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ABSTRACT 

 

The carboxylate biofuels platform (CBP) involves the conversion of cellulosic 

biomass into carboxylate salts by a mixed microbial community. Chemical engineering 

approaches to convert these salts to a variety of fuels (diesel, gasoline, jet fuel) are well 

established.   However, prior to initiation of this project, little was known about the 

influence of inoculum source on platform performance. The studies in this dissertation 

test the hypothesis that microbial communities from particular environments in nature 

(e.g. saline and/or thermal sediments) are pre-adapted to similar industrial process 

conditions and, therefore, exhibit superior performances. We screened an extensive 

collection of sediment samples from extreme environments across a wide geographic 

range to identify and characterize microbial communities with superior performances in 

the CBP. I sought to identify aspects of soil chemistry associated with superior CBP 

fermentation performance. We showed that CBP productivity was influenced by both 

fermentation conditions and inocula, thus is clearly reasonable to expect both can be 

optimized to target desired outcomes. Also, we learned that fermentation performance is 

not as simple as finding one soil parameter that leads to increases in all performance 

parameters. Rather, there are complex multivariate relationships that are likely indicative 

of trade-offs associated within the microbial communities. 

An analysis of targeted locus pyrosequence data for communities with superior 

performances in the fermentations provides clear associations between particular 

bacterial taxa and particular performance parameters. Further, I compared microbial 
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community compositions across three different process screen technologies employed in 

research to understand and optimize CBP fermentations. Finally, we assembled and 

characterized an isolate library generated from a systematic culture approach. Based on 

partial 16S rRNA gene sequencing, I estimated operational taxonomic units (OTUs), and 

inferred a phylogeny of the OTUs. This isolate library will serve as a tool for future 

studies of assembled communities and bacterial adaptations useful within the CBP 

fermentations.  

Taken together the tools and results developed in this dissertation provide for 

refined hypotheses for optimizing inoculum identification, community composition, and 

process conditions for this important second generation biofuel platform.  
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CHAPTER I  

INTRODUCTION 

 

The carboxylate biofuels platform (CBP), developed at Texas A&M University 

involves the conversion of biomass into carboxylate salts by a mixed microbial 

community isolated from a marine environment (Fu & Holtzapple, 2010a; Hollister et 

al., 2010b). As a ‘second generation’ biofuel process the CBP does not take sugar to 

ethanol, but rather uses cellulose as a substrate and moves through fermentation 

pathways to carboxylic acids (buffered to salts) and further on to gasoline, diesel fuel, 

and jet fuels. The products of the CBP work with the existing petroleum distribution 

infrastructure. To date, research to understand and optimize CBP fermentations have 

manipulated the substrates (Domke et al., 2004; Fu & Holtzapple, 2011; Garlock et al., 

2011) and platform process parameters (Forrest et al., 2010; Fu, 2007; Golub, 2012). 

This has led to the CBP being flexible to use a wide variety of waste product feed stocks 

or substrates. Use of a mixed microbial community for the breakdown of cellulose to 

fermentable substrates and fermentation within a single bioprocess makes the process 

highly desirable relative to a sugar platform fermentation, which requires both energy 

intensive sterile conditions and separate addition of expensive enzymes prior to 

fermentation. 

 Prior to initiation of this project, we knew little about the influence of inoculum 

source on performance of this biofuel platform. However, it should be noted, each of the 

few informed attempts to improve the community greatly increased yields (Fu & 
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Holtzapple, 2010a); I predict the proposed strategy will result in continued enhancement 

and advancements of the platform. Specifically, a switch to a marine community isolated 

from Galveston Island, TX, more than doubled the acid yields from the platform relative 

to the original terrestrial (non-saline) soil community inocula (Fu & Holtzapple, 2010a). 

Furthermore, a community from an even more saline environment, the Great Salt Lake, 

in Salt Lake City, UT, boosted the performance another 20% relative to the Galveston 

community (Fu, 2007). Thus, it is evident inocula from particular environments have the 

potential to exhibit superior performances in this process. It should be noted, in both 

cases researchers detected this superior performance during experiments run at 40°C, not 

at 55°C and acid production was the performance parameter of interest. With these 

previous attempts to improve process performance by manipulation of the microbial 

community in mind, it seems reasonable to predict that sampling microbial communities 

from a variety of extreme environments in nature with features that resemble process 

conditions (e.g. thermal temperature and high salt concentration) we will find 

communities that exhibit superior performances in the process. We reasoned that 

composition of the microbial community within the fermentations contributes to process 

performance. For this research the foremost goal was to screen microbial communities 

from extreme environments for superior conversion capacity at 55 °C under conditions 

wherein the salt concentration begins at 2 to 2.6%.  In comparison, the salinity of 

seawater is 3.5%. The reasoning is that identification of communities that convert 

biomass well at 55 °C in the presence of reasonably high salt concentrations would be 

the best candidate to optimize the platform because they possess the potential to reduce 
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residence times. The residence time, in context to this project, is the amount of time 

biomass remains within the fermentation. Since fermentations with longer residence 

times occupy space and require energy (e.g. mixing of the fermentation broth and heat to 

maintain temperature), decreasing residence times is a high priority in the optimization 

of this technology because it is reasonable to expect that any other performance 

parameters (e.g. yield) could be optimized by manipulating process conditions (Mark 

Holtzapple, personal communication to Heather Wilkinson). 

Microbes in extreme environments have physiological adaptations that allow 

them to survive and thrive in normally adverse conditions including high temperatures 

and high salt concentrations (Mesbah et al., 2007; Meyer-Dombard et al., 2005; Porter et 

al., 2007). Industrial processes with shorter residence times are most profitable. Thus, 

optimal production favors higher temperatures running at faster rates (Aitken & 

Mullennix, 1992). Microbes in industrial processes tend to perform optimally at lower 

product (i.e. acid or solvent) concentrations (Heipieper et al., 2007; Taylor et al., 2008). 

However, the higher the product concentration prior to recovery the more efficient the 

system is. Microbial communities from nature with adaptations for thermal (Rastogi et 

al., 2010) and high cation (Mesbah & Wiegel, 2009) environments ought to be 

preadapted for superior performance in industrial processes that involve high 

temperature conditions and product accumulation in the form of salts. 

This dissertation details studies conducted to test the hypothesis that microbial 

communities from particular environments in nature with features similar to process 

parameters in industry will be pre-adapted to the industrial process and therefore exhibit 
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superior performance. Briefly, in Chapter II we screen an extensive collection of 

sediment samples from putative extreme environments across a wide geographic range 

to identify microbial communities with superior performances in the CBP.  Furthermore, 

I seek to identify aspects of soil chemistry associated with superior CBP fermentation 

performance. Chapter III presents an analysis of targeted locus pyrosequence data for 

communities with superior performances in the fermentations as indicated by 

performance in particular process parameters (conversion, total acetic acid equivalents, 

high carbon number volatile fatty acids). Moreover the results provide clear associations 

between particular bacterial taxa and particular performance parameters. In Chapter IV I 

compare microbial community compositions across three different process screen 

technologies employed in research to understand and optimize CBP fermentations. The 

novel aspects of this experiment were that we used fresh inocula from fresh collected 

sediment samples and ran the screens simultaneously.  The sediments used in this study 

were from five locations that are ecologically diverse, and also, extensively studied in 

other CBP experiments (Chapter II), (Hammett, 2011; Hollister et al., 2010b; Hollister et 

al., 2012). I designed and conducted an analysis of the sequence data to discern the 

effects of the different screens on community composition. This experiment provides for 

a direct comparison of the screens that usually are performed sequentially using the same 

microbial community stored at -20°C in the interim between experiments. Finally, in 

Chapter V I describe our assembly and characterization of an isolate library generated 

from a relatively systematic culture approach, which included multiple different media 

and different oxygen restriction strategies to maximize the library diversity.  Based on a 
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partial 16S rRNA gene segment sequenced for all isolates, I estimated operational 

taxonomic units (OTUs), and inferred a phylogeny of the OTUs. This isolate library will 

serve as a tool for future studies of assembled communities and bacterial adaptations 

useful within the CBP fermentations. In Chapter VI, I discuss the summary and analysis 

in context of the conclusions from these studies. 
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CHAPTER II 

SCREENING MICROBIAL COMMUNITIES FROM EXTREME ENVIRONMENTS 

FOR PERFORMANCE IN A CARBOXYLATE BIOFUEL PLATFORM 

 

II.1 Introduction 

The carboxylate biofuels platform (CBP), developed at Texas A&M University 

(Mixalco™) involves the conversion of cellulosic and lignocellulosic biomass into 

carboxylate salts by fermentation with a mixed microbial community isolated from a 

sediment environment (Fu & Holtzapple, 2010b; Hollister et al., 2011). In the CBP small 

chain (C2-C7) volatile fatty acids are produced and provide a substrate for the 

production of ethanol, gasoline, jet-fuel and many other chemicals (Holtzapple & 

Granda, 2009). The CBP can use as feedstock many non-food source materials to 

produce these acids including many landfill targeted wastes (e.g. yard clippings, kitchen 

waste), and industrial byproducts such as sugarcane bagasse (Fu & Holtzapple, 2011), 

paper fines and industrial biosludge (Domke et al., 2004). Furthermore the CBP is a non-

sterile process in which, under high salt and high temperature conditions, an initial 

microbial inoculum is sufficient to overtake microbial populations in the feedstock and 

nutrient sources used in the fermentation, negating the need for sterilization of these 

inputs. 

In the CBP acids are buffered to carboxylate salts (Aiello-Mazzarri et al., 2006). 

At the termination of the process, all salts are converted to acids and the total acid 

accumulation is measured. Prior to initiation of this project, we knew little about the 
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influence of inoculum source on performance of this biofuel platform. However, it 

should be noted, each of the few informed attempts to improve the community greatly 

increased yields. The platform was developed originally using terrestrial inocula from 

environments expected to favor the rapid degradation of biomass (e.g. inocula from a 

compost pile or a cow gut) (Fu, 2007). Since Dr. Holtzapple recognized that the 

productivity of the fermentations seemed to fall off at the same time it reached the 

maximum product concentration (Mark Holtzapple PhD, Texas A&M; personal 

communication), he reasoned that the communities were sensitive to product 

concentrations, a well established issue in industry (Taylor et al., 2008). Since the 

products of these fermentations are salts, he chose to test new inocula from salty 

environments.  Specifically, a switch to a marine community from a Galveston Island, 

TX, sediment more than doubled the acid yields from the platform relative to the original 

terrestrial (non-saline) soil community inocula (Thanakoses et al., 2003a; Thanakoses et 

al., 2003b). Furthermore, a community from an even more saline environment, the Great 

Salt Lake in Salt Lake City, UT, boosted the performance another 20% relative to the 

Galveston Island community (Fu, 2007). Thus, it is evident inocula from particular 

environments have the potential to exhibit superior performances in this process.  

Microbes found in extreme environments are known to have physiological 

adaptations that allow them to live normally in adverse conditions including high 

temperatures and high salt concentrations (Mesbah et al., 2007; Meyer-Dombard et al., 

2005; Porter et al., 2007). Industrial processes that can be achieved in shorter time 

periods have the best potential to be profitable. Thus, optimal production favors higher 
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temperatures running at faster rates (Aitken & Mullennix, 1992). Microbes in industrial 

processes tend to perform optimally at lower product concentrations (Heipieper et al., 

2007; Taylor et al., 2008). However, the higher the product concentration prior to 

recovery the more efficient the system is. Microbial communities from nature with 

adaptations for thermal (Rastogi et al., 2010) and high cation (Mesbah & Wiegel, 2008) 

environments ought to be preadapted for superior performance in an industrial process 

that involves high temperature conditions and product accumulation in the form of salts. 

Individual cellulose degrading microorganisms have been isolated from soil 

communities for many years (Skinner, 1960). More recently communities capable of 

cellulose and lignocellulose degradation have been examined from soils (Deangelis et 

al., 2012; Deangelis et al., 2010; Haruta et al., 2002); and from compost (Izquierdo et 

al., 2010; Sizova et al., 2011). Fermentation capable communities are known to be stable 

after prolonged fermentation (Werner et al., 2011) and still have been shown to be 

capable of cellulose degradation even after being subjected to heat, cold, and sub-

culturing (Haruta et al., 2002). 

To address the hypothesis that microbial communities from saline and thermal 

environments could improve fermentation performance, we collected sediment samples 

from a wide geographic range of saline and thermal areas and passed them through the 

30-day batch fermentation performance screen. We quantified the ability of the sample 

community to degrade cellulosic substrate and produce acids and then sought to identify 

those soil environments that favored the most successful communities.  

I analyzed soil chemistry and fermentation performance data including the acid 
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profile and conversion (quantified biomass degradation) outcome using multivariate 

statistical approaches. I included data for the soil analysis, site details, acid 

concentrations, and other fermentation performance characteristics in two multivariate 

statistical analyses to determine if microbial communities from saline and thermal 

environments produced an improvement of performance in the fermentation and to 

resolve any relationship between environmental variables and the improvements in 

performance. I tested the hypothesis that screening diverse salt and thermal community 

inocula under stressful process conditions will identify candidate communities with 

superior process performances, and that there will be commonalities between the in situ 

environmental factors among superior performing community samples. Further, by 

sampling microbial communities from a variety of extreme environments in nature we 

expected to reveal unique microbial communities, some of which might exhibit superior 

performances in the process. I predict identification of associations among particular soil 

characteristics and particular process performance parameters will enhance future efforts 

to identify and optimize microbial communities used in the carboxylate platform. 

 

II.2 Methods 

Study Design and Site Selection 

This study was a large-scale effort to examine variation among soil microbial 

communities collected from nature as inocula in carboxylate platform fermentations. We 

conducted frequent collection trips from October 2008 to May 2010.  In most cases, at a 

given geographic location (site) we collected multiple samples, we chose to sample 
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based on variation in physical and ecological features or presumed gradients (e.g. 

moisture, salt accumulation, temperature). In total we collected 501 samples (Appendix 

A) from 77 sites (Table 1). We identified sites via literature, database (Boyd, 2002), and 

internet searches, and by personal communications with site stakeholders. 

The study had two stages (hereafter Stage I and Stage II) with distinct site 

selection criteria and fermentation experimental conditions (detailed below and Table 2).  

