK of this region, which

will only happen if l ∈ S+
i . Similarly the SMP will change to state (i−1, l) when the

energy level hits the lower threshold (i− 1)K of this region, which will only happen

if l ∈ S−i . Thus the sojourn time of the SMP in a non-sticky state can be analyzed

using first passage time analysis within a region, which we introduce next.

When the energy level is in region i, we define the first passage time to reach

either the upper threshold iK or the lower threshold (i− 1)K as

Ti = inf
{
t ≥ 0 : X̄i(t) = 0 or X̄i(t) = K

}
,

where X̄i(t) = X̄(t)− (i− 1)K. Now consider the joint distribution

H i
jl(x, t) = P{Ti ≤ t, Z(Ti) = l|X̄i(0) = x, Z(0) = j}

for j, l ∈ S, t ≥ 0, and 0 ≤ x ≤ K. The distribution H i(x, t) = [H i
jl(x, t)] is known

to satisfy the following partial differential equation.

∂H i(x, t)

∂t
−Di∂H

i(x, t)

∂x
= QH i(x, t), (71)

where Di is a diagonal matrix with [Di]jj = (N − i+ 1)rj− c for j = 1, . . . , |S|. The

following boundary conditions hold for H i
jl(x, t).

H i
jl(K, t) = 1 if j = l, j ∈ S+

i ,

H i
jl(K, t) = 0 if j 6= l, j ∈ S+

i ,

H i
jl(0, t) = 1 if j = l, j ∈ S−i ,

H i
jl(0, t) = 0 if j 6= l, j ∈ S−i .
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Taking the LST on both sides of (71) with respect to t, we obtain the following

ordinary differential equation (ODE).

DidH̃
i
(x,w)

dx
= (wI −Q)H̃

i
(x,w), (72)

where H̃
i
(x, t) = [H̃ i

jl(x, t)] and H̃ i
jl(x,w) :=

∫∞
0
e−wt dH i

jl(x, t). As in Section

IV.4.1.1, we can solve the ODE (72) using spectral decomposition technique where

the solution is of the same format as in (63).

Once H̃
i
(x,w) is computed for every region i, we can construct the following

non-zero kernel elements that correspond to transition from a non-sticky state.

G̃(i,j),(i+1,l)(w) = H̃ i+1
jl (0, w) if 0 ≤ i < N, j ∈ S+

i+1, l ∈ S+
i+1,

G̃(i,j),(i,l)(w) = H̃ i+1
jl (0, w) if 0 ≤ i < N, j ∈ S+

i+1, l ∈ S−i+1,

G̃(i,j),(i,l)(w) = H̃ i
jl(K,w) if 0 < i ≤ N, j ∈ S−i , l ∈ S+

i ,

G̃(i,j),(i−1,l)(w) = H̃ i
jl(K,w) if 0 < i ≤ N, j ∈ S−i , l ∈ S−i .

IV.6.3 Numerical Example

Consider a system of 3 sensor nodes (i.e. N = 3), each with energy storage

capacity of K = 50. The environment is described by a continuous-time Markov

chain with state space {1, 2, 3, 4, 5} and infinitesimal generator matrix given by

Q =



−1 0.4 0.3 0.2 0.1

0.4 −0.7 0.1 0.1 0.1

0.5 0.4 −1.1 0.1 0.1

0.2 0.3 0.3 −1 0.2

0.3 0.3 0.3 0.3 −1.2


.
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The energy inflow rates in environment states 1 to 5 are given by the vector r =

[1, 2, 3.5, 6, 11]. The energy consumption rate of the sensor is c = 9.9. Now, based on

our developed approach, we will compute a lower bound for the limiting availability

of this multi-sensor system under an exhaustive service policy.

In this case, the sticky states are (0,1), (0,2), (1,3), (2,4) and (3,5). All other

states in T = {0, 1, 2, 3} × {1, . . . , 5} are non-sticky states. Now, using our method

described in Section IV.6.2, the stationary probabilities π̂ij and expected sojourn

times τij are computed and are shown in Table 4. Using (70), the lower bound Ālow

for the limiting availability of the system is found to be

Ālow = 1− π̂01τ01 + π̂02τ02∑
(i,j)∈T π̂ijτij

= 0.8431.

We repeated our computations for different values of N . Table 5 shows the values

of Ālow for different N values. Observe that at most five sensors will be required to

ensure that the system is nearly available at all times.

