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ABSTRACT

The pipeline industry has conducted a vast amount of research on the subject of
mechanical damage. Mechanical damage makes up a large portion of the total amount of
pipeline failures that occur each year. The current methods rely on engineering judgment
and experience rather than scientific theory. The method for the assessment of
mechanical damage introduced in this study uses a material property called critical strain
to predict the onset of cracking within the pipe wall. The critical strain is compared to
the strain within a dent using a ductile failure damage indicator (DFDI).

To investigate the use of the DFDI to indicate the onset of cracking within a dent,
the study attempted to accomplish three tasks. The first was to investigate the use of
various techniques to locate the critical strain from the stress-strain curve. Five samples
taken from the pipe material was used to generate both engineering and true stress-strain
curves. A sensitivity analysis was conducted to show the effects of different variables on
the critical strain value.

The DFDI compares the critical strain value to the calculated strain at the deepest
depth location within a dent. The strain calculations use the curvature of the dent and
thus require a dent profile. A high resolution laser scanner was used to extract dent
profiles from a pipe. The second task of the study was to investigate the reliability of the
laser scanner equipment used for this study. The results from the investigation showed
that the laser scanner could be used to scan the inside of the pipe despite its design for
external scanning. The results also showed that the scans should be 1 mm in length along
the axis of the pipe at a resolution of 0.5 mm and 360 degrees around the pipe.

The final task was to conduct the denting test. The test used a spherical indenter
to dent the pipe at increments of 3% of the outside diameter. The results from the test
showed that a visible crack did not form on the inside pipe surface as expected from the
DFDI method. This does not mean a crack did not form. During the denting test distinct

popping sounds were observed possibly indicating cracks forming within the pipe wall.
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1 INTRODUCTION

1.1 Background

Mechanical damage is one of the major causes of delayed failures in gas
transmission pipelines. Current methods used to analyze and assess the structural
integrity of damaged pipelines are based primarily on engineering judgment rather than
scientific theory. These methods make it possible to improperly assess a damaged pipe,
possibly resulting in failure. The pipeline industry can benefit from an integrity
assessment method that is easily applied and accurate. Such a method could save money
from unnecessary repairs and save lives from delayed failures.

In 2009, a report compiled by Baker was submitted to the DOT Research and
Special Programs Administration on mechanical damage of oil and gas pipelines (Baker
2009). The goal of the research was to compile data from various resources in an effort
to summarize current assessment, analysis, prevention, and repair techniques for
transmission pipelines. The report compiled failure data from 1988 to 2008. Figures 1-3
show the distribution of causes that led to a significant incident in various types of
pipelines.

According to Baker, a significant incident is one that results in injury requiring
hospitalization or loss of life. The figures show that excavation damage was typically the
number one cause of significant incidents from 2000 to 2008. This type of damage is
typically caused by the equipment used for excavation, such as the tooth from an
excavation bucket. The resulting damage is an unconstrained plain dent similar to that
shown in Figure 4. The only category to have a higher percentage was “Other Causes”
which includes all incidents caused by unknown factors. Due to the significance of
mechanical damage to pipeline failures, much research has been conducted to better
assess the influence of dents as it pertains to the burst strength of pipes. This study will

focus primarily on dents caused by indentors such as rocks or excavators.
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Figure 1: Causes of Significant Pipeline Incidents on Hazardous Liquid Transmission Pipelines from
1988-2008 (Baker 2009)
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Figure 2: Causes of Significant Pipeline Incident on Hazardous Gas Transmission Pipelines from
1988-2008 (Baker 2009)
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Figure 3: Causes of Significant Pipeline Incident on Hazardous Gas Distribution Pipelines from
1988-2008 (Baker 2009)

Figure 4: Plain dent



Table 1 shows the categories typically used to describe mechanical damage.
Rerounding or spring back is the effect describing what happens after an indenter, such
as a backhoe tooth, is removed. It can be observed that the pipe will attempt to return to
its original shape. There are several methods used by different organizations to assess
the severity of the damage. Table 2 is a list of the current methods used for assessment.
Due to the complexities of gouges and secondary defects, the focus of this research is on
plain dents. Figure 5 is an image of a dent with a gouge. This type of damage occurs
when equipment impacts a pipe and scrapes across the surface causing plastic flow and a

localized reduced wall thickness.

Figure 5: Dent with a Gouge



Table 1: Dent Categories

Dent Category Description
Smooth or Plain Dent which causes a smooth change in curvature
Unconstrained Dent that is allowed to reround
Constrained Dent is restrained from rerounding
Complex (Ij)efnt with a gauge, groove, stress riser, or other secondary
efect

Table 2: Recommended Methods for Assessing the Burst Strength and Fatigue Life of Mechanical
Damage Defects (Cosham and Hopkins 2003)

Damase Tvoe Internal pressure (static) Internal pressure
ge lyp longitudinally oriented (fatigue)
Gouges NG-18 equations, PAFFC; | b 7910 or API 579

BS 7910 or API 579

Dent depth less than 7 or
Plain dents 10 percent of pipe diameter | EPRG
(empirical limit)

Kinked dents No method

No method (empirical

Smooth dents on welds No method L
limits)

No method (empirical

Smooth dents and gouges Dent-gouge fracture model limits)

Smooth dents and other

types of defect Dent-gouge fracture model | No method




Table 2 shows that the criteria for plain dent assessments are based on empirical
limits. These limits come from the idea that plain dents have no effect on burst strength
unless they are significantly deep. Tests compiled from various agencies from 1958 to
2004 verify this assumption (Cosham and Hopkins 2003). Figure 6 shows the results of
the burst tests. Of the 75 tests conducted, only 4 failed at the location of the dent. Dents
as deep as 15% of the outside diameter experienced little effect on burst strength.
Organizations such as ASME, EPRG, PDMA, and British Gas have come up with
different depth limits based on this data. The discrepancy between each organization on

depth limits is an indication as to the validity of the current damage assessment method.
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Figure 6: Maximum Stress of Plain Dents (Cosham and Hopkins 2003)



Depth is not the only factor that characterizes the degree of mechanical damage
within a dent. The geometry of the dent has a significant effect on the dent strain. For
example, a short dent experiences higher strains than a long dent with a similar depth.
This is why organizations such as ASME have developed strain based equations for
integrity assessment. ASME B31.8 uses a 6% strain limit based on limited data and
engineering judgement. ASME B31.8 also offers non-mandatory equations for strain
(Noronha et al. 2010). Due to the complexity of dents, no standard strain equations exist
(Gao et al. 2008). Equations 1-4 are the current equations used by ASME to calculate
strain. €3, &2, and &3 correspond to the circumferential bending strain, longitudinal

bending strain, and extensional strain respectively.