In Stage I of this study, we sought sites within the southern central region of the United 

States with a history of salt accumulation or commercial salt production and/or sites 

known to be high in total dissolved solids (TDS) (Figure 1A). Stage I involved 

evaluation of 102 inoculum samples from 4 collection trips to 17 sites conducted in 2008 

(Table 1).  In Stage II of this study, we expanded our site selection criteria to include: 

greater ecological and geographic diversity, and specific addition of sites with thermal 

features (Table 1).  Stage II involved evaluation of 399 inoculum samples from 59 sites 

and 14 collection trips across the continental United States, Puerto Rico, and Hawaii 

conducted in 2009-2010 (Table 1; Figure 1A). 
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Table 1 List of all sites sampled in Chapter II. 
Site ID Site Name - Controlling Agency State N Ecosystem/Biome  Trip Date 
GR Grulla - Grulla National Wildlife Refuge * NM 12 Lake bed of salt lake, grassland 10/4/2008 

MPL Paul's Lake - Muleshoe National Wildlife Refuge * TX 9 Three sink-type lakes with no outlets 10/4/2008 

MWL White Lake - Muleshoe National Wildlife Refuge * TX 4 Three sink-type lakes with no outlets 10/4/2008 

MGL Goose Lake - Muleshoe National Wildlife Refuge * TX 5 Three sink-type lakes with no outlets 10/4/2008 

GSP Great Salt Plains - Salt Plains National Wildlife Refuge * OK 11 Saline flats, wetlands 10/9/2008 

Bra Brazoria - Brazoria National Wildlife Refuge * TX 9 Coastal wetland, prairie, salt and freshwater 
marshes 

10/24/2008 

BL Bitter Lake - Bitter Lake National Wildlife Refuge * NM 20 Wetland  11/15/2008 

LL Lazy Lagoon - Bottomless Lakes State Park * NM 4 Fresh water sink hole lakes 11/15/2008 

Lea Lea Lake - Bottomless Lakes State Park * NM 1 Fresh water sink hole lakes 11/15/2008 

BLM William's Sink - Bureau of Land Management NM 4 Playa lake, potash slurry 11/16/2008 
BLM Laguna Tuston - Bureau of Land Management NM 4 Playa lake 11/16/2008 
BLM Laguna Plata - Bureau of Land Management NM 8 Playa lake 11/16/2008 
BLM Laguna Tonto - Bureau of Land Management NM 4 Playa lake 11/16/2008 
BLM Laguna Gatuna - Bureau of Land Management NM 3 Oil brine evaporation pond 11/16/2008 
BLM Laguna Quattro - Bureau of Land Management NM 2 Potash slurry, oil brine evaporation pond 11/16/2008 
BLM Laguna Walden - Bureau of Land Management NM 1 Oil brine evaporation pond 11/16/2008 
BLM Laguna Uno - Bureau of Land Management NM 1 Potash slurry 11/16/2008 

SFB San Francisco Bay - National Wildlife Refuge * CA 34 Tidal marsh, salt ponds, mud flats, and seasonal 
wetlands  2/10/2009 

OHS Ogden Hot Springs - Private UT 4 Natural hot spring 4/28/2009 
WHS Wilson Hot Springs - Dugway Proving Ground US Army UT 14 Natural hot spring 4/28/2009 
FS Fish Springs - National Wildlife Refuge * UT 20 Brackish and warm spring 4/28/2009 
Topaz West Topaz - Bureau of Land Management UT 1 Warm slough spring 4/28/2009 
AHS Abraham Hot Springs - Bureau of Land Management UT 5 Natural hot spring 4/28/2009 
BHS Baker Hot Springs - Bureau of Land Management UT 11 Natural hot spring 4/28/2009 
AI Antelope Island - State Park UT 4 Island in saline lake 5/5/2009 
GSL Great Salt Lake - State Park UT 3 Saline lake 5/5/2009 
SHS Saratoga Hot Springs - Bureau of Land Management UT 2 Hot spring 5/5/2009 
HIS Indian Hot Springs - Bureau of Land Management UT 4 Natural hot spring 5/5/2009 
SCW Salt Creek Waterfowl Preserve - Bureau of Land Management UT 1 Brackish marsh 5/5/2009 
Knoll Knoll Spring - Bureau of Land Management UT 1 Warm spring  5/5/2009 
LB Lincoln Beach - City Park UT 1 Fresh water lake, slightly saline 5/5/2009 
UL Utah Lake - City Park UT 2 Fresh water lake, slightly saline 5/5/2009 
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Table 1 Continued. 
Site ID Site Name - Controlling Agency State N Ecosystem/Biome  Trip Date 
WS Warm Springs - City Park UT 4 Warm spring 5/5/2009 
BRR Bear River Reserve - National Wildlife Refuge * UT 3 Freshwater marsh 5/5/2009 
SWR Savannah - National Wildlife Refuge * GA 3 Tidal freshwater marsh 5/19/2009 
CR Cape Romain - National Wildlife Refuge * SC 25 Salt marsh, fresh and brackish water  5/19/2009 
PI Pinkney Island - National Wildlife Refuge * SC 14 Salt marsh, freshwater ponds 5/19/2009 
SI Sapelo Island Microbial Observatory - Georgia DNR GA 21 Salt marsh 5/21/2009 
BWR  Laguna Boqueron - National Wildlife Refuge * PR 7 Brackish ponds 6/2/2009 
CAR Laguna Cartagena - National Wildlife Refuge * PR 4 Fresh water 6/2/2009 
CRR Cabo Rojo - National Wildlife Refuge * PR 10 Salt flats, salt terns 6/2/2009 
JBR Jabos Bay Research Reserve - National Wildlife Refuge * PR 14 Costal mangrove forest 6/2/2009 
CIP Caladesy Island - State Park * FL 7 Costal sand beach 6/22/2009 
HIP Honeymoon Island - State Park * FL 4 Costal sand beach 6/22/2009 
CHP Charlotte Harbor - State Park * FL 6 Costal sand beach 6/22/2009 
RBR Rookery Bay Reserve - National Estuarine Research Reserve System FL 9 Costal and tidal marshes 6/24/2009 
CSP Collier-Seminole - State Park * FL 1 Costal and tidal marshes 6/24/2009 
TTI The Thousands Islands - National Wildlife Refuge * FL 1 Costal and tidal marshes 6/24/2009 
JSB Jemez Spring Baths - Bureau of Land Management NM 5 Geothermal spring 7/20/2009 
NSS New Mexico Sulfur Springs - Private NM 7 Geothermal spring 7/20/2009 
SLS Soda Lake, Side - Valles Caldera National Preserve * NM 1 Geothermal spring 7/20/2009 
SAC San Antonio Cabin - Valles Caldera National Preserve * NM 1 Hot spring 7/20/2009 
CLS Caribbean Lake Spring - Valles Caldera National Preserve * NM 1 Warm spring 7/20/2009 
NGYS Norris Geyser - Yellowstone National Park * WY 19 Geothermal springs 7/28/2009 
SMYS Sentinel Meadows - Yellowstone National Park * WY 6 Geothermal springs 7/28/2009 
HVYS Hidden Valley - Yellowstone National Park * WY 12 Geothermal springs 7/28/2009 
WFYS Whisky Flats - Yellowstone National Park * WY 2 Wetland 7/28/2009 
FHYS Firehole Drive - Yellowstone National Park * WY 6 Geothermal springs 7/28/2009 
STYS Sulfatara Trail - Yellowstone National Park * WY 3 Geothermal springs 7/28/2009 
SWRN Stillwater - National Wildlife Refuge * NV 3 Fresh and brackish water marshes 8/6/2009 
GBS Great Boiling Springs - Private NV 9 Geothermal spring and pools 8/6/2009 
FRN Fly Ranch - Private NV 5 Geothermal springs 8/6/2009 
CBHS Buckeye Hot Spring - Inyo National Forest CA 4 Hot spring 8/6/2009 
MLNB Mono Lake Navy Beach - State Natural Reserve CA 5 Saline and alkaline lake  8/6/2009 
MLIS  Mono Lake Island Hot Springs - BLM, NF, CADWP CA 7 Hot spring 8/6/2009 
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Table 1 Continued. 
Site ID Site Name - Controlling Agency State N Ecosystem/Biome  Trip Date 
HCMA Hot Creek at Mammoth - Bureau of Land Management CA 5 Geothermal spring 8/6/2009 
OLCA Owens Lake - Private CA 3 Dry salt lake  8/6/2009 
HBSP Hapuna Beach - State Park * HI 3 Costal sand beach 5/4/2010 
APHW Anchialine Ponds - Private HI 4 Brackish anchialine pond 5/4/2010 
NELH Natural Energy Lab Hawaii - Private HI 4 Costal anchialine ponds 5/4/2010 
KKHW Kekaha Kai - State Park * HI 5 Costal anchialine ponds 5/4/2010 
ONHW Onekahakaha Beach Park - Hawaii County DPR HI 4 Costal mangrove forest 5/4/2010 
WRHW Wailoa River - State Park * HI 1 Anchialine ponds 5/4/2010 
AFHW Akaka Falls - State Park * HI 3 Terrestrial 5/4/2010 
CPHW Carlsmith Beach Park - Hawaii County DPR HI 4 Costal anchialine ponds 5/4/2010 
GAL Galveston 8 mile Beach Access - Texas General Land Office TX 1 Costal sand beach 6/1/2008 
The following abbreviations appear in the table above: Number of samples (N), Bureau of Land Management (BLM), California Department of Water and Power (CADWP), Department of 
Natural Resources (DNR), Department of Parks and Recreation (DPR), National Forest (NF).  * indicates permit associated with sample(s) see acknowledgements. 
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Table 2 Non-identical conditions for Stage I and Stage II fermentation experiments 
conducted with environmental samples collected for this study. 
  Stage I Stage II 
Year of experiment 2008 2009-10 
Polypropylene bottle volume 1000 mL 250 mL 
Mixing method Constant rolling 2 rpm, horizontal Shaken upright @100rpm 
Temperature 55°C 55°C 
Deionized water 400 mL 150 mL 
Shredded office paper 36 g 9 g 
Yeast extract 4 g 1 g 
Calcium acetate 6.4 g 3.2 g 
Butyric acid 1.2 g 0.5 g 
Calcium propionate 0.4 0.2 g 
Sediment 10 g 2.5 g 
Calcium carbonate 10-15g 2.2 g 
Initial carboxylate salt concentration 20 g L-1 26 g L-1 
Volatile loading rate 90 g L-1 60 g L-1 
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Figure 1 Geographic distribution of sites and sampling method. A) Map exhibits the 77 
sites sampled as the basis of these studies (Map data ©2013 Google, INEGI). Blue pins 
indicate Stage I sites and red pins indicate Stage II sites (Table 2; see Methods). The two 
insets within the map show Hawaii and Puerto Rico, both sampled in Stage II. B) Three 
adjacent holes remaining after we collected the 3 cores for the sample at a site. C) 
Independent soil cores we collected at three different sites in this study, provided to 
show some of the obvious ecological and physical distinctness across sites. 
 

Sediment Sampling 

In most cases, for a single sample we collected three adjacent cores using a 

standard garden bulb-planting tool to a depth of 10 - 12 cm and with a width of 6.5 cm 

(Figure 1B and 1C). We took sediment temperature data (Splashproof Thermometer, 

VWR, PA, USA) at a depth of five centimeters. We sealed each of the three cores in a 

separate zip-top plastic bag with air removed. As soon after collection as possible, we 

flash froze one core from each sample with dry ice and subsequently stored this sample 

A

B C
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at -80°C for use in future studies. We vacuum-sealed (Sunbeam Products, Inc., 

FoodSaver Model V2220, DE, USA) the remaining two cores and stored these samples 

in insulated coolers allowing them to reach ambient temperature during transport to the 

lab. We used these ambient temperature cores as sources of inocula for fermentation and 

as the material for sediment characterization. 

 

Sediment Characterization 

Upon return to the laboratory and immediately prior to inoculation of the 

fermentation vessel we homogenized one sample core by hand. We used ~250 cm3 (or 

around two tablespoons) of homogenized sediment mixture for measuring volatile solids 

and moisture content. Following the method of Fu and Holtzapple we measured moisture 

content of the sediment samples as the difference between the wet and dry weights after 

drying to constant weight in a 105°C oven (Fu & Holtzapple, 2010b). We measured 

volatile solids content of the sediment samples as the difference of the constant dry 

weight and the weight of the sample after ashing at 550°C (Fu & Holtzapple, 2010b). 

Additionally, we removed sufficient sediment from this homogenized core for soil 

analysis testing, with the second core being homogenized and used only if additional dry 

material was necessary. For soil analysis, we dried samples to a constant weight at 40°C 

in a laboratory oven (Lab-Line Instruments, Inc. Melrose Park, IL, USA). We ground 

samples and passed them through a 2 mm sieve (USA standard test sieve ASTM E-11 

specification) before completely mixing and packaging of each sample for individual 

tests, and submission to the Soil, Water, and Forage Testing Laboratory at Texas A&M 
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University (Hollister et al., 2010a). Via these soil analyses we collected data for 

electrical conductivity of soluble salts (Rhoades, 1982) soil water pH (Schofield & 

Taylor, 1955) detailed salinity measures of potassium, calcium, magnesium, and sodium 

(Rhoades & Clark, 1978), plant available phosphorus and sulfur (Mehlich, 1978), 

analysis of organic carbon, total carbon, total nitrogen (Mcgeehan & Naylor, 1988; 

Schulte & Hopkins, 1996), and texture, so long as the available soil volume permitted 

(Day, 1965). We calculated the TDS by multiplying the conductance values (dS m-1) or 

(mmhos/cm) by the conversion factor 640, resulting in TDS values (mg/L) (Mccauley & 

Jones, 2005).  We stored all sediment remaining after this procedure under vacuum-seal 

at 4°C for use in further studies. 

 

Fermentation Experiments 

Table 2 details the fermentation screens we employed for Stage I and Stage II of 

this study. Both approaches evaluated inoculum performance in the presence of high 

product concentrations, as the fermentation broth contained ! 2% carboxylate salt 

concentration. Furthermore, in an attempt to favor shorter residence times we conducted 

these screens at the high process temperature of 55°C. We conducted the screens in 

polypropylene centrifuge bottles with screw top caps (Nalgene). Immediately after 

homogenization of the sample, we used the indicated amount of sediment to inoculate 

each fermentation. Additionally, we added 100 µL iodoform (20 g L-1 in ethanol 

solution) every other day to inhibit methanogenesis. 

 



 

18 

Fermentation Characterization 

For all fermentations, we harvested 30 days post inoculation and determined the 

volatile solids remaining and acid products (Golub et al., 2012; Hollister et al., 2010b). 

Conversion was defined as the grams of volatile solids digested over the grams of 

volatile solids fed and has been a common indicator of fermentation performance 

without regard to acid production. In our experiments we used white office paper as the 

volatile solids or biomass. Acetic acid equivalent concentration (AEQ) is defined as the 

grams of acetic acid equivalents per liter of fermentation liquid. This variable puts all 

acid production on the same level so that you can easily compare each sample on the 

amount of energy contained rather than a suite of acid variables. Selectivity is defined as 

the grams acetic acid equivalents over the grams volatile solids digested. Yield is 

defined as the grams total change in acids (end - start) over grams volatile solids fed. We 

did not study patterns of selectivity or yield data in this study. Both are indicators of the 

fermentation performance across multiple variables and are useful for quickly assessing 

how a particular fermentation has degraded biomass into different products (those 

wanted, and those not). 

