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ABSTRACT 

 

 

Inclusive design is a concept intended to promote the development of products 

and environments equally usable by all users, irrespective of their age or ability. This 

research focuses on developing a method to derive heuristics for inclusive design. The 

research applies the actionfunction diagram to model the interaction between a user and 

a product, design difference classification to compare a typical product with its inclusive 

counterpart, graph theory to mathematically represent the comparison relations, and 

graph data mining to extract the design heuristics. The goal of this research is to 

formalize and automate the inclusive-design heuristics generation process.  

The rule generation allows statistical mining of the design guidelines from 

existing inclusive products. Formalization results show that, the rate of rule generation 

decreases as more products are added to the dataset. The automated method is 

particularly helpful in the developmental stages of graph mining applications for product 

design. The graph mining technique has capability for graph grammar induction, which 

is extended here to automate the generation of engineering grammars. In general, graph 

mining can be applied to extract design heuristics from any discrete and relational design 

data that can be represented as graphs.  

Concept generation studies are conducted to validate the heuristics derived in this 

research for inclusive product design. In addition, an inclusivity rating is created and 

verified to evaluate the inclusiveness of the conceptual ideas. Finally, appreciation and 



 

 

 iii 

awareness about inclusive design is important in an engineering design course, hence, a 

module is compiled to teach inclusive design methods in a capstone design course. 

The results of the exploratory study and validation show that there is problem 

dependency in the application of the representation scheme. It cannot be stated with 

certainty at this point if the representation scheme is helpful for designing consumer 

products, where only the activities related to the upper body are involved. However, self 

reported feedback indicates that the teaching module is effective in increasing the 

awareness and confidence about inclusive design.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Forty-nine million individuals over the age of fifteen in America report having a 

disability [1]. The number of individuals with a disability constitutes almost 16 percent 

of the total population. This number represents approximately one in every seven 

Americans. Based on current demographic trends, particularly the aging population, the 

number of people with disabilities is expected to increase in the foreseeable future.  

Nonetheless, people with a disability are often an underserved segment of the 

population and an underused resource [2]. Disability is seen as a result of an interaction 

between a person and that person's environment and contextual factors [3]. Given that 

disability is viewed in the context of the built environment, a better design of this 

environment helps to reduce the disability faced by an individual. Designers demand 

more specific examples of, and methods for, good inclusive design [4].  

Within the overarching goal of inclusive design, the specific goal of this research 

is to establish a product representation framework for modeling the existing inclusive 

design information, and to develop a method to create inclusive design heuristics. In 

addition, derive inclusive design heuristics that are applicable in the early stages of 

product development, and validate those heuristics. The research applies the 

actionfunction diagram to model the interaction between a user and a product, design 

difference classification to compare a typical product with its inclusive counterpart, 

graph theory to mathematically represent the comparison relations, and graph data 
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mining to extract the design heuristics. The goal of this research is to formalize and 

automate the inclusive-design heuristics generation process. In addition, the potential of 

clustering for creating inclusive design product families is explored.  

Engineering graph grammars is a very powerful tool for computational design 

synthesis. However, one of the major difficulties lies in deriving the graph grammar 

rules. Currently, the engineering grammars, or design heuristics in general, are compiled 

by an expert based on the empirical knowledge. The graph mining technique has 

capability for graph grammar induction, which is extended here to automate the 

generation of engineering graph grammars. In general, graph mining can be applied to 

extract design heuristics from any discrete and relational design data that can be 

represented as graphs.  

In addition, an inclusivity rating is created and verified to evaluate the 

inclusiveness of the conceptual ideas. A module is compiled to teach inclusive design 

methods in a capstone design course to develop appreciation and awareness about 

inclusive design in an engineering design course. The subsequent part explains the work 

proposed for this research.  

Scope of the Work 

Figure 1 explains the scope and the major parts of this dissertation. The scope of 

study includes generation, and validation of heuristics for inclusive design. The 

generation of heuristics involves establishing a product representation framework and 

developing a heuristics extraction procedure.  
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Figure 1. The scope of work and major parts of this dissertation  

Chapter II and Chapter III consists of establishing a product representation 

framework to facilitate repeatable modeling of the design data. The representation 

framework allows expansion of the inclusive design repository, which is created for 

building a knowledge base of existing inclusive solutions. In addition, a product pair 

comparison method is established to compare existing inclusive products with its typical 

counterparts. 

The heuristic extraction procedure includes a computational method to find the 

trends from the inclusive design repository, as explained in Chapter IV, Chapter V, 
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Chapter VI, and Chapter VII. The objective is to replace the need for human 

interpretation with machine learning to obtain statistically significant heuristics. The 

procedure is formalized and automated for quick extraction of heuristics from the 

updated inclusive design repository. In addition, the trends in the generation of rules are 

analyzed to explore that a finite set of inclusive design heuristics can be captured from 

an arbitrarily large and varied set of products. Further, the derived heuristics are 

analyzed in detail to evaluate their potential for transferability and reuse from one 

product to another. Specifically, the products from inclusive design repository are 

clustered based on the applicable heuristics to develop inclusive product families. 

Finally, the automated heuristics generation method is tested for automated graph 

grammar induction for other engineering design research. 

The heuristics obtained in this research needs validation to test its applicability 

for inclusive design, which is explained in Chapter VIII, Chapter IX, and Chapter X. 

Concept generation study is conducted to test the hypothesis “application of 

actionfunction diagrams and inclusive design heuristics helps to generate better ideas 

for inclusive design.” Participants are asked to generate ideas for inclusive products with 

and without inclusive design heuristics. The difference in the inclusiveness of ideas 

generated in the two conditions is compared.  

Ideation metrics have been developed for measuring quantity, quality, novelty, 

and variety of the generated concepts [5-7]. Currently, we do not have a pre-defined 

rating to measure the inclusiveness of a design. An inclusivity rating is created to 
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evaluate the inclusiveness of a conceptual idea and the rating is tested for the inter-rater 

reliability before application for this research.  

The capstone design curriculum does not emphasize on design for disability or 

inclusive design. It is important to develop an appreciation and awareness about user-

centric design in engineering students. A module is compiled to teach mechanical 

engineering undergraduate students the essence of and the methods for inclusive design.  

Background and Related Work  

This part explains the background of this research and some related work. The 

sub-parts describe the relevance of inclusive design, data mining, graph mining, and 

computational design synthesis as applicable to this research.  

Inclusive Design 

Inclusive design is a concept intended to promote the development of products 

and environments to be used effectively by all users without adaptation or stigmatization 

[8]. Inclusive design is also referred as universal design, design for disability, design for 

all, or accessible design by other researchers. The landscape of inclusive design 

literature is vast and contains significant coverage of historical and social context [9].  

A team of researchers organized through the Center for Universal Design at 

North Carolina State University has compiled seven principles of universal design [8]. 

These principles have been well received by designers in a range of disciplines. 

Vanderheiden has developed a set of guidelines for the design of consumer products 

[10]. These guidelines primarily focus on the accessibility of standard computer 

hardware and software for people with disabilities. Housed in the Center for Inclusive 
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Design and Environmental Access at the University of Buffalo is an active group of 

researchers with focus on inclusive design [11, 12]. Though this group focuses on 

architectural design and comes from an architectural background, it has performed 

research on appliances and other applications that extend to product design. 

A team of researchers at the University of Cambridge has produced 

implementable results for inclusive product design [13, 14]. The focus of the Cambridge 

research group has been in modeling user groups, creating product assessment methods, 

and extending the needs of inclusive design to modern product design processes. 

Recently, the researchers at Cambridge has compiled an inclusive design toolkit which 

consists of design process checklist, integrated design log, business case materials, 

exclusion calculator, simulation gloves and glasses, impairment simulator software [15].  

Several conferences have been organized the past decade on inclusive design or 

universal design. The Universal Design Summit is a national conference organized every 

two years to foster community integration and participation [16]. The International 

Conference on Aging, Disability, and Independence (ICADI) promotes approaches that 

support people as they age to maintain independence in daily living at home, at work, 

and in the community [17]. The International Association for Universal Design (IUAD) 

in Japan has arranged three international conferences on inclusive design to support 

designs that incorporate facility for fair inclusion of the diverse population [18]. An 

international conference on inclusive design, namely Design for 21st Century, aims for 

development towards inclusive future and offers a platform for a growing number of 

practitioners of inclusive design [19]. Such conferences provide valuable information 



 

 7 

and sources for inclusive design of products and environments. Of note, the primary 

focus of these conferences is on the accessibility of the built-in environment and public 

spaces.  

In summary, significant effort has been put into improving design for those with 

a disability. Nevertheless, inclusive design remains an open challenge with more 

knowledge and discovery needed to better enable the design of products and services for 

all potential users. There is still opportunity for significant contributions to be made in 

areas focused on early design issues and decisions. 

Measurement of Inclusive Design 

The ideation metrics to measure the creativity in terms of quantity, quality, 

novelty, and variety have been researched thoroughly and implemented widely [6, 7, 20-

25]. However, there are no studies reporting any rating for inclusive design at the 

conceptual level. Researchers at University of Cambridge have developed an exclusion 

calculator which gives a detailed percentage of population excluded [15, 26]. While the 

exclusion calculator is a great tool for evaluating a preliminary design or a prototype, 

evaluating over a thousand conceptual designs at feature-level with the exclusion 

calculator is extremely impractical.  

Mullick implemented a usability rating scale and an environmental functional 

independence measure to quantify the universal design of a bathroom [27]. Both the 

measures implemented by Mullick work well for fully functional prototypes and involve 

observation of the user interacting with the product. Talley et al. tested the application of 

Universal Design Performance Measure for Products (UDPMP), which was originally 
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developed by the Center for Universal Design [8, 28]. However, UDPMP is applicable 

to the existing products or physical prototypes but not applicable to the ideas at 

conceptual stages. Thus, prior research efforts in measuring inclusive design have been 

focused on existing products or preliminary designs. A rating to measure inclusiveness 

of conceptual designs is required for benchmarking and comparing concept generation 

among the various methods developed for inclusive design.  

Data Mining  

Manual analysis of valuable information for decision-making becomes difficult 

as the database of available information grows [29]. Data mining, a method for 

extracting patterns of interest from large databases, has application in various fields such 

as market basket analysis, decision support systems, time series analysis, customer 

relation management, earth geophysics, atmospheric science, and sky survey cataloging 

[30, 31]. Product design data is discrete and irregular. Data mining helps to extract 

useful information from such databases that cannot be studied analytically. This research 

builds on the usefulness of data mining in the context of research in engineering design.  

Association Rule Mining 

Association rule learning is a data mining technique that finds associations 

between variables in large data sets. Association rule learning mines data organized as 

transactions of items. The data contains which is a set of categorical 

attributes called items and  which is a set of transactions. Each 

transaction in T contains a subset of the items in I. An association rule is defined as an 

implication of the form  where  and . The itemsets  and  

� 

I = {i1,i2,...,in}

� 

T = {t1,t2,...,tn}

� 

X ⇒ Y

� 

X,Y ⊆ I

� 

X∩Y = ∅

€ 

X

€ 

Y
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are called the antecedent and consequent of the rule, respectively. Association rule 

mining is a developing research area with very few applications developed for research 

in engineering design [30, 32, 33]. The Apriori algorithm is a well-known and generally 

accepted algorithm for association rule mining; hence, the Apriori algorithm is employed 

in this research to mine causal relations [34]. 

Graph Mining 

Data mining aims to find interesting trends from the relations between the 

entities. In certain cases, the relations between the entities are complicated structural 

patterns. To extract frequent structural patterns, the data must be represented in a form 

that not only captures relational information but also outputs comprehensible and 

meaningful results [35]. Graph mining focuses on mining the data that is represented as 

graphs. The general form of graph data representation consists of the entities given by 

the nodes, their attributes specified by the node labels and the relationships between the 

entities stated by the edges and edge labels. Graph mining has been extensively 

developed for structured data like chemical compounds, financial networks, and web 

browsing history. Applying graph mining to product design research has not been 

explored yet.  

Graphs in Engineering Design  

Using graph theory as a representation framework for functional models, 

researchers have developed a set of graph grammar rules for creating, combining, and 

transforming function structures [36-40]. Zhang recognizes that a functional model 

stored as a directed graph can be efficiently created, stored, and accessed [41]. Function-
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based graph grammars and combinatorics have been applied for product family design 

[42, 43]. Shai proposes transforming the engineering problem into graphical 

representation and solving the problem using the tools from graph theory [44]. Other 

applications for graph-based representation include software for design by analogy, rapid 

prototyping process selection, material selection model, and optimization of disassembly 

processes [45-48]. Researchers have applied graph theory as a mathematical 

representation of functional models. However, the application of function-based graph 

representation for product design is still an emerging research.   

Graph Grammar Induction  

The artificial intelligence community has explored graph grammar induction. 

Most of the induction systems are developed for the text-based application. Recently, the 

induction techniques are developed for deriving graph grammars [49]. The algorithms 

developed for graph grammar induction are Apriori based Graph Mining (AGM), 

frequent subgraph discovery (FSG), and gSpan [50-52]. Note that, the researchers from 

artificial intelligence community perceive different meaning for the term heuristics [53]. 

Here, the term design heuristics mean experience based techniques for solving design 

related problems. In this research, the application of graph grammar induction is 

explored for mining design heuristics.  

Computational Design Synthesis 

Functional modeling is a design synthesis method that helps abstract the intended 

functionality of a product. For computational design synthesis, two main aspects of the 

functional modeling have scope for improvement: the creation of functional models, and 
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the application of functional models to generate ideas. Research efforts for creation of 

functional model have been more substantial as compared to application of functional 

model for concept generation [54]. This research focuses on creating heuristics that aid 

generating concepts for inclusive design from a function-based product representation. 

In the context of this research, the importance of inducing engineering grammars and the 

importance of being able to mine an updated design repository is discussed.  

Engineering graph grammars have tremendous scope for improving overall 

design research by formalizing the design process to achieve consistent results, and by 

creating reliable guidelines for product design. Stiny introduced the concept of using 

shape grammars for generating shapes with shape specific rules [55]. Currently, 

engineering grammars are derived manually based on the experience to address various 

engineering design challenges [43, 56-59]. Researchers acknowledge that engineering 

grammars would be easily applied if the rules could be learned and adapted on their own 

[54]. Orsborn identifies that statistical analysis of product characteristics is required to 

determine consistent rules; hence, principal component analysis is applied to automate 

identification of shape grammar rules [60, 61]. Principal component analysis is mostly 

suitable for continuous numerical data rather than discrete categorical data. However, 

functional models are built on a case-by-case basis, hence functional models are discrete 

rather than continuous constructs [42, 43].  Hence, a computational method to induce 

engineering grammars is required.  

A design repository is developed for collection, storage, and retrieval of the 

functional models for over 184 products [62]. Research efforts in automated concept 
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generation suggest addition of a search mechanism to the set of graph grammar rules for 

exploring various potential solutions from the design repository [56]. Other efforts for 

automated concept generation include an automated morphological matrix, relational 

matrices, and unsupervised learning, all in combination with a mechanism to search the 

design repository [63-65]. The methods for automated concept generation rely on access 

to a design repository or similar formal knowledge base. As a repository is expanded to 

contain targeted content, for domains such as inclusive design, mining the repository 

manually for heuristics or grammar becomes difficult or intractable. An automated 

heuristic extraction process that has the capability to efficiently mine the updated 

repositories and find new heuristics for design practice is required.  

Product Family Design  

Product family design is a way to achieve cost-effective mass customization by 

allowing highly differentiated products to be developed from a common platform while 

targeting products to distinct market segments [66, 67]. Here, mass customization offers 

an avenue to provide persons with disabilities a wide range of products [68, 69]. Related 

previous efforts extend methods from mass customization and product family design to 

create specific methods for inclusive product family design [69, 70]. Moon developed 

several methods to create and make decisions about inclusive product families [68]. The 

basic framework for the product family is a function-based modular architecture [71]. 

Tucker applied data mining for product family design [72, 73]. This work explores if 

rule clustering along with data mining can lead to useful strategies for inclusive product 
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family design. Further, Chapter II and Chapter III explains product representation 

framework for modeling the existing inclusive design information. 
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CHAPTER II 

CREATING ACTIONFUNCTION DIAGRAM 1 

 

Users are perhaps the most important aspect of consumer product design. There 

is a significant body of research about the ways to measure and achieve user-friendliness 

in a product. A customer-driven approach to product design aims for greater user 

comfort and better product experience. Design tools that keep the user in mind during 

early stages of design can greatly improve the usability of the end product.  

Systematically breaking down a product into its constituent functions as is done 

in functional modeling allows its designer to focus on one function of the product at a 

time. Functional modeling allows designers to abstract the functionality of a product 

irrespective of the product’s form or shape and is well received as a product 

representation framework within the design research community. This chapter 

introduces the concept of an actionfunction diagram, which builds on the framework of 

functional modeling. Actionfunction diagram incorporates the associated user activities 

in addition to the functions and the flows in a functional model. Thus, the actionfunction 

diagram allows designers to effectively model the user-product interaction.  

In an actionfunction diagram, an activity diagram and a functional model are 

combined into a single graphical representation. Product functions are modeled using the 

Functional Basis and user activities are modeled using the International Classification of 

                                                

1 Reprinted with permission from “Creating Actionfunction Diagrams for User Centric Design” by 
Sangelkar, Shraddha, and McAdams, Daniel A., 2012, Proceedings of the ASEE 2012 Annual Conference 
and Exposition, San Antonio, TX, Copyright 2012 by Shraddha Sangelkar.   



 

 15 

Functioning, Disability and Health (ICF) lexicon. The ICF was established by the World 

Health Organization and provides a standardized lexicon and taxonomy for the 

description of health and health-related states. This chapter also explains the application 

of ICF lexicon for creating actionfunction diagrams.  

Modeling the user interaction with a product is a crucial step in product design. 

The activity diagram is widely recognized as a tool to model user activities in relation to 

the product. However, the activity diagram stands by itself and does not reflect how a 

change in user activity affects product function; the user activities in an activity diagram 

are independent of the product functions. A product representation framework like the 

actionfunction diagram overcomes the limitations of the activity diagram, enhances the 

effectiveness of functional modeling, and provides a means to incorporate user-product 

interactions in the early stages of design. This chapter details the procedure for creating 

actionfunction diagrams with a case study on a can opener. The chapter also provides a 

checklist for building actionfunction diagrams and lists the caveats for creating 

consistent actionfunction diagrams. 

Functional Modeling 

A functional model is a representation of the process by which the product being 

designed will be functionally implemented [74].  Functional modeling abstracts the 

overall functionality of the product and decomposes that functionality into its constituent 

elements, allowing the designer to focus on partial solutions for enhancing the creativity. 

Functional modeling allows designers to balance between alternative choices thus 

reducing designer biases towards specific solutions. 
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To represent product function, this work uses the Functional Basis and its 

associated flow based functional modeling methodology [75]. The Functional Basis is a 

thoroughly evaluated and accepted method for representing product function [76-79]. 

Nagel and Otto offer good summaries of discussions on how to use the function based 

modeling method [74, 80].  

Activity Diagram 

An activity diagram is a network of high-level user activities encompassing the 

life cycle of a product from purchasing to recycling or disposal. Activity diagram is also 

known as a network of parallel and sequential tasks carried out by the user, where 

parallel activities lead to parallel product functions. An activity diagram gathers 

customer needs in the initial phases of product design and helps establish the boundaries 

of the product or system under consideration.   

The main objective of an activity diagram is to ensure that the designer is aware 

of the entire set of customer needs during the life cycle of a product. Generally, the list 

of activities does not include design or manufacturing related activities. Although 

improving purchase and disposal of a product can significantly impact the design of 

product, those user activities are not considered in this discussion of the activity diagram 

for brevity.  

To easily understand the actionfunction diagram, a good understanding of the 

activity diagram is useful. Otto and Wood provide a detailed explanation of the activity 

diagram creation process [74]. A formal representation for describing varied user 
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activities improves consistency and communication among different designers. For the 

user centric design, user activities can be modeled using ICF that is explained next.  

ICF Lexicon 

The International Classification of Functioning, Disability and Health (ICF), 

established by the World Health Organization provides a standardized common language 

for the description of health and health-related states [3]. The ICF provides alphanumeric 

codes and definitions for a terminology that allows a uniform description of human 

functional ability and limitation. The ICF is originally intended to serve as a statistical, 

research, clinical, social policy and education tool [3]. The following discussion explains 

the ICF in further detail as it applies to product design.  

The ICF is classified in two major parts, namely i) functioning and disability and 

ii) contextual factors. This research mainly focuses on the functioning and disability 

part, which further divides into two components: a) body functions and structures and b) 

activities and participations. Body functions and structures are useful from a 

biomechanical perspective of product design. However, for the description of user 

activities related to a consumer product, the component activities and participation 

seems appropriate.  

The ICF uses an alphanumeric system of classification. The letters b, s, d, and e 

are used to express the body functions, body structures, activities and participation, and 

environmental factors, respectively. The letter is followed by a numeric code; first digit 

of which is the component number followed by two digits signifying second level of 

detailed classification. In certain cases, there might be a third and fourth level of 
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classification specified by one following digit each. For example, d4 is mobility related 

activities, where d450 to d469 cover walking and moving; d450 is the activity of 

walking, d455 is the activity of moving around, and d4552 is the activity of running.  

Qualifiers are placed to the right of a decimal point following the alphanumeric 

code [3]. The qualifier for activities and participation component is a capacity or 

performance qualifier indicating the level of ability or limitation. The qualifiers are 

specific to the product being designed; hence the qualifiers are not included in the 

discussion to maintain generality. 

Formally modeling user activity with the ICF is still a developing method and 

requires some interpretation. Table 1 lists the ICF terminologies with its alphanumeric 

code and the formal ICF definition. An interpretation of the ICF terminologies as user 

activities for product design is also listed in the last column of Table 1.   
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Table 1. Alphanumeric code, definition and interpretation for some ICF 
terminologies 

ICF term ICF 
code 

ICF Definition Interpretation for activity 
modeling 

Picking up d4400 Lifting or taking up a small object with hands 
and fingers, such as when picking up a pencil.  

Pick up hand held products 

Grasping d4401 Using one or both hands to seize and hold 
something, such as when grasping a tool or a 
door knob. 

Hold an object firmly in 
hand for required operation 

Manipulating d4402 Using fingers and hands to exert control over, 
direct or guide something, such as when 
handling coins or other small objects. 

Complex hand activities 
that requires manipulation 
with fingers 

Pulling d4450 Using fingers, hands and arms to bring an 
object towards oneself, or to move it from 
place to place, such as when pulling a door 
closed. 

Pulling with finger, arm, 
hand (grasping of the object 
is included) 

Pushing d4451 Using fingers, hands and arms to move 
something from oneself, or to move it from 
place to place, such as when pushing an 
animal away. 

Pushing with finger, arm, 
hand (can be performed 
with a closed fist) 

Reaching d4452 Using the hands and arms to extend outwards 
and touch and grasp something, such as when 
reaching across a table or desk for a book. 

Reach out or extend 
outwards to position an 
object using hands  

Turning  d4453  Using fingers, hands and arms to rotate, turn 
or bend an object, such as is required to use 
tools or utensils.  

Turning knob or tap.  
Rotate something with hand 

Carrying, moving and 
handling objects 

d449 Carrying, moving and handling objects, other 
specified and unspecified. 

For importing and 
positioning an objects  

Communicating with-
receiving- written 
messages  

d325 Comprehending the literal and implied 
meanings of messages that are conveyed 
through written language (including Braille). 

Reading signs and symbols 
for directions  

Pushing with lower 
extremities  

d4350 Using the legs and feet to exert a force on an 
object to move it away, such as pushing a 
chair away with a foot.  

Pushing with leg force 

Sitting d4103 Getting into and out of a seated position and 
changing body position from sitting down to 
any other position, such as standing up or 
lying down.  

Getting into and out of a 
seated position 

Standing  d4104 Getting into and out of a standing position or 
changing body position from standing to any 
other position, such as lying down or sitting 
down.  

Getting into and out of a 
standing position  

Moving around within 
the home 

d4600 Walking and moving around in one's home, 
within a room, between rooms, and around the 
whole residence or living area.  

Approaching household 
appliances and positioning 
oneself with respect to it  

Transferring oneself  d420 Moving from one surface to another, such as 
sliding along a bench or moving from a bed to 
a chair, without changing body position.  

Moving from wheelchair to 
seat or vice a versa 

Speaking d330 Producing words, phrases and longer passages 
in spoken messages with literal and implied 
meaning, such as expressing a fact or telling a 
story in oral language. 

Give voice commands to 
operate a device 
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For example, the activity of grasping (d4401) is defined as using one or both 

hands to seize and hold something, such as when grasping a tool or a doorknob. In the 

context of product design, grasping represents the activity to hold an object or the handle 

for operation of the device. The activity of speaking (d330) has the implied meaning of 

giving voice commands for activation of devices. Other general activities like carrying, 

moving and handling objects (d449) and moving around within the home (d4600) are 

used while defining the peripheral activities.  

Note that during the activity modeling effort, the designer can move back and 

forth between different levels of the ICF. For example, d415 and d4452 are at different 

levels of specification, or fidelity, within the ICF taxonomical structure. The goal is to 

model the user activity as precisely as the ICF lexicon allows rather than to use a 

consistent level within the ICF. 

Actionfunction Diagram 

An actionfunction diagram is a product representation framework for modeling 

the user-product interaction. Actionfunction diagram is a formal representation used to 

analyze the interplay between user and product in the early stages of design [81-83]. In 

an actionfunction diagram, an activity diagram and a functional model are combined into 

a single graphical representation.  

Figure 2 shows an actionfunction diagram of a bathtub where the dashed boxes 

represent user activities and solid boxes represent the related product functions contained 

within each activity. The arrows represent the flow of energy or material similar to a 
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functional model. Figure 2 is for illustration purposes only and the detailed procedure to 

build an actionfunction diagram follows.  

 

Figure 2. An illustration of an actionfunction diagram for a bathtub. Dashed boxes 
represent user activities with related product functions contained within each 
activity 

Figure 3 shows the steps in creating an actionfunction diagram: problem 

definition, activity modeling, functional modeling, building actionfunction diagram, and 

checklist for actionfunction diagram.  
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Figure 3. Method to create and actionfunction diagram of a product 

Step 1: Problem definition  

The problem definition step signifies “knowing what you are designing” before 

starting with the process. This step is similar to the preliminary design task found in any 

of the textbooks on product design. Otto and Wood describes this step as formulating a 

mission statement [74]. The elements of the problem definition those are crucial for 

actionfunction diagram are emphasized here.  

• Gather and list all the customer needs  

• Decide the scope of design and set the system boundaries  

• Define the overall functionality of the product 

Problem Definition 

Activity Modelling 

Funtional 
modelling 

Build Actionfuntion 
Diagram  

Checklist for AFD 
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As an example we will proceed to create an actionfunction diagram of a pre-

existing product, a manually operated can opener, as shown in Figure 4. The example 

will help to illustrate step 2, step 3, and step 4.  

