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ABSTRACT 

 

Cotton has been a world-wide economic staple in textiles and oil production. 

There has been a concerted effort for cotton improvement to increase yield and quality to 

compete with non-natural man-made fibers. Unfortunately, cultivated cotton has limited 

genetic diversity; therefore finding new marketable traits within cultivated cotton has 

reached a plateau. To alleviate this problem, traditional breeding programs have been 

attempting to incorporate practical traits from wild relatives into cultivated lines. This 

incorporation has presented a new problem: uncultivated cotton hampered by 

photoperiodism.  

Traditionally, due to differing floral times, wild and cultivated cotton species 

were unable to be bred together in many commercial production areas world-wide. This 

worldwide breeding problem has inhibited new trait incorporation. Before favorable 

traits from undomesticated cotton could be integrated into cultivated elite lines using 

marker-assisted selection breeding, the markers associated with photoperiod 

independence needed to be discovered.  In order to increase information about this 

debilitating trait, we set out to identify informative markers associated with 

photoperiodism.  

This study was segmented into four areas. First, we reviewed the history of 

cotton to highlight current problems in production. Next, we explored cotton’s floral 

development through a study of floral transition candidate genes. The third area was an 

in-depth analysis of Phytochrome C (previously linked to photoperiod independence in 
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other crops). In the final area of study, we used Genotype-By-Sequencing (GBS), in a 

segregating population, was used to determine photoperiod independence associated 

with single nucleotide polymorphisms (SNPs).  

In short, this research reported SNP differences in thirty-eight candidate gene 

homologs within the flowering time network, including photoreceptors, light dependent 

transcripts, circadian clock regulators, and floral integrators. Also, our research linked 

other discrete SNP differences, in addition to those contained within candidate genes, to 

photoperiodicity within cotton. In conclusion, the SNP markers that our study found may 

be used in future marker assisted selection (MAS) breeding schemas to incorporate 

desirable traits into elite lines without the introgression of photoperiod sensitivity. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

Cotton has been grown world-wide for many centuries, and it has been the 

largest natural fiber production crop in the world and of enormous economic importance, 

as a cash crop, to many developing nations [1]. Cotton not only was utilized for fiber, 

but has played a huge role in seed oil production, seed stocks for animal feed, and even 

bio-diesel [2-4]. In the United States, cotton has helped anchor the US economy by 

being one of the largest contributors to the US gross national product. Each year, the 

cotton industry has produced over $100 billion in agriculture and textiles [5].  

Modern cultivated cotton has limited genetic diversity, so there has been a strong 

need to develop practical traits from wild relatives. These untapped wild genetic 

resources had valuable assets which should be incorporated into traditional breeding 

programs [6]. A few desirable traits of introgression that piqued the interest of breeding 

programs are higher disease resistance and pest tolerance. Traditionally, desirable traits 

were bred into elite cultivars using marker-assisted selection (MAS) [7-10]. 

Consequently, achieving markers representing desirable traits to utilize in MAS breeding 

from uncultivated cotton species was not straightforward.  

Most commercial cotton producing areas in the world have not provided light 

conditions that allowed the wild cotton species to flower in the span of a growing season 

under today’s current cultivation practices. Uncultivated cotton has been hampered by 
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photoperiod sensitivity [11]. Since undomesticated species typically flowered under 

short day conditions, these ‘wild cotton taxa’ required the shortening of red light to 

nearly eleven hours in order to flower. Cultivated cotton did not have that limitation, it 

was able to establish flowering under early maturation. Wild and cultivated species have 

been bred together, but they have resulted in offspring that exhibit photoperiod 

sensitivity, which rendered them useless for commercial production.  

What this Study Asked 

Before novel traits from undomesticated species could be integrated into 

cultivated elite lines, the floral transition network must be analyzed within cotton. 

Currently, a paucity of information existed within the cotton network. This study 

reported single nucleotide polymorphism (SNP) differences in thirty-eight homologs of 

genes within the flowering time network, including photoreceptors, light dependent 

transcripts, circadian clock regulators, and floral integrators. This research asked if these 

genes are sound candidates for the photoperiod independence caused during the 

domestication process. In addition, it queried how different genes show a difference in 

selection pressures from uncultivated plants to modern domesticated plants. Moreover, 

this research used redundancy measures to link other discrete SNP differences 

(unassociated with candidate genes) to photoperiodicity within cotton through Genotype-

By-Sequencing (GBS). 
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Domestication 

The conversion of native plants into domesticated species has been propelled 

through modern breeding techniques resulting in crop improvement. These phenotypic 

changes have been shown to be exemplary models for studying the genetics of rapid 

evolutionary responses to natural selection [12, 13]. Studies have examined the genetic 

basis behind traits for domestication during the first agricultural eras of maize, rice, and 

wheat [14, 15]. 

Known Genes behind Other Plant Domestications 

Modern domesticated maize was shown to emerge from a single monophyletic 

lineage of the proximal ancestor Zea maize spp. parviglumis in the central region of the 

Balsas River, México [16]. One locus, BE518938, involved in the domestication of corn, 

has homology to lysine decarboxylase. This locus lowered alkaloid (metallic-like) 

content in the seeds, improving the taste, which increased its value for human 

consumption [17]. 

Wheat’s (Triticum spp.) point of origin was located west of Diyarbakir in 

Turkey. This location, where cereals were first domesticated, was determined by the 

high genetic similarity between wheat predecessors (einkorn and emmer). Previous 

research has determined that the tetraploid and hexaploid free-threshing wheat Q allele 

mutations (AP2-like transcription factor) are identical to each other. In summation, the 

free-threshing 15 loci and a dominant mutation at the Q locus occurred only once [18-

21]. This free-threshing gene allowed for humans to easily separate the seeds from the 

wheat stalks during harvesting time.  
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Finally, rice (Orzya sativa) had several sites of domestication from which two 

subspecies Orzya sativa (ssp. indica and japonica) were formed. The rise of O. sativa 

indica appeared closely related to O. nivara, while O. sativa japonica was more closely 

related to O. rufipogon [22-26]. Prostrate growth 1 (PROG 1) was identified as a key 

gene for domestication in cultivated rice for erect stalk growth. A secondary key gene 

for domestication in rice was shattering locus on Chromosome 4 (SH4) [22]. PROG 1, 

on Chromosome 7, allowed erect rice stalks to increase grain yield because of a more 

stable plant structure. In turn, increased grain yield led to greater human consumption. 

When SH4 reduced seed shattering, grain stayed on the stalks longer allowing humans to 

harvest the rice seeds more efficiently. Without these genetic domestication changes in 

all of these crops, farming and permanent civilizations might never have arisen.  

Cotton’s Domestication 

In many articles and books, the domestication of different cotton taxa has been 

introduced by different researchers [5, 27-36]. Hutchison et al. was able to show the 

movement and evolution of diploid and allotetraploid cotton species throughout the New 

and Old World [33]. He explained how all wild Gossypium spp. were distributed in the 

arid regions of the tropical and sub-tropical zones. Hutchison et al. gave different 

theories of domestication for both the Old and New World varieties. At first, it was 

thought that the Indus civilization around 2000 B.C. was responsible for the 

domestication of Old World species, but this was disproven by the evidence presented in 

the cytogenetic work  by Beasley et al. in 1942 [37]. This cytogenetic work showed 

more primitive characteristics of the Old World diploid species were located around the 
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Arabian Sea [32]. As for the New World species, the oldest cotton textiles (Gossypium 

barbadense L.) were discovered by Bird and Mahler (1951-1952). These textiles were 

found in Northern Peru with the Huaca Prieta civilization circa 2400 B.C. Wendel et al. 

was able to narrow down geographical regions for the domestication of Gossypium 

hirsutum L. by allozyme divergence to México or Guatemala [35]. In 1994, Brubaker et 

al. was able to establish that Gossypium hirsutum L. was first domesticated near the 

Yucatán peninsula [27]. These papers showed how cotton species diverged, and genetic 

bottlenecks occurred, but researchers floundered when determining the genetic basis for 

early flowering. 

Humans began selecting for early flowering cotton as a result of harvest 

schedules approximately 5000 years ago in both the old and new worlds. Meso-

Americans began domesticating cotton (Gossypium hirsutum L. and Gossypium 

barbadense L.) during their proto-agriculture phase. While indigenous people gathered 

Teosinte (primitive corn), Canvalia (beans), and other crops for food, they 

unintentionally selected cotton that produced bolls at an earlier time, rather than 

photoperiod-sensitive cotton [5, 11, 32]. Concurrently, aboriginal tribes in Africa and 

Asia began domesticating Gossypium herbaceum L. and Gossypium arboreum L. [38].  

To study the genetic changes that occurred during the domestication process, it 

was necessary to evaluate the evolutionary foundation for how modern cultivated cotton 

was developed. Modern cotton diverged from a common ancestor by dividing into two 

uniquely different lineages (A and D) around 7 to 8 million years ago (MYA) [39]. 

During a natural hybridization event in Central and South America, the two lineages 
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[Gossypium herbaceum L. (A genome) and Gossypium raimondii U. (D genome)] 

intermixed [5, 32, 33, 40]. Thus, the AD genome was created about 1 to 2 MYA [5]. 

Following this event, a subsequent whole genome duplication event occurred yielding an 

allotetraploid cotton species from which modern cottons are derived.  

Genetics Helps to Determine Domestication 

While looking for the genetic support underlying the domestication process, two 

main designs became evident: 1) forward genetics, and 2) reverse genetics. Forward 

genetics used phenotypic traits and genetic loci variants to narrow down the region that 

controls this phenotype. Conversely, reverse genetics presumed that a molecular base 

change in a genome would eventually lead back to a phenotype [12-15, 41]. In some 

species (i.e. Zea maize), reverse genetics has successfully identified genes in the 

domestication process [17, 41, 42], but reverse genetics has been less successful in 

locating similar genes of domestication in other species (i.e. Sorghum bicolor) [43, 44]. 

In 2012, persistent research efforts to identify the genes behind domestication of a 

previously indeterminable species (i.e. Oryza sativa) were finally successful [22]. 

Therefore, it became important to strive to determine the underlying genetic support 

behind phenotypic traits in different species, which applied to cotton.  

Flowering 

Flowering, which is initiated usually via plant photoperiod perception, has 

determined a plant’s ability to calculate the amount of daylight hours per day over a 

growing season. This perception occurs through a quantitative process via plant 

photoreceptors which show altered gene expression in central circadian clock genes 
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dependent on the amount of light absorbed. The regulatory network, which consisted of 

several biochemical pathways and controls flowering time, has been documented clearly 

in the model plant Arabidopsis thaliana [45]. Arabidopsis thaliana has been identified in 

the same phylogenetic clade as cotton, Eurosid II [46]. Since these two species were in 

the same clade, a high gene homology and correspondence for cotton traits were 

expected to be seen. Therefore, those genes within this documented regulatory network 

represented ideal candidates for involvement in photoperiod independence of cotton.  

Long Day versus Short Day Plants 

Although a high gene homology between Arabidopsis and cotton was expected, 

Arabidopsis and Cotton vary in their photoperiod perception to flower. Arabidopsis 

thaliana has been a long-day (LD) plant, while primitive accessions of G. barbadense 

and G. hirsutum flowered under short-day (SD) control [47-49]. Flowering in LD plants 

occurred when a maximum threshold for day-length is attained. In the northern 

hemisphere, this happened during the late spring or early summer as it approaches 

summer solstice (June 21st). In the southern hemisphere, seasons were opposite to the 

northern hemisphere. Therefore, LD plants flowered closer to Dec. 21st [50].  

For flowering to occur in SD plants, a critical light reduction from the maximum 

day-length has to happen. In cotton, day-length must be reduced to 10 hours of day-light 

with an uninterrupted dark cycle before floral initiation starts. Disruption of SD floral 

initiation has occurred if an artificial light sources transpired during the night [50]. In the 

northern hemisphere, SD plants flowered after June 21st in the late-summer or fall. 
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Depending on the latitude, the time delay for floral initiation increased with the plant’s 

proximity to the north and south poles.  

When a plant has not flowered according to photoperiodism (indifferent to the 

amount of day and/or night hours), this is known as day-neutrality (photoperiod 

insensitivity). These day-neutral plants initiated flowering after reaching a certain 

developmental age or stage [50]. Interestingly, modern domesticated varieties of G. 

barbadense and G. hirsutum changed from SD plants to display day-neutrality [48, 49]. 

By understanding the molecular-genetic determents behind day-neutrality in modern 

cotton and SD primitive cotton, new strategies to introgress valuable genetic traits from 

wild Germplasm for crop improvement have be applied [48, 49]. 

Current Knowledge about the Flowering Process 

In Arabidopsis, floral transition has been identified as a network of individual 

pathways comprised of 173 genes [51]. The transition from vegetative to flowering was 

induced under the lengthening of daylight, hence altering the expression levels in the 

circadian clock [52-54]. Ergo, the research on Arabidopsis laid a foundation for all 

photoperiod studies in plants. 

To understand the regulatory network controlling the initiation of flowering, a 

general biochemical process must be understood. The regulatory network consists of 

photoreceptors which absorbed the light, circadian clock regulators that calculated the 

amount of light received, and the activation of floral transition factors.  
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Photoperiodic Light Genes 

Light has been shown to affect many living organisms. During the course of a 

growing season, plants were able to recognize both dawn and dusk. As seen in many 

species, plants sensed the lengthening of daylight hours in the spring and the reduction 

of daylight hours in the fall [55-58]. How were plants able to do this? They achieved this 

by taking in different light wavelengths through photoreceptors in the leaves that 

regulate plant development. The main levels of light that plants perceived are: Blue (B), 

Red (R), Far-Red (FR), and ultraviolet-A/B (UV-A/B). These light levels were present at 

different times of the day. At the lowest light levels before dawn and after dusk, UV-B 

(282-320nm) was recognized by the newly identified photoreceptor UV Resistance 

Locus 8 (UVR8) [59]. Blue light/UV-A (320-500nm) was highest during sunrise and 

dusk each day. While far-red light (700-750 nm) peaked during the early morning and 

late afternoon hours (730nm). During mid-day, red light (600-700 nm) was at topmost 

intensity (660 nm) [60, 61]. Each light level activated a particular photoreceptor gene in 

the leaf. The specialized photoreceptors were key components for a plant’s ability to 

calculate their life span, activation of developmental processes (ie, flowering), 

membrane signaling, and other processes (Figure 1).   
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There are thirteen known photoreceptors in the model plant species Arabidopsis 

that perceived light. Photoreceptors ensnaring blue light were: cryptochromes 

[Cryptochrome 1 (CRY1), Cryptochrome 2 (CRY2), and Cryptochrome 3 (CRY3)], 

phototrophins [Phototrophin 1 (PHOT1) and Phototrophin 2 (PHOT2)], and LOV/F-

box/Kelch domains [Zeitlupe (ZTL), Flavin-Binding Kelch Repeat F-Box 1 (FKF1), and 

Lov Kelch Repeat Protein 2 (LKP2)] [61, 62]. Phytochrome photoreceptors which 

captured red light (R and FR) were: Phytochrome A (PHYA), Phytochrome B (PHYB), 

Phytochrome C (PHYC), Phytochrome D (PHYD), and Phytochrome E (PHYE) [63, 64].  

These phytochromes played an integral role in the day-night cycling of the 

circadian clock [65, 66]. PHYA, CRY1, and CRY2 prevented the degradation of Constans 

(CO) protein [67]. PHYB, PHYD, and PHYE acted as a redundant network to repress 

flowering by determining the R/FR light ratio [68-71]. The photoreceptors, shown to be 

key controlling factors in flowering, were CRY2, PHYB, and PHYC [72-74].  
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Figure 1 Photoreceptor Light Signaling Pathway
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CO has been identified as one bottleneck in the flowering network, where 

information from both the circadian clock and the photoperiodic pathways converge. 

This was a key step in the induction of floral initiation (Figure 2). Some elements have 

by-passed CO, but floral initiation was usually the onset of Flowering Locus T (FT), a 

consequence of CO transcription.  

One example of CO interacting with FT to initiate flowering outside the model 

species Arabidopsis was in rice [75]. The ortholog of CO in rice was Heading date 1 

(Hd1), while the ortholog of FT was Heading date 3a (Hd3a) [75, 76]. Hd1 activated 

Hd3a under SD conditions to induce flowering, but suppressed Hd3a in LD conditions 

[76-78]. This was uniquely different from Arabidopsis, in which CO activated FT only 

under LD conditions. A similarity between rice and Arabidopsis though was that 

phytochromes and circadian clock members manage floral initiation through CO and FT. 

PHYB helped regulate Hd1 and Hd3a to initiate flowering [54, 76, 79-84]. Tamaki et al. 

showed that once Hd3a activates, it moved from leaf to shoot to initiate flowering under 

SD conditions [85].  
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Figure 2 Constans Level Fluctuations during a 24 Hour Period 
 

 

 

 

To attain transcription of CO, there were several genes and pathways that 

hindered and helped the regulation of CO. Cryptochromes stabilized Constans (CO), so 

that floral initiation begins [67]. In Arabidopsis, CRY2 protein levels cycled through a 
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blue light dependent phase to determine photoperiodic clock regulation [72, 86]. This 

clock regulation told Gigantea (GI) when to activate CO [87]. CRY2’s role in floral 

initiation was first seen in a day-neutral early flowering Arabidopsis plant from Cape 

Verde Islands in 1998 [88]. This photoperiod-insensitive phenotype was caused by a 

substitution in CRY2 [72]. PHYB acted to suppress the CO protein, so that flowering was 

not always being initiated [67]. Another negative regulator of CO was the COP1/SPA1 

complex [89, 90].  

To regulate the effects of CRY2, PHYB, and the COP1/SPA1 complexes upon 

CO, feedback inhibition loops were created. In the phytochrome pathway, a feedback 

loop was created to regulate the influence of PHYB on the circadian clock. Constitutive 

Photomorphogenic 1 and Suppressor of PHYA-105 complex (COP1/SPA1) positively 

influenced Phytochrome-Interacting Factors (PIFs), while PHYA and PHYB halt PIFs 

phosphorylation activity [61, 91]. PHYA and PHYB negatively regulated COP1 ability. 

PIFs help COP1 to downgrade the PHYB protein [47, 61]. In turn, COP1 cooperated 

with ELF3 to communicate day-length cues created by CRY2 [92]. Once this day-length 

cue was voiced, COP1 helped degrade CRY2 in the feedback loop [62].  

Other cryptochromes may sway floral initiation, but were not key factors. CRY1 

produced Arabidopsis plants with late flowering in some experiments, but not all [86, 

93-97]. Although in one double mutant Arabidopsis plant for CRY1 and CRY2, the floral 

initiation process exhibited later than the wild type. This mutant study implicated CRY1 

as a backup for CRY2 in photoperiod flowering [98, 99]. CRY3 biochemically acted as 

DNA photolysis for single strands and may act as a back-up photoreceptor for blue light 
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in the mitochondria and chloroplast. This cryptochrome function was still enigmatic, but 

does not appear to be influential in the regulation of flowering [62, 100].  

Even though CO played a central role in floral initiation, other cues stimulated 

FT. Independent from CO activation, CRY1 and CRY2 control, FT was stimulated by 

microRNA 172 (miRNA 172) [101]. Also, GI has been found to stimulate FT without the 

presence of CO [101]. In short, alternate methods to stimulate flowering has been 

imperative to maintain a reproductive life in a plant. Since some positive stimuli have 

been shown to by-pass CO to activate flowering, PHYB has been shown to act 

downstream of CO to stifle the transcription of FT [102].  

One of the other main influences of floral initiation was through the role of 

PHYC. Mutant studies in Arabidopsis and rice, portended a loss of PHYC results in early 

flowering. Research by Franklin et al. showed that Arabidopsis PHYC-1 mutants had 

larger primary and mature leaves, while Monte et al. Arabidopsis PHYC mutants showed 

late flowering under long day (LD) conditions and early flowering under short day (SD) 

conditions. Takano et al. displayed earlier flowering of the PHYC-antisense transgenic 

rice lines, than the Nipponbare lines exhibited under LD conditions. These studies 

suggested that PHYC plays a part in LD sensing and were required for SD photoperiod 

perception [103-105].  

In Arabidopsis and pearl millet, PHYC steered phenotypic flowering variation 

naturally. Balasubramanian et al. showed that 29 Arabidopsis varieties have varying 

levels of linkage disequilibrium (LD) between PHYC’s presence and early SD flowering 

was dependent on elevation and latitude. The research by Samis et al. explored 
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longitudinal effects on Arabidopsis at similar latitudes and showed that Arabidopsis’s 

photoperiod adaptability was caused by genetic differences related to the PHYC 

genotype under SD conditions. The research on pearl millet by Saidou et al. 

demonstrated a strong LD between PHYC’s presence and the three agro-ecological zones 

(differing in rainfall). The relation of PHYC’s LD showed that pearl millet flowers later 

in wetter regions, while flowering earlier in drier regions [73, 106, 107].  

Few articles have described the effects of photoreceptors in the Malvaceae 

family, despite evidence from physiology investigations. These experiments suggested 

photoreceptors play cardinal pieces in cotton development: drought resistance, seed 

dormancy, plant architecture, photoperiodic flowering, and fiber elongation [108-111]. 

The loss of photoperiodism, in some major crops (i.e. sorghum, barley, rice, and soy), 

has been attributed to mutational changes in these photoreceptors [112-115]. Childs et al. 

reported that a mutation creating Ma3 (a homolog of PHYB) in sorghum causes a frame 

shift mutation disrupting the photoreceptor. This resulted in photoperiod independent 

sorghum plants. In barley, Hanumappa et al. exposed BMDR-1 as a mutant in barley that 

lacks a functioning PHYB. This mutant produced a photoperiod independent phenotype 

in barley. According to Izawa et al., the SE5 mutant demonstrated complete loss of 

photoperiodism in 24 hours of constant white light. All phytochromes in SE5 mutant rice 

showed reductions in expression levels and complete loss of PHYA. The study conducted 

by Izawa et al. pointed to phytochromes for the sacrifice of photoperiod sensitivity. 

Research by Liu et al. on photoperiod independence in soybean demonstrated that a 

secondary PHYA homeolog has a recessive locus E4 for photoperiod sensitivity. The 
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study exposed a retro-transposon located at the E4 locus causing a frame shift mutation 

truncating the protein. Thus, soybean with homozygous loci for E4 conferred 

photoperiod insensitivity in the plant.  

Circadian Clock 

Light, the pinnacle environmental signal, has allowed organisms to coordinate 

their daily cycles regulated by the circadian clock and their physiological activities with 

environmental changes (Figure 3) [116-118]. During the perceived shortening of 

daylight, some genes in the circadian clock demonstrated altered expression levels. Most 

living things had some sort of circadian clock to regulate different processes in their 

daily biological operations [119, 120]. Thus, those genes affected by this clock 

regulation were Early Flowering 4 (ELF4), Early Flowering 3 (ELF3), Circadian Clock 

Associated 1 (CCA1), Late Elongated Hypocotyl (LHY), Timing of CAB Expression 1 

(TOC1), and Constans (CO) [121-124].  

To stimulate flowering in a plant CO first must be induced. The circadian clock 

played a key role on influencing the expression of CO. The circadian clock was 

controlled by an oscillating system between day and night in a 24 hour period. The core 

components in the circadian clock oscillator were CCA1, LHY, TOC1, and CCA1 Hiking 

Expedition (CHE). To achieve night/day oscillations the activation of CCA1 and LHY 

was required. After activation of CCA1 and LHY, the COP10-DET1-DDB1 (CDD) 

complex was conscripted to help repress TOC1 and GI transcription [125]. During the 

dwindling hours of twilight, the daytime repression of TOC1, Lux Arrhythmo (LUX), 

ELF3, ELF4, GI, “Night” Brother of Lux Arrhythmo (NOX), and CHE was nullified 
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[126, 127]. The night genes were then actively being transcribed and reciprocally, TOC1 

represses CCA1 and LHY transcription [125].  

TOC1, a main control factor in the clock oscillator, acted as a repressor of other 

daytime clock factors, such as PRR9. In the morning loop of the circadian clock, TOC1 

binds to Pseudo-response Regulators PRR9 and PRR7. The initiation of PRR9 was still 

unknown, but Light-Regulated WD1 (LDW1 – a protein involved in period length 

regulation and photoperiod flowering) was thought to be a good candidate in triggering 

PRR9 [128]. PRR9, PRR7, and PRR5 must then move to control and regulate the 

expression of CCA1 and LHY [129].  

In the evening, LUX combined with ELF3 and ELF4 to form the evening 

complex (EC) [121, 123, 126, 127, 130-132]. The EC bound to PIF4 and PIF5 to 

regulate hypocotyl growth, while ELF3 stifled PRR9 expression [126, 129, 133-137]. 

After the threshold for consecutive dark hours was reached, GI and FKF1 were activated 

to promote CO expression and FKF1 inhibits Zeitlupe’s (ZTL) expression. If the dark 

hour threshold for floral initiation was not reached, then GI stimulated ZTL to repress 

TOC1 for the end of the cycle [138]. 
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Figure 3 Circadian Clock Pathway
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Floral Initiation/Integrators 

The first key genes involved during floral transition from vegetative to flowering 

were CO, Flowering D transcript (FD), and Flowering Locus T (FT). The accumulation 

of the CO transcription factor activated the signaling molecule of FT. The FD transcript 

was also a positive regulator of FT. The florigen FT protein molecule then travelled 

through the phloem to the shoot apical meristem (SAM) [12, 85, 139-141].  

When FT reached the SAM, it activated the Suppressor of Overexpression of 

Constans 1 (SOC1, MADs box Transcription Factor) and Apetala1 (AP1) [142-144]. 

SOC1 and AP1 induced the expression of the meristem protein Leafy (LFY) which in 

turn signaled the genes regulating the metamorphosis of a vegetative meristem into an 

inflorescence meristem [145].  

Induction of FT was the primary method for controlling floral initiation. 

Premature induction of FT activated a myriad of transcripts which prevented premature 

flowering differentiation. This suppression complex to prevent premature flowering 

consisted of: 1) Short Vegetative Phase (SVP), 2) Agamous-like 24 (AGL24), and 3) 

SOC1. Another suppression group of FT contained Terminal Flower 1 (TFL1) and 

Embryonic Flower 1 (EMF1). TFL1 had a similar amino acid sequence to FT, but it 

acted to suppress flower initiation. Up-regulation of EMF1 determined that the plant’s 

shoot cells were in the vegetative state. With the induction of the suppression complex or 

TFL1 & EMF1, flowering initiation was controlled [146-153].  
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Flower Developmental Genes 

After floral initiation, floral organs arose in a definitive order to produce a 

flower. This was known as the ABC model of floral organ development [154-157]. After 

TFL1 and Embryonic Flower 1 (EMF1) were stopped, ‘A’ genes [AP1, Agamous-like 8 

Fruitfull (AGL8_FUL), and Apetela 2 (AP2)] inducted sepal formation [145, 154, 158-

160]. Next, ‘B’ genes [Apetela 3 (AP3) and Pistilatta (PI)] were conscripted to create 

petals [154, 157]. Finally, Agamous (AG) was enacted to actuate stamen and carpel 

development [157, 158]. This ABC model has now added an ‘E’ gene group in 

angiosperms [154, 161]. The ‘E’ gene group was made up of Agamous-like 9 Sepallata 3 

(AGL9_SEP3), Agamous-like 4 Sepallata 2 (AGL4_SEP2), Agamous-like 3 Sepallata 4 

(AGL3_SEP4), Agamous-like 2 Sepallata 1 (AGL2_SEP1). This group functioned by 

helping properly co-ordinate ABC function and development by influencing AGL8_FUL 

to convert leaves into floral organs [154, 155]. The development of floral organs by 

ABC has varied between different species, so some ‘A’, ‘B’, or ‘C’ regions in 

development may overlap. This was best illustrated in Litt et al. in 2010 [154].  
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CHAPTER II 

DUPLICATION, DIVERGENCE, AND PERSISTENCE IN THE PHYTOCHROME 

PHOTORECEPTOR GENE FAMILY OF COTTONS (GOSSYPIUM SPP.) ∗ 

 

Synopsis of Phytochrome C 

Phytochromes, specialized photoreceptors, interpreted light frequencies to 

regulate plant development, such as floral initiation and circadian rhythms [162-164]. 

Current research showed a dearth of information known about phytochromes. Previous 

physiological experiments implicated phytochromes in managing aspects of cotton 

development: 1) drought resistance, 2) seed dormancy, 3) plant architecture, 4) 

photoperiodic flowering, and 5) fiber elongation [108-111].  

Phytochrome genes were classified into two evolutionary clades of sub-families 

in angiosperms: Clade 1 (PHYB, PHYD, and PHYE) and Clade 2 (PHYA and PHYC) [63, 

64, 165]. These clades influenced the circadian clock and help govern the inception of 

floral development. Clade 1 regulated floral initiation by preventing degradation of the 

CONSTANS (CO) protein, while Clade 2 induced degradation of CO, a floral inducer 

[166]. Floral initiation was usually the onset of Flowering Locus T (FT), a consequence 

of CO transcription. 

                                                 

* Part of the data reported in this chapter is reprinted with the permission from “Duplication, Divergence 
and Persistence in the Phytochrome Photoreceptor Gene Family of Cottons (Gossypium spp.) “ by 
Abdurakhmonov I, Buriev Z, Logan-Young C; Abdukarimov A, and Pepper A, 2010, BMC Plant Biology, 
10(1):119 
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In Arabidopsis, CO activated FT only under long day (LD) conditions. Although 

in rice, Heading date 1 (Hd1), an ortholog of CO, activated Heading date 3a (Hd3a), an 

ortholog of FT, under SD conditions to induce flowering, but suppressed Hd3a in LD 

conditions [76-78]. Tamaki et al. demonstrated parallelism between (1) FT’s movement 

from the leaf to the shoot apical meristem (SAM) in Arabidopsis under LD conditions 

and (2) Hd3a’s progression from leaf to shoot which initiates flowering under SD 

conditions [85]. Even in rice, floral initiation is under the influence of phytochromes. 

PHYB helped regulate Hd1 and Hd3a to initiate flowering [54, 76, 79-84, 167].  

Understanding the key photoperiodic flowering differences at the molecular-

genetic level in cotton helped create strategies for crop improvement of cultivated 

varieties by integrating valuable traits from undomesticated ‘wild’ germplasm [48, 49]. 

To bring in those valuable traits from ‘wild’ cotton germplasm, it was imperative to 

establish modern cotton’s evolution. During the domestication process of allotetraploid 

cotton, both Gossypium hirsutum L. and Gossypium barbadense L. photoperiod 

independent flowering arose. Modern cultivated Gossypium hirsutum L. and Gossypium 

barbadense L. displayed photoperiod independence, but undomesticated accessions of 

Gossypium hirsutum L. and Gossypium barbadense L. retained the original pre-

domestication condition of short day (SD) photoperiodic control [48, 49]. Since 

phytochromes regulated floral initiation and the circadian clock activities in other plants, 

a mutational change in a phytochrome may lie behind the rise of photoperiod 

independence during cotton’s domestication. 
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Mutational changes altering phytochrome function, in several major crops 

(sorghum, barley, rice, and soy) result in loss of photoperiod sensitivity [112-115]. 

Childs et al. illustrated how a frame shift mutation in the Ma3 (PHYB ortholog) locus 

disrupts the photoreceptor resulting in photoperiod independent sorghum plants. 

Hanumappa et al. suggested that a mutation at the BMDR-1 locus causes PHYB to be 

non-functioning and results in photoperiod independent barley. Izawa et al. explained 

that a mutation at the SE5 locus of rice generates lower phytochrome expression levels 

and loss of expression in PHYA. The loss of photoperiod sensing in the research by 

Izawa et al. was due to this SE5 mutational change. Liu clarifies how a single retro-

transposon in the E4 locus located on a secondary PHYA causes a frame shift mutation 

giving rise to photoperiod independence in homozygous recessive soybeans. These 

previous studies showed the large impact phytochromes have on flowering [112-115].  

Another phytochrome that played a role in phenotypic flowering variation is 

Phytochrome C (PHYC). Previous studies show that genetic variation at the PHYC locus 

naturally guided phenotypic variation of flowering time in Arabidopsis and pearl millet 

[73, 106, 107, 168]. The study by Balasubramanian et al. highlighted that varying levels 

linkage disequilibrium (LD) between the presence of PHYC and early SD floral initiation 

depends on the elevation and latitude of the Arabidopsis plant. The research by Samis et 

al. depicted Arabidopsis’s SD photoperiod adaptability is due to genetic differences of 

PHYC at different longitudes at corresponding latitudes. In Africa, the research of 

Saidou et al. presented a strong LD correlation between the presence of PHYC and three 

agro-ecological zones; thereby conveying that the presence of PHYC in regions of heavy 
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rainfall caused pearl millet to flower later, while in more arid regions pearl millet 

flowered earlier [73, 106, 107, 168].  

Recent mutant analysis studies implicate PHYC’s role in photoperiodic control of 

floral initiation [103-105]. The Arabidopsis PHYC loss of function mutants by Monte et 

al. conveyed early flowering under short day (SD) conditions. The Arabidopsis phyC-1 

mutants by Franklin et al. showed earlier fully developed primary and mature leaves 

inferring quicker plant maturity. Takano et al. illustrated their PHYC-antisense 

transgenic rice exhibit earlier maturity and flowering, than traditional Nipponbare rice 

lines in long day (LD) conditions. Research in both Arabidopsis and rice, has elicited 

that early flowering is the result loss of PHYC [103-105].  

My research laid the foundation for determining the biological function of PHYC 

in cotton and illuminating PHYC’s role as a candidate gene behind photoperiod 

independence during the domestication of allotetraploid cotton. This study was a PCR-

based approach using one low-degeneracy primer and one highly-correlated primer to 

cotton to obtain amplified gene fragments of PHYC’s molecular composition in New 

World allotetraploid cottons (Gossypium hirsutum L. and Gossypium barbadense L.) and 

in Old-World diploids (Gossypium herbaceum L. and Gossypium raimondii Ulbr.). 

Finally, markers based on PHYC ‘candidate gene’ amplified fragments may prove useful 

transferring valuable traits from photoperiodic ‘wild’ cottons into cultivated elite cotton 

varieties for crop improvement.  

Previously, several sets of degenerate primer pairs for PHYC were designed on 

the conserved HYPATDIP and PFPLRYAC regions, but had failed to produce 
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amplification fragments during PCR in Gossypium [169]. In failing to amplify this 

region, PHYC was proposed to be elusive and possibly not there.  

However, the failure to obtain PHYC hinge amplification with several sets of 

both universal (e.g. PHYdeg-F/PHYdeg-R) and rosid specific primers was due to 

substantial nucleotide differences in PHYC of Gossypium spp. versus Arabidopsis. This 

divergence from Arabidopsis was best illustrated in Figure 6 and Table 2 by 

Abdurakhmonov et. al [169]. The degenerate primers, like PHYdeg-R primer, had many 

mismatched nucleotides, including transitions and transversions, with the cotton PHYC 

genes. Although mismatches occurred, these changes were located at invariant (e.g. non-

degenerate) nucleotide positions and did not alter the amino acid sequence 

(PFPLRYAC) [169]. 

During my research, I identified a small EST clone (GenBank CO121409) with 

similarity to Arabidopsis PHYC (E value = 7e-119) in a library from G. raimondii floral 

tissue [170]. Using this EST clone allowed for the development of primer, 

PHYC_1R_DFCI, within the C-terminal domain to be designed (Table 1) [169].  
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Table 1 Primers Correlated to Phytochrome C 

Primer name Sequence 5' to 3' Fold-degeneracy 

PHYdeg-F CAYTAYYCIGCIACIGAYATHCC 768 

PHYC-1R-DFCI GGTCCGCCTGATTGAGACTGC 0 

I corresponds to inosine. R, Y, M, K, S, W correspond to the IUPAC-IUB ambiguity set. 