 

Data Transformation and Statistical Analyses 

I included only those samples with complete data in the statistical analyses (for a 

complete list of samples see Appendix A). I analyzed the data for Stage I and II 

fermentations separately.   
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To better approximate normal distributions and to achieve even scaling, I 

transformed the sample data; log(1+value) or log(3+value) for discrete quantity data or 

arcsine [square root (proportion)] for percentage data. I did not transform pH due to the 

logarithmic character of the variable. Within each analysis, I established two blocks of 

data: the sediment data block (S-data), and the fermentation data block (F-data). The S-

data blocks included the percent volatile and percent moisture content, detailed salinity 

pH and levels of cation presence, the Mehlich III measured phosphorus and sulfur levels 

(showing plant available quantities), and the total nitrogen, total carbon, and the organic 

carbon. F-data blocks included measured individual acid changes (acetic, butyric, iso-

propionic, propionic, isovaleric, valeric, caproic, and heptanoic) and the conversion for 

each sample.  

To test for correspondence of fermentation products and soil environmental data 

I performed multivariate analysis of variance (MANOVA) with JMP 10 Pro (version 

10.0 by SAS). The MANOVA provided an overall significance test for the 

correspondence, and indicated which soil variables were significantly related to 

fermentation data. I estimated effect strength using eta-squared (Tabachnick & Fidell, 

2000). Due to the differences between Stage I and Stage II experiments (Table 2), I 

analyzed the data separately. However, I compared the similarity of results from the two 

stages by assessing the correlation among the F statistics.   

To explore the relationships among the soil and fermentation variables I 

performed a two block partial least squares (PLS) regression using Microsoft Office 

Excel 2007 and the Add-In Poptools version 3.2.5 (Hood, 2010). For this analysis I 
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standardized all our transformed variables, so that interpretation of eigenvalues would be 

comparable across different data types. The F-data comprised one block and the S-data 

formed the second block. I performed PLS on the matrix multiplication product of the 

transformed, Z-centered blocks of F-data and S-data (Wold et al., 2001). Each row of the 

F-data contained the results of a single fermentation. I calculated the effect strength as 

the sum of cross-variance (variance in common between the two data blocks) as a 

fraction of total variance in fermentation products.   

 

II.3 Results 

Variation Among Sediments 

As expected, the geographically and ecologically diverse sediments used as 

inocula in this study (Figure 1A) exhibited extremely wide ranges for characteristics 

measured (e.g. temperature, texture, conductivity, pH, TDS, etc.) (Appendix A).  Across 

the 501 samples in this study, I analyzed 494 for electrical conductivity used as an 

indicator of salinity and pH resulting in: 53.5% strongly saline (>16 dS m-1), 11.3% 

moderately saline (8-15.9 dS m-1), 9.0% slightly saline (4-7.9 dS m-1), 12.1% very 

slightly saline (2-3.9 dS m-1), 13.9% non-saline (> 2 dS m-1) (Staff, 1993). Based on 

measurements of pH taken during analysis for detailed salinity: 8.3% of samples were 

ultra acid (pH< 3.5), 2.4% extremely acid (pH 3.5-4.4), 2.8% very strongly acid (pH 4.5-

5.0), 1.4% strongly acid (pH 5.1-5.5), 4.0% moderately acid (pH 5.6-6.0), 7.1% slightly 

acid (pH 6.1-6.5), 24.8% neutral (pH 6.6-7.3), 28.3% slightly alkaline (pH 7.4-7.8), 

16.4% (pH 7.9-8.4), 4.6% strong alkaline (pH 8.5-9.0), 1.8% very strongly alkaline (pH 
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>9.0) (Staff, 1993). The 459 samples with temperature data available exhibited 

correspondence to a range of spring categories: 34% to cold springs (<20°C), 54% warm 

springs (20-50°C), 11.5% hot springs (>50°C). While is helpful to have a standardized 

nomenclature for reference sake, it is important to recognize that not all samples were 

from springs. Finally, for the 501 samples with organic carbon data 14 (2.7%) contained 

greater than 12% organic carbon, the level considered as high organic carbon (Staff, 

1993). 

Table 3 provides the ranges for the soil characteristics I measured as they 

distributed across Stage I and Stage II of this study. During Stage I we collected 102 

samples isolated from grasslands, fresh and salt water marshes, salt lakes, playas, spring 

fed lakes and oil brine or potash slurry evaporation ponds sites in TX, NM, and OK 

(Table 3). Again, we selected these initial sites due to the presumed variation in salinity 

and total dissolved solids. In fact, these 102 samples span the entire range of 

conductance (0.01-215.00 dS m-1) and correspondingly the TDS values (5.12-137600.00 

mg/L) exhibited across all samples studied.  The Stage I sampling trips did not include 

any sites with thermal features, as such, soil temperatures for these samples spanned a 

non-thermal range of 6.67 to 30.10°C.  

 We obtained the 399 samples collected during Stage II from sites representing a 

much broader geographic and ecological range (Appendix A, Table 1, Figure 1A), 

selected based on presumed variation in ecology, salinity, total dissolved solids, and/or 

presence of thermal features. The ecological diversity for these sites included fresh, salt, 

and alkaline lakes, warm and hot springs, marshes, salt flats, coastal mangroves, and 
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anchialine ponds (Table 1). The broad ranges for most of the sediment data 

demonstrated this diversity (Table 3). The broad range of soil temperatures was 

particularly noteworthy (7.61-92.7°C) but not surprising, in as much as, we collected 

soils from thermal features.  

 

Fermentation Performance 

 Appendix A provides all the sediment and fermentation data generated for all 

samples collected. The inocula were highly variable for fermentation performance for 

both Stage I and Stage II of this study (Figure 2). In general, if microbial communities 

exhibited higher conversion of the substrate, then those samples produced more acid 

(Figure 2).  Presumably, in those fermentations with high conversion but low acid 

production some other unmeasured product was favored (e.g. CO2 or lactic acid) (M. 

Holtzapple, personal communication). The wide range in fermentation performances 

across the diversity of soil samples lends credence to the idea that soil environments 

harbor different communities and thus it is reasonable to expect we could identify soil 

parameters associated with community fermentation performance. 

There was strong multivariate correspondence between fermentation products 

and environmental factors of the original soil samples.  However, this result did not 

present as clear univariate responses (e.g. soil factor 1 increases concentration of acid 

species 1).  Instead, we found the strong effects associated with suites of correlated 

variables in one data block being related to suites of variables in the other block.  
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Table 3 Distribution of sediment and fermentation variables across the Stage I and Stage 
II fermentation experiments in this study. 
  Stage I   Stage II  
  Min Max   Min Max 

Sediment data      
Moisture in sediment (%) 1.13 62.89  0.00 100.00 
Volatiles in sediment (%) 0.37 47.90  0.00 70.62 
Sand (%) 11.00 97.00  5.00 100.00 
Silt (%) 0.00 48.00  0.00 79.00 
Clay (%) 1.00 86.00  0.00 67.00 
pH 5.58 9.50  1.74 10.17 
Conductance (dS m-1) 0.01 215.00  0.23 202.00 
Total Dissolved Solids (mg/L)  5.12 137600.00  0.00 129280.00 
Sodium (Na+ mg kg-1) 0.32 149756.00  23.69 186457.00 
Potassium (K+ mg kg-1) 6.24 29952.20  1.04 9973.73 
Calcium (Ca++ mg kg-1) 11.28 1695.81  1.03 10414.28 
Magnesium (Mg++ mg kg-1) 5.69 10353.80  0.86 15003.20 
Phosphorus (P mg kg-1) 1.00 124.00  0.00 384.30 
Sulfur (S mg kg-1) 15.84 24436.80  18.70 32916.00 
Organic carbon (%) 0.07 12.70  0.02 46.43 
Total nitrogen (%) 0.06 0.99  0.03 20.78 
Total carbon (%) 0.07 13.03  0.07 45.71 
Temperature °C 6.67 30.10  7.61 92.70 

Fermentation data      
Acetic acid (change in g L-1) -2.71 7.27  -1.06 6.16 
Propionic acid (change in g L-1) -0.21 0.86  -0.73 1.91 
Isobutyric acid (change in g L-1) 0.00 0.35  -0.03 0.14 
Butyric acid (change in g L-1) -0.44 3.93  -0.30 1.43 
Isovaleric acid (change in g L-1) 0.00 0.66  0.00 0.42 
Valeric acid (change in g L-1) 0.00 0.00  0.00 0.05 
Caproic acid (change in g L-1) 0.00 0.16  -0.05 0.14 
Heptanoic acid (change in g L-1) 0.00 0.43  0.00 0.15 
Total acids (change in g L-1) -1.27 9.14  0.00 8.08 
Conversion (% VS digested/fed in g) 0.15 0.49  0.02 0.57 
Selectivity (% g Acid/ g VS dig) -0.06 0.35  0.00 0.46 
Yield (% g Acid/ g VS fed) -0.01 0.09  0.00 0.13 
AEQ (mol/L) -0.03 0.19  0.00 0.16 
AEQ (g L-1) -1.55 11.17   0.00 9.32 
Distribution of the sediment and fermentation datasets as separated by stage of experiment. 
Volatile Solids (Berezovsky & Shakhnovich). 
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Figure 2 Distribution of acetic acid equivalent concentration (AEQ) by conversion 
performance for each sample. Since fermentations with different inocula yield different 
acid profiles, we use AEQ (g L-1) to standardize reporting the acid production across 
fermentations. Conversion has no units as it is calculated as g volatile solids digested/g 
volatile solids fed. Black circles represent Stage I, and grey hollow boxes represent 
Stage II. 
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We found substantial effect sizes from the MANOVA (Table 4) for both Stage I 

and Stage II experiments (!" = 0.921 and 0.566, respectively), and the significance 

structures (F statistics for the array of soil environmental variables) were similar across 

experiments (r=0.71).  Though the effect size was particularly strong for Stage I, note the 

statistical tests were not powerful, as there were only 6 times the number of samples 

(N=95) relative to the number of predictor variables. While the only significant effect 

noted for Stage I was due to temperature (Table 4), some of the cations (K, Ca, S) might 

also be important determinants or correlates of acid composition, as suggested by the 

marginally significant p-values. It is worth noting that our other analyses confirmed 

these suggested effects. Stage II results, due to the greater sample size (N=356), revealed 

more significant effects, despite the fact that the overall effect strength was less than for 

Stage I results. For Stage II I found significant effects of soil temperature, pH, total N, 

Mg, Ca, moisture, and P on fermentation variables, with a suggestion (marginal 

significance) that organic carbon also may have played a causal or correlative role 

(Table 4). Though these significance tests indicate which independent variables are 

related to fermentation, the MANOVA framework treats each dependent variable 

separately, so it is difficult to interpret associations among variables.
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Table 4 Multivariate analysis of variance (MANOVA) results for sediment variables across Stage I and Stage II of this study. 
 Stage I      Stage II    

  F-stat 
Degrees of freedom 

(Num, Den)1 p-value   F-stat 
Degrees of freedom 

(Num, Den)1 p-value 
Whole Model 2.0226 (112,523.54) <0.0001  2.3420 (126,2558.1) <0.0001 
Temperature °C 3.2971 (8,73) 0.0029  5.4991 (9,333) <0.0001 
pH 0.9687 (8,73) 0.4672  5.2717 (9,333) <0.0001 
Total nitrogen (%) 0.6035 (8,73) 0.7720  4.8577 (9,333) <0.0001 
Magnesium (Mg++ mg kg-1) 0.9346 (8,73) 0.4936  2.9892 (9,333) 0.0019 
Calcium (Ca++ mg kg-1) 1.8960 (8,73) 0.0735  2.2190 (9,333) 0.0206 
Organic carbon (%) 0.7560 (8,73) 0.6422  2.0485 (9,333) 0.0337 
Phosphorus (P mg kg-1) 1.4973 (8,73) 0.1731  1.9655 (9,333) 0.0426 
Moisture in sediment (%) 1.0986 (8,73) 0.3742  1.5265 (9,333) 0.1372 
Volatiles in sediment (%) 1.4177 (8,73) 0.2037  1.5265 (9,333) 0.1372 
Sodium (Na+ mg kg-1) 0.7332 (8,73) 0.6619  1.4944 (9,333) 0.1485 
Sulfur (S mg kg-1) 1.8564 (8,73) 0.0802  0.8267 (9,333) 0.5919 
Conductance (dS m-1) 1.2548 (8,73) 0.2806  0.7658 (9,333) 0.6482 
Total carbon (%) 0.8502 (8,73) 0.5621  0.6825 (9,333) 0.7248 
Potassium (K+ mg kg-1) 1.9809 (8,73) 0.0608  0.5897 (9,333) 0.8055 
Intercept 4.6127 (8,73) 0.0001  14.9332 (9,333) <0.0001 
       
Number of samples (N)  N=95    N=356  
Effect Strength (!2)  !2=0.921    !2=0.566  

1Numerator (Num), Denominator (Den). 
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PLS constructs distill axes for both the dependent and independent variables that 

can be related as multivariate pairs of axes, termed singular axes. The loadings of 

variables on these axes indicate the relative contribution of variables, as well as, the 

direction of relationships, and thus, provide a way to interpret two blocks of multivariate 

data as suites of associated variables. Again, to ensure the loadings could be compared 

within and between data blocks, I performed this analysis on standardized data. Figure 4 

shows the scatter of data relative to the loadings of the first and second Eigen vectors, 

which represents the majority of the predictable variance. Figure 3 illustrates the 

loadings of all the variables on that Eigen vector. The Stage I samples exhibited large 

correlation coefficients for both the first (R2 = 0.2682; Figure 4A) and second (R2 = 

0.23158; Figure 4B) axis pairs, which is consistent with the finding of such a strong 

effect size for Stage I in the MANOVA. The correlation coefficients for the Stage II first 

(R2 = 0.11282; Figure 4C) and second (R2 = 0.06528; Figure 4D) singular axis pairs 

were much lower, as was the effect strength in the MANOVA. In fact, the R2 value for 

the second singular axis pair for Stage II was so low I found no justification for 

interpretation of the loadings for this pair. The loadings of the Eigen vectors for Stage I 

vector 1 and vector 2 were 1.4 and 1.0 respectively. The loadings for Eigen vectors for 

Stage II vector 1 and vector 2 were 0.8 and 0.5 respectively.  

For Stage I, the predominant correspondence across fermentation and soil data 

was that lower temperatures and higher cations, especially Mg, S, and Na, associated 

with greater acid production, especially for acetic, isobutyric, isovaleric acids (Figure 3).  

The second major axis of cross-variance indicated that conversion efficiency particularly 
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that resulting in propionic and acetic acids, was driven by, or correlated with, variables 

typically associated with soil fertility (relatively low pH and high N, organic, total and 

volatile C, and moisture; Figure 3). For Stage II, the soil variables associated with the 

first Eigen vector (Figure 3) echo those identified for Stage I, namely temperature, pH 

and nutrients.  