 

Figure 4. Manually operated can opener 

 Step 2: Activity Modeling  

When creating an activity diagram, list all the activities that are performed or can 

be potentially performed while using the product. List only the high level activities and 

not the detailed activities at this stage. Posing a question like, “What are the basic steps 

the user needs to perform to complete the task using the product?” can help with the 

activity modeling. Ensure that all customer needs are taken into consideration while 

listing the activities. Also, clarify the scope of design at this stage. 

Once all the activities are listed, arrange all the activities in parallel and 

sequential manner and connect the activities with arrows to form a network. The 

direction of arrows indicates the precedence of one activity with respect to the other 

activities. The example of an activity diagram for the can opener follows. Figure 5 

shows the activity diagram of a can opener. Note that in the activity diagram, the overall 
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activities, represented using natural language, are denoted in blue boxes with formal ICF 

activities and the associated alphanumeric code contained within black dashed boxes. 

While opening a can with an opener, the user carries the unopened can and places 

it on the work surface. Next, the user picks up the opener and engages it with the can. 

After engaging the opener with the can, the user twists the handle with one hand while 

holding the opener with the other. Finally, the user removes the lid. 

 

Figure 5. Activity diagram of a can opener 

Step 3: Functional Modeling  

To develop a functional model, first list all the product functions that are required 

to achieve the overall functionality of the product. Otto and Wood recommend 

developing an activity diagram as a prior phase of function structure development, 

specifically for formulating sub-functions through task listing [74]. Also, mapping the 

product functions to the customer needs is helpful for functional modeling. Next, 

describe all products functions using functional basis. Refer to Otto and Wood for the 
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guidelines on function structures and the Functional Basis [74]. Place the functions in 

parallel and sequential manner based on the flows of material, energy and signal. A 

functional model acts as the basic layout for building actionfunction diagram.  

Figure 6 shows the functional model of a can opener. The can opener imports and 

positions a user hand. The handle of the opener provides the function of positioning 

hand. The product also has a provision for coupling the can to the opener. Further, the 

handle transfers human energy to rotate the gear. The set of gears convert the human 

energy into rotational energy, which is expended to guide the can relative to the opener 

and rotate the cutter. The rotary cutter performs the cutting action, and separates the lid 

from the can.  

 

Figure 6. Functional model of a can opener 
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Step 4: Build the Actionfunction Diagram 

An actionfunction diagram is created by merging the activity diagram with the 

corresponding functional model. The relevant user activities are superimposed on 

corresponding product functions within the functional model. For instance, when the 

user is turning the handle of the opener, the product is transferring human energy and 

converting it to mechanical energy. The mechanical energy is used to rotate the cutter 

and cut through the lid. The lid is not exported by the system but removed by the user 

manually. Figure 7 shows the actionfunction diagram of a can opener.  

Some activities may not have functions associated with them. For example, the 

activity of manipulation, to remove the lid away from the can, does not have any product 

function associated with it. Similarly, some functions may not have any activities 

associated with them. For example, the guide solid function performed by the set of 

gears is independent of the user. Such functions are referred as the internal functions of 

the device.  
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Figure 7. Actionfunction diagram of a can opener 

Step 5: Checklist for Actionfunction Diagram 

It is recommended to go through the checklist after creating an actionfunction 

diagram as a check for completeness and correctness. The checklist also acts as a guide 

for creating an actionfunction diagram. However, it is advisable to first create the 

actionfunction diagram with the procedure described above and then use the checklist. 

• Is the overall functionality of the product achieved? 

o Check the problem definition of the product 

• Are all the customer needs considered? 

o Check the elementary list of user activities, created in step 1, to see if all 

activities are included 
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• Are the laws of conservation maintained? 

o Energy and material that goes into the system must also go out of the system 

• Are the system boundaries clearly defined? 

o Verify the scope of design established before starting with the design 

• Are the sequential and parallel functions and activities correctly placed? 

o If the activities and functions can be rearranged in more than one technically 

correct way, then choose the arrangement that is most appropriate 

• Are all the energy flows considered?  

o Check if all forms of energies are included, specifically human energy 

• Are any signals going into and out of the system?  

o Include all necessary signals, especially signal input from the user and signal 

output to the user 

• Are the arrows specifying energy, material and signal distinct and clearly marked? 

o Specify the legend if its different form the conventions used for functional 

modeling 

• Are all functions described using the Functional Basis? 

o Refer to Otto and Wood for Functional Basis definitions and classification  

• Are all the activities expressed using the ICF? 

o Refer to ICF browser <http://apps.who.int/classifications/icfbrowser/>  

• Are the activities and functions abstract? 
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o Use non-specific terms for describing activities and functions to maintain 

generality of the design and its application 

• Can any of the activities and functions be removed without affecting the overall 

functional requirements?  

o Remove all the redundant functions and activities 

• Are the activities and functions atomic? 

o If the function or activities can be divided into two or more, then divide it to the 

lowest level possible  

Caveats of Actionfunction Diagram 

This part describes some caveats of actionfunction diagram modeling. They 

provide helpful guidelines for creating consistent user-product interaction models.  

• Include “export” function only if the product intentionally sends material or energy 

out of the system boundary.  

o Example: Popcorn is exported out of a popcorn maker but the heat generated 

due to friction is not exported by the system.  

• Use the function “secure hand” only when a specific component of the product get 

attached to user hand. 

o Example: A circular loop around the handle that prevents the product or a part of 

the product from slipping out of the hand is modeled as a function “secure 

hand”.  
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• When the user’s hand is repositioned to perform another set of tasks, the activity of 

“reaching” is repeated. 

o Example: The user has to reach out to open the door of a washer and again reach 

out to press the start button. 

• The ICF user activity of “maintaining body position” is used to model a sitting or 

standing posture of the user. This activity is important for modeling, especially, 

when the system boundary includes the space around the product.  

o Example: While designing the large household appliances the location and 

position of the appliance in the house is an important consideration for user-

centric design. 

• “Grasping” is not required when the activity can be performed with a closed fist.  

o Example: A round doorknob needs “grasping” and “turning”, while lever type 

knob allows “pushing” with a closed fist.  

• The activity of “picking up” signifies that the user picks up the product itself. Weight 

of the product that does not require “picking up” activity is not critical for the design. 

o Example: Plier type stapler needs to be lifted up before using as compared to the 

desk stapler that need not be picked up.  

• The activity of “carrying, moving and handling objects” represents that the object to 

be operated upon is imported within the system boundary.  
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o Example: The user carries the can to be opened or the paper to be punched into 

the system boundary.  

• The touch type or press type buttons should be modeled differently.  

o Example: The touch type buttons are modeled as a function “actuate signal” and 

the related user activity is “reaching”. On the contrary, for push buttons are 

modeled as the activity “pushing with fingers” while the product “guides solid” 

to actuates the signal. Also note that, the human energy is not required for touch 

type buttons but is required for push type buttons.  

• Residual energy though important for conservation of energy, does not affect the 

user-centric design.  

o Example: The vibration and noise generated by the electric knife can be 

neglected in the actionfunction diagram. 

• Importing human energy function is not required; it is assumed that human energy is 

used to perform the activities. Explicitly state conversion of human energy into some 

other form of energy when significant amount of human energy is required.  

o Example: Human energy is not required to operate touch buttons but is required 

to crank an engine. 

• Tracking of human or human parts is significantly important for user centric design. 

To be precise, ‘Human’ and ‘Hand’ are used specifically. ‘Human’ is used if the 
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entire human is involved in the activity. When the user performs a task with upper 

limb or hand, it is represented as ‘hand’. 

o Example: Activities like entering or exiting a bathtub are modeled as “human” 

for and the activities like operating a switch are modeled as “hand”.  

Summary 

The chapter explains the procedure to create an actionfunction diagrams for user 

centric design of products. Some of the advantages of the actionfunction diagram are: 

focusing closely on user-product interactions, highlighting those functions of a product 

in which the user is involved, and allowing for analysis of user-product interaction in the 

early design stages. This method can also be introduced in an engineering design 

curriculum for user-centric design.  
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CHAPTER III 

PRODUCT PAIR COMPARISON 2 

 

Two products that provide the same high-level function but differ in their level of 

accessibility are termed a product pair [82]. The inclusive product better accommodates 

the user with a disability by introducing one or more design features that are not 

observed in the typical version. Figure 8 illustrates a utility cutter product pair. The 

Fiskars Rotary Cutter and the typical box cutter provide the similar function of paper and 

cardboard cutting, but the Fiskars Rotary Cutter has features that make it preferable for 

users with reduced hand functioning. The inclusive design features of the Fiskars Rotary 

cutter are an ergonomic handle for better grip, a circular blade that can cut in both a push 

and pull direction, and a simple push button to retract the blade. 

 

Figure 8. A product pair of a Fiskars Rotary Cutter (top) and standard box cutter 
(bottom) 

                                                

2 Reprinted with permission from "Adapting ADA Architectural Design Knowledge to Product Design 
Using Association Rule Mining: A Function Based Approach" by Sangelkar, Shraddha, and McAdams, 
Daniel A., 2012. Journal of Mechanical Design, 134 (7), 071003, Copyright 2012 by Shraddha Sangelkar.  
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Specific characteristics of a product pair make it preferable for this research. 

Inclusive products are selected based on the products selection criteria explained next, 

and their typical counterparts are identified to form product pairs for this research. 

Commercially successful inclusive products are preferable product pair candidates. 

Products consistent with a design specification mandated by law also indicate a good 

candidate product pair. In addition, examples of inclusive design provided by researchers 

in this field are used as a benchmark while selecting good product pairs. The inclusive 

products are selected from a variety of sources to maintain the generality of the dataset 

studied in this research. Though it is a finite set of products selected for this research, the 

product set reflects a range of scales, uses, and manufactures in non-competing 

industries.  

Design Difference Classification 

Previous inclusive design research indicates that in many cases the difference 

between inclusive and typical products in a product pair is minimal; differences between 

the products are often subtle and a significant portion of the components are essentially 

identical [82]. The differences that do exist can be classified as parametric, 

morphological, or functional. These concepts are clarified here.  

A parametric difference between a typical and inclusive product refers to two 

products that could be described with the same parameterization, but have a differing 

value for some parameter. Parametrically different products exhibit common detailed 

functionality, solution principle, and form. A sloped ramp entrance can be used to 

illustrate a parametrically different product pair in Figure 9.  
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Figure 9. A steep ramp with slope greater than 1:12 illustrating an inaccessible 
entrance (left) and a parametric difference in the ramp slope to create a gradual 
ramp as an accessible entrance (right) [84] 

A morphological difference refers to two products that retain the same detailed 

functionality but exhibit a different physical solution principal, form, or geometric 

topology. Again, using a building entrance as an example, a ramp and a stairway can be 

used to illustrate a morphologically different product pair. Figure 10 shows an 

inaccessible entrance based on a step morphology (left) and an accessible entrance using 

a ramp morphology (right).  

 

Figure 10. An inaccessible building entrance based on a stair morphology (left) and 
an accessible building entrance (right) based on a ramp morphology illustrating a 
morphological difference from the stair [84] 
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A functionally different product pair indicates the addition or deletion of a 

product sub-function, or the change of some specific product sub-function, to improve 

its accessibility. Figure 11 shows a wheel chair lift in addition to, or in place of, 

stairways at a building entrance is an example of a functional difference. The lift adds a 

new set of functions to make the building entrance accessible.   

 

Figure 11. An inaccessible stair step (left) and an accessible building entrance with 
a wheel chair lift (right) illustrating a functional difference [84] 

The representation scheme to reflect parametric, morphological, or functional 

difference as a product changes from typical to inclusive is shown in Figure 12. A solid 

line, a dotted line, and a dashed line represent the material, energy, and signal flows 

respectively. The dashed boxes represent user activities and solid boxes represent the 

related product functions contained within each activity. 
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Figure 12. Legend used in actionfunction diagram comparisons 

Our classification of functional, morphological, and parametric design 

differences is new in the context of formally comparing design differences in product 

pairs. However, it is important to note that similar design classifications of design 

abstraction have been developed and accepted. As an important example, our 

classification system is analogous to Gero’s well-established function, behavior, and 

structure (FBS) framework. The functional, morphological, and parametric difference 

can be viewed as a different level of design problem abstraction for which the design is 

tasked with seeking a solution.  

Gero classified the formal representation of a system as function, behavior, and 

structure; each specifying different levels of abstraction [85, 86]. Gero’s function seeks 

the function to achieve the desired objective; our notion of function is largely equivalent, 

though we pull from the formal definition and style of function from the Function Basis 

[75]. Our notion of morphological refers to the gross structure and solution principle 
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used to achieve the needed functionality. Similarly, Gero’s behavior defines how the 

structure of an artifact achieves the desired function. Our notion of parametric refers to 

the specific part geometry and instantiation of materials and etc. used to embody the 

design morphology. Gero’s structure details the physical components to achieve the 

desired behavior and overall functionality of the system.  

Product Pair Comparison Data 

This part explains the process of comparing a product pair. The process is 

illustrated through a product pair of can openers as shown in Figure 13. The typical can 

opener shown on left needs grasping with one hand and twisting with the other hand. In 

contrast, simply grasping with one hand operates the electric can opener on the right.  

 

Figure 13. The typical can opener is shown on the left and the inclusive can opener 
is shown on the right 

To begin the analysis, functional models and activity diagrams are created for 

both the typical and the inclusive can opener. Figure 14 shows the activity diagram and 

functional model for a typical can opener. Procedure for creating an activity diagram and 

a functional model for a typical can opener is detailed in Chapter II. Similarly, Figure 15 

shows the activity diagram and functional model for an inclusive can opener.  
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Figure 14. Activity diagram and functional model for a typical can opener 

In an inclusive can opener, the user grabs the electric opener and places it on the 

lip of the can. The activity of grabbing, formally “picking up” in the ICF, is similar in 

both designs. To activate the electric opener, the user has to press the switch with the 

same hand in which they are holding the opener. Thus, the complicated user activity of 

twisting the handle with a second hand and removing the lid, which was observed in 

typical can opener, is eliminated in the inclusive version. The electric opener imports 

and stores electrical energy as well as supplies it when the switch is activated. A motor 
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converts electric energy to rotational energy, which moves the can relative to the 

opener. As the can rotates, a stationary point cutter cuts through the lid. A magnet lifts 

up the lid after cutting. 

 

Figure 15. Activity diagram and functional model for an inclusive can opener  

The activity diagram is merged with the corresponding functional model to form 

an actionfunction diagram, as explained in chapter II. The actionfunction diagrams of a 
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the differences in Figure 16. The typical can opener relies on human energy. The 

inclusive can opener uses electrical energy for several functions. Thus, the functions like 

import human energy, transfer human energy, and convert human energy to mechanical 

energy are deleted in the inclusive design. The functions added in the inclusive design 

are import electrical energy, store electrical energy, supply electrical energy, and 

actuate electrical energy as well as convert electrical energy to mechanical energy. The 

magnet adds the functionality of exporting the lid away from can. The rotary cutter is 

morphologically different form the stationary point cutter. Both openers offer 

morphologically different provisions for “grasping” with hand.  

After comparing the actionfunction diagrams for the can openers, the next step is 

to tabulate the user activities and product functions, as shown in Table 2. For example, 

the user activity of “picking up” the can opener corresponds to the product function of 

import hand into the system, which remains the same for both the designs. The export 

solid function performed by the magnet to lift the lid, shown on the last row of Table 2, 

is an addition of functionality. The export solid function has no associated activity in the 

inclusive design. However, the typical design requires the user to remove the lid by 

“manipulating”. 
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Figure 16. The actionfunction diagram for a typical can opener (top) and an 
inclusive can opener (bottom)  
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Table 2. Comparison of the actionfunction diagram of a typical can opener with the 
actionfunction diagram of an inclusive can opener 

 

The aim of this exercise is to track the changes in the product function as the 

product becomes more accessible. Changes in the user activity, if any, are interesting as 

well. Sixty-five product pairs are selected and compared for this study; the database of 

all the product pairs is available online at www.prosedesign.org [87]. In a similar 

manner, the similarities and differences in all product pairs are tabulated for the study.  

Summary 

This chapter presents a function-based framework for comparison of typical and 

inclusive products through an actionfunction diagram. The method serves as elemental 

building blocks to capture the characteristics of inclusive design. The classification of 

design differences as parametric, morphological, or functional in an actionfunction 

Product function 
Typical

User activity Typical Product function 
Incluisve

User activity 
Inclusive 

Change

Import Hand Picking up Import Hand Picking up None
Position Hand Grasping Position Hand Grasping Morphological
Import Human 
Energy

N/A Import Human Energy N/A None

Transfer Human 
Energy

Turning N/A N/A Function Deletion

Convert Human 
Energy to 
Mechanical Energy

Turning N/A N/A Function Deletion

Import Solid Carrying, moving and 
handling objects

Import Solid Carrying, moving and 
handling objects

None

Couple Solid Manipulating Couple Solid Manipulating None
Guide Solid N/A Guide Solid N/A None
Separate Solid N/A Separate Solid N/A Morphological
N/A N/A Actuate Electrical Energy Grasping Function Addition
N/A N/A Import Electrical Energy N/A Function Addition
N/A N/A Store Electrical Energy N/A Function Addition
N/A N/A Supply Electrical Energy N/A Function Addition
N/A N/A Convert Electrical Energy 

to Mechanical Energy
N/A Function Addition

N/A Manipulating Export Solid N/A Function Addition
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diagram is a structured way to compare typical and inclusive products in the context of 

product pairs. The 65 product pairs listed in the Appendix D provides inclusive design 

repository for researchers and designers. Further, Chapter IV, Chapter V, Chapter VI, 

and Chapter VII describes the computational methods used to derive heuristics for 

inclusive design from the existing products. 
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CHAPTER IV 

ASSOCIATION RULE MINING 3 

 

As more product pairs are studied, a formal method to seek patterns in the data is 

needed. Association rule learning is a data mining technique to find associations in large 

datasets. The data contains which is a set of categorical attributes called 

items and  which is a set of transactions. Each transaction in T contains a 

subset of the items in I. An association rule is defined as an implication of the form 

 where  and . The itemsets  and  are called the antecedent 

and consequent of the rule, respectively. 

Market basket analysis serves as a simple example of association rule learning. 

The items are goods available at a supermarket and a transaction is what a single shopper 

puts into their shopping basket for purchase. Mining through a large number of 

transactions, an association rule might determine that there is a strong association 

between an itemset of peanut butter and jelly and an itemset of bread: peanut butter and 

jelly is an antecedent for bread as a consequent.  

In association rule learning, support (supp) of an itemset X is the percentage of 

transactions in T that have a specific itemset X, and confidence (conf) is the percentage 

of transactions in T such that, given they contain X, also contain Y. Formally,  

                                                

3 Reprinted with permission from "User Activity – Product Function Association Based Design Rules for 
Universal Products " by Sangelkar, Shraddha, Cowen, Nicholas and McAdams, Daniel A., 2012. Design 
Studies, 33 (1), 85-110, Copyright 2012 by Shraddha Sangelkar.  
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conf (X ⇒ Y ) = supp (X ∪ Y ) / supp (X)      (1) 

Generating association rules from a database requires an algorithm to search and 

extract rules typically based on a user supplied minimum level of support and confidence 

[34]. Several algorithms have been developed and are available for mining association 

rules from datasets, for example, Apriori, Eclat, and FP-Growth [88, 89]. The Apriori 

algorithm, as implemented in TANAGRA software, is employed to extract association 

rules in the initial exploration stages [34, 90].  

Mining Association Rules for Inclusive Design  

The product pair comparison is explained in the Chapter III. Thoroughly 

analyzing product pairs with actionfunction diagrams and recording design changes 

generates the dataset of transactions. This chapter explains the generation of association 

rules from this data. Association rule generation consists of three steps: pre-processing 

input, running the Apriori algorithm, and post-processing the output. Fifteen inclusive 

product pairs are selected for the initial exploration. The overall functionality of the 

fifteen product pairs is diverse in applications. The products selected for the initial 

exploration include an arm chair, a box cutter, a can opener, a car ingress and egress 

system, a pruner, voice activated dialing, a chopping bowl, vehicle drive controls, a 

recliner, a pair of scissors, signage, an auto lifting toilet-seat, a remote control, an 

adjustable height sink, and food storage containers. 

Pre-processing is an essential step to obtain accurate association rules [32]. 

Essentially, the data is cleaned. For example, the TANAGRA software is case sensitive, 

so typographical errors must be corrected. The pre-processed data is converted into an 



 

 47 

input file compatible with TANAGRA software. Running the algorithm consists of 

importing data, selecting input items, and choosing the appropriate algorithm for rule 

generation. Input items are product functions, user activities in the typical products, 

changes in the product from typical to inclusive, and the user activities in the inclusive 

products.  

The user activity and product function items of “grasping” and position hand 

serve as an example of candidate rules and their associated measures of support and 

confidence. There are 140 transactions in the dataset. The items “grasping” and position 

hand occur together thirteen times in the typical products studied. Further, comparison 

of the typical product to the inclusive product in each pair and mining of the data shows 

that 6 out of 13 transactions suggest a parametric change. The other 7 transactions 

suggest no change, functional change, or a morphological change. Thus, support of the 

rule – (Position Hand, Grasping)à (Parametric, Grasping) is 6/140, or 4.3%. 

Confidence of the same rule is (6/140)/(13/140), or 46%.  

Generally, values of minimal support and confidence are used to focus the search 

on strong or interesting rules. In the study here, product pairs selected are diverse and 

contain a varied set of transactions. Thus, establishing criteria to set specific values for 

support and confidence that produce an interesting or a broadly applicable result is 

problematic. For instance, the dataset contains only a single transaction in which a 

morphological change to a guide solid function is suggested to change a user activity 

from “pushing with lower extremity” to “pushing”. The specific case is a design change 

in automobile controls that allow the user to operate either with the lower or with the 
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upper limb. For this transaction, the support is 1/140, or 0.7%, and the confidence is 

100%.  

Though a single transaction occurrence is not generally of interest in the sense 

that it does not suggest a strong rule, it is chosen to over explore the potential rule space 

in this research to find a greater number of strategies for inclusive design. Thus, the 

minimal support is set to low value in this search. As a result, the minimum support level 

was set at 0.5 %. A low value of support is admissible as it implies statistical 

significance [91]. In order to extract a large number of rules, the minimum confidence 

level was set at 40 %. Thus, the Apriori algorithm is set to generate rules with a 

minimum confidence level of 40 %, and minimum support level of 0.5 %.  

The last step in association rule generation is post-processing of the output. The 

algorithm outputs all possible combinations of the same items in a transaction. To avoid 

duplicate rules, repetitive rules are ignored. For the data searched here, the algorithm 

outputs 104 rules that are reduced to 64 rules. The method for elimination and reduction 

to the 64 rules is discussed next. The post-processing step is similar to data 

transformation in Shahbaz [32].  

The specific interest is in the interplay between user activity, product function, 

and any observable design trends that make a product more accessible in that context. 

Thus, rules with the format of (product function, user activity typical) à (change, user 

activity inclusive) or (PF, UA_T) à (Change, UA_I) are of interest. In terms of data 

mining terminology, the product function (PF) and user activity of the typical product 

(UA_T) are the antecedent, and change in product function (Change) and user activity of 
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the inclusive product (UA_I) are the consequent of a rule. The identification and 

selection of rules based on the format (PF_T, UA_T) à (Change, UA_I) is done 

manually in the post-processing step as the algorithm treats all input items equivalently 

and doesn’t recognize that we are only interested in the (PF, UA_T) itemsets as a 

antecedent. Post-processing also removes some specific details such as computational 

time needed to find the rule that are provided by the software. These details are not of 

interest at this point. The post-processed results are easily readable association rules, 

which are discussed below.  

Results of the Association Rule Mining  

The 64 association rules generated in the initial phase are listed here. The input to 

the Apriori algorithm consists of 140 transactions. The 64 rules are exhaustive in the 

sense that they are those generated by the algorithm according to the data mining criteria 

specified. The rules have not been subsequently evaluated, culled, and modified to 

improve their specific applicability and impact for inclusive design. A few rules are 

presented here in detail that includes presentation of the associated actionfunction 

diagram. These detailed presentations highlight both the research approach and the way 

in which the rule is applied to a typical product to make it more inclusive.  

Table 3 lists the rules generated by the Apriori algorithm that follow the (product 

function, user activity typical) à (change, user activity inclusive) format. In some sense, 

these are the rules that lead to a clearly applicable design guideline: given the user 

activity in the typical product and product function what type of change made, at the 

functional level, improves product accessibility and what is the user activity in the 
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resultant inclusive design? For the rules listed in Table 3, the value of confidence is 

above 40 %. A column is added that includes an assessment of the impact of the change 

in user activity compared to the typical design. The rules are arranged based on values of 

support and confidence, with stronger rules first.  

The ‘Activity Change’ column in Table 3 represents the change in user activity in 

the inclusive product. In several cases, a user activity is deleted in concert with a 

function deletion. For example the activity of “turning” is removed along with the 

function convert human energy to mechanical energy in the inclusive can opener: the 

addition of electrical power to the inclusive can opener eliminates this usage for human 

energy. In several cases, a user activity is added in inclusive design in concert with a 

function addition. For example that activity of “pushing” is added with the function 

actuate signal in the PT Cruiser to allow the user to actuate the entry system with the 

push of a finger.  

The first nine rules in Table 3 represents the case were there was a functional 

addition to the inclusive product. The function addition cases are typically related to 

automating the product. Thus, the typical product function is listed as no function in the 

table. In these cases, the addition of some product function improved accessibility. For 

example Rule 4 of Table 3 states that typical products add a sense status signal function 

to enable a user activity of “speaking”. To illustrate this rule, consider the example of an 

inclusive phone shown in Figure 17.  
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Table 3. The association rules generated by the data-mining algorithm, Apriori, for 
inclusive design  

 

Actionfunction diagrams for a typical and inclusive phone are illustrated in 

Figure 18. The voice activated dialing feature is captured by the functions sense signal 

status and convert status to control in the inclusive phone. The user activity of 

User Activity 

(Typical)

Product Function Change User Activity 

(Universal)

Activity 

Change

Confidence 

(%)

Support 

(%)

1 No Activity No Function
Function Addition 

Actuate Signal
Pushing (fingers) Add 100 3.6

2 Standing No Function
Function Addition 

Guide Human
Standing Easier 100 2.9

3 No Activity No Function
Function Addition 

Import Hand 
Reaching Added 100 2.1

4 No Activity No Function

Function Addition 

Sense Status 

Signal

Speaking Added 100 0.7

5 Grasping No Function
Function Addition 

Store Solid
No Activity Deleted 100 0.7

6
Maintain body 

position
No Function

Function Addition 

Position Solid

Maintain sitting 

position
Easier 100 0.7

7 Sitting No Function
Function Addition 

Guide Human
Sitting Easier 100 0.7

8 No Activity No Function

Function Addition 

Actuate Electrical 

Energy

Grasping Added 100 0.7

9 Manipulating No Function
Function Addition 

Export Solid 
No Activity Deleted 100 0.7

10 Turning
Convert Human Energy 

to Mechanical Energy
Function Deletion No Activity Deleted 100 0.7

11
Communicating - 

receiving (signs)
Indicate Status Morphological

Communicating - 

receiving (signs and 

Braille)

Easier 100 0.7

12
Pushing with lower 

extremity
Guide Solid Morphological Pushing (hand) Easier 100 0.7

13 Turning Guide Solid Morphological Pushing (hand) Easier 100 0.7

14 Pulling (hand) Separate Solid Morphological
Pushing/Pulling 

(hand)
Easier 100 0.7

15 No Activity Separate Solid Morphological No Activity No 100 0.7

16 Manipulating Transfer Human Energy Morphological Manipulating No 67 1.4

17
Transferring oneself 

while sitting
Import Human Morphological Moving Around Easier 50 0.7

18
Transferring oneself 

while sitting
Position Human Morphological Moving Around Easier 50 0.7

19
Transferring oneself 

while sitting
Position Human Morphological

Transferring oneself 

while sitting
Easier 50 0.7

20 Turning Transfer Human Energy Function Deletion No Activity Deleted 50 0.7

21 Manipulating Couple Solid Parametric Manipulating Better 50 0.7

22 Grasping Position Hand Parametric Grasping Better 46 4.3

23 Manipulating Guide Solid Morphological Pushing (fingers) Easier 40 1.4

Antecedent Consequent Measures
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“speaking” is added. Thus, a user who has difficulty with the activity of “manipulating” 

need not do so. Note that the manual dialing functions are not removed as the user can 

place a call either by pressing keys or by speaking. 

