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ABSTRACT

The incompressible Navier-Stokes equations have proven formidable for nearly

a century. The present difficulties are mathematical and computational in nature;

the computational requirements, in particular, are exponentially exacerbated in the

presence of high Reynolds number. The issues are further compounded with the

introduction of markers or an immiscible fluid intended to be tracked in an ambient

high Reynolds number flow; despite the overwhelming pragmatism of problems in

this regime, and increasing computational efficacy, even modest problems remain

outside the realm of direct approaches.

Herein three approaches are presented which embody direct application to prob-

lems of this nature. An LES model based on an entropy-viscosity serves to abet

the computational resolution requirements imposed by high Reynolds numbers and

a one-stage compressive flux, also utilizing an entropy-viscosity, aids in accurate, effi-

cient, conservative transport, free of low order dispersive error, of an immiscible fluid

or tracer. Finally, an integral commutator and the theory of anti-dispersive spaces is

introduced as a novel theoretical tool for consistency error analysis; in addition the

material engenders the construction of error-correction techniques for mass lumping

schemes.
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1. INTRODUCTION

1.1 Regarding the Navier-Stokes equations

The Navier-Stokes equations describe the motion of fluid substances. The equa-

tions are widely utilized to model many physical phenomena such as weather pat-

terns, ocean currents, turbulent fluid flow and magneto hydrodynamics; despite their

wide utilization a comprehensive theoretical understanding remains an open ques-

tion. The incompressible Navier-Stokes equations are given by

∂tu + (u · ∇) u− µ∆u +∇p = f (1.1)

∇ · u = 0

In a bounded domain, Ω, (1.1) is typically augmented with periodic boundary

conditions or the boundary condition u|∂Ω = 0 for all t ∈ [0, T ]; in addition the initial

condition u(x, 0) = u0(x) for all x ∈ Ω is employed. The Navier-Stokes equations

are a mathematically challenging set of equations. The Navier-Stokes equations

present pertinent challenges at the forefront of both theoretical and computational

knowledge. The problem of existence and uniqueness of solutions to the Navier-

Stokes equations is multiply faceted and embodies a rather recent history. It is not

within the scope of this document to fully present such an account; I will, however,

briefly mention an excerpt of the historical development detailed at length in [55]. In

[32] the existence and uniqueness of regular solutions for all time, in space dimension

two, for the whole space is established; in [34] existence and uniqueness is shown for

some interval (0, T ), where T depends on the data, for bounded domains. In three

dimensions [33] established, for flow in the whole space, existence and uniqueness of
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a regular solution on some interval (0, T ), where T depends on the data, and the

existence for all time of a weak solution and discussed the possibility of singularities

therein. Following the work of Leray, [21] proved the global time existence, in three

dimensions, for a weak solution in a bounded domain with homogeneous Dirichlet

boundary conditions on the velocity. A sequence of papers in the late fifties essentially

concluded the two-dimensional case; [36] proved uniqueness of weak solutions in

two spatial dimensions while [29, 30] improved Leray’s existence results for strong

solutions in two-dimensional bounded domains. For further historical context see

[55]. More recently some headway has been forged in the three-dimensional case;

for example, [49] show that weak solutions of the three-dimensional Navier-Stokes

equations are smooth provided the negative part of the pressure, or the quantity

|u|2 + 2p, are controlled. Despite these advances, however, the question of existence

and uniqueness for the three dimensional case remains an open problem.

Computationally, the Navier-Stokes equations embody a unique set of issues;

lacking any clear analytic solution in general, the praxis of utilizing Navier-Stokes is

numeric in nature and the last half century has enveloped significant advancement

and adaptation in numerical techniques to evince such a solution. Such approaches

may, more or less, be dichotomized as either utilizing a model for turbulent effects

or not doing so. Turbulent effects induce a coupling of small scale interactions with

large scale behaviour; the coupling, in turn, requires these small scales be resolved or,

to some degree, the fluid effects at these scales be modelled. Ultimately, the small-

est scale on which turbulent effects should be resolved, if not otherwise modelled,

in order to effectively present the coupling-induced behaviour, whereby small scale

interactions affect large scale structure, is termed the Kolmogorov micro-scale and

can be related to the Reynolds number of the flow. Resolving the Kolmogorov micro-

scales for a direct numerical simulation is, essentially, computationally intractable;
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therefore some degree of turbulence modeling is necessary for flows with appreciable

Reynolds numbers. Outside of the resolution requirements, more modern numerical

approaches for solving the (incompressible) Navier-Stokes equations are not scalable;

i.e. the resulting algorithms incur large communication costs on modern highly-

parallel systems.

The overall goal of the research I have undertaken is to isolate and treat the

various aspects underlying multiphase incompressible flows at high Reynolds numbers

and to do so in a paradigm amenable to high degrees of computational efficienty and

scalability; in this way a more readily-applicable set of techniques and results is

founded en-route to a general solution.

1.2 Entropy-Viscosity: localized viscous regularization

The solution of (systems of) hyperbolic conservation laws poses unique challenges;

specifically high-order numerical solutions of such systems tend to introduce artificial

oscillations at the location of shock fronts. In order to subdue such phenomena one

approach is to track or locate discontinuities (shocks, contact, etc) in the numerical

solution. Such ’shock detecting’ approaches offer a venue for the redress of spurious

numerical error; one particularly efficacious method of shock capture is the employ-

ment of an entropy variable. [45] studies the phenomena of entropy production in

higher order methods as an indicator for the presence of shocks and contact discon-

tinuities wherein it is shown, via computational investigation, that spurious entropy

production in smooth regions, or in smooth solutions, tends to zero on the same order

as the local truncation error of the discrete scheme; entropy production, on the other

hand, in regions of discontinuities (shocks, contact, etc) becomes more pronounced

with successive mesh refinement. Various applications of this ’shock recognition’

trait embodied in the calculation of the entropy have been deployed: [1] utilize spu-
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rious entropy production to produce a posteriori error estimations and applies these

estimates to adapt local mesh refinements while [45] utilizes this quantity to track

shocks and to provide local scheme adaptations (e.g. linear versus nonlinear terms).