The high effect sizes answer our central question about whether soil conditions 

can be used to predict fermentation products by the soil’s microbial community. Yes, 

they can. However the relationships at hand are complex -- it does not emerge as an 

isolated few environmental parameters driving an isolated few aspects of organic 

chemistry. Taken together, these results suggest that in the fermentation conditions we 

used, and probably to more general conditions (e.g. sampling from other geographic 

regions) we can maximize desired fermentation products by sampling microbes from 

soils relatively low (i.e. within the ranges included in our samples) in pH and 

temperature, but high in cations and soil fertility. 

 

II.4 Discussion 

This study shows that CBP productivity is influenced by both fermentation conditions 

(Stage I and Stage II) and inocula, thus it seems reasonable to expect both can be 

optimized to target desired outcomes (e.g. particular products and/or productivity levels). 

Also, we learned that fermentation performance is not as simple as finding one soil 

parameter that leads to increases in all performance parameters. Rather, there are 

complex multivariate relationships that are likely indicative of trade-offs associated 
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within the microbial communities. For example, we found the conductance of soils 

consistently positively associated with the production of some acids, namely isobutyric 

and isovaleric but negatively associated with conversion efficiency (Figure 3). 

Meanwhile, the relationship between temperature and conversion efficiency was 

consistently positive (Figure 3). The relationship between soil pH and conversion in 

Stage I was predominantly negative, while pH and conversion were positively associated 

in the Stage II experiments (Figure 3). The implication of these results is that one might 

need to choose which performance parameter is of the greatest interest and then optimize 

that parameter by collecting inocula from those soils with individual parameters that are 

positively correlated. Alternatively, efforts to identify soils that possess multiple 

concomitant parameters that tend to influence different aspects of performance (e.g. high 

conductance and high temperature soil environments might host communities that 

exhibit both optimal acid production and conversion efficiency) might be justified.  

Finally, in absence of soils with both conductance and temperature at appropriate levels, 

it remains to be seen whether one could optimize multiple performance parameters (acid 

production and conversion simultaneously) by synergistic combination of microbial 

communities from very different environments (e.g. combining communities from high 

conductance, low temperature and low conductance, high temperature environments). 

An important future goal will be to identify the microbial community composition 

associated with fermentations exhibiting particular performance outcomes.
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Figure 3 Bar graphs illustrate the loading of the cross-variance onto each Eigen vector across the variables in the 2 block 
partial least squares (PLS) regressions for Stage I and Stage II data separately.
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Conversion (% VS dig./fed in g) 

Stage I PLS Vector 1 

-0.7 -0.2 0.4 0.9 

Stage II PLS Vector 1 

-0.7 -0.2 0.4 0.9 

Stage I PLS Vector 2 

-0.7 -0.2 0.4 0.9 

Stage II PLS Vector 2 
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Figure 4 Singular axis pairs for the two-block partial least squares (PLS) regressions 
conducted separately for the Stage I and Stage II data. A) The Stage I singular axis pair 1 
illustrates the majority of the cross-variance between the fermentation performance soil 
characteristics for Stage I. B) Stage I singular axis pair 2 explains less cross-variance for 
Stage I. C) Stage II singular axis pair 1 illustrates the majority of the cross-variance 
between the fermentation performance soil characteristics for Stage II. D) Stage II 
singular axis pair 2 explains less cross-variance for Stage II. 
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CHAPTER III 

ESTABLISHING THE RELATIONSHIP BETWEEN BACTERIAL COMMUNITY 

COMPOSITION AND SUPERIOR PERFORMANCE ACROSS PARTICULAR 

CARBOXYLATE BIOFUEL PLATFORM FERMENTATION PARAMETERS 

 

III.1 Introduction 

 Previous analyses of carboxylate biofuels platform (CBP) fermentations with a 

standard inoculum community established clear causal relationships between process 

parameters and the fermentation product spectrum output, resulting in the predictions 

that process conditions are the major determinant process performance (Forrest, 2010; 

Fu, 2007). Subsequently, we established variation among microbial communities for 

various performance parameters (Chapter II). Furthermore, we recognized that the 

variation among communities for these performance parameters occurred in both Stage I 

and Stage II fermentations despite the different process parameters (Chapter II).  Thus, 

we sequenced bacterial communities derived from different natural inocula and 

associated with a variety of process performances to investigate the role of community 

composition in the process performance phenotype.  

 While we measured a variety of performance parameters, a major goal of this 

project was to identify microbial communities with superior conversion capacities under 

high salt and temperature conditions. Conversion is defined as the amount of volatile 

solids digested over the amount of volatile solids fed. Rapid and robust conversion under 

these stressful conditions can reduce residence time, an important consideration for 
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implementation of the process at an industrial scale. Interesting acid production 

parameters for the CBP process include acetic acid equivalence (AEQ), which is a 

standardized measure for all acid produced in a given fermentation, and the quantity and 

distribution pattern of individual high molecular weight (HMW) or high carbon number 

acid outputs (Appendix A, Table 5). High AEQ is desirable since it indicates highly 

productive communities. Communities producing high levels of HMW products are 

most desirable for processes associated with production of more complex hydrocarbons 

(e.g. diesel, jet fuels).  

Based on the screen of 501 sources of inocula (Chapter II), ranks of the top 

performing communities for different performance parameters resulted in overlap, 

however as one might expect they were not identical. We sequenced 40 bacterial 

communities that were among the top communities for three performance parameters of 

greatest importance to industry (conversion, AEQ, and HMW acids) to discern whether 

particular bacterial taxa were associated with particular performance parameters. I 

hypothesized that variation in community composition correlates with variation in 

conversion, AEQ, and select high-molecular weight acids (C5 - valeric, IC5 - isovaleric, 

C6 - caproic, C7 - heptanoic).
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Table 5 Fermentation data for all samples selected for sequence analysis and comparison. We selected these samples from the 
original 501 microbial communities screened based on ranking among the best for one or more of three performance 
parameters: High molecular weight acids (IC5-C7), conversion, and acetic acid equivalence (AEQ), each colored on a scale 
from red (low) to green (high) for their respective values. The horizontal line indicates the change of Stage I to Stage II. 
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Figure 5 Venn diagram showing distribution of samples across performance parameter 
categories for samples. 
  

Acetic Acid 
Equivalence 
 

Conversion 

High Molecular 
Weight Acid 

Production 
 

3 

11 

411 

 40 Total 
Samples 

10 

0 1 



 

36 

Figure 5 shows the distribution of the 40 sequenced communities across different 

process performance phenotypes. I conducted community composition analyses, which 

focused on the repetition or absence of community taxa. The primary focus was on 

community constituents as measured by presence/absence, diversity indices, and 

classifications at the order level. The analysis took the form of individual regressions of 

individual OTUs and multivariate statistical testing of the dominant taxa observed 

through analysis of the classification. I chose to examine the difference between the 

communities with 1 to 4 samples, despite the lack of statistical power. I sought to 

identify community members with known ecological functions that could explain the 

buildup or breakdown of high molecular weight acids, the acetic acid equivalents, and 

conversions observed. Discerning the associated taxa distribution pattern for a given 

performance phenotype should help us define more optimal communities, allowing for 

testable hypotheses useful for inoculum development and process parameter 

optimization. 

 
III.2 Materials and Methods 

Selection of Samples  

We sequenced microbial communities from CBP fermentations conducted as part 

of a project to screen 501 soil communities from thermal and/or saline environments as 

inocula (Chapter II). Initially we selected communities with superior conversion 

performance and compared the microbial community in the soil inoculum to the 

fermentation community (Hammett, 2011). To expand the comparison, in this study I 

sequenced additional communities from CBP fermentations with performances superior 
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for acid production, both quantity (AEQ) and quality (proportion of high molecular 

weight acids HMW). In total, the comparison includes 40 CBP fermentation 

communities. Figure 5 shows how the communities distribute across performance 

categories, it is worth noting that any single community may or may not have ranked 

among the best for one or more of the parameters: conversion, AEQ, and HMW. Of the 

40 samples 28 had high conversion, 25 had high acetic acid equivalents concentration (g 

L-1), and 16 produced high molecular weight acid concentrations (g L-1) (Figure 5). 

Again, I hypothesized that comparing the communities will allow me to identify specific 

taxa that influenced performance parameters.  

 

Fermentation Characterization and Product Storage 

We characterized all fermentations as described in Chapter II, (Golub et al., 

2012), and (Hollister et al., 2010b). We vortexed the fermentation liquid with the solid 

portion of the sample to completely re-suspended it. We then placed three aliquots of the 

mixture in 50 mL Falcon tubes with two aliquots being immediately placed at -80°C and 

the third sample being dispensed into eight 2 mL cryogenic tubes with the remainder 

being dried and stored. We filled four of these cryogenic tubes with 1 mL CBP 

fermentation sample only, and we filled four with 1 mL sample and sufficient 100% 

sterilized glycerol to bring the mixture to 20% total glycerol. We then vortexed the 

glycerol and CBP fermentation product tubes until they were homogeneous. We stored 

eight of these samples at -20°C for further inoculations of the subsequent fermentation 

screens. We froze the remaining material in the 50mL Falcon tube at -20°C overnight 
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and lyophilized under vacuum at -40°C (VirTis Sentry Benchtop 3L Company, Inc. 

Gardener, NY, USA with Welch Chemstar® Vacuum Pump Thomas Industries, Skokie, 

IL, USA) for possible inoculum for future experiments. As necessary, we maintained the 

fourth aliquot at 4°C until such time that it could be used as inoculum for the isolate 

library collection as explained in Chapter V. 

 

Genomic DNA Extraction of Fermentation Materials 

We performed DNA extractions from fermentations as described in (Golub et al., 

2011b), which involved a modified version of the DNEasy Blood and Tissue Kit Gram 

Positive Protocol (Qiagen, Venlo, Netherlands, Cat # 69054). We modified the 

manufacturer’s Gram Positive Protocol by adding 40 mg/ml, for a total of 0.04 g 

lysozyme, to each extraction reaction at the bacterial pellet stage, followed by a 30 

minute incubation in a heat block at 37°C. We followed all other steps in the 

manufacturer’s protocol. 

 

454 Pyrosequencing 

After extraction and quality checking of community genomic DNA, we 

normalized samples to 25 ng/µl in a total of 8 µl of 10 mM TRIS HCl. We shipped 

frozen samples, on dry ice, to the Research and Testing Laboratories (Lubbock, Texas) 

for bacterial tag-encoded FLX amplicon pyrosequencing (BTEFAP) (Acosta-Martinez et 

al., 2008) on a Roche Life Sciences 454 FLX sequencer (Roche Applied Science, Werk 

Penzberg, Germany) with titanium chemistry. We amplified bacterial sequences with the 
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following primer set: forward and tagged 27f 5'-GAG TTT GAT CNT GGC TCA G-3', 

and reverse 519r 5'-GTN TTA CNG CGG CKG CTG-3' (Hollister et al., 2011; Lane, 

1991), (Table 6). These primers cover the V1 through V3 region of the 16S rRNA gene 

(Figure 6). 

 

Post Sequencing Processing and Statistical Analysis 

I screened all sequenced fasta files and sequences shorter than 350bp, containing 

ambiguous sequences, and I excluded sequences containing homopolymers larger than 

10 bases long from further analysis. I aligned all sequences to the silva.gold.bacteria 

database (accessed from <http://www.mothur.org/wiki/> on 05/17/11) and also used this 

database to screen for chimeras using the chimera.slayer function in mothur v1.19.2. I 

removed all potential chimeras from further analysis. I then compiled the sequences into 

the larger question set in Bioedit v7.0.9 (Hall, 1999) and submitted them to the 

Ribosomal Database Project (RDP) pyrosequencing pipeline aligner function (release 10 

accessed from <https://rdp.cme.msu.edu/> on 01/01/13) to align all sequences to the 

known sequence of the bacterial 16S ribosomal gene subunit. 
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Table 6 All primers used in this dissertation for sequencing. 
Name Citation Sequence Use 

27f Lane, 1991 GAGTTTGATCNTGGCTCAG 454 Bacteria 
Grey519r Acosta, 2008 CAGCMGCCGCNGTAANAC 454 Bacteria 

27f Lane, 1991 AGAGTTTGATCCTGGCTCAG Sanger 
1100r Lane, 1991 AACGAGCGCAACCCT Sanger 
515f Lane, 1991 GTGCCAGCMGCCGCGGTAA Sanger 
1492r Lane, 1991 AAGTCGTAACAAGGTAACCG Sanger 

 

 

 
Figure 6 Map of primer placement along the 16S rRNA gene segment for primers used 
in this dissertation project. Grey arrows indicate primers and the associated direction 
relative to particular variable regions within the 16S rRNA gene map at the top of the 
figure. The primers and variable regions are not drawn to scale. Sequences of primers 
are provided in Table 6. 
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I utilized mothur (Schloss et al., 2009) for operational taxonomic unit (OTU) 

classification at 97% similarity or the commonly accepted species level (Stackebrandt & 

Goebel, 1994). After alignment, I screened the alignments in mothur v1.29.2 for 

sequences that aligned outside of the 16S ribosomal subunit, were not unique, and for 

those sequences that started or ended at positions outside of 97% of the samples. Also, I 

removed positions in the alignment that contained all gaps to speed downstream 

processing. I removed sequences that didn’t align to the 16S and those that started or 

ended more than 3% away from the majority of aligned sequences. I then used dist.seqs 

and cluster functions in mothur to cluster the sequence sets at 97% similarity using the 

average neighbor joining algorithm in cluster. I included all non-unique sequences in 

further analysis using the names file function of mothur throughout post processing. I 

used the silva.bacteria database for classification of sequences and OTUs. I made bar 

graphs based on classifications appearing in >35 of the 40 samples (Appendix C). I 

determined Chao 1 and Shannon index values with all samples. I also performed 

regression with JMP v10Pro by SAS with the absolute abundance of OTUs within each 

sample and the fermentation outcomes of interest conversion, acetic acid equivalence 

(AEQ) in g L-1, and high molecular weight acid products in g L-1. I examined the top 

twenty most abundant OTUs and those OTUs present in >20 samples. To examine the 

relationship between samples I used the normalize.shared function of mothur to give me 

the same general sample size before calculating the Yue-Clayton theta similarity 

coefficient and the Bray-Curtis dissimilarity index. We chose the Bray-Curtis 

dissimilarity index to perform non-metric multidimensional scaling (NMDS) within 
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mothur to illustrate the maximum differences between the sample OTU classifications. 

Finally, I performed a partial least squares (PLS) decomposition on the top 14 

represented classes with the acid spectrum data and conversion outcomes. I Chi-square 

normalized the relative abundance of the top 14 classes (Hammett, 2011) before I 

included them in the PLS.  

 

III.3 Results 

Fermentation 

Table 5 shows the fermentation results for the 40 selected samples. We never 

detected valeric acid, a 5 carbon chain acid, in any of the selected samples and thus we 

discarded this data column before analysis. However, isovaleric acid was present in 

many samples. Few of the Stage II samples produced HMW acids to any large degree 

(N21, P01 being the exceptions). Previously, I established there was a Stage I to Stage II 

change in acid profile (see Chapter II). Yet there still were communities that produce 

acids in similar quantities (see columns total acids and AEQ in Table 5) even with the 

change in the volatile solids loading rate (amount of paper) and a change in the initial 

carboxylate salts challenge condition (salt concentration).  