 

Figure 17. A typical phone on left and an inclusive phone with voice activated 
dialing on right [92] 

In cases of parametric function change, such as Rule 21 and 22 in Table 3, the 

user activity remains the same but the activity is made comparatively easier in inclusive 

design. For instance, a parametric change to the function couple solid makes 

“manipulating” easier or a parametric change to function position hand makes 

“grasping” easier. 
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Figure 18. Actionfunction diagram of a typical phone (top) and inclusive phone 
(bottom). The internal functions that require ‘no change’ are encircled 

Also found through data mining are rules suggesting no change, no change to 

internal functions, and the addition of internal functions. These rules are presented here 

in distinct categories for discussion. Table 4 states the rules that require no change for 

inclusive design. These rules have confidence above 65 %. These no change rules are 

primarily related to user-product interactions that do not represent the most opportune 

avenues to improve accessibility.  
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Table 4. List of rules that suggest ‘no change’ to the user - product interaction 

 

Rule 1 in Table 4 shows that even as products are designed differently to be 

inclusive, no changes were made to address the user activity “carrying, moving, and 

handling objects” and product function import solid. Figure 19 shows a typical wine 

opener on the left and an automatic wine opener marketed as inclusive on the right. 

Figure 20 illustrates the actionfunction diagram of a typical wine opener (top) and an 

inclusive wine opener (bottom). The wine opener needs to import the closed wine bottle. 

The user imports the bottle into the opener. In both the typical and the inclusive designs 

the user imports the bottle, hence the function import solid remains the same.  

Rule 10 in Table 4 implies that the housing of both the typical and inclusive 

product transfers human force. The function of transferring human energy results in no 

change to achieve the inclusive design. However, the related user activities are not the 

same. When the user activity is shared with two or more product functions the activity 

User Activity (Typical) Product Function User Activity 

(Universal)

Activity 

change

Confidence 

(%)

Support 

(%)

1
Carrying, moving and 

handling objects
Import Solid

Carrying, moving and 

handling objects
No 100 2.9

2 Reaching No function Reaching No 100 2.9

3 Sitting Import Human Sitting No 100 2.1

4 Sitting Position Human Sitting No 100 2.1

5 Manipulating Store Solid Manipulating No 100 0.7

6
Moving around building 

other than home
Import Human

Moving around buildings 

other than home
No 100 0.7

7 Moving around home Import Human Moving around home No 100 0.7

8 Picking up No function Picking up No 100 0.7

9 Manipulating No function Pulling Yes 100 0.7

10 Pulling (hand) Transfer Human Energy Pushing/Pulling (hand) Yes 100 0.7

11 Picking up Import Hand Picking up No 88 5.0

12 Manipulating Separate Solid Manipulating No 67 1.4

13 Reaching Import Hand Reaching No 67 1.4

Consequent MeasuresAntecedent
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might change due to a morphological or parametric change to one function even though 

the other function remains the same.  

 

Figure 19. Automating a wine opener eliminates the need for twisting the hand [92]. 
Typical wine opener is shown on the left and the automatic wine opener is shown on 
right  
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Figure 20. Actionfunction diagram of a typical wine opener (top) and inclusive wine 
opener (bottom). The addition of internal functions is circled for emphasis 

Table 5 lists the internal functions for which no change is suggested as the 

product design is refocused from typical to inclusive. These rules have confidence above 

65 %. Here, the notion of internal is used to denote functions that do not have a specific 

user activity interaction. Based on the product data set sampled, the functions required to 

import and convert energy, or sense, process and export signal require no change. 

Additionally, functions that import, store, guide, regulate, or transfer material to meet 

the main functionality of the product do not appear crucial in designing an inclusive 

product.  
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Table 5. List of the internal functions of products that requires ‘no change’ for 
inclusive design 

 

Table 6 lists the rules that recommend the addition of an internal function for 

improving the accessibility of a product. The listed rules have confidence greater than 65 

%. Table 6 suggests that most of the inclusive products require the addition of internal 

functions like importing, transferring, storing, or supplying energy. Furthermore, the 

external energy imported, either electrical or chemical in the form of fuel or a battery, 

needs to be transformed into another form of energy.  

Antecedent Consequent

Product Function Change Confidence 

(%)

Support 

(%)

1 Import Chemical Energy None 100 2.1

2
Convert Chemical Energy 

to Electrical Energy
None 100 1.4

3 Export Control Sign None 100 0.7

4 Export Liquid None 100 0.7

5 Export Signal None 100 0.7

6 Guide Liquid None 100 0.7

7 Import Liquid None 100 0.7

8 Import Solid None 100 0.7

9 Process Control Signal None 100 0.7

10 Process Signal None 100 0.7

11 Regulate Liquid None 100 0.7

12 Sense Control Signal None 100 0.7

13 Sense Signal None 100 0.7

14 Store Liquid None 100 0.7

15 Transfer Liquid None 100 0.7

16 Import Human Energy None 75 4.3

17 Guide Solid None 67 1.4

Measures
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Table 6. Rules suggesting addition of internal functions to improve product 
accessibility 

 

The algorithm outputs 12 rules that suggest the addition of internal functions. 

Evaluation of these suggested function additions show them to be consistent with high-

level strategies for inclusive design. For example, rule 5 in Table 6 states that a user 

status signal in visual, tactile, or auditory form should be converted to control signal 

compatible with the device. The addition of such a conversion feature to a product 

allows the user to input a signal in more than one form, thus making it inclusive.  

Summary 

This chapter explores the applicability of data mining techniques to improve 

inclusive design of products. Particularly, association rule mining is applied to extract 

guidelines for inclusive design based on product function, user activity, and the changes 

to the product function to improve the accessibility. The Apriori algorithm generates 

association rules quickly and efficiently.  

Antecedent Consequent

Product Function Change
Confidence 

(%)

Support 

(%)

1
Convert Electrical Energy to 

Mechanical Energy
Function Addition 100 2.9

2 Import Electrical Energy Function Addition 100 2.1

3 Transfer Electrical Energy Function Addition 100 1.4

4
Convert Human Energy to 

Hydraulic Energy
Function Addition 100 0.7

5
Convert Status Signal to 

Control Signal
Function Addition 100 0.7

6 Store Electrical Energy Function Addition 100 0.7

7 Store Hydraulic Energy Function Addition 100 0.7

8 Supply Electrical Energy Function Addition 100 0.7

9 Supply Hydraulic Energy Function Addition 100 0.7

10 Supply Chemical Energy Function Addition 100 0.7

11
Convert Chemical Energy to 

Mechanical Energy
Function Addition 67 1.4

Measures
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Generally, association rule mining is applied to dataset with large number of 

items in each transaction. The rules are mined based on the minimum value of support 

and confidence. The rules may or may not have all the items from a transaction. Also, 

there is no restriction on the items that constitutes the antecedent or items that constitutes 

the consequent. Thus, the rules generated in this research may appear as weak 

association rules. Here, we dictate the item that needs to be part of either the antecedent 

or the consequent as we are searching for a specific causality. Also, rules with low 

values of confidence and support are considered. The reason for setting low values of 

minimum support and confidence is the size and diversity of the data set studied. In 

addition, the rules with low support are interesting cases for inclusive design of products.  

Nevertheless, association rule mining allows efficient analysis of data. 

Importantly, association rule mining is able to produce rules that suggest design changes 

in the context of user activity and product function interplay and thus are applicable 

during the design process. Subsequent chapters explore other data mining techniques and 

more robust algorithms for extraction of inclusive design guidelines. Better software 

allows flexibility in the input format and reduces the amount of manual post-processing 

required.  
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CHAPTER V 

FORMALIZING AND EXPLORING THE TRANSFERABILITY OF THE RULES 4 

 

The initial exploration demonstrates the potential of association rule mining for 

generating inclusive design rules based on user-product interactions. The interaction 

between the user and a product as embodied in the actionfunction diagrams gives 

valuable information for serving the needs of individuals with a disability. This chapter 

extends the association rule mining to study a larger dataset consisting of 65 product 

pairs. The set of rules obtained from the initial exploration of 15 product pairs are 

compared to the rules obtained from current dataset of 65 product pairs. 

The main purpose of this chapter is to extend and formalize the application of 

state-of-the-art Apriori algorithms for inclusive design rule generation. The data analysis 

procedure to obtain a set of inclusive design rules is formalized. A formal approach 

allows repeatable mining of rules such that each time more product pairs are added to the 

product dataset, the set of design rules can be updated. Particularly, post-process filtering 

of the rules generated by the Apriori algorithm is formalized to capture the information 

                                                

4 Reprinted with permission from "Formalizing and Exploring the Transferability of Inclusive Design 
Rules," by Sangelkar, Shraddha, and McAdams, Daniel A., 2013. Journal of Mechanical Design, in print, 
Copyright 2012 by Shraddha Sangelkar. And  
“Formalizing User Activity- Product Function Association Based Design Rules for Universal Products” by 
Sangelkar, Shraddha, and McAdams, Daniel A., 2011, Proceedings of the ASME 2011 International 
Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 
Washington, DC, Copyright 2012 by Shraddha Sangelkar.   
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pertinent to inclusive design. The post-process filtering facilitates the application of the 

widely implemented Apriori algorithm for mining rules from inclusive design data.   

Additionally, this chapter aims to determine if a tractable, or perhaps 

asymptotically finite, set of inclusive design rules can be captured by studying a larger 

and varied dataset of product pairs. Further in this work, the rules are analyzed in detail 

to evaluate their potential for transferability and reuse from one product to another. Of 

particular interest is the transferability of the rules across apparently disparate product 

domains. The conceptual and physical similarity of the rules is discussed in the results. 

As a compliment to the broad applicability or transferability of the discovered rules, 

some investigation of clustering products are presented. Products are clustered based on 

the association rules that are applicable to them. These product clusters represent an 

opportunity to form an inclusive product family. The commonality in the clustered 

product pairs has the potential to serve as a platform of inclusive elements. The next part 

explains the data generation and data analysis.  

Rule Generation  

An overview of the research activity is depicted in Figure 21. In the first step, the 

inclusive design information is generated from the existing inclusive products with the 

process explained in the Chapter III. In the second step, the data generated in the first 

step is mined to find rules applicable for inclusive design. The actionfunction diagrams 

of 65 product pairs are the input for the data analysis step. Data analysis consists of three 

steps: pre-processing, association rule mining, and post-processing.  
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Figure 21. Rule generation process to study the inclusive design characteristics  

Pre-Processing  

The comparison data obtained from the actionfunction diagrams of all the 

product pairs is tabulated in the pre-processing step. A candidate function set is a 

product function in a typical product along with the corresponding function in its 

inclusive counterpart, which is a possible candidate for a design change that leads to an 

inclusive product. A user activity may or may not be associated with a candidate 

function set. Each row of the table corresponds to a candidate function set. Each 

candidate function set acts as an input transaction to the Apriori algorithm. The items 

recorded in a transaction are product functions and user activities in the typical and the 

inclusive products in addition to the type of change in the product function.  

 The product pairs studied in this chapter cover a broad range of complexity. For 

example, a product pair such as a typical and inclusive washer with comprehensive 

actionfunction diagrams result in a large number if input transactions to the data set. On 

the contrary, a simpler product pair like a shovel has fewer input transactions. The 

Data Generation 

• Select inclusive products and 
form product pairs 

• Create actionfunction diagrams 
for the typical and the inclusive 
product 

• Compare the product pairs 
based on user-product 
interactions  

Data Analysis 

• Pre-process the data and create 
input for rule mining 

• Association rule generation by 
setting minimum values of 
support and confidence 

• Post-process the generated 
rules to obtain a set of rules for 
inclusive design  
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average number of transactions per product pair for the data studied here is 8. The 

number of transactions in a product pair ranges from 3 to 16 in this dataset.  

Association Rule Mining 

Pre-processed product function and user activity data is input to the association 

rule mining algorithm. The Apriori algorithm requires the user to select minimum 

threshold values for the support and confidence. If the minimum value of support and 

confidence is set to a high threshold, say 5% support and 90% confidence, the rules 

obtained contain only the most frequent itemsets and all permutations of those itemsets. 

For instance, the importing functions for energy, material, and human are most frequent 

in the dataset. Hence, only the association rules pertaining to importing functions are 

mined by setting high threshold values. For this study, the minimum values of support 

and confidence are set to a low threshold to discover as wide a range of rules and results 

as possible. Low values of support and confidence allow mining of rules over a wide 

range of activities and functions, thus giving better insight into inclusive design as 

established in Chapter IV.  

Consider that an antecedent A leads to two different consequents, B and C. Two 

possible rules are AàB and AàC, and the confidence of each rule is 50%. Due to a 

variety of product pairs in the dataset, there are instances of the same antecedent leading 

to two different consequents. Such rules with 50% confidence gives the product designer 

a choice between two consequents, given the antecedent.  For example, either a 

parametric or morphological change to the product function of indicate status can make 

the activity of “seeing” more inclusive. A designer can choose between the two rules for 
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the preferred solution to address all customer requirements during the conceptual stages 

of design. Therefore, the minimum value of confidence is set to 50% for this study. 

Though a single transaction occurrence is not generally of interest in the sense that it 

does not suggest a strong rule, it is chosen to over explore the potential rule space to find 

a greater number of strategies for inclusive design. The minimal support level is set at 

0.15% (<1/523), such that the algorithm mines itemsets that occur one or more times in 

the dataset.  

Post-Processing 

The Apriori algorithm is set to generate rules with a minimum confidence level 

of 50% and minimum support level of 0.15%. A negative of setting low values of 

confidence and support is that the algorithm mines 13,300 rules from 523 transactions. 

Hence, the rules require further post-processing to obtain a set of rules with the desired 

order of itemsets in the antecedent and consequent which is explained further.  

In this research, we are interested in the interplay between user activity, product 

function, and any observable design feature that makes a product more inclusive. In the 

initial stages of design, the only information available to a product designer is the 

product function, the user activity, and the associated user-product interaction from the 

actionfunction diagram of a typical product. The designer is confronted with the 

question, what change to one or more product functions would make the product more 

inclusive? In other words, given the user activity and product function in typical design 

(antecedent), what type of design change (consequent) in the product function would 

make it inclusive? This method aims to formalize design rules that would be based on 
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the user-product interactions of the typical design. The design rules would suggest a 

change in attribute or characteristics of the function in typical product that would 

possibly yield an inclusive product.  

Apriori algorithm cannot be programmed to mine a particular format of rules that 

are needed for inclusive design. What the Apriori algorithm mines instead is explained 

here. The Apriori algorithm generates different permutations of the same itemsets. The 

algorithm treats all types of itemsets, even those with different headers, equally for rule 

mining. A header is the general term describing the itemset; for example, ‘product 

function in typical’ is the header for the itemset ‘position hand’. The Apriori algorithm, 

as it stands, cannot be programmed to generate rules with specified headers in the 

consequent and the remaining headers in the antecedent. This limitation tends to produce 

invalid design rules and will be explained in the subsequent paragraphs. 

Apriori cannot be customized to find rules such that the antecedent contains the 

information only from the typical product while the consequent contains the information 

about the inclusive version of product or the type of change. An example of rules mined 

by the Apriori algorithm containing the same itemset but with different permutations is 

given below.  

1. (“Product function in typical” = Position Hand, “User activity in typical” = Grasping)  
à (“Change” = Parametric, “User activity in inclusive” = Grasping, “Product function in 
inclusive” = Position Hand) 

2. (“Change” = Parametric, “User activity in typical” = Grasping)     
à (“Product function in typical” = Position Hand, “Product function in inclusive” = 
Position Hand) 

3. (“Product function in typical” = Position Hand, “User activity in typical” = Grasping)  
à (“Change” = Parametric) 
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4. (“Change” = Parametric)  
à (“User activity in inclusive” = Grasping) 

5. (“Product function in inclusive” = Position Hand)  
à (“Product function in typical” = Position Hand)  

 The first rule contains the type of change in the consequent, which is useful, but 

it also contains additional information stating the function and activity of the inclusive 

design in the consequent. A parametric type of design change, by definition, must not 

change the activity or function of the inclusive design. Hence, the activity and the 

function of the inclusive design in the consequent of first rule are both redundant. The 

second rule and the fourth rule contain the change as the antecedent, which is not 

particularly useful for inclusive design. The fifth rule presents incomplete information. 

The rules shown in the example above contain essentially the same information but in a 

different sequence. However, the third rule contains all the information that is sought for 

inclusive design.  

The rules given by the Apriori algorithm require further post-processing to 

eliminate the repetitive information given by different permutations of the same 

itemsets. In addition, the rules are filtered such that they contain the information about a 

typical design in the antecedent and the type of change in the consequent. If the change 

made to a function in a typical design leads to an activity change in the inclusive 

product, then activity change must be indicated in the consequent. To produce rules in 

the desired format for designers, filters are created to post-process the rule set as 

generated by the Apriori. All the rules are discussed in the results part; here specific 

example are provided to explain the filters. 
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Filter 1 

To be a rule with a parametric change, no change, or a function deletion change, 

the antecedent must contain the product function and the user activity from the typical 

design. Furthermore, the consequent is the change advocated by the rule. The user 

activity and the product function remains unchanged for the inclusive design in the case 

of a parametric change or no change. For the rules stating deletion of a function, both the 

user activity and the product function are deleted in the inclusive design.  

The generic form of the rule is (Product function in typical, User activity in 

typical) à (Change), where Change = Parametric or No change or Function deletion. 

For instance, the user-product interaction of “grasping” and position hand is made 

inclusive by parametric improvements to the handle design; this rule is stated as position 

hand + “grasping” à Parametric. The ergonomic handle design in the OXO good grips 

products, such as peelers, mashers, and garlic press, makes the tool convenient for 

people with limited hand dexterity. Such an ergonomic handle can be added in the 

design of other hand-held devices.   

An example of a no change type of rule would be, guide liquid + “no activity” à 

no change; which means that no change is required to product function guide liquid 

when no user activity is associated with it for a product like a kitchen sink. The shape of 

the sink bowl guides the water out into drainage. The rules suggest that no change is 

required to the shape of sink bowl to make it inclusive.  

An example of a function deletion type change would be transfer human energy 

+ “turning” à function deletion; which suggests that the function of transferring human 
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energy is deleted in the inclusive design along with the turning activity. In a manual can 

opener the user turns the handle to cut open the can; this turning activity is deleted in an 

electric can opener.  

Filter 2  

To be a rule with a morphological change, the antecedent must contain the user 

activity and product function of the typical design. The type of change and user activity 

in the inclusive design is sought as the consequent of the rule. Specifying the user 

activity in the consequent helps to keep track of the changes in user activity, if any. In 

most morphological changes, the user activity remains the same but performing that 

activity is now easier for the user. However, we are particularly interested in the activity 

change for the morphological design change as the activity in the antecedent may be an 

activity that a user with a disability is unable to perform.  

The generic form of the rule is (Product function in typical, User activity in 

typical) à (Change + User activity in inclusive), where Change = Morphological. 

Consider the rule, Indicate status + “communication using written” à morphological + 

“communication using Braille.” This rule suggests augmenting the written text with 

braille script to assist a blind user. In this rule, the user activity changes from typical to 

inclusive design by incorporating morphological change to the function indicate status.  

Filter 3  

To be a rule with the change of a function addition, the antecedent must contain 

the user activity from the typical product and product function from the inclusive 

product. The consequent must be the type of change and the user activity in inclusive 
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product. The difference in the format for the rules with function addition is because; the 

function addition change does not have a product function in the typical design. The 

functions are added in the inclusive design; hence, the product function from the typical 

design cannot serve as the antecedent. Rules with function addition indicate what 

functions, if added, make the product inclusive. 

The generic form of the rule is (Product function in inclusive, User activity in 

typical) à (Change +User activity in inclusive), where Change = Function addition. 

The rule, import electrical energy + “no activity” à function addition, indicates that the 

addition of the function to import electrical energy makes a product inclusive.  

In the same context, rules providing incomplete information are filtered out. For 

instance, the rule (“Change” = Parametric) à (“User activity in inclusive” = Grasping) 

does not give sufficient information for inclusive design. The antecedent of the rule does 

not specify the function being addressed for a parametric change, nor is the typical 

design expressed in the antecedent.  

A code is executed in MATLAB to execute these three filters on the association 

rules generated by the algorithm. The code outputs a set of function-based association 

rules for inclusive design in a format that is easy to comprehend. The post-processing 

step also eliminates the unnecessary information given by the Apriori algorithm such as 

number of cycles performed or the computation time. The code can also be tuned to 

select only those rules with high values of confidence and support, thus allowing better 

statistical control on the association rules filtered.  
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Comparison with Initial Exploration  

In Chapter IV, the Apriori algorithm is applied to mine association rules for 

inclusive design from 15 product pairs. Here, the association rules obtained from 15 

product pairs are compared to the rules obtained from 65 product pairs. Also in the 

previous chapter, the data mining software TANAGRA was applied for mining 

association rules and the post-processing of rules was done manually [90]. In this 

chapter association rules are mined with WEKA software and the post-processing step is 

automated. The three steps of data analysis as described in the data analysis part are 

performed on the prior dataset of 15 product pairs to eliminate any inconsistencies and to 

allow comparison between the two datasets.  

Table 7 compares the results obtained from the previous dataset of 15 product 

pairs to the results obtained from the current dataset of 65 product pairs. The number of 

input transactions for the dataset of fifteen products is 135 with an average of nine 

transactions per product pair. Similarly, the dataset of sixty-five product pairs studied 

here consist of 523 transactions altogether, with an average of eight transactions per 

product pair. The number of transactions per product pair provides an estimate of the 

complexity of product pairs studied. The overall complexity of products in both datasets 

is similar; thus it is reasonable to compare the two datasets.  

The total number of association rules counts all the rules mined by the Apriori 

algorithm for a confidence of 50% and support that reflects a minimum of one 

transaction in the dataset. Filtered association rules are those rules obtained after filtering 

in the post-processing step. In addition, Table 7 lists the association rules with support of 
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more than one instance both with and without a change. Rules with a change are those 

recommending either a parametric, a morphological, or a functional change to the user-

product interaction.  

Table 7. Comparison of association rules obtained from the dataset of 15 product 
pairs to the dataset of 65 product pairs 

    15 product pairs 65 product pairs 
Number of input transactions   135 523 
Total number of association rules   6969 13300 
Filtered association rules   65 124 

Association rules with support of 
more than one instance 

With change 11 24 
No change 7 37 

 
 

Table 8 and Table 9 list the filtered association rules for the dataset of 15 product 

pairs and dataset of 65 product pairs, respectively. Support of these rules is such that the 

consequent occurs more than once for a given antecedent. In other words, the rule is 

observed in at least two product pairs. The confidence of association rules listed is 

greater than 50%. The antecedent of a rule is the product function and the user activity 

while the consequent is the change in product function and change in the user activity in 

the inclusive design. Rules listed are only those reflecting a change in the product 

function; rules resulting in no change are not presented here for brevity.  
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Table 8. Association rules generated with minimum support of two instances 
suggesting changes in the product functions for the dataset of 15 product pairs  

 

Table 8 and Table 9 sort the rules in order of decreasing level of support. Eight 

rules are common between the two datasets as shown in Table 8 and Table 9. Sixteen 

new association rules are added due to the addition of 50 product pairs to the dataset. 

Three rules from Table 8, namely Rule 6, Rule 9 and Rule 11, are not repeated in Table 

9. The reason for not finding the rules in the larger dataset is that the confidence of a rule 

depends on the possibilities for a consequent. With the addition of more products to the 

dataset, there are more possibilities for a consequent of a given antecedent. Rules that 

are not mined in the larger dataset do not have the same level of confidence as that of the 

smaller dataset. 

 ANTECEDENT CONSEQUENT   
 Product Function User Activity  Functional Change User Activity Change Confidence Support 

1 Import EE No Activity Functional Addition No Activity 100 2.96 
2 Convert EE to ME No Activity Functional Addition No Activity 100 2.96 
3 Guide Human Standing Functional Addition Same Activity but Easier 100 2.22 
4 Guide Human Sitting Functional Addition Same Activity but Easier 100 1.48 

5 Actuate Signal No Activity Functional Addition Pushing with fingers 80 3.70 
6 Import Hand No Activity Functional Addition Reaching 75 2.22 
7 Transfer HE Manipulating Morphological Same Activity but Easier 67 1.48 
8 Convert CE to ME No Activity Functional Addition No Activity 67 1.48 

9 Guide Solid Manipulating Morphological Pushing with fingers 67 1.48 
10 Separate Solid No Activity Morphological No Activity 60 2.22 
11 Guide Solid Pulling Morphological No Activity 50 1.48 
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Table 9. Association rules generated with minimum support of two instances 
suggesting changes in the product functions for the dataset of 65 product pairs  

 

Rules that are repeated in both datasets, highlighted in bold type, do not 

necessarily have the same values of confidence and support, since values of support and 

confidence depend on the total number of transactions in the dataset. The minimum 

value of support for the rules listed in Table 8 is 2/135 or 1.48%. Similarly, minimum 

value of support for the association rules listed in Table 9 is 2/523 or 0.38%. 