 

 

 

 

With different Gossypium spp., we used PHYC_1R_DFCI in combination with 

PHYdeg-F to amplify a ~1 kb fragment exonic coding sequence from the first exon of 

PHYC, including the hinge region. (Figure 4) [169]. These cloned sequences had a 

scoring similarity to Arabidopsis PHYC at E value ~ 1e-172. The sequences in 

Sequencher 4.8 [171] created a single consensus contig from each of the following: 1) 

diploid species ‘A’ G. herbaceum, 2) diploid species ‘D’ G. raimondii, 3) allotetraploid 

species ‘A’ G. hirsutum, 4) allotetraploid species ‘D’ G. hirsutum, 5) allotetraploid 

species ‘A’ G. barbadense, and 6) allotetraploid species ‘D’ G. barbadense. An 

alignment of these consensus sequences for each putative PHYC contigs yielded a 1,022 

bp alignment with an average pairwise sequence similarity of 99.1%, 1,002 sites (98.0%) 

identical across all taxa, with no insertions/deletions (InDels) or stop codons in any taxa 

[169]. 
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Figure 4 Coding and Non-coding Region for Phytochrome C 
 

 

 

 

From a phylogenetic analysis (Figure 5), two major clades (‘A’ and ‘D’) emerged 

from the PHYC consensus sequences with 100% bootstrap support [169]. Clade ‘A’ 

contained: 1) the diploid species ‘A’ G. herbaceum contig, 2) the allotetraploid species 

‘A’ G. hirsutum contig, and 3) the allotetraploid species ‘A’ G. barbadense contig. This 

clade was designated PHYC.A. Clade ‘D’, designated PHYC.D, included: 1) the diploid 

species ‘D’ G. raimondii contig, 2) the allotetraploid species ‘D’ G. hirsutum contig, and 

3) the allotetraploid species ‘D’ G. barbadense contig. This data indicated that the A- 

and D-genome ancestors had a single copy of the PHYC gene. During the ancestral 

hybridization and polyploidization event, each diploid ancestor contributed a single copy 

of PHYC to the Gossypium allotetraploid ancestor [169].  
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Figure 5 Phylogenetic Clade for Phytochrome C  
 

 

 

 

In conclusion, PHYC illustrated a resolution between the evolutionary 

relationships of diploid and allotetraploid cottons. The nucleotide diversity found within 

the PHYC hinge region clarified the evolutionary pattern of inheritance during the 



 

30 

 

ancestral allotetraploidization event. The two clades, designated PHYC.A and PHYC.D, 

define an evolutionary pattern corresponding to purifying selection (KA/KS = 0.184 over 

340 codons) (Table 2) [169]. The rate of evolution in both clades does differ. These 

findings suggesting the PHYC.D clade is evolving more quickly with (8 parsimonious 

substitutions: 6 non-synonymous, 2 synonymous), while the PHYC.A clade has only two 

parsimonious substitutions (2 synonymous) [169]. In PHYC.D, functional divergence 

with a relaxation on purifying selection may be occurring. Other phytochrome studies 

have shown faster amino acid evolution occurred in PHYC of cultivated Sorghum 

bicolor than those in wild accessions [172]. PHYC had a higher KA/KS ratio in the C-

terminal signaling domain, which may reveal a downstream change in conformation of a 

protein signaling partner [162-164, 173-175].  

 

 

 

 

Table 2 Synonymous and Non-Synonymous Values for Phytochrome C Hinge  

Sequence  Comparison S 
dif 

S 
pos KS NS 

dif 
NS 
pos KA KA/KS P 

PHYC 
Hinge 

D-D 3 60.83 0.051 1 230.17 0.004 0.086 0.032 

  D-T 3.25 60.67 0.055 1.25 230.09 0.005 0.103 0.035 

  T-T 3.5 60.5 0.06 1.5 230 0.007 0.119 0.038 

D-D indicates means of comparisons within extant diploids, D-T indicates means of 
comparisons of extant diploids with tetraploids, T-T indicates means of comparisons within 
tetraploids. S dif, synonymous differences; S pos, synonymous positions; NS dif, non-
synonymous differences; NS pos, non-synonymous positions. P indicates significance as 
determined by Fisher's exact test. 
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Duplication, Divergence and Persistence in the Phytochrome Photoreceptor Gene 

Family of Cottons (Gossypium spp.)  

Overview 

Overview Background  

Phytochromes are a family of red/far-red photoreceptors that regulate a number 

of important developmental traits in cotton (Gossypium spp.), including plant 

architecture, fiber development, and photoperiodic flowering. Little is known about the 

composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. 

raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective 

of this study was to obtain a preliminary inventory and molecular-evolutionary 

characterization of the phytochrome gene family in cotton. 

Overview Results 

We used comparative sequence resources to design low-degeneracy PCR primers 

that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC 

and PHYE gene sub-families from A- and D-genome diploid and AD-genome 

allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated 

PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene 

duplication that occurred approximately 14 million years ago (MYA), before the 

divergence of the A- and D-genome ancestors. We identified a single gene copy of 

PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely 

retained the complete gene complements inherited from both of the diploid genome 

ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and 
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PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes 

examined. 

Overview Conclusions 

Detailed sequence analysis suggests that phytochrome genes retained after 

duplication by segmental duplication and allopolyploidy appear to be evolving 

independently under a birth-and-death-process with strong purifying selection. Our study 

provides a preliminary phytochrome gene inventory that is necessary and sufficient for 

further characterization of the biological functions of each of the cotton phytochrome 

genes, and for the development of ‘candidate gene’ markers that are potentially useful 

for cotton improvement via modern marker-assisted selection strategies. 

Background 

Phytochromes are specialized photoreceptors that perceive and interpret light 

signals from the environment to regulate virtually all aspects of plant development, 

including seed germination, chloroplast development, tropisms, shade avoidance 

responses, floral initiation, circadian rhythms, pigmentation, and senescence [162-164]. 

The phytochromes have a primary role in sensing red (R) and far-red (FR) light, and also 

play a role in the perception of blue (B) and ultraviolet (UV) light [173]. The active 

phytochrome molecule consists of a large (~110 kDa) apoprotein bound to a phycobilin 

chromophore [174, 175]. The phytochrome apoproteins are encoded by a small gene 

family in all plant taxonomic divisions, including parasitic plants, mosses, cryptogams, 

and green algae [165, 176-181]. In angiosperms, the phytochrome apoprotein genes have 

been classified into four or five gene sub-families based on sequence similarity to the 
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five phytochrome genes of Arabidopsis: PHYA, PHYB, PHYC, PHYD, and PHYE [63, 

64]. All five Arabidopsis phytochromes share an amino acid sequence similarity of 46-

56%, with the exception of except PHYB and PHYD—which are the result of recent 

gene duplication and share ~80% amino acid identity [63, 182]. Thus, the five 

Arabidopsis genes are often assigned to four subfamilies: PHYA, PHYB/D, PHYC, and 

PHYE [183]. The Arabidopsis PHYB/D subfamily is more closely related to PHYE gene 

(~55% nt identity) than to the PHYA and PHYC genes (~47% nt identity), which 

together form a separate ancient evolutionary clade [63, 165].  

Having presumably arisen by gene duplication and subsequent sub-

functionalization and/or neo-functionalization, the phytochrome gene family in toto 

performs a complex network of redundant, partially redundant, non-overlapping, and in 

some cases antagonistic regulatory functions throughout plant development [65, 68-70, 

103, 184-196]. For example, all Arabidopsis phytochromes play diverse and interacting 

roles in photoperiodic regulation of floral initiation. PHYA, PHYB, PHYD and PHYE act 

partially redundantly in the light-dependent entrainment of the circadian clock [65, 66], 

which in turn regulates transcription of the floral inducer CONSTANS (CO) in a 

circadian manner [166]. In Arabidopsis, PHYA, in conjunction with blue-light dependent 

cryptochrome photoreceptors CRY1 and CRY2, promotes flowering by inhibiting the 

degradation of CO protein, while PHYB acts antagonistically to stimulate CO 

degradation [67]. In addition, PHYB, PHYD and PHYE act partially redundantly as 

repressors of flowering that are dependent on R/FR ratio [68-71]. In this role, PHYB also 

acts downstream of CO as a negative regulator of transcription of the ‘florigen’ molecule 
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FT (the target of CO) in a tissue specific manner [102]. Mutant analyses indicate that 

PHYC also plays a role in photoperiodic flowering [103, 104]. Further, genetic variation 

at the PHYC locus underlies some of the natural phenotypic variation in flowering time 

in Arabidopsis [73, 106].  

In angiosperms, the composition of phytochrome gene family varies significantly 

among taxonomic lineages. Although a single PHYA gene is present in most flowering 

plants, some plant families, such as carnation (Carryophyllaceae) and legumes 

(Fabaceae), have two distinct PHYA genes [179]. Similarly, several plant lineages have 

gained multiple PHYB-like genes through independent gene duplications of PHYB [63, 

179, 183, 197-200]. For example, tomato has two PHYB genes (designated PHYB1 and 

PHYB2) that are not directly orthologous to Arabidopsis PHYB and PHYD, respectively 

[197]. While most angiosperms have a single PHYC gene, species in some families such 

as Fabaceae and Salicaceae appear to have lost PHYC during evolution [179, 200]. 

Although a single PHYE-like gene is present in most flowering plants, PHYE is 

completely absent in poplar (Salicaceae), in the Piperales, and some monocots such as 

maize [179, 200]. Finally, the novel PHYF subfamily, which groups with PHYA/C clade, 

has been identified in tomato [197].  

Little is known about the composition of the phytochrome gene family in 

cultivated cottons or their wild relatives (Gossypium spp.) in the Malvaceae family. This 

is despite the fact that physiological experiments suggest that phytochromes regulate 

economically important aspects of cotton development, including drought resistance, 

seed dormancy, plant architecture, photoperiodic flowering, and fiber elongation [108-
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111]. For example, R/FR photon ratio influences the length and diameter of developing 

seed fiber; fibers exposed to a high R/FR photon ratio during development were longer 

than those that received lower R/FR ratio, implicating the involvement of a phytochrome 

[110, 111].  

While modern domesticated varieties of the major cultivated cottons G. hirsutum 

L. and G. barbadense L. exhibit photoperiod independent flowering, wild and 

‘primitive’ accessions of G. hirsutum and G. barbadense flower under short-day 

photoperiodic control [48, 49]. An understanding of the molecular-genetic basis of 

differences in photoperiodic flowering in cottons will accelerate strategies for 

improvement of cultivated varieties through the introgression of valuable genetic traits 

from wild germplasm [48, 49]. In this regard, it is important to note that mutational 

changes in phytochrome function have been implicated in the loss of photoperiod 

sensitivity in several major crops including sorghum, barley, rice, and soy [112-115].  

A thorough characterization of the phytochrome gene family in cotton species is 

necessary for understanding the molecular basis of photoperiodic flowering, the 

influences of light quality on cotton fiber elongation, and other aspects of cotton 

development. Any inventory of phytochrome genes of cottons is complicated by the fact 

that the major cultivated species, G. hirsutum and G. barbadense are allotetraploids. 

Diploid species in the genus Gossypium are categorized into eight genome groups 

(designated A through G, and K) based on cytogenetic and phylogenetic criteria [35, 40, 

201-203]. The old-world A genome group and the new world D genome group diverged 

from each other on the order of 1-7 MYA [35], then underwent hybridization and 
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polyploidization creating an AD allopolyploid lineage ancestral to G. hirsutum 

(designated AD1) and G. barbadense (designated AD2) on the order of 1 MYA [38, 203].  

In this study, we utilized a PCR-based approach with low-degeneracy primers to 

obtain gene fragments, or ‘genome sequence tags’ (GSTs) that yield an initial 

description of the composition and evolution of the phytochrome gene family in the New 

World allotetraploid cottons Gossypium hirsutum and G. barbadense, and in the Old-

World diploids G herbaceum L. and G. raimondii Ulbr., which are considered to be 

extant relatives of the A- and D-genome diploid ancestors (respectively) of the 

allotetraploid lineage. This study provides a necessary foundation for studies of the 

specific biological functions of each of the phytochrome genes in cotton species, and 

helps to illuminate the evolutionary patterns of duplicated genes in complex genomes, as 

well as the evolutionary history of the world’s most important fiber crop species.  

Results 

Because our results were derived from PCR, our inventory of the phytochrome 

gene family in Gossypium spp. is provisional. All sequences have been submitted to 

GenBank (accession numbers HM143735-HM143763).  

Phytochrome Hinge Amplification using ‘Universal’ Primers 

Between N-terminal ‘photoperception domain’ and C-terminal ‘signaling 

domain’ of the phytochrome apoprotein is a short ‘hinge region’ (Figure 6) that shows 

relatively high sequence variation, and has proven useful for characterization of the 

phytochrome gene complement in a variety of plant species, and for robust phylogenetic 

analyses [179]. To amplify the hinge region of all cotton phytochromes, we used an 



 

37 

 

alignment of eudicot phytochrome sequences to design a 768-fold degenerate PCR 

primer (designated PHYdeg-F) based on the conserved HYPATDIP peptide in the N-

terminal domain, and a 16,384-fold degenerate PCR primer (designated PHYdeg-R), 

based on the conserved PFPLRYAC peptide in the C-terminal domain (Table 3).  

 

 

 

 

 

Figure 6 Phytochrome Coding and Non-coding Regions Compared with Sequenced 
Amplicon Region.  
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Table 3 Primers used to Amplify Cotton Phytochrome Gene Family. 

Primer Name Sequence 5' to 3' Fold-Degeneracy 

PHYdeg-F CAYTAYYCIGCIACIGAYATHCC 768 

PHYdeg-R CRCAIGCRTAICKARIGGRWAIGG 16,384 

PHYABnondeg-F GCATTATCCTGCTACTACTGATATT 0 

PHYAdeg-R CAWGCATACCTWAGMGGRAAI 64 

PHYBdeg-R AACAACIAIICCCCAIAGCCTCAT 64 

1010-F GTTYTTGTTTAAGCARAACCG 4 

1910-R GAGTCWCKCAGAATAAGC 4 

1910-F AGCTTATTCTGMGWGACTC 4 

2848-R TAACCCKCTTRTTTGCAGTCA 2 

PHYC-1R-DFCI GGTCCGCCTGATTGAGACTGC 0 

I corresponds to inosine. R, Y, M, K, S, W correspond to the IUPAC-IUB ambiguity set. 

 

 

 

 

Amplification across the hinge region using Taq DNA polymerase yielded PCR 

products from all taxa. We cloned the amplification products from each taxon into an E. 

coli vector, then sequenced ~40 clones for each taxon. For all taxa, a majority (>60%) of 

clones showed the highest similarity in BLAST searches to Arabidopsis PHYE (E value 

~ 1e-40). For each taxon, only a minority of clones showed high-scoring similarity to 



 

39 

 

Arabidopsis PHYA or PHYB. This apparently skewed distribution of amplification 

products — observed across all taxa — suggested an amplification bias in favor of 

PHYE amplicons. No clones were obtained from any taxon that had high-scoring 

similarity to Arabidopsis PHYC or PHYD. No new phytochrome sub-families were 

observed.  

Amplification of the PHYA Gene Sub-Family  

Because of possible biased amplification, we designed new less-degenerate 

hinge-region primer sets for the PHYA, PHYB/D, and PHYC sub-families (Table 3) 

using available phytochrome sequences from species in the rosid clade, which includes 

both cotton and Arabidopsis [204, 205].  

The hinge regions of PHYA genes were amplified using PHYABnondeg-F and 

PHYAdeg-R (Table 1), yielding a ~360 bp amplification product from all accessions. In 

BLAST database searches, all clones had a high-scoring pair relationship with 

Arabidopsis PHYA (E value ~ 2e-63). Sequences from a total of more than 200 clones 

across all taxa yielded two distinct consensus contigs from each of the diploids G. 

herbaceum and G. raimondii, and four distinct contigs from the allotetraploids G. 

barbadense and G. hirsutum. When aligned across all taxa, these contigs yielded a 315 

bp consensus alignment that had an average pairwise sequence similarity of 94.6%, with 

282 sites (89.5%) identical across all taxa, and no stop codons or InDels in any taxa. 

Distance analysis (Figure 7) showed two well-separated gene sub-clades (100% 

bootstrap support). These sub-clades were designated PHYA1 and PHYA2. The level of 

hinge-region differentiation between these two sub-clades was far greater than that seen 



 

40 

 

in other cotton phytochrome gene sub-families (discussed below), with an uncorrected 

“p” distance of 0.086, corresponding to 28 nt changes (9%) based on parsimony. 

 

 

 

 

 

Figure 7 Phylogenetic Divergence of Phytochrome A in Cotton  
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These data indicated that a single PHYA gene underwent duplication after the 

divergence of the cotton and Arabidopsis lineages, but prior to the divergence of A-

genome and D-genome lineages, leaving each of the modern diploids in our study (and 

presumably the ancestors to the AD allotetraploids) with a complement of two PHYA 

paralogs (PHYA-1 and PHYA-2). Indeed, four distinct contigs were observed in both the 

inbred G. hirsutum cultivar TM-1 and in the doubled-haploid line G. barbadense 3-79. 

For each allotetraploid taxon, two contigs fell into each of the PHYA-1 and PHYA-2 

clades (Figure 7). A conservative inventory of available EST sequences indicated that at 

least two distinct PHYA loci are expressed in G. hirsutum (Supplemental Table 1).  

Within each of the PHYA1 and PHYA2 clades, the level of nucleotide diversity 

was very low, with at most four parsimonious nucleotide changes separating each contig. 

However, within the PHYA1 clade, the contigs resolved into two subclades (74% 

bootstrap support) that each contained a single contig from one of the diploid taxa and 

one contig from each of the allotetraploids. For example, G. raimondii (D-genome) 

PHYA1 grouped in a single contig from each of G. hirsutum and G. barbadense. Based 

on this grouping, the latter contigs were assigned the provisional designation of 

PHYA1.D. Similarly, G. herbaceum (A-genome) grouped with G. hirsutum PHYA1.A 

and G. barbadense PHYA1.A. Based on similar criteria, the PHYA2 clade was also 

divided into PHYA2.A and PHYA2.D subclades (90% bootstrap support). The 

phylogenetic resolution of A- and D-genome subclades supported the hypothesis that 

each of the A- and D-genome diploids contributed both PHYA1 and PHYA2 to the 

allotetraploid lineage. Thus, although hinge-region nucleotide diversity within each of 
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the PHYA1 and PHYA2 clades was low, it was sufficient to resolve a tentative PHYA 

gene complement for each taxon, as well as the pattern of gene inheritance through the 

allopolyploidization event.  

Amplification of the PHYB/D Gene Sub-Family  

A ~320 bp fragment from the PHYB/D hinge region was obtained by 

amplification using primers PHYABnondeg-F and PHYBdeg-R (Table 3). Sequences 

from a total of 80 clones yielded a single consensus contig from each of the diploid 

cottons G. herbaceum and G. raimondii, and from the allotetraploid G. hirsutum. Two 

distinct contigs were assembled from clones derived from the allotetraploid G. 

barbadense. These clone sequences shared ~85% nucleotide identity with the 

Arabidopsis PHYB gene and ~78% nt identity with Arabidopsis PHYD. All clones had a 

high-scoring pair relationship with the Arabidopsis PHYB gene (E value ~ 1e-71) as well 

as significant similarity to the Arabidopsis PHYD gene (E value ~ 3e-55). Consensus 

sequences were aligned across all taxa, yielding a 319 bp alignment with an average 

pairwise sequence similarity of 99.8%, with 317 sites (99.4%) identical across all taxa, 

no stop codons and no InDels. Although these data indicated the presence of at least one 

PHYB gene in each of the A- and D-genome diploid plants and in G. hirsutum, and at 

least two genes PHYB genes in the G. barbadense, the low level of nucleotide 

differentiation observed within the hinge region yielded insufficient phylogenetic 

information to characterize the PHYB gene complement in any of the study taxa.  
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To obtain better resolution of the PHYB gene complement, additional low 

degeneracy primers 1010-F, 1910-F, 1910-R, and 2840-R (Table 4) were used along 

with primer PHYABnondeg-F to create a 2.1 kb long series of overlapping amplicons 

corresponding to approximately 1.8 kb of the Arabidopsis PHYB gene and extending 

from the hinge, through the first intron and into the second exon (Figure 6). After 

amplification, cloning and sequencing, the amplicons were assembled for each taxon. In 

all Gossypium taxa examined, the first intron was ~300 bp longer than the first intron of 

PHYB from Arabidopsis.  

Unlike the other phytochrome amplicons, we detected a high frequency of PCR-

mediated recombination events within the PHYB2.1 kb fragment resulting from 

amplifications using G. barbadense as template. The recombination detection algorithm 

RDP3 [206] identified a number of clones resulting from apparent recombination 

between the A-genome and D-genome derived homeologous sequences, with predicted 

breakpoints (P = 0) between nucleotides 1000 and 1700 of the alignment. After 

omission of these recombinant clones, composite amplicon sequences from each taxon 

were aligned, creating a consensus alignment of 2,061 bp with 98.8% average pairwise 

similarity and 2,007 identical sites (97.4%). Overall, the cotton PHYB genes shared 65% 

nucleotide identity with the Arabidopsis PHYB ortholog. No stop codons or InDels were 

detected in exon sequences. A 2 bp putative deletion was observed in one contig 

(designated PHYB.D) from G. hirsutum. In addition, a 1 bp indel was polymorphic 

between the PHYB.A and PHYB.D clades. Finally, PHYB of G. raimondii had an 

additional 1 bp insertion. All InDel polymorphisms were located within first introns.  
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Table 4 Nucleotide Divergence in Phytochrome Genes in Comparisons of A- and D-

Genome Derived Homeologs in Diploid and Allotetraploid Cottons 

Sequence Comparison S dif S pos Ks NS dif NS pos KA KA/Ks P 

PHYA1 
Hinge 

  
  

D-D 2 67.33 0.303 0 241.67 0 0 0.049 

D-T 2.25 67.17 0.102 0 241.84 0 0 0.039 

T-T 2.5 67 0.038 0 242 0 0 0.03 

PHYA2 
Hinge 

  
  

D-D 1 66.42 0.015 3 242.58 0.125 8.224 0.622 

D-T 1 66.38 0.015 2 242.63 0.065 4.247 0.504 

T-T 1 66.33 0.015 1 242.67 0.004 0.27 0.386 

PHYB 2.1 
kb 
  
  

D-D 8 377.33 0.022 7 1293.67 0.005 0.251 0.01 

D-T 9 377.34 0.024 8 1293.63 0.006 0.256 0.006 

T-T 10 377.42 0.027 9 1293.58 0.007 0.3 0.004 

PHYC 
Hinge 

  
  

D-D 3 60.83 0.051 1 230.17 0.004 0.086 0.032 

D-T 3.25 60.67 0.055 1.25 230.09 0.005 0.103 0.035 

T-T 3.5 60.5 0.06 1.5 230 0.007 0.119 0.038 

PHYC 1.0 
kb 
  
  

D-D 7 224.67 0.032 3 795.33 0.004 0.12 0.002 

D-T 8 224.84 0.037 4.5 795.17 0.006 0.156 0.003 

T-T 9 225 0.041 6 795 0.008 0.184 0.002 

PHYE 
Hinge 

  
  

D-D 4 60.42 0.069 1 206.58 0.005 0.071 0.012 

D-T 3.75 60.46 0.065 0.5 206.54 0.003 0.042 0.015 

T-T 3.5 60.5 0.06 0 206.5 0 0 0.008 

D-D indicates means of comparisons within extant diploids, D-T indicates means of comparisons of extant 
diploids with tetraploids, T-T indicates means of comparisons within tetraploids. S dif, synonymous 
differences; S pos, synonymous positions; NS dif, non-synonymous differences; NS pos, non-synonymous 
positions. P indicates significance as determined by Fisher's exact test. 

 

 

 



 

45 

 

Detailed phylogenetic analyses of the 2,061 bp contigs from A-, D-, and AD–

genome cottons (Figure 8) indicated the presence of least one PHYB locus in the two 

diploid cottons, G. herbaceum and G. raimondii, and at least two PHYB loci in both 

allotetraploid cottons. The G. hirsutum and G. barbadense sequence contigs each 

grouped into two sub-clades (tentatively designated PHYB.A and PHYB.D). The single 

PHYB contig from G. herbaceum was used to define the PHYB.A cluster (99% bootstrap 

support), while the single PHYB contig from G. raimondii anchored the PHYB.D cluster. 

From these results, we concluded that PHYB.A and PHYB.D, which shared ~98% 

nucleotide sequence identity, arose as orthologs at the time of divergence of the A- and 

D-genome diploid lineages. We surmised that PHYB.A was contributed to the 

allotetraploids via the A-genome ancestor and PHYB.D was contributed via the D-

genome ancestor. Available EST sequences indicated that at least one PHYB locus is 

expressed in G. hirsutum (Supplemental Table 1).  
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Figure 8 Phylogenetic Divergence of Phytochrome B in Cotton 
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Amplification from the PHYC Gene Sub-Family  

Several sets of degenerate primer pairs that were designed on the basis of the 

conserved HYPATDIP and PFPLRYAC regions — including several designed from 

rosid PHYC nucleotide sequences — failed to produce detectable PCR amplification 

products from the Gossypium species tested (data not shown). However, the 

identification of a small EST clone (GenBank CO121409) with similarity to Arabidopsis 

PHYC (E value = 7e-119) in a library from G. raimondii floral tissue [170], allowed us to 

design the primer PHYC_1R_DFCI within the C-terminal domain (Table 3). When used 

in combination with PHYdeg-F, this primer amplified a ~1 kb fragment composed 

entirely of coding sequence from the first exon of PHYC, including the hinge (Figure 6). 

All clones obtained using this primer pair had a high-scoring similarity to Arabidopsis 

PHYC (E value ~ 1e-172). From these clones, we assembled a single consensus contig 

from each of the diploid species G. herbaceum and G. raimondii, and two distinct 

consensus contigs from each of the allotetraploids G. hirsutum and G. barbadense. 

Consensus sequences for each of the putative PHYC contigs were aligned across all taxa, 

yielding a 1,022 bp alignment with an average pairwise sequence similarity of 99.1%, 

1,002 sites (98.0%) identical across all taxa, with no indels or stop codons in any taxa.  

In phylogenetic analyses (Figure 9), the PHYC consensus sequences grouped into 

two major clades (100% bootstrap support). One of these clades contained the G. 

herbaceum contig and one contig from each of G. hirsutum and G. barbadense. This 

clade was designated PHYC.A. The other clade, designated PHYC.D, included the G. 

raimondii contig along with the other of the two contigs from each of G. hirsutum and 
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G. barbadense. These data indicated that both the A- and D-genome ancestors had one 

PHYC gene, and that upon hybridization and polyploidization, this gene was contributed 

from each diploid to the allotetraploid ancestor of G. hirsutum and G. barbadense. 

For comparison with the other phytochromes, we also analyzed a portion of the 

PHYC alignment corresponding to the hinge region only. This alignment was 296 

nucleotide pairs in length, with pairwise sequence similarity of 99.0%, 290 sites (98.0%) 

identical across all taxa, with no InDels. Although it encompassed fewer variable 

nucleotides, NJ analysis of the hinge region alone could be used to differentiate the 

PHYC.A and PHYC.D clades (100% bootstrap support) and to infer the composition and 

evolutionary inheritance of the PHYC gene family in cottons (data not shown).  

Our failure to obtain PHYC hinge amplification with several sets of both 

universal (e.g. PHYdeg-F/PHYdeg-R) and rosid specific primers was entirely due to 

substantial nucleotide differentiation in PHYC, particularly within the hinge region. For 

example, the 24 nt long PHYdeg-R primer had six nucleotide mismatches with the 

cotton PHYC genes, including three transitions and three transversions. Five of the six 

mismatches occurred at what are considered to be invariant (e.g. non-degenerate) 

nucleotide positions. It should be noted that these divergent nucleotides in the conserved 

primer-binding site did not alter the amino acid sequence (PFPLRYAC).  
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Figure 9 Phylogenetic Divergence of Phytochrome C in Cotton 
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The PHYE Gene Sub-Family  

PHYE hinge region consensus contigs from our study taxa formed a 270 bp 

alignment with an average pairwise similarity of 98.9%, with 264 (97.8%) invariant 

sites, no InDels, and no stop codons in any taxa. The consensus of the aligned PHYE 

sequences had 80% nucleotide similarity to the corresponding fragment of the 

Arabidopsis PHYE gene. Based on maximum parsimony, nucleotide diversity in the 

cotton PHYE hinge sequences could be explained by a minimum of six nucleotide 

changes, all of which were synonymous. NJ analysis of the cotton PHYE hinge region 

showed two distinct clades (97% bootstrap support) corresponding to the A- and D-

genome derived orthologs (designated PHYE.A and PHYE.D), a finding consistent with 

a hypothesis in which each diploid ancestor contributed a single PHYE ortholog to the 

allotetraploid lineage (Figure 10). Interestingly, while two distinct PHYE contigs were 

obtained from G. hirsutum, only a single contig, which grouped with the D-genome 

clade, was obtained from G. barbadense. Available EST sequences indicated that at least 

one PHYE locus is expressed in G. hirsutum (Supplemental Table 1). 
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Figure 10 Phylogenetic Divergence of Phytochrome E in Cotton 
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A Global Hinge-Based Alignment of Arabidopsis and Cotton Phytochromes 

PHYA, PHYB, PHYC and PHYE hinge regions from Arabidopsis and Gossypium 

spp. were aligned to create a global phytochrome alignment 358 nucleotides in length, 

with an average pairwise similarity of 69.4% and 123 identical sites (34.4%). The gene 

phylogeny generated from this alignment (Figure 11) reflected divergence of PHYA, 

PHYB, PHYC and PHYE as a result of speciation (nodes 1A, 1B, 1C and 1E, 

respectively) and gene duplication (nodes 2 and 3). The level of nucleotide divergence of 

each of the gene sub-families after nodes 1A, 1B, 1C and 1E (Kimura 2-parameter 

distances) was similar, with a mean of 0.297 ± 0.21 nucleotide substitutions per site. 

However, the synonymous (KS) and non-synonymous (KA) substitution rates were both 

significantly more variable among the various gene sub-families defined by nodes 1A, 

1B, 1C and 1D than were simple nucleotide distances (Table 4). Despite this variation, 

all sub-families showed a KA/KS ratio < 0.1, implying that each remains under purifying 

selection for function. Further, excessively long branch-lengths, which are often found in 

pseudogenes, were not observed. In the PHYB, PHYC and PHYE clades, the branch 

lengths leading to the Arabidopsis orthologs, which have known biological functions, 

were longer than the branches leading to their respective cotton orthologs. Considered 

together, these lines of evidence indicate that each of the phytochrome sub-families 

retains some biological function in Gossypium, as they do in Arabidopsis [63, 64, 68-70, 

103, 182, 184-194]. Further, our topology supports the conclusion that PHYD is the 

result of a relatively recent gene duplication that may be exclusive to the Brassicaceae 

family [182].  
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Figure 11 Phylogenetic Divergence of All Phytochromes in Cotton and Arabidopsis 
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Discussion 

Resolution of the Phytochrome Gene Family  

In three out of four cases, we were able to successfully resolve the inventory and 

evolutionary relationships of the phytochrome genes in diploid and allotetraploid cottons 

using the hinge region only. This finding supports the general utility of employing the 

hinge region for identifying GSTs for phytochromes. In only one case (PHYB) was 

additional gene sequence required for sufficient phylogenetic resolution. In another case 

(PHYC), nucleotide divergence at a commonly used primer-binding site prevented the 

characterization of the hinge region by the typical strategy of using primers based on 

conserved flanking peptides HYPATDIP and PFPLRYAC. However, nucleotide 

diversity within the PHYC hinge region itself was sufficiently informative to resolve the 

pattern of evolutionary inheritance through allotetraploidization event.  

The sequencing of phytochrome gene fragments from A- and D-genome diploids, 

as well as from AD allotetraploid taxa, provides an essential foundation for all 

subsequent analysis of phytochrome function and evolution in Gossypium. The 

sequenced fragments provide sufficient information (at least two diagnostic nucleotide 

characters) to unequivocally identify or ‘tag’ various orthologs, homeologs and paralogs, 

as well as monitor their patterns of nucleotide divergence, and trace their evolutionary 

inheritance through the allopolyploidization event. This information will serve as a 

foundation for further sequence assembly and annotation, and will be used to design 

locus-specific primer sets for quantitative RT-PCR assays that will measure transcript 

levels for each gene family member. In some cases (e.g. PHYA1 vs. PHYA2) levels of 
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sequence divergence are high enough to support studies of gene function using RNAi or 

amiRNA approaches to create gene-specific knockouts [170]. The use of well 

characterized ‘candidate genes’ of agronomic interest is becoming an integral 

component of marker-assisted selection efforts in plants [207]. Several SNP-based 

molecular markers [208, 209] are now being developed using the diagnostic nucleotide 

characters identified in this study, and are being mapped in experimental cotton 

populations that show segregation of phytochrome-controlled traits such as fiber length 

and flowering time.  

The Ancestral Phytochrome Gene Complement of the Malvales and Brassicales 

Our study indicated that the diploid ancestors to the world’s major fiber crops (G. 

hirsutum and G. barbadense) had a complement of phytochrome apoprotein genes that 

was very similar to that of the model plant Arabidopsis thaliana. This was not entirely 

unexpected given the relatively close phylogenetic relationship of the two lineages [204, 

205]. The most-simple evolutionary scenario is that the last common ancestor of 

Arabidopsis and cotton, possibly an arborescent species in the late Cretaceous period 

[205], had a phytochrome gene complement consisting of one functional gene in each of 

the PHYA, PHYB/D, PHYC and PHYE subfamilies.  

PHYA Duplication in Gossypium 

After the divergence of the Malvales and Brassicales, the ancestral PHYA gene 

underwent duplication resulting in the observed PHYA-1 and PHYA-2 paralogs of 

modern Gossypium spp. As the A- and D-genome diploids have both paralogs, the 

duplication event occurred prior to the divergence of the A- and D-genome lineages. 



 

56 

 

Using 85 MYA (range 68 MYA to 96 MYA) as a rough estimate of the time of 

divergence of the Malvales and Brassicales [204, 210], along with our observed Ks of 

1.82 in the PHYA hinge region in this time interval, we can derive a crude estimate of 

0.011 substitutions / synonymous-site / million years, and an estimate of the time of 

PHYA duplication of ~14 MYA. This estimate places the duplication well within the 

crown group of Malvales and the Malvaceae family [205]. Given our time estimate, the 

PHYA duplication may be exclusive to the genus Gossypium, but would have occurred 

prior to the estimated time of divergence of the A and D genome groups [203]. As 

neither we nor others [40, 203, 210] have observed evidence of additional nuclear gene 

duplications or chromosomal duplications in this time period, the PHYA event was likely 

a tandem or segmental duplication, rather than whole genome duplication.  

After a gene duplication event, one of the two newly duplicated genes is 

theoretically unconstrained by selection for function, and is thus free to accumulate 

mutations leading to a pseudo-gene fate, sub-functionalization, or neo-functionalization 

[211-215]. Although we did not obtain definitive evidence of pseudo-genic sequences in 

any of the phytochromes or taxa studied (e.g. no stop codons or frame shift mutations), 

we did observe significant variation in KA/Ks ratios in pairwise interspecific comparisons 

(discussed below), leaving open the possibility of pseudo-gene outcomes. Alternatively, 

one of the duplicated genes may undergo positive selection to gain a novel function 

(neo-functionalization). Further, duplicated gene-pairs may subdivide the function of 

ancestral gene (sub-functionalization). Perhaps the most intriguing fate, which has been 

observed empirically, but not yet explained in theory, is the situation in which both gene 
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copies may be retained for a lengthy period under what appears to be purifying or 

negative selection [216, 217]. One approach to understanding the evolutionary fates of 

duplicated genes is through an analysis of the signature of natural selection on amino 

acid encoding sequences.  

Although the hinge regions of phytochromes display relatively high levels of 

nucleotide diversity [218], they do not evolve under neutrality. The hinge region 

participates in inter-domain communication in phytochrome molecules [219]. For 

example, phosphorylation of a serine residue in the PHYA hinge plays a likely role in 

regulating protein-protein interactions between phytochrome and downstream signal-

transducing molecules [220]. Compared to wild-type, a mutation in the hinge region of 

Arabidopsis PHYB is deficient in localization into distinct nuclear bodies [221]. Further, 

a single nucleotide polymorphism (SNP) in the hinge of one of two PHYB genes in 

Aspen (Populus tremula, Salicaceae) was associated with natural geographic variation in 

the timing of bud-set [222]. 

In comparisons between cotton and Arabidopsis (Table 5), the KA/Ks ratio for the 

PHYA hinge region was 0.068 — a value that is typical for genes under purifying 

selection [223]. In contrast, the KA/Ks ratio for PHYA after gene duplication (node 3) was 

0.163, or ~2.4-fold higher. This value is also ~2.1-fold greater than the mean KA/Ks ratio 

of all phytochrome hinge regions (corresponding to nodes 1A, 1B, 1C, and 1D in figure 

6) of approximately 0.079 ± 0.014. This significantly elevated KA/Ks ratio after the 

PHYA duplication could be attributed to a relaxation of stabilizing selection and/or 
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subfunctionalization of the nascent PHYA paralogs (these two alternative possibilities 

are remarkably difficult to distinguish on the basis of sequence information alone). 

 

 

 

 

Table 5 Nucleotide Divergence in Phytochrome Genes in Comparisons of Arabidopsis and 
Cotton 

  K-2P S Dif Ks NS Dif KA KA/KS 

Node 
1A 0.291 46.5 1.82 27.4 0.123 0.068 

Node 
1B 0.296 36.5 1 17.5 0.086 0.09 

Node 
1C 0.274 41 1.55 30.3 0.147 0.095 

Node 
1E 0.326 49 >2.0 23 0.122 <0.061 

Node 3 0.094 17 0.309 11.8 0.05 0.163 

Nodes refer to the NJ tree in Figure 6. K-2P indicates the mean Kimura 
2-parameter distances between Arabidopsis and cotton gene sequences. 