 

Sequencing and Post Processing 

After processing there were 220338 sequences in the library and the number of 

unique sequences within the library was 50033 with an average length of 300 bases. We 

deposited all sequences in the National Center for Biotechnology Information (NCBI) 
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sequence read archive under the project accession number PRJNA208594. There were a 

total of 1339 OTUs at 3% dissimilarity, 478 of which were found in more than one 

sample. The number of sequences I obtained for a given community does not predict the 

number of resulting OTUs (Appendix B). We identified no single OTU shared by all 

samples. OTU 0006 was the most common, containing 17409 sequences found in all 

samples except J11 and J19. OTU 0006 was classified as (classification(confidence)) 

Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(100); Bacillaceae(100); 

Geobacillus(100) with all subsequent lower levels unknown. See Table 7 for 

classifications of the top 30 most abundant OTUs. To further characterize the relative 

abundance and distribution of OTUs within samples I calculated the Chao 1 richness 

estimator and the Shannon diversity index for all samples in Appendix B. Appendix C 

shows the relative abundance of each portion of the order level classified community and 

the ranking of the sample in each of the three categories of interest (conversion, AEQ, 

and HMW acid production). As different sample size can affect outcomes (Magurran, 

2004), I normalized to examine the similarity of OTUs between samples using the Yue-

Clayton theta (!YC) similarity coefficient. The !YC coefficient reflects the distribution of 

OTUs between two samples and the relative abundances of those OTUs.  
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Table 7 Regression analysis results for the 30 most abundant OTUs. Thirteen of the top 30 OTUs exhibit significant correlations to one or more performance parameters. Signs indicate the 
direction of the relationship, i.e. + means abundance of the OTU increases the parameter, while - means abundance is correlated with decreases in that performance parameter. 

  Conversion AEQ HMW Acids  
OTU Sequences R2 p-val. R2 p-val. R2 p-val. Taxonomy(Confidence) 
0001 42732     +0.137 0.0285 Bacteria(100); Firmicutes(100); Clostridia(100); Clostridiales(100); Family_XI_Incertae_Sedis(100); Tepidimicrobium(100) 
0002 30116 +0.117 0.0307 +0.132 0.0215   Bacteria(100); Firmicutes(100); Clostridia(100); Thermoanaerobacterales(100); Family_III_Incertae_Sedis(100); 

Thermoanaerobacter(100) 
0003 18855   +0.151 0.0132   Bacteria(100); Firmicutes(100); Clostridia(100); Clostridiales(100); Ruminococcaceae(100); Incertae_Sedis(99) 
0004 18252   -0.211 0.0029 -0.164 0.0096 Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(94); Bacillaceae(94); Bacillus(93) 
0005 17756       Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(100); Bacillaceae(100); Ureibacillus(100) 
0006 17409     -0.104 0.0275 Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(100); Bacillaceae(100); Geobacillus(100) 
0007 11084       Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(100); Thermoactinomycetaceae(97); Thermoactinomyces(97) 
0008 8458       Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(100); Bacillaceae(100); Ureibacillus(100) 
0009 6121 +0.174 0.0074     Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(100); Bacillaceae(100); Geobacillus(100) 
0010 5862 -0.323 0.0001   +0.303 0.0002 Bacteria(100); Thermotogae(100); Thermotogae(100); Thermotogales(100); Thermotogaceae(100); Petrotoga(100) 
0011 5347       Bacteria(100); Firmicutes(100); Clostridia(100); Thermoanaerobacterales(100); Family_III_Incertae_Sedis(100); 

Thermoanaerobacter(100) 
0012 5055       Bacteria(100); Proteobacteria(100); Gammaproteobacteria(100); Pseudomonadales(100); Pseudomonadaceae(100); 

Pseudomonas(100) 
0013 4009       Bacteria(100); Firmicutes(99); Clostridia(95); Clostridiales(84); Peptococcaceae(83); Desulfurispora(83) 
0014 3315       Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(96); Bacillaceae(74); Bacillus(74) 
0015 2044       Bacteria(100); Firmicutes(100); Bacilli(99); Bacillales(99); Paenibacillaceae(94); Thermobacillus(94) 
0016 1608   -0.193 0.0059 -0.162 0.0101 Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(84); Bacillaceae(84); Bacillus(78) 
0017 1432 -0.125 0.0255   +0.424 0.0001 Bacteria(100); Chloroflexi(94); Chloroflexi(94); Chloroflexales(94); Candidatus_Chlorothrix(94) 
0018 1361       Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(100); Bacillaceae(100); Ureibacillus(100) 
0019 1313       Bacteria(100); Firmicutes(100); Bacilli(100); Bacillales(100); Planococcaceae(92); Jeotgalibacillus(90) 
0020 1182     +0.221 0.0022 Bacteria(100); Firmicutes(100); Clostridia(100); Clostridiales(100); Family_XVIII_Incertae_Sedis(100); 

Symbiobacterium(100) 
0021 1162 -0.235 0.0015   +0.118 0.0303 Bacteria(100);Firmicutes(100);Clostridia(100);Clostridiales(100);Family_XI_Incertae_Sedis(100); Tepidimicrobium(100) 
0022 1116       Bacteria(100);Firmicutes(100);Bacilli(100);Bacillales(60);Thermoactinomycetaceae(51);Thermoactinomyces(51) 
0023 970       Bacteria(100);Firmicutes(100);Clostridia(100);Thermoanaerobacterales(100);Family_III_Incertae_Sedis(100); 

Caldanaerobius(100) 
0024 912       Bacteria(100);Firmicutes(100);Bacilli(100);Bacillales(100);Thermoactinomycetaceae(75);Thermoactinomyces(75) 
0025 724       Bacteria(100);Firmicutes(100);Bacilli(100);Bacillales(100);Thermoactinomycetaceae(82);Thermoactinomyces(82) 
0026 691       Bacteria(100);Firmicutes(100);Bacilli(100);Bacillales(69);Bacillaceae(69);Bacillus(57) 
0027 628 -0.309 0.0002   +0.138 0.0197 Bacteria(100);Firmicutes(93);Clostridia(79);Clostridiales(79) 
0028 591       Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Oxalobacteraceae(100); 

Janthinobacterium(100) 
0029 560       Bacteria(100); Firmicutes(100); Clostridia(100); Clostridiales(100); Family_XI_Incertae_Sedis(100); Tepidimicrobium(100) 
0030 554   -0.127 0.0261 -0.207 0.0036 Bacteria(100); Firmicutes(100);Bacilli(100);Bacillales(100);Bacillaceae(99);Geobacillus(99) 
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Figure 7 Non-metric multidimensional scaling ordination of Bray-Curtis dissimilarity 
between operational taxonomic unit (OTU) classifications (at 3% dissimilarity) for 40 
selected samples. Sample names and categories of performance parameters both 
indicated: conversion, C; acetic acid equivalent concentration, A; high molecular weight 
acid, H; samples high in all three categories are listed as 3. 
  

-0.5 0.0 0.5

-0
.5

0.
0

0.
5

NMDS Fermentation OTUs 97% Similarity by Bray-Curtis

Axis 1

A
xi

s 
2

G22
G47

G13

G19

G08

G09

G24

H20

G23

J11J18

J19

J20

S48

P01

G46

D04
D05

G14

G16

G41
G45
G48

N21

D18

F05

G38

E08

F01

F02

J04
K49

M24
S44

H01

U22

F06F09G34

AH
CA
CH
C
H
3



 

46 

 
Figure 8 The loadings of the cross-variance onto each axis pair across the variables in 
the 2-block partial least squares (PLS) regression. The loadings are 0.13 and 0.06 for the 
first two vectors. A total of 76% of the system wide variance was explained with 52% 
explained by the first vector and 24% with the second. 
 

 

Statistical Analyses 

The abundance of 13 OTUs in a community showed either a positive or negative 

regression correlation with one of the categories of interest (Conversion, AEQ, or HMW 

acids) that was statistically significant at a level of !=0.05 (Table 7). In cases where both 

the conversion and acid production correlated with the OTU sequence number the 

relationship was opposite in all but one case. In OTU 0002 both conversion and AEQ 

were positively correlated with sequence numbers reported. OTUs 0010 an 0017 both 

had high positive R2 values, 0.30 and 0.42 respectively, with HMW acid production 
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outcomes. Figure 7 shows the NMDS. The first two Eigen vectors and their loadings are 

shown in Figure 8. 

 

III.4 Discussion 

Process parameters alone do not dictate fermentation product outcome as 

evidenced by the variety of fermentation outputs observed in Appendix A and Table 5. 

There was no discernable pattern between sequence numbers and resulting OTU 

numbers in the sequenced communities (Appendix B). Nor was there a pattern between 

CBP performance and numbers of OTUs in each sample (data not shown). Community 

characters, in terms of richness (Chao 1) and diversity (Shannon index), were different 

across the samples and between geographic locations (Appendix B). The samples from 

Big Bend (samples with labels beginning with “J”) had consistently low numbers of 

OTUs. Yet in other sample sites (D, G, H, and S; Appendix B) there was no such 

consistency. The !YC table (Appendix B) shows that for those communities with very 

low sequence number, generally the OTUs found were present in other samples. This 

accounts for the complete similarity numbers between low number samples and those 

with large numbers of samples. We found no single OTU shared by all samples, OTU 

0006 was the most common and was missing from two communities with low numbers 

of OTUs (J11 and J19 both of which were Big Bend samples). OTU 0006 was classified 

as genus Geobacillus with 100% confidence. Geobacillus was also commonly found in 

the CBP communities with the standard inoculum (Hollister et al., 2012), and is one of 

the most commonly cultured organisms in Chapter VI of this dissertation. 
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Regression output can be found in Table 7. In cases where an OTU was 

correlated with both the conversion and HMW, the relationship was opposite with 

negative effects on conversion and positive association with HMW. In the one case with 

both conversion and AEQ associated with an OTU, OTU 0002, both conversion and 

AEQ were positively correlated with sequence numbers reported. OTU 0002 classifies 

as the genus Thermoanaerobacterium and was one of the most commonly sequenced 

organisms found in (Hollister et al., 2012), an in depth metagenomic exploration of the 

communities within the CBP. This genus has been a common target for studies of 

thermophilic cellulolytic organisms (Taylor et al., 2008). OTUs 0010 and 0017 both had 

high positive R2 values, 0.30 and 0.42 respectively, with HMW acid production 

outcomes. OTU 0010 classifies in phylum Thermotogae, known to produce acids (De 

Vrije et al., 2009) including isovaleric acid (Huber et al., 1990). OTU 0017 was 

classified in phylum Chloroflexi, commonly associated with anaerobic digestion (Riviere 

et al., 2009), but due to the difficulty of culturing, not well characterized in its role. 

The Bray-Curtis dissimilarity index is a measure of the compositional 

dissimilarity between sites. Figure 7 is a non-metric multidimensional scaling (NMDS) 

ordination of the 40 fermentation communities based on the Bray-Curtis dissimilarity 

index. An important organizing factor the ordination of the similarity among the 

communities is fermentation screen type (Stage I or Stage II). Notice that the bottom 

third of the ordination space includes only Stage II fermentations. The upper two thirds 

includes all the Stage I fermentations and two of the Stage II fermentations. Most of the 

communities sequenced due to superior performance in conversion alone (blue symbols 
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in Figure 7) are Stage II fermentations clustered near the bottom, except G22 a Stage I 

fermentation. Likewise, those communities with superior performances due to 

conversion and AEQ (green symbols in Figure 7) cluster together near the bottom so 

long as they are Stage II, while G13, a Stage I fermentation, clusters in the upper region. 

All fermentations with superior performance due to HMW acid production occur in the 

upper two thirds of Figure 7, including the two Stage II fermentations that cluster in that 

region of the NMDS ordination (H20 and N21). Both of these samples made heptanoic 

acids. These two samples are also the only Stage II samples to make heptanoic acids.  

There is an obvious and significant (p-value: 0.0005) negative correlation 

between conversion and HMW acid production (Figure 9). This trade off can also be 

seen in the first Eigen vector of the PLS that explains 52% of the total variance. The PLS 

loadings indicate that the resulting community differences were Bacilli in opposition to 

Clostridia, Thermatogae, and Chloroflexi. The presence of Bacilli increased with the 

increase in conversion. While Clostridia, Thermotogae, and Chloroflexi increased with 

all measured acids; but acetic, isobutyric, butyric, and isovaleric acids in particular 

(Figure 8). The second Eigen vector of the PLS, an additional 24% of the variance, 

showed a strong relationship between conversion and butyric acid with the relative 

abundance of Clostridia. In opposition to this relationship are isobutyric acid and the 

relative abundance of Bacilli, Thermatogae, Gammaproteobacteria, and Chloroflexi. 

Several Bacillus species are known to utilize organic acids as carbon sources (Schleifer, 

2009). While Clostridia are numerically abundant in the sequenced samples, they have 

less weight on the PLS than the Bacilli.   



 

50 

 
Figure 9 Performance parameter tradeoff: high molecular weight acid concentration (in 
g L-1 IC5-C7) verses conversion. High molecular weight (HMW) acid production is 
negatively correlated with conversion performance (p-value = 0.0005). 
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The discovery that the presence of Clostridia associates with increases in 

conversion and acids and that the frequency of Bacilli increases conversion is consistent 

with other work (Hammett, 2011). However, the association of specific taxa  

(Thermatoga, Chloroflexi) with increases in high molecular weight acids and overall 

diversity of the acid spectrum is a novel finding for 55°C fermentations. In a study of 

community composition within the CBP fermentations at both 40°C and 55°C the 

communities had different taxa and different product spectra however the authors 

proposed that the 40°C process parameter was responsible (Hollister et al., 2011). Thus, 

here I identified communities capable of HMW acid production at the preferred 

temperature for the industrial process.  
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CHAPTER IV 

PARALLEL COMPARISON OF FIVE ECOLOGICALLY DIVERSE SOILS AS 

INOCULA FOR THREE CARBOXYLATE BIOFUEL PLATFORM SCREENING 

TECHNOLOGIES 

 

IV.1 Introduction 

Chemical engineers in the Holtzapple research group at Texas A&M use three 

fermentation screens to evaluate and model carboxylate biofuel platform (CBP) 

fermentations under different process conditions: at different scales, times, substrate 

concentrations and product concentrations. To date, members of the Holzapple research 

group use these screens have been used sequentially to optimize different features of the 

process and as a result the inocula for subsequent screens presumably undergoes 

selection due to the interim storage conditions (e.g. fermentations are frozen while data 

from the primary screen are analyzed in order to identify the best performing 

communities, and the frozen material from the target communities are then used to 

inoculate the next screens). Thus, to date, efficacy of comparisons among the screens for 

a given community are dubious, in that, starting communities are not equal because it is 

highly likely they undergo a bottleneck during storage due to repetitious freezing and 

thawing. To forego this issue we conducted an experiment that compared the different 

fermentation screens after simultaneous inoculation with some well characterized “high 

performing” communities (Hammett, 2011). We collected fresh inocula from four sites 

in the Brazoria National Wildlife Refuge and one site on Galveston Island Public Access 
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Beach. We then inoculated the three screens simultaneously with sediment from those 

sites. Post-fermentation we sequenced the communities present in each screen at the 

point of harvest to compare the communities that establish across the manipulated 

parameters. I hypothesized that the communities and fermentation performance profiles 

for the three screens at similar substrate loading ratios and salt concentrations would be 

most similar. Furthermore, I hypothesized that fermentations with longer time scales, 

higher salt concentrations, and higher substrate loading ratios would experience stronger 

selective pressure and thus exhibit major shifts in community composition likely 

resulting in less diversity. Finally I predicted that plasticity, or the ability to adapt and 

perform across the substrate levels would be positively related to diversity.  