 ANTECEDENT CONSEQUENT   
 Product Function User Activity  Functional Change User Activity Change Confidence Support 

1 Position Hand Grasping Parametric Same Activity but Easier 69 4.21 
2 Convert EE to ME No Activity Functional Addition Same Activity but Easier 82 1.72 
3 Import EE No Activity Functional Addition Same Activity but Easier 56 1.72 
4 Actuate Signal No Activity Functional Addition Pushing with fingers 80 1.53 

5 Position Solid Carrying in Hands Parametric Same Activity but Easier 100 1.15 
6 Position Hand Reaching Parametric Same Activity but Easier 75 1.15 
7 Position Human Maintain Body Position Parametric Same Activity but Easier 75 1.15 
8 Import CE No Activity Functional Addition Same Activity but Easier 50 0.96 

9 Position Hand Carrying in Hands Parametric Same Activity but Easier 80 0.76 
10 Indicate Status Seeing Morphological Same Activity but Easier 67 0.76 
11 Separate Solid No Activity Morphological Same Activity but Easier 50 0.76 
12 Secure Hand Grasping Functional Addition Same Activity but Easier 100 1.15 
13 Store EE No Activity Functional Addition Same Activity but Easier 100 0.57 

14 Supply EE No Activity Functional Addition Same Activity but Easier 100 0.57 
15 Guide Human Standing Functional Addition Same Activity but Easier 100 0.57 
16 Sense Status No Activity Morphological Same Activity but Easier 100 0.57 
17 Convert CE to ME No Activity Functional Addition Same Activity but Easier 75 0.57 

18 Transfer HE Turning Functional Deletion Same Activity but Easier 60 0.57 
19 Guide Solid Pushing with fingers Parametric Same Activity but Easier 50 0.57 
20 Position Hand No Activity Functional Addition Reaching 100 0.38 
21 Guide Human Sitting Functional Addition Same Activity but Easier 100 0.38 

22 Indicate Status Communication Written Morphological Communication Braille 100 0.38 
23 Position Hand Manipulating Parametric Same Activity but Easier 100 0.38 
24 Transfer HE Manipulating Morphological Same Activity but Easier 67 0.38 
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Rules Set Size and Product Set Size 

Of interest is the trend in rules generated as more products are added to the 

dataset. Specifically, does the set of association rules for inclusive design trend towards 

some finite number as the product set grows arbitrarily large. In some sense, a small 

number of rules applicable to a large set of products would indicate some core, 

fundamental, design needs for inclusive products. If the number of rules generated 

correlates directly with the growth of products analyzed, it indicates that each product 

must be designed uniquely to be inclusive. 

To explore the relationship between rule set size and product set size, the 

following procedure is performed. The rule mining algorithm is set to generate rules 

with support of at least one instance and a minimum value of confidence greater than 

50%. Data analysis is repeated on the dataset while incrementally adding product pairs 

to the dataset. Here, we have added any two random product pairs, without replacement, 

till all 65 product pairs are included. The rule generation process is repeated 5 times, 

each for different random order of the product pairs, to calculate the error in the number 

of the rules generated.  

Figure 22 and Figure 23 show plots of the number of association rules mined 

verses the number of products in the dataset. Figure 22 shows a plot of the total number 

of association rules generated by the Apriori algorithm against the number of product 

pairs in the dataset. Figure 23 shows the number of filtered association rules, after post-

processing, against the number of product pairs studied. In Figure 22 and Figure 23, the 

cross represents the mean and the error bar represents the standard deviation.  
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The trends in Figure 22 and Figure 23 show that the number of association rules 

generated per product pair reduces as more products are included in the dataset; the 

slope of the graph decreases gradually and than almost reaches a constant value. After 

having a considerable quantity and variety of inclusive products in the dataset, the 

number of association rules mined does not increase proportionately with the addition of 

every new product pair to the dataset. Based on this analysis, one would expect that new 

product pairs studied to add new rules to the rule set. But the number of rules added per 

product pair will be a smaller number when one product pair is added to dataset of 100 

product pairs as compared to rules obtained per product pair when one product pair is 

added to dataset of 10 product pairs.  

 

Figure 22. Total number of association rules generated by the Apriori algorithm 
against the number of product pairs in the dataset 
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Figure 23. Number of filtered association rules after post-processing against the 
number of product pairs in the dataset 

 

In this analysis, the first 15 products are not necessarily the dataset of the intial 

15 product pairs. A point called “previous results” is added in Figure 22 and Figure 23 to 

depict the data point for the initial dataset of 15 product pairs. Though the specific rules 

resulting from the analysis of the two datasets may be different, the number of rules is 

similar indicating a common rate of rule generation for different set of products.  

The decreasing rate of association rules mined as depicted in Figure 22 and 

Figure 23 indicates the potential to capture some tractable set of inclusive design rules. 

Thus, the inclusive design knowledge can be captured and formalized by a set of 

association rules based on functional representation. As products are added and 

analyzed, rules that are repeated more often increase in the values of support and 

confidence.  
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Clustering of Product Pairs and Transferability of the Rules  

The general template for the rules generated is that given a product function and 

user activity, how do a typical and inclusive product differ. Specifically, it is important 

to express and understand this difference in a manner that allows a designer to better 

design, or redesign, a product for accessibility. The rules are to be applied at the concept 

generation stage of design and are rooted in a functional abstraction of the design 

problem. In practice, a designer could query for a rule based on the actionfunction 

diagram of the product being designed. The rule could suggest functional, 

morphological, parametric, or no change - with associated support and confidence 

numbers – to the designer. The designer is then tasked with applying the suggested 

change to their design: the designer is transferring design knowledge in the form of rules 

from prior designs to a new design. To support such design activity, a knowledge base of 

existing designs could be provided to the designer for easier understanding and 

implementation. In this context, the transferability of rules from one product to the next 

is explored.  

The transferability of rules in the context of clusters of products is explored 

based on sharing common rules. The clustering of products is important for several 

reasons. Products that contain multiple common rules are likely to be more similar, thus 

facilitating a tighter analogy between products and simpler rule transfer. Clusters are 

also important as they present the potential to create inclusive product families based on 

the products that share common rules and in turn common embodiments of those rules.  
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To cluster products, a straightforward rule search is employed. It is intended to 

search for products that share two or more rules in common. The electric versions of the 

wine opener and the can opener are almost identical in terms of a function-based 

comparison. Also, the guiding mechanism in the recliner and toilet seat are functionally 

the same. Thus, there are only two instances of products – the wine opener and the can 

opener as well as the recliner and the toilet seat – that share five or more rules in 

common. However, there are multiple instances of products sharing 2, 3, or 4 rules in 

common, hence three iterative loops search through the products. The first loop searches 

for clusters of products with any four rules in common. The second loop searches for 

clusters of products with any three rules in common. The third loop searches for clusters 

of products with two common rules. 

Clusters of products and the sharing of the rules are represented using Venn 

diagrams. One such Venn diagram is shown in Figure 24. The products contained within 

each circle represent a cluster. The rules contained within every circle are applicable to 

all the products within the same circle. Two or more clusters might share a rule. 

Furthermore, two or more clusters can share a product. Figure 24 consists of clusters of 

the handheld product pairs that share Rule 1. Rule 1 recommends a parametric 

improvement in the design of a handle for better “grasping” while the product positions 

hand. Figure 25 thru Figure 28 shows product pairs that adopt an ergonomically 

designed handle for the inclusive product. 
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Figure 24. Clusters of inclusive products sharing Rule 1 that recommends a 
parametric change to the function position hand for better “grasping” 

Figure 25 shows product pairs from cluster #1 that share Rule 1 and Rule 24. In 

addition to ergonomic handle design, these product pairs exhibit morphological change 

in the way the human energy is transferred for cutting action. Inclusive scissors 

incorporate a spring to aid the cutting action. The inclusive pruners have a four-link 

mechanism to transfer the human force while cutting. The scissors and pruners provide a 

close domain design analogy for transferability of rules between office supplies and 

garden tools.  
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Figure 25. Product pairs in cluster #1 sharing Rule 1 and Rule 24 that suggests a 
morphological change to function of transferring human energy for easier 
“manipulating” 

The product pairs used to generate the rules are shown side by side in Figure 25. 

The transfer of rules from one product to the next moves up and down in the figure. The 

scissors and pruners example in Figure 25 illustrate the transfer of rules from similar 

products. Scissors and pruners are functionally and morphologically similar to each 

other with specific parametric changes implemented to improve their intended 

applications. The fact that the function-based rule clustering method groups the scissors 

and pruners indicates that the method finds close domain products with intuitively 

transferable rules. 

Figure 26 shows product pairs from cluster #2 that share Rule 12 and Rule 1. 

Rule 12 is the addition of a secure hand function to a product that involves the user 

activity of grasping. As embodied in a handheld shower nozzle, a shovel, a recliner 

lever, and a box cutter, the result is the addition of a closed loop handle that prevents the 

product from slipping out of user’s hand. As a contrast to the scissors and pruners case, 

the products shown in Figure 26 are dissimilar. The product domains represent bathroom 

fixtures, garden equipment, and furniture. Nevertheless, inspection of the design changes 
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in the different products in Figure 26 shows similar implementation of the rule. Thus, 

design knowledge in one domain can be applied to a different domain with function-

based association rules for designing inclusive products.  

 

Figure 26. Product pairs in cluster #2 sharing Rule 1 and Rule 12 that suggests 
addition of a functionality to secure hand while the user “grasps”  

Figure 27 shows product pairs from cluster #3 that share Rule 19 and Rule 1. 

Rule 19 recommends parametrically large tabs or buttons on products that requires a user 

to “push with fingers” for operating the device. Rule 19 can be applied for inclusive 

design of an electronic device, automobile interiors, or a medical device. For cluster #3, 

the physical embodiment of Rule 19 is quite distinct, thus, providing distant analogies 

for inclusive design. Products shown in Figure 27 are from diverse domains. Though 

they represent a common rule, the physical embodiment of the rule is less similar than in 

the case of cluster #2 illustrated in Figure 25.  
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Figure 27. Product pairs in cluster #3 sharing Rule 1 and Rule 19 that suggests a 
parametric change to guide solid function to aid “pushing with fingers” 

Figure 28 shows the product pairs in cluster #4 that share Rule 11 and Rule 1. 

Rule 11 suggests a morphological change to the function separate solid. A chopping 

bowl and a box cutter exhibit a morphologically different cutter for the inclusive design. 

Though product pairs from cluster #4 are from a similar domain, both are cutting tools; 

the physical embodiment of Rule 11 is distinct. 
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Figure 28. Product pairs in cluster #4 sharing Rule 1 and Rule 11 that suggests a 
morphological change to the cutter  

The discussion on transferability of rules continues with more examples 

demonstrating the physical embodiment of the rules. The Venn diagrams shown in 

Figure 29, Figure 30, and Figure 31 are similar to Figure 24. A designer can look up 

such examples of rules as analogies to generate ideas for inclusive design.  

Figure 29 shows clusters of product pairs, sharing Rule 5, Rule 6, Rule 7, and 

Rule 9. Cluster #7 comprises the washer, the dishwasher, and the oven and they share 

Rule 5, Rule 7, and Rule 9. Rule 7, which is also shared by cook top, suggests the 

provision of a knee space for allowing access to a user on a wheel chair. Rule 5 and Rule 

9, which are also shared by a refrigerator, recommend some intermediate counter space 

next to the product for placing hot or cold objects. The cook top and the refrigerator 

share Rule 6 that specify that controls must be located within the reach range of any 

user. Product pairs stated in cluster #5, cluster #6, and cluster #7 are closely related, as 

all of them are household appliances. The space around the product is modified to 

accommodate gross user access to the device. The rules embodied in these products can 

be conveniently transferred to inclusive design of other household appliances. For 
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instance, Rule 7 can be applied for the design of a bathroom sink where knee space 

could be provided beneath the sink to accommodate a wheelchair user.  

 

Figure 29. Clusters of architectural product pairs sharing Rule 5, Rule 6, Rule 7, 
and Rule 9 that deal with a parametric change to allow gross user access 

Figure 30 shows clusters of product pairs sharing Rule 8, Rule 10, Rule 16, and 

Rule 17. Cluster #8 contains a kitchen scale, a blood pressure monitor, and a 

thermometer. Rule 10 and Rule 16 recommend a morphological change to the functions 

sense status and indicate status such that “seeing” is easier. The morphological change 
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recommended by Rule 10 to the function indicate status is implemented by a digital 

display. The morphological change suggested by Rule 16 to the function sense status is 

achieved with a sensor that operates on a different physical principle. Rule 8 and Rule 17 

suggest the addition of functionalities to import chemical energy in the form of fuel or 

batteries and converting chemical energy into mechanical energy. It is worth noting that 

product pairs from cluster #8 are from the distinct product domains of kitchen equipment 

and medical devices, but all of them sense, measure, and display some physical 

parameter. In contrast, cluster #9 presents a distant domain analogy between an 

automobile and a medical device for importing external chemical energy.  

 

Figure 30. Clusters of product pairs sharing Rule 8, Rule 10, Rule 16, and Rule 17  
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In Figure 31, cluster #10 comprises a wine opener, a can opener, and an 

automatic toothbrush and the applicable rules are Rule 2, Rule 3, Rule 13, and Rule 14. 

These rules suggest the addition of functionalities like import, store and supply electrical 

energy and convert electrical energy to mechanical energy to automate the devices. 

Cluster #11 consists of a wine opener and a can opener similar to cluster #10, except for 

the addition of Rule 18. Rule 18 recommends deletion of the “turning” activity. A auto 

assist toilet seat, a recliner, and an armchair share Rule 15 that states a functional 

addition to guide human while “standing.” 

Of note, cluster #11 contains product that are closely related and represent near 

domain analogies. Cluster #10 contains dental care products and kitchen tools that are 

fairly distinct. Product pairs from very distinct product domains like residential furniture, 

bathroom fixtures, dental care products, and kitchen tools share Rule 2 and Rule 3 which 

are external energy related functions. Product pairs from cluster # 12 and cluster #13 are 

quite similar.  
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Figure 31. Clusters of product pairs consisting of a variety of products 

One of the goals is to observe the conceptual similarity of a rule, as it is 

applicable to products from disparate product domains. The desire is to have sufficient 

conceptual similarity such that the rules provide insight for inclusive design across a 

wide range of products. Such similarity is seen in the product cluster shown in Figure 26. 

Further, I wish to explore the physical similarity in the context of creating inclusive 

product families based on a platform of that common inclusive element. In other words, 

could the actual embodiment of the rule result in a common component that can be 

shared across multiple products serving as a product platform? The garden tools in 
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Figure 32 illustrate such a component sharing case. An ergonomic, non-slip type of 

handle can act as inclusive product platform that can be shared by other handheld 

devices. In this case, the product family is built from similar products from a common 

domain. Products that can be derived from the platform of inclusive handle are shown in 

Figure 32.  

 

Figure 32. Other hand held products that exhibit Rule 1 and Rule 12 in form of an 
ergonomic handle design 

Figure 33 illustrates transferability of Rule 1 from a spatula to a trowel in form of 

an inclusive add-on module. In this case, the rule is observed in a kitchen tool and 

applied for inclusive design of a garden tool. The tool can be initially designed to be 

inclusive as shown in Figure 32 or an inclusive module can be retrofitted on the product 

to make it inclusive as shown in Figure 33.  
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Figure 33. Transferability of Rule 1 between an inclusively designed spatula (left) 
and a trowel (right) in form of an inclusive add-on module  

Clustering of product pairs that share the same rule can indicate transferability of 

rules. The physical embodiment of a rule can be quite distinct from one product to 

another. Presenting a product designer with examples of the rules can stimulate concept 

generation for inclusive design. Examples of physical embodiment along with the set of 

function-based association rules would help inclusive design.  

Summary 

This chapter aims to capture and formalize the inclusive design knowledge from 

functional representations of an arbitrarily large set of products. Particularly, a set of 

association rules is mined from a dataset of 65 product pairs that are formally compared 

based on user-product interactions. The rules are post-processed to filter out unnecessary 

information and the post-processing step is automated to allow the addition of more 

product pairs to the dataset.  

Moreover, the set of rules obtained based on the 65 product pairs are compared to 

the initial results obtained with 15 product pairs. Comparison with the initial exploration 

shows that adding more product pairs to the dataset improves the statistical significance 

of the rule in terms of superior values of confidence and support. This chapter also 
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investigates the rate of rule generation per product pair as more products are added to the 

dataset. The results indicate that the rate of rule generation decreases and then 

approaches a limiting value after having a considerable quantity and variety of inclusive 

products in the dataset.  

The transferability of rules from one product pair to another is explored. In this 

context, it is interesting how the function-based rules provide insight to the specific 

physical embodiment of a product. To perform this exploration, products are clustered 

based on rule commonality. Then within these clusters, the products are evaluated for 

conceptual and physical similarity shown by the specific embodiment of the rule. In the 

case of close domain products such as pruners and scissors, the rule implementation is 

highly analogous. Such a result indicates that the rule mining methodology presented in 

this chapter, including both representation and mining scheme, is producing expected 

results.  

Additionally, the rules are found to be transferable across products in diverse 

domains such as plumbing fixtures and furniture. The transferability of the rules across 

diverse domains indicates that the inclusive design knowledge is broadly applicable in 

product design. The results indicate that the rules, and product clusters based on the 

rules, may provide opportunities to create product families based on sharing common 

components that make the product inclusive. An opportunity to create a product family 

of diverse kitchen and gardening products is presented.  
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CHAPTER VI 

GRAPH DATA MINING 5 

 

This chapter explores the feasibility and advantage of graph data mining for 

generating inclusive design heuristics. Another important contribution is the application 

of bipartite graphs for modeling the product pair comparison data. The application of 

graph theory for the mathematical representation of actionfunction diagrams and graph 

visualization for comprehending graphs is explained. The limitations of association rule 

mining in the context of generating rules for inclusive design is explained below.  

Limitations of Association Rule Generation 

As explained in Chapter IV and V association rule mining improves the 

efficiency in extracting inclusive design heuristics. However, association rule mining has 

some limitations as applied to the product-user data produced by actionfunction 

diagrams. There are multiple transactions corresponding to a single product pair, but 

there is no provision to group these transactions together on a per product basis in 

association rule mining. For instance, the relationship between the deletion of the import 

human energy function in a typical opener, as a change based on the addition of the 

import electrical energy in the inclusive opener, cannot be modeled. To preserve the 

relation between the candidate function sets in a product pair, the entire product pair 

                                                

5 This chapter has been submitted for publication in the Journal of Computing and Information Science in 
Engineering, refer to: Sangelkar, Shraddha, and McAdams, Daniel A., " Mining Functional Model Graphs 
to Find Product Design Heuristics with Inclusive Design Illustration," Journal of Computing and 
Information Science in Engineering, in review.  
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could be modeled as a single transaction. For example, all the items in Table 2 could be 

modeled as a single transaction.  

But there are two major limitations if all candidate function sets in a product pair 

are modeled as one transaction. Firstly, functions, activities, and design differences are 

all treated as items in the same category. For example, picking up is of the category ‘user 

activity’ and import hand is of the category ‘product function,’ but here they will be 

treated as one general category ‘attributes of a can opener’. Secondly, the effect of a 

particular candidate function set on the inclusive nature of design cannot be captured; for  

example of a grasping activity and position hand function that is related to ‘no change’ 

but cannot be modeled together.  

Table 2 shows the flat-attribute type input for association rule generation 

obtained on comparison of the actionfunction diagrams of the can openers. Each 

candidate function set, a product function in a typical product along with the 

corresponding function in the inclusive counterpart, is an input transaction to the Apriori 

algorithm. Each row of Table 2, which is also a candidate funtion set, is a flat-attribute 

type transaction input to the Apriori algorithm. The graph mining captures complex 

relational information as compared to the flat-attribute type representation.  

Modified Data Analysis 

The data generation process for this research remains the same as that explained 

in previous chapter. However, the data analysis process is modified to overcome the 

limitation of the flat-attribute type representation. Figure 34 shows the modified rule 

generation process, with specific emphasis on the data analysis.  
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Figure 34. Modified data analysis with graphical representation and frequent-
pattern search to study the inclusive design characteristics 

The pre-processing step converts the comparison data into a flat-attribute type 

representation. The modified data analysis replaces the pre-processing step with 

graphical representation, which is explained in the next part. A frequent-pattern search 

algorithm, a graphical data mining technique, replaces the association rule generation. 

The FSG can be configured to find ‘maximal-patterns’ only. The maximal-pattern 

constraint finds all the rules satisfying other conditions and excludes the repetitive 

information. Thus, with the maximal-pattern constraint the post-processing step 

explained in Chapter V can be eliminated. The graph visualization step is added for 

efficient interpretation of the mathematical form of frequent subgraphs.  

Graphical Representation  

The general form of graph data representation consists of the entities given by the 

nodes, their attributes specified by the node labels, and the relationships between the 

entities stated by the edges and edge labels. The comparison of actionfunction diagrams 

yields complex relational information between user-product interactions. The traditional 

Data Generation 

• Select inclusive products and 
form product pairs 

• Create actionfunction diagrams 
for the typical and the inclusive 
product 

• Compare the product pairs 
based on user-product 
interactions  

Data Analysis (modified) 

• Graphical representation of the 
data and create input for graph 
mining 

• Frequent-pattern search  
(graph data mining)  

• Graph Visualization to obtain 
inclusive design heuristics 
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graph representation with nodes referring to the functions and edges referring to the 

flows cannot capture the comparison information. The comparison between a product 

pair is best modeled with a bipartite graph. A bipartite graph is a graph whose nodes can 

be divided into two disjoint sets such that every edge connects a node in one set to a 

node in the other set [93]. This part explains the creation of input for graph data mining 

and the advantages of this graph representation.  

The two products in a product pair are the two sets of a bipartite graph, one is the 

typical product and one is the inclusive product. The nodes of a graph are the user-

product interactions, and the node labels are the corresponding product functions and 

user activities. A user-product interaction is the activity that a user performs when the 

product performs the function. In a few cases, a function is added in the inclusive 

product to aid an activity associated with the typical device. Such an activity in the 

typical product by itself constitutes as a user-product interaction. Certain functions of the 

product are essential for overall functioning of the device but do not necessarily have an 

activity associated with it. Such functions also count as user-product interaction with 

null activity reported. A user-product interaction may not contain more than one function 

or one activity.  

The edges represent the changes as one moves from a typical design to inclusive 

design. An edge in a bipartite graph connects the design differences between the user-

product interactions of the typical set and the inclusive set. The edge labels specify the 

type of design difference, namely parametric (P), morphological (M), functional (F), or 

no change (N). Interactions are connected by an edge if the design comparison impacts 
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the accessibility of the inclusive product. Notably, the edges are not physical 

connections within the same product. For example, the window controls are not related 

to the window, but the push button of an automatic window control in the inclusive 

automobile is related to the manual window lever in a typical automobile. 

Figure 35 explains the conversion of the comparison data into graphical format. 

The user-product interactions of the typical can opener acts as set X of the bipartite 

graph while the ones of inclusive opener act as set Y. Nodes 0 to 9 are in set X, and 

nodes 10 to 21 are in set Y. The edges are colored purple, green, orange, and grey for the 

parametric, morphological, functional, and no change type of design differences, 

respectively. For instance, node 1 in set X is connected to node 11 in set Y with a green 

edge. This means that the user-product interaction ‘position hand + grasping’ changes 

morphologically from typical to inclusive design.  
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Figure 35. The bipartite graph representation of a can opener product pair 
comparison 

With the graphical representation each product pair is modeled as one graph. The 

data is mined from a database of 65 product pairs modeled as graphs. The database of 

sixty-five product pairs along with the corresponding bipartite graphs is available in the 
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Appendix D and E and uploaded online at www.prosedesign.org [87]. In addition, the 

graphical representation allows modeling of the relations between multiple user-product 

interactions of a single product pair. For example, addition of electrical energy to a 

manual can opener eliminates the activity of turning in the case of the electric can 

opener. The addition of electrical-energy-related interactions is related to the deletion of 

the human-energy-related interactions. Thus, each of the nodes, namely node 2, node 3, 

and node 4 from set X are connected to each node 12, node 13, node 14, node 15, and 

node 16 in set Y. Such relations between apparently unrelated components can be 

modeled with a graphical representation. Multiple relationships between interactions are 

mostly observed for functional design differences. 

It is worth noting that the function of exporting lid, performed by the magnet in 

the electric opener, eliminates the manipulating activity in the typical design. However, 

the concept of using a magnet to export the lid is independent of the concept of including 

electrical energy. Hence, the functional change associated with export solid and 

manipulating is not related to the electrical-energy-related interactions. Thus, node 9 in 

set X is connected to node 21 in set Y by an orange edge, but node 9 is not connected to 

node 12, node 13, node 14, node 15, or node 16. The next part explains the graph data 

mining technique called frequent pattern search.  

Frequent Pattern Search 

PAFI is a software package developed by Karypis at the University of Minnesota 

to find interesting patterns from large and diverse databases [94]. The PAFI software 

package includes the LPMiner for databases with itemsets in transactions, the SPMiner 
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for sequential databases, and the FSG for databases with undirected graphs. The FSG 

algorithm is used here to find the undirected frequent subgraphs satisfying the minimum 

threshold support constraint, where support is the percentage of frequent subgraphs 

found in the database. 

Figure 36 shows node labeling and an adjacency matrix for the can opener 

example. A node is denoted with ‘v’ followed by node number and node label. An 

adjacency matrix of a graph shows the edges connecting the nodes along with an edge 

label. For instance, nodes v 1 and v 11 are connected by an edge of morphological type, 

which denotes a morphological change to the function position hand when the user is 

grasping. Recall that nodes 0 to 9 belong to the typical product, and nodes 10 to 21 

belong to the inclusive product.  

 

Figure 36. Node labeling and adjacency matrix for the can opener example, where 
M, F, and N denote morphological change, functional change, and no change, 
respectively. 

Node

X Product Function User Activity v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21

v0 Import Hand Picking up v0 0 0 0 0 0 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0
v1 Position Hand Grasping v1 0 0 0 0 0 0 0 0 0 0 0 M 0 0 0 0 0 0 0 0 0 0
v2 Import Human Energy None v2 0 0 0 0 0 0 0 0 0 0 0 0 F F F F F 0 0 0 0 0
v3 Transfer Human Energy Turning v3 0 0 0 0 0 0 0 0 0 0 0 0 F F F F F 0 0 0 0 0
v4 Convert Human Energy to Mech Energy Turning v4 0 0 0 0 0 0 0 0 0 0 0 0 F F F F F 0 0 0 0 0
v5 Import Solid Carrying v5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 0 0 0 0
v6 Couple Solid Manipulating v6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 0 0 0
v7 Guide Solid None v7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 0 0
v8 Separate Solid None v8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 0
v9 None Manipulating v9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F

v10 Import Hand Picking up v10 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v11 Position Hand Grasping v11 0 M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v12 Actuate Signal Grasping v12 0 0 F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v13 Import Elec Energy None v13 0 0 F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v14 Store Elec Energy None v14 0 0 F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v15 Supply Elec Energy None v15 0 0 F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v16 Convert Elec Energy to Mech Energy None v16 0 0 F F F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v17 Import Solid Carrying v17 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v18 Couple Solid Manipulating v18 0 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v19 Guide Solid None v19 0 0 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v20 Separate Solid None v20 0 0 0 0 0 0 0 0 M 0 0 0 0 0 0 0 0 0 0 0 0 0
v21 Export Solid None v21 0 0 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 0 0 0 0 0
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For the complete description of a graph, a list of nodes with node labels and the 

adjacency matrix is sufficient. However, the input to the FSG algorithm requires the list 

of nodes followed by the list of edges. Each node line consists of a node identifier and a 

node label. Each edge is denoted with the nodes that it connects and an edge label. Table 

10 shows the input format to the FSG algorithm for the can opener example. The node 

label headers PF_Typ, PF_Inc, UA_Typ, and UA_Inc mean product function in typical 

product, product function in inclusive product, user activity in typical product, and user 

activity in inclusive product, respectively. Here, ‘v’ and ‘u’ denote the node and the 

edge, respectively. For example, the edge u 0 10 N connects the nodes v 0 and v 10 with 

a ‘no change’ type of edge, where both the nodes represent a user-product interaction of 

the function import hand and activity picking up.  