IV.7 Conclusion

In this chapter, we developed several analytical models to compute and ana-

lyze the limiting availability of energy harvesting sensor nodes. We introduced an

approach to exactly compute the limiting availability of a single energy harvesting

sensor node under a threshold-based activation policy. Since the rate of energy har-

vesting is very limited, it may not be possible to achieve a desired level of availability

with only one sensor node. Hence we considered a multi-sensor system where it is

sufficient to keep only one sensor ON at any time. However, for such a system, it is

difficult to develop tractable methods to compute the system-level availability when

the sensors in the system have finite energy storage capacity. Therefore, for this

case, we developed an approach to compute an effective lower bound on the limiting
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Table 4: Computed mean sojourn times and stationary probabilities (N = 3)

(i, j) τij π̂ij

(0,1) 1.0000 0.2517

(0,2) 1.4286 0.2024

(0,3) 2.3999 0.1044

(0,4) 6.1231 0.0792

(0,5) 7.1305 0.0541

(1,1) 8.8536 0.0692

(1,2) 9.1410 0.0674

(1,3) 0.9091 0.0259

(1,4) 2.5019 0.0479

(1,5) 4.1502 0.0892

(2,1) 9.5557 0.0012

(2,2) 9.7492 0.0014

(2,3) 9.5873 0.0013

(2,4) 1.0000 0.0012

(2,5) 0.9977 0.0037

(3,1) 7.3603 1.8998× 10−16

(3,2) 7.3844 1.8998× 10−16

(3,3) 7.5500 1.8998× 10−16

(3,4) 7.8331 1.8998× 10−16

(3,5) 0.8333 7.5992× 10−16

Table 5: Computed availability lower bound

N Ālow

1 0.1022

2 0.4487

3 0.8431

4 0.9914

5 1− 1.167× 10−5
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availability of the system when an exhaustive service policy is used. Using this lower

bound, we can have a good estimate of the number of sensors required to achieve a

certain level of availability.

In our formulations for limiting availability, we used a Markov regenerative pro-

cess model in case of a single sensor node and a semi-Markov process model (SMP)

in case of the multi-sensor system. Note that an SMP based formulation can also be

used in the single sensor node case. However, in this case, the Markov regenerative

model is much simpler compared to the SMP model.

Many extensions of this work can be considered for future research. In our models,

we have assumed that the discharge rate of the sensor is fixed at c. However, it will

be worthwhile to consider certain application cases with a continuously changing

discharge rate. We can extend our models to a case where the discharge process is

similar to the recharge process and is modeled by another continuous-time Markov

chain. In the cyclic exhaustive service policies considered in Section IV.5, we have

ignored any switch-over time for making a transition from one sensor to another.

However, when these switch-over times are significant, a different approach will be

required to compute the limiting availability at the system level.
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CHAPTER V

CONCLUSION

V.1 Research Summary and Contributions

In this dissertation, we developed efficient energy management policies for wire-

less sensor network applications where energy conservation adversely affects another

crucial performance parameter. We studied the following energy-performance trade-

off cases: energy and node replacement costs (Case I), energy and delay (Case II),

and energy and availability (Case III). We considered these trade-off cases in three

distinct problem cases. In each of these problem cases, we developed analytical

formulations, and derived and/or analyzed policies that effectively manage the con-

sidered energy-performance trade-off. Our methods are based on approaches appro-

priate for the considered problems, and these include mixed-integer programming,

Markov decision processes and stochastic fluid-flow analysis.

Overall this research makes new contributions to both operations research and

communication networking literature. Specific to our considered problem cases, fol-

lowing are the main contributions of our work.

1. Energy and node replacement cost model: Our work is the first of its

kind to consider the trade-off between energy and node replacement costs in a

wireless sensor network application. Our solution idea involving joint control

of routing and node replacement policies is also new. Though routing and

node replacement problems have received a lot of attention in the literature,

they have mostly been addressed independently. Based on our combined and

routing and node replacement policy approach, we developed mathematical
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formulations for minimizing the node replacement costs and derived effective

policies suitable for practical implementation.

2. Energy and delay model: In this case, we developed a Markov decision pro-

cess (MDP) based controller to make efficient “transmit or hold” decisions for

packets at the relay node at every transmission opportunity. The structure of

the MDP is uncommon, and the two-dimensional countable state space makes

it quite challenging to solve for the optimal policy. We used certain convexity

concepts in a novel way to derive structural properties of the optimal policy.

We proved that, in a certain case, the optimal network coding policy for the

relay node is a special kind of threshold policy. We also developed an analyti-

cal approach to compute the threshold policy. Moreover, we showed that some

simple policies (e.g. see “transmit-all” and “rate-based” policies in Section

III.6) can be as efficient as the threshold policy in particular situations. These

policies are easy to implement, and there is no computational overhead when

system parameters change. This makes these policies particularly attractive

for practical implementation.

3. Energy and availability model: Availability of the sensor nodes is an im-

portant factor in the design and operation of energy harvesting sensor networks.