Historically, the chemical engineers developing the CBP have implemented 

different types of fermentation experiments to model the efficacy of a given community 

across different process conditions (e.g. substrate or product concentration). In Chapter 

II of this dissertation I show the primary 30-day batch screen implemented with all 

samples collected. For communities with the best performances in this primary screen, 

or for which there were particular targeted questions, additional screening with more 

complex, time-consuming, resource and labor intensive established screens occurred (see 

continuum particle dispersal model screen and counter current exchange below). These 

screen designs mimic salt product or substrate concentrations across stages of product 

accumulation encountered throughout the process at full scale. Prior to this experiment 

inoculation of subsequent screens involves frozen material from storage (several days to 

months). Studying the community compositions and process performances within and 
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across inoculum sources through the different fermentation screens provides for a more 

robust understanding of the relationship between communities and the process 

conditions. These findings can then be related to putative performance in the larger scale 

production facility. There remained the lingering question, however, of the impact of 

storage on community viability and fermentation capacity. So, we used fresh inocula for 

this experiment in each of the three screens and ran them simultaneously.  

 

IV.2 Materials and Methods 

Site Selection and Soil Analysis 

 We chose the five samples in this study because of proximity to Texas A&M; 

previous characterization (Chapter II), (Golub et al., 2012); extensive sequencing in 

other experiments in our project (Hammett, 2011); and exhibition of superior 

performance for several CBP fermentation performance parameters (Forrest et al., 

2012). We sampled, stored and characterized the sediments as described in Chapter II of 

this dissertation (Golub et al., 2012). This experiment represents the sequenced output of 

the screen evaluations explored in the companion paper (Golub et al., 2013).  
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Figure 10 Diagram of screening methods. Historically the screens are run in sequence 
with the Stage I or Stage II batch screen first, followed by the continuum particle 
dispersal modeling (CPDM) screen, followed by the counter current screen. Meanwhile 
the inoculum is derived from stored frozen materials generated in the first screen, thus 
the resulting differences might well have reflected storage and time associated 
bottlenecks in microbial inocula.  For this experiment all screens (Stage II, CPDM, and 
Counter Current) were inoculated simultaneously with fresh sediment from five sites, 
thus allowing direct comparison of results across screens. 
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Screening Technology 

The three screening methods are described in detail in (Golub et al., 2013). We 

conducted the primary 30-day batch fermentation performance screen as outlined in the 

description of Stage II fermentations in Chapter II (Figure 10). The continuum particle 

dispersal model screen (CPDM) design tests samples against a range of substrate and 

product concentrations (Aiello-Mazzarri et al., 2006). The CPDM analysis in the present 

study consisted of five fermentations for each inoculum (Figure 10). We ran samples at 

four substrate levels (20, 40, 70 and 100 g L-1 paper/fermentation broth) with no added 

salts and one sample with the highest substrate level (100 g L-1) with salts added (20 g L-

1). We ran the CPDM for twenty-eight days in five 1 L fermentation vessels (Nalgene 

NNI 3120-1010) with a modified cap that allows for stirring and gas release by way of 

internal steel tubes and a rubber septum. We took liquid samples (with the same volume 

of deoxygenated water replaced) every two days to monitor acid levels in this screen. 

We sequenced the end point community (community at day 30) for each of the CPDM 

vessels (liquid retention time = 30 days). While the inocula for this experiment was from 

fresh sediment, we have historically we setup the CPDM fermentation screen from 

storage products from the 30-day batch screen. Briefly, in the traditional setup we 

inoculate a 1mL aliquot into a 650 mL fermentation. After thirty days, we homogenize 

the community from this up-culture, store one portion for sequencing, and inoculate the 

remainder equally into each of the five conditions. Then these screens are identical in all 

other ways to the conditions described for the present study. For communities successful 

in the CPDM screen the counter current exchange screen (CC) is usually the final screen 
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designed to follow the sample to a steady state of acid production. In this, the third stage, 

screen researchers load four fermentation vessels with equal ratios of biomass and 

fermentation broth and over the course of several months biomass and liquid are loaded 

into and transferred across the vessels to cause opposite gradients of fresh broth and 

biomass as illustrated in Figure 10. In this study we ran this screen in four 1 L bottles 

modified for stirring and gas purging with stirring bars as were the CPDM and Stage I 

30-day batch fermentations. We took liquid samples every two days with replacement to 

monitor the acid concentration within this screen. We ran this screen until we detected a 

steady state of products. Figure 11 is a detailed schematic of the sample names used 

throughout this chapter. The first half of the sample name indicates the sediment or 

fermentation from which the sample originated. The sediment sample Bra25 corresponds 

to fermentation sample W01 and is from a freshwater marsh location. The sediment 

sample Bra55 corresponds to W02 and is from a saltwater marsh location. Bra65/W03 is 

a costal prairie soil sample, Bra95/W04 is a salt lake sediment sample, and GAL/W05 is 

an intertidal sediment sample. Those samples ending in 40C and 55C indicate samples 

that were run as Stage II screen fermentations at the corresponding temperature (40°C or 

55°C) (Figure 10, Table 2). Those samples ending in 20, 40, 70, 100 and 100S are 

CPDM fermentation screens of the aforementioned concentrations. Samples ending in 

CC## indicate with those numbers the position in the current, and the time point of 

collection (Figure 10). 
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Figure 11 Schematic diagram of samples names for this project.  
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Fermentation Characterization and Product Storage 

We performed fermentation characterizations for the three screens as described 

in (Golub et al., 2012). We collected and stored products from each fermentation vessel 

the 30-day batch, CPDM, and CC fermentations separately as described in Chapter III 

and (Golub et al., 2011a). We stored all samples at -80°C until extraction of genomic 

DNA for comparison in the community analysis.  

 

Genomic DNA Extraction of Fermentation and Sediment Samples 

We extracted genomic DNA from fermentation samples for community analysis 

as described in (Golub et al., 2011a). We conducted DNA extractions from soil 

microbial communities as described in (Hollister et al., 2010a). Briefly, we performed 

the process with PowerMax Soil DNA Isolation Kits (MO BIO Laboratories, Inc., 

Carlsbad, CA, Cat # 12988-10) modified from manufacturer’s protocol by the primary 

addition of 15 mg of lysozyme in 150 µl + 15 mL of the bead solution per reaction tube. 

We followed this incubation with a one hour shaking water bath incubation set at 37°C. 

In absence of a shaking water bath, we vigorously shook the samples every ten minutes 

during incubation. We followed all other manufacturer’s protocols as instructed after this 

addition. 

 

454 Pyrosequencing 

We performed 454 pyrosequencing on soil and fermentation genomic DNA 

extractions as described in Chapter II of this dissertation.  Briefly, after extraction and 
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quality checking of community genomic DNA, we normalized samples to 25 ng/µl in a 

total of 8 µl of 10 mM TRIS HCl. We shipped frozen samples, on dry ice, to the 

Research and Testing Laboratories (Lubbock, Texas) for bacterial tag-encoded FLX 

amplicon pyrosequencing (BTEFAP) (Acosta-Martinez et al., 2008) on a Roche Life 

Sciences 454 FLX sequencer (Roche Applied Science, Werk Penzberg, Germany) with 

titanium chemistry. Bacterial sequences were amplified with the following primer set: 

forward and tagged 27f 5'-GAG TTT GAT CNT GGC TCA G-3' and reverse 519r 5'-

GTN TTA CNG CGG CKG CTG-3' (Hollister et al., 2011; Lane, 1991); (Table 6). 

These primers cover the V1 through V3 region of the 16S rRNA gene (Figure 6). 

 

Post Sequencing Processing and Data Analysis 

All sequencing post processing in this chapter follows the methods outlined in 

Chapter III of this dissertation. I classified all sequences using the silva.bacteria database 

(<http://www.mothur.org/wiki/> accessed 5/17/11), and constructed bar graphs at the 

order level from those classifications. I utilized the mothur Chao 1 richness estimator 

and the Shannon Index for estimation of diversity. After normalizing the samples sizes 

as outlined in Chapter III of this dissertation I calculated a dendogram based on the Yue-

Clayton theta (!YC) similarity coefficient. I also constructed a non-metric multi-

dimensional scaling (NMDS) plot of the Bray-Curtis dissimilarity index to display the 

maximum differences between samples based on OTU binning. 
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Table 8 Fermentation performance data for 30-day batch screens. 
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Table 9 Soil analysis results for five locations used to simultaneously inoculate three fermentation screens. 
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IV.3 Results 

Soil Analysis and Fermentation Results 

 Table 8 shows the 30-day batch screen fermentation results. Table 9 shows the 

soil analysis. For the primary 30-day batch screen, the inocula Bra25 (W01_55) and 

Bra65 (W03_55C) were the most optimal screened inocula due to high conversion. The 

Bra55 inoculated (W02_55C) fermentation made a measurable percentage of longer 

chain volatile fatty acids, namely valeric acid. The actual amount of acids made in this 

fermentation was not sufficient to shift the gram weight output of fermentation. Overall, 

in the 30-Day batch screen the GAL sediment inoculated fermentation W05_55C made 

the largest amount of acids, though the overall conversion was low for this sample. In 

the CPDM experiments W01, W04, and W05 fermentations were the preferred inocula 

for the conversion outputs sought. We condensed all outputs for the CPDM into a single 

scaled output (W01>W03>W05>W02>W04) and a set of graphs (Figure 12). We 

combined all substrate concentrations to produce the CPDM maps and did not analyze 

the data separately (Golub et al., 2013). The counter current exchange screens also 

resulted in rankings with the order being W02>W01=W04=W05!W03. The output for 

these experiments is the ranking as they were not analyzed for fermentation outputs 

separately (Golub et al., 2013). 
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Figure 12 Maps of continuum particle dispersal model (CPDM) screen of five samples. 
The shift of the plot closer to 1 on the conversion axis and upward on the total 
carboxylic acid concentration axis implies that the sample will be a better performer in 
the carboxylate biofuels platform. Reproduced from Golub et al. (2013) with permission 
from Elsiver (originally published in Bioresource Technology an Elsiver publication.) 
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Sequencing 

There were a total of 402076 sequences that were binned into a total of 8928 

OTUs after quality checking was complete (Appendix D). All sequences were deposited 

with the National Center for Biotechnology Information (NCBI) sequence read archive 

under the project accession number PRJNA196483. There were insufficient numbers of 

sequences for several samples. These samples are highlighted in grey in Appendix D and 

were removed from further analysis.  

 

IV.4 Discussion 

Appendix D shows the overall diversity by the number of OTUs, and the 

Shannon index decreased considerably and consistently from the soils to the three 

screens. There was also a decrease in richness as shown by the Chao 1 richness 

estimator. I observed a decrease in diversity with the increase in substrate loading of 

some of the counter current screens though the relationship was not consistent. No such 

pattern was observed in the CPDM samples. There was a decrease in richness across 

increasing substrate loading in the counter current exchange. There was also a 

corresponding decrease in richness as evidenced by the Chao 1 estimator along the 

subsequent time points (Appendix D). Again, no such pattern appears in the CPDM.  

To see the magnitude of diversity change from soil to fermentation compare 

Figure 13 and Appendix E. Figure 13 shows the large number of order level 

classifications found in the five inocula. The communities are remarkably similar across 

screen types from all sediment samples Appendix E. The most striking observation 
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comes from following concentrations across the counter current exchange experiments 

where the concentration appears to dictate the community. Further evidence of the 

similarity can be seen in Figure 14 where several CC samples cluster seemingly on the 

first number in their exchange identifier. This indicates they were part of the same 

concentration. The final piece of evidence is observable in Appendix F where the 

samples are color coded by counter current exchange screen concentration for the 

counter current samples. Future directions for this dataset should include analysis of 

these observations with fermentation data, similar to that described in Chapter III. 
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Figure 13 Relative abundance bacterial orders within soil samples from Brazoria 
National Wildlife Refuge and Galveston Island. Sites were selected for inocula in the 
screen comparison due to both proximity to the lab and an established understanding of 
ecological differences among the communities despite proximity to one another.  
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Figure 14 Non-metric multidimensional scaling of three carboxylate biofuel platform 
screen comparisons. Non-metric multidimensional scaling is an ordination of the Bray-
Curtis dissimilarity between OTU classifications (at 3% dissimilarity) for screen 
comparison experiments. Sample names include indications of the soil inoculum or 
screen type and manipulated conditions associated with screen design. For a detailed 
explanation of sample name interpretation see Figure 11. 
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CHAPTER V 

ASSEMBLY AND PHYLOGENETIC ANALYSIS OF AN ISOLATE LIBRARY 

DERIVED FROM CARBOXYLATE BIOFUEL PLATFORM FERMENTATIONS 

INOCULATED WITH ECOLOGICALLY AND GEOGRAPHICALLY DIVERSE 

MICROBIAL COMMUNITIES 

 

V.1 Introduction 

Metagenomic analyses of microbial communities provide for identification of 

organisms and putative insights into the metabolic abilities of the organisms. Ultimately 

to confirm the functional ecology and specific phenotypes, pure cultures of the 

organisms are necessary. We undertook a large-scale isolation project to capture a 

diverse collection of individual isolates from 30-day batch screen fermentation 

communities for a carboxylate biofuel platform (CBP). This affords us the opportunity to 

conduct more traditional direct studies of the microbes and microbial processes selected 

for by the fermentation screens. Bacteria from fermentation communities potentially 

possess relevant traits to improve industrial processes (Sizova et al., 2011). By culturing 

microbes from fermentation communities ranked best for conversion we provide for 

future studies of: 1) individual strains; 2) genes and gene networks important for 

fermentation or survival in an extreme environments; 3) industrially relevant traits; 4) 

assembled community dynamics and; 5) booster inocula for directed fermentations. Thus 

we chose to characterize the library inasmuch as knowing the species of the isolates 

serves to prioritize the candidates for particular traits.  
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 In the CBP fermentations, intermittent oxygen exposure is common. Possible 

future uses of these isolated microorganisms may be in a production plant that will not 

be kept completely anaerobic. Thus, the microbes used to inoculate the CBP must 

tolerate bursts of atmospheric levels of oxygen. Each culture approach in this study is 

designed to select for a diversity of facultative anaerobes. Our objective was to assemble 

and phylogenetically characterize a library of isolates from: CBP fermentations with 

particular performance outcomes, fermentations from sites that expanded the geographic 

diversity of the samples targeted for isolates, and from samples from other studies of 

traits relevant to industry (Hollister et al., 2012; Hou et al., 2012). We used a variety of 

culturing techniques to maximize library diversity including multiple media types and 

two oxygenation conditions. We sequenced a partial 16S subunit of the ribosome gene 

(16S rRNA gene) segment for all isolates and inferred a phylogeny for the library. We 

also compared the partial 16S isolate sequencing with partial 16S 454 pyro-sequencing 

from other experiments conducted in our lab (Chapter III), (Hammett, 2011), to 

determine whether any of these isolates were also detected in either the soil communities 

or the fermentation communities.
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Table 10 Summary of isolate and sequence distribution across soil sites, fermentation experiments and culture conditions 
imposed. This library of isolates originated from fermentation experiments inoculated with soils from different sites. Focus for 
isolate library construction efforts was mainly fermentations with conversion performances that were among the top 10%, 
other fermentations included were based on maximizing geographic diversity. Isolation targets with fermentation identification 
number, corresponding soil identification number, location of soil sample, site name of soil sample, conversion percentage of 
fermentation, isolated (Iso.), and sequenced (Seq.) numbers of strains, across media and oxygenation regime, growth priority, 
rationale for targeting, and totals within sites of isolates and sequenced isolates.  
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Table 10 Continued. 
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V.2 Materials and Methods  

Selection of Samples Cultured 

The selection of communities targeted for isolation (Table 10) was based on 

including communities with superior conversion performance (g volatile solids digested/ 

g volatile solids fed), selected from the top ~5% of communities in the 30-day batch 

screen (Chapter II). Also, we included communities from sites chosen to maximize 

possible geographic diversity in the isolates. In total, we cultured from at total of 36 

samples, 34 were from fermentation screens and two additional samples came from 

collaborative projects (Hollister et al., 2012; Hou et al., 2012).  