The input file contains the graph transactions for the 65 product pairs studied 

here. Frequent patterns are discovered based on the user specified threshold value of 

support. The FSG can be programmed to generate only the maximal-patterns. In 

addition, the user can obtain the transaction identifier list corresponding to each frequent 

pattern found. Below, the results discuss the output from the FSG algorithm and its 

comparison with the previous results of association rule mining. First, the next part 

explains the graph visualization tool. 
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Table 10. Sample of input format for the can opener example 

 
t # p0 Can_Opener 
v 0 PF_Typ=Import_Hand,UA_Typ=Picking_up 
v 1 PF_Typ=Position_Hand,UA_Typ=Grasping 
v 2 PF_Typ=Import_Human_Energy,UA_Typ=None 
v 3 PF_Typ=Transfer_Human_Energy,UA_Typ=Turning 
v 4 PF_Typ=Convert_Human_Energy_to_Mech_Energy,UA_Typ=Turning 
v 5 PF_Typ=Import_Solid,UA_Typ=Carrying 
v 6 PF_Typ=Couple_Solid,UA_Typ=Manipulating 
v 7 PF_Typ=Guide_Solid,UA_Typ=None 
v 8 PF_Typ=Separate_Solid,UA_Typ=None 
v 9 PF_Typ=None,UA_Typ=Manipulating 
v 10 PF_Inc=Import_Hand,UA_Inc=Picking_up 
v 11 PF_Inc=Position_Hand,UA_Inc=Grasping 
v 12 PF_Inc=Actuate_Signal,UA_Inc=Grasping 
v 13 PF_Inc=Import_Elec_Energy,UA_Inc=None 
v 14 PF_Inc=Store_Elec_Energy,UA_Inc=None 
v 15 PF_Inc=Supply_Elec_Energy,UA_Inc=None 
v 16 PF_Inc=Convert_Elec_Energy_to_Mech_Energy,UA_Inc=None 
v 17 PF_Inc=Import_Solid,UA_Inc=Carrying 
v 18 PF_Inc=Couple_Solid,UA_Inc=Manipulating 
v 19 PF_Inc=Guide_Solid,UA_Inc=None 
v 20 PF_Inc=Separate_Solid,UA_Inc=None  
v 21 PF_Inc=Export_Solid,UA_Inc=None 
u 0 10 No_change 
u 1 11 Morphological 
u 2 12 Functional 
u 2 13 Functional 
u 2 14 Functional 
u 2 15 Functional 
u 2 16 Functional 
u 3 12 Functional 
u 3 13 Functional 
u 3 14 Functional 
u 3 15 Functional 
u 3 16 Functional 
u 4 12 Functional 
u 4 13 Functional 
u 4 14 Functional 
u 4 15 Functional 
u 4 16 Functional 
u 5 17 No_change 
u 6 18 No_change 
u 7 19 No_change 
u 8 20 Morphological 
u 9 21 Functional 

 
 

Graph Visualization 

Figure 37 shows the visualization of the graph constructed with the sample input 

shown in Figure 36. The edges are colored as purple, green, orange, and grey for the 

parametric, morphological, functional, and no change type of design differences, 

respectively. The red circles represent the nodes of the graphs. All the nodes on the left 
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hand side belong to the set X or the typical product, while all the nodes on the right hand 

side belong to the set Y or the inclusive product. The visualization tool promotes a better 

understanding of the mathematical format of graph representation.  

 

Figure 37. Visualization of the input data for can opener example along with node 
numbering  

Results of the Graph Data Mining  

This part discusses the results of frequent pattern search and the comparison of 

frequent subgraphs with the association rules. The FSG algorithm outputs the frequent 
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patterns discovered in the format, t # <pattern ID>, <count> followed by the nodes and 

edges of the frequent pattern. Figure 38 shows a sample output from the FSG algorithm. 

Figure 38 also explains how to interpret the sample output.  

 

Figure 38. Sample output from the FSG algorithm 

The pattern identifier of a subgraph denotes the size of the graph and a unique 

identifier. The pattern size t#2-21 is two, meaning that the subgraph consists of two 

edges. The unique identifier is the identifier assigned by the algorithm when each 

subgraph is created. The count of a subgraph stated after the pattern identifier specifies 

the value of support or the frequency of occurrence. The subgraph t#2-21 occurs twice in 

the database. The three nodes of the frequent pattern are given by v 0, v 1, and v 2 and 

the two edges are given by u 0 1 and u 0 2. The nodes and edges are followed by node 

labels and edge labels. The ‘PF_Inc = Actuate Signal, UA_Inc = Pushing with fingers’ 

label of the node indicates the user-product interaction of actuating signal while the user 

is pushing with fingers in the inclusive product. ‘PF_Typ = Import Human Energy, 
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t # 2-21, 2 
v 0 PF_Inc=Actuate Signal ,UA_Inc=Pushing with fingers 
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UA_Typ = None’ represents the import-human-energy function in the typical design. 

‘PF_Typ = Transfer Human Energy, UA_Typ = Turning’ represents transfer-human-

energy function when the user is turning in the typical design. Both the edges u 0 1 and u 

0 2 represent a functional type of change.  

The transaction identifier list of the FSG records the product in which the 

frequent pattern is observed. The frequent pattern t#2-21 is found in the wine opener and 

automobile window control. The pattern t#2-21 can be interpreted as adding 

functionality for actuating signal by pushing with fingers to avoid importing and 

transferring of human energy while turning. The subgraph can be applied for design of 

inclusive products. When the typical product requires complicated activities like turning, 

for which the product transfers human energy, replacing it with simple activities like 

pushing with fingers to actuate signal can make it inclusive. Figure 39 shows the 

visualization of the frequent pattern t # 2-21, which consists of three nodes and two 

edges. The orange color of the edge indicates functional type of change shown for both 

the edges.  

 

Figure 39. Visualization for the sample output t # 2-21 
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The association rule corresponding to the subgraph t#2-21 is given as (“Product 

function in inclusive” = Actuate Signal, “User activity in typical” = None) à 

(“Change” = Functional, “User activity in inclusive” = Pushing with fingers). 

However, the format of association rule does not capture the targeted functions and 

activities in the actionfunction diagram of a typical product. The graph data mining 

suggests a change relative to the meaningful patterns observed in the typical design and 

is thus preferable. Such heuristics have greater possibilities for product design 

application.  

Figure 40 shows the application of the frequent subgraph as a design heuristic for 

inclusive design. The nodes in the left hand side or the typical set of design heuristic acts 

as the antecedent of the rule, and the nodes on the right hand side or inclusive set, along 

with the edges, acts as the consequent. While designing an inclusive product, the 

designer creates an actionfunction diagram for typical design. When a part of an 

actionfunction diagram of typical design resembles the antecedent of the heuristic, the 

consequent of the heuristics has potential application in the inclusive product. 
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Figure 40. Application of a frequent subgraph as design heuristic for inclusive 
design  

Comparison of the Frequent Subgraphs with Association Rules  

The total number of frequent subgraphs discovered from 65 product pairs with 

support of 2 or more transactions is 67. The algorithm is programmed to generate the 

maximal-patterns only. The maximum pattern size found is 8 with one frequent 

subgraph. In addition, fifty-nine subgraphs of size 1, three subgraphs of size 2, one 

subgraph of size 3, two subgraphs of size 4, and one subgraph of size 5 are found.  

In Chapter V, association rule mining is performed on the same database of 65 

products pairs as analyzed here. The results obtained from association rule mining are 

used for comparison and validation of the frequent-pattern search algorithm. Sixty-two 

filtered association rules are mined with the support of two or more transactions. The 

Typical

B

A

Inclusive

D

C

Inclusive Design Heuristic 

Typical

E

B

A

Inclusive

?

C

G

F

.

.

.

.

Design problem

N

M

Potential for heuristic 
application 



 

 106 

frequent subgraphs of size 1 are used for comparison of frequent-pattern search with the 

association rule mining. 

Out of 59 frequent subgraphs of size one, 46 subgraphs are identical to the 

association rules in terms of the information contained. An example of an association 

rule that is also found as frequent subgraph is stated here. The association rule (“Product 

function in typical” = Position Hand, “User activity in typical” = Reaching) à 

(“Change” = Parametric) has a support of 6 instances. The graph data mining discovers 

the pattern t#1-22 with a support of 6 instances that is in agreement with the association 

rule. The association rule and the corresponding frequent pattern are shown in Figure 41, 

which suggest making a parametric design change when the user is reaching for a part of 

the product.  

 

Figure 41. Example of a rule found both by graph data mining and association rule 
mining 

!
Frequent Subgraph by PAFI’s FSG  
t # 1-22, 6 
v 0 PF_Typ=Position_Hand,UA_Typ=Reaching 
v 1 PF_Inc=Position_Hand,UA_Inc=Reaching 
u 0 1 Parametric 

 
 

Association rule by Apriori Algorithm  
 

(“Product function in typical” = Position Hand, “User activity in typical” = Reaching) 
! (“Change” = Parametric) 
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The graph data mining identifies 13 subgraphs of size 1 that are not mined as 

association rules. The primary reason for the difference in the outputs of the two mining 

methods is the change in the input format from the flat-attribute-type transaction input to 

the graphical-type input. Another reason for the difference is that association rule mining 

gets 523 input transactions, whereas the graph data mining gets only 65 input 

transactions.  

The subgraphs of size 2 or more cannot be directly compared with the association 

rules. Some of the association rules are incorporated into more complicated subgraphs of 

size more than one. Figure 42 shows an example subgraph t# 8-0 of size 8 along with its 

visualization. The frequency of occurrence of the subgraph t # 8-0 is two. 

 

Figure 42. Example of a subgraph t # 8-0 of size 8 along with its visualization 

t # 8-0, 2 
v 0 PF_Typ=Import_Human_Energy,UA_Typ=None 
v 1 PF_Typ=Transfer_Human_Energy,UA_Typ=Turning 
v 2 PF_Inc=Convert_Elec_Energy_to_Mech_Energy,UA_Inc=None 
v 3 PF_Inc=Import_Elec_Energy,UA_Inc=None 
v 4 PF_Inc=Store_Elec_Energy,UA_Inc=None 
v 5 PF_Inc=Supply_Elec_Energy,UA_Inc=None 
u 0 2 Functional 
u 0 3 Functional 
u 0 4 Functional 
u 0 5 Functional 
u 1 2 Functional 
u 1 3 Functional 
u 1 4 Functional 
u 1 5 Functional 
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A subgraph of size 8, shown in Figure 42, encompasses 5 association rules 

discussed below. The support of each of the association rule might be different from the 

overall support of the frequent subgraph t # 16-0. 

• (“Product function in inclusive” = Import Elec. Energy, “User activity in typical” = None) 
à(“Change” = Functional Addition)  

• (“Product function in inclusive” = Store Elec. Energy, “User activity in typical” = None) 
à (“Change” = Functional Addition) 

• (“Product function in inclusive” = Supply Elec. Energy, “User activity in typical” = None) 
à(“Change” = Functional Addition) 

• (“Product function in inclusive” = Convert Elec. Energy to Mech. Energy, “User activity in 
typical” = None)  à (“Change” = Functional Addition) 

• (“Product function in typical” = Transfer Human Energy, “User activity in typical” = 
Turning) à(“Change” = Functional Deletion) 

 

Thus, graph data mining extracts the information that is found by association rule 

mining and also finds additional information. The frequent-pattern search algorithm 

groups the related information into meaningful chunks. In addition, the visualization tool 

greatly improves readability of the information.  

Summary 

This chapter presents a powerful tool of graphical data mining to develop 

heuristics for inclusive design. The results of graph data mining are compared with 

association rule mining, which shows that the frequent-pattern search not only extracts 

statistically significant design heuristics but also mines additional information with 

better details. Graph data mining has the capability to efficiently search for new design 

heuristics from the updated repository of inclusive products. 
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The advantages of graphical representations over flat-attribute type 

representations are discussed in the context of function-based representation framework. 

The function-based comparison data contains complex relational information; the 

graphical representation effectively captures all the pertinent information and preserves 

the relations. The graphical representation explained in this chapter can be extended for 

many other functional representations and will be discussed in next chapter. Particularly, 

graph representation and graph data mining can be applied for the expansion and mining 

of the design repository with some alterations in the graphical format.  

This research applies a graph visualization tool that helps the reader to better 

understand the graphical information. Graph visualization increases the 

comprehensibility of the information by converting the relational information into 

pictorial form. In addition, the graph visualization helps to verify the creation of graphs; 

thus allowing quick updates to the database.  
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CHAPTER VII 

AUTOMATED HEURISTICS GENERATION 

 

Graph grammars, a technique for creating new graphs based on a set of rules, is a 

very powerful tool for computational design synthesis and has been applied in many 

contexts. Graph grammars have been used to facilitate automated generation of 

functional models, automated concept generation, product platform design, feature 

representation, and machine design [36, 43, 57, 95, 96]. Graph grammar is particularly 

useful because it enables the designer to synthesize new design knowledge with a set of 

guiding principles. However, one of the major difficulties lies in deriving the grammar 

rules. Typically, graph grammars are compiled by an expert based on empirical 

knowledge. Principal component analysis has been applied for automated shape 

grammar generation [60, 61]. However, principal component analysis works well for 

continuous numerical data but not for discreet categorical data; hence, it is not generally 

applicable for automated graph grammar generation.  

This chapter proposes to extend the application of graph data mining beyond 

inclusive design heuristics to derive engineering grammars. Function-based models can 

be graphically represented using nodes and edges. A frequent-pattern search algorithm 

mines information from a graphically represented design dataset. The frequent sub-

graphs found by the mining algorithm can be formulated into graph grammars. This 

application of graph data mining is new to the engineering design research. Particularly, 

graph data mining has a potential for automated graph grammar generation. An expert is 
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still required to check the grammar rules obtained, but the rule generation process is 

made less labor intensive. Graph data mining can be used to either assist an expert to 

create grammars or to check the grammar rules that are already obtained. In general, 

graph data mining can be applied to extract design heuristics from any discrete relational 

data that can be represented as graphs.  

The process of extracting design heuristics is explained in the research approach. 

Results discuss the comparison of the machine generated grammar rules with expert 

derived grammar rules to validate the method. Next part explains some background of 

computation based design synthesis as related to engineering graph grammars.  

Background: Computation-Based Design Synthesis  

Engineering design is the process of formulating a plan that assists the engineer 

in creating an engineered system satisfying a set of customer needs. The preliminary 

phase of engineering design, which establishes the roadmap of the desired functionality, 

affects the final design but it can be very difficult for the designers. Functional modeling 

is one such design synthesis method that helps abstract the intended functionality of a 

product from customer needs.  

The preliminary design phase starts with gathering customer needs as shown in 

Figure 43. The customer needs are then processed to establish the product function and 

create a functional model. In function modeling, the overall functionality of a product is 

decomposed into constituent functional elements. The function model is used as a 

roadmap to generate ideas for the conceptual design. Two main aspects of the functional 
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modeling, that have scope for improvement, are the creation of functional models and 

the application of functional models to generate ideas.  

 

Figure 43. Preliminary phase of engineering design 

To support functional modeling, a design repository is developed for collection, 

storage, and retrieval of the functional models for over 184 products [62].  Research 

efforts focuses on the representation in terms of developing both the framework and the 

language for functional modeling [54]. Automated Design Lab at University of Texas, 

Austin developed methods to guide the creation of functional models [40]. A rule set of 

graph grammars are formulated for assisting the untrained engineers and for automated 

creation of functional models.  

Once the functional model is created, the next phase is concept generation. There 

is considerable ongoing research to facilitate application of functional models for 

concept generation [54]. Research efforts in the automated concept generation suggest 

addition of a search mechanism to the set of graph grammar rules for exploring various 

potential solutions from the design repository [39, 56]. Other efforts for automated 

concept generation include an automated morphological matrix, relational matrices, and 

 
 
 
 
 

 
 

Gather 
customer 
needs 

Create 
functional 
model 

Generate 
ideas 

Tools for creation 
of functional 

models 

Tools for 
automated idea 

generation  



 

 113 

unsupervised learning, all in combination with a mechanism to search the design 

repository [63-65]. In general, the methods for automated concept generation rely 

heavily on the design repository and the repository must be appended to accommodate 

broader categories of design problems. Once the repository is expanded, a method to 

extract new patterns from it is required.  

Research efforts for creation of the functional model have been more substantial 

as compared to application of the functional model. Avenues for further exploration 

include developing design heuristics for concept generation from functional models, 

developing algorithms for finding engineering design heuristics, and developing unified 

language for graph grammars. Here, the algorithms for automatically creating design 

heuristics are explored.  

The goal here is to automate the process of extracting heuristics from a design 

repository. With automated heuristic extraction process the design repository can be 

continually expanded and new heuristics can be found. This process will reduce the need 

for human interpretation and increase machine learning to obtain statistically significant 

heuristics. The extracted heuristics can serve as suggestion or guidelines for designers 

during concept generation from functional models. This chapter demonstrates the 

extraction of engineering graph grammars from a repository of functional models.  

Research Approach  

Figure 44 shows the automated heuristics extraction process to obtain 

engineering graph grammars from the design repository. This process implements three 

different software: GraphSynth to create the input for graph mining, FSG to extract the 
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frequent patterns with graph mining, and JUNG to visualize the output or the frequent 

from graph mining. These three software are developed independently for different 

applications. A graphical user interface (GUI) is built in JAVA to facilitate the 

information flow between the three software and provide a single interface. The GUI 

code not only creates a user interface but also helps to exchange information amongst 

the software. The JAVA GUI, shown in Figure 45, has the following features that are 

explained subsequently: convert of xml format to txt format, compile of a single input 

file, flip edges and nodes in a graph, separate the subgraphs with specified size and 

frequency, and display the subgraphs.  

 

Figure 44. Automated heuristics extraction process  
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Figure 45. Graphical user interface (GUI) for interpreting the graph mining output 

The process starts with the design repository which consists of over 184 products 

and 6906 artifacts ranging from electro-mechanical products to biological systems [62]. 

Fifty electro-mechanical devices are selected for this study and listed in Table 11. The 

product numbers listed in Table 11 are identifiers that helps to trace back the origin of 

frequent patterns. Functional models of the selected products are available online in the 

design repository. For this study only electro-mechanical devices are considered. The 

functions observed in a biological artifact such as an armadillo armor may not be 

observed in regular household products. Products from a closely related domain are 

chosen for the study to demonstrate the extraction of statistically significant set of 

grammars from a relatively small dataset. 
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Table 11. List of products studied for the graph grammar generation from the 
design repository 

 

Creation of the Input 

This part explains the creation of input for graph mining algorithm and the 

essence of implementing Graphsynth. The functional models of the products, listed in 

Table 11, are converted into a graph format. The conversion is explained with an 

example of Bissel hand vacuum. The funtional model and image of the Bissel hand 

vacuum is shown in Figure 46.  

No. Name of the product No. Name of the product... continued
0 Bissell Hand Vacuum 25 All in One Printer
1 Black and Decker Can Opener 26 Blower-VAC 
2 Black and Decker Dustbuster 27 Induction Cooktop
3 Black and Decker Jigsaw 28 Tape Player 
4 Black and Decker Palm Sander 29 CD Player 
5 Black and Decker Rice Cooker 30 Coolit Drink Cooler 
6 Braun Coffee Maker 31 Nextec Multitool 
7 Brother Sewing Machine 32 Delta Circular Saw
8 Colgate Motion toothbrush 33 Delta Drill
9 Cordless Kettle 34 Delta Jigsaw

10 Delta Nail Gun 35 Delta Sander
11 DeWalt Sander 36 Dremel MultiMax 
12 Dyson Air Multiplier 37 Dryer
13 Firestorm Circular Saw 38 RC Helicopter
14 Firestorm Drill 39 iPhone
15 First Alert Basic Smoke Alarm 40 Kid Smart Smoke Detector
16 Game Controller 41 Milwauke Palm Nailer
17 GE Microwave 42 Oliso Frisper
18 Hot Air Popcorn Popper 43 Oliso Smart Iron
19 Milwauke Copper Tubing Cutter 44 Oral B toothbrush 
20 Neato Robotics Vacuum 45 Polaroid Pogo
21 Presto Salad Shooter 46 Random Orbital Sander
22 Shop-VAC 47 Ridgid Job Max
23 Black and Decker Electric Screwdriver 48 Gillete M3 Razor 
24 Black and Decker Slice Right 49 Versapak Circular Saw 
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Figure 46. Functional model and image of the Bissell Hand Vacuum from the 
design repository [62, 97] 

Functional model is a visual format that allows a reader to see all the flows 

connecting the functions. The information contained in a functional model can be 

captured in a directed graph. However, the mathematical format of a graph, as shown in 

Figure 47, is not very easy to visualize and this is the format that the graph mining 

algorithm understands. The primary motivation behind using graphical representation is 

to model the complex relations, but it is also essential that the format is human readable. 

Besides, the conversion of functional models into graph format should be simple and 

quick to justify the implementation of graph mining. The conversion and visualization of 

50 graphs, or even more in future, can become time intensive process.  
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t # 0 Bissell Hand Vacuum 
 
v 0 Import_Solid 
v 1 Guide_Solid 
v 2 Seperate_Solid 
v 3 Store_Solid 
v 4 Export_Solid 
v 5 Export_Gas 
v 6 Export_Hand 
v 7 Guide_Hand 
v 8 Import_Hand 
v 9 Import_HE 
v 10 Transmit_HE 
v 11 Convert_ME_PE 
v 12 Import_EE 
v 13 Transmit_EE 
v 14 Actuate_EE 
v 15 Convert_EE_ME 
v 16 Convert_ME_PE 
v 17 Guide_Gas 
v 18 Export_Gas 
v 19 Import_Gas 

u 2 3 Material 
u 3 4 Material 
u 4 6 Material 
u 4 9 Energy 
u 7 9 Energy 
u 9 10 Energy 
u 12 13 Energy 
u 13 14 Energy 
u 14 15 Energy 
u 17 19 Material 
u 16 17 Energy 
u 15 17 Energy 
u 15 16 Energy 
u 11 15 Energy 
u 0 11 Energy 
u 7 8 Material 
u 6 7 Material 
u 7 14 Signal 
u 17 18 Energy & Material 
u 2 5 Energy & Material 
u 1 2 Energy & Material 
u 0 1 Energy & Material 

Figure 47. The mathematical (txt) format of a graph for the Bissell Hand Vacuum  

To overcome these issues, GraphSynth is implemented for converting functional 

models into graphs. The nodes are the functions in a product and edges are the flows 

between the functions; namely, material, energy, or signal. GraphSynth is a well-

established package originally developed for interactive creation of graphs with the help 

of graph grammar rules [98]. GraphSynth enables interactive creation of graphs in 

editable gxml (guideline extensible markup language) format.  

The gxml format of the Bissell Hand Vacuum is shown in Figure 48. There is 

also a provision to save the xml (extensible markup language) format of the same graph, 

refer Figure 49. The xml version of the graph is a machine-readable format while gxml 

is human-readable. Both gxml and xml formats of the graph can save all the pertinent 
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information of a graph such as node numbers, node label, edge connections, edge labels, 

node locations, display type of nodes, display type of edges. The information required 

for graph mining is node numbers, node labels, edge connections, and edge labels. The 

capability of GraphSynth to display all the relations in a graph at once is valuable for 

graph mining implementation.  

 

Figure 48. GraphSynth (gxml) format of graph for the Bissell Hand Vacuum 
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Figure 49. A part of xml format (extensible markup language) for the Bissell Hand 
Vacuum  

Graph Data Mining 

A frequent subgraph-mining algorithm (FSG), a software package developed by 

Karypis at the University of Minnesota, is used in this research to mine the undirected 

frequent subgraphs [94]. Frequent patterns are discovered based on the user specified 

threshold value of support, where support is the percentage of frequent subgraphs found 
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in the database. Other graph mining algorithms that provide similar capabilities are 

gSpan (Graph-Based Substructure Pattern Mining), FFSM (Fast Frequent Subgraph 

Mining), PEGASUS (Peta-scale graph mining system), and Apriori based Graph Mining 

(AGM) [50, 52, 99-101]. The FSG is validated by other researchers and available in a 

stable executable format, hence the FSG is chosen for this study [102]. Moreover, the 

FSG incorporates a provision to generate a transaction identifier list (TID list), which 

helps to trace a frequent pattern back to the parent graph. The actual embodiment of the 

frequent pattern from the graph of the parent product can serve as an example of the 

design heuristic.  

Fifty individual graphs of the functional models are created using Graphsynth 

and saved in xml format. The JAVA GUI executes a code to convert each of the graphs 

in xml format into txt format. Essentially, the code extracts the required information 

from xml file, namely node numbers, node labels, edge connections, and edge labels to 

represents it in the format shown in Figure 47. Additionally, the code combines 50 

graphs into one single text file, which serves as the input for the graph mining algorithm. 

The FSG algorithm is executed to extract frequently occurring subgraphs with a 

support of 6 % or more. A support of 6 % implies that the frequent patterns are observed 

in at least 3 out of 50 graphs. The current implementation of the FSG mines only 

undirected graphs. The FSG is set to generate the TID list and parent-child list. The TID 

list is an important feature of the FSG algorithm.  
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Interpretation of the Output  

The Java Universal Network/Graph Framework (JUNG) is a software that 

provides a common and extendible language for modeling, analysis, and visualization of 

data represented as graphs [103, 104]. JUNG provides a visualization framework in 

JAVA, which is implemented here to visualize the frequent subgraphs mined by the FSG 

algorithm. Similar to the difficulty in comprehending the txt format of the input graphs, 

the output format is also difficult to read and analyze. 

Figure 50 shows the sample output from the FSG. Of note, txt format cannot be 

converted into gxml format since the gxml format requires the additional layout 

information to display the graph. Furthermore, the editable graphs are not necessarily 

required for analyzing the FSG output. The JAVA GUI incorporates the features of 

JUNG to create a visual of the graph for analyzing the output. The JAVA GUI separates 

the subgraphs with a specified size and frequency and displays the separated subgraphs 

using JUNG routines. Figure 51 displays visualization of the frequent pattern shown in 

Figure 50. With the help of JAVA GUI, the output from the FSG can be analyzed more 

efficiently to establish the design heuristics.  

The implementation is demonstrated here with the graph grammar application 

but the process can be applied to any other relational database to extract frequently 

occurring trends. Essentially, the automated process where three softwares GraphSynth, 

FSG, and JUNG are integrated with the JAVA GUI can mine patterns from relational 

databases. The graph mining is particularly suitable for discrete or categorical variables 
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that occur commonly in product design space. The automated implementation is useful 

exploratory data analysis for the relational databases.  