Though the availability of various maintainable systems has been studied in the

literature, there is very limited work on the availability of self-powered systems

such as the energy harvesting sensor networks. We used stochastic fluid-flow

analysis to develop methods to compute the limiting availability of energy har-

vesting sensor nodes for both finite and infinite energy capacity cases. We also

developed a semi-Markov process based model to estimate the number of nodes

required to achieve a desired level of availability.
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V.2 Future Research

Specific to each of our considered problem cases, we have provided possible exten-

sions of our work in Sections II.7, III.7, and IV.7 (for Cases I, II and III respectively).

However, in the general area of this research, following directions can be explored in

future.

1. General network structure: In our problem cases, we have considered wire-

less sensor network structures very specific to the nature of applications. For

example, in Case I, we considered minimizing node replacement costs in a

grid-structured wireless sensor network that is particularly suitable for seismic

monitoring application. Also, in Case II, we considered network coding primar-

ily in case of a single relay node and applied the policies derived in this case to

a line network. Although we did not specifically consider the energy level of a

node in this case, it would be an immediate extension. In Case III, we did not

consider any network specific application. In all these cases, it is important to

extend our models and formulations to a general network structure. Some of

our considered problems will be intractable for a general network setting. In

those cases, approximate solution procedures can be developed.

2. Non-Markovian model: In Case II, we assumed Poisson distributed packet

arrival processes which led to the formulation our problem as a Markov decision

process. Similarly, in Case III, we modeled the environment (which acts as the

energy source) as a continuous-time Markov chain. In this case, we used the

strong Markov property to derive important results that would have been hard

to obtain in a non-Markovian energy flow model. However, in both Cases II

and III, we can extend our models for general distributions (for the arrival

processes) by approximating them as phase-type distributions.
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3. Other energy-performance trade-off issues: We studied three important

energy-performance trade-off situations in wireless sensor networks. However,

depending on the nature of application of the sensor network, reducing energy

consumption can affect many other performance parameters, e.g. network cov-

erage, utilization, node-level fairness. Some these energy-performance trade-off

issues are important, but have not been addressed adequately in the literature.

These issues can be investigated.
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APPENDIX A

EXPRESSION FOR PT (f, d)

In this appendix, we use some of the available results to develop a mathematical

expression for PT (f, d) (see Section II.4) which is the power required by an acoustic

transmitter to transmit upto a distance d at frequency f . We use this expression in

(17) to compute the energy consumption in wireless acoustic transmission.

The passive sonar equation describing major energy losses (given by signal-to-

noise ratio SNR) in an acoustic transmission is given as (Urick [75]):

SNR = SL− TL−NL+DI, (73)

where SL is the source level, TL is the transmission loss, NL is the noise level

and DI is the directivity index. All quantities in (73) are in dB re µPa, where

the reference pressure of 1 µPa corresponds to the reference intensity 0.67 × 10−18

W/m2. Assuming ambient noise level NL of 70 dB, a target SNR of 20 dB at the

receiver and not considering directivity effect, we will have a required source level

SL = TL+ 90 dB.

The transmission loss TL has a highly non-linear relationship with distance and

frequency. Its expression involving major path loss components is given as (Urick

[75]):

TL = 10 log d2 + d× 10−3 × 10 logα(f), (74)

where the first term in the summation represents spreading loss and the second term

represents absorption loss. These losses are explained in greater detail in the works

by Lanbo et al. [44], Stojanovic [72] and Urick [75]. We have assumed spherical
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spreading considering that the nodes are mounted at deep underwater locations. In

fact this spreading factor in practice would be tuned based on measurements. In

(74), α(f) is the absorption coefficient, and it is expressed in dB/km for frequency

f [kHz] by Thorp’s formula as (Brekhovskikh and Lysanov [13]):

10 logα(f) = 0.11
f 2

1 + f 2
+ 44

f 2

4100 + f 2
+ 2.75× 10−4f 2 + 0.003.

Now we will use the estimate of SL = TL + 90 to find an expression for the

required transmission power PT (f, d). The source level SL is defined as the intensity

I at a reference point located at a distance of 0.9144 m (which is equal to 1 yard) from

the acoustic center of the source, relative to the reference intensity Iref = 0.67×10−18

W/m2 in underwater acoustics (Urick [75]).

SL = 10 log
I

Iref
.

If SL is targeted to achieve the required SNR at a distance d, the transmitter power

required to produce the intensity I at the reference point is also the minimum power

required to transmit up to distance d. Hence, for a given frequency f , we can find

the transmitter power [W] as

PT (f, d) = 0.67× 10−18 × 4π(0.9144)2 × 10
(10 log d2+d×10−3×10 logα(f))+90

10 .
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