 

 

 

 

  The possible functional divergence of PHYA1 and PHYA2 may be more 

pronounced after the separation of the A- and D-genome lineages (Table 4). A 
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comparison of PHYA2 in the two diploids yields a KA/Ks ratio of ~8.2, primarily due to 

amino acid substitutions in PHYA2.D, while PHYA1 has a KA/Ks ratio of 0.000 in the 

same taxonomic comparisons. Although this difference is suggestive of possible 

differential rates of functional evolution in the paralogs, it is not statistically significant 

in Fisher’s exact test (P = 0.2485). It will be of interest to determine whether the cotton 

PHYA paralogs have distinct functions. Experiments are underway to determine the 

respective biological functions of each PHYA-1 and PHYA-2 in G. hirsutum and G. 

barbadense using paralog-specific RT-PCR, RNAi gene knockout, and tests for genetic 

associations between phytochrome-controlled phenotypic traits and PHYA-1 and PHYA-

2 specific molecular markers. A ‘candidate gene’ approach has recently been used in soy 

(Glycine max) to uncover a genetic linkage between the photoperiod insensitivity locus 

E4 and one of the two the PHYA genes, designated GmphyA1 and GmphyA2 [115]. Loss 

of photoperiodic flowering is associated with a Ty1/copia-like retrotransposon insertion 

into exon 1 of GmphyA2. The authors argue that gene duplication and partial redundancy 

of the PHYA genes may have facilitated the loss of photoperiod sensitivity by allowing 

the GmphyA2 (E4) mutant to avoid the major deleterious phenotypic effects that would 

have been caused by complete deficiency of PHYA gene function.  

Persistence and Loss of Phytochrome Paralogs after Allopolyploidization 

All phytochromes underwent gene duplication by polyploidization at the time of 

formation of the AD allotetraploids, on the order of 0.5-2.0 MYA [35, 38, 201, 224]. For 

example, in G. hirsutum, we detected a minimum set of ten distinct phytochrome genes, 

including four PHYA genes. In order to assess the evolutionary trajectory of these 
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recently duplicated genes, we examined the synonymous and non-synonymous 

divergence rates of A- and D-genome phytochrome orthologs and homeologs (Table 4) 

in pairwise comparisons of 1) diploids with diploids (D-D), 2) diploids with tetraploids 

(D-T), and 3) tetraploids with tetraploids (T-T). Given that the allotetraploid cottons had 

both A- and D-genome derived copies of each gene on the order of hundreds of 

thousands of years, we hypothesized that there may be a relaxation of selection in the 

allotetraploids, as one of the two copies should no longer be evolutionarily constrained.  

However, in comparisons of A- vs. D-genome derived orthologs or homeologs for six 

GSTs (Table 3), we did not observe dramatic differences in KA/Ks between diploid and 

allotetraploids in any GST except the hinge region of PHYA2 (in this case, the observed 

KA/Ks ratio was actually ~30-fold higher in the extant diploids than in the 

allotetraploids). Because of low levels of nucleotide divergence, we employed Fisher’s 

exact test [225] and found no significant differences in the patterns of nucleotide 

evolution in allotetraploids vs. diploids. Thus, there was no broad evidence of dramatic 

relaxation of natural selection on gene function after gene duplication by 

allotetraploidization. Further, the generally low KA/Ks ratios across all genes and taxa 

support a model in which that the phytochrome homeologs are largely evolving 

independently by a birth-and-death model rather than concerted evolution [226].  

The coding sequences of the PHYB 2.1 kb fragment also appeared be evolving 

under stabilizing selection in both the diploids (KA/K s= 0.251) and allotetraploids (KA/K 

s= 0.300) reflecting continued selective constraint on coding sequence evolution after 

polyploidization. However, there was a significant excess of non-synonymous 
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substitutions in both diploids and allotetraploids (P = 0.01 and P = 0.004, respectively, 

in Fisher’s exact test) indicating a partial relaxation of negative selection and/or 

functional divergence of the PHYB homeologs. 

In the allotetraploid cottons, both PHYC.A and PHYC.D are also evolving in a 

pattern consistent with purifying selection (KA/Ks = 0.184 over 340 codons). However, it 

should be noted that the PHYC.D clade appears to be evolving at distinctly faster rate (8 

parsimonious substitutions, including 6 non-synonymous) than the PHYC.A clade (2 

parsimonious substitutions, both synonymous). This suggests either a relaxation of 

purifying selection in, or functional divergence of PHYC.D. In a similar study of 

phytochromes in cultivated sorghum (Sorghum bicolor) and its wild congeneric relatives 

[172], PHYC was undergoing faster amino acid evolution than PHYA or PHYB. In the 

both the PHYB and PHYC gene subfamilies of cotton, the sequences of the C-terminal 

signaling domain had higher KA/Ks ratios than the corresponding hinge region alone. 

This may reflect the co-evolution of protein-protein interactions with downstream 

signaling partners, which are mediated by the C-terminal ‘signal transduction’ domain 

[162-164, 173-175].  

While PHYE-related contigs had low KA/Ks values (0.000 to 0.071), indicating 

purifying selection, no contig corresponding to an expected G. barbadense PHYE.A 

ortholog was observed. This may have been due to under-sampling of G. barbadense 

clones for sequencing, or due to nucleotide divergence in primer sites (as observed in 

PHYC). Of the 16 PHYE-like clone sequences obtained from G. barbadense, all were in 

the D-genome derived clade, which would be a unlikely result (P < 0.005, chi-square 
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test) assuming equal amplification efficiencies for PHYE.A and PHYE.D. Alternatively, 

the apparent lack of a PHYE.A ortholog in G. barbadense could be explained by 

concerted evolution, gene conversion, or by PCR-mediated recombination [224, 227]. 

Overall, the PHYE genes, like the other cotton phytochromes, had more synonymous 

than non-synonymous nucleotide substitutions, favoring a birth-and-death model of gene 

evolution. 

Conclusions 

Our preliminary efforts to obtain an inventory of the cotton phytochrome gene 

family (based largely on ‘hinge’ region) indicated that diploid A- and D-genome diploid 

cottons have two paralogous PHYA genes (designated PHYA1 and PHYA2), and one 

each of PHYB, PHYC, and PHYE gene sub-families. Coding sequence evolution in 

PHYA2 was significantly elevated, suggesting loss of selection for function, or incipient 

sub-functionalization. Other than this duplication and the lack of a separate PHYD gene, 

the phytochrome complement of diploid cottons was very similar to that observed in the 

closely related model plant Arabidopsis thaliana, which greatly facilitates cross-species 

comparisons.  

Whole genome duplication via allopolyploidization (~0.5-2.0 MYA) resulted in 

additive amalgamation of phytochrome genes within a single nucleus in the 

allotetraploid, retaining complete gene complements of at least four PHYA genes, two 

genes of each PHYB, PHYC and PHYE in AD-genome G. hirsutum. G. barbadense may 

lack the PHYE gene contributed by the A-genome ancestor. Strong purifying selection 

on nearly all of the phytochrome genes suggests some level of conservation of function 
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of each of the genes after polyploidization. With the possible exception of one of the 

PHYE.A homeologs in G. barbadense, we did not see evidence of gene loss. We did not 

observe any convincing evidence of concerted evolution by gene conversion. Rather, the 

genes duplicated by allopolyploidy appear to be largely retained, and evolving 

independently as observed in 48 other nuclear genes in allotetraploid cottons [228].  

These results further our understanding of the evolutionary fates of duplicate 

genes following allopolyploidization. Information on key evolutionary events (such as 

duplications), as well as rates and patterns of evolutionary change, are an important 

component of the functional annotation of genes and genomes [229]. These data provide 

the foundation for more comprehensive studies of the biological functions of each of the 

cotton paralogs and homeologs. The development of phytochrome ‘candidate gene’ 

markers based on the GSTs identified here may prove useful in the mobilization of 

valuable genes from photoperiodic wild and primitive cottons into elite cotton varieties, 

in order to improve stress tolerance, disease resistance, fiber quality, and other traits.  

Methods 

Plant Materials 

To simplify the assignment of sequences to orthologous or paralogous 

phytochrome loci (as opposed to alternative alleles at a single locus) we employed 

diploid and allotetraploid strains that were highly homozygous. Diploid cotton species 

(G. raimondii Ulbr, and G. herbaceum L.) were obtained from the cotton germplasm 

collection at the Institute of Genetics and Plant Experimental Biology, Tashkent, 

Uzbekistan. These lines had been maintained by selfing for multiple generations. 
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Genetic standard genotypes G. hirsutum L. cv. TM-1 and G. barbadense L. cv. 3-79 

were obtained from the USDA-ARS Cotton Germplasm Unit, at College Station, Texas, 

USA. G. hirsutum cv. TM-1 [230] is a highly inbred line (>40 generations of selfing). G. 

barbadense cv. 3-79 is a doubled-haploid line [231]. 

Genomic DNA Isolation and PCR Amplification 

Genomic DNAs were isolated from fresh leaf tissue of individual plants from 

each taxon using the method described by Dellaporta et al. [232]. The primers used in 

this study (Table 3) were designed using sequences from phytochromes of 

dicotyledonous plants obtained from the GenBank database 

(http://www.ncbi.nlm.nih.gov) and aligned using CLUSTALX software [233]. These 

included the degenerate primer pair PHYdeg-F/PHYdeg-R, which was designed to 

amplify the hinge region of the entire phytochrome gene family, and primer pairs 

PHYABnondeg-F/PHYAdeg-R and PHYABnondeg-F /PHYBdeg-R, designed to 

amplify the hinge regions of the PHYA and PHYB/D subfamilies, respectively. In order 

to amplify additional regions of several the cotton phytochrome genes, degenerate 

primers that amplify amplicons downstream of the hinge region (in the C-terminal 

domain) were also designed using this approach. Conserved regions that had 

approximately 40-55% G+C content were used for primer design. The primer design 

criteria have been described [234].  

PCR reactions were performed in a Robocycler thermocycler (Agilent, USA) 

with an initial denaturation cycle at 94°C for 3 min., followed by 45 cycles of 94°C for 1 

min., 55° C for 1 min. (annealing) and 72°C for 2 min. (extension), followed by a single 
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5 min. extension at 72°C. A manual ‘hot start’ cycling protocol was performed through 

the addition of Thermus aquaticus (Taq) DNA polymerase in the annealing step of first 

cycle. 

DNA Sequence Analyses 

PCR products were cloned into the vector pCR4-TOPO and transformed into E. 

coli TOP10 cells according to manufacturer’s instructions (Invitrogen, USA). Cloning 

was necessary to resolve sequences of duplicated genes. Recombinant plasmids were 

purified by mini-prep (Qiagen, USA) and sequenced using Big-Dye DNA version 1 

cycle sequencing chemistry (Applied Biosystems, USA) along with vector-specific 

forward and reverse primers. As native Taq polymerase has an appreciable nucleotide 

substitution error rate [235], at least 10 clones were sequenced for each amplicon from 

each diploid taxon, and 20 clones were sequenced from each allotetraploid taxon. 

Unincorporated dye-labeled terminators were removed from the extension products by 

Bio-gel P-30 spin column purification (Bio-Rad, USA). Extension products were 

sequenced using the ABI 310 and ABI3130 Genetic Analyzers (Applied Biosystems, 

USA).  

Data Analyses 

Double-stranded, finished sequences for each clone were assembled with 

Sequencher 4.8 software (Gene Codes, USA). After trimming of vector and 

amplification primers, sequences were searched against GenBank databases using 

BLASTN [236]. Searches of the non-redundant nucleotide database (nr) and the 

Arabidopsis thaliana database (Taxid: 3702) were performed using the “discontinuous 
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megablast” method as implemented by the NCBI database [237]. Alignments of clones 

obtained from each amplicon/taxon combination were performed using ClustalX. Within 

each taxon, clone sequences were grouped into contigs on the basis of (in all cases) at 

least two shared diagnostic SNPs and (if present) shared indel polymorphisms. When a 

single clone differed from other clones in the same consensus contig at a single 

nucleotide position, these sporadic differences were assumed to be products of Taq 

polymerase substitution error [235]. 

Consensus sequences were then aligned across all taxa and used for phylogenetic 

analyses. Distance-based phylogenetic trees were generated using neighbor-joining 

[238], using a minimum evolution objective, with gaps (indels) ignored, and either 

uncorrected “p” distances or Kimura two-parameter distances [239], as noted in the 

figure legends. Parsimony analysis was performed by an exhaustive search implemented 

by the PAUP software package version 4.0b10 [240]. The robustness of each 

phylogenetic tree was evaluated by bootstrap replication [241]. Estimates of 

synonymous substitution rate KS and non-synonymous substitution rate KA were based 

the Jukes-Cantor correction [242] and calculated by the method of Nei and Gojobori 

[243] as implemented by the DnaSP ver. 5 software package [244]. The significance of 

differences in KA and KS were determined by Fisher’s exact test [225]. Sequence 

alignments were scanned for possible recombination using the software package RDP3, 

employs a suite of recombination detection and analysis methods [206]. Phytochrome 

ESTs from Gossypium spp. were identified in GenBank by searching non-human, non-
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mouse ESTs (est_others) and Gossypium (Taxid: 3633) using the “discontinuous 

megablast” method as implemented by the NCBI database [237]. 
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CHAPTER III 

USE OF ROCHE 454 AMPLICON PYROSEQUENCING TO IDENTIFY 

ORTHOLOGS, PARALOGS AND SNPS OF CANDIDATE GENES IN DIPLOID 

AND TETRAPLOID COTTONS (GOSSYPIUM SPP.) 

 

Comparative SNP Diversity among Diploid and Tetraploid Cottons  

(Gossypium spp.) for Candidate Genes from the Floral Network,  

Circadian Clock, and Photoreceptor Biosynthetic Pathways 

Overview 

Overview Rationale and Objectives  

The genomes of cultivated cottons were found to be large, complex, incompletely 

characterized and they included both diploids (2N = 2X = 26) and allotetraploids (2N = 

4X = 52). The use of single nucleotide polymorphisms (SNPs) for genetic analyses, such 

as QTL mapping and association mapping, has been made complicated by the presence 

of multiple orthologs and paralogs. With the emergence of long-read next-generation 

sequencing, like the Roche 454, it has become possible to sort out nucleotide differences 

between different orthologs, paralogs, and alleles in the absence of complete genome 

sequences, cytogenetic studies, or complete linkage data. It has been hypothesized that 

differences in floral initiation between cultivated allotetraploid ‘AD’ cottons and the 

wild allotetraploid ‘AD’ relatives were due to genetic variation within the floral 

regulatory pathway. This study was an exploratory measure in floral gene regulation. 
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Overview Methods  

This study postulated that SNP polymorphisms associated with 38 candidate 

floral regulatory genes were identified from Arabidopsis thaliana. In a partial Roche GS-

FLX run (1/8 gasket), 56 gene amplicons representing 38 genes in the flowering 

pathway were sequenced from eight taxa including Gossypium raimondii (D5), 

Gossypium herbaceum (A1), Gossypium barbadense (AD2), Gossypium hirsutum 

(AD1), and the out-group Gossypium incanum (E4). Each of the taxa was barcoded 

using a novel Y-adapter strategy. From a dataset of 104,230 reads, we were able to parse 

out the ‘A’ and ‘D’ genome orthologs of candidate genes, and polymorphisms between 

the diploid orthologs and the allotetraploid paralogs.  

Overview Results and Conclusions  

This study characterized polymorphism levels (including exonic and intronic) of 

38 candidate genes in three pathway categories: photoreceptors, circadian clock genes, 

and floral regulators. These sequences showed high similarity to orthologs in the model 

plant Arabidopsis thaliana, allowing for the various cotton orthologous and paralogous 

loci to be identified, and nucleotide polymorphisms within each locus to be easily 

characterized between the eight cotton taxa. Our findings implied that despite 

duplications in allotetraploids, informative genetic changes in candidate genes can be 

identified and used in subsequent experiments to correlate candidate genes with 

phenotypic differences in photoperiodic flowering.  
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Overview Keywords 

Cotton, Duplicate Gene Evolution, Gene Conversion, Gossypium, Polyploidy, 

Linkage Disequilibrium, Candidate Gene, Flowering, Photoperiodism, Photoperiod, 

SNP, Orthologs, Circadian Clock, Paralogs 

Background  

Flowering time was identified as a vital trait in domestication and agronomy of 

higher plants. Loss of the ability to sense photoperiodic cues to initiate flowering was 

essential to the dissemination and diversification of many crops to different longitudinal 

ranges throughout the world [245-247]. Flowering time has been highly influenced by 

the plant’s ability to discern how many hours of light have passed during a day. For the 

ability to spread crops throughout the globe, this phenomenon has been studied 

extensively in many low latitude (tropical and sub-tropical) organisms, such as Zea 

Maes, Solanum lycopersicum, Oryza sativa, and Sorghum bicolor, that are of tropical or 

sub-tropical origin, but have spread to higher latitudes [17, 22, 41-44, 80, 246, 248-255]. 

Historically, agrarian societies have disseminated these tropical origin crops throughout 

the world, as their societies expanded into new frontiers at differing latitudes.  

During the past 10,000 years, wild plants and animals have been converted into 

domesticated species by the introduction of farming in agrarian cultures [12-14, 17-20, 

23, 36, 44, 107, 246, 247, 256-263]. Through agricultural advancements, farmers 

propelled these plants and animals forward into elite lines by new techniques in crop 

breeding and animal husbandry [7-10, 17, 45, 107, 172, 208, 261, 264-275]. During this 

agricultural domestication process, wild plants and animals were selected based on 
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phenotypic and genetic changes caused by rapid evolutionary responses. The phenotypic 

and genetic changes caused by domestication provide exemplary models to study [5, 12, 

13, 42, 161, 219, 225, 260, 261, 276]. One phenotypic change, resulting during the birth 

of agrarian societies, was a plant’s ability to discern the amount of daylight hours. 

Photoperiodism (the perception of the amount of day and night hours) plays a 

key role in the domestication process of several sub-tropical and tropical plants [19-21, 

166, 223, 246, 247, 253, 254, 277]. When photoperiodism does not affect a plant’s 

ability to flower, the plant was deemed day-neutral (photoperiod insensitive) [12, 24, 45, 

75, 80, 97, 98, 105, 107, 147, 150, 165, 172, 247, 249, 250, 252, 254, 255, 258, 259, 

267, 277-286]. Typically, day-neutral plants flower according to certain developmental 

ages or environmental cues other than day length [50]. While undomesticated varieties 

of the cotton species, Gossypium barbadense and Gossypium hirsutum, were short day 

(SD) plants, modern cultivars of these species display day-neutrality [48, 49]. As the 

days grow shorter, short day plants were cued to flower when a certain amount of 

sunlight hours has been reached. In undomesticated cotton, this occurred when a 

reduction of daylight hours were equal to ten [32, 33].  

It has been hypothesized that humans began inadvertently selecting for early 

flowering cotton, as a result of poly-cultural harvest practices, approximately 5000 years 

ago in both the old and new worlds [5, 29, 31, 33-36, 201, 202, 225, 287-290]. In the 

western hemisphere, Meso-Americans were thought to have begun domesticating cotton 

(Gossypium hirsutum L. and Gossypium barbadense L.) during their proto-agriculture 

phase [5, 30, 31, 33, 287]. The various species in these mixed agricultural plots were 
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harvested simultaneously; thus, while indigenous people gathered Teosinte (primitive 

corn), Canvalia (beans), and other crops for food, they unintentionally selected cotton 

that produced bolls at an earlier time, rather than the ancestral photoperiod-sensitive 

cotton, which naturally flowered later [5, 11, 32]. 

Selection for day-neutrality and other traits during domestication of several 

tropical and sub-tropical crop species has resulted in severe genetic bottlenecks [5, 12-

21, 23, 25-27, 36, 42, 44, 107, 246, 247, 249, 256, 257, 260-263, 277]. The limited 

genetic diversity in modern cultivated cotton has stifled crop improvement. Therefore, 

the transfer of valuable traits, such as tolerance to biotic and abiotic stresses from wild 

relatives, has emerged as a key strategy in cotton improvement [291]. These wild genetic 

resources have valuable assets that have not been utilized and should be incorporated 

into traditional breeding programs [6]. Unfortunately, these wild relatives have been 

hampered by photoperiod sensitive flowering, so traditional breeding programs were 

impaired [11].  

Most commercial cotton-producing areas in the world have not provided day 

length conditions that allow wild cotton species to flower in the span of a growing 

season [6, 27, 32, 35, 36, 48, 268, 292-296]. These ‘wild cotton taxa’ required the 

shortening of red light to nearly eleven hours in order to flower [11, 48, 169, 263, 268, 

297]. The site of this study has been in College Station, TX (30° N latitude), where 

flowering in photoperiod dependent cotton occurs during late October.  

Modern breeding techniques have used marker-assisted selection (MAS) to 

rapidly integrate desirable traits into elite cultivars [7-10, 32, 169, 231, 270, 297-301]. 
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Achieving markers representing desirable traits from wild relatives has been difficult, 

but straightforward. An optimal MAS strategy would be to use markers to select for 

desirable traits, such as biotic or abiotic stress tolerance, and simultaneously select 

against SD photoperiodic flowering [11, 48, 268, 297].  

To identify molecular markers, one approach utilized tightly linked to 

photoperiodic flowering to discern polymorphisms in the actual genes underlying the 

phenotypic variation between ‘wild’ and cultivated cotton floral initiation. With an 

improved understanding of the molecular-genetic determents behind day-neutrality in 

modern cotton and SD primitive cotton, new strategies to introgress valuable genetic 

traits from wild Germplasm for crop improvement can be applied [48, 49]. This 

approach identified many candidate genes that might be implicated in the photoperiod-

independent evolution of flowering time during domestication of cultivated cotton 

(Gossypium barbadense).  

Candidate Gene Approach  

For the past decade, controversy has erupted among scientists on whether to use 

a genome-wide study using association mapping (GWAS) or a hypothesis-driven study 

using candidate genes [302]. The difference is that genome-wide studies look for 

anonymous polymorphisms throughout the genome, while candidate gene approaches 

are based on genes that are involved in the pathway that is influencing a phenotypic trait.  

The primary reasons for utilizing the candidate gene approach in this study were: 

1) well characterized pathways in Arabidopsis thaliana (floral regulatory network, 

photoreceptor pathway, and circadian clock pathway), and 2) the phylogenetic 
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relatedness between Arabidopsis and cotton (Malvaceae) [12, 24, 45, 46, 75, 105, 107, 

113, 147, 165, 169, 172, 247, 249, 252, 254, 255, 258, 259, 267, 277-286, 303]. Our 

candidate gene approach incorporated genes from the well-characterized flower 

developmental network in Arabidopsis thaliana [12, 24, 45, 47, 51, 69, 70, 72, 75, 80, 

87, 88, 90, 94, 97, 98, 101, 105-107, 113, 121, 122, 132, 136-138, 140, 144, 147, 149, 

150, 152, 159, 165, 167, 172, 184, 192, 247, 249, 250, 252, 254, 255, 258, 259, 267, 

277-286, 303-316]. Arabidopsis thaliana was chosen as a model for cotton because of 

well-documented studies of photoperiod-independence and minimal evolutionary 

divergence being located in the same phylogenetic clade, Eurosid II. [46] Outside of 

Brassicales, cotton is the closest mapped agnate to Arabidopsis thaliana [317, 318].  

Another reason for choosing the candidate gene approach, rather than GWAS, 

was the large extent of linkage disequilibrium (LD) in cotton [273, 291, 319]. 

Abdurakhmonov et al. found cotton’s  LD blocks to be approximately 5 to 6 cM in size, 

corresponding to 2.5 to 3.0 Mb [291]. With GWAS finding anonymous markers with 

very close physical and genetic linkage to photoperiodic flowering would be a daunting 

task because the very large linkage blocks, therefore going with candidate genes seemed 

more effective being closely linked with photoperiodic flowering.  

A reference genome was not available for our search for cotton orthologs of our 

Arabidopsis candidate genes. Only recently were the Gossypium raimondii D genome 

scaffolds released with partial annotations (January 6, 2012, 

http://www.phytozome.net/cotton.php). Corrections to the 2012 PLoS ONE article, by 

Blenda et al., updated the Gossypium raimondii D genome scaffolds to version 2.1, 
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which realigned some chromosomes and scaffold orientations [320]. Another draft 

genome of Gossypium raimondii was released in August 2012 from the Beijing 

Genomics Institute (BGI) without annotations [321]. At the time this experiment was 

started, the resources available were expressed sequence tags (EST) libraries in 

GenBank at the National Center for Biotechnology Information (NCBI) and tentative 

consensus sequence (TCs) libraries in the Gene Index Project at Computational Biology 

and Functional Genomics of the Dana-Faber Cancer Institute (DFCI). However, a vast 

majority of those Gossypium EST and TC libraries were made from post-anthesis tissues 

(after flowering, fiber only). Therefore, finding genes expressed during other plant 

developmental stages (such as floral initiation) was difficult.  

The specific objective of this project was to identify SNP, Single 

Insertion/Deletion (SID), and Insertions/Deletions (InDel) polymorphisms in genes of 

the floral developmental network genes in cotton. Thirty-eight genes of interest were 

selected based on the Arabidopsis floral regulatory literature [24, 45, 47, 54, 61, 63, 65-

76, 78, 79, 81, 85-90, 94, 95, 97, 98, 101-104, 106, 114, 121-123, 125, 126, 128-133, 

135-140, 143, 144, 148, 150-152, 159, 161, 165, 166, 168, 173, 176, 179, 182, 184-186, 

188-192, 194, 196, 198, 200, 219, 221, 222, 247, 250, 252, 253, 255, 258, 259, 276, 280-

282, 286, 303-306, 309-316, 322-337]. Priority was assigned to those genes with a 

known influence for photoperiod regulation of floral initiation. Cotton orthologs of these 

genes of interest were PCR amplified from eight different species of cotton [Gossypium 

raimondii (D5), Gossypium herbaceum (A1), Gossypium barbadense 3-79 (AD2 - 

genetic standard), Gossypium barbadense PS-6 (AD2), Gossypium hirsutum TM-1 (AD1 
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– genetic standard), and Gossypium incanum (E4)] and two photoperiod sensitive 

accessions [Gossypium barbadense K-46 (AD2) and Gossypium hirsutum TX-231 

(AD1)] and sequenced using Roche 454 pyrosequencing. Our research included genes 

from photoreceptors, circadian clock genes, and transcription factors known to act as 

floral integrators. The goal was to isolate sequence differences between photoperiodic 

and non-photoperiodic lines, in order that these differences could be tested for genetic 

linkage to photoperiodic flowering and later used for marker assisted selection [7-10]. 

Results 

Discovery of Genes within Cotton Divergence through Evolution 

In an effort to encompass a comprehensive characterization of SNPs in the 

Gossypium taxa, samples across an evolutionary time span had to be taken. Samples in 

this study spanned across diploid evolutionary relatives of the ‘A’ and ‘D’ sub-genome, 

the uncultivated tetraploid ‘AD’ G. barbadense and G. hirsutum relatives, the modern 

cultivated lines of the tetraploid ‘AD’ G. barbadense and G. hirsutum, and, finally, a 

distant evolutionary out-group of the ‘E’ sub-genome (Table 6). By breaking down the 

sequences by sub-genomes, the confidence of distinguishing SNPs favoring significant 

changes between uncultivated and cultivated taxa can be teased out, while excluding the 

‘A’/‘D’ evolutionary changes occurring ten million years ago (MYA).  
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Table 6 List of Cotton Used 

Latin Name Variety Designation Ploidy Floral Cue Origin 

Gossypium raimondii D5 D5 Diploid Photoperiodic Peru 

Gossypium herbaceum A1 A1 Diploid Photoperiodic Africa-Asia 

Gossypium barbadense 3-79 AD Allotetraploid 
Photoperiod 
Independent 

Genetic 
Standard 

Gossypium hirsutum TM-1 AD1 Allotetraploid 
Photoperiod 
Independent 

Genetic 
Standard 

Gossypium hirsutum TX-231 AD1 Allotetraploid Photoperiodic Texas 

Gossypium barbadense K-46 AD2 Allotetraploid Photoperiodic Guadeloupe 

Gossypium barbadense PS-6 AD1 Allotetraploid 
Photoperiod 
Independent 

Arizona 

Gossypium incanum E4 E4 Diploid Photoperiodic 
Afro-
Arabian 

 

 

 

 

Fifty-six primer pairs representing thirty-eight genes were tested across the eight 

taxa. Most primer pairs appeared to give single banded PCR products in the ‘D’ and ‘A’ 

sub-genome. Frequently, the tetraploid species had two PCR bands present. This 

represented the slight changes between the ‘A’ and ‘D’ homologs within the tetraploid 

species. All primer pairs worked efficiently across all taxa (data not shown). 

In this study, expressed sequence tag (EST) sequences and tentative consensus 

sequences (TCs) from public databases [GenBank at National Center for Biotechnology 

Information (NCBI) and Gene Index Project at Computational Biology and Functional 

Genomics of the Dana-Faber Cancer Institute (DFCI)] were used to design primers for 

more than fifty gene fragments in the floral regulatory pathway. These primers were 
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used in the amplification of potential genes in G. raimondii D5. The products were then 

sequenced through traditional Sanger sequencing [338]. For PCR products with more 

than one band, Blunt-ended Topo kits were used to clone out different bands. Those 

clones were then sequenced, and PCR primers were refined. For some short ESTs, gene 

walking was done to identify the unknown regions flanking the known DNA region. All 

primers were refined to be specific for the Gossypium raimondii sequence and to span 

across the exon-intron regions. BLAST analysis showed that all of the sequenced 

potential gene regions corresponded back to the orthologous Arabidopsis gene [236, 237, 

339, 340].  

DNA vs. Amino Acid Substitutions within Coding Sequences  

The sequenced exonic regions of cotton had high similarity to that of the 

orthologous Arabidopsis exon regions, while the intronic similarity varied greatly 

against that of the model plant. The translated exonic amino acid sequences were usually 

similar, if not identical, to those in Arabidopsis (Figure 12). Occasionally, some exonic 

regions showed higher levels of change within the translated amino acid sequences from 

Arabidopsis to cotton, like the upstream hinge region of Phytochrome E (PHYE) (Figure 

12). As expected, the levels of amino acid changes and nucleotide changes between 

Gossypium raimondii and Gossypium herbaceum were low in comparison with those 

between Arabidopsis and cotton (Table 7 a-b).  
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Figure 12 Examples of Arabidopsis versus Cotton Amino Acid Diversity within 
Candidate Genes 
 

Genes

ATGRP7 AT CDS G G L A W A T D D R A L E T A F A Q Y G D V I D S K I I N D R E T G R S R G F G F V T F K D E K A M

ATGRP7 D5 G G L A W A T D D R A L E E A F S A F G E I V E S K I I N D R E T G R S R G F G F V T F R D E K A M

Amino Acid Sequence

Genes

LHY AT CDS L R L Y G R A W Q R I E E H I G T K T A

LHY1 D5 L K L Y G R A W Q R I E E H I G T K T A

Amino Acid Sequence

Genes

PHYE AT CDS F R I L G L S D N S S D F L G L L S L P S T S H S G E F D K V K G L I G I D

PHYE A1 Upper Hinge F R I I G Y S E N C F G L L G L D L D S E D E I K G V - - - - K G L I G I D

PHYE D5 Upper Hinge F R I I G Y S E N C F G L L G L D L D S E D E I K G V - - - - K S L I G I D

Amino Acid Sequences
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Table 7 DNA and Amino Acid Exonic Substitution Comparison 

a) Arabidopsis vs. Cotton 

 

 

Gene DNA Changes AA Changes DNA Change Ratio AA Change Ratio 

AGL16 4 : 10 2 : 3 0.4000 0.6667 

AGL3_SEP4 61 : 238 28 : 79 0.2563 0.3544 

AGL30 32 : 122 11 : 40 0.2623 0.2750 

AGL32 1 : 9 0 : 3 0.1111 0.0000 

AGL6 10 : 89 1 : 29 0.1124 0.0345 

AP1 18 : 90 5 : 30 0.2000 0.1667 

ATGRP7 42 : 154 9 : 50 0.2727 0.1800 

COL4 98 : 216 43 : 72 0.4537 0.5972 

COL5 102 : 319 45 : 106 0.3197 0.4245 

COP1 24 : 91 6 : 29 0.2637 0.2069 

CRY1 A 24 : 87 6 : 29 0.2759 0.2069 

CRY1 B 184 : 910 44 : 303 0.2022 0.1452 

CRY2 A 63 : 362 15 : 120 0.1740 0.1250 

CRY2 B 84 : 359 46 : 119 0.2340 0.3866 

CRY3 74 : 241 25 : 80 0.3071 0.3125 

DET1 1 : 12 0 : 4 0.0833 0.0000 

ELF3 1 : 25 0 : 8 0.0400 0.0000 

FD 109 : 514 64 : 170 0.2121 0.3765 

FKF1_ADO3 50 : 257 21 : 85 0.1946 0.2471 

GI A 50 : 324 32 : 108 0.1543 0.2963 

GI B 81 : 522 43 : 173 0.1552 0.2486 

HY6 130 : 387 48 : 128 0.3359 0.3750 

LHY 1  8 : 60 1 : 20 0.1333 0.0500 

LHY 2  7 : 61 4 : 20 0.1148 0.2000 

PFT1 21 : 97 5 : 32 0.2165 0.1563 

PHYA 1 113 : 536 29 : 178 0.2108 0.1629 

PHYA 2 184 : 870 85 : 289 0.2115 0.2941 

PHYB 144 : 524 48 : 174 0.2748 0.2759 

PHYC 275 : 1086 133 : 362 0.2532 0.3674 

PHYE 148 : 603 88 : 200 0.2454 0.4400 

PRR5 3 : 20 0 : 6 0.1500 0.0000 

PRR7 A 74 : 192 33 : 63 0.3854 0.5238 

PRR7 B 72 : 189 28 : 62 0.3810 0.4516 

SPA4 17 : 104 4 : 34 0.1635 0.1176 

TOC1 47 : 173 20 : 57 0.2717 0.3509 
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Table 7 Continued. 

b) G. raimondii vs. G. herbaceum 

 

 

Gene DNA Changes AA Changes DNA Change Ratio AA Change Ratio 

AGL16 0 : 10 0 : 3 0.0000 0.0000 

AGL3_SEP4 2 : 238 1 : 79 0.0084 0.0127 

AGL30 0 : 122 0 : 40 0.0000 0.0000 

AGL32 0 : 9 0 : 3 0.0000 0.0000 

AGL6 0 : 89 0 : 29 0.0000 0.0000 

AP1 2 : 90 1 : 30 0.0222 0.0333 

ATGRP7 1 : 154 0 : 50 0.0065 0.0000 

COL4 3 : 216 3 : 72 0.0139 0.0417 

COL5 11 : 319 3 : 106 0.0345 0.0283 

COP1 0 : 91 0 : 29 0.0000 0.0000 

CRY1 A 1 : 87 1 : 29 0.0115 0.0345 

CRY1 B 9 : 910 3 : 303 0.0099 0.0099 

CRY2 A 1 : 362 0 : 120 0.0028 0.0000 

CRY2 B 6 : 359 4 : 119 0.0167 0.0336 

CRY3 5 : 241 3 : 80 0.0207 0.0375 

DET1 0 : 12 0 : 4 0.0000 0.0000 

ELF3 0 : 25 0 : 8 0.0000 0.0000 

FD 11 : 514 8 : 170 0.0214 0.0471 

FKF1_ADO3 3 : 257 1 : 85 0.0117 0.0118 

GI A 0 : 324 0 : 108 0.0000 0.0000 

GI B 5 : 522 4 : 173 0.0096 0.0231 

HY6 8 : 387 5 : 128 0.0207 0.0391 

LHY 1  0 : 60 0 : 20 0.0000 0.0000 

LHY 2  1 : 61 1 : 20 0.0164 0.0500 

PFT1 0 : 97 0 : 32 0.0000 0.0000 

PHYA 1 7 : 536 3 : 178 0.0131 0.0169 

PHYA 2 8 : 870 4 : 289 0.0092 0.0138 

PHYB 7 : 524 2 : 174 0.0134 0.0115 

PHYC 13 : 1086 5 : 362 0.0120 0.0138 

PHYE 10 : 603 7 : 200 0.0166 0.0350 

PRR5 0 : 20 0 : 6 0.0000 0.0000 

PRR7 A 5 : 192 3 : 63 0.0260 0.0476 

PRR7 B 8 : 189 4 : 62 0.0423 0.0645 

SPA4 1 : 104 0 : 34 0.0096 0.0000 

TOC1 2 : 173 0 : 57 0.0116 0.0000 
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Coding regions from genes within gene families (e.g. paralogs), such as 

Cryptochrome 1B (CRY1 B), Cryptochrome 2B (CRY2 B), and Phytochrome A2 (PHYA 

2) above, showed more substitutions in amino acids and nucleotides (Table 7 a-b). 

Furthermore, De-etiolated 1 (DET1), Early Flowering 4 (ELF4), and Long Hypocotyl 

(LHY 1) showed no divergence (0%) from Arabidopsis, while Pseudo Response 

Regulator 7 A and B (PRR7 A and PRR7 B) had 38% nucleotide difference and a 45% to 

52% amino acid difference from Arabidopsis. One ortholog, Flowering Locus D (FD), 

had a higher level of DNA and amino acid substitutions at 21% and 37%, than other 

non-paralogous orthologs (Table 7 a).  