2\R, R,
t
- 2
2= TR,
2
@ =5 (D) ;
37 2\L
eeff=\/e§—exey+e§ 4

Equations 1-3 were developed using the results from a strain analysis on a thin
plate and empirically established from a limited number of tests. There is no record in
the public domain explaining how the equation for effective strain was established (Gao
et al. 2008). By substituting equations 1-3 into equation 4 leads to the equations for
strain in the interior and exterior walls of the pipe. Equations 5 and 6 are the results for

the interior and exterior strains after substitution.



€ = \/E% —€1(e3 + €3) + (€5 + €3)2 S)

€ = \/e% + €;(—€; + €3) + (—€, + €3)? 6

As seen in the above equations, dent strain depends on dent depth, length, wall
thickness, and radius of curvature. Of these variables, radius of curvature is the most
difficult to calculate from a dent profile. There has been much development in the
techniques and equations used to calculate the radius of curvature. The methods have
been incorporated into the current systems used to inspect pipelines. Pipeline operators
use a tool called a pipeline inspection gauge (PIG) to inspect the pipeline geometry.
Figure 7 is an image of a typical PIG. PIGs have caliper-like devices that run along the
circumference of the tool. The PIG is placed into a pipeline and advanced by gas
pressure. As the device moves along the pipe it reads any deviation of the pipe wall from
the undeformed wall location. GPS units on the PIGs allow operators to locate detected
dents.

Data from a PIG along with interpolation techniques are used to find the radius
of curvature within a dent. Various papers offer different methods of interpolating the
data such as B-Splines (Noronha et al. 2010) and the oscillating circle method
(Rosenfeld 1998). The interpolation techniques are used to find the derivatives of the
displacement data. These derivatives are then used to find the radius of curvature by

substituting into Equation 7.

(&) + (@) 7




Figure 7: Pipeline Inspect Gauge (PIG) (Scott 2011)

Once the radius of curvature is known the strains are calculated using equations
1-4 from ASME B31.8. The calculated strains are then compared to the strain limit
provided by the governing agency. This research introduces a new method of mechanical
damage assessment proposed by Blade Energy Partners. The method attempts to use a
damage indicator to predict the onset of cracking within the pipe wall. At this point the
pipe is declared unacceptable and is either repaired or removed from service. The

damage indicator is based on a material property called critical strain.

1.2 Research Objectives

Since the review of the pipeline industry written by Baker, much research has
been done on the subject of mechanical damage. More specifically, research on plain



dents. This has led to the research organized by Blade Energy Partners regarding the
subject of critical strain and the mechanical damage indicator. A denting test has been
designed to validate the new method. The main objectives of this research are to review
the sensitivity of the critical strain calculations and validate the use of laser equipment
for the denting test procedure. The scope of this research will also include an
introduction to the denting test. The research will attempt to complete three tasks. The
first is to assess the method used to calculate critical strain within line pipe. This
includes an assessment of sensitivity of the critical strain value to the amount of data
trimming and to different calculation techniques. The second goal is to review the laser
equipment used to obtain dent profiles. This includes the effects of resolution selection
and amount of scanning to the maximum depth value. The final goal is to review the

denting test and validate the findings.
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2 FRACTURE MECHANICS

2.1 Introduction

During World War 11, the United States supplied ships and airplanes to Great
Britain. The German Navy was destroying the British cargo ships at a substantial rate.
To meet the high demand of cargo ships, a United States construction engineer named
Henry Kaiser developed a new ship-building procedure. The process used welded rather
than riveted construction, a popular method at that time. The ships were given the name
Liberty ships. In 1943, one of the ships broke completely in two while sailing between
Siberia and Alaska. Additional fractures later occurred in other Liberty ships.

The Liberty ship program constructed around 2,700 vessels. Approximately 400
sustained fractures, of which 90 were considered serious. 20 vessels experienced total
failure while around half of those were ships that broke in two halves. The failures
occurred due to the propagation of a crack that began at a corner of a square deck
opening. This event sparked the naval Research Laboratory in Washington D.C. to study
this particular problem. This marked the beginning of a more aggressive study in the
field of fracture mechanics. (Anderson 1995)

Fracture mechanics is formally defined as the study of the formation of cracks in
materials. These cracks can potentially lead to failure at a stress lower than the materials
ultimate strength. Like the Liberty ships, this type of failure can be unexpected and
catastrophic. Failure is typically classified as brittle or ductile. Brittle fracture is
characterized as low energy absorption and small deformation prior to failure. Ductile
fracture is capable of absorbing more energy and sustains significant deformation prior
to failure. Metals that experience ductile fracture fail due to the nucleation, growth and

coalescence of micro voids.

2.2 Ductile Failure

Constance Tipper was the lead investigator of the Liberty ships. She was also the
first to suggest that fracture of single-phase ductile metals originates from non-metallic

11



inclusions within the microstructure. It is well establish from previous research that
ductile fracture occurs by the nucleation, growth, and coalescence of voids within the
microstructure (Argon et al. 1975; Goods and Brown 1978; McClintock et al. 1966;
Puttick 1959; Rogers 1960).