 

Figure 50. A sample of the output format generated by the FSG (frequent 
subgraph-mining) algorithm 
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Figure 51. Visualization for the output with JUNG (Java Universal Network/Graph 
Framework) and green color of edge symbolizes the energy flow.  

Graph Grammar Generation  

As mentioned earlier in the research approach, the JAVA GUI has capability to 

flip the nodes and edges in a graph. The code reads the gxml file where functions are 

nodes and flows are edges and converts it to flipped txt format where the nodes are flows 

and the edges and functions. This feature is added since the current implementation of 

graph mining can mine subgraphs consisting of nodes and edges connecting those nodes. 

In other words, the edge with only one node connection is not included in the frequent 

subgraphs. Hence, the flipping feature is added to provide this flexibility. Even with 

flipping the relations are preserved and there is no loss of information from original 

gxml format. The GraphSynth, the graph mining, and the JUNG implementation remain 

!

!
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unaltered when flipping nodes and edges. Only the code to convert .xml to .txt is 

modified to flip the nodes and edges.  

The reason for using flipping feature for graph grammar extraction is the nature 

of graph grammars as given in the rule set derived by Campbell [98, 105]. The graph 

grammars to be derived have flows coming into the nodes and it contains edges with 

only one node connection, refer Figure 52. The researchers at University of Texas at 

Austin derived a set of 69 grammar rules for construction of functional models. These 

grammar rules will be referred as Campbell’s’ Grammar Rules in the discussion below. 

Figure 52 illustrates Campbell’s Grammar Rule 5, which is a propagation rule. Campbell 

describes Rule 5 as “Rule 5, a typical propagation rule, recognizes Electrical Energy 

from the function ‘Import’. It then adds the functions ‘Transmit’ and ‘Actuate’ to the 

head of the open flow and creates another open flow in the front. This is a pretty 

common module in most products as it represents the familiar electric plug point used to 

import electricity, the wire to transmit electricity and some kind of switch to actuate 

electricity.” [98, 105]. 
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Figure 52. Rule 5 from Campbell's graph grammar rule set illustrating a 
propagation rule [98] 

The Campbell’s Grammar Rule set is divided into three categories for 

comparison with the FSG output results: (A) the rules that can be mined with the current 

setup, (B) the rules that cannot be mined with the current setup, and (C) the rules cannot 

be mined. The current setup has two restrictions, namely the database and the current 

implementation of the FSG. If certain functions or flows are not included in the database 

then the rules related to those will not be mined; these rules are classified in the B1 

category which contains 11 rules. The current implementation of the FSG cannot handle 

nodes with multiple edges connected to them. The rules with multiple input and output 

edges are categorized as B2 and contain 29 rules. The rules from the category B1 can be 

mined in future by adding more products to the database. Similarly, rules from the 

category B2 can be mined in future by implementing an improved version of graph 

mining algorithm that can handle multiple edge connections. Thus, the category B 
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consisting of 58% of Campbell’s Grammar Rules cannot be mined with the current 

setup.  

Table 12. Campbell’s rule set categories 

 

Only the expert can derive rules from the category C1, which consists of 

initiation and termination rules. The initiation and termination rules cannot be derived 

with machine learning. Similarly, the pre-primary initiation rules, categorized here as 

C2, from the Campbell’s Rule set cannot be derived with the FSG. Thus, only the expert 

can derive the rules from category C which constitutes 14% of the Campbell’s Grammar 

Rule set.  

Rules from the category A can be derived with the current setup, which 

constitutes 28% of Campbell’s Grammar Rule set. Out of the 19 rules that can be found, 

5 exactly matching subgraphs are actually found. Ten rules from Campbell’s grammar 

rule set are mined by the FSG but they do not match exactly with the expert-derived 

Categories* Descrip.on* #* Note*

A:*Rules&that&&
can&be&mined&&
with&current&setup&

Found& 5&

28%*

26%*found*

Found&(not&exact&match)& 10& 53%*not*exact*

Not&found& 4& 21%*not*found*

B:*Rules&that&&
cannot&be&mined&&
with&current&setup&&&

With&mul?ple&input&and&output& 29&
58%*

Future*work*–&improve&
graph&mining&algorithm&

Words&not&in&current&database& 11& Future*work*–&add&more&
products&to&the&database&

C:*Rules&that&cannot&be&
found&with&graph&mining&

Ini?a?on&or&termina?on& 4&
14%*

Cannot*handle*

PreGprimary&ini?a?on&& 6& Cannot*handle*

Total*rules** 69*
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grammar rule. Remaining rules from category A are not found. Thus, only 21% of the 

rules that should have been derived by the FSG are not found. 

Graph Grammar Results 

Figure 53 show a frequent subgraph mined that matches with Campbell’s 

Grammar Rule 5. The interpreted graph grammar is also shown in Figure 53 which states 

that transmit and actuate functions are added after the import electrical energy function.  

This module is commonly observed in devices with plug point to import electricity, the 

wire to transmit electricity, and a switch to actuate electricity.  

 

Figure 53. A frequent subgraph obtained with graph data mining corresponding to 
Rule 5 from Campbell’s set having a frequency of 12  

The machine-derived grammar has a support of 12 and the TID lists records the 

products in which this module occurs, refer Table 13. Thus, the subgraph t # 3-36 occurs 

in First Alert Basic Smoke Alarm, CD Player, Game Controller, Craftsman Nextec 

Multi-tool, Neato Robotics – Vacuum, RC Helicopter, All in One Printer, KidSmart 

Import 
Electrical 
Energy

Transmit 
Electrical 
Energy

Actuate  
Electrical 
Energy

Energy EnergyEnergy Energy
v 0 v 2v 1v 3

u 0 1 u 0 2u 1 3

t # 3-36, 12
v 0 Energy
v 1 Energy
v 2 Energy
v 3 Energy
u 0 1 Transmit Electrical Energy 
u 0 2 Actuate Electrical Energy
u 1 3 Import Electrical Energy

Frequent sub pattern 
derived with graph mining
 Support: 12 out of 50

Interpreted 
grammar
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Smoke Detector, Induction Cooktop, Milwauke Palm Nailer, Tape Player, and Ridgid 

JobMax.  

Table 13. Transaction identifier list for subgraph t # 3-36 corresponding to Rule 5 

 

TID 
No. 

Product 
name 

Product  
Image 

TID 
No. 

Product 
name 

Product  
Image 

15 
First Alert 

Basic Smoke 
Alarm 

 

29 CD Player 

 

16 Game 
Controller 

 

31 
Craftsman 

Nextec Multi-
tool 

 

20 
Neato 

Robotics - 
Vacuum 

 

38 RC Helicopter 

 

25 All in One 
Printer 

 

40 
KidSmart 
Smoke 

Detector 

 

27 Induction 
Cooktop 

 

41 Milwauke 
Palm Nailer 

 

28 Tape Player 

 

47 Ridgid 
JobMax 
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An important result of automated graph grammar extraction is that it not only 

predicts manually derived grammars but also adds additional information to it. Figure 54 

shows the Campbell’s Grammar Rule 24, the corresponding frequent subgraph, and 

subgraph with added information. Campbell’s Grammar Rule 24 recommends the 

addition of a position solid function after the import solid function. The subgraph t # 2-

155 states the same. Interestingly, the subgraph t # 3-1 derives the same grammar rule 

with addition of a secure solid function after the position solid function. Subgraphs like t 

# 3-1 can help to improve manually derived graph grammar rules. Three other exactly 

matching grammars are listed in Appendix C along with the original Campbell’s 

Grammar Rules.  

Summary  

This study exploits the application of three established software that were 

originally developed for different applications into a single automated method to extract 

patterns from a database consisting of graphs. The automated method consisting of the 

GraphSynth, the FSG and the JUNG along with the JAVA GUI is particularly helpful in 

the developmental stages of graph mining applications for product design. The 

automated graph grammar method can derive the grammar rules that are originally 

derived by the experts. In addition, the process can be used to improve existing grammar 

rules.  
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Figure 54. Rule 24 from Campbell's graph grammar rule and the corresponding 
frequent subgraph along with a graph with more details  

MaterialMaterialMaterial Material

Import 
Solid

Position 
Solid

MaterialMaterial Material

v 0v 2

u 0 2u 0 1

Frequent sub pattern 
derived with graph mining
 Support: 9 out of 50

Interpreted 
grammar

t # 3-1, 6
v 0 Material
v 1 Material
v 2 Material
v 3 Material
u 0 1 Position Solid
u 0 2 Import Solid
u 1 3 Secure Solid

Rule 24 from 
Campbell's grammar 

rule set

t # 2-155, 9
v 0 Material
v 1 Material
v 2 Material
u 0 1 Import Solid
u 0 2 Position Solid

Import 
Solid

Position 
Solid

v 0 v 1v 2

u 0 2u 0 1

Secure 
Solid

v 3

u 1 3

OR add more information

 Support: 6 out of 50

v 1

Interpreted 
grammar
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In layman’s term, we can to teach the machine to guide the designers and 

researchers. Machine learning is quick and efficient compared to empirical heuristics 

developed by experts. Besides, the graphical representation of function structures has 

potential for generalization and automation. The potential outcome of the graphical data 

mining for product design is the capability to continually update the design repository 

and search for new design heuristics. This process can also be applied to product family 

design for finding commonalities to identify a product platform. In general, this chapter 

explores the feasibility and advantage of graphical data mining for product design.  

Further, Chapter VIII, Chapter IX, and Chapter X describes the validation of 

inclusive design heuristics, rating to measure inclusivity, and dissemination of the 

knowledge with teaching module.  
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CHAPTER VIII 

INCLUSIVITY RATING 6 

 

Ideation ratings have been developed for measuring quantity, quality, novelty, 

and variety of the generated concepts [6, 7, 22, 24]. Currently, there is no pre-defined 

rating to measure the inclusiveness of a design. This chapter introduces an inclusivity 

rating to measure the inclusiveness of conceptual designs. The inter-rater reliability of 

the inclusivity rating is checked before applying it to this research. 

Srivasthsavis et al. suggests that coarser scales when applied at a feature level 

yields higher inter-rater reliability [24]. Hence, the ratings used in this study have a 

coarse scale with 4-points. The ideas from the study are evaluated at a feature level 

rather than at general concept level. The experimental data is divided into features prior 

to rating. Features are used to count the number of ideas generated by a participant. If an 

idea addresses two features, then the idea is rated twice for each feature. All of the 

features are weighted equally in this research. 

The researcher who divided the data is not involved in the ratings. All of the 

identifying information about the participant or the condition is removed before rating 

the ideas. The raters are blind to the condition of the ideas they are rating, whether 

control group or experimental group. The raters are graduate students in mechanical 

                                                

6 Reprinted with permission from “An Exploratory Study on the Effectiveness of an Inclusive Design Tool 
with a Metric to Evaluate Inclusivity of Conceptual Designs” by Sangelkar, Shraddha, and McAdams, 
Daniel A., 2013, Proceedings of the ASME 2013 International Design Engineering Technical Conferences 
& Computers and Information in Engineering Conference, Portland, OR, Copyright 2012 by Shraddha 
Sangelkar.   



 

 134 

engineering at Texas A&M University with an engineering design research background. 

The main rater rates all of the ideas for quality and inclusivity separately. The second 

rater rates only a part of the data set for both design problems to ensure inter-rater 

reliability. The quality and inclusivity rating are explained further. 

Quality Rating 

Figure 55 shows the quality rating applied to rate the quality of the ideas in this 

study. The rating is a 4-point scale based on the quality rating from Linsey [6, 7]. 

Participants are instructed to generate commercially viable solutions. The idea of a 

commercially viable solution is the one that can be sold in a competitive market; either 

the price should be comparable with other regular products or the benefits should be 

sufficient to justify the added cost. This condition ensures that the ideas suggesting 

complete automation are not necessarily rated high on the quality scale. The feasible and 

commercially viable ideas are further divided based on the complexity of the change. 
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Figure 55. Rating to measure quality of ideas  

Table 14 explains the quality rating with examples. The ideas with quality of 0 

are the ideas that are infeasible with current state-of-the-art technology for a household 

purpose. For instance, ideas such as buy a ninja or drink water intravenously by injecting 

a needle instead of using an ice-water dispenser count as quality of 0. Note that drinking 

water intravenously or cooling food with liquid nitrogen is technically feasible but not 

feasible for application in home appliances. The ideas that are not completely infeasible 

but may not be commercially viable are rated as quality of 1. Examples of the ideas with 

Is it 
technically 
feasible? 

Is it 
commercially 

viable? 

YES

NO

NO

Quality = 0

Quality = 1

Quality = 2

YES

For each idea

Is it a simple 
change?

Quality = 3
YES

NO

Easy and simple 
change

Infeasible, 
All automatic,
Magic Ideas

Feasible but 
technically bad idea 

(may not work)

Feasible but 
difficult to make 
(too many parts)

START
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quality of 1 include food processor blades made of rubber or wire, or implementing an 

outdoor box-like refrigerator in places with extremely cold weather. 

Table 14. Examples of quality scale 

Quality Meaning Examples 

Q = 0 Infeasible with 
state-of-the-art 

technology 

1. Buy a ninja 

2. Use of liquid nitrogen to cool food 
3. Drink water intravenously 

Q = 1 Feasible change 
which may not 

work  

1. Blades made of rubber or wire 

2. Outdoor refrigerator in cold places 
3. Hydraulically actuated mesh cutter 

Q = 2 Feasible but 
complicated 

change 

1. Mechanism with electromagnetic force 

2. Refrigerator like vending machine 
3. Automatic blade changer in food processor 

Q = 3 Simple change 1. Larger buttons or touch screen 

2. Spout to pour liquid 

3. Spring actuated mechanisms  

 
 

The ideas that are feasible and commercially viable are categorized as quality of 

2 or 3 based on the complexity of change. The changes that are complicated and 

significantly add to the product’s cost are considered to be complex changes with a 

quality of 2. For the purpose of analysis the cost factor is assumed to be based on 

engineering complexity of the idea. For instance, adding a spout to drain liquid from a 

food processor is a simpler change as compared to an automatic mechanism for 

changing the blades.  
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Inclusivity Rating  

Figure 56 shows the rating used to measure inclusivity of ideas. Similar to the 

quality rating, the inclusivity rating is also a 4-point scale with 3 indicating high 

inclusivity and 0 indicating low inclusivity. Figure 57 shows a Venn diagram to provide 

further the explanation for exclusion of people with or without disability as categorized 

in the inclusivity rating.  

 

Figure 56. Rating to measure inclusivity of ideas  

Does it address 
disability?

Does it work 
for disability? 

YES

NO
Inclusivity = 0

Inclusivity  = 1

Typical

Assistive 

For each idea

Inclusivity  = 2
Limited or 

restricted benefit for  
people without disability 

convenient for both 
people with and 
without disability 

Is it good for 
people without 

disability?

Attempts to address 
disability but doesn't 
actually help people 

with disability

Inclusivity  = 3

Inclusive

doesn't work 

NO

NO

YES

YES

START

Does not relate to 
any user activity
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Figure 57. Explanation for the inclusivity rating with a Venn diagram to show the 
exclusion of people  

Table 15 provides the examples of the inclusivity scale. The ideas dealing with 

internal functions of the device, the functions with which the user does not interact, do 

not address any disability. The ideas such as using a metallic grey color for the device 

may address other customer needs but do not address any aspects of disability. Since 

safety is required for all, whether or not designing for disability, safety-related ideas are 

also considered to have an inclusivity of 0.  

The ideas that attempt to address disability issues, but do not serve as intended 

are assigned an inclusivity of 1. These ideas are related to some user activity, but they do 

not alleviate any disability. The ideas such as soundproofing are related to the user 

activity of hearing but it does not serve any specific disability for the food processor 

design. While it might be nice to have a quietly operating food processor, soundproofing 

is more of a desired feature than a design for disability. Other ideas such as putting a 

ramp in front of the refrigerator attempt to address the limitation of people on a 

Typical 
products

people 
without 
disability

Assistive 
products 

people 
with 

disability 

Inclusive 
products 

both people with 
and without 

disability

Inclusivity = 3

Inclusivity = 0

Inclusivity = 2

Inclusivity = 1

Does not work 
for disability 
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wheelchair, but it is not practically possible to open a refrigerator door while sitting in a 

wheelchair on a ramp. 

Table 15. Examples of inclusivity scale 

Inclusivity Meaning Examples 

I = 0 Ideas that do not relate to 
any user activity  

1. Anything related to aesthetics 

2. Improved cutter designs  
3. Any electrical energy related ideas 

I = 1 Ideas related to some user 
activity but does not work 

for disability 

1. Soundproofing 

2. Ramp for refrigerator 
3. Use knife and cutting board 

I = 2 Ideas that address disability 
but not good for people 

without disability 

1. Provide a magnifying glass  

2. Complicated assistive devices 
3. Shorter and wider refrigerator 

I = 3 Ideas that are good for both 
people with and without 

disability  

1. Automatic garage door opener 

2. Motion sensing automatic faucet 

3. Retractable electric cord 

 
 

The ideas that help people with a disability but have limited or restricted benefit 

for those without a disability are assigned an inclusivity of 2. These are features of the 

product that add substantial efforts or time requirements for a person without any 

disability. In other words, these features interfere with the normal activities of an able-

bodied individual. Finally, the ideas that are good for both people with and without 

disability are assigned an inclusivity of 3. For instance, a wider population generally 

accepts ideas such as an automatic garage door or a motion sensing automatic faucet. Of 

note, personal preference should not be considered while categorizing ideas on the 
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inclusivity scale of 2 or 3. For instance, a shorter and wider refrigerator is better for 

people in a wheelchair but cumbersome for taller individual or someone who has 

difficulty in bending over to a lower height. Thus, a shorter and wider refrigerator idea 

is given an inclusivity value of 2, while a refrigerator with adjustable height is given an 

inclusivity value of 3.  

Improving, or measuring, the general creativity of the concepts is not the central 

focus of this research. Hence, other ideation metrics like quantity and novelty are not 

considered for this study. The purpose of the inclusive design representation scheme is 

to improve inclusiveness of a conceptual solution by shifting the designer’s focus from 

the internal functions of the device to the user-product interactions. For example, to 

design an inclusive automobile the designer must redesign the steering wheel or the gas 

pedal but not the engine or wheels of the automobile. From an inclusive design 

perspective, the engine and wheels are internal functions of the automobile and do not 

influence the inclusive nature of the design. While the creativity and inclusiveness of a 

design cannot be totally separated, the analysis in this chapter is limited to the 

measurement of quality and inclusivity of the ideas generated in the study. 

Reliability of the Ratings  

This part reports the weighted Cohen’s Kappa values for the inter-rater reliability 

of the quality and inclusivity rating. Thirty-two ideas from the excluded participants are 

randomly selected as a training set to develop the inclusivity rating. Two raters rated the 

training set three times each. With each rating iteration, the rating is revised to reduce 
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any ambiguity in description. For the training set, the linear weighted kappa values from 

the final iteration for the quality and inclusivity are 0.46 and 0.68, respectively. 

Summary 

This chapter introduces an inclusivity rating to evaluate the inclusiveness of 

conceptual solutions. The inclusivity rating is a 4-point scale similar to the quality rating 

developed for measuring ideation [6]. The inclusivity rating will act as a benchmarking 

tool for various methods for inclusive design. The rating is easy to apply for rating ideas 

at a feature level in the preliminary stages of design. I acknowledge that a more thorough 

analysis and validation of the rating would be helpful, but given the fact that currently no 

rating exists for inclusive design at the conceptual stage, the inclusivity rating developed 

is an important step forward. 
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CHAPTER IX  

EXPLORATORY STUDY 7 

 

The previous chapters detailed a specific representation scheme to support 

inclusive design. The representation scheme aims to guide the designer in the early 

stages of the inclusive design process, in which product functions are established and 

solution concepts are generated. This chapter explores the applicability of the 

representation scheme for inclusive product design.  

The inclusive design representation scheme enables designers to apply an 

empirically derived set of inclusive design rules to the actionfunction diagram of a 

product. In this chapter, an exploratory study is conducted to test the hypothesis “the 

application of inclusive design representation scheme helps to generate better ideas for 

inclusive design.” Participants are asked to generate ideas for inclusive product design 

with and without the representation scheme. The difference in the quality and 

inclusiveness of ideas generated in the two conditions is compared to determine the 

effectiveness of the representation scheme.  

Ramachandran conducted a user study to evaluate difference between the quality 

and quantity of ideas generated with functional model versus function interaction model 

(FIM user study) [25]. The passive functions in a FIM or the functions that are 

                                                

7 Reprinted with permission from “An Exploratory Study on the Effectiveness of an Inclusive Design Tool 
with a Metric to Evaluate Inclusivity of Conceptual Designs” by Sangelkar, Shraddha, and McAdams, 
Daniel A., 2013, Proceedings of the ASME 2013 International Design Engineering Technical Conferences 
& Computers and Information in Engineering Conference, Portland, OR, Copyright 2012 by Shraddha 
Sangelkar.   
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performed on the product are similar to the user-product interactions in an actionfunction 

diagram. For instance, the passive function ‘insert tortilla filling’ is modeled as ‘product 

function = import solid’ and ‘user activity = carrying, moving, and handling objects’ in 

an actionfunction diagram [25]. The FIM user study is very similar to this exploratory 

study except for two major differences. FIM user study aims to capture the creativity of 

designers while this study aims to capture the inclusivity of the ideas generated. 

Secondly, a functional model is provided in the control condition of the FIM user study 

while no design tool is provided in the control condition of the exploratory study.  

The results of the exploratory indicate that the inclusive design representation 

scheme helps in the design of products in the architectural domain where the space 

around the product is an important consideration. Based on the experiment presented 

here, the impact of the representation scheme for consumer products cannot be 

determined with certainty. The participant self-reported feedback about the usefulness of 

the representation scheme is positive. The representation scheme has potential to 

improve inclusive design but further investigation is needed to verify its specific impact 

on various product domains.  

Exploratory Study Setup 

This part describes the study procedure, characteristics of the study population, 

and the data analysis procedure.  

Study Procedure  

Table 16 explains the outline of the exploratory study procedure. Participants are 

randomly divided into two groups, A and B. Two product design problems are 
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considered for the exploratory study: design of an inclusive food processor and design of 

an inclusive refrigerator. The design problem from the control condition of group A is 

used for the experimental condition of group B and vice versa. Each design problem has 

a control group and an experimental group. With this experimental setup, each 

participant spends an equal amount of time on the study. In addition, each participant 

experiences designing with and without the representation scheme, and all participants 

are trained to apply the inclusive design representation scheme. 

Table 16. Outline for the exploratory study  

Task Group A Group B Time 
(min) Description 

Introduction -------------- -------------- 5 
Consent form,  
General instructions 
Introduce inclusive design 

Control  
Condition 

Food 
processor Refrigerator 45 Introduction to the problem 

Concept Generation  

Break -------------- -------------- 5 -------------------------------- 

Training -------------- -------------- 20 Inclusive design representation scheme  

Experimental 
Condition  Refrigerator Food 

processor 45 
(With inclusive design representation scheme) 
Introduction to the problem 
Concept Generation  

Participant 
Feedback -------------- --------------  Participant demographics 

Feedback on the study  

Total time -------------- -------------- 120 Up to 2 hours 

 
 

The experiment begins with an introduction to the study, consent procedure, and 

an introduction to inclusive design. In the control condition, the participants are 

introduced to the problem statement followed by a concept generation activity. The total 

time of the control run is 45 minutes. Participants are given a 10-minute break after the 
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control run. After the break, participants are introduced to the concept of an 

actionfunction diagram and inclusive design rules using a pre-recorded training session. 

A training questionnaire is administered after the training to test whether participants 

understand the inclusive design representation scheme. 

The experimental run follows the training session. Participants receive the 

actionfunction diagram of the product along with the problem statement for the 

experimental condition and they have access to the inclusive design rules provided in the 

training session. Total time for the experimental run is 45 minutes including the time 

allowed for studying the problem statement and the actionfunction diagram. Participant 

feedback and demographics are collected at the end of the study. 

The study is conducted with groups of two to six students in engineering 

classrooms on weekends and weekday evenings. To maintain uniformity in the 

experimental procedure, the instructions and the training are pre-recorded and played at 

the time of study. Also, study packets are created with labeled sections: control condition 

labeled task 1, training session with inclusive design rules and the training questionnaire 

labeled training, and experimental condition with actionfunction diagram labeled task 2. 

Participants are instructed to open the appropriate section at the beginning of each 

activity. The packets for group A and group B are color coded to ensure even 

distribution.  

The problem statements given to the participants state: “Assume you are a 

product designer in a large consumer products manufacturing firm. The company is 

planning to launch a universally designed [product name],” where the [product name] 
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is food processor or refrigerator. Of note, the problem statement suggests redesign of 

existing products. Using a redesign problem such as this is consistent with companies 

redesigning common products to be inclusive. Performing an experiment with a similar 

setup for an abstract design problem, such as ‘design a device to cool food and drink’, 

remains as future work.  

For the food processor design, both conditions receive a gray-scale image of the 

food processor along with the problem statement, as shown in Figure 58. The customer 

needs specify that the food processor must perform grating, slicing, chopping, mixing, 

pureeing, and kneading dough.  

  

Figure 58. Problem statement for the food processor design along with an image of 
the product  

Participants do not receive any image for the design of  the refrigerator. The 

problem description defines the refrigerator as an appliance or compartment that is 

artificially kept cool and used to store food, drink and make ice, as shown in Figure 59. 

For all conditions, the participants are instructed to generate as many ideas as possible, 

Problem Description  
Assume you are a product designer in a large consumer 
products manufacturing firm. The company is planning to 
launch a “universally designed food processor.”  

Definition: Food processor is an electric kitchen 
appliance used for chopping, mixing, or pureeing foods. 

Customer needs: Must perform following functions  

• Grating, slicing 
• Chopping 
• Mixing, pureeing  
• Kneading dough 
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record all the concepts that occur to them, include partial solutions, preferably sketch the 

idea, and write any notes they feel necessary. This study is investigating the inclusive 

design representation scheme on functionally dissimilar products.  

 

Figure 59. Problem statement for the refrigerator design 

The food processor and refrigerator have little common functionality. The 

products designed in the control condition should not influence the design of products in 

the experimental condition. The activities performed by the user in the two design 

problems and the complexity of the two products is different. The ideas from the study 

are evaluated at a feature level and the features of the food processor and the refrigerator 

are listed in Table 17. 

  

 

Problem Description  
Assume you are a product designer in a large consumer 
products manufacturing firm. The company is planning 
to launch a “universally designed refrigerator.”  