Since we were interested in selecting for diversity using different media and 

oxygen conditions, we attempted to isolate similar numbers from each sample on each 

medium, !25 per sample. Table 10 indicates the actual numbers of isolates derived from 

each culture approach.  

 

Isolate Culture Methods 

 We collected a combination of wet and solid materials from the 30-day batch 

screen fermentation and stored it at 4°C until ready to culture on solid agar medium. For 

this study we employed three different defined media: Drake’s Thermophilic Acetogen 

Medium (Drake, 1994) (DTAM), modified by aerobic handling (Non-Hungate), and SL9 

trace elements (Tschech & Pfennig, 1984); Cellulose Agar for Thermophiles (Atlas, 

1997) (CAT), modified by aerobic handling; and Modified Growth Medium (Nuttall & 

Dyall-Smith, 1993) (MGM) a halophile medium. We grew cultures on these three media 
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at 55°C. For six of the samples we used two different approaches to limit oxygen during 

culturing: growth in a nitrogen triple flushed and sealed food grade plastic bag (Sunbeam 

Products, Inc., Boca Raton, FL, USA, FoodSaver™ Model V2220,) or an anaerobic 

chamber (Oxoid Limited, Hampshire, England, 2.5L AnaeroJar Assembly) with 

chemical reduction of oxygen (Oxoid Limited, Hampshire, England, AneroGen 2.5L 

Cat. #AN0025A), both performed after transferring within a biosafety cabinet with 

exposure to ambient oxygen levels. Based on the color of the oxygen indicator 

(resazurin) in the CAT plates we estimate that oxygen was more limited in the chambers 

(light grey) than in the sealed plastic bags (pink). For the other thirty of the thirty-six 

samples we used only the nitrogen triple flushed and sealed food grade plastic bag 

method. 

We isolated cultures to single colonies on solid medium and re-streaked 2 to 4 

times to ensure a pure culture. Then we grew the isolates in the liquid broth version of 

the given defined medium under the same conditions as the primary culture, with either 

nitrogen flushing in sealed bags or chemical oxygen purging in the anaerobic chambers. 

We allowed the liquid cultures to grow until we saw turbidity or high colony numbers 

after transfer back onto solid media. We established stock cultures containing glycerol 

(20% of total volume) for storage at both -20°C and -80°C.  

 

Genomic DNA Extraction 

 To collect DNA from an isolate we transferred a single colony into a 250µL 

polymerase chain reaction (PCR) tube containing 20µL of Alkaline Lysis Buffer (0.25% 
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SDS, 0.05 N NaOH) (Storms et al., 2004), then incubated at 95°C for 30 min. in a stable 

heat block with water, frozen at -20°C for 30 min., and when removed from the freezer 

we combined 80µL of room temperature Promega nuclease free water (Madison, WI, 

USA) with the lysed cell suspension. We vortexed or vigorously shook the mixture to 

both thaw and homogenize the contents. We used 5µL of this preparation for PCR 

amplification of the 16S rRNA gene. In instances when this process failed to provide a 

sufficient quality or yield of genomic DNA we used Wizard® SV Genomic DNA 

Purification System (Promega Corp., Madison, WI, USA) extraction kits. We froze all 

lysis products at -20oC until we accumulated enough samples for a 96 well PCR 

amplification or for a maximum of one week. Controls to monitor for uncontaminated 

DNA extractions included placing stock Alkaline Lysis Buffer alone through the 

extraction protocol and PCR to test the sterility of the solutions and using Escherichia 

coli for the positive control throughout this procedure. 

 

PCR Amplification of Bacterial 16S rDNA 

 To prepare isolate genomic DNA extracts for Sanger sequencing and to verify 

the amplification of community DNA extracts, we amplified a ~1450bp region of the 

16S rRNA gene spanning variable region V1 to variable region V8 as shown in Figure 6.  

Primers for PCR amplification were forward primer 27f: 5’-AGA GTT TGA TCC TGG 

CTC AG-3’ and reverse primer 1492r: 5’-CGG TTA CCT TGT TAC GAC TT-3’ (Lane, 

1991); (Table 6), supplied by Integrated DNA Technologies, Inc. (Coralville, IA, USA). 

PCR amplification primers were rehydrated to a concentration of 100 µM, and diluted to 
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a working stock concentration of 20 !M with Promega nuclease free water. PCR 

reaction constituents for a 50 µL reaction include: 5 µL 10x buffer (500 mM KCl, 300 

mM TRIS pH 8.3, 15 mM MgCl2), 5 µL bovine serum albumin (BSA) (1.0mg/ml), 2 µL 

MgCl2 (25 µM), 4 µL GeneAmp dNTPs (0.1 mM, Life Technologies, Carlsbad, CA, 

USA, formerly Applied Biosystems), 1 µL 27f, 1 µL 1492r, 0.5 µL Taq DNA 

Polymerase (2.5 Units New England Biolabs; Ipswich, MA, USA), 26.5 µL H2O, and 5 

µL template DNA. Bovine serum albumin was used in the PCR reaction to alleviate 

inhibition of replication (Kreader, 1996)  Amplification consisted of initial denaturation 

for 1 min. at 95°C; followed by 35 cycles of 1 min. at 95°C (denaturation), 1 min. at 

55°C (annealing), 1.5 min. at 72°C (extension); followed by one cycle of final extension 

for 10 min. at 72°C; and then held at 4°C until separation by gel electrophoresis. Each 

group of PCR reactions included a positive and negative control (E. coli DNA and PCR 

grade water used as template for each, respectively). All isolates were amplified by PCR 

with the nearly complete 16S rRNA gene primers listed even when smaller portions of 

the 16S rRNA gene were the sequencing target, as the PCR product may be used for 

further sequencing should the need arise. Large 50 µL PCR reactions were required for 

this project, as all samples were normalized to 15-25 ng/µL for submission to Sanger 

sequencing. For isolate sequencing we normalized the DNA concentration of the full 96-

well plates, which often required the full volume of the PCR reaction remaining after 

visualization. For agarose gel electrophoresis and visualization of PCR amplifications 

we used ethidium bromide (2 µL at 20 mg/100 mL) mixed per 100 mL 0.75% agarose 

(SeaKem® LE Agarose, Lonza, Walkersville, MD, USA). We performed gel 
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electrophoresis with 6 volts per cm of gel length between electrical contacts (Cambrex, 

East Rutherford, NJ, USA). We ran a 5 µl aliquot of each PCR product and 2 !L 1 kb 

Ladder (New England Biolabs Inc., Ipswich, MA, USA) on the gel to compare to the 

band sizes with the predicted product measuring 1450 bp. To track the migration of the 

PCR product in the gel we added 1 µl 0.015% bromophenol blue in each sample. We 

quantified the PCR products using an AlphaImager 2000 v5.5 with spot density software 

(Alpha Innotech Corp., San Leandro, CA, USA) and picture capture and visualization 

occurred on a UV Illuminator (Alpha Innotech Corp., San Leandro, CA, USA) with the 

same software. To estimate the concentration of the PCR projects we compared the 

intensity of each band to the intensity of a known concentration of DNA in the ladder 

bands. We used PCR grade nuclease-free water to dilute PCR products when necessary. 

  

Sanger Sequencing of the 16S rRNA Gene 

 Beckman Coulter Genomics, formerly Agencourt Bioscience Corporation 

(Danvers, MA, USA) sequenced the 16S rRNA gene of all isolates using the Sanger 

single pass method (Sanger et al., 1977). For the majority of samples sequenced for this 

study we supplied the following primers at a concentration of 100 µM: forward 27f: 5’-

AGA GTT TGA TCC TGG CTC AG-3’ (Lane, 1991)  and reverse 519r-Gray: 5’-GTN 

TTA CNG CGG CKG CTG-3’ (Acosta-Martinez et al., 2008); Table 6). For a more 

complete look at the 16S rRNA gene (Figure 6) and a more reliable determination of 

classification, we generated a larger sequence with the following forward primers 27f: 

5’-AGA GTT TGA TCC TGG CTC AG-3’ and 515f: 5’-GTG CCA GCM GCC GCG 
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GTA A-3’, and reverse primers 1100r:  5’-AGG GTT GCG CTC GTT-3’, and 1492r: 5’-

CGG TTA CCT TGT TAC GAC TT-3’ (Lane, 1991); Table 6), (Integrated DNA 

Technologies, Inc., Coralville, IA, USA).  

 

Post Sequencing Processing  

 We assembled the reads for each sample into contigs using Sequencher 4.10.1 

(Gene Codes Corporation, Ann Arbor, MI, USA). We used the Ribosomal Database 

Project (RDP) classifier function (<https://rdp.cme.msu.edu/> accessed 11/11/11) (Cole 

et al., 2009) to reference against the contigs for putative identities of the isolates. I used 

the RDP pyrosequencing pipeline aligner function (accessed 11/11/11) to align all 

sequences. I trimmed the alignment to a constant length using Bioedit v7.0.9 (Hall, 

1999) To assess phylogenetic diversity, I analyzed all samples that formed a contig with 

a 97% identity cut off for assignment of OTU using the cluster command (average 

neighbor default) of mothur v1.22 (Schloss et al., 2009). I deposited sequences into 

National Center for Biotechnology Information (NCBI) GenBank accession numbers 

KC847997 - KC848049 and KC849718 - KC851724. I used a representative library of 

different isolates as determined by OTU assignment and the get.oturep function in 

mothur v1.22 in the RDP Tree Builder program (accessed 11/11/11) with the inclusion 

of the highest similarity sequence in the RDP Hierarchy Browser (accessed 11/11/11) 

feature as nearest neighbors for classification. I obtained strains for comparison from the 

SeqMatch feature of the RDP website (accessed 11/11/11). I aligned all nearest neighbor 

sequences using the RDP aligner function (accessed 11/11/11) with the corresponding 
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database of representative sequences and I trimmed the sequences to the same length as 

the project isolate sequences using Bioedit. I uploaded the alignment into the myRDP 

database and selected for inclusion in the RDP Tree Builder program (accessed 

11/11/11.) The RDP Tree Builder used Jukes-Cantor corrected distance matrix 

modeling, and Weighbor, a weighted neighbor-joining tree algorithm (Bruno et al., 

2000) or tree creation with bootstrapping at 100 iterations. 

 

Analysis 

 I compared the outcome of isolation by sample, by media, and by media and 

oxygenation condition through OTU clustering and classification. I also compared the 

whole isolate library (Sanger et al. & 1977) composition to the post fermentation 454 

pyrosequenced community libraries and to the original soil community composition 

(Chapter III). Since the regions of sequencing for that study and this on are the same, the 

two collections (454 pyro-sequencing and Sanger sequencing) were compatible for this 

purpose. This resulted, however, in a shortened segment of comparison, as the 454 

pyrosequencing reads were shorter in length.  
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Table 11 Distribution of operational taxonomic units by original fermentation sample. Rows correspond to each Operational 
Taxonomic Unit (OTU) numbers based on a phylogenetic analysis. Columns correspond to the fermentation community or 
other source for the isolates (Elec. indicates electrical fuel cell project (Hou et al., 2012); JGI indicates Joint Genome Institute 
project isolates (Hollister et al., 2012); and E. coli indicates internal control isolates). The final column and final row 
correspond to the sum of all isolates within each OTU and each fermentation sample respectively. Coloring indicates red (no or 
few samples) to green (many samples) and is calculated by category. 
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Table 11 Continued. 
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V.3 Results  

We collected a total of 1997 independent isolates across 34 fermentation samples 

inoculated with naturally occurring microbial communities (Chapter II), as well as, two 

additional projects related to examining the microbial communities in a CBP 

fermentation (Hollister et al., 2012; Hou et al., 2012); (Table 10). We sequenced a total 

of 1866 of those isolates. We generated a total of 2078 sequences due to repeated efforts 

for some sequences, and included 2060 sequences in the analysis after quality control 

(NCBI Genbank accessions: KC847997-KC848049, KC849718-KC851724). The length 

of the alignment was 482 bases while the average length of sequences was 445 base 

pairs. I found a total of 230 unique sequencing reads. I define unique as identical at the 

DNA sequence level. Binned at 97% similarity (3% dissimilarity), the commonly 

proposed level for species grouping, there were a total of 46 groups or operational 

taxonomic units (OTUs), hereafter referred to as OTU 1 through OTU 46. OTU 31 

included an Escherichia coli control group (one OTU and two unique sequences) that we 

sequenced as a positive indicator of quality during extraction, PCR, and sequencing 

reactions. By examining the columns of Table 11 you can observe the OTU overlap 

between each of the sites. 