The uses of entropy have not been restricted solely to shock capturing; [18] notes

that (systems of) hyperbolic conservation laws admitting an entropy could be sym-

metrized if and only if an entropy for the system could be defined; the author pro-

ceeded to show that such systems could be linearized in a certain sense and pro-

ceeded to symmetrize the Euler equations of gas dynamics and the incompressible

Navier-Stokes equations. Then, as in [18], the method of utilizing entropy variables

to symmetrize conservation laws was applied in [22] to include heat conduction in

the compressible Navier-Stokes formulation; this paved the way for an application

of finite elements which preserved relevant physical quantities (Clausius-Duhem in-

equality, etc).

[23] begins a series of papers generalizing a streamline upwind Petrov-Galerkin

method for advection-diffusion; a parameter-based shock-capturing term is added

which seeks to control gradients in the numerical solution. [26] re-interpret the shock-

capturing term as an artificial viscosity constructed from the residual of the PDE; a

strong convergence result is proven in [53]. The relevant facet of these papers is the

introduction of a local viscosity based on a residual; granted the residual utilized to

construct the viscous coefficient utilized is that of the PDE.

The natural ’shock capturing’ behavior entropy production suggest good candi-

dacy for the foundation of the construction of a local viscosity for use in numerical

schemes. This novel, but evolutionary, concept was put forth in [14]; at each step a

(variable) viscosity is computed by evaluating a residual based on the entropy and

this viscosity is utilized in the (stabilized form of the) Galerkin formulation to evince

the solution method. The entropy production is expected, as in [45], to tend to
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zero in regions where the solution in smooth, on the order of the local truncation

error, and become pronounced at shocks. [14] perform copious tests of the method on

known problems and the entropy-viscosity performs quite well. The entropy-viscosity

technique shows unique promise, in both its applicability and its computational ef-

ficiency, and possible applications abound; my particular research proposal for work

with the entropy-viscosity method is computational in nature and is outlined in the

proceeding sections.

1.3 The overarching goal of the present work

Let Ω be a domain which, for the sake of a simple discussion, is either the whole

of R3, ‘large enough’ so that boundary effects in the interior can be neglected or con-

sidered with periodic boundary conditions. Consider a sample problem in this regime

whereby the incompressible Navier-Stokes equations, (1.1), are taken in conjunction

with the diffusionless advection equation (1.1)

∂tφ+ u · ∇φ = 0 (1.1)

In equation (1.1) the function φ(x, t) represents some immiscible quantity advected

by the velocity field u(x, t) in the absence of diffusion. Concrete examples of the

conjoined paradigm of equations (1.1) and (1.1) include the far-shore behavior of

deepwater oil spills or the advection of a massless tracer immersed in an ambient

fluid of constant density. Each problem, considered in its own stead, embodies its

difficulties; the incompressible Navier-Stokes equations and the advection of the im-

miscible quantity pose unique challenges in the domain of scientific computing and

it is the work herein to treat some of the aspects that arise as difficulties when

considering these two problems in conjunction.

The inherent difficulties of the incompressible Navier-Stokes equations are signif-
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icant; as mentioned in section 1.1 even the incompressible regime is the object of

ongoing theoretical intrigue. Despite the open questions of existence and uniqueness

it remains that equations (1.1) are utilized, numerically, by the engineering and em-

pirical physics community to solve problems of practical importance. The need to

procure tangible results for (1.1) has drawn the attention of the numerical analy-

sis, engineering and scientific computing communities since, at least, the numerical

proposals and simulations of [16]. A primary barrier to any serious computational

efforts towards a solution to (1.1) for high Reynolds numbers paradigms is the result-

ing resolution requirements. Essentially, due to the nonlinear term in equation (1.1),

high Reynolds number flows require a direct numerical simulation (DNS) approach

to resolve all dynamically significant scales in order to abet dramatic errors from

accumulating in time; this imposes a significant resolution requirement on the simu-

lation. More poignantly, if N is the total number of evenly-spaced mesh points the

resolution requirements scale as N > Re9/4; even relatively modest Reynolds num-

bers, such as Re ≈ 500 then require in excess of a million grid points. In the context

of ocean flow, where the characteristic length is quite large, the Reynolds number can

be on the order of Re ≈ 1011. A direct numerical simulation at such a scale would

require in excess of 1024 grid points; assuming the entire data associated to a grid

point could be stored in a single byte then the mesh for the computation alone would

require in excess of 8.8× 108 petabytes of storage space. A more detailed discussion

regarding such resolution requirements is presented in section 2.1; it is clear however

that some mechanism for reducing the associated resolution requirements associated

to solving (1.1) in the context of high Reynolds numbers would be advantageous.

This is precisely the impetus underlying the discourse in chapter 2.

If the function φ(x, t), advected by the ambient velocity vector field u, represents

a homogeneous quantity, such as a density of some immiscible fluid, then, in the
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absence of diffusion, φ(x, t) is referred to as a phase function and (1.1) can be con-

sidered an interface tracking problem. Such problems have a rich history; [46] give

a comprehensive introduction to many methods utilized in recent literature. Among

the family of front tracking methods is the so-called level set methods for tracking

interface propagation; seminal approaches typically utilized a distance function for

φ(x, t). This approach was taken, for example, in [41]; a caveat to such a choice

of phase function is that the property of being a distance function is lost and a re-

distancing procedure must be computed after each time step. Initially this procedure

was incredibly costly, on the order of O(N3) where N is the total number of grid

points, and therefore prohibitive for DNS simulations of high Reynolds number flows

where N is exorbitant. More recently [17] introduced the notion of artificial com-

pressors and [40] adapted this two-stage approach succesfully in the context of level

set methods. [57] has a fairly new one-stage methodology where the re-distancing is

accomplished as part of the advection step via a modified advection equation; this

work is then applied to fluid buckling problems. In the context of fluid buckling com-

putations only the interface level set needs to be tracked and, indeed, this one-stage

redistancing method does not account for the complete domain level-set function;

the built-in redistancing procedure only ensures the interface level set is preserved.