Definition: Refrigerator is an appliance or compartment 
that is artificially kept cool and used to store food, drink 
and make ice.  
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Table 17. Features in a food processor and refrigerator  

 No. Features Examples / Explanation  
Product 
Function  

User Activities  

Fo
od

 P
ro

ce
ss

or
 

1 Import signals 
from user 

Turning/ Manipulating On/off, power level, types of food 

2 Export signals to 
user 

Seeing/ Hearing  Clear view of mixing, sound, light 

3 Import food 
ingredients  

Add food Includes feeding food with a plunger 

4 Couple solid Add/ remove attachments  Selecting the blade type 
5 Couple solid Open/ close lid Includes small opening for adding liquid  
6 Couple solid Attach/ detach from 

motor 
Fixing the container in place before operation, 
safety latch  

7 - Lift container Handles or feature to prevent slipping 
8 - Remove food  Includes scrapping sides for better mixing or 

removing all food 
9 - Wash container  Includes washing the attachments and blades  
10 Import/ transmit 

electrical energy 
Plug/ unplug cord and  
Wind/ unwind wire 

Includes activities related to the cord 

11 - Store the food processor  Moving it to convenient location for operation 
or storage 

12 Electrical energy 
related 

- Transmitting and converting energy (or source 
of energy)  

13 Mixing and cutting 
related 

- Design of blades / cutters 

14 Safety related  - Do not operate until closed, blade cutting 
hazard 

R
ef

ri
ge

ra
to

r 

1 Guide solid Open / close refrigerator Includes door and handle design 
2 Position human Maintain body position  Includes space around the product and the 

supporting features  
3 Regulate EE Turning  Refrigerator controls: Includes temperature 

settings 
4 Export solid/ 

liquid  
Drinking  All functions and activities related to ice/ 

water dispenser 
5 - Store or search food items Organization of compartments, including 

labels  
6 Electrical energy 

related  
- Includes import/ transmit/ convert energy 

7 Refrigeration cycle 
related 

- Includes function supporting the main cooling 
system  
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Study Population  

The participants recruited for this study are both graduate and undergraduate 

mechanical engineering students who had prior training in basic design methods and 

functional modeling. The study population includes 26 males and 10 females. The 

participants received extra course credit for participation in the study. Group A consists 

of 9 undergraduate students and 8 graduate students and group B consists of 11 

undergraduate students and 8 graduate students. It is essential that the participants 

completed both tasks for this study. One undergraduate student who completed only the 

first half of the experiment is excluded from the analysis. Another graduate student, who 

had prior exposure to the experimental procedure and the problem statement, is also 

removed from the analysis. Four participants received the same problem in both 

conditions due to a procedural error; hence, those participants are also excluded from the 

analysis. However, the ideas generated by the excluded participants are used as an initial 

training set for developing the inclusivity rating.   

Participants are assigned randomly to the 2 groups. However, the self-reported 

GPA of the undergraduate students in the Group A is significantly higher than Group B 

(p-value 0.10). This may be a confounding factor in the study. No significant difference 

is observed between the GPA’s of the graduate students divided into two groups. Also, 

there is no significant difference in the GPA values between the control and 

experimental groups when both graduate and undergraduate students are combined. For 

the purpose of this study it is assumed that both graduate students and seniors have 

similar abilities to generate ideas, and they all are treated as one sample.  
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Results of the Exploratory Study 

Inter-rater reliability is tested for 50% of the data for each design problem. The 

data tested includes ideas from both the control and the experimental condition. The 

linear-weighted Cohen’s Kappa values are reported in Table 18. The weighted Cohen’s 

Kappa values show moderate agreement between the raters. Thus, the quality and 

inclusivity ratings used in this exploratory study are reasonably reliable.  

Table 18. Weighted Cohen’s Kappa (linear-weighted) for rating reliability for 50% 
of the data in the exploratory study 

  Quality Inclusivity 
Food processor 0.53 0.51 

Refrigerator 0.51 0.59 
 
 

The following part discusses the results comparing the control and experimental 

condition for the average quality and inclusivity of the ideas generated by participants. 

The criteria for statistical significance is set at α = 0.10 for the exploratory study. The 

average number of ideas generated per participants is 6 for the food processor problem 

and 8 for the refrigerator problem.  

Figure 60 indicates that the average quality of ideas generated by participants in 

the control and experimental condition for the food processor problem is independent of 

the condition. The inclusive design representation scheme has no effect on the quality of 

ideas generated for the food processor design. On the other hand, Figure 61 shows that 

the average quality of ideas generated by participants for the refrigerator problem is 
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higher in the experimental condition and the difference is close to being statistically 

significant (p-value = 0.11). Thus, improvement in quality of ideas with the inclusive 

design representation scheme is likely problem dependent. 

 

Figure 60. The average quality of ideas generated by participants in the control and 
the experimental condition for the food processor problem 

 

Figure 61. The average quality of ideas generated by participants in the control and 
the experimental condition for the refrigerator problem (p-value 0.11)  
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Figure 62 shows a decreasing trend in the average inclusivity of ideas generated 

by participants in the experimental condition as compared to the control condition for the 

food processor problem, but the difference is not significant (p-value 0.37). However, 

the average inclusivity of ideas generated by participants in the experimental condition 

of the refrigerator problem is significantly higher than the control condition (p-value 

0.10), refer to Figure 63. 

 

Figure 62. The average inclusivity of ideas generated by participants in the control 
and the experimental condition for the food processor problem (p-value 0.37) 
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Figure 63. The average inclusivity of ideas generated by participants in the control 
and the experimental condition for the refrigerator problem (p-value 0.10)  

There is no significant difference between the average quality and inclusivity of 

ideas generated by the participants in the two conditions for the food processor design. 

However, the average quality and inclusivity of ideas generated by the participants in the 

experimental condition is higher as compared to the control condition for the refrigerator 

design. The results of the study indicate that the efficacy of the inclusive design 

representation scheme is problem dependent. 

To further confirm the results from the refrigerator problem; a two-tailed t test is 

performed between percentages of ideas with zero inclusivity generated by participants 

in the two conditions. Recall that the ideas with zero inclusivity are those related to 

internal functions of the device. A higher percentage of ideas with zero inclusivity 

indicates that the participant is generating ideas that are not even related to user activity. 

Whether or not the idea related user activity is helpful for any disability is a separate 
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concern. The designer should first consider the disability issues to be able to design 

effectively for a wider audience.  

The percentage of ideas generated with zero inclusivity is significantly higher in 

the control condition as compared to the experimental condition (p-value 0.02) as shown 

in Figure 64. This result indicates that the representation scheme helps to shift the focus 

from internal functions of the device to user-activity related functions for the refrigerator 

problem. Similar analysis is performed for the food processor problem, but no 

significant difference is observed between the control and the experimental conditions.  

 

Figure 64. The percentage of ideas generated by participants that have zero 
inclusivity in the control and the experimental condition for the refrigerator 
problem (p-value 0.02)  

Research has previously reported that the applicability of the ADA guidelines 

(Americans with Disabilities Act) is limited to the architectural products as compared to 

the consumer products [83, 106]. It is important to note that products are classified as 
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architectural products when the space around the product is an important consideration 

for inclusive design. In this context, a refrigerator is an architectural product while a 

food processor is a consumer product. The results of the study suggest that the inclusive 

design representation scheme helps designing products from the architectural domain. 

With the exploratory study there is not enough evidence to support the usefulness of the 

representation scheme for the products from the consumer domain.  

As shown in Appendix A, the inclusive design rules are categorized into three 

sets: hand activities, communication, and gross body movements. The rules categorized 

as gross body movements are applicable to the refrigerator design but not to the food 

processor design. The food processor problem is mostly related to hand activities. 

Probably for this reason, the participants find more avenues to apply inclusive design 

rules in the refrigerator problem than the food processor problem. The next part 

discusses the feedback collected from the participants at the end of the study.  

Participant Feedback  

Feedback is collected from the participants to understand their perspective on the 

inclusive design representation scheme. Ninety-five percent of the participants reported 

that they clearly understood the problem statements. Eighty percent of the participants 

are familiar with food processors and ninety five percent are familiar with a refrigerator 

equipped with an icemaker. At the end of training session, the participants are asked if 

they could create an actionfunction diagram. Eighty percent of the participants reported 

that they need more practice for creating an actionfunction diagram. Recall that the 

participants are not asked to generate actionfunction diagram in this study. The feedback 
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question aims to assess how confident the participants feel about the concept of an 

actionfunction diagram.  

Table 19 shows other feedback collected from the participants at the end of the 

experimental condition. When asked if the actionfunction diagram is helpful, seventy-

eight percent of the participants reported ‘yes’ or ‘somewhat’. Similarly, seventy-two 

percent of the participants think that the actionfunction diagram gives them ideas more 

quickly for inclusive design. Most of the participants did understand the concept of an 

actionfunction diagram and the inclusive design rules. Only fourteen percent of the 

participants did not understand the design difference classification scheme i.e., 

parametric, morphological or functional changes.  

Table 19. Participants’ feedback on inclusive design representation scheme 

Feedback Questions N
o 

So
m

ew
ha

t Y
es

 

Does actionfunction diagram help you 
with universal design? 

8 
(22%) 

18 
(50%) 

10 
(28%) 

Does actionfunction diagram gives you 
ideas for universal design more 
quickly? 

10 
(28%) 

11 
(30%) 

15 
(42%) 

Did you understand the concept of 
actionfunction diagrams? 

1 
(3%) 

19 
(53%) 

16 
(44%) 

Did you understand the universal design 
rules (guidelines) provided in the 
training packet? 

0 
(0%) 

19 
(53%) 

17 
(47%) 

Did you understand the three types of 
design differences or design changes? 

5 
(14%) 

16 
(44%) 

15 
(42%) 

 
 

The training questionnaire is collected after the training session to test the 

participants’ understanding of the inclusive design representation scheme. Of particular 
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interest, participants who reported that they have better understanding of the 

actionfunction diagram also scored significantly higher on the training questionnaire (p-

value 0.07). Hence, the participants’ self-reported feedback is a valuable measure in this 

exploratory study.   

An interesting result of the study is that the participants who reported that they 

have a strong understanding of the representation scheme also have significantly higher 

average quality and average inclusivity on both the design problems. Figure 65 shows 

the results of two-tailed t tests and p-values for average quality and average inclusivity 

of both design problems when compared to the understanding of the representation 

scheme. Only one student answered ‘no’ to the question ‘Did you understand the 

concept of actionfunction diagrams?’ but that student scored high on the training 

questionnaire; so that data point is treated as outlier for the analysis reported in Figure 

65.  
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 p-value = 0.03 p-value = 0.08 

Figure 65. Results of two tailed t-test to compare the quality and inclusivity for 
both design problems based on self-reported understanding of the actionfunction 
diagram (AFD) 

The participants are divided into three groups based on their self-reported 

measure on whether an actionfunction diagram helps with inclusive design (2 = yes, 1= 

somewhat, 0 = no). A one-way ANOVA is performed among the groups for average 

quality and average inclusivity of ideas generated by the participants for both design 

problems. Figure 66 shows the trends in the average inclusivity and quality based on the 
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usefulness of actionfunction diagrams along with the p-values and F-ratio from the one-

way ANOVA performed. Participants who reported that the actionfunction diagrams 

helps with inclusive design also have significantly higher inclusivity for both design 

problems. The average quality of ideas for the food processor problem also showed a 

significant increasing trend with the self-reported measure on usefulness of the 

actionfunction diagram. 

The results from Figure 65 and Figure 66 indicate that the participants’ 

perception about the understanding and usefulness of the representation scheme 

correlates to the quality and inclusivity of the ideas they generate for a design problem. 

In other words, participants generate better ideas if they believe they understand the 

representation scheme. Thus, more thorough training will likely improve the 

implementation of the representation scheme, thereby generating better ideas for 

inclusive design.   
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 F ratio = 6.28, p-value = 0.005 F ratio = 0.58, p-value = 0.563  
(not significant) 
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 F ratio = 3.61, p-value = 0.038  F ratio = 2.90, p-value = 0.069  

Figure 66. Plot showing the trends of average quality and inclusivity based on self-
reported usefulness of actionfunction diagram (AFD) for both design problems  

Summary 

This chapter presents an exploratory study to investigate an inclusive design 

representation scheme. Participants are asked to design an inclusive product with and 

without the inclusive design representation scheme. Participants are trained to apply the 

representation scheme before the experimental condition. The two products studied in 

the research are a food processor and a refrigerator, which are functionally dissimilar 
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products. The effectiveness of the representation scheme is measured by comparing the 

quality and inclusivity of ideas generated by participants in the two conditions. Feedback 

is collected at the end of the study about participants’ understanding and the perceived 

usefulness of the representation scheme.  

The participants’ self-reported feedback on usefulness of the representation 

scheme shows positive results. The analysis of the feedback indicates that the 

participants who believe they better understand the representation scheme also generate 

ideas with higher quality and inclusivity. Additionally, 78% of participants reported that 

the representation scheme helps for inclusive design. The participant’s perception of the 

representation scheme indicates that the representation scheme has potential to influence 

inclusive design.  

The results of the study show that there is problem dependency in the application 

of the representation scheme. The representation scheme helps in the design of products 

that can be categorized as architectural products. For architectural products, the overall 

position of the user with respect to the product is an important factor influencing 

inclusive design. It cannot be stated with certainty at this point if the representation 

scheme is helpful for designing consumer products, where only the activities related to 

the upper body are involved. Since, the inclusive design rules are empirically derived 

from a data set, adding more and diverse products to the dataset might yield rules that 

improve applicability of the representation scheme for the consumer product domain. 

Adding more and varied product domains in generation of the rules itself might also 

reduce the domain dependency of the inclusive design representation scheme.  
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CHAPTER X  

VALIDATION STUDY  

 

A detailed validation study with specific focus on the sub-functions of the 

product is conducted to know which part of the actionfunction diagram inspires an idea. 

The design activity is split into 3 tasks. The control condition of the exploratory study 

did not include any design aid while the experimental condition includes both the 

actionfunction diagram and inclusive design rules, and it is still uncertain which of the 

two influences the inclusiveness of ideas. Hence, functional models are provided in the 

control condition of the validation study to gain a better insight into the advantage of the 

actionfunction diagram over the functional model for inclusive design. 

Besides, a study with a larger sample size might help to minimize any 

confounding factors such as the GPA of the participants. In the validation study the 20-

minute pre-recorded training is replaced by a 50-minute lecture on inclusive design. The 

module to teach the inclusive design representation scheme aims to better train students 

on how to apply the representation scheme. This module is taught in MEEN 402 at 

Texas A&M University in the Spring 2013 semester. MEEN 402 is the second semester 

of a two-semester sequence of a senior design course at Texas A&M University. The 

study is split over two days and conducted as in-class activities before and after the 

lecture.  
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Validation Study Setup 

This part describes the study procedure, characteristics of the study population, 

and the module developed for teaching inclusive design for the validation study.  

Study Procedure  

Table 20 explains the outline of the validation study procedure. Participants are 

randomly divided into two groups, red and blue. There are 53 participants in Red and 55 

in Blue group. Two product design problems are considered for the validation study: 

design of an inclusive blender and design of an inclusive bread toaster. Similar to 

exploratory study, the design problems are swapped in the experimental and control 

condition for the 2 groups. The Red group receives blender problem in the experimental 

condition and the Blue group receives toaster problem in the experimental condition. 

The study is conducted on Tuesday (Day 1) and Thursday (Day 2) of the same 

week. Day 1 begins with an introduction to the study, and the consent procedure. In the 

control condition, the participants are introduced to the problem statement followed by a 

concept generation activity. The total time of the control run is 40 minutes. After the 

control, participants are lectured for 20 minutes on the general concepts of human 

factors and the introduction to inclusive design.  

On the Day 2, participants are lectured for 30 minutes on the concept of 

actionfunction diagram and inclusive design rules. The experimental run follows the 

lecture on second day. A training questionnaire is administered before the experimental 

condition to test whether participants understand the inclusive design representation 

scheme. Total time for the experimental run is 40 minutes including the time allowed for 
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studying the problem statement and the actionfunction diagram. Participant feedback and 

demographics are collected at the end of the study.  

Table 20. Outline for the validation study 

Task Group 
Red 

Group 
Blue 

Time 
(min) Description 

Day 1 -------------- -------------- ------ Tuesday of the same week 

Introduction -------------- -------------- 15 
Consent form,  
General instructions 
Introduce inclusive design 

Control  
Condition Toaster Blender 40 Introduction and Concept Generation  

   
(15) Task 1 – Input & Controls  
(15) Task 2 – Add & remove food 
(10) Task 3 – Cleaning  

Lecture  -------------- -------------- 20 Human Factors  
     

Day 2 -------------- -------------- ------ Thursday of the same week 

Lecture  -------------- -------------- 30 Inclusive Design Teaching Module  
Experimental 
Condition  Blender Toaster 40 (With inclusive design rules) 

Introduction and Concept Generation  

   
(15) Task 1 – Input & Controls  
(15) Task 2 – Add & remove food 
(10) Task 3 – Cleaning  

Participant 
Feedback -------------- -------------- 5 Participant demographics 

Feedback on the study  

Total time -------------- -------------- 150 Two 75 min class periods 

 
 

The problem statements given to the participants state: “Assume you are a 

product designer for a home appliances manufacturer. Your company is planning to 

launch an inclusive design of a [product name],” where the [product name] is 

“Blender” or “Bread toaster”. The problem statement for toaster and blender are shown 

in Figure 67 and Figure 68, respectively.  
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Figure 67. Problem statement for the toaster design  

 

Figure 68. Problem statement for the blender design 

 

Figure 69. General instructions given to the participants for both the design 
problems  

For all conditions, the participants are instructed to generate as many ideas as 

possible, record all the concepts that occur to them, include partial solutions, preferably 

 
Name: _____________________________________________ 
 
UIN: ________________________ 
 

Problem Description   
Assume you are a product designer for a home appliances manufacturer. Your company is 
planning to launch an inclusive design of a “Bread Toaster”  
 
Definition 
Toaster is a small electric kitchen appliance used to toast multiple types of bread products.  
 
 
There are 3 tasks in this activity 
For each task, you will focus on a specific part of the device  
and generate ideas for inclusive design.  
 
TASK 1 – 15 minutes – page 1 
TASK 2 – 15 minutes – page 4 
TASK 3 – 10 minutes – page 7 
 
 
 
 
 
 
 
 
General instructions  
• Generate as many ideas as you can for each sub task.  

• Preferably sketch your idea and write any notes if you feel necessary.   

• Record all the concepts that occur to you, even if they might be infeasible.  

• Partial solutions are allowed. Complete solution is not required.  

• Your goal is to come up with commercially viable solution.  

• Please feel free to write any comments that you might have on the last page.  

 
 
Total time: 40 minutes 
Please begin on next page.   

GROUP 

BLUE 

 
Name: _____________________________________________ 

 
UIN: ________________________ 
 

Problem Description  
Assume you are a product designer for a home appliances manufacturer. Your company is 
planning to launch an inclusive design of a “Blender”  
 
Definition 
Blender is an electric kitchen appliance used to mix or puree food.  
 
 
There are 3 tasks in this activity 
For each task, you will focus on a specific part of the device  
and generate ideas for inclusive design.  
 
TASK 1 – 15 minutes – page 1 
TASK 2 – 15 minutes – page 4 
TASK 3 – 10 minutes – page 7 
 
 
 
 
 
 
 
 
General instructions  
• Generate as many ideas as you can for each sub task.  

• Preferably sketch your idea and write any notes if you feel necessary.   

• Record all the concepts that occur to you, even if they might be infeasible.  

• Partial solutions are allowed. Complete solution is not required.  

• Your goal is to come up with commercially viable solution.  

• Please feel free to write any comments that you might have on the last page.  

 
 
Total time: 40 minutes 
Please begin on next page.   

GROUP 

RED 

 
Name: _____________________________________________ 
 
UIN: ________________________ 
 

Problem Description   
Assume you are a product designer for a home appliances manufacturer. Your company is 
planning to launch an inclusive design of a “Bread Toaster”  
 
Definition 
Toaster is a small electric kitchen appliance used to toast multiple types of bread products.  
 
 
There are 3 tasks in this activity 
For each task, you will focus on a specific part of the device  
and generate ideas for inclusive design.  
 
TASK 1 – 15 minutes – page 1 
TASK 2 – 15 minutes – page 4 
TASK 3 – 10 minutes – page 7 
 
 
 
 
 
 
 
 
General instructions  
• Generate as many ideas as you can for each sub task.  

• Preferably sketch your idea and write any notes if you feel necessary.   

• Record all the concepts that occur to you, even if they might be infeasible.  

• Partial solutions are allowed. Complete solution is not required.  

• Your goal is to come up with commercially viable solution.  

• Please feel free to write any comments that you might have on the last page.  

 
 
Total time: 40 minutes 
Please begin on next page.   

GROUP 

BLUE 
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sketch the idea, and write any notes they feel necessary. The general instructions are 

shown in Figure 69. 

Both control and experimental runs are divided into three tasks. In the Task 1, 

participants are asked to generate ideas related to the controls of the devices.  The 

controls include turning the device on/off as well as setting speed on the blender and 

temperature on the toaster. In the control condition, participants receive the functional 

model of the device as shown in Figure 70.  

 

Figure 70. Task 1 for the control condition of the toaster design 

In the experimental condition participants receive the actionfunction diagram of 

the product along with the related inclusive design rules and definitions of the ICF terms, 

refer Figure 71. Task 2 consists of generating ideas for either adding or removing food 

TS 1 

TASK 1: Time: 15 minutes: 
 
In this task, focus on the functions related to the temperature and on/off signal for 
inclusive design of a toaster. A part of functional model of a toaster is given below. 
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from blender jar, and adding or removing bread from the toaster. Task 3 consists of ideas 

related to cleaning of the device. All task descriptions are listed in the Appendix B. Time 

allotted for task 1, task 2 and task 3 is 15 minutes, 15 minutes and 10 minutes, 

respectively 

 

Figure 71. Task 1 for the experimental condition of the toaster design 

TS2 1 

TASK 1: Time: 15 minutes: 
 
In this task, focus on the activities and functions related to the temperature and 
on/off signal for inclusive design of a toaster. A part of an actionfunction diagram 
of the toaster is given below. Relevant inclusive design rules and ICF definitions 
are also listed.  
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User Activity Product function Recommended Change 
Pushing Guide Solid Parametric 

Turning Regulate Electrical Energy Morphological 

 
ICF term Meaning 

Pushing Using fingers, hands and arms to move something from 
place to place, such as when pushing an electric switch 

Turning  Using fingers, hands, and arms to rotate, turn or bend an 
object, such as turning a knob 
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The validation study investigates the inclusive design of blender and toaster, 

which are functionally dissimilar products. Both blender and toaster are devices that are 

used on the kitchen counter. Only the products involving upper body activities are 

selected for the validation study since the results of exploratory study shows that such 

products need further exploration. The design problems are from distinct domains so the 

product designed in the control condition should not influence the design of product in 

the experimental condition.  

Study Population  

The sample size for the validation study is 114. The participant group consisted 

of 80 males, 25 females, and the remaining did not report. Six participants who 

participated in only one condition are excluded from the analysis. The participants 

recruited for the validation study are senior mechanical engineering students who had 

prior training in basic design methods and functional modeling. The participants 

received in-class activity credit for participation in the validation study.  

Teaching Module for Inclusive Design  

The lecture on day 1 consists of introduction to human factors and considerations 

in human factors analysis. The lecture on day 1 gradually leads into importance of 

inclusive design. The lecture on day 2 started with overview of inclusive design and 

revision from the previous class. One specific method to practice inclusive design is 

illustrated in the class; the method consisting of actionfunction diagram and inclusive 

design rules. The three types of design differences are explained. Further, the application 

of inclusive design rules to actionfunction diagram is also explained.  
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Results of the Validation Study 

This part compares the results from the control and experimental condition. The 

criteria for statistical significance is set at α = 0.05. The average number of ideas 

generated per participants is 12 for both the design problems. While rating the ideas, 5 

participants from blender study and 11 from toaster study are not considered in the 

analysis on account of illegible handwriting. Table 21 shows the number of participants 

in the control and experimental condition of both the design problems that are included 

in the analysis.  

Table 21. Number of participants in the validation study in the control and 
experimental condition 

  Control  Experimental  
Toaster  46 51 
Blender  52 55 

 
 

Inter-rater reliability is tested for validation study where twenty-three percent of 

the toaster data and twenty eight percent of the blender data is rated by the second rater. 

The data tested includes ideas from both the control and experimental condition that are 

selected randomly across all of the three tasks. The linear-weighted Cohen’s Kappa 

values are reported in Table 22. The weighted Cohen’s Kappa values show reasonably 

reliable agreement between the raters for the validation study.  
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Table 22. Weighted Cohen’s Kappa (linear-weighted) for the validation study 

  Quality Inclusivity 
Toaster (23% of the data) 0.66 0.44 
Blender (28% of the data) 0.57 0.59 

 
 

In the validation study analysis, non-parametric tests are applied to check 

difference in the count of ideas generated by the participants in each category of the 

quality and inclusivity rating. For instance, the count of inclusivity rating of 0 is the sum 

of ideas with inclusivity of 0 in each of the condition. Table 23 and Table 24 shows the 

Chi-Square tests of the observed counts, the expected counts and the deviation of 

inclusivity ratings by the control and experimental conditions for the toaster and blender 

problem, respectively. As shown in Table 23, the results of the chi-square tests show that 

the inclusivity ratings of ideas generated by the participants is significantly different in 

the two conditions of the toaster problem.  

Note that, count of ideas with inclusivity of 0 is significantly higher than the 

expected value in the control condition. Also, the count of ideas with inclusivity of 3 is 

significantly higher than the expected value in the experimental condition Thus, the 

inclusive design representation scheme helps to shift the designer’s focus away from the 

internal functions of the device and helps in generating better inclusive ideas. Similar 

trend is observed for the blender problem but the difference is not significant.  
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Table 23. Chi-Square tests of the observed and the expected average percentage of 
inclusivity ratings by the control and experimental conditions for the toaster 
problem (Chi-square = 22.18) 

    Inclusivity Rating 

Condition   0 1 2 3 

Control 

Count 76 156 8 339 

Expected 53.5 157.5 7.5 360.5 

Deviation 22.5 -1.5 0.5 -21.5 

Experimental 

Count 31 159 7 382 

Expected 53.5 157.5 7.5 360.5 

Deviation -22.5 1.5 -0.5 21.5 

Chi Square  9.46 0.01 0.03 1.28 

 

Table 24. Chi-Square tests of the observed and the expected average percentage of 
inclusivity ratings by the control and experimental conditions for the blender 
problem  

    Inclusivity Rating 

Condition   0 1 2 3 

Control 

Count 80 197 23 287 

Expected 71.1 196.8 24.6 294.6 

Deviation 8.9 0.2 -1.6 -7.6 

Experimental 

Count 50 163 22 252 

Expected 58.9 163.2 20.4 244.4 

Deviation -8.9 -0.2 1.6 7.6 
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Table 25 and Table 26 shows the Chi-Square tests of the observed counts, the 

expected counts and the deviation of the quality ratings by the control and experimental 

conditions for the toaster and blender problem, respectively. The quality ratings do not 

depend on the condition. In other words, inclusive design representation scheme does 

not affect the quality of ideas generated by the participants. 