454 Pyrosequencing and Reference Assembly 

The multiplex identifiers (MID) used for each taxon allowed all gene reactions to 

be pooled into one sample. All gene-specific primers permitted the identification of how 

each fragment was correlated to each taxon. The initial 454 run consisted of 104,230 

sequences with an average length of ~400 bp. In this multiplexed sample, 96% of the 

sequence reads (99,699 sequences) were separated by their MID into 8 taxa (Table 8).  
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Table 8 Mid Divergence Statistics for Roche 454 Run 

ID 
Tag Barcode 

Mid 
Identifier 

Designation 
 Variety   Floral Cue 

MID 
Parsed 

Sequences 

AF1 ACGAGTGCGT 
Gossypium 
raimondii D5 Diploid Photoperiodic 22693 

AF2 ACGCTCGACA 
Gossypium 
herbaceum A1 Diploid Photoperiodic 11825 

AF3 AGACGCACTC 
Gossypium 
barbadense 3-79 Allotetraploid 

Photoperiod 
Independent 

23166 

AF4 AGCACTGTAG 
Gossypium 
hirsutum TM-1 Allotetraploid 

Photoperiod 
Independent 

19141 

AF5 ATCAGACACG 
Gossypium 
hirsutum TX-231 Allotetraploid Photoperiodic 8152 

AF6 ATATCGCGAG 
Gossypium 
barbadense K-46 Allotetraploid Photoperiodic 7010 

AF7 CGTGTCTCTA 
Gossypium 
barbadense PS-6 Allotetraploid 

Photoperiod 
Independent 

2920 

AF8 CTCGCGTGTC 
Gossypium 
incanum E4 Diploid Photoperiodic 4792 

    Ungrouped       4531 
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Some of the initial genes and miRNA were discarded from 454 results because 

those sequences were not well amplified in the pyrosequencing reaction. Some initially 

low yielding genes were re-pyrosequenced in the SNP validation run. Alternatively, the 

D5 reads were mapped back to the original sequence created through cloning and Sanger 

sequencing. These D5 Sanger sequences formed the basic scaffold on which the D5 454 

sequencing reads could be aligned, so that a consensus sequence could be created. These 

newly aligned D5 454 consensus sequences of the candidate genes were then used as a 

reference for mapping the A2 genes. Once the A2 sequences were aligned, modified 

consensus sequences representing the A2 nucleotide changes were created. These new 

consensus sequences from A2 were then used as the A2 reference sequence. For a 

consensus change to take place, a threshold of sequence similarity had to represent 65% 

of all A2 sequences for that fragment (Table 9 and Figure 13).  
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Table 9 Amplicon Coverage Distribution of ‘A’ and ‘D’ Genome Sequences by 
Ortholog 

Genes (orthologs) D5 Sequences A1 Sequences 

AGL1 0 1 

AGL16 54 6 

AGL2 1 4 

AGL3 22 5 

AGL30 13 56 

AGL32 1116 83 

AGL6 62 84 

AGL65 170 60 

AGL9 2 0 

AP1 20 131 

AP3 4 15 

ATGRP7 87 30 

COL3 103 4 

COL5 192 61 

COP1 74 56 

CRY1A / CRY1B 1065 1250 

CRY2 55 100 

CRY3 36 19 

DET1 180 160 

ELF3 126 47 

FD 27 4 

FKF1 39 34 

FT 300 15 

GI 3544 1487 

HY6 308 299 

LHY 139 77 

miRNA172c 8 0 

PFT1 170 96 

PHYA1 / PHYA2 338 144 

PHYB 1655 1004 

PHYC 120 52 

PHYE_Upper_hinge 204 247 

PI A / PI B 671 56 

PRR5 106 23 

PRR7 A/PRR7 B 76 105 

SPA4 815 513 

TOC1 2705 1121 

ZTL 3 0 
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Figure 13 Roche 454 Candidate Gene Ortholog Coverage Distribution between ‘A’ and ‘D’ Genomes 
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The remaining sequences for all the other taxa were mapped to both the ‘A’ and 

‘D’ 454 reference consensus sequences in CLCBio®. The ability to map-to-reference 

two sub-genomes at the same time on a taxon was imperative in separating the sub-

genome reads by taxa in the tetraploid sequences. The consensus sequences of each 

taxon were exported, representing both the ‘A’ and ‘D’ sub-genomes, into Geneious®. A 

software platform change from CLCBio® to Geneious® was necessary due to the lack 

of alignment manipulation within CLCBio®. Geneious® has the ability to create 

multiple alignments. Nucleotides in those sequence alignments were visually shifted 

around to account for SNPs, Single Insertion/Deletions (SIDs), and Insertions/Deletions 

(InDels) within a sequence.  

SNP, SID, and INDEL Detection 

A total of 762 SNPs were uncovered in the eight taxa. Of these SNPs, 466 (296 

without Gossypium incanum) were found in exonic regions (Table 10), while 678 (594 

without Gossypium incanum) were discerned in the intronic regions (Table 11). A single 

SNP was found every ~ 27 bp in the intron regions, while in it was ~ 37 bp in the exon 

regions (not including Gossypium incanum) (Table 12).  
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Table 10 SNPs in Exonic Regions 

Gene 
A/D  

genome 
G. hirsutum/ 

G. barbadense 
Cultivated/ 

Wild G. incanum Single SNP 

AGL16 0 0 0 1 0 

AGL3_SEP4 0 0 2 0 2 

AGL30 0 0 0 0 1 

AGL32 0 0 0 0 0 

AGL6 0 0 0 0 0 

AGL65 3 0 0 1 2 

AP1 2 0 0 1 0 

ATGRP7 1 0 0 1 1 

COL4 8 0 2 2 3 

COL5 9 2 0 0 2 

COP1 0 0 0 1 0 

CRY1 A 1 0 0 0 0 

CRY1 B 11 1 2 58 0 

CRY2 A 1 1 2 2 0 

CRY2 B 3 2 2 21 4 

CRY3 4 0 0 2 1 

DET1 0 0 0 0 0 

ELF3 0 0 0 1 0 

FD 12 0 1 4 4 

FKF1_ADO3 3 2 0 1 0 

GI Ex9to10_ A 0 0 0 0 0 

GI Ex10to11_ A 0 0 0 1 0 

GI Ex10to11_ B 0 0 0 0 0 

GI Ex11to12_ A 0 2 0 0 0 

GI Ex11to12_ B 6 0 1 1 1 

HY6 12 2 11 2 3 

LHY 1 0 0 0 0 0 

LHY 2 1 0 0 1 0 

PFT1 0 0 0 0 0 

PHYA 1 15 3 3 7 3 

PHYA 2 6 6 2 26 17 

PHYB 8 1 1 1 3 

PHYC 6 17 12 19 15 

PHYE 5 3 0 6 6 

PI A 0 0 0 0 0 

PI B 0 0 0 0 0 

PRR5 1 0 1 2 1 

PRR7 A 6 0 0 3 1 

PRR7 B 7 3 2 3 3 

SPA4 1 0 0 2 0 

TOC1 2 0 0 0 0 

Exon Totals 134 45 44 170 73 
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Table 11 SNPs in Intronic Regions 

Gene 
A/D  

genome 
G. hirsutum/ 

G. barbadense 
Cultivated/ 

Wild G. incanum Single SNP 

AGL16 5 2 0 3 7 

AGL3_SEP4 2 0 4 0 8 

AGL30 15 3 4 3 4 

AGL32 1 0 0 3 1 

AGL6 7 0 0 0 7 

AGL65 22 3 3 6 9 

AP1 10 2 0 7 0 

ATGRP7 4 0 0 1 1 

COL4 1 1 0 2 1 

COL5 0 2 0 0 1 

COP1 14 2 0 12 3 

CRY1 A 14 2 5 0 6 

CRY1 B 24 2 1 9 2 

CRY2 A 2 1 0 3 3 

CRY2 B 0 0 4 3 3 

CRY3 8 0 2 7 8 

DET1 1 0 0 0 0 

ELF3 11 4 3 11 3 

FD 1 2 1 2 0 

FKF1_ADO3 14 5 2 11 4 

GI Ex9to10_ A 9 1 0 7 13 

GI Ex10to11_ A 5 2 3 3 0 

GI Ex10to11_ B 0 2 1 0 2 

GI Ex11to12_ A 14 2 1 4 3 

GI Ex11to12_ B 3 0 2 4 3 

HY6 17 2 0 11 5 

LHY 1 5 2 7 1 0 

LHY 2 4 0 0 1 2 

PFT1 4 0 0 5 1 

PHYA 1 1 0 0 0 1 

PHYA 2 1 0 0 0 0 

PHYB 15 2 3 1 4 

PHYC 19 0 0 10 4 

PHYE 0 0 0 0 0 

PI A 11 4 3 11 4 

PI B 3 1 2 0 3 

PRR5 14 0 1 10 7 

PRR7 A 4 0 1 1 2 

PRR7 B 4 0 1 2 0 

SPA4 1 0 1 0 0 

TOC1 4 1 0 0 0 

Intron Totals 294 50 55 154 125 
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Table 12 Overall Amplicon Sizes Split Into Intronic and Exonic Regions 

Gene 
Total bp  

Amplicon Coverage Intron Region Exon Region 

AGL16 533 523 10 

AGL3_SEP4 661 432 229 

AGL30 737 620 117 

AGL32 106 96 10 

AGL6 274 185 89 

AGL65 1,135 914 221 

AP1 424 343 81 

ATGRP7 430 276 154 

COL4 383 141 242 

COL5 448 144 304 

COP1 724 633 91 

CRY1 A 710 623 87 

CRY1 B 1508 657 851 

CRY2 A 526 170 356 

CRY2 B 462 103 359 

CRY3 645 406 239 

DET1 93 81 12 

ELF3 582 557 25 

FD 518 81 437 

FKF1_ADO3 979 722 257 

GI Ex9to10_ A 557 494 63 

GI Ex10to11_ A 419 202 217 

GI Ex10to11_ B 249 188 61 

GI Ex11to12_ A 664 574 90 

GI Ex11to12_ B 423 152 271 

HY6 1326 927 399 

LHY 1 262 202 60 

LHY 2 241 180 61 

PFT1 459 347 112 

PHYA 1 1664 66 1598 

PHYA 2 1228 170 1058 

PHYB 924 388 536 

PHYC 1598 516 1082 

PHYE 591 0 591 

PI A 573 570 3 

PI B 469 466 3 

PRR5 751 696 55 

PRR7 A 298 116 182 

PRR7 B 272 92 180 

SPA4 235 131 104 

TOC1 285 112 173 
Total bp 
Coverage 25450 14296 11154 
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  As expected, the exonic region exposed more interspecific SNPs between 

Gossypium hirsutum and Gossypium barbadense than intraspecific SNPs between the 

cultivated and wild Gossypium lines (Table 13). Interestingly, however, there were more 

intronic SNPs observed between the cultivated and wild Gossypium lines than between 

Gossypium hirsutum and Gossypium barbadense (Table 13).  

 

  

 

 

Table 13 Average SNP Estimates 

SNP Ratio 
A/D Genome 

Exon: 1 : 83  bp 

Intron: 1 : 49  bp 

Intraspecific (Cultivated vs. Wild) 
Exon: 1 : 252  bp 

Intron: 1 : 260  bp 

Interspecfic (G. hirsutum vs. G. barbadense) 
Exon: 1 : 246  bp 

Intron: 1 : 286  bp 

E Genome 

 Exon: 1 : 65  bp 

 Intron: 1 : 93  bp 
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There were three predicted genes that had very high levels of SNP diversity: 

Cryptochrome 1B (CRY1 B), Cryptochrome 2B (CRY2 B), and Phytochrome A2 (PHYA 

2). With the removal of these predicted genes the total number of detected SNPs was 

lowered from 1,144 to 934 (Figure 14). The revised SNP count increased the average 

SNP per intron to every ~ 27 bp, while decreasing the average SNP per exon to every ~ 

36 bp (Supplemental Tables 2 and 3).  

 

 

 

Figure 14 SNP Diversity with and without CRY1 B, CRY2 B, and PHY A2 
 

 

134

45 44

170

73

466

294

50 55

154
125

678

114

36 38
65 52

305
269

48 50

142 120

629

A/D Genome G. barbadense/G.
hirsutum

Cultivated/Wild G. incanum Singletons Total SNPs

SNP Diversity with and without CRY1 B, 
CRY2 B, and PHY A2

Exon  SNPs Intron SNPs

Exon w/o PHYA2, CRY1B, CRY2B Intron w/o PHYA2, CRY1B, CRY2B
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A total of 233 SIDs were revealed within the eight taxa. SIDs were found to be 

more common in the intronic regions of the amplicons, every ~ 87 bp, than in the exonic 

regions, every ~ 326 bp. Notably, more SIDs were observed between wild species versus 

their cultivated counterparts, than between Gossypium hirsutum and Gossypium 

barbadense (Table 14). Those SID changes between Gossypium hirsutum and 

Gossypium barbadense occurred less frequently than changes between the ancestral sub-

genomes ‘A’ and ‘D’ and the out-group E4 genome.  

 

 

 

 

Table 14 Average SID Estimates 

SID Ratio 
A/D Genome 

Exon: 1 : 2214  bp 

Intron: 1 : 270  bp 

Intraspecific (Cultivated vs. Wild) 
Exon: 1 : 651  bp 

Intron: 1 : 227  bp 

Interspecfic (G. hirsutum vs. G. barbadense) 
Exon: 1 : 3690  bp 

Intron: 1 : 953  bp 

E Genome 
Exon: 1 : 1006  bp 

Intron: 1 : 681  bp 
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A total of 105 InDels were discovered in the candidate genes of the eight taxa. 

The InDels were found to be more common in the intronic regions of the amplicons, 

every ~ 234 bp, than in the exonic regions, every ~ 583 bp. Remarkably, less intronic 

InDels were seen between Gossypium hirsutum and Gossypium barbadense, than the 

ancestral sub-genomes ‘A’ and ‘D’, cultivated versus wild counterparts, and Gossypium 

incanum (Table 15).  

 

 

 

 

Table 15 Average InDel Estimates 

InDel Ratio 
A/D Genome 

Exon: 1 : 2768  bp 

Intron: 1 : 549  bp 

Intraspecific (Cultivated vs. Wild) 
Exon: 1 : 1845  bp 

Intron: 1 : 841  bp 

Interspecfic (G. hirsutum vs. G. barbadense) 
Exon: 1 : 5535  bp 

Intron: 1 : 3574  bp 

E Genome 
Exon: 1 : 2768  bp 

Intron: 1 : 681  bp 
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Frequencies of SNPs across Different Pathway Categories  

Genes holding key positions of the floral regulatory network may be influenced 

by strong purifying selection; therefore the relative amounts of SNPs may be fewer. 

Moreover, genes that have redundant functions may have increased SNP frequency. 

Frequency procedures (Freq procedure) and generalized linear mixed model 

(GLIMMIX) with Poisson distributions were applied to determine the effects of SNP 

frequencies by gene copy number (redundancy) and placement within: 1) the circadian 

clock pathway, 2) the photoreceptor pathway, and 3) the floral regulatory network.  

Further analyses showed that the introns of the photoreceptor and circadian clock 

pathway categories have significantly more SNPs than do those of the floral network 

(Table 16). The photoreceptor pathway category has a higher frequency of A/D, 

interspecific and intraspecific SNPs in exonic regions, than the circadian clock pathway 

category and the floral network category (Table 17). In the coding regions, interspecific 

changes occurred in every ~220 bp, excluding the floral network pathway category. The 

floral network appeared to have high conservation between Gossypium hirsutum and 

Gossypium barbadense. This resulted in significantly fewer SNPs occurring in the 

exonic regions of the floral network and the circadian clock in comparison to the 

photoreceptor pathway categories (Table 16 and Figure 15). Outlier orthologs in the 

photoreceptor pathway category of the exonic region caused the photoreceptor pathway 

category mean to be above the average, so a Poisson distribution was done to normalize 

the data. No other pathway category combination differed significantly from each other.  
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Table 16 Frequency Procedures and Generalized Linear Mixed Model with Poisson 
Distributions for SNPs in Different Pathways 

 
The Freq Procedure 

Table of Pathway by Type 

Pathway Type 

Frequency 
Percent 
Row Pct 
Col Pct Exon Intron Total

Clock 56
4.87

19.86
11.84

226
19.64
80.14
33.33

282
24.50

Photorec 346
30.06
62.79
73.15

205
17.81
37.21
30.24

551
47.87

Flower 71
6.17

22.33
15.01

247
21.46
77.67
36.43

318
27.63

Total 473
41.09

678
58.91

1151
100.00

 

Statistics for Table of pathway by type
 

Statistic DF Value Prob 

Chi-Square 2 205.9956 <.0001 

Likelihood Ratio Chi-Square 2 212.7148 <.0001 

Mantel-Haenszel Chi-Square 1 0.0003 0.9864 

Phi Coefficient 0.4230  

Contingency Coefficient 0.3896  

Cramer's V 0.4230  
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Table 16 Continued. 

Sample Size = 1151
 
 

The GLIMMIX Procedure 
 

Model Information 

Data Set CJ.PATHWAYS 

Response Variable snps 

Response Distribution Poisson 

Link Function Log 

Variance Function Default 

Variance Matrix Diagonal 

Estimation Technique Maximum Likelihood 

Degrees of Freedom Method Residual 

 

 

Pathway Least Squares Means 

Pathway Estimate
Standard 

Error DF t Value Pr > |t| 

Clock 2.1580 0.07464 76 28.91 <.0001 

Photorec 3.1868 0.04407 76 72.31 <.0001 

Flower 2.0528 0.06733 76 30.49 <.0001 
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Table 16 Continued. 

Type Least Squares Means 

type Estimate
Standard 

Error DF t Value Pr > |t|

Exon 2.1128 0.06221 76 33.96 <.0001

Intron 2.8190 0.03852 76 73.19 <.0001

 
 
 

Pathway*Type Least Squares Means 

Pathway Type Estimate
Standard 

Error DF t Value Pr > |t| 

Clock Exon 1.4604 0.1336 76 10.93 <.0001 

Clock Intron 2.8556 0.06652 76 42.93 <.0001 

Photorec Exon 3.4485 0.05376 76 64.15 <.0001 

Photorec Intron 2.9251 0.06984 76 41.88 <.0001 

Flower Exon 1.4295 0.1187 76 12.04 <.0001 

Flower Intron 2.6762 0.06363 76 42.06 <.0001 
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a) Pathway Least Square Means 

 

b) Type Least Square Means 

Figure 15 Least Square Means Interaction Plots for SNPs 
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c) Least Square Means for Pathway by Type Vertical 

 

d) Least Square Means for Pathway by Type Horizontal 

Figure 15 Continued. 
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Table 17 SNP Ratios in Different Pathway Categories 

  
Floral 

Network 
Circadian 

Clock 

Photoreceptors 
without PHYA2, 

CRY1 B, and CRY2 B 
Photoreceptors 

Intronic 

A/D genome 59 61 41 40 

Intraspecific (w/c) 332 330 310 268 

Interspecific (b/h) 272 268 442 447 

Exonic 

A/D genome 62 65 96 101 

Intraspecific (w/c) 444 424 122 121 

Interspecific (b/h) 1110 242 188 199 

 

 

 

 

No significant differences were found between A/D homeolog gene copies in the 

photoreceptor pathway category. The photoreceptor pathway category had an increased 

level of A/D genomic SNPs in the intronic region compared to the circadian clock 

pathway category and the floral network category. Interestingly, the floral network 

pathway category had more intraspecific (cultivated vs. wild) SNPs in the exons, than 

interspecific (G. barbadense vs. G. hirsutum) SNPs (Table 20), while the floral network 

category had fewer intraspecific SNPs in the introns and more interspecific SNPS (Table 

20). The breakdown of SNPs within each pathway by intronic and exonic values is 

shown in Tables 18, 19, and 20. 
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Table 18 SNPs in the Photoreceptors 

a) Exonic SNPs 

Gene A/D genomes 
G. hirsutum/ 

G. barbadense 
Cultivated/ 

Wild G. incanum Single SNP 

CRY1 A 1 0 0 0 0 

CRY1 B 11 1 2 58 0 

CRY2 A 1 1 2 2 0 

CRY2 B 3 2 2 21 4 

CRY3 4 0 0 2 1 

PHYB 8 1 2 2 1 

PHYA 1 15 2 3 7 4 

PHYA 2 6 7 15 25 2 

PHYC 6 17 22 19 15 

PHYE 4 3 0 6 6 

HY6 12 2 11 2 3 

Exon Totals 71 36 59 144 36 

 

b) Intronic SNPs 

Gene A/D genomes 
G. hirsutum/ 

G. barbadense 
Cultivated/ 

Wild G. incanum Single SNP 

CRY1 A 14 2 5 0 6 

CRY1 B 24 2 1 9 2 

CRY2 A 2 1 0 3 3 

CRY2 B 0 0 4 3 3 

CRY3 8 0 2 7 8 

PHYB 15 2 3 1 4 

PHYA 1 1 0 0 0 1 

PHYA 2 1 0 0 0 0 

PHYC 19 0 0 10 4 

PHYE 0 0 0 0 0 

HY6 17 2 0 11 5 

Intron Totals 101 9 15 44 36 
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Table 19 SNPs in the Circadian Clock 

a) Exonic SNPs 

Gene A/D genomes 
G. hirsutum/ 

G. barbadense
Cultivated/ 

Wild G. incanum Single SNP 

ELF3 0 0 0 1 0 

FKF1_ADO3 3 2 0 1 0 

GI Ex9to10_ A 0 0 0 0 0 

GI Ex10to11_ A 0 0 0 1 0 

GI Ex10to11_ B 0 0 0 0 0 

GI Ex11to12_ A 0 2 0 0 0 

GI Ex11to12_ B 6 0 1 1 1 

PRR5 1 0 1 2 1 

PRR7 A 6 0 0 3 1 

PRR7 B 7 3 2 3 3 

LHY 1 0 0 0 0 0 

LHY 2 1 0 0 1 0 

TOC1 2 0 0 0 0 

Exon Totals 26 7 4 13 6 

 

b) Intronic SNPs 

Gene A/D genomes 
G. hirsutum/ 

G. barbadense
Cultivated/ 

Wild G. incanum Single SNP 

ELF3 11 4 3 11 3 

FKF1_ADO3 14 5 2 11 4 

GI Ex9to10_ A 9 1 0 7 13 

GI Ex10to11_ A 5 2 3 3 0 

GI Ex10to11_ B 0 2 1 0 2 

GI Ex11to12_ A 14 2 1 4 3 

GI Ex11to12_ B 3 0 2 4 3 

PRR5 14 0 1 10 7 

PRR7 A 4 0 1 1 2 

PRR7 B 4 0 1 2 0 

LHY 1 5 2 7 1 0 

LHY 2 4 0 0 1 2 

TOC1 4 1 0 0 0 

Intron Totals 70 16 13 55 35 
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Table 20 SNPs in the Floral Network 

a) Exonic SNPs 

Gene A/D genomes G. hirsutum/
G. barbadense Cultivated/

Wild G. incanum Single SNP 

AGL16 0 0 0 1 0 
AGL3_SEP4 0 0 2 0 2 

AGL30 0 0 0 0 1 
AGL32 0 0 0 0 0 
AGL6 0 0 0 0 0 

AGL65 3 0 0 1 2 
AP1 2 0 0 1 0 

ATGRP7 1 0 0 1 1 
COL4 8 0 2 2 3 
COL5 9 2 0 0 2 
COP1 0 0 0 1 0 
DET1 0 0 0 0 0 

FD 12 0 1 4 4 
PFT1 0 0 0 0 0 
PI A 0 0 0 0 0 
PI B 0 0 0 0 0 

SPA4 1 0 0 2 0 
Exon Totals 36 2 5 13 15 
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Table 20 Continued. 

b) Intronic SNPs 

Gene A/D genomes G. hirsutum/
G. barbadense Cultivated/

Wild G. incanum Single SNP 

AGL16 5 2 0 3 7 
AGL3_SEP4 2 0 4 0 8 

AGL30 15 3 4 3 4 
AGL32 1 0 0 3 1 
AGL6 7 0 0 0 7 

AGL65 22 3 3 6 9 
AP1 10 2 0 7 0 

ATGRP7 4 0 0 1 1 
COL4 1 1 0 2 1 
COL5 0 2 0 0 1 
COP1 14 2 0 12 3 
DET1 1 0 0 0 0 

FD 1 2 1 2 0 
PFT1 4 0 0 5 1 
PI A 11 4 3 11 4 
PI B 3 1 2 0 3 

SPA4 1 0 1 0 0 
Intron Totals 102 22 18 55 50 

 

 

 

 

Synonymous and Non-synonymous Sites across Gossypium  

Utilizing Geneious®, we were able to align all exonic fragments from the eight 

taxa and compare those with the Arabidopsis coding DNA sequence (CDS). Geneious® 

allowed us to export those alignments as .meg files, which easily were integrated into 

Mega 5.2.1[341, 342]. These coding regions allowed us to calculate the rates of 
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synonymous (dS) and non-synonymous (dN) divergence within the candidate genes 

between species and in the different pathway categories. Synonymous rates told us the 

rate of nucleotide substitutions resulting in coding for the same amino acid. The non-

synonymous rates showed us the nucleotide substitutions that caused changes in the 

coding for amino acids. The combined ratio of dN/dS provided the protein composition 

selection pressures.  The dN/dS ratio >1 indicated possible positive selection.   

Across the Candidate Genes 

 As shown in Table 21, we estimated the dN/dS for each candidate gene in 

pairwise comparisons across the following categories: Arabidopsis thaliana vs. 

Gossypium raimondii (D5); Gossypium raimondii vs. Gossypium herbaceum (A1); 

Gossypium barbadense (cultivated vs. wild); Gossypium hirsutum (cultivated vs. wild); 

and Gossypium barbadense (3-79) vs. Gossypium hirsutum (TM-1).  Some candidate 

genes were not represented due to no changes in the exonic region or too few amino acid 

sites.  Our total averages for dN/dS and dS/dN (Table 21 a-e) were based on candidate 

genes where nucleotide changes occurred.   
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The mean dN/dS ratio difference between Arabidopsis thaliana and Gossypium 

raimondii for 35 candidate genes was 0.324 for the 3,266 sites.  The mean dN/dS ratio 

between Gossypium herbaceum and Gossypium raimondii was 0.204 for the 3,266 sites.  

Within Gossypium hirsutum (cultivated versus wild), the ‘A’ sub-genome  dN/dS ratio 

was 0.003, while the ‘D’ sub-genome dN/dS ratio was 0.041. For the intraspecific 

Gossypium barbadense (cultivated versus wild), the ‘A’ sub-genome had a dN/dS ratio 

of 0.124, while the ‘D’ sub-genome had a dN/dS ratio of 0.029. Finally, the mean dN/dS 

ratio between Gossypium hirsutum (TM-1) and Gossypium barbadense (3-79) was 0.061 

for the 3,266 sites.  

Very few genes showed mean dN/dS of greater than one.  Flowering Locus D 

(FD) displayed positive selection for A/D divergence, while PRR7 A appeared to be 

close to positive selection for A/D divergence (Table 21b).  PHYA 2 exhibited positive 

selection for divergence within ‘A’ sub-genome of Gossypium barbadense (Table 21c).  

PHYC-like had positive selection for divergence within the ‘A’ sub-genome between 

Gossypium hirsutum and Gossypium barbadense (Table 21e).  
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Table 21 Candidate Genes dN/dS and dS/dN Ratios  

a) Arabidopsis thaliana (At) vs. Gossypium raimondii (D5) 

Gene 
dN/dS Ratio 

D5 vs. At 
dS/dN Ratio 

D5 vs. At Total Sites 

AGL16 0.490 2.042 3 
AGL3 0.771 1.297 79 
AGL30 0.084 11.891 40 
AGL6 0.070 14.353 29 
AP1 0.089 11.200 30 

COL4 0.558 1.792 72 
COL5 0.244 4.105 106 

CRY1B 0.098 10.202 303 
CRY2 A 0.073 13.784 120 
CRY2 B 0.531 1.884 119 
CRY3 0.164 6.110 80 
FD 1.054 0.949 170 

FKF1 0.332 3.013 85 
GI A 1.380 0.724 108 
GI B 1.423 0.703 173 
HY6 0.215 4.658 128 

LHY 1 0.029 34.818 20 
LHY 2 0.349 2.866 20 
PFT1 0.057 17.547 32 

PHYA 1 0.074 13.436 178 
PHYA 2 0.279 3.583 289 
PHYB 0.118 8.469 174 
PHYC 0.382 2.618 362 
PHYE 1.354 0.739 200 

PRR7 A 0.389 2.570 63 
PRR7 B 0.380 2.629 62 
SPA4 0.064 15.550 34 
TOC1 0.290 3.444 57 
Total 

Averages 0.405 7.035 3136 
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Table 21 Continued. 

b) Gossypium raimondii (D5) vs. Gossypium herbaceum (A1) 

Gene 
Dn/Ds Ratio 

D5 vs. A1 
Ds/Dn Ratio 

D5 vs. A1 Total Sites 

AGL3 0.750 1.333 79 
AP1 0.266 3.765 30 

COL5 0.119 8.429 106 
CRY1 B 0.161 6.200 303 
CRY2 B 0.517 1.933 119 
CRY3 0.425 2.353 80 
FD 1.381 0.724 170 

FKF1 0.162 6.167 85 
HY6 0.514 1.944 128 

PHYA 1 0.200 5.000 178 
PHYA 2 0.353 2.833 289 
PHYB 0.106 9.400 174 
PHYC 0.222 4.500 362 
PHYE 0.708 1.412 200 

PRR7 A 0.958 1.043 63 
PRR7 B 0.286 3.500 62 
Total 

Averages 0.446 3.784 2428 
 

 

c) Gossypium barbadense (Cultivated vs. Wild) 

Gene 

dN/dS Ratio 
G. barbadense 
Cultivated vs. 

Wild 

dN/dS Ratio 
G. barbadense  
Cultivated vs. 

Wild 

dS/dN Ratio 
G. barbadense  
Cultivated vs. 

Wild 

dS/dN Ratio 
G. barbadense  
Cultivated vs. 

Wild 
Total 
Sites 

A sub-genome D sub-genome A sub-genome D sub-genome  
CRY1 B 0.071 14.083 303 

HY6 0.104 0.304 9.625 3.292 128 
PHYA 2 3.500 0.286 289 
PHYB 0.333 3.000 174 
PHYC 0.727 0.308 1.375 3.250 362 
Total 

Averages 1.444 0.254 3.762 5.906 1256 
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Table 21 Continued. 

d) Gossypium hirsutum (Cultivated vs. Wild) 

Gene 

dN/dS Ratio 
G. hirsutum 

Cultivated vs. Wild 

dN/dS Ratio 
G. hirsutum 

Cultivated vs. Wild 

dS/dN Ratio 
G. hirsutum 

Cultivated vs. Wild 

dS/dN Ratio 
G. hirsutum 

Cultivated vs. Wild 
Total 
Sites 

A sub-genome D sub-genome A sub-genome D sub-genome  
CRY2 A 0.308 3.250 120 
CRY2 B 0.093 10.750 119 

GI A 0.286 3.500 108 
HY6 0.286 3.500 128 

PHYC 0.556 1.800 362 
Total  

Averages 0.093 0.359 10.750 3.013 837 
 

 

e) Gossypium barbadense (3-79) vs. Gossypium hirsutum (TM-1) 

Gene 

dN/dS Ratio 
3-79 vs. TM-1 

dN/dS Ratio 
3-79 vs. TM-1 

dS/dN Ratio 
3-79 vs. TM-1 

dS/dN Ratio 
3-79 vs. TM-1 Total Sites 

A sub-genome D sub-genome A sub-genome D sub-genome  
CRY1 B 0.600 1.667 303 
CRY2 B 0.286 3.500 119 

GI A 0.440 2.273 108 
HY6 0.286 3.500 128 

PHYC 1.500 0.517 0.667 1.933 362 
PHYE 0.625 1.600 200 
Total 

Averages 0.970 0.463 1.470 2.440 1220 
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Across Different Pathway Categories 

The dN/dS ratio across different pathway categories was calculated for different 

pathway categories the following groups: Arabidopsis thaliana vs. Gossypium raimondii 

and Gossypium raimondii vs. Gossypium herbaceum. Gigantea (GI) A-like and B-like 

appeared to be diverging more rapidly from the other clock genes when comparing 

Arabidopsis versus Gossypium raimondii D5 (Table 22b). Respectively, both FD-like 

and PHYE-like also appeared to be diverging more rapidly from Arabidopsis in their 

corresponding pathways (Table 22 a, c). 

 

 

 

Table 22 Arabidopsis thaliana vs. Gossypium raimondii dN/dS and dS/dN Ratio by 
Pathway Category 

a) Photoreceptor Pathway Category 

Gene 
dN/dS Ratio 

D5 vs. At 
dS/dN Ratio 

D5 vs. At Total Sites 

CRY1 B 0.098 10.202 303 

CRY2 A 0.073 13.784 120 

CRY2 B 0.531 1.884 119 

CRY3 0.164 6.110 80 

HY6 0.215 4.658 128 

PHYA 1 0.074 13.436 178 

PHYA 2 0.279 3.583 289 

PHYB 0.118 8.469 174 

PHYC 0.382 2.618 362 

PHYE 1.354 0.739 200 
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Table 22 Continued. 

b) Circadian Clock Pathway Category  

Gene 
dN/dS Ratio 

D5 vs. At 
dS/dN Ratio 

D5 vs. At Total Sites 

FKF1 0.332 3.013 85 

GI A 1.380 0.724 108 

GI B 1.423 0.703 173 

LHY 1 0.029 34.818 20 

LHY 2 0.349 2.866 20 

PRR7 A 0.389 2.570 63 

PRR7 B 0.380 2.629 62 

TOC1 0.290 3.444 57 

 

 

c) Floral Network Pathway Category 

Gene 
dN/dS Ratio 

D5 vs. At 
dS/dN Ratio 

D5 vs. At Total Sites 

AGL3 0.771 1.297 79 

AGL30 0.084 11.891 40 

AGL6 0.070 14.353 29 

AP1 0.089 11.200 30 

COL4 0.558 1.792 72 

COL5 0.244 4.105 106 

FD 1.054 0.949 170 

PFT1 0.057 17.547 32 

SPA4 0.064 15.550 34 
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There were fewer divergent candidate genes showing a ratio dN/dS ratio greater 

than zero between Gossypium raimondii and Gossypium herbaceum, than between 

Gossypium raimondii and Arabidopsis in the different pathway categories.  In the floral 

network pathway category, FD-like indicated positive selection for divergence between 

G. raimondii and G. herbaceum (Table 23c).  Although both the photoreceptor and 

circadian clock pathway categories did not have any candidate genes with a dN/dS ratio 

above one, PRR7 A–like had a 0.958 dN/dS ratio indicating a strong likelihood positive 

selection may take place (Table 23 b).   

 

 

 
 
Table 23 Gossypium raimondii (D5) vs. Gossypium herbaceum (A1) dN/dS and 

dS/dN Ratio by Pathway Category 

a) Photoreceptor Pathway Category 

Gene 
dN/dS Ratio 

D5 vs. A1 
dS/dN Ratio 

D5 vs. A1 Total Sites 

HY6 0.514 1.944 128 

CRY1 B 0.161 6.200 303 

CRY2 B 0.517 1.933 119 

CRY3 0.425 2.353 80 

PHYA 1 0.200 5.000 178 

PHYA 2 0.353 2.833 289 

PHYB 0.106 9.400 174 

PHYC 0.222 4.500 362 

PHYE 0.708 1.412 200 
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Table 23 Continued. 

b) Circadian Clock Pathway Category  

Gene 
dN/dS Ratio 

D5 vs. A1 
dS/dN Ratio 

D5 vs. A1 Total Sites 

FKF1 0.162 6.167 85 

PRR7 A 0.958 1.043 63 

PRR7 B 0.286 3.500 62 

 

 

c) Floral Network Pathway Category 

Gene 
dN/dS Ratio 

D5 vs. A1 
dS/dN Ratio 

D5 vs. A1 Total Sites 

FD 1.381 0.724 170 

AGL3 0.750 1.333 79 

AP1 0.266 3.765 30 

COL5 0.119 8.429 106 
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Overall, the dN/dS ratio within both the floral network and the circadian clock 

was lower than the photoreceptor pathway category.  All dN/dS ratios were from the 

photoreceptor pathway category within Gossypium barbadense cultivated versus wild.  

In both sets of Gossypium hirsutum cultivated versus wild and Gossypium barbadense 

(3-79) versus Gossypium hirsutum (TM-1), all candidate genes representing divergence 

were from the photoreceptor pathway category except for GI A-like in the circadian 

clock pathway category (Table 24 a-c).  Within Gossypium barbadense, PHYA 2-like 

was diverging more quickly, than any other candidate gene.  Within Gossypium 

hirsutum, no candidate genes were under positive selection.  No positive selection was 

seen between Gossypium barbadense (3-79) and Gossypium hirsutum (TM-1) for 

divergence.   