The significance of second phase particles and inclusions was studied by
Rosenfield (1968) and Broek (1973). Rosenfield (1968) concluded that the source of
void nucleation was at the matrix/particle interface at second phase particles. He
determined that flaws, like those suggested by Griffith (1921), were the exception rather
than the norm regarding the initiation site of voids. Similarly, Broek used electron
microscopical examination procedures to study the micro-structure of thirteen different
aluminum alloys. Broek (1973) observed that large inclusions influenced the strain of the
micro-structure, but was not essential to the fracture process. Figure 8 is an image of
void nucleation at large inclusions shown under an optical microscope. He suggested
that small inclusions were the main factor based on comparisons between measurements
of inclusion spacing and dimple size. It has been shown that large inclusions form voids
by cracking of the inclusion particle, whereas small inclusions form voids by particle-

matrix decohesion.

Figure 8: Void Nucleation at Large Particles (Broek 1973)

12



Rogers (1960) attempted to consolidate previous research to provide a more
unified understanding of tensile fracture in metals. He varied different variables
associated with ductile fracture to observe the effect on the microstructure of metals.
Rogers observed that voids nucleated on boundaries both parallel and normal to the
tensile axis. The voids in the transverse direction began at much smaller strain levels.
These voids would grow due to the tensile stress. The growth of the voids caused stress
concentrations near the tip of the larger voids. This would nucleate more voids near the
stress concentration and eventually grow into the larger void, thus perpetuating the
extension of the crack.

Rogers (1960) also noticed severe shear deformation, shown in Figure 9, at
angles 30 to 40 degrees to the tensile axis. He suggested that the shear bands he observed
caused a large amount of voids to nucleate. These “void sheets” weakened the local area
until one of the bands failed. This would extend the crack a finite amount outside the
plane of minimum cross section. The crack, now static, would form more void sheets.
The sheets would fail again but rather than away from the minimum cross section, it
would propagate back into the minimum cross section. This explains the typical chevron

pattern seen on failure surfaces.
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Figure 9: Examples of Shear Bands (Rogers 1960)

This particular mechanism of fracture is only one part of the final failure in
ductile materials. The second part is described by Rogers as “alternating slip” or by
Crussard as “ductile cleavage”. The process is not fracture by definition, but rather a
slipping off of the material due to large plastic deformation. Bridgman (1964), in a series
of experiments testing the effect of hydrostatic pressure on tensile tests, found that the
specimens could nearly reach 100 percent reduction in cross sectional area if high
hydrostatic pressures were applied. It has been suggested that the mechanism of failure
is a balance between slip and fracture. The hydrostatic pressure reduces the growth of
voids and thus shifts the failure mechanism from void nucleation and growth to slip.

Research conducted by Hancock and Mackenzie (1975) found that ductility
depends markedly on both the orientation of the stress system with respect to rolling
direction and the tri-axiality of the stress-state. Hancock and Mackenzie tested notched
specimens taken from a rolled plate. These specimens were taken from the long
transverse and short transverse direction as shown in Figure 10. They found that failure

initiation in the short transverse direction was caused by the connection of large voids by
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microcracks as seen in Figure 11. However, in the long transvers direction failure was
initiated by the coalescence of large voids as shown in Figure 12. The most important
observation made by Hancock and Mackenzie is that the tri-axiality of the stress state
increases as the ductility decreases.

ROLLING

Am; TRANSVERSE

SHORT TRANSVERSE

g =
Agﬂs TRANSVERSE (L T) SHORT TRANSVERSE (ST)
SPECIMEN SPECIMEN

Figure 10: Test Specimen Locations for Hancock and Mackenzie Experiments

The ultimate goal for many researchers is to develop a viable model for ductile
failure. This model should include failure criteria that are based on a global parameter
such as stress or strain. Hancock and Mackenzie suggest using a failure strain as the
limiting criteria for ductile fracture. This critical strain can then be used to assess the
damage created in dented pipelines. Based on the previous discussion, failure is initiated
once a crack has formed within the material. From that point on, the crack will propagate
until total failure occurs. The formation of a crack is evidence of incipient failure and is
a good criterion for integrity assessment of pipelines. The challenge is to develop a

mathematical model that incorporates material properties and complicated stress states.
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Figure 11: Failure Initiation in the Short Transverse Direction (Hancock and Mackenzie 1975)

Figure 12: Failure Initiation in the Long Transverse Direction (Hancock and Mackenzie 1975)
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2.3 Fracture Models

It is well established that ductile fracture occurs by the nucleation, growth, and
coalescence of voids as discussed in the previous section. This has led to the
development of several mathematical models describing the failure of ductile materials.
These models include the work done by McClintock (1968) as well as Rice and Tracey
(1969). These models have been used extensively in the study of ductile fractures. They

are also utilized in the research conducted by Blade on pipeline dent assessments.

2.3.1 McClintock (1968)

Research conducted by Rhine showed similarities between the growth of voids in
copper and plasticine. Rhine used polystyrene spheres to simulate the effects of
inclusions. Fracture occurred between voids when the inclusion density was high. The
similarities between the void growth of plasticine and copper convinced McClintock that
ductile fracture was a continuum mechanics problem. Other theories on ductile failure
existed at the time but many neglected the effects of triaxiality.

McClintock’s model consisted of an elliptical hole in a cylindrical cell. The cell
dimensions were on the order of the mean spacing of the holes. The holes were assumed
not to interact and thus were analyzed as if in an infinite medium. Ductile failure was
assumed to occur when one of the axes of the hole grew to a pair of cell walls.
McClintock first developed equations for the fractional increment in hole diameter for
circular holes in both a Mises and Tresca material. He then used known solutions for
elliptical holes in a viscous material to develop equations for eccentricity and mean
radius. Finally, he extrapolated the equations for elliptical holes in a plastic material and
accounted for the possibility of strain hardening. The results are shown in equations 8
and 9.