Nevertheless the work of [57] is a harbinger of the existence of efficient one-stage

methods; Chapter 3 details an approach extending the work of [40] by introducing a

one-stage level set technique which performs well for the full-domain level set func-

tion. This reduces the computational complexity of computing (1.1) dramatically in

settings where more than simply an interface is needed to compute requisite details

or interactions. Such a one-stage approach is vital in the context of high Reynolds

number flow; the impact is intensified when utilized in conjunction with an approach

to reduce the initial resolution requirements of solving (1.1).
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When implementing the one-stage level set scheme presented in chapter 3 the

existence of low-order dispersive error in the numerical discretization causes error

waves which generate entropy; this entropy production poses issue with the partic-

ular method proposed for the one-stage level set technique. Therefore, a dispersion

correction scheme based on the work of [13] was utilized; this work requires that one

know a-priori when a finite element space yields a set of discrete equations for the

transport problem which is free of low-order dispersive error. The canonical approach

to such consistency error analysis, via Taylor expansion methods, is cumbersome and

intractable for problems in dimension higher than one. Towards this end, in chapter

4, a new method for consistency error analysis is proposed which squarely answers

this difficulty; the new method is not only efficient but, in order to verify a paradigm

free of low-order dispersive error, requires only a relatively small set of quantities to

be computed which, for any significantly complex problem, could even be carried out

programatically.
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2. AN ENTROPY-VISCOSITY FOR LES

2.1 Overview

Computationally, the Navier-Stokes equations, (1.1), embody a unique set of

issues; lacking any clear analytic solution in general, the praxis of utilizing Navier-

Stokes is numeric in nature and the last half century has enveloped significant ad-

vancement and adaptation in numerical techniques to evince such a solution. Such

approaches may, more or less, be dichotomized as either utilizing a model for tur-

bulent effects or not doing so. Turbulent effects induce a coupling of small scale

interactions with large scale behaviour; the coupling, in turn, requires these small

scales be resolved or, to some degree, the fluid effects at these scales be modelled.

Ultimately, the smallest scale on which turbulent effects should be resolved, if not

otherwise modelled, in order to effectively present the coupling-induced behaviour,

whereby small scale interactions affect large scale structure, is termed the Kolmogorov

micro-scale and can be related to the Reynolds number of the flow [44]. Resolving

the Kolmogorov micro-scales for a direct numerical simulation is, essentially, compu-

tationally intractable; therefore some degree of turbulence modeling is necessary for

flows with appreciable Reynolds numbers. Outside of the resolution requirements,

more modern numerical approaches for solving the (incompressible) Navier-Stokes

equations are not scalable; i.e. the resulting algorithms incur large communication

costs on modern highly-parallel systems.

Simulating the Navier-Stokes equations at high Reynolds number is a computa-

tionally formidable challenge. Suppose a direct numerical simulation (DNS), a sim-

ulation lacking a turbulence model, of the incompressible Navier-Stokes equations

were undertaken; the numerical simulation, in order to be physically meaningful,
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would need to resolve scales at the Kolmogorov micro scale as well as the integral

(large) scale of the fluid motion. The Kolmogorov length scale [44] is given by the

expression η =
Ä
ν3

ε

ä 1
4 where ν is the kinematic viscosity and ε the rate of kinetic

energy dissipation. Letting L denote the integral length scale the kinetic energy

dissipation can be approximated by ε ≈ ū3

L
where ū is the root mean square of the

velocity; the Reynolds number of the flow is Re = ūL
ν

.

Using these quantities we can express the complications inherent in DNS models

explicitly. Suppose that N is the number of unknowns, evenly spaced, in one spatial

direction on a computational grid of step-size h; to resolve the integral scale we must

have Nh > L while, to resolve the Kolmogorov length scales, we must also have

h < η. Substituting the approximation for ε into the expression for η yields

η ≈
Ç
L
Åν
ū

ã3
å 1

4

=

Ç
L4
Å ν
Lū

ã3
å 1

4

= LR
− 3

4
e

The inequalities mentioned then yield

h ≤ η, L < Nh→ L < Nη ≈ LR
− 3

4
e

From which the inequality R
3
4
e < N follows. In three spatial dimensions, assuming a

uniform mesh, the total number of grid points is T = N3 so that the above implies

that a lower bound on the number of grid points needed in three dimensions to

fully resolve the necessary length scales is determined by the Reynolds number and

is given by R
9
4
e . Turbulent flow occurs at different Reynolds numbers for different

types of flow. Consider a very simple case of laminar flow in pipe of diameter d;

[20] notes that the transition to turbulence in this regime typically occurs in the

range 2000 < Re < 4000. In general such a transition is dependent on the fluid,
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pipe roughness, etc; supposing that Re > 4000, for a simple turbulent pipe flow,

would yield a DNS scheme requiring 127, 243, 317 grid points. [20] mentions that

laminar flow has been observed, under controlled laboratory conditions, up to Re ≈

25, 000; such a flow would require in excess of 7.9 billion grid points to resolve after

it eventually transitioned to turbulence. It is evident that, even in the context

of simplistic problems, direct numerical simulation of high Reynolds number flow

becomes computationally intractable.