 

 

 

Table 24 The dN/dS and dS/dN Ratios within Gossypium barbadense and Gossypium 
hirsutum 

a) Intraspecific dN/dS and dS/dN of Gossypium barbadense 

Gene 
dN/dS Ratio 
Cult. vs Wild 

dN/dS Ratio 
Cult. vs Wild 

dS/dN Ratio 
Cult. vs Wild 

dS/dN Ratio 
Cult. vs Wild Total Sites 

A sub-genome D sub-genome A sub-genome D sub-genome 

CRY1B 0.071 14.083 303 

HY6 0.104 0.304 9.625 3.292 128 

PHYA 2 3.500 0.286 289 

PHYB 0.333 3.000 174 

PHYC 0.727 0.308 1.375 3.250 362 
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Table 24 Continued. 

b) Intraspecific dN/dS and dS/dN of Gossypium hirsutum 

Gene 
dN/dS Ratio 
Cult. vs Wild 

dN/dS Ratio 
Cult. vs Wild 

dS/dN Ratio 
Cult. vs Wild 

dS/dN Ratio 
Cult. vs Wild Total Sites 

A sub-genome D sub-genome A sub-genome D sub-genome 

CRY2 A 0.308 3.250 120 

CRY2 B 0.093 10.750 119 

GI_A 0.286 3.500 108 

HY6 0.286 3.500 128 

PHYC 0.556 1.800 362 

 

 

c) Interspecific dN/dS and dS/dN of Gossypium barbadense (3-79) and Gossypium 
hirsutum (TM-1) 

Gene 
dN/dS Ratio 
3-79 vs TM-1 

dN/dS Ratio 
3-79 vs TM-1 

dS/dN Ratio 
3-79 vs TM-1 

dS/dN Ratio 
3-79 vs TM-1 Total Sites 

A sub-genome D sub-genome A sub-genome D sub-genome 

CRY1 B 0.600 1.667 303 

CRY2 B 0.286 3.500 119 

GI A 0.440 2.273 108 

HY6 0.286 3.500 128 

PHYC 1.500 0.517 0.667 1.933 362 

PHYE 0.625 1.600 200 
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Location of Genes on the D5 Genome 

The characterized thirty-eight homologous candidate gene fragments were 

queried against the Gossypium raimondii draft genome in Geneious® to determine 

locations based on sequence. These fragments were then aligned to the draft genome 

(Figures 16 a-c). Also, other proposed candidate genes known in Arabidopsis thaliana 

for the floral development network were positioned onto the draft genome. Possible 

linkage groupings of close homologous candidate genes were ascertained by their 

alignment to the Gossypium raimondii draft genome.  
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a) 

 

Figure 16 Alignment of Photoreceptors, Circadian Clock, and Floral Regulatory Network Genes upon the Gossypium 
raimondii Draft Genome 
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b) 

  

Figure 16 Continued. 
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c) 

 

Figure 16 Continued. 
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From the original candidate genes initially thought to be involved in photoperiod 

independence, two candidate genes were not found when they were queried against the 

Gossypium raimondii draft genome. The two undiscovered genes were: Frigida (FRI) 

and Flowering Locus C (FLC). Recent searches on NCBI were done to verify no FRI 

and Frigida-Like 2 (FRL2) complements were found in the non-redundant databases for 

Gossypium (taxid id: 3633), the uni-gene sequences, or the EST databases. On May 7th, 

2013, Frigida-Like 1 (FRL1)(Table 25) and FLC (Tables 26, 27, 28) did have 

complements shown in the NCBI search, but the reciprocal blast approach did not yield 

associated complements to those genes when queried against The Arabidopsis 

Information Resource (TAIR10) version 10 [339]. The Frigida-Like 1 complement 

reciprocal blast showed no significant results with the highest E-value at 0.061, while the 

FLC complement reciprocal blast mapped to the K-box region of the Agamous-like 

family.  
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Table 25 Frigida-Like 1 (FRI1) Blast Result from NCBI 

>gi|48803701|gb|CO105015.1|CO105015 GR__Eb0034P10.r GR__Eb Gossypium raimondii cDNA clone 
GR__Eb0034P10 3', mRNA sequence 
TTTAATTGTTAGGGATTTAAAAAAACATTAGTCCAGAATTTTAACAATTCAGTAGTTGATCTCTC
CAAAACCAAAAGGAATGTCATCGGAAAATCTCTCGGCGACGCCGTCGCTGAGTAGTATTGAATC
GGCAATCAAACTTATTGACGTCAAAAAGGACGAACTCAAGAGAGCGTTCGATGATCTCCAAGCC
AACTCTCAGCGCCTCTCTTCTTTCTCTATCTCCTGGTCCGACCTCGACTCTCACTTCACCGCTCTT
CAAAATTCCGTCACTCAACGCTTCCGCATCCTCCTGTCTCGCGAAGCCATTCACAACCCAATTGA
TCACGTCCCCACTCTACCACTCGCCTCTAAACAGGGAGACCCATCTGCTCCACACCCGTTAACCG
AACAAGACCCAGTTGACTCGGTGGTTAATCAGCCATTAACTCATCTTTTACCGTTGGATAGTGAT
AAACCATCGTCTTCAAATTCGTTGAGCGTGCAGTCCGATGGTTCGGTTCCGCCGTCAGGCAACAT
TGACTCGGTGGTGACTCGACCAGAACTGAAGGAATTTTGTGAGAGAATGGATGGCAAGGGGTT
GAGGAAATACATAAACGACCACGTAAAAGAGCGGGAAGCTATCCGAATGGAGCTTCCCGATGC
ACTGCAGAGTGCTGCGGACCCTGGGGCAATGGTTTTGGATGCAATGGAGGGGTTTTACGCTGAG
AATTTGCATTCTAAAGGTGAGAAAGACCCTGAATTGCTCGGATTAAGGAGGGTTTGTGTGGTTT
TATTGGAGCAGTTAATGGAAACTGGTTTAAGTTTCAGT 

 

Table 26 FLC Blast Result from NCBI - TAIR Reciprocal Blast to Agamous (AG)  

>gi|122938398|gb|EF202091.1| Gossypium hirsutum MADS-box protein MADS7 mRNA, complete cds, 
alternatively spliced 
TTGGAATTCAAGAGCTTAGCCTTTCTCATAGTTCAATTCCTTGCCAGCTTTGAACCATGGAGTTCCC
TAATCTAGACCCAGAAAGCTCTTCCCAGAAAAAAATGGGAAGAGGCAAAATCGAGATTAAGCGG
ATCGAGAACACCACTAATCGACAAGTTACCTTCTGCAAGCGCCGCAATGGACTGCTCAAAAAGGC
CTATGAATTATCTGTTCTTTGTGATGCTGAGGTGGCTCTCATAGTCTTCTCCAGCCGTGGCCGTCTC
TATGAATATGCTAACAACAGTGTGAGAGCAACAATTGAGAGATACAAGAAAGCATGCTCAGATG
CAACAACTCCAGGGTCTGTGGCTGAAGCCAACATTCAGTTCTACCAGCAAGAAGCCACCAAACTC
CGACGACAAATTCGTGATGTTCAGAACATGAACAGGCATATCCTTGGAGAGGCTCTGAGCTCATT
GACCTTTAAGGAACTCAAGAACCTTGAAGGCAGGCTGGAGAAAGGCATTTGTAGAATCAGATCCA
AAAAGAACGAATTACTGTTTGCAGAAATTGGATTCATGCAAAAGAGGGAAGTTGAACTGCAGAA
CGATAACATGTACCTGCGAGCAAAAATAGCTGAAAATGAAAGAGCGCAACAACAATCAAACCAG
CTGATGCAAGCAGCCTCCTCCTACAATCGCAACTTTCTGCCAGTAAACCTGCTGGAACCCAGTAAT
AATGATTACTCCAACCAAGACCAAACTCCTCTTCAACTTGTATAAGCTTCTCTCTTCCACCTCCATC
TATTCAAGCTGACATGCAAGCAGCAGCCTCTAATGTTCTACCAACTTTATCTCTGGTTAAGCATAT
ATATATATCTTATAAGCCATGCAAGTATATATATATATATTTATATATGGTTTATAAACAGTTGAA
AGCCTAGTTGTTGATTATGATGAATGTAAGGAACTTAGGTTTCAGCACTGGACTCCTTTTTAACTG
TTTTATTGCAGGAAAGGTTTATTTTTGTATTATATATGTTTCTTAAAACTCTACATATAGTTTTCAT
CCCTTCTCTCAAAAAAAAAAAAAAAAAA 

 

  



 

123 

 

Table 27 FLC Blast Result from NCBI - TAIR Reciprocal Blast to Agamous-Like 6 
(AGL6) 

>gi|212525793|gb|FJ409870.1| Gossypium hirsutum MADS-13 mRNA, complete cds 
GATCACCATTTTTGTATAACACCAAAACCCCACCTCTCAGACACCACAGCCATTGTTCTAAAACCA
AAAAAAATGGGGAGAGGAAGAGTGGAGCTGAAGAGGATAGAAAACAAGATCAACAGACAAGTG
ACCTTCTCTAAGAGAAGAAATGGTTTGCTTAAGAAAGCTTATGAGCTTTCTGTTCTTTGTGATGCTG
AGGTTGCTCTTATCATCTTCTCTAGTCGTGGCAAGCTCTACGAGTTTGGCAGTTCAGGTATGAGCA
AGACCCTTGAGCGATACCAGCGTTGCTGCTTTACTCCTCAAGACAACAGCCTTGAACGCGAAACAC
AGAATTGGTACCAAGAGGTAACCAAGTTAAAGGCAAAATATGAAGCACTGCAACGCACTCAAAG
GCATTTGCTTGGAGAAGATCTTGGACCATTGAATGTTAAGGAGCTGCAAAACCTTGAGAAACAGC
TTGAAGGAGCTCTTGCACTGGCTAGACAAAGGAAGACACAGATCATGATAGAACAAATGGAAGAC
CTCCGTAAAAAGGAGCGTGAGCTTGGAGACCTTAACAAACAGCTGAAAATCAAGCTAGAGGCAGA
AGGACAAAACCTCAAAACAATCCAAGGTTTATGGAGTAGTGGTGCAGCAGCTGAAACTAGCAACT
TTCCTCTGCATCCTTCTCACCCACATCCTATGGATTGTGATCATGAACCTGTTCTGCAAATAGGGTA
CCATCACTTTGTTCAGGCTGAAGGATCTTCAGTCCCAAAAAGCATGGCCGGTGAGACCAACTTCAT
CCACGGATGGGTCATTTGAGCCCTCTCCTAAAAGCAACACAGCTACATATATAATATTTTTGTGAT
TTTTGTCTCTTGTTTTTTGTTTGGGATTTGTAATATTGCCATCATATATATATATAGAGACAGCTTGT
TCAAGTGTACAACATAAGAAAACATGCATGGATCTTAAGGAGCATTTCTCCTCTATTGTGATATAT
ACTGTTGCCTATATATATACAGCTTTTTACTGTTATATTTCAATTTCAGGCACTATTACCATTTGAG
CCTACAAAAAAAAAAAAAAAAAAAAAA 

 

Table 28 FLC Blast Result from NCBI - TAIR Reciprocal Blast to Agamous-Like 11 
(AGL11-STK) 

>gi|122938394|gb|EF190548.1| Gossypium hirsutum MADS-box protein MADS5 mRNA, complete cds 
TAGACCCATTTGAAAGGTGAGATTTATGATGAAATTGGAGTGCAAATGCAAGCTATATAGTTTTGA
ATAGGGACTGATTTTCTTTGCAATAGCTGGCCTCACATCTTCAACCAAAAATCCAAACACTTTGGC
CTTCTTTGAATCTGTAATTTTCCGAAAGCTGAAGTGGCCGGAACTGTGGCCTAACCTCAGTAGGAA
TATATAAAAGGGTGAAGATGGGAAGAGGAAAGATAGAGATAAAGAGGATCGAGAACACCACGAA
TCGTCAGGTTACGTTTTGCAAGCGCAGGAATGGGCTGCTGAAGAAAGCATACGAGCTGTCAGTCCT
TTGTGATGCAGAAGTTGCTCTTATCGTCTTCTCCACCCGTGGCCGCCTCTACGAGTACTCCAACAAC
AACATAAGATCAACAATAGAGAGGTACAAGAAGGCATGTTCCGGTACCTCAAACACAAATACCGT
CACGGAAATCAATGCTCAGTATTATCAACAAGAATCAGCCAAGTTGAGGCAGCAGATTCAAATGC
TACAGAATTCTAGCAGGCATCTAATGGGAGATTCGTTGAGTTCCTTGACAGTGAAGGAGTTAAAGC
AGCTAGAGAATAGACTTGAACGAGGGATTACTAGAATCAGATCAAAGAAGCACGAAATGCTGCTA
GCTGAAATTGAATATTTTCAGAAAAGGGAAGTTGAGCTGGAAAATGAAAGTGTATGTCTCCGAGC
TAAGATTGCAGAGATAGAGAGGGTTGAGGAAGCAAACATGGTAACAGGAGCAGAGCTGAATGCT
ATTCAAGCCTTGGCATCTCGCAATTTCTTTACTCCAAATGTGATTGAGAGAGGAACTCCCACTCCCT
ACTCCCACCATGACAAGAAGATTCTCCATCTTGGGTAGAGAGAGTTGGAGAGAACAAATCTGAAA
AGGGTGTTGTGATATTATGAGATTAAATAAGGATGCATTTCAACCATATGTACTCTACATATATTA
TGAAGCTGTCATGTAATTTGTTACTTGTTTTGTTCTGTTATATTGTCTGAAAACCTATACTAGTGTA
ACGTGTTTAATTTTGTGTGTTAAAAAAAAAAAAAAAAAA 
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A few longer sequences from the FLC complements were correlated past the K-

box region to: 1) Agamous (AG) with an E-value of 4e-16, 2) Agamous-like 6 (AGL6) 

with an E-value of 2e-54, and 3) Agamous-like 11 (AGL11-STK) with an E-value of 7e-30 

(Tables 26, 27, 28). The K-box region in the Agamous-like family is very similar, so 

distinguishing a gene based solely off that region is difficult.  

FLC has not been discovered outside the Brassicales species. One study reported 

the discovery of an FLC homolog in Cichorium intybus (CiMFL), but upon closer 

evaluation this fragment was found to have a 99% maximum identity match to 

Arabidopsis thaliana on the NCBI blast query [343]. Not even close relatives in the 

brassica family had this high level of identical matching nucleotide. Looking into this 

anomaly, we found identical matches to Arabidopsis for the CiMFL GenBank accession 

numbers: FJ347972 and FJ347973. Interpreting this data, we concluded that FLC has not 

been discovered outside the Brassicales family.  
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Discussion 

Similarity between Arabidopsis and Cotton 

In the introduction, we discussed how flowering time is a vital function in a 

crop’s reproduction. Basic knowledge to understand both the genetic and evolutionary 

history of the different pathway categories behind flowering (the floral network, the 

circadian clock, and the photoreceptors) was needed. Our study supported the idea that 

using candidate genes obtained from well-defined pathways in a closely related model 

plant species, Arabidopsis thaliana, was feasible because of the low percentages in 

nucleotide and amino acid substitutions (Table 7 a-b). The coding regions had high 

similarity to the homologous Arabidopsis regions. The highest level of substitution for 

coding sequences was 59% in Constans-Like 4 (COL4) and 52% in Pseudo Response 

Regulator 7 A (PRR7 A). Since both of these orthologs are in multi-gene families with 

some redundant functions, the ability to diverge evolutionary might be due to a relaxed 

selective pressure or sub-functionalization.  

Importance of Characterizing the A and D Genome Orthologs 

Including both the ‘A’ and ‘D’ diploid sequence was imperative to this study 

because of the difficulty in distinguishing which paralogs within the allotetraploid 

cottons related back to the seven to eight (MYA) evolutionary divergences. Without 

having the ‘A’ diploid sequence, we would have mistaken certain nucleotide 

polymorphisms to be singletons in candidate gene orthologs that did not have significant 

coverage across all allotetraploids. In retrospect, Sanger sequencing out both the G. 

raimondii D5 and G. herbaceum ‘A’ orthologs would have increased the speed in 
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evaluating our data. Due to the high similarity between the ‘A’ and ‘D’ diploid 

sequences (Table 7 b), we utilized the ‘D’ genome sequence as a reference for the ‘A1’ 

Roche 454 sequences. Only a 6.5% difference in amino acid substitution levels was 

shown between the A’ and ‘D’ diploid candidate gene orthologous sequences at the 

highest ratio (Table 7 b). 

SNP Density Comparison 

As expected, our study found higher levels of SNPs in the non-coding intronic 

regions, than those of the coding exonic regions. In exploring the differences between 

the ‘A’ and ‘D’ changes, we found that every 83 bp in an exonic region there would be a 

SNP indicating the evolutionary split seven to eight MYA. This was less frequent than 

the changes occurring in cotton EST sequences as reported by Flagel et al. in 2012 [344]. 

Our ‘A’ and ‘D’ changes occurring in the intronic region was every 49 bp.  

Our data results agreed with Flagel et al. that frequency for G. hirsutum and G. 

barbadense changes was considerably less frequent than the ‘A’ and ‘D’ changes 

occurring within the sequences [344]. We reported that approximately every 255 bp, a 

G. barbadense/G. hirsutum change occurred in both the intronic and exonic regions. In 

our results, we discovered that every 246 bp changes occurred between the cultivated 

cotton lines and wild accessions in the exonic region. This was surprising because it was 

slightly more frequent than the G. barbadense/G. hirsutum changes. It suggests 

hybridization or introgression of G. barbadense and G. hirsutum during or since 

domestication, as has been suggested in the literature [5, 6, 27, 31, 33, 36, 40, 48, 201, 

263, 265, 273, 287, 292, 294, 295, 345-348]. 
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The out-group, G. incanum E4 genome group, was used to root all our SNP 

results. Moreover, it helped to verify the divergence estimate of the different taxa seven 

to eight MYA. The E genome had a higher frequency of changes in the in coding 

regions, when compared to that of the ‘A’ and ‘D’ genomes. This might indicate that the 

E genome diverged farther back than eight MYA. Notably, some changes occurring in 

the PS-6 line appeared to be more similar to G. incanum than to 3-79. This might 

suggest that G. incanum or a related taxon could have been introduced into the pedigree 

of PS-6 at some point.  

Genes occurring only once within the genome (single genes) were under higher 

purifying selection. Multi-gene families with redundant functions did tend to have more 

SNPs, but no significant differences were found in SNP ratios when comparing genes 

and possible pseudo-genes. Fewer SNPs were observed in the single copy genes than 

genes in multi-gene families or having redundant functions. 

Synonymous and Non-synonymous Divergence within the Candidate Genes  

Our data was slightly lower than Flagel et al. for the ratio for dN/dS for evolution 

between Gossypium raimondii (D5) and Gossypium herbaceum (A1)[344]. In 2012, 

Flagel et al. reported at dN/dS ratio of 0.308 for D5 versus A1[344].  This study reported 

a dN/dS ratio of 0.204. These results still fall within the standard error reported by Flagel 

et al., but our study has comparatively fewer sites[344]. The results from both studies 

were statistically similar and gave credence to the divergence of the A1 genome and the 

D5 genome seven to eight MYA.   
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 Comparatively, our dN/dS ratio for evolutionary changes within Gossypium 

hirsutum and within Gossypium barbadense was much lower, than that of Flagel et al. 

[344].  Although our results differ, it was not unexpected.  This study focuses on a 

highly conserved set of pathways in all angiosperms. Our lower dN/dS ratio was likely 

due to three things: 1) the highly conserved nature of the photoreceptor, circadian clock, 

and floral network pathway candidate genes; 2) the fewer amount of synonymous and 

non-synonymous sites; and 3) a smaller number of genes analyzed. 

Synonymous and Non-synonymous Divergence of Different Pathway Categories 

Interestingly, this study found that the most divergent pathway category within 

cotton was the photoreceptor pathway.  Both the floral network pathway category and 

the circadian clock pathway category showed fewer evolutionary divergences.  Only, 

PRR7 A and FD suggested positive selection was occurring between the Gossypium 

raimondii (D5) and Gossypium herbaceum (A1) sequences.   
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Within the intraspecific comparisons for both Gossypium barbadense and 

Gossypium hirsutum, nine of the ten genes showing evolutionary divergence were from 

the photoreceptor pathway category.  Many of these photoreceptor genes had multiple 

orthologous copies within cotton.  These copies increased the dN/dS ratio discovered 

within our averages.  Ortholog GI A-like was the only circadian clock pathway category 

gene to show evolutionary divergence within Gossypium hirsutum and between the 

interspecific comparison of Gossypium barbadense (3-79) and Gossypium hirsutum 

(TM-1). A greater likelihood that the changes behind photoperiodism during 

domestication might be located in the pathway categories before the onset of the floral 

network pathway CO and FT because of the higher divergence ratios occurring within 

the photoreceptor and circadian clock pathway categories.   
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Conclusion  

Before novel traits from undomesticated species could be integrated into 

cultivated elite lines, the genetic basis of the loss of photoperiodism cotton in 

domesticated cotton must be understood. In cotton, there was a paucity of information on 

how different pathways interconnect to influence flowering time. This study 

characterized polymorphism differences in thirty-eight homologs of genes within the 

flowering time network, including photoreceptors, light dependent transcripts, circadian 

clock regulators, and floral integrators. This research asked if these genes were sound 

candidates for understanding the relationship between photoperiodism and flowering in 

cotton. Overall, we discovered appreciable SNP diversity within the candidate gene 

orthologs, including SNPs differentiating cultivated and wild Gossypium barbadense 

and Gossypium hirsutum. We found 36 SNPs within Gossypium hirsutum and 53 SNPs 

within Gossypium barbadense. These SNPs can be utilized as markers for integrating in 

new traits from wild accessions and to explore the molecular evolution of different 

genomes. 
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Methods  

Plant Growth and Collection 

3-79, D5, TM-1, PS-6, A1, K-46, TX-231 and E4  

We took DNA from the postulated modern species A and D genomes 

(Gossypium herbaceum A1 and Gossypium raimondii D5) that are most closely related 

to the ancestral A and D to create a base reference to compare evolutionary changes 

between A/D genome differentiation occurring seven to eight (MYA) and changes post 

natural hybridization /genome duplication event occurring one to two MYA [39]. Tissue 

from photoperiod independent (PI) cultivars and photoperiod dependent (PD) 

varieties/accessions were collected to postulate the nucleotide differences between 

cultivated PI cotton and PD cotton varieties/accessions. To make accurate evolutionary 

comparisons between PI/PD Gossypium hirsutum and Gossypium barbadense, DNA 

from out-group, Gossypium incanum (E4) (Accession Number: PI-530984; Saudi 

Arabia), outside the A/D genome was selected. The major cultivar/lines of Gossypium 

hirsutum and Gossypium barbadense are TM-1 (2005; Accession Number: 05-PI-

607172; Texas, USA), 3-79 (a double-haploid line), and PS-6 (2005; Accession Number: 

05-6745). 

One photoperiod insensitive plant from the Gossypium hirsutum TX-231(2005; 

Accession Number: 05-PI-163725; Guatemala) had been grown at the USDA Southern 

Plains Agricultural Research Station (USDA-ARS-SPARC) from 2005 to 2008 in the 

greenhouse facilities. This plant was transferred to Dr. Alan Pepper’s laboratory at the 

Texas A&M University Institute for Plant Genomics and Biotechnology (IPGB). There 
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the plant was maintained in the greenhouse and outside conditions through December of 

2009. New seeds from TX-231 have recently been grown using the seed transplants to 

greenhouse conditions for back up tissue. The second photoperiod insensitive line was 

from Gossypium barbadense K-46 (1988; Accession Number: 88-PI-528313; 

Guadeloupe). The accession ID information on K46 will be added, once information 

from the USDA is obtained from Richard Percy. 

The experiment contained collected leaf tissues from: Gossypium raimondii D5 

(1989; Accession Number: 03-PI-408785, Peru); Gossypium herbaceum A1 (2003; 

Accession Number: 89-PI-530898); Gossypium barbadense lines 3-79, PS-6, and K-46; 

and Gossypium hirsutum line TM-1and TX-231. All seeds for these taxa were taken 

from the USDA Southern Plains storage facility in College Station, TX. Seeds were 

imbibed in distilled water in the -20ºC refrigerator overnight. Falcon petri dishes 

(150x20) mm had two autoclaved growth paper pieces cut to fit them. One circle of 

paper was placed in the bottom of the petri dish. Seed coats were removed from the 

cotton seeds. Eight to ten seeds were placed on the paper circle. A second paper circle 

was placed on top of the seeds. The sheets were dampened with distilled water. This 

petri dish lids were them placed on top and parafilm was placed around the petri dishes. 

These dishes were left out on bench tops under growth lamps for 3 to 5 days. Once 

cotyledons had sprouted, the seedlings were transferred to a soil mixture.  

The transferred seedlings were grown in a mixture of metro mix 500, 

vermiculite, and perlite. The ratio consisted of 2 parts metro mix to 1 part vermiculite 

and 1 part perlite. Specimens were grown in a long day growth chamber at 78 ºC with 10 
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hours of light and 14 hours of darkness. They were grown in these chambers for a period 

of 2 months. The plants were transplanted to larger pots and moved to Borlaug 

greenhouse chamber 16 for 4 more months of growth. DNA was collected from new leaf 

tissues during phases in the greenhouse. Tissue samples were directly frozen in liquid 

nitrogen and stored in a -80ºC freezer.     

DNA Extraction 

Sample tubes were removed tubes from the -80ºC freezer and placed into a liquid 

nitrogen container until ready to grind. Tissue samples were transferred by VWR 

Disposable Spatulas (North American Catalog Number 80081-188) into new 1.5mL 

tubes. The samples were then ground with blue pestles in liquid nitrogen to form a 

powdered state. Warmed extraction buffer and RNA Plant Isolation Aid (Ambion™ 

AM9690) were added to each sample to enhance DNA recovery. Liquid was eluted and 

moved into new tubes containing100% Isopropyl alcohol (IPA) to condense the DNA 

into a pellet. Supernatant was removed, and pellets were allowed to dry for 30 minutes. 

Super TE (50mM Tris-EDTA, pH 7.5) was added to each pellet and gently ground with 

a blue pestle until it was re-suspended.  

After re-suspension, un-dissolved solids were removed from the samples by 

vortexing and centrifuging for one minute at full speed. Supernatant was then transferred 

into new tubes, where 3M NaOAc pH 5.2 and IPA were added to precipitate out the 

DNA. The condensed DNA was deposited upon the bottom of the tube in a pellet 

formation after centrifugation occurred. Before the DNA was washed, the IPA liquid 

mixture was removed and replaced with 80% ethanol (EtOH). The ethanol was removed, 
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and samples were allowed to dry for 30 minutes. Each DNA was re-suspended in 50-

100μl of 0.5x TE (Tris-EDTA, pH 8) with RNAse and stored at -20ºC. 

Candidate Gene Selection and Primer Design 

Nucleic acid sequences from well annotated genes involved in floral 

development, circadian clock, and related photoreceptor pathways were obtained from 

the Arabidopsis genome at The Arabidopsis Information Resource (TAIR) website 

(http://www.arabidopsis.org) [24, 45, 47, 54, 62, 65-73, 75, 76, 78, 79, 81, 85-90, 94, 95, 

97-99, 101-104, 106, 114, 120-123, 125, 126, 128-133, 135-140, 143-146, 148, 150-153, 

157, 159-161, 165, 166, 168, 173, 184, 188, 192, 194, 200, 247, 250, 252, 253, 255, 258, 

259, 276, 280-282, 286, 303-306, 309-316, 322-328, 330-334, 336, 349, 350]. The CDS 

sequences (coding sequences) of the Arabidopsis candidate genes used to search 

correlated cotton sequences using BlastX from the available Gossypium hirsutum and 

Gossypium raimondii ESTs and TCs. The cotton UniGene sequences were acquired 

from NCBI (ftp://ftp.ncbi.nih.gov/repository/UniGene/). The UniGene sequences were 

then utilized in the Stand-Alone BLAST program (blast-2.2.18-ia32-win32.exe) from 

NCBI (ftp://ftp.ncbi.nih.gov/blast/executables/LATEST). The Arabidopsis candidate 

genes were then queried against the UniGene sequences. These genes of interest were 

also queried against the DFCI Gene Index Project for the cotton TC sequences 

(http://compbio.dfci.harvard.edu/tgi/plant.html).   



 

135 

 

 

To verify that we had obtained the closest known cotton ortholog to a particular 

Arabidopsis gene, we used a reciprocal Blast approach [339]. We queried the cotton 

sequences against the Arabidopsis sequences at the TAIR website 

(http://www.arabidopsis.org/Blast/index.jsp) to confirm those gene identities. The cotton 

fragments procured from the TAIR query were aligned with the Arabidopsis thaliana 

cDNA and CDS of each candidate genes in Sequencher v. 4.2 - 4.8 (Gene Codes Corp., 

Ann Arbor, MI) and in Geneious® Pro v 3.0.5 – 6.1.5 (Biomatters Ltd.).  

The candidate gene sequeneces were annotated using the known Arabidopsis thaliana 

gene model on TAIR10. In order to attain greater diversity and occurrence of SNPs, the 

primers were designed across exon-intron spanning regions (Table 29). Each primer was 

built containing 21 bp to 30 bp. The standard format for creating possible primers was to 

make sure that the sequence had a GC clamp on the end with 35% to 60% GC content 

and 63ºC to 65ºC melting temperature (salt adjusted) [351].  

In some cases Genome Walking, via the GenomeWalker® Universal Kit 

(Clonetech Laboratories), was used to obtain intronic sequences, which could not be 

amplified by PCR. After sequencing the walked sections, a precise end primer was made 

from the walked fragment.  

Through the amalgamation of sequence information that was derived, consensus 

sequences for the exon-intron spanning regions for each gene were determined. From the 

original amplification sequences, a second set of gene-specific primers were made 

resulting in 56 amplicons that ranged in sizes from 400 bp to 800 bp across 38 genes 

(Table 29).   
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Table 29 454 Candidate Gene Primers 

Primer Name Sequence bp Tm %GC 
AGL1_RintW CGACCACGCGTGCCCTATAGT 21 64.5 62% 

AGL1_W1_DFCI ATCGACAAGTTACCTTCTGCAAGC 24 61.6 46% 

AGL2_RintW CTCAAAACAGTTCCAAGCAATTAGGAC 27 61.2 41% 

AGL2_W1_DFCI GGAACGGGTTGTTGAAGAAGGCT 23 63.4 52% 

AGL3_RintW GGCTGGTAAAGTCATTGGAGGTG 23 61.4 52% 

AGL3_W1_DFCI GGGTTGCTCAAGAAAGCTTATGAG 24 60.1 46% 

AGL6_RintW CGATCGACACGTTTCATCTCATATC 25 59.9 44% 

AGL6_W1_NCBI CAGACAAGTGACCTTCTCTAAGAG 24 58.3 46% 

AGL9_SEP3_2F_DFCI GGTACCAAAAATGCAACTATGGAGC 25 60.9 44% 

AGL9_SEP3_2R_DFCI AAGTTGTTTCTCAAGTGACTCGAGC 25 61.7 44% 

AGL16_F2_DFCI AAATGAGCCTTCGCGGTGTTCG 22 64.2 55% 

AGL16_R2_DFCI TACTTGTATTTCTTCGATTAACATTTGATC 30 57.6 27% 

AGL30_RintW CCACTACTAATTCGCATCATTTGAGC 26 60.8 42% 

AGL30_W1_DFCI AACACAAATGGCCGTCAGGCGA 22 65.5 55% 

AGL32_F1_DFCI TGTCCTCAAAGTCCGAGAGCG 21 62.1 57% 

AGL32_R1_DFCI GATTATCAAGCTGTTGCTGCAAGAG 25 61 44% 

AGL65_RintW CACCTAGAAAGTCATGTATGTTTAGATC 28 58.1 36% 

AGL65_RintW2 CAAATCCAGAGATCAAAATGGCAACC 26 61.3 42% 

AGL65_W1_DFCI GACAAGTTACATATTCGAAACGCAG 25 59 40% 

AGL65_W3_DFCI CTCGAGAATGATTTTTACCTACTGCAG 27 60.3 41% 

AP1_2F_NCBI GAAGATCCTTGAACGCTATGAAAGG 25 60 44% 

AP1_2R_NCBI CTCTGGTTTCTCTCCAAAAGCTC 23 59.2 48% 

AP3_RintW CCTTACTATAGGGCACGCGTG 21 60.6 57% 

AP3_W2_DFCI CACTGTTCTTTGTGACGCCAAGG 23 62.6 52% 

ATGRP7_F1_DFCI ATGTCGAGTTCCGGTGCTTCG 21 63 57% 

ATGRP7_R1_DFCI GTTCATTCCTTCGATCGCGTCC 22 61.9 55% 

COL3_R TCTTTCTCTTCTCTCTGTACCTCAG 25 59.1 44% 

COL3_W1 CTCCTCTAACCCTCTCGCTCG 21 61.4 62% 

COL5_1R_DFCI CTGTTCTTTCTCTTCTCTCTGTACC 25 58.6 44% 

COL5_Fint GACATGGATCCGTTTATTGATTTTGAG 27 59.4 37% 

COP1_1Fint CCATGTTAGTCAGAGAAAAGATGCCT 26 61.1 42% 

COP1_1R_NCBI CGGATGCTTGGAGATGATTCTAGC 24 61.4 50% 

CRY1_1F_NCBI GACGTCGCTTTTGCAGGTAACAC 23 62.9 52% 

CRY1_1R_NCBI CTGCGTTGAATGATCGAACCGC 22 63 55% 

CRY1_3F_NCBI AATGCCTTAACATGCCTTTTGACCCT 26 63.6 42% 

CRY1_3R_NCBI AAGCTTTATCTGCATTGCTCCACC 24 61.9 46% 

CRY1_4F_NCBI AGGGTGGAGCAATGCAGATAAAGC 24 63.5 50% 

CRY1_4R_NCBI ACGGCCATCCAGAAGAGTACC 21 61.6 57% 

CRY2_1R_NCBI AGCTCCGGCAGCCATTGCCT 20 Ŧ7.2 65% 

CRY2_2F TATCCGTTCACTCATGAGAGATCG 24 59.8 46% 

CRY3_FW2_NCBI TACGACCCGTGTTCAAATTACGGA 24 62.3 46% 

CRY3_Rint_W TTGCGTAACCCGGAGTGTCTC 62.4 57% 

DET1_F1a_DFCI TAATATGGAGACAACTGAAATTGTTGCA 28 60.1 32% 
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Table 29 Continued. 

DET1_R1_DFCI CAAATAATTGGTAAAGTTCATCTGCTGC 28 60.2 36% 

ELF3_1R_NCBI CTTAATCAGCCTATGTAACTCAAACAC 27 58.6 37% 

ELF3_FintW TGCGACAAAAGCATGTGGCTTCAG 24 64.8 50% 

FD_FintW AGTATGGAACGACATCACCCTCG 23 62 52% 

FD_R1a_DFCI GATGAGCAACTTCAAGTTCTAGCTC 25 59.9 44% 

FKF1_ADO3_1F_DFCI GACTTCTTTCGTTGTTTCCGATGC 24 61.1 46% 

FKF1_ADO3_1R_DFCI TTCCATCATCATCACGTATAGGTGC 25 60.8 44% 

FKF1_Fint ATACATAGGCGTCAACTGAATTGGAG 26 61.2 42% 

FKF1_Rint CAATTCAGTTGACGCCTATGTATCC 25 60.1 44% 

FT_3F_NCBI GTTACTGATATTCCAGCCACAACTG 25 59.9 44% 

FT_3R_NCBI AAAGTCCCTAGTGTTGAAGTTTTGG 25 59.6 40% 

GI_1F_NCBI CTGCCCAACAGGGATGGAGAC 21 62.7 62% 

GI_1R_NCBI CGGAGATGCTGATACGACATTGCA 24 63.3 50% 

GI_2F_NCBI CGGCAAAAGCAGCAACTGCAG 21 63.7 57% 

GI_3F_NCBI GTGCCACTGATGGAATGCTCG 21 61.9 57% 

GI_3R_NCBI CTGGCTGAACTGCTCTAGCTG 21 60.7 57% 

GI_4R ACGAGCATTCCATCAGTGGCAC 22 63.4 55% 

HY6_F1a_DFCI GGTTCGTGGCTATGAAATTGCATAC 25 61 44% 

HY6_F2_DFCI GGATCCTCAAGCGTTCATATGCCA 24 63.1 50% 

HY6_R2_DFCI GTTCTTCTCGTCTCTAGTCCAGC 23 60.2 52% 

HY6_Rint TGGCATAACCTTGCTCTTCGAACC 24 63.4 50% 

LHY_F1_NCBI GAGCATAATAGGTTCCTAGAGGCT 24 59.2 46% 

LHY_R1_NCBI GAGCATGACTCCTGATCTGCAC 22 61.1 55% 

MiRNA172c_FW1_DFCI ACCACCGTCCATCAACAGATGTG 23 63 52% 

MiRNA172c_R GCCCGGGCTGGTATATGAATATG 23 61 52% 

PFT1_2F_PGDB AAGGGCAGCCGGTCTTTATCAC 22 62.9 55% 

PFT1_2R_PGDB GAGATATAAGACGAACTATTTGCATGG 27 58.3 37% 

PFT1_3F_PGDB TGCAAATAGTTCGTCTTATATCTCAGG 27 59.1 37% 

PFT1_3R_PGDB AAAGCATCAACGTCTGTGAAGGCA 24 63.5 46% 

PHYA_1F_Contig1 GTTCCATTTCCCCTCAGGTATGC 23 61.3 52% 

PHYA_1F_NCBI GTTCCATTCCCACTCAGGTATGC 23 61.2 52% 

PHYA_1R_NCBI CTTGTTGCAGCTCATGGCTTGC 22 63.4 55% 

PHYA_2Fint CATATTCCAACATAGTTACGAGTGCT 26 59.3 39% 

PHYA_2Rint GTCCATGACAATCTTCTGAGCTG 23 59.4 48% 

PHYA_3Rint CATAGTCCTTCCATGGCAAACTCC 24 61.5 50% 

PHYA_F2_NCBI ACTTCATGTCCAGCGATTAACAGAG 25 61.1 44% 

PHYA_Fint CATGGAAGGACTATGAAATGGATGC 25 60 44% 

PHYA_R2_NCBI GATACGTTTTCCATTGCTCGTCAC 24 60.7 46% 

PHYB_F2_IBR GTTGTTTGTCATCATACTTCTGCACG 26 61.3 42% 

PHYB_F3_IBR AACAGGACTCTCAGTTGAGGAAGC 24 62.3 50% 

PHYB_F4_IBR GGTGCAAAGCATCATCCAGAGGA 23 63.1 52% 

PHYB_R3_IBR TGAGAGTCCTGTTGATTCTGCAGC 24 62.9 50% 

PHYB_R_IBR CCTTACTAGAGCAAGCGTTCACCA 24 62.6 50% 

PHYC_1F TTGGTACCGAGCTCGGATCCA 21 63 57% 
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Table 29 Continued. 