17



R_ &8  (V30-n)(ca+0op) (et &)
In— = ———sinh — 3
Ry 2(1—n) 2 o 2
_ (02— 0p) ( 0 (0a — Gb)) (fi)sinh<‘/§(é_n)(%gcb)>
m=-———-— ml——2 2" e 9
(Ga + Gb) (Ga + O'b)

2.3.2 Rice and Tracey (1969)

Rice and Tracey noted the work done by McClintock but sought out to develop a
more realistic model. Their model consisted of a spherical void in a remotely uniform
stress and strain field. The model approximates the solution for cavity expansion in an
infinite rigid-plastic medium by employing a Rayleigh-Ritz procedure. The results
showed that moderate and high stress triaxiality leads to an amplification of relative void
growth rates over imposed strain rates by a factor depending exponentially on the mean

normal stress (Rice and Tracey 1969). The results used for the dent damage model is

shown below.
dR - 30,
? = (0.28de exp (%) 10

2.4 Damage Mechanics

Damage mechanics attempts to simplify the complexities of modeling nucleation
and growth of microvoids by taking a macroscopic approach to ductile fracture. A
damage variable relates the density of defects such as microcracks and cavities to a

failure criterion. Kachanov (1958) was the first to introduce a continuous variable
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related to the density of defects. Ductile failure by the process of void nucleation and
growth is a discontinuous process. The use of damage variables provides a method of
creating a process that is continuous. Damage is classified into three main types: ductile
damage, fatigue damage, and creep damage. Similar to fracture mechanics models,
damage mechanics assumes the material is isotropic. (Voyiadjis 2005)

Damage variables exist in two categories. The first category describes the
amount of damage by the value of the variable. This category is typically defined in
terms of stress, strain, or plastic strain energy. The second category describes the
physical effects of damage. These are defined in terms of porosity, radius of cavities, or
the relative area of micro-cracks and intersections of cavities. Many different damage
indicators have been proposed in the past. The difficulty associated with fracture
mechanics models and some damage models is that they are coupled. This has led to the
implementation of “damage indicators” as defined by Fischer et al. (1995). Fischer notes
that the evaluation of damage is performed for each increment of the elastic-plastic
analysis of a structure. The uncoupling of the damage indicator allows for the analysis of
a perfect structure. This also has the effect of limiting the prediction of the model to the

initiation of a macrocrack.
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3 CRITICAL STRAIN

3.1 Theory

Fischer et al. (1995) developed a method for calibrating a damage indicator to a
standard tensile test, based on micromechanics models. Hancock and Mackenzie used
work done by Rice and Tracey (spherical void) as well as McClintock (cylindrical void)
to establish an equation defining a reference failure strain, &;. Hancock and Mackenzie
suggest the use of Rice and Tracey’s equation for the rate-of-change of the mean void
radius R of a spherical hole in a rigid/non-hardening matrix (Equation 10). They assume
that the failure strain is inversely proportional to hole growth-rate leading to Equation
11, where a is a material constant. The equation is calibrated using critical strain, &,
taken from a uniaxial tension test. Substituting values for 6y, and ¢ and solving for alpha

gives a = 1.65¢,. Substituting o into Equation 11 gives Equation 12.

_ 30m
er=aexp(~37) 11
30m
€r = 1.65¢, exp (— %) 12

The damage is now defined according to the above failure strain by
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When the above damage indicator is equal to or greater than 1 a crack has
initiated in the material. An indicator less than 1 represents a crack free specimen. The
important parameter in the above equations is critical strain, &, Which represents the
point at which a crack forms in the necked region of a tensile specimen. This property
represents the damage limit of the material and the transition from nucleation and growth
of voids to crack propagation within a ductile material. Relating this property to a
damage variable provides an effective and convenient method of modeling ductile
fracture. Fischer et al. (1995) provides a method to calibrate critical strain using a load-
displacement diagram of the material. As noted in the previous section, equation 5 is a
simplified model used to describe ductile damage. Other models have been developed to
improve the analyses in order to better correlate with experimental results. Fisher et al.
(1995) suggest that the simplified model proposed by Hancock and Mackenzie is
sufficient for most applications.

Various researchers have conducted experiments showing the strain at which the
onset of cracking occurs. The difficulty with the research lies in the amount of data and
effort required to find the strain associated with crack initiation. Research done by
Tvergaard and Needlemen (1984) suggested that the point of crack initiation occurs at
the sharp knee of the load-displacement curve shown in Figure 13 (Fischer et al. 1995).
In some cases the load-displacement curve is smooth and does not contain a sharp knee.
To study the smooth load-displacement curve, Fisher et. al. (1995) developed a
simulation of a round bar tensile test. The numerical analysis, performed using
ABAQUS, resulted in a numerical load-displacement curve and corresponding
inclination curve as shown in Figure 14 and Figure 15 respectively. They concluded that
the onset of a crack can be diagnosed either by the sharp knee in the load-displacement
curve or by a second knee in the slope-displacement curve. The same knee can also be
found in an engineering stress-strain curve based on the fact that both curves have the
same shape. Once the critical strain is found from the engineer stress-strain curve or
slope-strain curve, the true strain is calculated using the instantaneous diameter of the

tensile specimen.
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3.2 Critical Strain Evaluation Process

The research done by Fischer et. al. (1995) has theoretically shown how to find
critical strain from load-displacement or stress-strain data. How to locate the point
programmatically and consistently is a different matter. The theory offers two ways to
find the critical strain location. The first is by locating the change in the parabolic shape
of the stress-strain curve. The second is by finding the knee in the slope-strain curve.

This section will look into the various methods used to find critical strain.

3.2.1 Critical Strain from Stress-Strain Curve

A typical stress-strain curve from the test specimens is shown in Figure 16. The
data taken after the ultimate tensile stress should indicate a change in the path of the
parabola similar to that shown in Figure 13. The result is essentially two parabolas

meeting at the critical strain point. Figure 17 is a closer look at the data beginning at the
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ultimate tensile stress location. It is clear from the figure that there are two distinct
parabolas within the curve. This provides the first process at which to find the critical
strain. Fit two parabolas to the data and find where they intersect. The intersection point
is the critical strain of the material. The algorithm involves incrementally stepping
through the data points and fitting two parabolas through each side of the current data
point. The correct parabolas are identified when the minimum error between the data and
fitted parabola is found using a least squares approach. The MATLAB code developed
for the study can be found in APPENDIX A.
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Figure 16: Engineering Stress-Strain Curve
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Figure 17: Critical Stress-Strain Data