2.2 Large Eddy Simulations

2.2.1 Overview

As put forth in section 2.1, resolving the smallest scales of the flow at which

meaningful dynamics exist, the Kolmogorov length scale, is the primary computa-

tional difficulty; resolving this scale for turbulent flows can require an enormous

amount of unknowns. Kolmogorov put forth the hypothesis that, for fully developed

turbulence, the mean flow in the small scales was, statistically, isotropic (i.e. the

same in every direction) whereas the large scales are highly anisotropic. The idea

was then that one could model these smaller scales and eliminate the necessity to re-

solve them directly; this idea was, in fact, inferred in historical work. [48] puts forth

a a historical account which shows that Boussinesq introduced the concept of local

averaging; the Boussinesq hypothesis, in modern terms, outlines a relationship be-

tween the Reynolds stress and mean strain tensors. [48] goes on to show that, though

Boussinesq had the right idea for making turbulence more approachable, his predi-

cated relationship was incorrect; this is done by utilizing flow calculations where the

stress tensors are known and comparing the results to the hypothesis. Nevertheless,

we may point to this hypothesis as being a harbinger, if not a cornerstone, of LES

models. The notion behind an LES model is to consider an ’average’ flow; [4] includes
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a treatment of LES encompassing several models. Reynolds proposed a velocity be

written in terms of its mean and variation parts; e.g. u = ū + u′ where u′ := u− ū.

Reynolds initially proposed a time-averaging be utilized for the mean velocity; other

averaging techniques, such as ensemble averaging, are employed today. Substitution

of these quantities back into the Navier-Stokes equations yields an equation which is

not closed. In particular [4] shows that the time-averaged Navier-Stokes equations,

for an incompressible fluid, can be expressed as:

ūt − ν∆ū+ ū · ∇ū+∇p̄+∇ · (u′ ⊗ u′) = f̄

∇ · ū = 0

The diverence of the variational term ∇ · (u′ ⊗ u′) causes a closure issue for the

system; modeling this term, typically in terms of ū alone, is referred to as addressing

the closure problem. As stated in [4], LES can be succinctly stated as a four step

approach:

• Select a useful filter, g(x), and define ū(x, t) = (g ? u)(x, t)

• Derive the equations for ū by

– Set u′ = u− ū

– Substitute u = u′ + ū into the Navier-Stokes equations

• Select a closure model ∇ · (u′ ⊗ u′) ≈ f (ū,∇ū)

• Impose appropriate boundary conditions

An excellent overview discussion of filtering and the subsequent derivation of a

set of equations for the filtered variable, ū, can be found in the second section of

[10]. Having addressed closure for an LES model, solving the resulting system of
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equations is then tantamount to solving for the filtered flow field ū. Historically, one

of the more utilized closure models for LES was put forth in [50] for studying the

circulation of atmospheric currents; the closure is known as the Smagorinsky-Lilly

model and follows from setting

∇ · (u′ ⊗ u′) ≈ −∇ · (νT∇sū) (2.1)

The quantity (∇sū)i := 1
2

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
is the symmetric gradient,commonly de-

noted Sū, and νT := (C∆g)2|Sū| is the eddy viscosity ; ∆g denotes the grid size

and C is a constant. The Smagorinsky-Lilly model is a constituent of the family

of eddy viscosity closure models in LES [4]; other choices of the eddy viscosity give

rise to differing models and the author provides three other natural, unique choices

for νT . According to [10] most subgrid LES models arise, in like manner, from an

eddy-viscosity assumption; Smagorinsky-Lilly, for example, assumes that small scales

are in equilibrium so that energy production and energy dissipation are in balance.

Hence, the prescient relation between the eddy viscosity, νT , and the large-scale strain

tensor S. More recently [10] has devised a method by which the constant C, appear-

ing in the Smagorinsky-Lilly model can be determined as a function of one spatial

dimension, where the ambient space is R3 = (x, y, z), and time; e.g. C = C(y, t).

More specifically C(y, t) is determined by way of various averages involving the re-

solved turbulent stress tensor, Lij, and the large scale strain tensor Sij using two

different filters; a grid filter and a test filter. Results are reported in [10]; the main

point being that the modeling of subgrid-scale stresses via an eddy-viscosity is an

area of recent activity.
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2.2.2 An entropy-viscosity based LES model

As already mentioned the primary difficulty predicating the need for subgrid-

scale models is one of the lack of resolution; were infinite resolution computationally

tractable there would be no issue. In turn, this implies that high Reynolds number

numerical simulations are, in general, always under-resolved. That is, non-negligible

gradients and eddy-phenomena, exist at the sub-grid level and cannot be correctly

represented by the mesh; therefore, at the mesh scale, these solutions can be consid-

ered as behaving in a singular manner. As time progresses, these unresolved facets

of the flow are likely to produce still larger gradients through the coupling of wave

modes via the action of the nonlinear term; e.g. energy accumulates at the grid scale

or, equivalently, in the high wave-number modes of the flow.