PHYC_1R_DFCI GCAGTCTCAATCAGGCGGACC 21 63.3 62% 

PHYC_2F AGTATGGGATCAATTGCATCTCTTGTG 27 61.6 41% 

PHYC_FW2 GGTCCGCCTGATTGAGACTGC 21 63.3 62% 

PHYC_R_NCBI TCTCGACTACAACATGCATTAACAACC 27 61.9 41% 

PHYC_Rint CAAGAACTGAAGCACCTGGATAGC 24 61.7 50% 

PHYE_2F_NCBI GTATGATTGCTGTTGAAGAACCCAG 25 60.4 44% 

PHYE_R_IBR_hinge AACCGGATTTGCATGGCAGTCAC 23 64.3 52% 

PI_F1b_DFCI AAGAAACTATGGGATGCTAAACATGAG 27 59.7 37% 

PI_R1_DFCI TTTCTTGATTCTATCTATTTCATTGCTGAG 30 58.8 30% 

PRR5_F1 CCACCAGGCAGATTATATCTGCTC 24 60.9 50% 

PRR5_Rint TTGAACCACAATCCGTAACCATGTC 25 61.8 44% 

PRR7_F3 GACTGTAGTTAGGGATGAGCGGA 23 61.2 52% 

PRR7_R3 CAATGTTATTGCTACCGACATTTGAGC 27 61.6 41% 

SPA4_F2_DFCI ACACGAGAAACGCGTATGGTCC 22 63.1 55% 

SPA4_R2_DFCI CGCAGCAAACATTGGCCTTTGTC 23 64 52% 

TOC1_F1_DFCI TCTGCTAGACAGGTCATTGATGC 23 60.4 48% 

TOC1_R1_DFCI CAAGATAGTCAGCAGCACCAAGC 23 62 52% 

ZTL_1F_NCBI GGTTACCGGTTATCGCGCCGA 21 65.1 62% 

ZTL_Rint AGAAAATTTATGGGTGGCAAGGTGCA 26 63.9 42% 

 

 

 

 

Primer Validation and Amplification  

Primers were verified on the diploid D5 Gossypium raimondii genome using 

GoTaq® Green Master Mix (Promega™) for PCR on the Tetrad™ PTC-225 

Thermocycler (MJ Research). The amplicons were then checked using gel 

electrophoresis. The amplification products were then noted to be single or multi-

banded. Amplified single banded products indicated a single gene representing only a 

single locus with no polymorphisms, while multi-banded products amplified either 

represented amplification of multiple loci or a wide double-band represented 
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heterozygosity at the locus. These products were amplified in D5 Gossypium raimondii 

because it was the smallest primitive diploid ancestor to the tetraploid species and was 

being completely sequenced. Amplicons that appeared as single bands were re-amplified 

using Phusion® High-Fidelity PCR Master Mix (New England Biolabs), instead of 

GoTaq®. To check whether the amplification had worked, the single banded Phusion 

products were re-run on gels. They were then purified using either Qiaquick® PCR 

Purification (Qiagen™) or BayGene purification columns. Next, the ¼ ABI Big Dye 

Terminator Cycle reactions were prepared for sequencing the amplicon products. These 

reactions were then cleaned to remove the terminator dye by Performa® DTR Gel 

Filtration Cartridges (EdgeBio™). Afterward, these fragments were sequenced using the 

ABI model 3730. Finally, in Sequencher and/or Geneious®, DNA fragments were 

aligned giving genetic data from exon to exon.  

For the multi-banded reactions, these amplicons were rerun using the Phusion® 

High-Fidelity PCR Master Mix (New England Biolabs). Thereafter, the PCR products 

were taken through blunt end Topo cloning PCR using Zero Blunt® Topo® Cloning Kit 

(Invitrogen™). The reactions were plated out on LB Agar plates plus kanamycin. 

Colonies were grown overnight at 37ºC. The next day, the colonies were picked using 

pipette tips and PCR amplified with GoTaq®. The colony PCR products were then 

purified using an ExcelaPure 96 well plate (EdgeBio™). After gel evaluation, they were 

then re-arrayed for ¼ ABI Big Dye Terminator Cycle reactions. To remove the 

terminator dye from the plate, a Performa DTR Ultra-96-well plate was used.  
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Once cotton sequences for candidate genes were obtained, they were aligned by 

employing Sequencher® and Geneious® software. Chromatograms were scanned for 

possible sequencing errors from dye blobs and poor reads. Consensus sequences were 

then made. 

Multiplexed Amplicon Sequencing for the GS-FLX Roche 454  

Amplification 

The 56 amplicons from eight taxa were amplified using Phusion reactions in four 

and half 96 well plates (American Standard™). These reactions were then purified using 

96 well ExcelaPure plates (EdgeBio™). Next, the samples needed to be quantified for 

double-stranded (DS) DNA. A new product called AccuBlue (Biotium™) was shown to 

quantify DS DNA. AccuBlue High Sensitivity Kit (Biotium™) was used to quantify DS 

DNA by taking the samples and measuring them on Victor™ X3 Multilabel Plate Reader 

(PerkinElmer™) with 485nm of excitation and 535 nm emission levels. Afterward, they 

were measured against a set of control standards. This was a light sensitive reaction, so 

reactions were made in a black 96 well flat bottom plate (Corning™ CLS3916). This 

was to reduce light refraction from other wells. After quantification, the amplicon PCR 

products were diluted with 2X TE (Tris-EDTA, pH 8). In new plates, the amplicon 

products were transferred, so normalization at 5.5 x 108 molecules/μl was maintained. 

All 56 amplicons were then multiplexed together by taxa, using 10μl per reaction, into 

one tube. Once reactions were multiplexed, library preparation for each taxon on the GS-

FLX® Titanium Roche 454 (Roche Life Sciences™) was ready to begin. 
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Library Adapter Preparations 

The amplicon sequencing via Roche 454™ approach utilizes the Y-Primer 

technology. This Y-Primer technology allows partial double-stranded adapters attached 

by ligation to the amplicon template with an end-repair reaction of a 3’ adenine 

overhang [352]. To accomplish high throughput sequencing with amplicons, the 

sequencing primers were modified with Primer ‘A’ and ‘B’ keys and MIDs (multiplex 

identifiers). These primers were ligated to the original amplification primers, in order 

that the dual barcoding strategy would work with the GS-FLX Titanium emPCR Kits 

(Lib-L)[353-355]. On the Roche 454™ website, fourteen MID (multiplex identifier) 

adapters were listed. From the available adapters, this experiment selected eight MIDs to 

create a barcoding system to help identify the eight taxa [356, 357]. The system of dual 

barcoding gave the ability to identify the taxon by MID and the gene by original PCR 

primers. 

  To ensure that the Y-Primer would ligate to the original PCR amplicon, the Y-

Primer needed to be modified. This Y-Primer modification on the ‘A’ strand 

oligonucleotides was created with a phosphate on the 5’ end to allow for an overhang 

that attached to the amplicon fragment. Next, the Y-Primer A and B strands needed to be 

annealed before ligation to the PCR amplicon could occur. By diluting with STE 

(Sodium-Tris-EDTA), the nseqA-F primer and nseqB-R0 primer allowed molecules to 

anneal stably to each other [358]. Next, an annealing reaction between the forward and 

reverse primers were performed at 95º C and allowed to decrease to room temperature. 
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Dilutions of the nseqAB annealed adapter reactions were created at a 5pmol/μl 

concentration.  

Amplicon Pooling, Phosphorylation, Adenylation, and Ligation  

After the completion of the amplicon library adapters, the next step was to 

prepare the pooled samples by taxa for ligation with the ‘A’ and ‘B’ tagged primers 

(Figure 17). The pooled samples were quantified by AccuBlue (Biotium™) to 5x108 

molecules/μl. A phosphorylation reaction added a phosphate to the 5’ end of the pooled 

amplicons and removed any unwanted phosphoryl groups on the 3’ end. The 

phosphorylation step was imperative because the PCR amplicons were blunt ended via 

the Phusion reaction.  

In the phosphorylation reaction, pooled PCR amplicon reactions were heated to 

70º C, so that the end of the fragment would begin to unwind. By immediately plunging 

these amplicons into an ice bath, the amplicon ends were locked into an open position. 

The phosphorylation used the T4 Polynucleotide Kinase (PNK), the NEBNext® End 

Repair Buffer (New England Biolabs), and 25mM MgCl2 to account for the TE (Tris-

EDTA, pH 8) added in the normalization step. These samples were the purified with the 

MinElute kit (Qiagen™).  
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Figure 17 Amplicon Library Pooling and Preparation for Roche 454 
 

 

 

 

Consequently, a 3’ adenylation step was completed on the pooled samples with 

the NEBNext® dA Tailing Module Klenow Fragment (New England Biolabs). This was 

to make sure that the 3’ end of the blunted pooled PCR fragments would contain a free 

adenosine that the Y-Primer could ligate on to. Thereon, the samples were purified with 

the MinElute kit (Qiagen™). With AccuBlue (Biotium™), the pooled samples were 

quantified, so the proper ligation adapter concentration could be calculated. This ligation 

adapter concentration was .5 pmol/μl.  
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Using the NEBNext® Quick Ligation kit (New England Biolabs), the diluted A 

and B annealed adapters were ligated on to the ends of the pooled PCR amplicons. Once 

the different annealed adapters, coding for different MIDs, were ligated onto the separate 

taxon pooled samples, all eight taxon ligations reactions were pooled together into a 

single reaction. The sample was purified using the MinElute kit (Qiagen™), and the 

sample was re-purified again using the AMPure® XP tube protocol (Agencourt™). 

Then, the sample was quantified by Fluorescein (FAM: 6-FAM phosphoramidite), a 

fluorophore that emits light upon excitation, on the Perkin Elmer Victor 3 in a black 384 

flat-bottom plate. The concentration of the clean ligated pooled sample was 3.23 x 108 

molecules/μl. The sample was diluted to 1 x 106 and 2 x 106 with TE [354]. Finally, the 

samples were given to the Laboratory for Genome Technology where Lib-A kit (Roche 

Life Sciences™) was used to perform EmPCR. Pyrosequencing was completed on the 

GS-FLX® Titanium Roche 454 (Roche Life Sciences™).  

Analysis of Roche 454 data through CLC Genomics Workbench and Geneious®  

Once pyrosequencing was completed, the “.sff” files were imported into CLC® 

Genomics Workbench (CLCBio™) where they were analyzed. The sequences were 

parsed into the eight taxa by the multiplexing option to process tagged sequences. To 

parse the sequences by barcode (Table 8), the barcodes and 16 base-linker 

(GTGACTCCGACTAGGT) were entered into the splitting parameters and sequence 

length was left up to 1000 bp. The minimum number of sequences per group was 

lowered, so that nine groups could be created. This gave one extra group that did not 
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have the MID barcodes identified. All sequences that had a non-functional barcode were 

discarded (4.4%)  

In CLC® Workbench, the D5 Gossypium raimondii reference sequences from 

the ABI files in Sequencher® 4.8 and Geneious® were imported to make a consensus 

alignment for each gene that correlated with the new 454 D5 sequences. The reads for 

D5 Gossypium raimondii were then mapped to the reference sequence on CLC® 

Workbench. A new consensus read was created with the ABI and 454 data for the 

candidate genes in the D5 Gossypium raimondii taxa.  

These new consensus fragments were used as the D base reference for mapping the reads 

from other tetraploid taxa for each gene. The A1 base reference sequence was made 

from making the correlating the new D5 base reference sequence with the A1 454 

sequences. The correlation was set to 85%, so that it could pick up the differences 

between the ‘A’ and ‘D’ genomes.  

Using the ‘A’ and ‘D’ reference sequences, the each taxon of 454 sequences 

were mapped to both reference sequences at the same time on CLC® Workbench. A 

consensus fragment representing the A and D strands for each amplicon was created for 

each taxon. The consensus sequences were kept at high levels of confidence with at least 

80% of reads required to confirm them.  

Each consensus sequence that was constructed for both the A and D strands of 

the eight taxa was exported and imported into Geneious® version 5.1 [359]. The 

sequences were assembled into contigs. Contigs represent the alignment of several DNA 

fragments that overlapped to create a single DNA consensus sequence. They were then 
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evaluated, tagged and scored for differences. Geneious® gave the ability to move, 

annotate, and align sequences within a contig more easily than CLC® Workbench 

version 3.3.5[360]. Sequencing errors within the consensus amplicons were easily 

spotted and verified against the hundreds of basal 454 sequences in CLC® used to form 

the original consensus sequence. This was imperative due to CLC® Workbench version 

3.3.5 map to reference alignment problems. The final cleaned contigs of the eight taxa 

were then analyzed for SNPs, SIDs, and INDELs between the taxa, the A/D strands, and 

the wild versus the cultivated lines. 

SNP, SID, and INDEL Detection, Analysis and Verification 

Geneious® software version 5.1 to version 6.1.5 (Biomatters Ltd.) was used to 

discover single nucleotide polymorphisms, single nucleotide variations, nucleotide 

insertions (>2 bp), and nucleotide deletions (>2 bp) in the amplicon contig assemblies 

for each gene in every taxa. In areas that were well covered, these changes were noted 

showing the A/D changes, the wild and cultivated changes, and the Gossypium hirsutum 

versus the Gossypium barbadense lines.  

This information was analyzed by calculating the number of variants in both the 

exon and intron spanning regions. These variants were categorized into groups by SNPs, 

SIDs, and INDELs.  The SNPs, SIDs, and INDELs were averaged into ratios by groups 

of introns, exons, intron-exon spanning regions in Microsoft© Office 10 Excel. From this 

data, procedure frequencies and generalized linear mixed models were used to correlate 

SNPs within the different pathways and by type using the Base SAS© 9.3 Procedures 

Guide (Table 16 and Figure 15) [361]. The procedure frequency and generalized linear 
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mixed model for this paper was generated using SAS© software, Version 9.3 of the SAS 

System for Windows 64 bit (see appendix for code in SAS). Copyright © 2011 SAS© 

Institute Inc. SAS© and all other SAS© Institute Inc. product or service names are 

registered trademarks or trademarks of SAS© Institute Inc., Cary, NC, USA.  

Synonymous and Non- synonymous Sites in Coding Regions 

From the amplicon contig assemblies for each candidate gene in Geneious® 

version 5.1 to version 6.1.5 (Biomatters Ltd.)[228], exonic sequence alignments from 

each gene were extracted to analyze non-synonymous variants to synonymous variants 

in the exonic regions. Also exonic regions of Arabidopsis were assembled with the 

cotton exonic sequence alignments in Geneious® version 5.1 to version 6.1.5 

(Biomatters Ltd.)[228].  These files were exported as .meg files and imported into Mega 

5.2.1 [341, 342].  Mega 5.2.1 was used to calculate nucleotide changes, amino acid 

changes, non-synonymous variants, and to synonymous variants.  The number of 

synonymous substitutions per synonymous site was calculated from averaging over all 

sequence pairs with their standard error estimates.  This data was obtained by a bootstrap 

procedure of 500 replicates using the Nei-Gojobori model [243].  The number of non-

synonymous substitutions per non-synonymous site was calculated from averaging over 

all sequence pairs with their standard error estimates.  Again, this data was obtained by a 

bootstrap procedure of 500 replicates using the Nei-Gojobori model [243].  All 

ambiguous positions were removed for each sequence pair in both analyses. 

 



 

148 

 

 

CHAPTER IV 

COMPARISON OF CANDIDATE GENE-BASED AND GENOTYPING-BY-

SEQUENCING (GBS) APPROACHES TO TRAIT MAPPING IN GOSSYPIUM 

BARBADENSE L. 

 

A Comparison of Candidate Gene-based and Genotyping-By-Sequencing (GBS) 

Approaches to Trait Mapping in Gossypium barbadense L. 

Overview 

Overview Rationale and Objectives  

 The use of marker assisted selection (MAS) has been a recent part of modern 

breeding techniques.  With the advent of next-generation sequencing, we are now able to 

effectively help breeders reduce the amount of time it takes to bring in new traits of 

interest into a cultivated line. This study facilitated the use of genotyping-by-sequencing 

(GBS) to associate SNP alleles that with our trait of interest, photoperiod independence.   

This was done by comparing SNPs that present in various orthologs, homeologs and 

paralogs within a fully introgressed wild cotton Germplasm line.  

Overview Methods  

 We employed a genotyping-by-sequencing (GBS) approach to narrow target 

SNPs associated with a major locus that contributes to photoperiodic flowering in 

Gossypium barbadense. We used a simplified restriction digestion protocol to achieve 

reduced representation for sequencing. We utilized Targeted GBS (TGBS) to show 

linkage with photoperiod independence in a segregating BC4F2 wild cotton conversion 
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line (PS6 x wild).  This was an ideal way to correlate phenotype with genotype in a 

breeding population.  

Overview Results and Conclusions  

 We identified SNPs between cultivated AD2 G. barbadense and wild AD2 G. 

barbadense relatives. We correlated this data to the Gossypium raimondii reference 

genome with the known floral regulatory genes from Arabidopsis thaliana. We showed 

segregation of loci within the segregating population. This schema showed potential for 

identifying potential time and money savings in the development of new lines not only 

reduces time in breeding strategies and to bring in beneficial traits into elite cotton 

cultivars more rapidly. 

Overview Keywords 

 Genotype by Sequencing, Cotton, Gossypium, Reduced Representation, Marker 

Assisted Selection, Loci, Linkage Disequilibrium, Photoperiodism, Photoperiod, 

Flowering, Wild Germplasm Introgression, GBS, Targeted GBS 

Background 

Economically, cotton is the fourth most important crop in the world [284]. 

Therefore, it has high economic value in the world’s trade markets. Many countries’ 

gross domestic products (GDP) rely on the production of goods sold at fair trade values 

[362]. In agricultural business, the goal is to produce the best product at minimal cost 

[363]. Therefore, producing the best quality cotton at the lowest cost helps to maintain 

the crop’s economic importance in the world. Commercially, there are two main types of 

marketable cotton: Diploids (A genome) and Allotetraploids (AD Genome). The diploids 
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(Gossypium herbaceum and Gossypium arboreum) are primarily grown for trait 

introgression into the allotetraploids, but accrue value for non-textiles (bed stuffing) 

[293]. Diploid cotton is small leafed, lanky, and shrub-like in appearance and is highly 

distinguishable from allotetraploid cottons in fiber and form [31, 33, 287, 293]. Diploid 

cultivated cotton species have short, weak fibers[293]. During spinning, these weak 

fibers are blended with other cotton fibers to achieve specific Micronaire values[293]. 

Cotton’s Micronaire values indicate the fiber’s fineness (linear density) and maturity 

(cell wall degree of development) [364]. In short, this value accounts for air permeability 

in the fiber for spinning. Micronaire is the one of the most important fiber characteristics 

for commercial value [364]. Therefore, it is important to achieve world-wide industry 

standards for Micronaire values, so criteria for commodity trade values can be 

established. 

The other types of marketable cotton are the allotetraploids. There are two main 

types of allotetraploid cotton (Gossypium barbadense and Gossypium hirsutum). 

Gossypium barbadense and Gossypium hirsutum are marketed for fiber in textiles, fiber 

in medical supplies, seed-oil content in vegetable oils, cottonseed meal for animal feed 

and fertilizer [294]. Gossypium hirsutum, known as upland cotton, is a three to five foot 

shrub with cordate leaves of three to five lobes that produces strong fiber around ¾ of an 

inch to one inch [294]. While Gossypium barbadense, known as extra-long staple (ELS) 

cotton, is a shrub-like tree with three to five deep lobed cordate leaves and produces 

fiber from 1 and 3/8 of an inch or longer[33, 295, 348]. This ELS cotton is softer and 

longer, than Gossypium hirsutum. Therein, the commercial price for Gossypium 
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barbadense is much higher [295, 346]. Both Gossypium barbadense and Gossypium 

hirsutum are the major contributors to the global economic commodity production, 

imports, and exports of cotton world-wide. Discovering ways to improve these 

allotetraploid commodities benefits the national GDP of cotton producing countries. 

Hence, it is vital to have an understanding about the genetic diversity within cotton. 

Modern allotetraploid cultivated cotton has limited genetic diversity because of 

an evolutionary bottleneck caused by Mesoamerican proto-agricultural tribes selecting 

for early flowering during the domestication process [5, 287]. The oldest discovered 

cotton textiles in the New World were of Gossypium barbadense L. in Northern Peru 

with the Huaca Prieta civilization circa 2400 B.C. [32]. The other modern cultivated 

allotetraploid cotton, Gossypium hirsutum L. was first domesticated near the Yucatán 

peninsula [27]. The domestication process of cotton bottlenecked because modern 

allotetraploid cotton cultivars originated only from these two domestication sites. 

Eventually a plateau for breeding new cotton cultivars will be reached. Therefore, 

developing practical traits from wild relatives is needed. These untapped wild genetic 

resources have valuable assets which should be incorporated into traditional breeding 

programs [6]. 

Cotton breeders are asked to increase their products value by bringing in more 

desirable traits from wild Germplasm. Often this achieved by searching for desirable 

traits from a sub-standard stock and integrating those traits into elite lines through 

breeding schemas [9, 10, 271]. Desirable traits which breeders might acquire from 
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undomesticated cotton are: 1) higher disease tolerance, 2) pest tolerance, 3) heat 

tolerance, 4) salt tolerance, 5) fiber length, 6) fiber strength, and 7) stalk vigor.  

However, bringing in desirable traits is not a simple process because a key trait, 

‘photoperiod sensitivity’, was lost during the allotetraploid cotton domestication [11, 

245-247, 262]. Most commercial cotton producing areas in the world do not undergo 

light conditions allowing wild cotton species to flower during a growing season’s span 

following today’s current cultivation practices. Using specialized light conditions in 

greenhouses/growth chambers, undomesticated and cultivated species can be bred 

together, but this cross results in offspring exhibiting photoperiod sensitivity. Therefore, 

these offspring are rendered useless for commercial production.  

Our study focused on Gossypium barbadense. Gossypium barbadense’s genetic 

diversity further narrowed through breeding strategies for habitat and day neutrality. The 

colonial shipping industry had increased the trade commodity that was easily grown in 

similar habitat with day neutrality for increased yield [31, 33]. The long strand staple 

cotton, ‘Sea Island Cotton’ [Gossypium barbadense SI], was the primary cotton 

developed throughout the Caribbean basin into late 18th century [348]. In 19th century, 

Egyptians developed elite cotton lines from the introduced ‘Sea Island Cotton’[348, 

365]. Germplasm from some Egyptian cultivars were utilized in the development of the 

original ‘Pima’ cultivars [295, 366-369]. The elite cotton cultivars used in this study are 

Pima S-5 (PS-5) and Pima S-6 (PS-6) [369-371]. 

Our overarching theory was that a single gene controls and influences 

photoperiodism in Gossypium barbadense’s flowering pathway. It was supported by the 
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significant 3:1 non-flowering to flowering phenotypic ratio of the Gossypium 

barbadense PS-6 x wild Gossypium barbadense field trial (material provided by Richard 

Percy, USDA-ARS) This BC4F2 segregating field demonstrated a that a recessive 

mutation led to photoperiod independent flowering in Gossypium barbadense. The 

BC4F2 segregating population was composed of Gossypium barbadense PS-6 crossed 

with eight wild Gossypium barbadense, where the wild Gossypium barbadense was the 

recurrent parent. This effort was to retain a majority of the wild Germplasm alleles, 

while still segregating for photoperiod independence.  

This project’s specific aim was to narrow down heritable markers for 

photoperiod regulation in cotton. GBS was used as a tool to find closely linked SNPs for 

photoperiod independence in a fully introgressed wild population. The SNP differences 

were correlated back to the genetic donor parent. Our hypothesis is that the inherited 

Gossypium barbadense PS-5 marker loci retained in both fully introgressed lines 

(Gossypium barbadense PS-5 x Gossypium barbadense PI-435242 and Gossypium 

barbadense PS-5 x Gossypium barbadense K-56) were closely linked with the 

photoperiod independence gene. These loci containing SNP differentiation can then be 

used as markers in MAS breeding schemes.  

This cotton Genotype-By-Sequencing (GBS) study promises to benefit 

worldwide cotton production by identifying the loci near the photoperiod independence 

trait, an integral part of cotton domestication. Since cotton has a highly complex genome 

containing 26 chromosome pairs, a marker assisted selection (MAS) breeding program 

needs a large efficient number of SNPs for genomic mapping, quantitative trait loci 
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(QTLs), and accruing unique traits from primitive Germplasm [7-10, 271, 372, 373]. 

Therefore, discovering linked markers to a segregating loci/trait would be highly 

valuable in a MAS breeding schema. These loci will ease the ability to integrate 

genetically diverse desirable traits without attaining photoperiod dependency from wild 

stocks. Unfortunately, desirable characteristics may be linked with photoperiodism, so 

linkage between photoperiodism and the desirable trait must be disrupted. For example, 

there is compelling evidence shown for genetic variability in exotic Gossypium hirsutum 

L. for heat tolerance [297]. If heat tolerance was closely linked to photoperiodism, then 

this would be an ideal trait to break apart from photoperiod dependency genes. 

Genotype-By-Sequencing 

Genotype-By-Sequencing (GBS), a novel approach to sequencing principal 

fragments of differing organisms within a multiplexed reaction, has been extremely 

valuable to research studies because of the ease in segmenting DNA with targeted 

restriction enzymes. In species with larger genomes, GBS has employed specific 

restriction enzymes to select the same corresponding fragments from several taxa, so 

they can be compared and overlapped. This method has characterized many traits in 

various populations and diverse taxa. GBS has been practiced as a complementary 

method for: (1) association mapping studies, (2) candidate gene studies, and (3) mapping 

populations. Using GBS, fully sequenced and annotated organisms are not required for 

polymorphic change comparison. This cost effective method has worked well in 

breeding populations by identifying the key nucleotide differences correlated to 

phenotypic data and mapping those polymorphisms back to a specific parent.  
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Complexity reduction has been adopted in GBS in several ways: (1) two enzyme 

reduction and, (2) single enzyme size selection reduction. The first method has been 

used to demonstrate reduction by a combination with two restriction enzymes. In the 

first case, a rare base cutter and a frequent base cutter would be applied to the sample 

organism’s DNA. When used in conjunction, sample reduction takes place by the 

selection of the rare base cutter to elicit out the key DNA fragments. Next, a more 

frequent base cutter would be used to decrease the key fragments’ sizes. High levels of 

stringency and precision to reduce complexity would be required to obtain sufficient 

quantities, without sacrificing too much of the limiting factor, the sample DNA. When 

used, this method will not select against highly repetitive regions. The second method 

has been used to establish complexity reduction through the use of an efficient single 

restriction enzyme and a gel extraction. This reduction method selected DNA fragments 

which excluded highly repetitive regions in the organism’s DNA, such as chloroplast 

and mitochondria. When selecting for restriction enzymes in both methods, two elements 

have been considered: (1) GC rich enzymes allow for more gene rich regions, and (2) 

higher AT content that increases upstream and downstream elements 

The GBS method has been applied to a variety of organisms such as maize, 

wheat, spotted gar, sorghum, and many others [374-379]. Elshire et al. provides a model 

case study for single enzyme reduction GBS to sequence out differences in maize 

breeding populations. The maize nucleotide differences were compared with the fully 

sequenced maize genome. Thus, this data helped reorder the maize genome and select 

out many new SNP markers in several populations [375].  
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Until this study, GBS had not been applied to cotton research. Our approach 

utilized the single enzyme size selection reduction method. The key differences between 

our experiment and Elshire et al. was: 1) the restriction enzyme used [ApeKI (Elshire), 

HinP1I/BsrGI (Logan-Young)], and 2) reduced representation through chloroplast 

elimination. We did this experiment as a complementary experiment to our candidate 

gene method in order to narrow down the amount of candidate genes. (Logan-Young, 

Chapter 3) We used two enzymes in our research to fragment cotton DNA for 

sequencing on the Illumina GAII®:HinP1I and BsrGI.  

The first enzyme we used was HinP1I. This enzyme cut DNA at highly GC rich 

areas, usually exonic gene regions. The DNA region avoiding chloroplast DNA 

contamination utilizing HinP1I was approximately 20bp. This narrow window 

minimized the region for gel extraction causing difficulty to cut without chloroplast 

contamination. Since HinP1I selected highly GC rich areas, less polymorphisms were 

discovered in exonic gene regions. Although the discovery of any SNPs was positive, it 

would have been more beneficial to receive more SNP data on the intronic regions 

(upstream and downstream elements). Lastly, the HinP1I fragment was methylated 

sensitive, greatly reducing the amount of reads received.  

Our second GBS enzyme was BsrGI. This enzyme was chosen because it had a 

good efficiency rate in NEBuffer® 1, 2, 3, and 4. It was also fairly cost efficient and cut 

the Gossypium hirsutum chloroplast less frequently in silico. Since the narrow bp 

window caused difficulties HinP1I, the next enzyme BsrGI allowed for a 100bp region 

of DNA to be extracted without contamination of chloroplast genes. This enzyme was 
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methylated insensitive to increase the amount of sequences with possible 

polymorphisms. 

Several factors were considered while utilizing GBS. In order to rule out single 

nucleotide polymorphisms (SNPs) present since the ancestral divergence event 12 MYA, 

differentiation between the two diploid lineages (A/D paralogs) was imperative to 

identify. When a viewed fragment shows a probable SNP, one must make a 

determination of whether the SNP occurrence was (1) a sequencing error, (2) a true 

variance, (3) a homeolog, (4) a heterozygote, or (5) a paralog. Depending on the 

organism, methylated sensitive restriction enzymes have been shown to reduce the DNA 

complexity within an organism [380-382]. In polyploids, one paralog may have been 

methylated; so therefore an important consideration when selecting a restriction enzyme 

is whether it is methyl sensitive [382, 383]. If sequencing both paralogs was essential, 

then using a methylated insensitive restriction enzyme would be more beneficial. In this 

experiment, both diploid and allotetraploid cotton were used; hence complexity 

reduction at the individual level was requisite within the multiplexed reaction. 

Our experiment looked for SNPs correlated to the fully integrated phenotypic 

trait of early flowering into an undomesticated cotton species from a cultivated cotton 

species. Through the use of flowering independent crossed lines by Dr. Richard Percy at 

the United States Department of Agriculture Southern Plains Agricultural Research 

Station (USDA-ARS-SPARC), we keyed out markers to be utilized for trait integration 

from uncultivated species without the detrimental effect of photoperiod dependency. In 

future wild introgression breeding schemas, these markers can be used as identifiers for 
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plants carrying photoperiod flowering dependence in a segregating F1 population. Plants 

with other beneficial traits will be selected, while rejecting those with photoperiod 

dependency. Through the use of replicates of different non-domesticated cotton species 

crossed with the same cultivated species and the selection of the phenotypic trait of early 

flowering, the overlapping regions should contain the elusive region for photoperiod 

independence.  

Results 

Illumina GAII Single End 76bp GBS Sequencing 

Multiplex identifiers (MID) barcodes were used for identification of each taxon. 

This allowed all taxa to be pooled into one sample. Reduced representation of BsrGI and 

HinP1I sites allowed for the same fragment sizes to be captured. The HinP1I GBS run 

consisted of 24,591,611 sequences with a length of 76 bp. In this multiplexed sample, 

99.8% sequence reads (24,561,522 sequences) were separated by their MID barcodes 

into ten taxa. Of these sequences, 18,810,285 represented eight cotton taxa (Table 30). 

HinP1I gave significantly more sequences, while BsrGI gave fewer sequences 

(24,591,611: 6,320,415). The BsrGI GBS run had 6,320,415 sequences at a length of 76 

bp. This multiplexed sample had a MID barcode separation rate of 99.5% sequence reads 

(6,287,347 sequences) into ten cotton taxa (Table 31).  
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Table 30 MID Divergence Statistics for HinP1I  

HinP1I Illumina Results 

MID Barcodes # Sequences 

A1-1_PS-5_ATCACG 8539793 

A1-2_PI-435242_CGATGT 1591530 

A1-3_K-56_TTAGGC 3796931 

A1-4_TM-1_TGACCA 32005 

A1-5_3-79_ACAGTG 498485 

A1-6_TX-231_GCCAAT 623384 

A1-7_4127_PR2_CAGATC 1807966 

A1-8_4024_PR1_ACTTGA 1920191 

A1-9_CAA_GATCAG 4089583 

A1-10_CAB_TAGCTT 1661654 

Unknown 30089 

Total # Sequences 24591611 

 

 
 
Table 31 MID Divergence Statistics for BsrGI 

BsrGI Illumina Results 

MID Barcodes # Sequences 

B1-1_PS-5_ATCACG 434088 

B1-2_PI-435242_CGATGT 237219 

B1-3_K-56_TTAGGC 954486 

B1-4_3-79_TGACCA 576652 

B1-5_TM-1_ACAGTG 407220 

B1-6_TX-231_GCCAAT 1067995 

B1-7_4127_PR2_CAGATC 819355 

B1-8_4024_PR1_ACTTGA 881371 

B1-9_D5_GATCAG 295879 

B1-10_A1_TAGCTT 613082 

Unknown 33068 

Total # Sequences 6320415 
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STACKs Loci Grouping 

After sequences were trimmed to 66 bp for quality, they were sorted using the 

process_radtags command in the STACKs program. Tagged reads were grouped into 

separate folders for organization and different experimental conditions with parental 

crosses and offspring. Stacks of individual samples and the number of SNPs found 

within those samples were created, before catalogs referencing crosses were done. Very 

few SNPs were discovered within the GC rich regions of individual taxa of the HinP1I 

sequences (Table 32). Lower numbers (>100) of SNPs were expected due to sequencing 

of GC rich genic regions. Inefficient sequencing depth accounted for low numbers (>10) 

of SNPs (ie. TM-1). More individual SNPs were found within PS-5 of the HinP1I 

experiment, due to slight pipetting inaccuracies when diluting for sample concentration. 

BsrGI individual stacks contained more variability within an individual sample (Table 

33). This was expected due to sequencing upstream and downstream elements from GC 

rich gene centers.  

Catalogs, for different crosses (parental, wild/cultivated, and 

hirsutum/barbadense) and those crosses with offspring, were created, so SNPs could be 

analyzed between those crosses. These catalogs were built by using the map_denovo 

command in STACKs program. Similar sequence reads were assembled together, 

counted, and collapsed into a single library loci entry in each catalog.  
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Table 32 Average HinP1I SNPs by Taxa  

Taxa Unique Stacks SNPS (within Sample) Barcode 

379 1548 90 ACAGTG 

TM1 120 5 TGACCA 

TX231 1819 99 GCCAAT 

PS5 30165 1742 ATCACG 

PI435242 8001 219 CGATGT 

K56 18030 793 TTAGGC 

PR1 4073 264 ACTTGA 

PR2 7546 291 CAGATC 

 

 
Table 33 Average HinP1I SNPs by Taxa 
  

Taxa Unique Stacks SNPs (within Sample) Barcode 

379 12996 1114 ACAGTG 

TM1 9880 864 TGACCA 

TX231 16356 1482 GCCAAT 

PS5 8463 751 ATCACG 

PI435242 7109 625 CGATGT 

K56 14970 1388 TTAGGC 

PR1 15339 1327 ACTTGA 

PR2 15367 1431 CAGATC 

A1 11771 1135 TAGCCT 

D5 6237 365 GATCAG 
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Loci Associated with Photoperiod Independence in BC4F5 

In the methyl sensitive HinP1I experiment, interspecific crosses between the 

genetic standards Gossypium barbadense 3-79 and Gossypium hirsutum TM-1 were 

evaluated. Fewer loci involving TM-1 were discovered because of the reduced number 

of sequences. In this analysis, 1,505 loci of similar sequences were found between the 

genetic standards. In effort to see the difference between interspecific crosses 

(Gossypium barbadense and Gossypium hirsutum), 3-79 was examined against TX-231. 