3.2.2 Critical Strain from Slope-Displacement Curve

Figure 18 is a plot of the derivative of the stress-strain curve shown in Figure 17.
The second method considered for calculating critical strain is fitting two lines to the
slope-strain curve. The two lines will intersect at the critical strain value. This is similar
to what Fischer et. al. (1995) shows in Figure 15. The difficulty with this method lies in
the numerical differentiation required to calculate the first derivative of the stress-strain
curve. Figure 19 is an example of the results for the critical strain using the slope-
displacement curve. Many different numerical methods exist each with a unique
parameter used for fitting or smoothing. The goal of this research is to see how these
parameters affect the critical strain value and what the optimum values are for each

parameter. Numerical differentiation is covered in the next section.
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3.3 Numerical Differentiation Techniques

The research conducted by Fischer et. al. (1995) has shown the critical strain is
located at the knee of the stress-strain curve or at the second knee in the derivative of the
stress-strain curve. Figure 15 shows that after incipient necking, a straight line occurs on
the slope-displacement curve beginning at necking and ending at failure. When a
microcrack forms, the straight line is bent and a knee is formed. The knee is indicative of
a change in the failure process. Before the knee, the primary source of deformation is the
growth and coalescence of microvoids. After the knee, the deformation process changes
to the propagation of the microcrack that has formed in the center of the specimen.

Figure 16 shows the stress-strain curve from a typical tensile test. Only the data
after the ultimate tensile stress is required for the critical strain analysis. This comes
from the fact that the theory states the knee will occur after incipient necking which
begins at the ultimate tensile stress. Figure 17 is a plot of the data from the ultimate
tensile stress to the failure stress. The curve is parabolic in shape which will become a
straight line when differentiated or in the case of this research, two lines similar to that
shown in Figure 15.

Analysis of experimental data most often uses numerical methods to approximate
operations such as differentiation and integration. Data is considered an unknown
function thus eliminating the possibility of using closed form solutions for
differentiation. As discussed previously, the stress-strain curve does not always show a
clear and distinct knee. Under these circumstances the slope-strain curve is examined for
a second knee signaling the onset of a microcrack. To examine the slope-strain curve, an
approximation of the derivative is developed using numerical differentiation techniques.

The problem of numerical differentiation is known to be ill posed in the sense
that small perturbations of the function to be differentiated may lead to large errors in the
computed derivative. Figure 20 is a close up view of the engineering stress-strain curve.
The figure shows some inherent noise associated with the data. The techniques used for
numerical differentiation fall into three categories: difference methods, interpolation
methods and regularization methods (Ramm 2001). These methods are also classified
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into two broad categories: local and global (Ahnert 2007). Local methods work by fitting
or interpolating data on a subinterval of the domain. Global methods estimate the

derivative based on the entire interval or domain.
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Figure 20: Close Up View of Stress-Strain Curve

3.3.1 Finite Difference Methods

Finite difference formulas are local methods easily derived from Taylor series
expansions shown as Equation 15. Any continuous differentiable function ®(x) can, in
the vicinity of x;, be expressed as a Taylor series. By replacing x by x;,, or x;_; in the
expansion, one obtains expressions for the variable values at these points in terms of the

variable and its derivatives at x;. Rearranging the Taylor series expansion leads to
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Equation 16. The first term in Equation 16 is a finite difference approximation and is
typically referred to as the first-order forward difference method. The second term is the
error term. Similarly, the first-order backward difference is obtained by expanding f;_;
about x; and is shown in Equation 17. One of the most commonly used finite difference
methods is the central difference method shown in Equation 18. This method is obtained
by subtraction of two Taylor series expanded at x;,; and x;_;. (Ferziger 2002; Moin
2010)

(x] +1 7 )

fQe1) = £() + Gn = x)f'(35) + () + - 15
() = f(x,+1) f(xj) 25 ) 4 "
fi = % +0(h) 17
fi = E+12hﬂ %;E"'+‘“ 18

Higher accuracy is obtained when a uniform spacing is used with the finite
difference approximations. When used with non-uniform step sizes, such as the data
collected for this research, the degree of accuracy is decreased due to fewer cancellations
in the Taylor series expansion. Assuming the step sizes are more or less equal, the results
of the differentiation of Figure 17 using finite differences are shown in Figure 21. As can
be seen in Figure 21, the forward difference method amplifies noise in the data and

obscures the true shape of the derivative.
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Figure 21: First-Order Backward Difference Method

Research conducted by Singh (2009) developed a method for using finite
differences with unequal subintervals. The paper discusses how finite differences have
developed over the years to include closed form solutions that can give approximations
of arbitrary order. These formulas were developed using equally spaced grid points. The
case of unequal grid points is examined due to the nature of experimental data. Much of
the experiments involve an independent variable that is difficult to control during the
experiment, thus leading to unequal data intervals. In the case of this research, the
unequal data points are the strain values. This is due to the displacement control of the
test frame. The load actuator is set to move at a specific strain rate, but the data points
are not exactly equal strain intervals because of the strain associated with the test frame

itself. The clip gauge used to calculate strain will read different strain steps than the
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displacement of the test frame. Equations 19-21 are the closed form solution for the three
point finite difference formula. The results of the three and four point finite difference
method for unequally spaced intervals are shown in Figure 22 and Figure 23

respectively.

2h, + h, hy + h, h,

P00 = b © Tk, T Gy o+ by 2 19
h, h; —h, hy
£/(x)) = ——2 f, — f f
(1) hy(hy +hy) ° hh, * (h; + hyh, 2 20
h, hy + h, h, + 2h,
£/(xp) = ——2 f, — f
(x2) h;(hy +hy) ° hh, * (h; + hyh, 2 21

The true derivative of the function is hidden within the amplified noise caused by
the numerical differentiation. This is unacceptable for the critical strain analysis as it will
cause unreliable results. Assuming equally spaced grid points and using the previous
formula provides a more reasonable look at the derivative. This method is used in this
research as one of the methods for calculating critical strain.