In order to control these sub-grid scale ‘singularities’ an approach motivated

by work in the realm of hyperbolic conservation laws, where location and control

of singularities has been well studied, is sought out. The utilization of entropy

production as a technique for front capturing and shock detection was explored,

numerically and for hyperbolic conservation laws, in [45]. The construction and

usage of a viscosity based upon an entropy residual in the context of hyperbolic

conservation laws was explored in [14]; the entropy residual itself is derived from an

entropy inequality. The authors reported results from a slew of test cases including,

among others, rotating transport, inviscid Burgers’ equation and a KPP rotating

wave problem. In the context of nonlinear conservation laws the choice of entropy

inequality to utilize in the construction of an entropy-viscosity is straightforward

[14] as it is the mechanism which yields the physically relevant solution. However,

the selection of an ”entropy inequality” for the Navier-Stokes equations is not as

straightforward. [15] propose an inequality based on local balance of momentum
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given by

∂t

Ç
1

2
u2

å
+∇ ·

ÇÇ
1

2
u2 + p

å
u

å
−Re−1∆

Ç
1

2
u2

å
+Re−1 (∇u)2 − f · u ≤ 0 (2.2)

The impetus for this choice of inequality is grounded in the seminal work of [47]

who shows that equation 2.2 is a regularity condition on the Navier-Stokes equations;

e.g. solutions of Navier-Stokes satisfying (2.2) posses a set of singularities which must

have a particular Hausdorff measure. Weak solutions of Navier-Stokes satisfying (2.2)

are called suitable weak solutions ; it is not a new result, as mentioned by [15], that

suitable weak solutions always exist but their uniqueness is still an open question. If

M(u, p) signifies the momentum equation, the first equation of (1.1), applied to (u, p)

then equation (2.2) arises from manipulating M(u, p) · u, formally (e.g. assuming

suitable smoothness), into the form of the left-hand side of (2.2) and then considering

the inequality (2.2). If no singularities occur in the solution then the manipulations

are justified and M(u, p) · u = 0 will hold, identically; however, if singularities do

occur then the inequality M(u, p) · u ≤ 0 says that they must dissipate energy [15].

A mechanism ensuring the dissipation of energy is precisely what is necessary

in simulations which are under-resolved; as mentioned at the onset of the section

under-resolution fuels sub-grid scale gradients which behave singularly and induce

energy accumulation at the grid scale. Hence, enforcing (2.2) at the discrete level,

for under-resolved flows, would imply that these sub-grid phenomena, behaving in

a numerically singular way, would be required to dissipate energy and eventually

be lost; much as they would eventually be lost in a resolved flow to the action of

viscosity. The operative question then is how to enforce 2.2 in practice; enforcing it

directly could over-determine the system (1.1). One method, espoused in [15] and
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used with much success in the case of hyperbolic conservation laws in [14], is via

the construction of a viscosity based on the inequality; this link to the hyperbolic

conservation law case spurs the use of the term ‘entropy inequality’ in relation (2.2).

Thus, the inequality (2.2) provides a segue into an entropy-viscosity formulation for

Navier-Stokes. Indeed, inspection of (2.2) shows that, in analogy to hyperbolic con-

servation laws, it strongly resembles an entropy inequality where the kinetic energy,

1
2
u2, plays the role of an entropy.

2.2.2.1 An eddy viscosity built from an entropy-viscosity

The pairing of an entropy function and an entropy inequality give rise to a

residual ; this residual can be measured against numerical solutions to determine

an amount of violation : the violation quantity is referred to as entropy production.

In the present case the kinetic energy E(u) = 1
2
u2 will play the role of an entropy and

equation (2.2) will serve as an entropy-inequality. Letting (uh, ph) be an approximate

velocity and pressure where h denotes the grid scale a discrete numerical residual,

Dh(x, t), corresponding to the left-hand side of (2.2) is then given by

Dh (x, t) := ∂t

Ç
1

2
u2
h

å
+∇·

ÇÇ
1

2
u2
h + ph

å
uh

å
−Re−1∆

Ç
1

2
u2
h

å
+Re−1 (∇uh)2−f ·uh.

(2.3)

The corresponding (discreet) entropy inequality is, in analogy with (2.2), given

by

Dh (x, t) := ∂t

Ç
1

2
u2
h

å
+∇·

ÇÇ
1

2
u2
h + ph

å
uh

å
−Re−1∆

Ç
1

2
u2
h

å
+Re−1 (∇uh)2 − f · uh ≤ 0. (2.4)
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For resolved flows equation (2.3) is expected to be on the order of the consistency

error of the method utilized to evaluate it; e.g. in the continuous case, where (2.3)

is evaluated with a smooth solution, (u, p), to (1.1), Dh(x, t) = 0 would follow. In

the case of under resolved flow (2.3) is expected to differ significantly, in magnitude,

from the consistency error of the method in regions of under-resolution; e.g. at

points (x0, t0) where large gradients in the flow cannot be resolved and are, therefore,

effectively behaving in a singular manner with respect to the grid scale. If, as noted

in [15], an under-resolution occurs in a neighborhood of (x0, t0) and (2.4) holds there

then energy is being dissipated by the numerical ‘singularity’ and is eventually lost in

the sub-grid scales; this is no grounds for alarm since such a cascade of energy to lower

scales is a physically expected phenomena (see [44] §6.1) and the energy is eventually

dissipated at the Kolmogorov scale into heat by viscous action anyhow. Therefore,

unresolved gradients dissipating energy may not be desirable but are, at least, not

in violation of the physicality of the energy cascade; conversely Dh(x0, t0) > 0, and

substantially larger than the consistency error at (x0, t0), presents an non-physical

injection of energy into the system due to under-resolution effects. [15] go so far as

to make the following definition codifying exactly the previous sentiment:

Definition 2.1 An LES solution is a discrete solution (uh, ph) to the Navier-Stokes

equations satisfying Dh(x, t) ≤ 0 for every (x, t) in QT = Ω× [0, T ].