Table 25. Chi-Square tests of the observed and the expected average percentage of 
quality ratings by the control and experimental conditions for the toaster problem  

    Quality Rating 

Condition   0 1 2 3 

Control 

Count 21 56 114 385 

Expected 18.3 50.9 121.6 385.2 

Deviation 2.7 5.1 -7.6 -0.2 

Experimental 

Count 16 47 132 394 

Expected 18.7 52.1 124.4 393.8 

Deviation -2.7 -5.1 7.6 0.2 
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Table 26. Chi-Square tests of the observed and the expected average percentage of 
quality ratings by the control and experimental conditions for the blender problem 

    Quality Rating 

Condition   0 1 2 3 

Control 

Count 17 50 116 417 

Expected 22.1 46.4 113.2 418.4 

Deviation -5.1 3.6 2.8 -1.4 

Experimental 

Count 23 34 89 341 

Expected 17.9 37.6 91.8 339.6 

Deviation 5.1 -3.6 -2.8 1.4 

 
 

With the results of the validation study, there is enough evidence to conclude that 

the quality of ideas generated by the participants is not influenced by the inclusive 

design representation scheme. The inclusivity ratings appears to be is problem dependent 

since it is significantly improved for the toaster problem but not for the blender problem. 

At this time, we cannot conclude the usefulness of the inclusive design representation 

scheme.  

Participant Feedback  

There is no significant difference in the self-reported GPAs of the participants in 

the two groups. Additionally, the quiz scores obtained in the post lecture quiz do not 

vary amongst the two groups. The quiz scores obtained by the participants are normally 

distributed across the sample. Figure 72 shows the responses of participant feedback 

collected at the end of the study to assess the effectiveness of the training. Most 
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participants responded “yes” or “somewhat” confident about their understanding of the 

inclusive design rules, actionfunction diagram, and the design differences based on the 

lectures.  

 

Figure 72. Participant feedback on effectiveness of the lecture for inclusive design 
representation scheme 

The general trends in the responses for the self-assessment are roughly the same 

in both blue and red groups except for the response on the question “Did you understand 

the inclusive design rules provided in the study?” Table 27 shows responses from both 

groups for this question. The students from blue group who had toaster in experimental 

condition appear to be more confident about the training. This is interesting to note since 

the average inclusivity of ideas generated by participants is improving for the toaster 

design but not improving for the blender design with the inclusive design representation 

scheme.  
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Table 27. Participants’ perception on understanding the inclusive design rules 
across the red and blue group  

Did you understand the inclusive design 
rules provided in the study? N

o 

So
m

ew
ha

t 

Y
es

 

Red group (blender in experimental condition) 8 
(15%) 

28 
(53%) 

17 
(32%) 

Blue group (toaster in experimental condition) 1 
(2%) 

24 
(43%) 

30 
(55%) 

 
 

Figure 73 shows the participants’ perception on inclusive design collected at the 

end of the study. Almost 70% participants feel confident about designing inclusive 

product in the future. The main purpose of the teaching module is to introduce 

participants to the concept of inclusive design and increase the confidence for designing 

inclusive products. The purpose of teaching module seems to be achieved based on the 

participant feedback.  

 

Figure 73. Participant feedback on the perception of inclusive design and 
effectiveness of the method  
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Few other questions were asked at the end of the study to check if the 

experiment’s objectives are met, refer Figure 74. This feedback helps to know if the 

participants are aware of what they are designing. Thirty-two percent of the participants 

knew about the other design problem from their peers even when they were instructed to 

not discuss the design problems. The participants who are aware of the second design 

problem are not excluded from the study since it would drastically reduce the sample 

size.  

 

 

Figure 74. Participant feedback collected to check if the experiment’s objective is 
met  

Summary 

This chapter discusses the validation study to test the inclusive design 

representation scheme. The application of the inclusive design rules to the actionfunction 
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the inclusive design rule set can improve the applicability of the representation scheme 

for diverse product domains. Self reported feedback indicates that the teaching module is 

effective in increasing the awareness and confidence about inclusive design. Results 

show that the inclusivity ratings of ideas generated by participant is problem dependent. 

However, there is not enough evidence to support the hypothesis that the inclusive 

design representation scheme is helps for inclusive design.  
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CHAPTER XI  

CONCLUSIONS AND FUTURE WORK 

 

This research proposes to create knowledge and methods for engineering design 

that enable engineers to better create products to satisfy the needs of persons with 

disabilities. The broader impact of this research reaches the underserved population. 

These activities provide an opportunity for engineers to realize the power of design and 

what it can do for an underserved community. 

Contributions 

The specific contribution of this research is a method to derive heuristics for 

inclusive design. The function-based comparison data contains complex relational 

information; the graphical representation effectively captures all the pertinent 

information and preserves the relations. The graph mining serves as an automated 

heuristic extraction process that has the capability to efficiently mine the design 

repositories. Particularly, graph representation and graph data mining can be applied for 

the expansion of the design repository to find new heuristics for the design practice. 

Graph mining could also be applied for engineering grammar induction.  

The application of graph mining for product design is an important contribution 

to the research in computational design synthesis. The graphical representation can be 

extended for many other functional representations like functional interaction modeling 

[25]. In general, graph mining can be applied to extract design heuristics from any 

discrete and relational design data that can be represented as graphs. 
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The heuristics derived in this research are validated to test its applicability for 

inclusive design. However, while applying these rules, designers should be mindful that 

the rules given here are design suggestions which may or may not be applicable to a 

specific design problem. The term ‘rule’ follows the data mining terminology. In 

addition, this research creates an inclusivity rating to evaluate the inclusiveness of 

solutions in conceptual stage of design. Inclusivity rating serves as a foundational block 

for benchmarking various methods for inclusive design. Further, a module to teach 

inclusive design methods is designed and tested as a contribution to the capstone design 

curriculum. This module can be adopted at other universities for similar capstone design 

course. 

Other contributions of the research include a formal representation method for 

modeling user-product interactions known as the actionfunction diagram. The procedure 

to create actionfunction diagram is documented to allow repeatability and to allow 

expansion of inclusive design repository. An inclusive design repository is made 

available to other researchers and designers. A design difference classification scheme is 

established to compare a product pair. A bipartite graph provides an appropriate 

mathematical format for modeling discrete.  

Overall Results 

The research uses the ICF to formally describe a user activity, the Functional 

Basis to describe a product function, and the actionfunction diagram as a framework to 

create a detailed understanding of the interaction between a user and a product. 

Classification of changes as parametric, morphological, or functional provides a clear 
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framework for comparing a typical and an inclusive design. The rule generation allows 

statistical mining of the design guidelines from existing inclusive products. 

Formalization results show that, the rate of rule generation decreases as more 

products are added to the dataset. Adding more product pairs to the dataset improves the 

statistical significance of the rule in terms of better values of confidence and support. 

Thus, the inclusive design knowledge can be captured and formalized by a set of 

association rules obtained from functional representations of an arbitrarily large set of 

products. Additionally, the clustering results indicate that the rules, and product clusters 

based on the rules, may provide opportunities to create product families based on sharing 

common components that make the product inclusive. 

Graph data mining has the capability to efficiently search for new design 

heuristics from the updated repository of inclusive products. The advantages of graphical 

representations over flat-attribute type representations are discussed in the context of 

function-based representation framework. Particularly, graph representation and graph 

data mining can be applied for the expansion and mining of the design repository with 

some alterations in the graphical format. The automated method consisting of the 

GraphSynth, the FSG and the JUNG along with the JAVA GUI is particularly helpful in 

the developmental stages of graph mining applications for product design. The 

automated graph grammar method can derive the grammar rules that are originally 

derived by the experts. In addition, the automated process can be used to improve 

existing grammar rules.  
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The results of the exploratory study and validation show that there is problem 

dependency in the application of the representation scheme. It cannot be stated with 

certainty at this point if the representation scheme is helpful for designing consumer 

products, where only the activities related to the upper body are involved. Self reported 

feedback indicates that the teaching module is effective in increasing the awareness and 

confidence about inclusive design. Results show that the inclusivity ratings of ideas 

generated by participant is problem dependent. However, there is not enough evidence to 

support the hypothesis that the inclusive design representation scheme is helps for 

inclusive design.  

Limitations 

This research is empirical, thus extensions of findings have some limitations 

based on the data set studied. The framework used for analysis includes functional 

representation for engineered products and the ICF for user activity. Both these 

representations are general. Functional product representation has broad use in 

engineering practice and research. The ICF is developed specifically to provide 

application neutral representation of human health states. Thus, the findings and methods 

presented here should be generalizable. However, cases in which products are dissimilar, 

to the extent that there are no common functions and no common activities found in the 

actionfunction diagrams, may not support any common design guidelines in the form of 

those found here. Such a result is both a positive and limiting conclusion of the research. 

As a limiter of the approach, rule sets are only applicable to products that share some 

functions and user activities. As a positive conclusion, the formalism provides a 
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categorization framework for identifying products that have sufficient similarity that the 

products could implement and benefit from common strategies for inclusive design.  

Future Work 

More useful format of inclusive design guideline might be; given the disability, 

what change to a set of functions or a product module makes the product inclusive. 

Consider designing a product for an individual with reduced hand dexterity; addition of 

electrical energy would eliminate the fine hand controls required to operate the product. 

It is also interesting to know addition of which design feature in a product avoids 

exclusion of users with what kind of disability. For example, addition of electrical 

energy eliminates the activities requiring fine hand use thus including people with 

reduced hand functioning.  

Performing a detailed study to quantify product similarity and rule transferability 

remains future work. Product similarity could be measured in a number of ways. 

Quantitative ratings to identify similar products based on a measure that includes 

product functionality are reported in McAdams and Wood [107]. More detailed 

classification of design differences would better serve product platform design. 

Performing a formal study for the inter-rater agreement for discerning the difference 

between the types of design changes remains as future work. Also, a rigorous product 

platform study for the inclusive product remains as future work. The dataset of products 

continues to be expanded with more product pairs. 
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APPENDIX A  

INCLUSIVE DESIGN REPRESENTATION SCHEME 

 

 

Figure A1. Actionfunction diagram of the food processor  
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Figure A2. Actionfunction diagram of the Refrigerator  
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Table A1. Inclusive design rules listing the recommended change to user-product 
interactions  

User Activity Product function Recommended 
Change 

User Activity Change 

Hand Activities 
Carrying, moving and handling objects Import Solid No change Same as Typical 
Carrying, moving and handling objects Position Hand Parametric Easier 
Carrying, moving and handling objects Position Solid Parametric Easier 
Picking up Import Hand No change Same as Typical 
Picking up No function No change Same as Typical 
Grasping Position Hand Parametric Easier 
Grasping Secure Hand Functional  Easier 
Manipulating Actuate Signal Morphological Pushing with fingers 
Manipulating Guide Solid Parametric Easier 
Manipulating Guide Solid Morphological Pushing with fingers 
Manipulating Position Hand Parametric Easier 
Manipulating Separate Solid No change Same as Typical 
Manipulating Store Solid No change Same as Typical 
Manipulating No function No change Same as Typical 
Manipulating Couple Solid Parametric Easier 
Pulling Guide Solid Parametric Easier 
Pulling Guide Solid Morphological No Activity 
Pushing with hand Guide Solid Parametric Same as Typical 
Pushing with fingers Guide Solid Parametric Same as Typical 
Reaching Position Hand Parametric Easier 
Reaching Import Hand No change Same as Typical 
Reaching No function No change Same as Typical 
Turning Guide Solid Morphological Pushing with hand 
Turning Regulate Electrical Energy Parametric Pushing with fingers 

Communication 
Communication Written Indicate Status Parametric Easier 
Communication Written Indicate Status Morphological Communication Braille 
Hearing functions Indicate Status Parametric Easier 
Hearing functions Indicate Status Morphological Better 
Seeing functions Indicate Status Parametric Easier 
Seeing functions Indicate Status Morphological Better 

Gross Body Movements 
Moving around Import Human Parametric Easier 
Moving around building other than home Import Human No change Same as Typical 
Moving around Secure Human Functional  Better 
Maintain Body Position Position Human Parametric Easier 
Transferring oneself Import Human Morphological Better 
Transferring oneself  Import Human Parametric Easier 
Pushing with lower extremities Guide Solid Morphological Pushing with hand 
Sitting Guide Human Functional  Better 
Standing Guide Human Functional  Better 
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APPENDIX B  

DESIGN TASKS FOR THE VALIDATION STUDY 

 

Figure B1. Task 1 for the experimental condition of toaster design 

TS2 1 

TASK 1: Time: 15 minutes: 
 
In this task, focus on the activities and functions related to the temperature and 
on/off signal for inclusive design of a toaster. A part of an actionfunction diagram 
of the toaster is given below. Relevant inclusive design rules and ICF definitions 
are also listed.  

 
 

 
  

Turning

Pushing 

Guide 
Solid

Hand

Regulate 
Electrical 
Energy

on/off

Temperature

Convert Electrical 
Energy to Thermal 

Energy

Thermal 
Energy

Electrical 
Energy

Hand

Hand

Hand

Controls 

User Activity Product function Recommended Change 
Pushing Guide Solid Parametric 

Turning Regulate Electrical Energy Morphological 

 
ICF term Meaning 

Pushing Using fingers, hands and arms to move something from 
place to place, such as when pushing an electric switch 

Turning  Using fingers, hands, and arms to rotate, turn or bend an 
object, such as turning a knob 
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Figure B2. Task 2 for the experimental condition of toaster design 

TS2 4 

TASK 2: Time: 15 minutes  
 
In this task, focus on the activities and functions related to getting bread in and out 
of the inclusive design of a toaster. A part of an actionfunction diagram of the 
toaster is given below. Relevant inclusive design rules and ICF definitions are also 
listed.  
 

  

 
  

Carrying, moving 
and handling objects

Manipulating 

Import 
Solid

Heat
Solid

Bread
Export 
Solid

Residual 
Energy

Thermal 
Energy

Toasted 
Bread

Bread Toaster

 
User Activity Product function Recommended Change 

Carrying, moving and handling objects Import Solid No change 

Manipulating Export Solid Morphological 

 
ICF term Meaning 

Carrying, moving 
and handling objects 

Carrying, moving and handling objects to bring them near the 
product, such as adding bread to toaster  

Manipulating Using fingers and hands to exert control over, direct or guide 
something, such as when removing bread from toaster  
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Figure B3. Task 3 for the experimental condition of toaster design 

TS2 7 

TASK 3: Time: 10 minutes  
 
In this task, focus on the activities and functions related to the customer need “easy 
to remove bread crumbs” for the inclusive design of a toaster. During or after 
toasting bread crumbs fall inside the toaster which needs to be cleaned periodically. 
A part of an actionfunction diagram of the toaster is given below. Relevant 
inclusive design rules and ICF definitions are also listed.  
 

 

 
 

  

Manipulating Hand Hand

REMOVE BREAD CRUMBS

 
User Activity Product function Recommended Change 
Manipulating No function Functional 

 
ICF term Meaning 

Manipulating Using fingers and hands to exert control over, direct 
or guide something, such as washing the container 
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Figure B4. Task 1, Task 2 and Task 3 for the control condition of toaster design 

TS 1 

TASK 1: Time: 15 minutes: 
 
In this task, focus on the functions related to the temperature and on/off signal for 
inclusive design of a toaster. A part of functional model of a toaster is given below. 
  

 
  

Guide 
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Hand

Hand

Hand
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TS 3 

TASK 2: Time: 15 minutes  
 
In this task, focus on the functions related to getting bread in and out of the 
inclusive design of a toaster. A part of functional model of a toaster is given below.  
 

  
  

Import 
Solid

Heat  
Solid

Bread
Export 
Solid

Residual 
Energy

Thermal 
Energy

Toasted 
Bread

Bread Toaster

TS 5 

TASK 3: Time: 10 minutes  
 
In this task, focus on the functions related to the customer need “easy to remove 
bread crumbs” for the inclusive design of a toaster. During or after toasting bread 
crumbs fall inside the toaster which needs to be cleaned periodically.  
 

 
  

REMOVE BREAD CRUMBS
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Figure B5. Task 1 for the experimental condition of blender design 

BL2 1 

TASK 1: Time: 15 minutes: 
 
In this task, focus on the activities and functions related to the speed and on/off 
signal for inclusive design of a blender. A part of an actionfunction diagram of the 
blender is given below. Relevant inclusive design rules and ICF definitions are also 
listed. 

   

 
  

Turning

Manipulating 

Actuate 
signal

Hand

Regulate 
Electrical 
Energy

on/off

Speed

Convert Electrical 
Energy to 

Mechanical Energy

Mechanical 
Energy

Electrical 
Energy

Hand

Hand

Hand

Controls 

 
User Activity Product function Recommended Change 
Manipulating Actuate Signal Morphological 

Turning Regulate Electrical Energy Parametric 

 
ICF term Meaning 

Manipulating Using fingers and hands to exert control over, direct or guide 
something, such as when handling coins or other small objects 

Turning  Using fingers, hands, and arms to rotate, turn or bend an 
object, such as turning a knob 
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Figure B6. Task 2 for the experimental condition of blender design 

BL2 4 

TASK 2: Time: 15 minutes  
 
In this task, focus on the activities and functions related to getting food in and out 
of the inclusive design of a blender. A part of an actionfunction diagram of the 
blender is given below. Relevant inclusive design rules and ICF definitions are also 
listed. 
  

 
  

Picking up 

Carrying, moving 
and handling objects

Manipulating 
Import 
Solid

Mix Solid 
and 

Liquid

Solid 
Food Store  

Mixture

Import 
Liquid

Residual 
Energy

Mechanical 
Energy

Mixed 
food

Liquid 
food

Blender Jar 

 
User Activity Product function Recommended Change 

Carrying, moving and handling objects Import Solid No change 

Picking up No function Parametric 

Manipulating No function Functional 

 
ICF term Meaning 

Carrying, moving 
and handling objects 

Carrying, moving and handling objects to bring them near the 
product, such as adding food into the container 

Manipulating Using fingers and hands to exert control over, direct or guide 
something, such as when removing food from the container 

Picking up Lifting or taking up a small object with hands and fingers, 
such as when picking up a container  
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Figure B7. Task 3 for the experimental condition of blender design 

BL2 7 

TASK 3: Time: 10 minutes  
 
In this task, focus on the activities and functions related to the customer need “easy 
to clean” for the inclusive design of a blender. Cleaning of blender jar involves 
soap and water. A part of an actionfunction diagram of the blender is given below. 
Relevant inclusive design rules and ICF definitions are also listed. 
 

 

 
  

CLEAN CONTAINER WITH 
SOAP AND WATER

Manipulating Hand Hand

 
User Activity Product function Recommended Change 
Manipulating No function Functional 

 
ICF term Meaning 

Manipulating Using fingers and hands to exert control over, direct 
or guide something, such as washing the container 
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Figure B8. Task 1, Task 2 and Task 3 for the control condition of blender design   

BL 1 

TASK 1: Time: 15 minutes: 
 
In this task, focus on the functions related to the speed and on/off signal for 
inclusive design of a blender. A part of functional model of a blender is given 
below.  
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Hand
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Energy
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Hand
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Hand
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BL 3 

TASK 2: Time: 15 minutes  
 
In this task, focus on the functions related to getting food in and out of the inclusive 
design of a blender. A part of functional model of a blender is given below. 
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Solid 
Food Store  
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Import 
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Mechanical 
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food

Liquid 
food

Blender Jar 

BL 5 

TASK 3: Time: 10 minutes  
 
In this task, focus on the functions related to the customer need “easy to clean” for 
the inclusive design of a blender. Cleaning of blender jar involves soap and water.  
 

 
  

CLEAN CONTAINER WITH 
SOAP AND WATER
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APPENDIX C 

EXACT MATCHING GRAPH GRAMMARS 

 

 

Figure C1. Rule 4 from Campbell's graph grammar rule and the corresponding 
frequent subgraph with a frequency of 4 and size 2  

 

 

Import 
Human 
Energy

Transmit 
Human 
Energy

Energy EnergyEnergy
v 0v 1 v 2

u 0 2u 0 1

t # 2-91, 4
v 0 Energy
v 1 Energy
v 2 Energy
u 0 1 Import Human Energy
u 0 2 Transmit Human Energy

Rule 4    from Campbell's grammar rule set

Frequent sub pattern 
derived with graph mining
 Support: 4 out of 50

Interpreted 
grammar
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Figure C2. Rule 69 from Campbell's graph grammar rule and the corresponding 
frequent subgraph with a frequency of 3 and size 2 

Store 
Solid

Export 
Solid

MaterialMaterial Material

v 0 v 1v 2

u 0 2u 0 1

Frequent sub pattern 
derived with graph mining
 Support: 3 out of 50

Interpreted 
grammar

t # 2-45, 3
v 0 Material
v 1 Material
v 2 Material
u 0 1 Export Solid
u 0 2 Store Solid

Rule 69 from 
Campbell's grammar 

rule set
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Figure C3. Rule 34 from Campbell's graph grammar rule and the corresponding 
frequent subgraph with a frequency of 3 and size 2  

  

Import 
Gas Guide Gas

MaterialMaterial Material

v 0 v 1v 2

u 0 2u 0 1

Frequent sub pattern 
derived with graph mining
 Support: 3 out of 50

Interpreted 
grammar

t # 2-115, 3
v 0 Material
v 1 Energy & Material
v 2 Material 
u 0 1 Guide Gas
u 0 2 Import Gas

Rule 34 from 
Campbell's grammar 

rule set

Energy
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APPENDIX D 

INCLUSIVE DESIGN REPOSITORY OF 65 PRODUCT PAIRS 

 

Table D1. Database of 65 product pairs studied  

   Product Typical Universal 

1 PT Cruiser 

  

2 Box cutter 

  

3 Seat Belt Adaptor 

  

4 Ford Focus 

  

5 Wash Basin 

    

6 Bicycle 
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Table D1. Database of 65 product pairs studied (continued)  

   Product Typical Universal 

7 Cutting Board 

  

8 Food storage box 

  

9 Tooth-brush 

 
 

10 Trashcan 

  

11 Arm Chair 

  

12 Chopping Bowl 

  

13 Closet 
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Table D1. Database of 65 product pairs studied (continued)  

 

   Product Typical Universal 

14 Cook Top 

  

15 Pizza Cutter 

  

16 Tooth-brush Dispenser 

  

17 Power Doors 

  

18 Eyewear 
  

19 Faucet 

  

20 Jar Opener 1 
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Table D1. Database of 65 product pairs studied (continued)  

   Product Typical Universal 

21 Nail File 

  

22 Refrigerator 

 
 

23 Hammer 

  

24 Hoe 

  

25 Iron 

  

26 Door Knob 
  

27 Lamp 
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Table D1. Database of 65 product pairs studied (continued) 

   Product Typical Universal 

28 Recliner Lever  

  

29 Bottle Cap 

  

30 Fountain Drink Lid 

  

31 Microwave 

  

32 Touch Faucet 

  

33 Blood Pressure Monitor 

  

34 Can Opener 

 
 



 

 215 

Table D1. Database of 65 product pairs studied (continued)  

 

   Product Typical Universal 

35 Oven 

  

36 Telephone 

  

37 Plug 

  

38 Garlic Press 

  

39 Pruner 
 

 

40 One-Hole Hole Punch 

  

41 Razor  
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Table D1. Database of 65 product pairs studied (continued)  

 

   Product Typical Universal 

42 Recliner 

  

43 Remote 

  

44 Kitchen Scale 

  

45 Scissors 
  

46 Toilet Auto Seat 

  

47 Easy Reach Seat Belt 

  

48 Shovel 
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Table D1. Database of 65 product pairs studied (continued)  

   Product Typical Universal 

49 Hand Held Shower 

  

50 Braille Signs 

  

51 Jar Opener -2 

  

52 Kitchen sink 

  

53 Adjustable height Sink 

 

 

54 Spatula 
 

 

55 Syringe 
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Table D1. Database of 65 product pairs studied (continued)  

   Product Typical Universal 

56 Thermometer 

  

57 Toilet 

  

58 Ice Cube Tray 

 
 

59 Trowel 

  

60 Bathtub 

  

61 Dish-washer 

  

62 Washer 
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Table D1. Database of 65 product pairs studied (continued)  

 

 

   Product Typical Universal 

63 Wrist Watch 

  

64 Wine Opener 

  

65 Car window controls 
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APPENDIX E 

GRAPHS OF 65 PRODUCT PAIRS 

 

t  # P1 PT_Cruiser 

 
t # P2 Box_Cutter 

 



 

 221 

t # P3 Seat_Belt_Adaptor 

 
t # P4 Ford_Focus 

 



 

 222 

 
t # P5 Wash_Basin 

 
t # P6 Bicycle 

 



 

 223 

t # P7 Cutting_Board 

 
t # P8 Tupperware 

 
t # P9 Toothbrush 

 



 

 224 

t # P10 Trash_Can 

 
t # P11 Arm_Chair 

 



 

 225 

t # P12 Copco_Bowl 

 
t # P13 Closet 

 



 

 226 

t # P14 Cook_Top 

 
t # P15 Pizza_Cutter 

 



 

 227 

t # P16 Paste_Dispenser 

 
t # P17 Power_Door 

 
t # P18 Eye_Wear 

 
 



 

 228 

t # P19 Auto_Faucet 

 
t # P20 Jar_Opener 

 
t # P21 Nail_File 

 
 



 

 229 

t # 22 Refrigerator 

 



 

 230 

t # 23 Hammer 

 
 
t # 24 Hoe 

 



 

 231 

t # 25 Iron 

 
t # 26 Door Knob 

 
t # 27 Lamp 

 



 

 232 

t # 28 Recliner with extended lever 

 
t # 29 Bottle cap 

 



 

 233 

t # 30 Braille Lid 

 
t # 31 Microwave 

 



 

 234 

t # 32 Touch Start Faucet 

 
t # 33 Blood pressure monitor 

 



 

 235 

t # 34 Can Opener 

 



 

 236 

t # 35 Oven 

 



 

 237 

t # 36 Voice Dialing 

 
t # 37 Electric outlet plug 

 
t # 38 Garlic press 
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t # 39 Pruner  

 
t # 40 One hole punch 
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t # 41 Razor Reach 

 
t # 42 Recliner 

 
t # 43 Remote 

 



 

 240 

t # 44 Kitchen Scale 

 
t # 45 Scissors 

 
 



 

 241 

t # 46 Toilet Seat Auto 

 
t # 47 Seat belt Easy Reach 

 



 

 242 

t # 48 Shovel 

 
t # 49 Handheld Shower 

 
 



 

 243 

t # 50 Braille Signs 

 
t # 51 Jar Opener Vice type 

 
t # 52 Kitchen Sink 

 



 

 244 

t # 53 Adjustable Height Sink 

 
t # 54 Spatula 
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t # 55 Syringe 

 
t # 56 Thermometer 

 



 

 246 

t # 57 Toilet 

 
t # 58 Ice Cube Tray 

 
 



 

 247 

t # 59 Trowel 

 
t # 60 Bath tub 

 



 

 248 

t # 61 Dishwasher 

 



 

 249 

t # 62 Washer 

 
t # 63 Wrist watch 

 



 

 250 

t # 64 Wine opener 

 
t # 65 Car Window 

 
 
 