Research done by Chartrand (2011), Ahnert (2007) and Ramm (2001) discourage
the use of finite differences as a differentiation technique. The advantages of finite
differences are in the simplicity of the method and ease of implementation. The scheme
iIs most commonly used when the function is smooth and well known. In cases where
there is noise in the data, the finite differences method amplifies the noise. In the study
done by Anhert (2007), finite difference is described as orders of magnitude off from
other methods and is only used in the research as a worst case demonstration. Similarly,

finite difference is used as a worst case demonstration for calculating critical strain.
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3.3.2 Savitzky-Golay-Filtering Method

Savitzky and Golay (1964) wrote a paper describing a new method for filtering
digital signals or test data. The goal of any filtering algorithm is to eliminate noise while
preserving the integrity of the original signal or curve. The Savitzky-Golay filtering
method is similar to the moving average method. A subset of the data is selected around
the target point. A best fit approximation is made of the function using a least squares
method. The fit is made to a polynomial appropriate for the selected curve. The
derivative at the target point is the derivative of the best fit polynomial. The “window” is
then shifted over by one data point and the process is repeated.

This procedure is considered very effective and is used often for numerical
differentiation. The key idea of Savitzky—Golay filtering is the conservation of higher
statistical moments. A simple moving average always reduces the height of a local
extremum. Due to the mentioned conservation property, the Savitzky—Golay filter shows
this reduction to a much less extent. Smoothness, however, is not guaranteed and the
derivative can be discontinuous, which is not desirable for an estimate useful in physical
problems where the function is typically required to be smooth. (Ahnert 2007)

Juliano et al. used a numerical analysis technique to take the derivative of the
load-displacement curve in an effort to find certain events during the loading and
unloading of fused silica. The numerical first derivative at a depth of hy was taken to be
the slope of the least-squares fit between load-displacement data points and is given in
Equation 22. A closer examination of the equation reveals that it is simply the Savitzky-
Golay filtering method using a linear best fit. A simplified version for easier
computation presented in the paper is given as Equation 23 which is simply the central

difference method described in section 3.3.1. (Juliano et al. 2004)
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The size of the window used acts like a smoothing parameter. The larger the
window used for the least squares fit the smoother the derivative. Figure 24 is the
derivative calculated using a window size of 25 points. This window was moved point
by point taking the slope of a parabola fitted through the points of the window. The same
was done for Figure 25 with the exception that the window size was 207 points wide.
Notice the increased amount of smoothing shown in Figure 25. This smoothing
parameter should be optimized so that the critical strain value calculated is consistent
and reliable.

3.3.3 Regularization Methods

Typical finite difference approximations will greatly amplify any noise present in
test data. Denoising the data before or after differentiating does not generally give
satisfactory results. The example below (Figure 26), taken from Chartrand (2011), shows
how finite difference (top right) amplifies the noise and does not accurately reflect the
true derivative. Even after denoising the data before using finite differences (bottom
left), the data is still inaccurate and noisy. The regularization technique (bottom right)

accurately shows the derivative, including the jump, with very little associated noise.
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Regularization is a technique implemented in mathematics and statistics to solve
ill-posed problems or to prevent overfitting. The computed derivative will have some
degree of regularity based on the chosen parameters. The most common regularization
technique used is the Tikhonov regularization. The derivative is the minimizer of the
functional shown in Equation 24. This method is essentially a penalized least squares
method. The penalty function acts with a smoothing parameter to penalize the least
squares fit. For example, by using the curvature as a measure of smoothness, one can
penalize a least squares fit for roughness. A great advantage to the regularization

technique is it can be solved using matrix arithmetic rather than loops. (Eilers 2003)
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F(u) = aR(u) + DF(Au — f) o4

In the paper by Strickel (2010) the theory of regularization is explained in detail.
As previously noted, the functional has a goodness-of-fit term defined in Equation 25
and a “roughness” term given by Equation 26. The derivative in Equation 26 is of order-
d. The correct order for the purpose of this research is three. Stickel (2010) recommends
using two orders higher than your required order. Therefore, since the first order
derivative is required for critical strain, a third order derivative is used in the functional.
Since both of the terms below cannot be minimized simultaneously a compromise is
needed. This is done with the introduction of a weighting parameter A. The final form of
the functional is shown in Equation 27. One of the major advantages to this technique is
the use of matrices to evaluate the function that minimizes the functional Q(¥). Equation
27 can be expressed in matrix notation and is shown in Equation 28. For implementing
the method in MATLAB, the reader is referred to the work done by Eilers (2003).

;NW(X) — y()I2dx .
[lptcorax .
Q) = j TNI?(X) — yGPdx + j TN|9d<x>|2dx )
Q= -y)"BF —y) +A(DY)"B(DY) 28
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4 PROPOSED NEW DAMAGE ASSESSMENT METHOD

The new damage assessment method proposed by Blade Energy Partners is an
attempt to simplify and expedite the evaluation of mechanical damage severity.
Currently, engineers rely on FE analysis to evaluate severe dents. A report from an in
line inspection tool could have thousands of detected dents. There is a need for a system
that can quickly and accurately prioritize and flag severe damage. FEA is time costly and
requires specialized and experienced engineers to use. This proposed method could
provide a simplified means for delegating the use of such a time costly tool.

The strain equations used for dent assessment have been reviewed and modified
do to errors with various assumptions. Equations 1-3 are the ASME B31.8 (2003)
equations. Because of possible complications in dent profile, other formulas in the open
literature or those derived by qualified engineers are also allowed by the ASME code.
The majority of the information in this section was found in the comprehensive review
of strain-based models for dent assessment compiled by Gao et. al. (2008). For more
information regarding strain-based dent assessment, readers are referred to the above
resource.

Noronha et. al. (2010) identified that ASME B31.8 (2003) overestimates the
circumferential and longitudinal bending strains by a factor of 2. Noronha et. al. (2010)
identified the error as a failure to divide the wall thickness in half. This has since been
remediated in the 2007 version of ASME B31.8. In addition to errors associated with the
bending strain, Noronha et. al. (2010) found that the combined strain equations
(Equations 5 and 6) were derived using incorrect plane strain assumptions leading to
inaccurate results. Noronha et. al. (2010) suggests modifications to correct this error.