The total loci amount increased to 2,688. Another difference evaluated was between 

cultivated and wild Gossypium spp. In Gossypium hirsutum, intraspecific cross 

(cultivated TM-1 and wild TX-231) sequences were surveyed against one another and 

found to have 1800 similar loci. 

 In Gossypium barbadense, two intraspecific crosses (cultivated PS-5 x wild K-

56 and PS-5 x wild PI-435242) with progeny were reviewed for similar sequences. The 

cross (PS-5 x K-56) showed 39, 561 loci, while the cross (PS-5 x PI-435242) showed 

34,108 loci. From these created catalogs, a survey locating one to three SNPs in a single 

locus, between taxa, was done. The crosses containing the largest number of SNPs 

between a locus was in the two intraspecific crosses with PS-5. This resulted in 129 (PS-

5 x K-56) and 135 (PS-5 x PI-435242) sequences with one to three SNPs, as seen in 

Table 34.  
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Table 34 HinP1I SNPs between Intraspecific Crosses and Interspecific Crosses  

    1 to 3 SNPs 1 to 3 SNPs     

HinP1I Total 
Loci 

Loci 2 parents Loci 2 parents w/ progeny PS-5 Progeny Undomesticated Progeny 

379/TM1 1505 5 n/a n/a n/a 

379/TX231 2688 76 n/a n/a n/a 

PS5/K56 39651 129 42 12 21 

PS5/PI435242 34108 135 36 17 10 

TM1/TX231 1800 2 n/a n/a n/a 

 

 

  

Table 35 BsrGI SNPs between Intraspecific Crosses and Interspecific Crosses  

    1 to 3 SNPs 1 to 3 SNPs     

BsrGI Total 
Loci 

Loci 2 parents Loci 2 parents w/ progeny PS-5 Progeny Undomesticated Progeny 

379/TM1 15314 2407 n/a n/a n/a 

379/TX231 19247 3273 n/a n/a n/a 

PS5/K56 15027 1035 464 123 341 

PS5/PI435242 10848 902 397 211 186 

TM1/TX231 17215 1221 n/a n/a n/a 

A1/D5 16545 346 n/a n/a n/a 
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From these loci, 42 (PS-5 x K-56) and 36 (PS-5 x PI-435242) loci were linked to 

their offspring (PR-1_4024 and PR-2_4127). Out of the 42 loci from the PS-5 x K-56 

cross, 12 progeny (PR-4024) loci with SNPs had an ancestral relationship to the PS-5 

parent, while 21 progeny (PR-4024) loci with SNPs were linked to the K-56 parent. Data 

analysis revealed 17 progeny (PR-4024) loci out of the 36 loci from the PS-5 x K-56 

cross had SNPs linked to the PS-5 parent, while only ten progeny (PR-4024) loci shared 

SNP linkage to the K-56 parent. 

In the BsrGI experiment, loci between the interspecific and intraspecific crosses 

were well distributed. In this analysis, the interspecific (3-79 x TM-1) genetic standard 

divergence showed 15,314 loci of similar sequences. Although TM-1 had sufficient 

sequence amounts in the BsrGI experiment, a comparison of 3-79 against TX-231 was 

done to show the interspecific differences between Gossypium barbadense and 

Gossypium hirsutum of the two experiments: BsrGI and HinP1I. The total loci amount 

increased to 19,247. Next, an evaluation between the cultivated and wild Gossypium spp. 

was done. In Gossypium hirsutum, cultivated TM-1 and wild TX-231 sequences were 

surveyed against one another and found to have 17,215 similar loci. In Gossypium 

barbadense, again the two intraspecific crosses (cultivated PS-5 x wild K-56 and PS-5 x 

wild PI-435242) with progeny were reviewed for similar sequences. Cross (PS-5 x K-56) 

showed 15, 027 loci, while the cross (PS-5 x PI-435242) showed 10,848 loci. A control 

factor, the inter-genomic cross of the ancestral lines Gossypium herbaceum A1 and 

Gossypium raimondii D5 uncovered 16,545 loci of similar sequences. 
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Between taxa matches, a survey to locate one to three SNPs in a single locus was 

done. The largest number of SNPs within a locus was contained in the interspecific 

crosses of Gossypium barbadense and Gossypium hirsutum (3-79 x TM-1 and 3-79 x 

TX-231). This resulted in 2,407 (3-79 x TM-1) and 3,273 (3-79 x TX-231) sequences 

with one to three SNPs, as seen in Table 35. The perceived SNP amount in the 

intraspecific crosses (wild and cultivated Gossypium spp.) was lower than the 

interspecific crosses. In Gossypium hirsutum, intraspecific cross (cultivated TM-1 and 

wild TX-231), 1,221 loci shared one to three SNPs. In Gossypium barbadense, the 

intraspecific crosses with PS-5 had 1,035 (PS-5 x K-56) and 902 (PS-5 x PI-435242) 

SNPs within their comparative cataloged sequences, as seen in Table 35. The inter-

genomic cross (A1 x D5) was comprised of 346 loci sharing one to three SNPs. 

Data ascertained from the Gossypium barbadense intraspecific SNPs revealed 

linkage to each individual parental genotype. From these loci, 464 (PS-5 x K-56) and 

397 (PS-5 x PI-435242) loci were linked to their offspring (PR-1_4024 and PR-2_4127). 

Out of the 464 loci from the PS-5 x K-56 cross, 123 progeny (PR-4024) loci with SNPs 

had complete ancestral linkage to the PS-5 parent, while 341 progeny (PR-4024) loci 

with SNPs were linked to the K-56 parent. From the 397 loci in the PS-5 x PI-435242 

cross, 211 progeny (PR-4127) loci with SNPs revealed linkage to the PS-5 parent, while 

186 progeny (PR-4127) loci shared SNPs linked to the PI-435242 parent. 
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Comparison between Intraspecific Gossypium barbadense lines of related SNP loci 

After the discovery of SNPs correlated to specific parental loci, a comparison of 

loci representing PS-5 in both crosses was done. In HinP1I, no overlap between loci 

linked to PS-5 was seen. Also, overlap of the uncultivated Gossypium barbadense (K-56 

or PI-435242) uncovered no overlap in loci. The number of sequences in the HinP1I 

parental loci did not effectively meet minimal coverage. In the BsrGI experiment, 

correlation was found between the two intraspecific Gossypium barbadense crosses.  

The identical loci in both populations representing the same SNPs mapping with 

the same parents were indicated by the phrase overlapping (O). The loci, represented in 

only one intraspecific cross, were designated as singletons (S). The SNP data from the 

BsrGI experiment established ten overlapping loci representing linkage to cultivated 

Gossypium barbadense PS-5, while it uncovered 47 overlapping loci linked to both 

uncultivated ‘wild’ Gossypium barbadense (K-56 and PI-435242). There were 272 

singleton loci in one of the two intraspecific crosses representing PS-5, whereas 391 

singleton loci revealed association to either K-56 or PI-435242 (Table 36). There were 

42 sites of disagreement, where one cross linked the loci to the cultivated PS-5 parent 

and the other cross showed loci linkage to the wild parent.  
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Table 36 Informative SNPs with Correlating Progeny  

  Heat Map 
 

  Loci Relatedness to Parental Genotype  
 

  Highest High Low Lowest Disagreement 

  Overlapping Singleton Singleton Overlapping Overlapping 

  PS-5 PS-5 Wild Wild PS-5 / Wild 

Number of 
Progeny/Parent Loci  10 272 391 47 42 

 

 

 

 

The statistical probability of the BC4F5 population containing PS-5 genomic of 

all alleles being un-linked was 1.9% to 3.1% based on the possible breeding strategy one 

(Table 37a).    The second possible breeding strategy required maintaining a F1 as the 

recurrent parent in the backcross schema over many years (Table 37b).    These breeding 

strategies were based on alleles in random mating without linkage to set a baseline for 

heredity. Both the PS-5 x K-56 population and the PS-5 x PI-435242 chi-squares in 

Table 38 show that our populations are not randomly mated and there is linkage.  The 

chi-square implicated other factors additive, dominance, and environmental factors were 

likely to be involved in genomic heredity of the breeding populations (Equation 1).  

After analyzing the number of overlapping loci in Table 36, we used Bayes Theorem to 

determine the probability of those two crosses having identical informative SNPs at the 

same loci (Equation 2 and Table 39).  The likelihood of these two populations containing 

10 overlapping loci that map back to the cultivated PS-5 genome was 11.4%. 
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Table 37 Baseline for Heridity with Random Mating and Non-Linkage 

a) Possible Breeding Strategy 1 

Generation Cross Progeny 
Cross 

Probability 

Selection 
For Early 
Flowering 

Probability 
of 

Cultivated 
Genome 

Probability 
of Wild 
Genome 

F1 aa (cult P1) x Aa (wild P2) Aa or aa 0.5 aa 0.5 0.5 

BC1 aa (F1) x Aa (P2) Aa or aa 0.5 aa 0.25 0.75 

BC2 aa (BC1) x Aa (P2) Aa or aa 0.5 aa 0.125 0.875 

BC3 aa (BC2) x Aa (P2) Aa or aa 0.5 aa 0.0625 0.9375 

BC4 aa (BC4) x Aa (P2) Aa or aa 0.5 aa 0.03125 0.96875 

Selection Pressure for Keeping Mostly Wild Traits for Conversion Lines 

 

 

Generation Cross Cross Probability 
Probability of 

Cultivated Genome 
Probability of Wild 

Genome 
BC4F2 BC4 x BC4 (0.5 to 1) x .03125 0.015625 to 0.03125 0.96875 to 0.984348 

BC4F3 ..F2 x ..F2 (0.5 to 1) x (0.015625 to 
0.03125) 

0.0078125 to 0.03125 0.96875 to 0.9921875 

BC4F4 ..F3 x ..F3 (0.5 to 1) x (0.0078125 to 
0.03125) 

0.00390625 to 0.03125 0.96875 to 0.99609375 

BC4F5 ..F4 x ..F4 (0.5 to 1) x (0.00390625 
to 0.03125) 

0.001953125 to 0.03125 0.96875 to 0.998046875 
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Table 37 Continued. 

b) Possible Breeding Strategy 2 

Generation Cross Progeny 
Cross 

Probability 

Selection 
For Early 
Flowering 

Probability 
of 

Cultivated 
Genome 

Probability 
of Wild 
Genome 

F1 aa (cult P1) x AA 
(wild P2) 

Aa 1 N/A 0.5 0.5 

F2 Aa (F1) x Aa (F1) AA, Aa, aa 0.25 aa 0.25 0.75 

BC1 aa (F2) x Aa (F1) Aa or aa 0.5 aa 0.125 0.875 

BC2 aa (P1) x Aa (F1) Aa or aa 0.5 aa 0.0625 0.9375 

BC3 aa (P1) x Aa (F1) Aa or aa 0.5 aa 0.03125 0.96875 

BC4 aa (P1) x Aa (F1) Aa or aa 0.5 aa 0.015625 0.98348 

Selection Pressure for Keeping Mostly Wild Traits for Conversion Lines 

 

 

Generation Cross Cross Probability 
Probability of 

Cultivated Genome 
Probability of Wild 

Genome 
BC4F2 BC4 x BC4 (0.5 to 1) x .0.015625 0.0078125 to 0.015625 0.984348 to 0.9921875 

BC4F3 ..F2 x ..F2 (0.5 to 1) x (0.0078125 to 
0.015625) 

0.00390625 to 0.015625 0.984348 to 0.99609375 

BC4F4 ..F3 x ..F3 (0.5 to 1) x (0. 00390625 to 
0.015625) 

0.001953125 to 0.015625 0.984348 to 0.998046875 

BC4F5 ..F4 x ..F4 (0.5 to 1) x (0.001953125 to 
0.015625) 

0.0009765625 to 0.015625 0.984348 to 0.9990234375 

 

 
 
 
Equation 1 Heredity with Population Mean with Additive, Dominance, and 

Environmental Effects 

Υijk = μ + ɑi + βij + eij 

Population mean = μ; Additive Effects = ɑ; Dominace effects = β; and Environmental 

Effects = e 
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Table 38 Chi Square for Random Mating and Linkage 

BsrGI PS-5 Progeny 
Undomesticated 

Progeny Row Totals 

PS5/K56 123 341 464 

PS5/PI435242 211 186 397 

Column Totals 334 527 861 
 

BsrGI 
PS-5 

Expected 
Undomesticated 

Expected Row Totals 
PS5/K56 14 450 464 

PS5/PI435242 12 385 397 

Column Totals 334 527   861 

 

ChiSquare  4277.99 

Degrees of Freedom 3 

Number of Classes 4 

 

Probability

Degrees of Freedom 0.9 0.5 0.1 0.05 0.01 

1 0.02 0.46 2.71 3.84 6.64 
2 0.21 1.39 4.61 5.99 9.21 
3 0.58 2.37 6.25 7.82 11.35 
4 1.06 3.36 7.78 9.49 13.28 
5 1.61 4.35 9.24 11.07 15.09 

 

HO: Random mating and no linkage 

HA: Linkage and non-random mating  

We found that random mating without linkage is not occurring P>0.05. 
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Equation 2 Bayes Theorm 

P(A|B) = (P(B|A)P(A)) / P(B) 

 

Table 39 Bayes Theorm for Identical Loci 

 Prior Probability PS5 Prior Probability wild 

PS5/K56 0.2651 PS-5 0.7349 K56 

PS5/PI435242 0.5315 PS-5 0.4685 PI435242 

 

 Probability 

Double Overlap (10 loci) 0.0299 

 

Event A1: We had 10 matching sequences K56 

Event A2: We did not have 10 matching sequences 

Event B1: We had 10 matching sequences PI435242 

Event B2: We did not have 10 matching sequences 

 

Event Probability 

P(A1) 0.2651 

P(A2) 0.9701 

P(B1) 0.5315 

P(B2) 0.4685 

 

P( A1 | B 1) =   

P( A1 ) P( B1 | A1 ) 
__________________________________________________________________ 

P( A1 ) P( B1 | A1 ) + P( A2 ) P( B1 | A2 ) + P( A1 ) P( B2 | A1 ) + P( A2 ) P( B2 | A2 ) 
 

P( A1 | B 1) = 
(0.2651)(0.5315)  / [ (0.2651)(0.5315) + (0.9701)(0.5315) + (0.2651)(0.4685) + 

(0.9701)(0.4685) ] 
 

P( A1 | B 1) = 0.114071122 
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Mapping with Candidate Genes and GBS markers to Gossypium raimondii Draft 

Genome 

The related loci represented in the heat map (Table 36) were queried against the 

Gossypium raimondii draft genome in Geneious® to ascertain locations based on 

sequence. These loci fragments were then aligned to the draft genome. The proposed 

candidate genes known in Arabidopsis thaliana for the floral development network were 

overlaid onto the draft genome. This allowed for correlation between loci representing 

the intraspecific cross to be illustrated with proposed homologous candidate genes on the 

Gossypium raimondii draft genome. The focused alignment was placed on overlapping 

loci related to the cultivated Gossypium barbadense PS-5. Locus 3835 was aligned near 

AGL24-Like 1 on chromosome two of the Gossypium raimondii draft genome (Figure 18 

a). Loci 2194 and 3366 were aligned to chromosome three (Figure 18 b). Locus 8037 

was aligned near AGL9_SEP3-Like on chromosome five (Figure 18 c). Loci 2165, 2187, 

and 3241 were aligned on chromosome nine near PIE1-Like, TFL1-Like, and 

ATC_Centroradialis-Like (Figure 18 d). Loci 2193 and 3240 were aligned to 

chromosome eleven. Some loci near genes were FY-Like, LDW1-Like 1, LDW2-Like, 

miRNA 172c-Like, and miRNA 172d-Like (Figure 18 e). Locus 4429 was aligned to 

chromosome thirteen (Figure 18 f).  
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a) 

 

b) 

 

c) 

 

Figure 18 Alignment of Informative SNPs to G. raimondii Draft Genome 
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d) 

 

e) 
 

 

f) 
 

 

Figure 18 Continued. 
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Targeted GBS 

Ten gene specific forward primers correlated the SNPs within overlapping loci 

were adapted to the Illumina® TruSeq Indexed Adaptor P5. The Illumina® TruSeq 

Indexed Adaptor P5 and P7 allowed for a population to be run on a single plate with 

both forward and reverse in-line barcodes. ‘Reduced representation’ was achieved by the 

combination of the BsrGI restriction enzyme and gene specific primers. This Targeted 

GBS (TGBS) on the Illumina® HiSeq 2500 gave 18,656,276 total sequences (Table 40) 

from splitting the reverse barcodes.  The sequences were then imported into Geneious® 

where they were split using the forward barcode (Table 41).  The forward and reverse 

barcodes indicated which individual was being sequenced.   

 

 

 

Table 40 TGBS Reverese Illumina TruSeq Barcode Sequences Split 

TGBS Reverse Barcodes 

Reverse P7 Barcodes # Sequences 

P7 TruSeq 1 9,410,359 

P7 TruSeq 2 1,244,203 

P7 TruSeq 3 1,013,110 

P7 TruSeq 4 938,926 

P7 TruSeq 5 1,084,218 

P7 TruSeq 6 2,555,050 

P7 TruSeq 8 2,410,410 

Total Number of Sequences 18,656,276 
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Table 41 TGBS Forward Illumina TruSeq Barcode Sequences Split 

TGBS Forward Barcodes 

Total Forward P5 Barcodes # Sequences 

P5 TruSeq 8 4,690,515 

P5 TruSeq 9 4,428,201 

P5 TruSeq 10 3,444,071 

P5 TruSeq 11 2,855,232 

P5 TruSeq 12 2,074,695 

P5 TruSeq 1 -Unknown 1,163,622 

Total P7 TruSeq 1 Sequences 18,656,336 

 

 

 

 

Within the PS-6 and K-46 individuals, we looked for our targeted loci primers. 

First, we correlated our original informative loci back to G. barbadense 3-79, a double 

haploid from our original sequences, to see if more than one copy existed (Figure 19).  

Sequence 2187 had two similar loci in G. barbadense 3-79, while sequence 8037 had 

two different loci only on Gossypium raimondii D5 and no matching reference in G. 

barbadense 3-79.  Reference sequences from G. barbadense 3-79 were queried against 

PS-6 and K-46.  Noticeably, not all sequences had 100% matches, so the best possible 

match was taken.  A new set of reference sequences from the on-target PS-6 and K-46 

sequences were created (Table 42).  Each individual in the segregating population was 

mapped back to these references.  Many individuals had only a few loci results. 
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Figure 19 Alignment of 10 Loci with D5, PS-5, K-56/PI-435242, 379, and A1*(*if available) 
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Figure 19 Continued. 
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Figure 19 Continued. 
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Table 42 On-target Reference Sequences 

Reference  
Name 

Sequence 2187a on 
PS6 Locus1 

CGTACAATTTACATCGCTAAATAATGTCCTTACGACCGGTGTTCGAGATGTATACA 

3241 on 
PS6 

CGTACATTTTTTATCCAGAAACCTCTGACTGATGTGTTTCTTATGAAACTCGGTTTGAA 

3241 on 
K46 

CGTACATTTTTTATCCAGAAACCTCTGACTGATATGCTTCTTTTGGAACTCAATTTGGAAGA 

3366 on 
PS6  Het A 

CGTACAAATGCCTTCGAGACTTAACCCGGATTTAGTGACTCGCACCAATGCCTTCGGGCT 

3366 on 
PS6  Het_B 

CGTACAAATGCCTTCGGGACTTAACCCGAATTTAGTGACTCGCACCAATGCCTTCGGGCT 

3366 on 
K46 

CGTACAAATGCCTTCGAGACTTAACCCGGATTTAGTAACTCGCACCAATGCCTTCGGGCT 

4429 on 
PS6 

TGATACAGATAGTATGTAGCTAGGTCACATGTATGGTGCTAAGTGCG 

4429 on 
K46 

TGATACAGATAGTATGTAGCTAGGTCACATGTATGGTGCTAAGTGCG 

  

 

 

We found that only four of the initial primers targeted the correct fragment. 

Several sequence paralogs were discovered from our initial reference mapping.  The 

TGBS sequences for thirty-three individuals of the segregating BC4F2 wild conversion 

lines were queried for identical sequences. Interestingly, it appeared that only 2187 

seemed to be highly correlated with flowering (Table 43). In table 43, the sequence 

fragment 4429 showed strong linkage with the C nucleotide, while 3366 appeared to be 

heterozygous.  Also table 43 illustrated that the SNPs for 3366 did not show linkage to 

flowering for the nucleotides of G/A at position 17 and G/A at the 29th position.  While 

3241 may have linkage with flowering, too few sequences were obtained from the TGBS 

data to make an accurate analysis of co-segregation with the photoperiod independence 

locus.
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Table 43 TGBS Results 

TS TS 
Plant ID Pheno 

PS-6 PS-6 K-46 PS-6 PS-6 K-46 PS-6 K-46 

Fwd Rev 2187 3241 3241 3366 Het A 3366 Het B 3366 4429 4429 

Guadeloupe - BC4F2  - K46   N/A 
A/G 54 A/G 17 G 29 A/G 17 A 29 A/G 17 G 29 C/T 6 C/T 6 A G A G AA AG GA GG AA AG GA AA AG GA GG C T C T 1 8 4341 F 5 0 2 0 2 0 16 1 21 0 0 0 23 631 0 0 10 0 736 19 1 9 4349 NF 1 0 0 0 1 0 1 0 0 0 0 0 0 0 14 266 582 21 39 3 1 10 4357 NF 1 0 0 0 0 0 7 0 12 0 0 0 5 224 15 327 0 0 18 0 1 11 4365 F 0 0 1 0 0 0 11 0 0 0 0 0 0 219 0 0 321 0 19 0 1 12 PS-6 F 1 0 1 0 1 0 10 0 0 0 0 10 9 215 24 389 32 0 379 7 2 8 4342 NF 1 0 0 0 0 0 1 0 2 0 0 3 0 63 0 75 98 0 4 0 2 9 4350 NF 0 0 0 0 0 0 2 0 0 0 1 1 0 25 0 48 0 0 10 1 2 10 4358 NF 1 0 0 0 0 0 4 0 3 0 0 3 2 14 3 35 18 1 15 2 2 11 4366 NF 0 0 0 0 0 1 2 0 8 0 0 1 2 20 2 41 49 3 2 0 2 12 4374 NF 1 0 0 0 0 1 20 0 26 0 0 3 2 26 2 55 35 1 5 0 3 8 4343 F 1 0 0 0 0 0 0 1 0 0 0 3 0 45 0 77 59 0 16 0 3 9 4351 NF 0 0 0 0 0 0 2 0 2 1 0 3 0 24 0 44 44 2 8 1 3 10 4359 F 1 0 0 0 0 0 0 0 0 0 0 2 0 21 0 26 10 1 22 1 3 11 4371 NF 0 0 0 0 0 0 1 1 1 0 0 3 0 10 0 39 30 0 1 0 3 12 4375 F 0 0 0 0 0 0 1 0 0 0 0 2 0 37 0 60 43 0 1 0 4 8 4344 NF 1 0 1 0 0 0 1 0 5 0 0 3 4 57 0 0 7 0 87 0 4 9 4352 NF 0 0 0 0 0 0 0 0 1 0 0 3 0 20 0 37 3 0 48 0 4 10 4360 NF 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 26 1 11 0 4 11 4368 F 0 0 0 0 0 0 1 0 3 0 0 1 0 17 0 27 344 1 27 1 4 12 4376 NF 0 0 0 0 0 0 2 0 2 0 0 1 0 21 0 50 49 0 2 0 
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Table 43 Continued. 

5 8 4345 F 0 1 0 0 0 0 5 0 5 0 0 4 1 57 5 62 92 3 92 3 
5 9 4353 NF 0 0 0 0 0 0 0 0 2 0 0 0 0 31 0 44 3 0 3 0 

5 10 4361 NF 0 0 0 0 0 0 1 0 2 0 0 1 0 15 0 31 58 0 58 0 

5 11 4369 NF 1 0 0 0 0 0 1 0 2 0 0 4 0 19 0 44 26 2 26 2 

5 12 K-46 NF 0 0 0 0 1 0 0 0 0 0 0 3 0 34 0 43 49 1 49 1 

6 8 4346 NF 0 0 2 0 0 0 6 0 0 0 0 0 0 137 0 0 14 0 14 0 

6 9 4355 NF 0 0 0 0 0 0 2 0 2 0 0 0 0 48 0 90 9 1 9 1 

6 10 4363 NF 0 0 0 0 0 0 2 0 1 0 0 0 0 32 0 51 38 0 38 0 

6 11 4370 F 1 0 0 0 0 0 0 0 0 0 0 6 0 39 0 76 71 0 71 0 

6 12 4378 NF 0 0 0 0 1 0 4 0 4 0 0 5 0 39 0 98 88 3 88 3 

8 8 4348 NF 0 0 1 0 0 0 5 0 5 0 0 0 0 90 0 156 124 5 124 5 

8 9 4356 F 1 0 0 0 0 0 1 0 1 0 0 0 2 26 0 33 58 0 58 0 

8 10 4364 NF 0 0 0 0 0 1 1 0 0 0 0 0 0 25 0 48 30 1 30 1 

8 11 4372 NF 0 0 0 0 0 0 3 0 2 0 0 0 0 35 4 54 2 0 2 0 

8 12 4380 NF 0 0 0 0 0 0 0 0 0 0 0 0 0 25 4 66 2 0 2 0 
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Discussion 

Efficiency of Reduced Representation and Analysis 

Using two different enzymes for GBS taught us the differences between having 

highly conserved coding regions and more variability in the upstream and downstream 

elements.  As expected, we found more diversity in the BsrGI sequences, but were 

surprised by the extreme lack of informative SNPs within the HinP1I sequences.  The 

low levels of polymorphism within the Hinp1I sequences were expected due to the fact 

HinP1I GC richness selected more coding region fragments.  These extremely low levels 

may also indicate that one homeolog is methylated.   

Using STACKs software helped us to easily and efficiently sort through the data, 

but as any program goes there were some errors.  We were able to sort through these 

minor errors by evaluating the data with queries in Microsoft© Access.  We found 10 

loci from the progeny of two crosses that showed linkage to the cultivated photoperiod 

independent parent Gossypium barbadense L. Pima S-5 (PS-5). These loci mapped back 

to the Gossypium raimondii draft genome groups: 2, 3, 5, 9, 11, and 13. These loci were 

correlated with the genes involved in flowering (Logan-Young, Chapter 3).     

Significance of Having the ‘A’ and ‘D’ Genome for Comparison 

The significant loci were mapped to the released ‘D’ genome with little trouble, 

but deciphering whether these were A/D SNPs or SNPs between cultivars was difficult 

without a fully sequenced ‘A’ reference genome. Sequencing the A1 and D5 cotton 

samples in the BsrGI did help to place some loci on the ‘A’ or ‘D’ strand, but more 
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sequencing depth of A1 Gossypium herbaceum and D5 Gossypium raimondii would be 

advisable to future studies.  

Despite not having fully sequenced parents, we were still able to attain the same 

loci using selective enzyme digestion and reduced representation by size selection. We 

compared both the ‘A’ and the ‘D’ sequences to PS-5 to find loci that matched our 

significant loci.   

GBS Loci Discovery Putatively Linked to Photoperiod Independence 

This research has led to the discovery of markers linked with photoperiod 

independence from the cultivated Gossypium barbadense PS-5 parent. These loci will 

allow for a quick and efficient way to narrow down the candidate genes implicated 

behind photoperiod independence. 

These loci were tested in a segregating population (BC4F2 - PS-6 x K-56) using 

a new method called Targeted GBS. We found that loci 2187, 3241, 3366, and 4429 

worked well within the segregating population using the Targeted GBS protocol, while 

loci 2165, 2193, 2194, 3240, 3835, and 80371 gave poor results. One reason was due to 

our design for SNPs located to close to the BsrGI cut site.  Another reason appears to be 

a problem with GBS on the Illumina® HiSeq® 2500.  There seems to be a phenomenon 

of an all or nothing response to sequencing on the Illumina® HiSeq® 2500. In the 

future, we may overcome the difficulties found with paralogs by designing primers that 

will select against other paralogs. 

                                                 

1 No results were seen with 8037. 
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From this data, we were able to correlate which loci were seen in photoperiod 

dependent and photoperiod independent Gossypium barbadense from the segregating 

population (BC4F2 - PS-6 x K-56). We showed that one fragment segregated with 

photoperiod independence.  That fragment was 2187.   Another fragment, 3241, might 

have showed linkage with photoperiod independence, but too few fragments were 

obtained. 

Conclusion  

Cotton produces one generation per year in most production regions. A normal 

backcross breeding program would take five years. Next, the breeder would want to 

cross this plant with another plant, of the recurrent parent line, and then self the progeny 

for five to seven generations.  

In traditional breeding programs, this process would take 10 to 20 years to bring 

in a new trait from the wild Germplasm. One way to alleviate this long and arduous 

process is to select only those plants carrying the trait of interest after a F1 cross, without 

bringing photoperiodic sensitivity by utilizing marker assisted selection (MAS) 

breeding. Our study provided one closely linked marker to the trait photoperiodism that 

breeders can utilize in MAS breeding programs. 
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Methods 

Plant Growth 

Seeds from TM-1, 3-79, PS-5, PI-435242, K-56, A2, and D5 were imbibed in 

distilled water in the +4ºC refrigerator overnight. Falcon petri dishes (150 x 20 mm) had 

two autoclaved growth paper pieces cut to fit them (Table 44). One circle of paper was 

placed in the bottom of the petri dish. Seed coats were removed from the cotton seeds. 

Eight to ten seeds were positioned independently upon the paper circle. Another paper 

circle was placed over them. The sheets were dampened with distilled water. The petri 

dish lids were then fixed on top and parafilm was placed around the petri dishes. Next, 

these dishes were set out upon bench tops under growth lamps for five to eight days. 

Once the cotyledons were present, the whole plant was deposited into a labeled 1.5mL 

tube with a hole punched through the lid. The tube was then cast into liquid nitrogen to 

preserve the DNA and placed into a -80ºC freezer until DNA extractions could be 

performed. 
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Table 44 Cotton Seed Information 

Year Scientific 
Name Name Alternate no. PI No. Type Origin 

2003 G. herbaceum     03-
PI408785 

D5-1 Peru 

1989 G. raimondii 
89-

PI530898 
A1-
27   

1988 
G. 

barbadense K-46 
AE-CRC-

88229 
88-

PI528313   Guadeloupe, 
St. Francois 

2005 
G. 

barbadense PS-6 May-45   
2006 

G. 
barbadense PS-5 May-44       

1984 G. 
barbadense K-56 

AE-CRC-
8429 

84-
PI274514 

Peru, Piura, 
Sinchao 
Chico 

1985 
G. 

barbadense PI-435242   85-
PI4352342     

2005 G. hirsutum GHOP 04-
05 

SA-2269 
05-

PI607172 

USA, Texas, 
College 
Station 

2002 
G. 

barbadense 
3-79  2:10:12 GB-1585       

2005 G. hirsutum TX-231   05-
PI163725   Guatemala, 

Zacapaa, 
Zacapa 

 

 

 

 

Barbadense Field Trial 

In 2008, a field trial created by Dr. Richard Percy at the United States 

Department of Agriculture Southern Plains Agricultural Research Station (USDA-ARS-

SPARC) in College Station, TX had a BC4F5 population of eight lines consisting of five 

samples each. While most of the wild traits were retained in the offspring, photoperiod 

independent early flowering from the established PS-5 cultivar was observed in the wild 

cultivar offspring. Finally, leaf tissue was taken from these plants and put into labeled 
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1.5mL tubes with holes punched through their lids. After being dipped in liquid nitrogen, 

they were then placed into a -80ºC freezer until DNA extractions were performed. 

DNA Samples  

DNA was taken from genetic standards Gossypium hirsutum TM-1 and 

Gossypium barbadense 3-79, the parental lines Gossypium barbadense lines (PS-5, PI-

435242, and K-56), the ancestral lines Gossypium herbaceum A1 and Gossypium 

raimondii D5 (only used in BsrGI experiment), photoperiod dependent Gossypium 

hirsutum TX-231, and fully integrated photoperiod independent offspring Gossypium 

barbadense BC4F5 4024 and 4127. High quality DNA was extracted using the Pepper 

Lab Cotton DNA Extraction protocol (Logan-Young, 2013, Chapter 3). 

Restriction Enzymes and Design of Adaptor 

Restriction Endonuclease (RE) selection based on frequent base pair (bp) cutting 

and high efficiency was imperative for eliminating sequence elements containing 

repetitive regions. The first RE selected was HinP1I, a 4bp GC rich cutter (G^CGC) 

having 100% activity in NEBuffer® 1, 2, 3, and 4(New England Biolabs). This enzyme 

was selected because of its methylation sensitivity. Methylation sensitivity has been used 

as a method of genomic reduction [375, 379, 380]. The high GC concentration allowed 

for selection of gene rich coding regions rather than upstream and downstream elements. 

This RE left a 1bp overhang of C to where the adaptor can ligate.  

The HinP1I experiment consisted of two adaptors being ligated to the cut DNA. 

First, two oligonucleotide sequences were constructed with the Illumina® paired end 

(PE) Adaptor A1, a specific 6bp barcode, and the HpaII site overhang. The HpaII site 
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was complementary to the HinP1I site. The first sequence of the oligonucleotide for PE 

Adaptor A1 was the top strand 

5’bACACTCTTTCCCTACACGACGCTCTTCCGATCxxxxxxC, where xxxxxx 

represented the top barcode. On the bottom strand of the PE Adaptor A1, the 

oligonucleotide sequence was 

5’CGGyyyyyyAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT, where yyyyyy 

represented the bottom barcode. (Figure 20) Second, two additional oligonucleotide 

sequences consisted of the Illumina® PE Adaptor A2, and the HpaII site overhang. The 

top strand sequence for PE Adaptor A2 was 

5’bCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTC. The bottom strand 

was 5’CGGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCG. These two 

adaptors were ordered and prepared during the next-generation library sequencing 

preparation. (Figure 20) 

 

 

 

 

 



 

190 

 

 

 

Figure 20 HinP1I Adaptor Strategy 
 

 

 

 

The BsrGI experiment consisted of two adaptors with the same PE Adaptor A1, a 

6bp barcode and a PE Adaptor A2 site, but contained a BsrGI overhang. The top and 

bottom strands were complementary.  
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Next-Generation Library Sequencing Preparation 

For each oligonucleotide pair,10μl of 100mM stock of each of the top and bottom 

strands were diluted in 20μl of S2TE. Each pair was annealed in a water bath at 95ºC 

under foil for five minutes, then the water bath was turned off and adaptors were allowed 

to cool to room temperature. Each 40μl annealing reaction was then diluted with 60μl of 

STE (Sodium-Tris-EDTA) to create a working stock at 10pmol/μl.  

Digestion-Ligation 

Each DNA (250ng), restriction endonuclease, 10xNEB2® buffer (New England 

Biolabs), DiH2O, spermadine, and BSA was loaded into strip tube wells in 20μl 

reactions. They were then digested for two hours at 37ºC (Figure 21). Then adaptors 

were ligated in a competitive reaction process. Adaptors A1 and A2 (10 pmol/μl) with 

T4 DNA ligase, DiH2O and 10xNEB® T4 ligase buffer (New England Biolabs) were 

added to the digestion reaction. This was incubated at 22ºC for one hour and heated to 

37ºC for 30 minutes. The ligation reaction was then heated to 65ºC for 20 minutes to 

inactivate the T4 DNA ligase (Figure 22). Once completed, these reactions were then 

pooled together into one 1.5mL tube. 
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Figure 21 Digestion 
 

 

 

Figure 22 Ligation Reaction
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Gel Extraction  

Complexity reduction to avoid chloroplast contamination was performed by a 

two hour gel electrophoresis of adaptor ligated DNA fragments run across a Gel Green® 

2.5% 1xTBE gel (BsrGI: Gel Green® 2% 1xTAE gel). DNA was extracted from 270bp 

to 290bp using the X-tracta® tool (LabGadget LLC) by moving the gel selection into a 

new recess on the dark reader. Size was selected via a 100bp ladder and lambda-280 

fragment run as controls. The 270bp to 290bp fragment was then run into the Recochip® 

(TaKaRa 9039) through 30 minutes of gel electrophoresis at 110 volts. The samples 

were then purified to remove Gel Green® (Biotium) dye. 