 Appendix G shows a phylogeny of the distinct bacterial lineages (OTUs). Of the 

230 unique sequences, 223 or 97% were in the phylum Firmicutes. Of the Firmicutes I 

identified class Bacilli as 85% (196/230) of unique isolates. Class Clostridia made up 

the remainder of those sequences within Firmicutes with 11.7% (27/230) of unique 

isolate sequences. Additionally I found phylum “Actinobacteria” class Actinobacteridae 
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at 0.9% (2/230) unique level sequences, and phylum Proteobacteria class 

Gammaproteobacteria with 1.3% (3/230) of the library at the unique sequence level.  

 

V.4 Discussion 

 One facet of our ongoing effort to characterize the microbial communities 

successful at fermentation in the carboxylate platform was to establish a library of 

individual isolates. We sought to maximize diversity within the library in order to 

increase its usefulness. To this end, we attempted to collect at least 25 independent 

single colony isolates with each of three distinct defined media. Furthermore, for a 

subset of the fermentation communities we imposed more stringent oxygen restriction in 

an attempt to capture greater diversity. Our efforts were successful, we collected distinct 

bacterial lineages (OTUs). In the very well represented OTUs we observed overlap 

across the media types (Table 11, Figure 15). Specifically 4% were captured on all three 

media, 6% on both CAT and MGM, 9% on CAT and DTAM, 4% on both DTAM and 

MGM, and 63% of the OTUs resulted from one media or one media and oxygenation 

condition. Perhaps a most noteworthy example is that by employing the anaerobic 

chamber in combination with the cellulose agar (CAT) we captured 4 OTUs (OTUs 23, 

29, 34, and 38) not otherwise represented in the library. It seems reasonable to conclude 

our approach of using multiple media types and oxygenation conditions successfully 

expanded the diversity of OTUs represented in the library.  
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Table 12 Comparison of the operational taxonomic unit (OTU) (based on 3% 
dissimilarity) sequence matches across all possible pairings of three sequence collections 
in this dissertation. For each site with sequences available for the soil, the fermentation 
screen (Ferm.) and our isolate library (Iso.) (N=19) the numbers of OTU sequences for 
each collection and the number that overlap between and among them at the 3% 
dissimilarity level are listed.  
 

Sample Soil Only Soil-Ferm. Ferm. Only Ferm.-Iso. Iso. Only Iso.-Soil All 
E08 651 1 59 4 7 0 0 
F01 1266 4 55 1 1 0 0 
F02 2068 2 68 2 5 0 0 
F05 1655 0 37 0 3 0 0 
F06 1010 3 39 1 0 0 0 
F09 2158 1 49 0 3 0 0 
G08 1059 2 38 1 4 0 0 
H01 748 0 60 2 2 0 0 
H20 1675 4 16 1 3 0 0 
J04 699 2 28 3 2 0 0 
J11 574 0 17 0 3 0 0 
J18 569 1 16 2 3 0 0 
J19 411 0 24 1 3 0 0 
J20 556 1 26 0 4 0 0 
K49 522 0 31 2 4 1 0 
P01 2804 0 66 2 2 0 0 
S44 130 2 39 5 2 0 0 
S48 317 0 15 2 1 0 0 
U22 391 1 27 2 3 0 0 
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Table 13 Comparison of the unique sequence matches across all possible pairings of 
three sequence collections in this dissertation. For each site with sequences available for 
the soil, the fermentation screen (Ferm.) and our isolate library (Iso.) (N=19) the 
numbers of unique sequences for each collection and the number that overlap between 
and among them at the unique level are listed.  
 

!"#$%&' !()%'*+%,' !()%-.&/#0' .&/#0'*+%,' .&/#0-12(0' 12(0'*+%,' 12(0-!()%' 3%%'
456' 789:' 5' 7686' ;' 7<' 5' 5'
.57' 8<68' 7' 7::5' 7' 8' 5' 5'
.58' ;:65' 7' 7=:5' :' 77' 5' 5'
.5=' :==<' 5' 7678' 5' :' 5' 5'
.5>' 89>7' 5' 7:7:' 7' 5' 5' 5'
.59' :6;:' 5' 7>:<' 5' :' 5' 5'
?56' 86:7' 7' 7<=7' 5' >' 5' 5'
@57' 7;=9' 5' 7>98' 8' =' 5' 5'
@85' :9>7' 7' 7>>5' 7' >' 5' 5'
A5;' 7786' 5' 7>67' :' >' 5' 5'
A77' 965' 5' 7>9<' 5' >' 5' 5'
A76' 75=5' 7' 7985' 7' 6' 5' 5'
A79' 785=' 5' 7989' 7' 9' 5' 5'
A85' 77=<' 5' 8788' 5' ;' 5' 5'
B;9' 7=8>' 5' 7:96' 8' =' 5' 5'
C57' =8<5' 5' 966' 8' 8' 5' 5'
!;;' 755:' 5' 798>' >' ;' 5' 5'
!;6' 7>57' 5' 985' 8' :' 5' 5'
D88' 768<' 5' 7:8<' 8' >' 5' 5'
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Figure 15 Media and oxygen incubation regime associated with each operational 
taxonomic unit (OTU) identified within the library. Bars indicate the relative proportion 
of each culture condition for each OTU (labelled by number on the left axis). Column to 
the right indicates the number of isolates within each OTU. Abbreviations: cellulose 
(CAT), acetogen (DTAM), halophile (MGM), and anerobic chamber incubations (-AN). 
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 Most of the isolates we cultured fell into an OTU that was similar to a known 

sequence described and named within the 16S databases. In fact, of the 46 resulting 

OTUs 45 were identified to class and order at 100% confidence. Only 1 of 46, OTU 33, 

resulted in 92% confidence for class Bacilli, order Bacillales. At the family level, 7 of 46 

OTUs were below 95% confidence. All 7 of these were within the family Bacillaceae; a 

diverse group and known to be difficult to classify by 16S sequence alone (Schleifer, 

2009). 

 During our efforts to determine whether natural microbial communities from 

saline and thermal environments might exhibit superior performance in CBP 

fermentations (Chapter II), we conducted targeted locus sequencing with several 30-day 

batch screen fermentation communities (Chapter III) inclusive of many of the samples 

from which we cultured for this study. Furthermore, for a subset of the 30-day batch 

screen fermentation communities we conducted a targeted locus community survey of 

the original soils used as inocula for the fermentations (Chapter III). Thus, I wanted to 

see whether, and to what extent, the sequences from the isolates matched sequences in 

the community analyses of those same fermentation communities and soils. Table 12 

shows the overlap of the sequences across these three datasets at the OTU level and that 

74% of sites had at least one sequence overlap between the isolates and fermentation 

community sequencing. Table 13 shows the overlap of these sequences across these 

three datasets at the unique level and that and 79% of sites had at least one sequence 

overlap between the isolates and the fermentation community sequencing. No sequences 

in this subset shared identity between all three categories (soil, fermentation, and isolate) 
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at either level. Only one sample, K49, shared a sequence at the OTU level between the 

isolates and the soil community.  

 Also of interest was the idea that some strains could overlap from soil to 30-day 

batch screen to isolation. To examine this question I compared the sequence libraries of 

all isolates, all 30-day batch screen sequences, and all soil sequences. Figure 16 and 

Figure 17 show the overlap in these complete sets of sequencing without regard to 

sample site. Even at the unique level of comparison (every base over the examined 

portion), 23 isolate sequences matched sequences in the fermentation screen community 

sequences (Figure 17). One isolate sequence matched a soil community sequence. At the 

97% similarity level, there were 10 operational taxonomic units (OTUs) in common only 

between the isolate library and the fermentation sequencing, and 2 OTUs in common 

only between the isolate library and the soil sequences, and 5 OTUs in common among 

the isolate library, the fermentation sequences, and the soil sequences (See Figure 16). 

 This diverse library of bacteria isolated from communities successful at CBP 

fermentations will serve as a resource for our ongoing efforts to optimize the use of this 

approach for associated biofuel and bioproduct industries. For example, we may be able 

to assemble an optimized community for use as a booster inoculum for carboxylate 

platform applications. Furthermore, with isolates in hand and characterized, any such 

communities assembled from these resources can be studied in depth via a variety of 

approaches that require generation of baseline genome sequence(s). In addition the 

library can serve as a source for strains for use in other industrial processes that use 
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individual isolates and require growth under conditions similar to those involved in these 

fermentations (e.g. 2% salt, 55°C).    
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Figure 16 Venn diagram exhibiting the numbers of operational taxonomic units (OTUs) 
(at 97% similarity) and operational taxonomic unit (OTU) matches among sequence 
collections in this dissertation. For a list of sequenced communities see Table 9. 
 

 
Figure 17 Venn diagram exhibiting the numbers of unique sequences and unique level 
sequence matches among sequence collections in this dissertation. For a list of 
sequenced communities see Table 9. 
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CHAPTER VI 

CONCLUSION 

 

In Chapter II we extensively sampled natural communities to explore the 

hypothesis that saline and thermal environments would select for microbes that perform 

in similar conditions. Variation in geographically and ecologically diverse sediments 

resulted in wide ranges of sediment chemistry. There were three times as many samples 

in the Stage II style fermentations than were collected in Stage I. This resulted in more 

power in the analysis of the relationships between the sediments and the fermentation 

performance. When effects were observed, they bore out in both the Stage I models and 

the Stage II models. The most notable of these was the influence of temperature of the 

original in situ soil. The effect of temperature was negative on acid production while 

positive on conversion. With the increase in sample size, other effects were also 

observed such as pH, total nitrogen, magnesium and calcium as measured through 

detailed salinity, and the (plant available) phosphorus. We also observed the evidence 

that process conditions have an influence on fermentation outcomes (Stage I verses 

Stage II), yet do not dictate the performance of the fermentation. Evidence of this can be 

seen in the variability of fermentation outcomes and the overlap of several outputs across 

fermentation conditions. I predict that the resulting variability in fermentation we 

observed was due to the variability of communities used as inocula.  

In Chapter III I explored the resultant bacterial community structure from many 

of the top performing communities across several important fermentation characteristics 



 

92 

in (conversion, acetic acid equivalents (AEQ), and high molecular weight (C5-C7) 

acids). I saw through regression and Partial Least Squares decomposition two major and 

several minor relationships that were consistent. The major conclusions are that the 

presence and frequency of Clostridia sequences was associated with increased 

conversion and AEQ and that the presence and sequence frequency of Bacilli increased 

with a corresponding increase in conversion. There are several other classes of 

organisms (Thermatoga, Chloroflexi) that when present increase the diversity of the 

fermentation (a common observation for fermentation improvement) and the subsequent 

acid spectrum as per the major conclusions in (Hammett, 2011). I was able, through 

increased sampling, to establish these conclusions at 55°C the common operating 

temperature of the CBP. 

In Chapter IV we explore the restrictions to community diversity imposed by the 

screening technology and the effect of fresh inoculum and concurrent inoculation of 

three different fermentation screens. We knew that diversity decreases dramatically from 

sediment through fermentation, but were able to see that no one screen has a more severe 

impact on diversity than any other. 

We focused on bacterial communities even though the extreme and variable 

nature of our sampling sites could predispose our inocula to contain other forms of life 

(protists, archaea, eukaryotes). A prior in depth study (Hollister et al., 2011) showed that 

bacteria were numerically abundant at the time point of interest (30 days).  

Throughout the experiments in this dissertation and the project as a whole I sought 

parallels of communities for performance that would allow me to design and test 
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community assemblages that could lend themselves toward an inocula for the industrial 

scale fermentation. In Chapter V we cultured with three media under two oxygenation 

conditions from top performing communities to try to assemble a diverse library of 

organisms. We sought to capture sufficient diversity to reassemble communities I 

observed influencing performance to directly test the hypotheses about patterns 

identified in this dissertation. I was able to culture representative of Clostridia and a 

diverse range of Bacillus. Again, I demonstrated (Chapter III) that both of these classes 

were important for superior conversion. 
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APPENDIX A 

FERMENTATION AND SOIL ANALYSIS DATA FOR ALL SAMPLES IN 

EXPERIMENT 

 

Appendix A is provided as a supplemental Microsoft Excel file. 
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APPENDIX B 

OTU DIVERSITY, RICHNESS AND OVERLAP AMONG 40 SAMPLES 
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Appendix B OTU diversity, richness and overlap among 40 samples. Data within the first block of the figure are not normalized. The second block were normalized. The Chao index is a measure of OTU richness. 
The Shannon index is a measure of OTU diversity. Yue-Clayton theta is a measure of the overlap of OTU composition across samples (ranges from 0 to 1, with 1 = complete similarity in OTU membership and 0 = 
complete dissimilarity). Based on Yue-Clayton theta similarity from normalized populations at 0.03 dissimilarity. 
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APPENDIX C 

BAR GRAPHS DEPICTING RELATIVE FREQUENCY OF BACTERIAL 

ORDERS FOR THE 40 SEQUENCED SAMPLES ARRANGED IN THREE 

WAYS BASED ON RANKING FOR EACH PERFORMANCE PARAMETER 

OF INTEREST 
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!
Appendix C Bar graphs depicting relative frequency of bacterial orders for the 40 sequenced samples arranged in three ways 
based on ranking for each performance parameter of interest. Identical bar graphs for each community are arranged by rank 
(top = best performance) for conversion (left), AEQ (middle), and HMW (right). Abbreviations: Acetic acid equivalence 
concentration (AEQ), high molecular weight (HMW) acid production. 
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APPENDIX D 

OTU DIVERSITY AND RICHNESS FOR THREE CARBOXYLATE BIOFUEL 

PLATFORM SCREEN COMPARISONS EXPERIMENT 

  



! "#$!

!
Appendix D OTU diversity and richness for three carboxylate biofuel platform screen comparisons experiment. The Chao 1 richness estimator is an estimation of richness. The Shannon Index is a measure of OTU 
diversity. Each category is separately scaled from high values (green) to low values (red). Those samples highlighted in grey were removed from further analysis due to low sequencing returns after quality checking. 
For a detailed explanation of sample name interpretation see Figure 11. 
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APPENDIX E 

BAR GRAPHS SHOWING THE RELATIVE FREQUENCY OF THE TOP 22 

MOST COMMON ORDER LEVEL CLASSIFICATIONS ACROSS ALL 

SAMPLES IN THE CBP SCREEN COMPARISON EXPERIMENT 

  



! "#$!

!
Appendix E Bar graphs showing the relative frequency of the top 22 most common order level classifications across all samples sequenced in the carboxylate biofuel platform screen comparison experiment. W01 is a 
freshwater marsh sediment sample, W02 is a saltwater marsh sediment sample, W03 is a costal prairie soil sample, W04 is a salt lake sediment sample, and W05 is an intertidal sediment sample.  
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APPENDIX F 

DENDOGRAM OF ALL SAMPLES BASED ON YUE-CLAYTON THETA 

DIVERSITY SIMILARITY MEASURE 
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APPENDIX G 

PHYLOGENETIC TREE OF ALL REPRESENTATIVE OPERATIONAL 

TAXONOMIC UNITS AND CLOSEST SEQUENCES WITHIN RIBOSOMAL 

DATABASE PROJECT SEQMATCH AT 97% SIMILARITY 
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