To construct an LES solution in the sense of [15] (2.4) must be enforced at a

discrete level; as mentioned in 2.2.2 enforcing such a condition directly is not a wise

approach. Instead the inequality is enforced through the construction of an entropy-

viscosity; a viscosity formed from the magnitude of violation of Dh(x, t) = 0. The

predicating notion is that such a viscosity will introduce localized regularization

and thereby damp unresolved gradients; enforcing sufficient resolution and thus the
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condition (2.4) in turn. As detailed in [14] the general framework for constructing an

entropy-viscosity involves a choice of entropy, an entropy inequality and a positive

real-valued functional which need not be linear. Having already mentioned the choice

of entropy and entropy-inequality the most obvious positive functional, the absolute

value, R(φ) = |φ| is selected. The entropy-viscosity can then be defined from these

elements by

νE(x, t) := min

{
cmaxh(x)|uh(x, t)|, cEh2(x)

|Dh(x, t)|
||u2||L∞(Ω)

}
. (2.5)

The minimum value in equatino (2.5) is taken pointwise between an entropy-

viscosity and the first order viscosity cmaxh(x)|uh(x, t)|; the terms cmax and cE are

tunable constants which are expected to depend only on the domain and the partic-

ular problem being solved. This definition for the entropy-viscosity, νE(x, t), guar-

antees that it does not exceed the first-order upwind viscosity as such would be

unnecessary. In analogy with (2.1) an LES closure term is then produced from νE.

This closure model is henceforth termed EV-LES and is given by

∇ · (u′ ⊗ u′) ≈ −∇ · (νE(x, t)∇uh) (2.6)

The discrete version of the system of equations (2.2) is then augmented by the

dissipative EV-LES term (2.6); this addition yields the discreet system:

∂tuh + (uh · ∇) uh − µ∆uh +∇ph −∇ · (νE(x, t)∇uh) = fh

∇ · uh = 0

uh(x, 0) = u0h(x), uh|∂Ω = 0 for all (x, t) ∈ Ω× [0, T ]

(2.7)

Comparing the Smagorinsky-Lilly eddy viscosity closure model term, (2.1), to the
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term −∇ · (νE(x, t)∇uh) shows that the entropy-viscosity, νE, is playing the role

of an eddy-viscosity in the LES sense. Naturally, the question still arises as to

whether or not the entropy-viscosity provides an effective LES closure model. In

the next few sections results from solving the discrete system (1.1) are reported; in

order for the entropy-viscosity based LES model to be assumed valid there must

be, of course, an emergency of particular well-established physical and statistical

phenomena. In particular the Kolmogorov −5/3 law must make an appearance.

Furthermore the enstrophy, the magnitude of the vorticity of the flow, must behave as

expected; the point, overall, is that the efficacy of the proposed entropy-viscosity LES

(henceforth EV-LES) closure model can be investigated, at least at the preliminary

stages, numerically as a wealth of pre-existing data exists which can be utilized

for comparison. The remainder of the discourse for this topic seeks to do precisely

that; in the upcoming sections the methodology and results of the implementation

of equations (2.7) are reported.

2.3 Implementation and results

This section details the methods by via which the entropy-viscosity LES (EV-

LES) model has been implemented thus far and the subsequent tests within the

described regime hitherto completed.

2.3.1 Implementation

Our investigations into the efficacy of the entropy-viscosity for regularizing the

Navier-Stokes equation are carried out via a well-verified, periodic, spectral code with

pseudo-random smoothed initial data and iso-12 forcing. The codebase was written

by several contributors at Los Alamos National Lab (LANL) and is discussed in the

context of [54] and [28]. Entropy-viscosity in the setting of bounded domains, utiliz-

ing an ADI approach found in [12], is currently being investigated by the authors;
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results will appear in a forthcoming paper.

The spectral code mentioned above has been well validated; for instance see

[5, 54, 28]. Standard 2/3’s de-aliasing was utilized in a periodic box of length L = 1.

The time-stepping scheme implemented is a fully explicit four-stage Runge-Kutta

method with dynamic time-stepping respecting the CFL condition. The entropy-

viscosity is formed via the canonical pseudo-spectral technique whereby derivatives

are computed in spectral space and products in physical space. For this situation,

cmax = 0.1 and cE = 0.25 were used in (2.5). The entropy-viscosity, computed

explicitly following (2.5), is formulated using the current time step in conjunction

with the two time-steps prior; BDF2 is employed to compute the time derivative.

The result is applied, as a regularization, for the next time-step. The action of

the entropy-viscosity is not present for the first three time-steps of the simulation;

in practice this has caused no stability issues, even in the case of high Reynolds

numbers. Finally, the divergence free condition is enforced via the standard Chorin-

Temam approach. All the simulations presented here are done with a low-wave

number forcing designed to keep the total kinetic energy approximately constant, as

described in [42].

2.3.1.1 Tuning the entropy-viscosity coefficients

As evidenced in equation (2.5) the entropy-viscosity, and hence the resulting

LES model, is a parametric model; namely the parameters cE and cmax must be

determined. These parameters, based on experience with the entropy-viscosity in

various paradigms, should depend on the particular problem and the domain only.

The process of calibrating the cE and cmax for the spectral code of [54, 28] proceeded

under the mantra of ‘utilize as little viscosity as possible’. The process was carried

out by, effectively, setting one component of (2.5) to infinity and tuning the remaining
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component in accordance with its individual perceived role.

The role of cmax is to condition the first-order viscosity; the first-order viscosity

is utilized when the local entropy production is so large that it exceeds the level of

necessity. Towards that end the first-order viscosity should still constitute a sufficient

amount as to ensure the flow is sufficiently resolved; e.g. supposing that the first

order viscosity is always the minimal choice in (2.5) the flow is expected to emerge

resolved. The value of cmax = 0.1 was found to resolve the energy spectrum of the

discretizations N = 323 and N = 643. The selected coefficient, in the case N = 323,

provided a distribution of wave modes with transition in, roughly, increments of 1/3;

that is the lower 1/3 of the wave modes were in the large scale range, the middle

1/3 comprised the inertial range and the upper 1/3 were in the range of pronounced

viscous effects. Naturally, the case of N = 643 consisted of slightly more than 1/3 of

the wave modes in the viscous range; this is expected.