In the BsrGI experiment, using the X-tracta® tool was not needed because the 

size of the region to avoid chloroplast contamination was 150bp. Sizes were verified via 

a 1Kb+ ladder and lambda-230-350 mix run as controls. Hence, two Recochips® were 

used to isolate the region between 230bp to 350bp. The first chip blocked larger 

fragments from entering the isolation zone as gel electrophoresis proceeded (Figure 23). 

The second chip captured the intended fragment after 30 minutes of gel electrophoresis 

at 110 volts (Figure 24). When samples were run on a TAE gel, then a MinElute PCR 

Purification (Qiagen™) was performed to change buffer solutions to TE. 
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Figure 23 Recochip Complexity Reduction  

 

Figure 24 Recochip Capture 
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Fill-in and ssDNA Isolation 

After complexity reduction, the samples needed to have their nicks filled in via 

the NEBNext® Fill-in and ssDNA Isolation Module (New England Biolabs). During the 

ligation process, nicks were present because the restriction enzyme fragments lacked a 5’ 

phosphate on the bottom strand. The Bst DNA polymerase recognizes these sites and 

repairs the missing bases derived from the complementary DNA fragment and Adaptor 

A1 [384].The single stranded isolation uses a wash step where the un-biotinylated 

fragments will be washed away and the double biotinylated fragments will not be eluted. 

Thus, DNA fragments having one biotinylated end were kept for amplification. 

PCR Amplification 

The adaptor-ligated DNA fragments were amplified using two partial 

complementary PCR primers. The paired end PCR primers were recognized by the 

Illumina® GAII. These primers were PE_PCR_Primer_1.01 and PE_PCR_Primer_2.01 

(Table 45). 
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Table 45 Paired End Primers 

PE_PCR_Primer_1.01  

5’-AATGATACGGGACCACCGAGATCTACACTCTTTCCCTACACGACGACGCTCTTCCGATCT 

 

PE_PCR_Primer_2.01  

5’-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 

 

 

 

 

PCR cycling conditions consisted of 98ºC for 30 seconds followed by 30 cycles 

(35 cycles BsrGI) of 98ºC for 12 seconds, 65ºC for 30 seconds, 72ºC for 30 seconds, 

then with a final extension time of one minute at 72ºC. These amplified pooled samples 

made up the library. The samples were then cleaned and purified using the MinElute 

PCR Purification kit (Qiagen®) and the AMPure XP Tube (Agencourt®) protocol2.  

Quantification 

Samples were quantified by nanodrop. This was used to get a general 

approximation of the sample’s ng/μl concentration. Next, the sample was quantified to a 

specific concentration of double-stranded DNA with the High Sensitivity AccuBlue 

                                                 

2 Second gel extraction was done on the BsrGI fragment to get a smaller cleaner PCR product.   
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Quantification Kit (Biotium™) on the Victor™ X3 Multilabel Plate Reader 

(PerkinElmer™). The quality control check was done on the Bio-Analyzer (Agilent™) 

with a pico-chip to make sure the fragment contained good quality DNA and correct size 

selection. The GBS samples were then diluted to a 10nM concentration to run on the 

Illumina. The 10nM GBS sample concentration was calculated using an equation 

(Equation 3). The 10nM sample was given to the TAMU AgriLife Genomics & 

Bioinformatics Services to run one lane on the Illumina. The BsrGI sample was spiked 

into another runs lane. 

 

 

 

Equation 3 Calculation for Conversion of an ng/μl Solution to 10nM Concentration 

(((## ng/μl * 1x10^6 μl/L)* 1 bp mol/660g)* 1/fragment size bp) = ## nM 
 

 

 

Filtering Raw Reads 

The unfiltered fastq 76bp paired end reads were imported into Geneious® to trim 

reads for quality. The region being trimmed consisted of a greater than five percent error 

per base. The maximum length after trimming was 66bp. The fastq reads after being 

trimmed to 66bp were exported from Geneious® and imported to CLCbio® to remove 

reads under 66bp. When bringing the fastq sequences into CLCbio® from Geneious®, 
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the data was imported as Sanger Sequence fastq quality scores. This step was imperative 

in making sure the quality scores associated with the fasta sequences were correct. 

During the BsrGI GBS experiment, two runs were completed on the same data. 

The first run had a technical problem with the Illumina due to tiling errors, but some 

reads were useable. Using Geneious®, both runs were grouped together into a single 

fastq list for single run for STACKs. Reads had to be exactly the same length before 

running STACKs, thus catalog creation errors were avoided.  

To get approximate values per barcode, reads were separated via barcode. 

Geneious® was used over other software versions because it allowed for single base pair 

mismatches in the barcodes and customized specific barcode sets. Also, the end-adapter 

filtered out some biased ends. Geneious® streamlined the data for easy taxa separated 

barcode visualization.  

Building STACKs 

The trimmed 66bp full unsorted fastq sequencing data was transferred to the linux server 

with a compiled STACKs program version 0.998. The renz.h file was changed to add the 

BsrGI and HinP1I barcodes. The sequences were filtered using the process radtags 

command. These barcode sorted sequence .fq files were then compared in pairwise 

combinations with and without progeny using the denovo_map.pl command. The data 

was loaded into several MySQL tables and was accessible via the STACKs web-

interface.  
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Discovery of SNPs and Creation of Probable Markers 

Cataloged sequences were annotated by SNP changes between: loci two parents, 

loci two parents and progeny, cultivated loci on progeny, wild loci on progeny, 

informative heterozygotes two parents with progeny, non-informative two parents with 

progeny, informative heterozygotes two parents, and non-informative two parents. The 

two tables STACKs generated, genotypes and observed haplotypes, were transferred to 

Microsoft® Access, so data could be easily filtered through SQL query scripts. 

Significant photoperiod independent SNP markers in both fully integrated offspring 

were exported into fasta format and moved into Geneious®.  

Alignment to Gossypium raimondii  

The significant photoperiod independent SNP markers were then queried against 

the released D5 Gossypium raimondii genome tentative contigs (A. Patterson, August 

2012 release) in a localized Geneious® database. These reads were placed upon a 

scaffold map of the D5 tenative contigs. The candidate genes were also queried and 

aligned to the D5 scaffold map. 

Verification of Significant SNPs in BC4F2 Segregating Populations 

DNA was extracted from segregating BC4F2 (Gossypium barbadense PS-6 x 

Gossypium barbadense K-46) population using the Pepper Lab Cotton DNA Extraction 

protocol (Logan-Young, 2013, Chapter 3). Phenotypic data from the segregating 

population was taken during DNA sampling in the 2008 USDA-ARS-SPARC field 

trials. The entire PS-6xK-46 DNA population was diluted to a 30ng/ul concentration 

level. Due to multiplexing constraints 33 samples from the population of 40 individuals 
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were used in the Targeted GBS experiment with two additional parental DNA samples 

(PS-6 and K-46). The diluted 35 samples were arranged into a 96-well plate format: A-H 

rows (skipping row G) x 8-12 columns.  

Probability Statistical Methods for Gene Linkage 

 A simple probability chart (Table 37) was created based on the probable 

heritability of a genome introgression in a natural population using random mating 

without linkage.  This was important to establish because it laid the foundation for what 

the maximum threshold would be for a cultivated plant’s genome to be incorporated into 

a wild genome without linkage disequilibrium (LD).  Using a chi squared statistic, we 

showed that our population is not randomly mating and contains significantly more of 

the cultivated genome.  This correlated to knowledge that some other traits besides 

photoperiod independence were being selected for unknowingly by the breeder during 

the creation of the wild Germplasm line. Finally, we were able to then use Bayes 

theorem (Equation 2) to calculate the comparative data from the BsrGI experiment in 

Table 39.  Our equation in Table 39 estimated the probability of the two BC4F2 

populations containing the same overlapping sequences.   

Targeted GBS 

Ten specific forward primers correlating to SNPs found in the over-lapping loci 

were created. These were adapted to the Illumina® TruSeq Indexed Adaptor P5 (Figure 

25 and Tables 46-48). Two oligonucleotide sequences were constructed with the 

Illumina® TruSeq Indexed Adaptor P5 site, a specific 6bp barcode, BsrGI site, and a 

gene specific primer. The forward oligonucleotide sequence was 
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5’CTACACGACGCTCTTCCGATCTACTTGACTTCCGATCT- xxxxxx-CGTACA-

qqqqqqqqq, where xxxxxx represented the forward barcode and qqqqqqqqq represented 

the gene specific primer. On the reverse strand, sequences were constructed with the 

Illumina® TruSeq Indexed Adaptor P7 site, a specific 6bp barcode, and a partial BsrGI 

site. The reverse oligonucleotide sequence was 5’ TGTACG-

AGATCGGAAGAGCACACGTCTGAACTCCAGTCACAyyyyyyTCTCGTATGCCG

TCTTCTGCTTG [Btn], where yyyyyy represented the index barcode (Figure 25 and 

Tables 46- 48).  

 

 

 

 

 

Figure 25 P5 and P7 Adaptor Schema 
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Table 46 P7 End Adaptors 

P7 End Adapters  

UP7-IR-T-A [BTN]CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTC 

UP7-IR-T-B [BTN]CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTC 

UP7-IR-T-C [BTN]CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTC 

UP7-IR-T-D [BTN]CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTC 

UP7-IR-T-E [BTN]CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTC 

UP7-IR-T-F [BTN]CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTC 

UP7-IR-T-G [BTN]CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTC 

UP7-IR-T-H [BTN]CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTC 

 
 
Table 47 BsrGI P7-side Adapters for Index Read Multiplexing on  

Illumina (Hi-seq) 

BP7 series  BsrGI P7-side adapters for index read multiplexing on illumina (Hi-seq) 

BP7-IR-B-A GTACGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG 

BP7-IR-B-B GTACGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTCTTCTGCTTG 

BP7-IR-B-C GTACGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTTAGGCATCTCGTATGCCGTCTTCTGCTTG 

BP7-IR-B-D GTACGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTGACCAATCTCGTATGCCGTCTTCTGCTTG 

BP7-IR-B-E GTACGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTCTTCTGCTTG 

BP7-IR-B-F GTACGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTG 

BP7-IR-B-G GTACGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCGTCTTCTGCTTG 

BP7-IR-B-H GTACGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACACTTGAATCTCGTATGCCGTCTTCTGCTTG 
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Table 48 P5 Adapter Forward Barcodes  

P5 Adapter Forward Barcodes TruSeq 

2165-8 CTACACGACGCTCTTCCGATCTACTTGACTTCCGATCTCGTACAAGAAAGCTA ACTTGA 8 

2165-9 CTACACGACGCTCTTCCGATCTGATCAGCTTCCGATCTCGTACAAGAAAGCTA GATCAG 9 

2165-10 CTACACGACGCTCTTCCGATCTTAGCTTCTTCCGATCTCGTACAAGAAAGCTA TAGCTT 10 

2165-11 CTACACGACGCTCTTCCGATCTGGCTACCTTCCGATCTCGTACAAGAAAGCTA GGCTAC 11 

2165-12 CCTACACGACGCTCTTCCGATCTCTTGTACTTCCGATCTCGTACAAGAAAGCTA CTTGTA 12 

   

3366-8 CTACACGACGCTCTTCCGATCTACTTGACGTACAAATGCCTTCGRGACTTAAC ACTTGA 8 

3366-9 CTACACGACGCTCTTCCGATCTGATCAGCGTACAAATGCCTTCGRGACTTAAC GATCAG 9 

3366-10 CTACACGACGCTCTTCCGATCTTAGCTTCGTACAAATGCCTTCGRGACTTAAC TAGCTT 10 

3366-11 CTACACGACGCTCTTCCGATCTGGCTACCGTACAAATGCCTTCGRGACTTAAC GGCTAC 11 

3366-12 CTACACGACGCTCTTCCGATCTCTTGTACGTACAAATGCCTTCGRGACTTAAC CTTGTA 12 

   

2187-8 CTACACGACGCTCTTCCGATCTACTTGAGATCTCGTACAATTTACATCGCTAAATAATG ACTTGA 8 

2187-9 CTACACGACGCTCTTCCGATCTGATCAGGATCTCGTACAATTTACATCGCTAAATAATG GATCAG 9 

2187-10 CTACACGACGCTCTTCCGATCTTAGCTTGATCTCGTACAATTTACATCGCTAAATAATG TAGCTT 10 

2187-11 CTACACGACGCTCTTCCGATCTGGCTACGATCTCGTACAATTTACATCGCTAAATAATG GGCTAC 11 

2187-12 CTACACGACGCTCTTCCGATCTCTTGTAGATCTCGTACAATTTACATCGCTAAATAATG CTTGTA 12 

   

2193-8 CTACACGACGCTCTTCCGATCTACTTGATTCCGATCTCGTACAATGATTACCGA ACTTGA 8 

2193-9 CTACACGACGCTCTTCCGATCTGATCAGTTCCGATCTCGTACAATGATTACCGA GATCAG 9 

2193-10 CTACACGACGCTCTTCCGATCTTAGCTTTTCCGATCTCGTACAATGATTACCGA TAGCTT 10 

2193-11 CTACACGACGCTCTTCCGATCTGGCTACTTCCGATCTCGTACAATGATTACCGA GGCTAC 11 

2193-12 CTACACGACGCTCTTCCGATCTCTTGTATTCCGATCTCGTACAATGATTACCGA CTTGTA 12 

   

2194-8 CTACACGACGCTCTTCCGATCTACTTGACTTCCGATCTCGTACAATATTATCCC ACTTGA 8 

2194-9 CTACACGACGCTCTTCCGATCTGATCAGCTTCCGATCTCGTACAATATTATCCC GATCAG 9 

2194-10 CTACACGACGCTCTTCCGATCTTAGCTTCTTCCGATCTCGTACAATATTATCCC TAGCTT 10 

2194-11 CTACACGACGCTCTTCCGATCTGGCTACCTTCCGATCTCGTACAATATTATCCC GGCTAC 11 

2194-12 CTACACGACGCTCTTCCGATCTCTTGTACTTCCGATCTCGTACAATATTATCCC CTTGTA 12 

   

3240-8 CTACACGACGCTCTTCCGATCTACTTGAGCTCTTCCGATCTCGTACAATACC ACTTGA 8 

3240-9 CTACACGACGCTCTTCCGATCTGATCAGGCTCTTCCGATCTCGTACAATACC GATCAG 9 

3240-10 CTACACGACGCTCTTCCGATCTTAGCTTGCTCTTCCGATCTCGTACAATACC TAGCTT 10 

3240-11 CTACACGACGCTCTTCCGATCTGGCTACGCTCTTCCGATCTCGTACAATACC GGCTAC 11 

3240-12 CTACACGACGCTCTTCCGATCTCTTGTAGCTCTTCCGATCTCGTACAATACC CTTGTA 12 
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Table 48 Continued.  
   

3241-8 CTACACGACGCTCTTCCGATCTACTTGAGTACATTTTTTATCCAGAAACCTCTGACTG ACTTGA 8 

3241-9 CTACACGACGCTCTTCCGATCTGATCAGGTACATTTTTTATCCAGAAACCTCTGACTG GATCAG 9 

3241-10 CTACACGACGCTCTTCCGATCTTAGCTTGTACATTTTTTATCCAGAAACCTCTGACTG TAGCTT 10 

3241-11 CTACACGACGCTCTTCCGATCTGGCTACGTACATTTTTTATCCAGAAACCTCTGACTG GGCTAC 11 

3241-12 CTACACGACGCTCTTCCGATCTCTTGTAGTACATTTTTTATCCAGAAACCTCTGACTG CTTGTA 12 

   

4429-8 CTACACGACGCTCTTCCGATCTACTTGAGCACTTAGCACCATACATGTGACC ACTTGA 8 

4429-9 CTACACGACGCTCTTCCGATCTGATCAGGCACTTAGCACCATACATGTGACC GATCAG 9 

4429-10 CTACACGACGCTCTTCCGATCTTAGCTTGCACTTAGCACCATACATGTGACC TAGCTT 10 

4429-11 CTACACGACGCTCTTCCGATCTGGCTACGCACTTAGCACCATACATGTGACC GGCTAC 11 

4429-12 CTACACGACGCTCTTCCGATCTCTTGTAGCACTTAGCACCATACATGTGACC CTTGTA 12 

   

8037a-8 CTACACGACGCTCTTCCGATCTACTTGAGATCTCGTACATTTCCCAAAAGCTC ACTTGA 8 

8037a-9 CTACACGACGCTCTTCCGATCTGATCAGGATCTCGTACATTTCCCAAAAGCTC GATCAG 9 

8037a-10 CTACACGACGCTCTTCCGATCTTAGCTTGATCTCGTACATTTCCCAAAAGCTC TAGCTT 10 

8037a-11 CTACACGACGCTCTTCCGATCTGGCTACGATCTCGTACATTTCCCAAAAGCTC GGCTAC 11 

8037a-12 CTACACGACGCTCTTCCGATCTCTTGTAGATCTCGTACATTTCCCAAAAGCTC CTTGTA 12 

 

 

 

 

The PS-6xK46 DNA population was digested with BsrGI in the 96-well plate 

dilution format, as stated above. Once digested, an adaptor BP7A through BP7-H 

(skipping BP7-G) was ligated to the samples by corresponding row (Table 48). Next, the 

samples were pooled by column to create 5 pooled samples. These pooled samples were 

purified using a MinElute PCR Purification kit (Qiagen®) to remove primers and the 

digestion/ligation mix.  

Primer mixes to multiplex out BsrGI with the additional specific Targeted GBS 

primer were developed. They were made into 5 primer mixes to correspond to ten 
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specific loci for each column. The primer mixes were diluted to 10 pmol/ul 

concentrations.  

Using vent (exo-) polymerase, a primer extension was done to add a primer mix 

(8 through 12) and Tufts_PCR_Primer_2.1_B [Btn] (Tufts primer with biotin) to the PS-

6 xK46 DNA population (Table 38). The vent polymerase PCR conditions consisted of 

98ºC for one minute followed by 15 cycles of 98ºC for 30 seconds, 58ºC for 30 seconds, 

72ºC for one minute, then with a final extension time of two minutes at 72ºC. All five 

vent samples were pooled together into one microfuge tube. The pooled vent reaction 

was then cleaned using a MinElute PCR Purification kit (QiagenTM).  

In the effort to remove fragments without biotin after the vent PCR, the 

NEBNext® Fill-in and ssDNA Isolation Module (New England Biolabs) was used to 

remove the non-biotinylated fragments. The protocol was modified by skipping the fill-

in reaction and the second 1X Bead Wash after the fill-in step. The sample was cleaned 

over a Qiaquick PCR Purification column (Qiagen®) and eluted in 25ul.  

Final amplification for the TGBS samples using PE_PCR_Primer_1.2 and 

Tufts_PCR_Primer_2.1 was done to amplify the genetic library fragments (Table 49-50). 

The PCR conditions consisted of 98ºC for 30 seconds followed by 15 cycles of 98ºC for 

12 seconds, 65ºC for 30 seconds, 72ºC for 30 seconds, then with a final extension time 

of one minute at 72ºC.  
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Table 49 Tufts Paired End PCR Primer 2.1 

Tufts_PCR_Primer_2.1 

5’- CAAGCAGAAGACGGCATACGAG

 

 
 
Table 50 Paired End PCR Primer 1.2 

PE_PCR_Primer_1.2  

5’- AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

 

 

 

 

The library sample was then purified using the AMPure XP Tube (Agencourt®) 

with a 0.7ul sample reaction: 1ul bead ratio. The sample was eluted with 50 ul of elution 

buffer. The sample was quantified to ~2ng double-stranded DNA with the High 

Sensitivity AccuBlue Quantification Kit (Biotium™) on the Victor™ X3 Multilabel 

Plate Reader (PerkinElmer™). A quality control check was done on the Bio-Analyzer 

(Agilent™) with a pico-chip to make sure the fragment was good quality DNA and 

correct size selection. The TGBS samples were then diluted to a 5nM concentration to 

run on the Illumina HiSeq 2500. The 5nM sample was given to the TAMU AgriLife 

Genomics & Bioinformatics Services to run one lane on the Illumina HiSeq 2500.  
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From the TAMU AgriLife Genomics & Bioinformatics Services, data files sorted 

by reverse barcode were received.  The .fastq files were uploaded into Geneious. Next, 

the Illumina data was sorted by our forward.  The next step was to identify the individual 

sequences for PS-6 and K-46, which were the parents to the segregating population for 

photoperiodism.   

An alignment of the original loci from PS-5 and the wild accessions (PI-435242 

and K-56) to Gossypium barbadense 3-79 was done to see if each fragment had multiple 

loci.  The new 3-79 consensus sequences for each loci was then blasted against the PS-6 

and K-46 sequences. After obtaining the closest sequence to each locus in PS-6 and K-

46, a reference sequence set was made for both PS-6 and K-46.  The other individuals in 

the segregating population were then mapped to these references. 
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CHAPTER V  

CONCLUSION 

 

World-wide modern cultivated cotton production has been limited by the current 

genetic diversity within cotton’s elite cultivars, so there has been a strong need to 

develop practical traits from ‘wild’ relatives. To increase diversity, valuable assets from 

untapped ‘wild’ genetic resources were found in other studies and should be 

incorporated into traditional breeding programs [6].  

Currently, there has been a problem with incorporating this myriad of untapped 

‘wild’ genomic resources through traditional breeding schemas.  The major problem has 

been that ‘wild’ cotton has been hampered by photoperiod sensitivity [11]. In short, this 

means that most commercial cotton producing areas in the world do not have the correct 

natural light conditions to allow ‘wild’ cotton species to flower in the span of a growing 

season under today’s current cultivation practices. On the other hand, modern cultivated 

cotton was able to flourish all over the world because it had the ability to establish 

flowering under early maturation.  

Wild conversion trait introgression has been difficult because ‘wild’ and 

cultivated cotton species do not flower during overlapping times.  Crosses between 

‘wild’ and cultivated cotton species were done in the past, but always resulted in 

offspring exhibiting photoperiod sensitivity.  This rendered these progeny useless for 

commercial production.  
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The final problem that this research addressed was the length of time to bring in 

valuable traits from ‘wild’ Germplasm. In traditional breeding programs, this trait 

introgression process would take ten to twenty years. One way to alleviate this long and 

arduous process has been to select only those plants carrying the trait of interest after an 

F1 cross, without bringing photoperiodic sensitivity by utilizing marker assisted 

selection (MAS) breeding. Our research has provided markers associated with 

photoperiod independence.  

This study asked what fundamental research was needed before novel traits from 

undomesticated ‘wild’ cotton species could be integrated into cultivated elite lines.  We 

researched the floral transition network within cotton to overcome the major hurdle, 

photoperiod independence, for trait introgression from ‘wild’ cotton species. With 

limited knowledge of information existing within the floral transition network within 

cotton, we conducted an experiment to look at possible candidate genes for photoperiod 

independence.  A second experiment looked for independent single nucleotide 

polymorphisms (SNPs) outside the candidate genes that were associated with 

photoperiod independence. 

 The candidate gene study reported SNP differences in thirty-eight homologs of 

genes within the floral transition network, including photoreceptors, light dependent 

transcripts, circadian clock regulators, and floral integrators. We uncovered appreciable 

SNP diversity within the candidate gene orthologs, including SNPs differentiating 

cultivated and ‘wild’ Gossypium barbadense and Gossypium hirsutum. We located 36 

intraspecific SNPs within Gossypium hirsutum and 53 intraspecific SNPs within 
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Gossypium barbadense. From this research, we laid the foundation to test our 

intraspecific SNPs in our BC4F2 segregating ‘wild’ cotton conversion population.   

The Genotype-By-Sequencing (GBS) research used redundancy measures to link 

other discrete SNP differences (unassociated with candidate genes) to photoperiodicity 

within cotton. This GBS study found ten overlapping loci containing intraspecific SNPs 

from two BC4F5 ‘wild’ cotton conversion populations that had full introgression of 

photoperiod independence.  From these loci, targeted GBS (TGBS) was conducted on a 

segregating BC4F2 ‘wild’ cotton conversion population to show linkage of these 

markers with photoperiod independence.  Our GBS study provided one closely linked 

marker to the photoperiod independence trait. 

In conclusion, our research has provided markers associated with photoperiod 

independence. Future MAS breeding programs may incorporate our intraspecific 

candidate gene SNPs and our discrete GBS SNPs as markers for ‘wild’ trait 

introgression. Also, other research scientists may utilize our markers to explore the 

molecular evolution of different cotton genomes.  From this research, our future goal 

will be to focus on those candidate genes near our discrete GBS SNPs associated with 

photoperiod independence to locate the polymorphism(s) behind photoperiod 

independence in Gossypium barbadense.  
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APPENDIX B 

A Cotton Story 

One summer, I remember gazing out the Suburban’s window at the regimental 

lines of seeds being drawn in the fields. It was beautiful to watch the tractors tracing out 

these parallel rows. Quickly, I traced a line of Skittles on the back seat.  

“Mom, look I’m a farmer. I am growing skittle trees.”  

She laughed while I smiled back happily.  

My father asked, “Why are the farmers making lines of seeds?”  

I contemplated this, but could not come up with a response. Quietly, I stared 

down at my coloring book, hoping to avoid answering the question.  

Again he asked, “Well?”  

I smartly replied, “It is like coloring. Staying inside a straight line is easier.”  

He gently replied, “That is a remarkably well thought out answer. The seeds are 

in a row, so they are easy to water, grow, and harvest.”  

Staring back out the window, I asked my mother, “What are the farmers 

planting?” 

 She replied, “Well this farm has corn, the one across the way has wheat, and that 

one has cotton.”  

With my young, inquisitive mind, I pondered what each plant produced. “Mom, I 

know I eat corn. What does wheat and cotton make?”  

She stated, “We eat wheat, when we eat cereal and bread. We wear cotton, when 

we dress in t-shirts.” 
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 I am fascinated by this. I stare down at my t-shirt. I am trying to discern how a 

plant made these products. Not understanding, I quizzically asked, “How does cotton 

make my clothes?”  

Instantly, she replied, “Cotton produces a fiber that when twisted together makes 

string. People weave thousands of strings together to create a t-shirt like yours. It is like 

the paper placemats you made for thanksgiving at school.”  

Quietly, I took this in and was quite pleased with this new information.  

In Dallas, my parents took me to the enormous farmer’s market downtown. They 

showed me all the different crops that farmers brought in to sell to the public, but there 

was one crop I did not see: cotton. On our return journey, I saw this white fluff spewing 

from the green bushes. Again, I asked “Mom, what are those white, fluffy things?” 

 Remembering that I am five, she replied, “That is cotton.”  

My mom and dad then pulled the Suburban over to the road side. Out I hopped 

and raced to pick up some white fluff that had been blown off. We all retreated back to 

the vehicle, where I began to pull and twist the cotton fibers.  

“What are these hard things Mom?”  

She stated, “Those are seeds so that new plants can grow.”  

Satisfied with the answer, I began to play with the cotton. Remembering that my 

mom said cotton made up my t-shirt, I hemmed and hawed over the fact that cotton was 

white, but my shirt was yellow. Finally, I asked “Mom, why is the cotton white, but my 

shirt yellow?”  
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My mom patiently described that factories dyed cotton different colors so that we 

could wear clothes in various hues and shades.  

From that point on, I had a passion for plants, the environment, agriculture, and 

nature. I was constantly amazed at all the different products that were produced from 

plants. It was when I entered college at New Mexico State University that I knew I 

wanted to work on plants for crop improvement. I had those grandiose dreams of 

creating massive tomatoes that could feed hundreds of people in impoverished nations. 

Dr. Roy Cantrell showed me the importance of plant genetics, genetics and society, and 

specifically the genetics of cotton. He inspired me to go to graduate school. He had 

received his degree from Texas A&M University, so I decided that Texas A&M 

University might be the place for me to attend. This is how I arrived at this point, 

determined to inspire the cotton community, the world, and future students through my 

research.  

  



 

250 

 

 

APPENDIX C 

Chapter II Supplemental Material* 

Authors and Contact Information 

Ibrokhim Y. Abdurakhmonov3, Zabardast T. Buriev3, Carla Jo Logan-Young4, 

Abdusattor Abdukarimov3, Alan E. Pepper4§ 

Email addresses: 

IYA: genomics@uzsci.net, ZTB: zabar75@yahoo.com,  

CJLY: tysfira@neo.tamu.edu, AA: inst@gen.org.uz,  

AEP: apepper@bio.tamu.edu 

 

  

                                                 

* Reprinted with the permission from “Duplication, Divergence and Persistence in the Phytochrome 
Photoreceptor Gene Family of Cottons (Gossypium spp.) “ by Abdurakhmonov I, Buriev Z, Logan-Young 
C; Abdukarimov A, and Pepper A, 2010, BMC Plant Biology, 10(1):119 
 
3 Center of Genomic Technologies, Academy of Sciences of Uzbekistan. Yuqori Yuz, 
Qibray region Tashkent, 111226 Uzbekistan 
 
4 Department of Biology, Texas A&M University, College Station, Texas 77843, USA 
 
§Corresponding author  
 



 

251 

 

 

Authors Contributions 

IYA and AEP designed the experiment. IYA designed most of the PCR primers 

and cloned the PHYA, PHYB and PHYE gene families. ZTB performed DNA sequencing 

of phytochrome genes. CJLY isolated, cloned and sequenced the PHYC gene family and 

participated in the sequencing of PHYA, PHYB and PHYE genes. IYA, AA, CJLY, and 

AEP performed data interpretation and drafted the manuscript. All authors read and 

approved the final manuscript. 

  



 

252 

 

 

Supplemental Tables 

Supplemental Table 1 GenBank EST Hits in Cotton 

HSP Taxon ESTs GenBank IDs Min. Number 
Loci 

PHYA G. raimondii 4 CO117336 1 
      CO092073   
      CO092074   
  G. hirsutum 5 ES822585 2 
      EX168627   
      ES823391   
      DV849493   
      DW235365   

PHYB G. raimondii 0 0 0 
  G. hirsutum 3 DT566665 1 
      ES835169   
      ES850111   

PHYC G. raimondii 1 CO121409 1 
  G. hirsutum 0 0 0 

PHYE G. raimondii 0 0 1 
  G. hirsutum 2 DW478704 1 
      DW506498   
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Supplemental Tables 

Supplemental Table 2 SNPs in Exons without PHY A2, CRY1 B, and CRY2 B 

Gene 
A/D  

genome 
G. hirsutum/

G. barbadense 
Cultivated/

Wild G. incanum Single SNP 

AGL16 0 0 0 1 0 

AGL3_SEP4 0 0 2 0 2 

AGL30 0 0 0 0 1 

AGL32 0 0 0 0 0 

AGL6 0 0 0 0 0 

AGL65 3 0 0 1 2 

AP1 2 0 0 1 0 

ATGRP7 1 0 0 1 1 

COL3 8 0 2 2 3 

COL5 9 2 0 0 2 

COP1 0 0 0 1 0 

CRY1 A 1 0 0 0 0 

CRY2 A 1 1 2 2 0 

CRY3 4 0 0 2 1 

DET1 0 0 0 0 0 

ELF3 0 0 0 1 0 

FD 12 0 1 4 4 

FKF1_ADO3 3 2 0 1 0 

GI Ex9to10_ A 0 0 0 0 0 

GI Ex10to11_ A 0 0 0 1 0 

GI Ex10to11_ B 0 0 0 0 0 

GI Ex11to12_ A 6 0 1 1 1 

GI Ex11to12_ B 0 2 0 0 0 

HY6 12 2 11 2 3 

LHY 1 /CCA1 0 0 0 0 0 

LHY 2 /CCA1 1 0 0 1 0 

PFT1 0 0 0 0 0 

PHYA Contig 1 15 3 3 7 3 

PHYB 8 1 1 1 3 

PHYC 6 17 12 19 15 

PHYE 5 3 0 6 6 

PI 1 0 0 0 0 0 

PI 2 0 0 0 0 0 

PRR5 1 0 1 2 1 

PRR7 Contig 1 6 0 0 3 1 

PRR7 Contig 2 7 3 2 3 3 

SPA4 1 0 0 2 0 

TOC1 2 0 0 0 0 

Exon Totals 114 36 38 65 52 
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Supplemental Table 3 SNPs in Introns without PHY A2, CRY1 B, and CRY2 B 

Gene 
A/D  

genome 
G. hirsutum/

G. barbadense 
Cultivated/

Wild G. incanum Single SNP 

AGL16 5 2 0 3 7 

AGL3_SEP4 2 0 4 0 8 

AGL30 15 3 4 3 4 

AGL32 1 0 0 3 1 

AGL6 7 0 0 0 7 

AGL65 22 3 3 6 9 

AP1 10 2 0 7 0 

ATGRP7 4 0 0 1 1 

COL3 1 1 0 2 1 

COL5 0 2 0 0 1 

COP1 14 2 0 12 3 

CRY1 A 14 2 5 0 6 

CRY2 A 2 1 0 3 3 

CRY3 8 0 2 7 8 

DET1 1 0 0 0 0 

ELF3 11 4 3 11 3 

FD 1 2 1 2 0 

FKF1_ADO3 14 5 2 11 4 

GI Ex9to10_ A 9 1 0 7 13 

GI Ex10to11_ A 5 2 3 3 0 

GI Ex10to11_ B 0 2 1 0 2 

GI Ex11to12_ A 3 0 2 4 3 

GI Ex11to12_ B 14 2 1 4 3 

HY6 17 2 0 11 5 

LHY 1 /CCA1 5 2 7 1 0 

LHY 2 /CCA1 4 0 0 1 2 

PFT1 4 0 0 5 1 

PHYA Contig 1 1 0 0 0 1 

PHYB 15 2 3 1 4 

PHYC 19 0 0 10 4 

PHYE 0 0 0 0 0 

PI 1 11 4 3 11 4 

PI 2 3 1 2 0 3 

PRR5 14 0 1 10 7 

PRR7 Contig 1 4 0 1 1 2 

PRR7 Contig 2 4 0 1 2 0 

SPA4 1 0 1 0 0 

TOC1 4 1 0 0 0 

Intron Totals 269 48 50 142 120 
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Supplemental SAS Code 

Procedure Frequency, Generalized Linear Mixed Model with Poisson Regression, 

and Least Squared Means 

libname cj 'C:\DATA_SPA\Carla Jo'; 

data cj.pathways; 

   input ID $ pathway $ type $ snps; 

   cards; 

1  flower Exon 3 

2  flower Exon 0 

3  flower Exon 15 

4  flower Exon 13 

5  flower Exon 1 

6  flower Exon 1 

7  flower Exon 0 

8  flower Exon 0 

9  flower Exon 0 

10  flower Exon 21 

11  flower Exon 4 

12  flower Exon 1 

13  flower Exon 0 

14  flower Exon 0 

15  flower Exon 6 

16  flower Exon 3 

17  flower Exon 3 

1  flower Intron 19 

2  flower Intron 10 
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3  flower Intron 5 

4  flower Intron 3 

5  flower Intron 17 

6  flower Intron 31 

7  flower Intron 1 

8  flower Intron 33 

9  flower Intron 9 

10  flower Intron 6 

11  flower Intron 14 

12  flower Intron 29 

13  flower Intron 5 

14  flower Intron 14 

15  flower Intron 43 

16  flower Intron 2 

17  flower Intron 6 

18 Clock Exon 1 

19 Clock Exon 6 

20 Clock Exon 0 

21 Clock Exon 1 

22 Clock Exon 0 

23 Clock Exon 2 

24 Clock Exon 9 

25 Clock Exon 5 

26 Clock Exon 10 

27 Clock Exon 18 

28 Clock Exon 0 

29 Clock Exon 2 
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30 Clock Exon 2 

18 Clock Intron 32 

19 Clock Intron 36 

20 Clock Intron 30 

21 Clock Intron 13 

22 Clock Intron 5 

23 Clock Intron 24 

24 Clock Intron 12 

25 Clock Intron 32 

26 Clock Intron 8 

27 Clock Intron 7 

28 Clock Intron 15 

29 Clock Intron 7 

30 Clock Intron 5 

31 Photoreceptor Exon 1 

32 Photoreceptor Exon 72 

33 Photoreceptor Exon 6 

34 Photoreceptor Exon 32 

35 Photoreceptor Exon 7 

36 Photoreceptor Exon 14 

37 Photoreceptor Exon 31 

38 Photoreceptor Exon 55 

39 Photoreceptor Exon 79 

40 Photoreceptor Exon 19 

41 Photoreceptor Exon 30 

31 Photoreceptor Intron 27 

32 Photoreceptor Intron 38 
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33 Photoreceptor Intron 9 

34 Photoreceptor Intron 10 

35 Photoreceptor Intron 25 

36 Photoreceptor Intron 25 

37 Photoreceptor Intron 2 

38 Photoreceptor Intron 1 

39 Photoreceptor Intron 33 

40 Photoreceptor Intron 0 

41 Photoreceptor Intron 35 

; 

proc freq data=cj.pathways; 

table pathway*type/chisq; 

weight snps; 

run; 

proc glimmix  data=cj.pathways; 

class pathway type ; 

  model snps=pathway type type*pathway /dist=Poisson; 

Lsmeans pathway type type*pathway/ pdiff plot=mean(sliceby=type join 

cl); 

Lsmeans  type*pathway/ pdiff plot=mean(sliceby=pathway join cl); 

run; 
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