The first modification is to use the von Mises strain shown in Equation 29. The
elastic strains are assumed negligible within the dent profile thus assuming all strain
within the dent region is plastic. Plastic flow is characterized as incompressible or no
volume change. This allows poisons ratio to take on the value of 0.5, the value for zero

volume change. Substitution of v = 0.5 into Equation 29 gives Equation 30. g, g, and g
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are the principal strains which are assumed to act in the circumferential and longitudinal
directions of the pipe. gy is assumed zero. The principal strains are then found by
combining €3, €&, and &3 which are calculated as before. The principal strains are
substituted into the equivalent strain equation leading to Equations 31 and 32 . These
give the strain on the inside and outside faces of the pipe. They are nearly identical to

Equations 5 and 6 except for the 2/3 coefficient in front of the square root.

€eqv = %—I—v\/% [(e; — €m)? + (e — enp)? + (e — €)?] 29
€eqv = g\/(el —e)? + (e — en)? + (e — €1)2 30
€ = g\/e% —€1(€2 + €3) + (€ + €3)2 31
€ = ;\/ef +e1(—€; + €) + (—€; + €3)2 32

The second modification is to assume that the strains within the dent region are
mostly plastic. This means that the incompressibility condition of plasticity applies.
Equation 33 shows the incompressibility condition. In the previous equations, plane
strain was assumed and g;;; was set equal to zero. Using the incompressibility condition,
the value for g, is dependent upon the values of g and g,. Substitution of gy into
Equation 30 gives Equation 34, the new equivalent strain. By substituting &;, €, and &3
as done before, the new equations for the inside and outside surface strains are obtained.

These are shown as Equations 35 and 36.
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€1 + €11 + € = 0

— 2 2 2
€eqv = ﬁ\/el + €€ + €7

2
€ = ﬁ\/ef + €,(€; + €3) + (€, + €3)2

2
€ = ﬁ\/ef —€1(—€; + €3) + (—€; + €3)?

33

34

35

36

Noronha et. al. (2010) compared the different modified equations to the results

from an FE analysis to show the influence of the various assumptions. The results are

reproduced in Table 3 and Table 4 for inner and outer surfaces respectively. The results

show that the ASME and von Mises equations severely underestimate the strain within

the dent.

The equations

incorporating the

incompressibility condition slightly

overestimate the strain on the inner surface and slightly underestimate the strain in the

outer surface. Despite the improvements to the strain equations, they still differ from FE

results. The current ASME equations appear inaccurate.

Table 3: Combined Strain Versus FE von Mises Strain, Inner Surface (Noronha et al. 2010)

d/OD (%) | ASME B31.8 (%) | Plane Strain (%) Radial Components (%) FE (%)
6 6.41 4.27 12.18 10.69
12 6.41 4.27 12.67 10.37
18 6.16 4.10 12.20 10.15
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Table 4: Combined Strain Versus FE von Mises Strain, Outer Surface (Noronha et al. 2010)

d/OD (%) | ASME B31.8 (%) | Plane Strain (%) Radial Components (%) FE (%)
6 6.33 4.22 10.54 11.88
12 6.26 4.18 9.08 11.76
18 6.09 4.06 8.40 11.03

Czyz et al. (2008) described an alternative method that combines mathematical
algorithms and FEA tools for dent strain calculations. The authors suggest that generic
FEA programs designed to solve equations are inaccurate for pipe damage with a known
deflected profile. Their approach uses a shell model with two degrees of freedom in the
middle of the pipe wall. The FE analysis provides the deflections, u and v, in the xy
plane. The deflections, w, in the radial direction are given by the high resolution in line
inspection (ILI) tool. The results from the two analyses are used to solve equations 37-45
to find the equivalent strain. Strains in a pipe wall consist of longitudinal and
circumferential components. Each component can be further broken down to bending
and membrane strains.

Figure 28 shows the strain components in a pipe wall proposed by the authors.
Equations 37 and 38 are the bending strain in the longitudinal and axial directions
respectively. The bending strains are a function of the distance from the neutral axis of
the pipe wall, Z. The maximum bending strain occurs at the wall surfaces half the
thickness away from the neutral axis. Equations 39, 40 and 41 are the equations for the
membrane strain in the longitudinal, axial and shear strains in the xy plane. The
membrane strain requires the displacement data from the FE results. The membrane and
bending strains are combined in the x and y directions as shown in Equations 42 and 43.
The x and y strains are then used in Equations 44 and 45 to calculate equivalent strain.
The equations for equivalent strain are derived directly from plastic strain theory with an
incompressibility condition. As noted previously from the work done by Noronha et. al.

(2010), the pipe wall is considered a thin plate and therefore is considered a plane stress
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and not a plane strain condition. Gao et. al. (2008) compared the ASME B31.8 and the
Lukasievicz and Czyz et. al. methods and found two major differences.

The first major difference was the effective strain. ASME B31.8 equates the
shear strain to zero and has a sign difference in the mid-term ece,. Czyz et. al.
demonstrated that the difference in effective strain can be more than 50% with the
assumption that the shear strain term is equal to zero. Gao et. al. (2008) compared the
two equations using data from the dent study reported by Baker (2009). The results are
reproduced in Table 5. The ASME equations underestimated the effective strain by a

factor of 2.0 and 1.8 for the inner and external surfaces respectively.