The role of cE is to temper the entropy residual term in (2.5); the fundamental

notion underlying the entropy residual term is the injection of as little localized

viscosity as possible into the system in order to ensure that the central inequality

of definition (2.1) is satisfied. If numerical singularities are too large, in practice,

resulting in a large residual then the first-order viscosity term will be selected in

(2.5) when the minimum is taken. Such phenomena notwithstanding, the entropy

residual term should, effectively, provide local regularization but not be permitted

to become so large as to act as a significant source of viscous dissipation. Recalling

the discussion in section 2.2.2 the inequality Dh(x, t) ≤ 0 being enforced ensures

that numerical singularities arising from under-resolution are dissipative in nature;

hence, the expected action of the entropy residual term should be, ideally, to resolve

the inertial range of the energy spectrum until the limit of the grid scale is reached.

That is, it is expected that the entropy residual term manifest an inertial range until
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the highest wave modes of the flow are obtained; these wave modes should then

be attenuated by the effective ‘viscous action’ of the enforcement of the ‘dissipative

singularities’ inequality Dh(x, t) ≤ 0. This is precisely how the value cE = 0.25 was

obtained; cmax was set to infinity, to prevent its selection in (2.5), and various values

of cE were tested on grids of resolution N = 323 and N = 643. Values larger than

cE ≈ 0.25 seemed unnecessarily damping while values less than cE ≈ 0.25 did not

damp enough and permitted energy accumulation in the high wave modes.

2.3.2 Consistency of the EV-LES closure model

In this section a fundamental characteristic of the EV-LES closure model and

entropy-viscosity implementation, consistency, is tested numerically. As detailed in

section 2.2.2 the residual Dh(x, t) should be on the order of the local consistency error

of the method used to evaluate it. This expectation arose, as discussed in 2.2.2, from

considering the dot product

(∂tu + (u · ∇) u− µ∆u∇p− f) · u

of the momentum equation with u and manipulating the result, formally, into the left

hand side of (2.2). The discrete analogue of this process gave rise to the definition of

the numerical residual (2.3). Therefore if uh is a ‘good’ approximation to a solution

of (1.1) and uh is suitably smooth in a neighborhood of (x0, t0) then the expected

relation is given, up to the order of the consistency error of Dh(x0, t0), by

Dh(x0, t0) ≈ ((∂tuh + (uh · ∇)uh − µ∆uh +∇p− f) · uh) ≈ 0 · uh = 0

A direct conclusion of this expectation is that in the case of smooth, laminar flow the

entropy residual, and hence the entropy viscosity, should be near zero and therefore
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have no noticeable impact on the dynamics of the system; framed in the context

of LES this means that the EV-LES closure model is expected to be consistent.

The consistency is empirically tested via a comparison of the energy spectra E(K),

where K is a wave number, for a laminar flow with and without the EV-LES term;

a viscosity of µ = 0.02 was utilized to induce a laminar regime; the plotted energy

spectra results are presented in subsequent figures. In each figure, the simulation of

laminar flow (µ = 0.02) without EV-LES is indicated with a solid line whereas the

laminar regime with EV-LES is indicated by a dashed line.

Figure 2.1: The N = 323 resolution energy spectrum of a laminar flow is
shown without (solid line) EV-LES modeling and with (dashed line) EV-LES
modeling.

In figure 2.1 the two flows are nearly identical; commentary regarding the fact
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that some deviation is not completely unexpected is warranted. As an artifact of

the code-base the initial data generated for different runs can vary slightly and thus

provide slightly different results; the important facet of figure 2.1 is that not only do

the two curves adhere to one another quite tightly but their general topography is

nearly identical. The same type of results, as expected, are seen upon refinement to

Figure 2.2: The N = 643 resolution energy spectrum of a laminar flow is
shown without (solid line) EV-LES modeling and with (dashed line) EV-LES
modeling. Deviation occurs on the order of 1× 10−8

both the 643 case, in figure 2.2, and the case of N = 1283 in figure 2.3. In each figure

the laminar flow lacking the EV-LES model (solid line) and that with the EV-LES

model included (dashed line) closely track one another down to negligible scales on

the order of 1× 10−8 and 1× 10−10 in the N = 643 and N = 1283 cases respectively.
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In conclusion, the EV-LES term (2.6) was tested numerically for consistency with the

Figure 2.3: The N = 1283 resolution energy spectrum of a laminar flow is
shown without (solid line) EV-LES modeling and with (dashed line) EV-LES
modeling. Deviation occurs on the order of 1× 10−10

Navier-Stokes equations, via testing against the case of laminar flow, and found to be

so up to negligible scales. Furthermore, the discussion of section 2.2.2, predicating

this outcome on the basis of the behavior of Dh(x, t) in regions of local smoothness

of uh, has been vindicated in the process.
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2.3.3 Energy spectra and the Kolmogorov −5/3 law

2.3.3.1 Background

The Kolmogorov −5/3 law refers to a particular expected trend in the energy

spectra of flow. An excellent introduction to the law, with subsequent detail re-

garding current theoretical and empirical work, is given in [51]; we paraphrase their

introduction here for posterity. The scales of a flow can be thought of as constitut-

ing a dichotomy of large and small scale flow; the large scales being on the order of

the flow width while the small scales include the inertial range and the Kolmogorov

length scale. The inertial range of the flow constitutes, loosely, the scales which are

small compared to the large scale but large compared to the small scale. The roles

played in the dynamics of the flow by the scales are thus : the large scale commands

the transport of mass, momentum and heat while the small scales of the flow dom-

inate with respect to the dissipation of energy. The quantities involved in defining

precisely these scales of motion, such as energy dissipation, the two-point velocity

correlation tensor, etc are laid out in conjunction with rigorous definitions of the

scales in [44] (see §6.5); a belaboring of these quantities, however, is not a necessary

facet of describing the Kolmogorov −5/3 law. Kolmogorov put forth a hypothesis

of universality for the phenomena of turbulence at small scales; his hypothesis, as

summarized by [51], has two constituent portions:

• When the fluid viscosity, ν, is small the average energy dissipation rate, 〈ε〉, is

independent of ν.