Table 5: Difference in the Calculated Effective Strain Between Eq. 4 and 44 (Gao et al. 2008)

Case 1 Case 2 Case 3

Strain €1, Circu.mfe.rential Be_nding 2.3% 2.3% 2.3%
Component €,, Longitudinal Bending 1.1% 1.5% 2.2%
€3, Longitudinal Membrane 0.59% 0.8% 1.0%

Inner ASME B.31.8 2.10% 2.29% 2.92%

Surface Lukasievicz 4.06% 4.58% 5.64%
Effective Difference 193.8% 199.9% 193.1%
Strain External ASME B31.8 2.13% 2.08% 2.03%
Surface Lukasievicz 3.05% 3.18% 3.59%
Difference 143.4% 153.1% 177.2%

X Z
w
X

Figure 27: Coordinate System of the Pipe and Displacement Components (Gao et al. 2008)
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Figure 28: Strain Components in a Pipe Wall (Gao et al. 2008)
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The second major difference was with the membrane strains. ASME B31.8 uses
equation 3 to calculate longitudinal membrane strain. The equation uses dent length and
depth and does not require the dent profile. Rosenfeld (1998) introduced a method for
calculating longitudinal membrane strain. The method assumes the membrane strain
distribution is approximately the same as the radial (in-plane) displacements of a circular
plate subject to point loading. This method accounts for the displacements on the pipe
surface seen in FE analyses. Equation 46 is the strain distribution given the above
assumption. Using various assumptions the membrane strain is calculated using equation
47 with the arc length calculated using equation 48. Both ASME B31.8 and Rosenfeld
(1998) ignore the membrane strain in the circumferential direction. Lukasievicz and
Czyz et. al. noted that Rosenfeld’s formula is not based on shell theory and is simplistic
and inaccurate. They also go on to show that the circumferential membrane and shear
strains can have similar magnitudes to the longitudinal strain. Gao et. al. (2008)
suggested improvements to the ASME B31.8 methods including adopting the strain
formula suggested by Lukasiewcz and Czyz et. al. for total strain, improve the

longitudinal strain calculations, and consider circumferential strain.

du u (dW)Z

ar ar 46
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€xi » 47
2

Ly = ((z+w); = (z+w))? + Wiyq — w)? 48

Arumugam et. al. (2012) conducted a case study of a 30 inch natural gas pipeline
segment. The pipe had been inspected by TransCanada Pipeline Limited (TCPL) with a
Combo tool. A combo tool is similar to a PIG with the exception that the tool also
detects gouges, cracks and metal loss. The tool uses an additional sensor that detects the
magnetic flus leakage (MFL) caused by these types of defects. The tool found a 2.7%0D
dent at the bottom of the pipe. The MFL detected by the tool reported 76% metal loss.
Based on the depth and MFL information it was determined that the metal loss feature
was most likely associated with a crack. An extensive study was conducted including
strain calculations using the modified equations noted above and FEA results. Strains
were calculated using ILI, laser scan, and hand profiles. The goal of the study was to
find the root cause of the cracking found when the damage was uncovered. The dent was
caused by a rock found during excavation. The pipe experienced spring-back causing
differences in the reported profiles and depths. The laser profile was scaled to match the
ILI data eliminating the effects of the spring-back.

The new assessment method uses a ductile failure damage indicator (DFDI) to
assess the severity of the dent. The DFDI is based on the tri-axial stress field, equivalent
Von Mise’s stress and critical strain. The DFDI was calculated using the results from an
FE analysis. The results are reproduced in Table 6. Arumugam et. al. (2012) showed that
the DFDI had a value greater than 1 and that the geometric strain and FEA strains were
in good agreement (< 8%). The results showed that according to the DFDI the internal
surface was susceptible to cracking. The principal stress contour plots and the actual
crack path are reproduced below in Figure 29. The crack paths showed good agreement

with the predicted crack paths from the FE results thus validating the DFDI model.
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Table 6: Maximum Eqv. Strain DFDI (Arumugam et al. 2012)

Profile Geometric Strain | FEA PEEQ Strain Max. DFDI

LaserScan Internal 32.3% 35.0% 1.1

Figure 29: Maximum Principal Stress Plot and Actual Crack Path (Arumugam et al. 2012)

It has been shown in the previous discussion that many of the methods depend on
FEA results for implementation. The strains calculated using the methods proposed by
Lukasievicz and Czyz et. al. requires FEA to calculate longitudinal displacements for
membrane strain and even the DFDI method uses the principal stress from an FE model.
FEA has proven to be an effective tool for the damage assessment of pipelines. FEA is
specialized and time consuming making it costly to use for many dents. It is for this
reason that Arumugam et. al. (2012) has proposed a simplified DFDI approach that does
not require the use of FE models. The method is designed to provide a tool for rapidly
assessing and prioritizing pipeline damage.

The geometric strain using modified equations does not require FEA results and

shows good agreement with the strains calculated using FEA. Arumugam et. al. (2012)
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proposed using two extreme conditions to develop an upper and lower bound for DFDI.
The first condition is bi-axial loading (o; # 0,0, = g;,03 = 0) and the second is uni-
axial loading (o # 0,0, = a3 = 0). For a thin-wall pipe under internal pressure the
DFDI equation reduces to equations 49 and 50. Using the simplified equations the study
found that the upper bound of 1.0 was in good agreement with the value of 1.1 found
using FEA results. The study validated the results and justified the progression to the
current study which has the final goal of validating and implementing the simplified

DFDI approach as a viable method for dent assessment.

€
DFDIupperbound = ( sz) 49
1.6
€
DFDlswerbouna = :_;117 50

The current denting test was conducted to validate the DFDI approach and verify
the need for additional testing. For this study, the results from the test are still under
review and therefore a clear conclusion cannot be made regarding the validity of the
simplified DFDI approach. The purpose of this study was to evaluate the denting process
and its ability to accurately confirm the effectiveness of the DFDI. A detailed description
of the procedures and parameters used for the critical strain, laser evaluation and denting

test can be found in the following section.
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5 TESTING PARAMETERS AND PROCEDURES

5.1 Ciritical Strain

The critical strain phase of this research required finding the material property
known as critical strain. To accomplish this, the true stress and true strain curves were
required. A machine vision system was used to assist in the tracking of the sample
diameter as the specimen was loaded. The combined data from the test frame and camera
system was used to analyze and calculate the critical strain for the pipe material. Testing
for all phases of the research was performed in the Zachary Department of Civil
Engineering, Structural and Materials Testing Laboratory at Texas A&M University,
College Station, TX.

5.1.1 Specimen

The critical stain section of the project involved investigating the most accurate
means of calculating a materials critical strain value. The investigation was conducted
using sample material salvaged from the scrap end of the dented pipe. Five specimens
were cut in the axial direction from th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>