• In a sufficiently high Reynolds number flow regime, turbulent phenomena on

the order of the small scales is homogeneous, isotropic, steady and statistically

independent of the large scales.
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The primary consequences, of concern here, of the Kolmogorov hypothesis are that,

statistically, the properties of the dissipation scales are determined by ν and 〈ε〉

and that properties of the inertial range are determined by 〈ε〉 alone. Hence, the

Kolmogorov hypothesis constitutes a broad reduction in complexity for the statistical

analysis of turbulence on the small scales; to see the implications of this reduction

in complexity consider a velocity increment of the flow. Given a value of r on the

order of the scale of the inertial range and a value of x a velocity increment can be

defined by

∆ur(x) = u(x + r)− u(x) (2.1)

Where u is the velocity in the direction of x. For a given value of r define the normal-

ized velocity increment by ∆ur(x)(r 〈ε〉)− 1
3 . A result following from the Kolmogorov

hypothesis is that the following statements are equivalent [51]:

• The probability density function of a normalized velocity increment is universal;

that is, it is independent of x, r. or the Reynolds number. E.g. a normalized

velocity increment, regarded as a random variable, has a probability density

function independent of its constituent parameters: r, x and Re.

• The moments of the velocity increment, also referred to as longitudinal structure

functions, satisfy 〈∆unr 〉 = Cn(r 〈ε〉)n/3 where Cn are universal constants.

According to [51] the value of Cn is currently only known for the third-order lon-

gitudinal structure function; the relation, called the Kolmogorov -4/5 law, is given

by ¨
∆u3

r

∂
= −4

5
r 〈ε〉 (2.2)

Kolmogorov derived this relation by assuming an isotropic, homogeneous regime of

turbulent flow. Finally, from [51], if one considers the the spectral equivalent for the
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expression 〈∆unr 〉 = Cn(r 〈ε〉)n/3 in the case of n = 2 the retrieved result is

φ(κ) = C 〈ε〉2/3 κ−5/3 (2.3)

Where φ(κ) is the one-dimensional spectrum of energy in the wavenumber component

κ in the direction of x.

2.3.3.2 Verification

In this section a foray into verifying the Kolmogorov −5/3 relation, (2.3), is laid

out; the implementation details for the spectral codebase and entropy-viscosity were

given in section 2.3.1. The approach for verification that the EV-LES model produces

the expected −5/3 energy spectrum was:

• In the absence of the EV-LES closure term: find a physical viscosity, ν256, at

which a simulation with the number of grid points given by N = 2563 is a DNS

simulation, e.g. the full range of scales are suitably resolved, but for which

simulations consisting of N = 1283, 643 and 323 are not resolved.

• Add the EV-LES closure term to the simulated equations; the expected be-

havior is not only a stabilization to resolution, with clear inertial range and

attenuation of the energy spectrum at high wave modes, but also the qualitative

appearance of the −5/3 slope in the inertial range of the energy spectrum.

The results are shown in the following figures; ν256 = 0.0002 was found, through trial

and error, to accomplish the stated goal. In each figure the 2563 DNS simulation,

without the EV-LES term, is shown as a solid black line. The dashed lines in each

figure show the results of a particular resolution, changing by figure, without EV-LES

and the dot-dashed lines show that same resolution with the EV-LES term modeled.

The thicker solid black line, present in all figures, demonstrates the −5/3 slope for
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comparison of the inertial range. A few things to keep in mind : as the resolution

decreases so does the range of wave-modes present in the energy spectrum. Hence,

the case of the 2563 DNS is expected to have a ‘longer’ spectrum whereas those

cases with lower resolution will have progressively ‘shorter’ spectra. Each simulation

was run for a total time of T = 3 seconds with iso-12 forcing; the DNS simulation

N = 2563 was stopped at T = 2.1 seconds as it had achieved steady state well before

and was a costly computation. These ending times were more than adequate for the

appearance of isotropic turbulence.

Figure 2.4: The N = 1283 resolution case is shown without (dashed line)
EV-LES modeling and with (dot-dashed line) EV-LES modeling. The “No
Model” 2563 DNS simulation (solid line) and Kolmogorov −5/3 (thick solid
line) slope are included for comparison.
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Figure 2.5: The N = 643 resolution case is shown without (dashed line)
EV-LES modeling and with (dot-dashed line) EV-LES modeling. The “No
Model” 2563 DNS simulation (solid line) and Kolmogorov −5/3 (thick solid
line) slope are included for comparison.

There are a few facets of interest in figure 2.4 which warrant mention; first,

notice that the solid line, representing the N = 2563 DNS case, shows a clear inertial

range with a strongly damped high wave-mode range. This behavior indicates that

the resolution of N = 2563 properly represents all scales of the flow as we see the

smaller scales, corresponding to higher wave numbers, being dominated by the energy

dissipation induced by the choice of viscosity ν256 = 0.0002. Secondly, the ‘up-tick’ in

the N = 1283 spectrum which lacks the EV-LES term (dashed line) is precisely the

‘accumulation of energy at the grid scale’ mentioned by [15] and referenced in section

2.2.2. The expectation is that, given enough time, the non-regularized N = 1283 case
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Figure 2.6: The N = 323 resolution case is shown without (dashed line)
EV-LES modeling and with (dot-dashed line) EV-LES modeling. The “No
Model” 2563 DNS simulation (solid line) and Kolmogorov −5/3 (thick solid
line) slope are included for comparison.

would accumulate the energy introduced by the forcing in increasing amounts until

it produced a numerical blow-up.

Figure 2.5 offers increased insight into the efficacy of the EV-LES closure model;

in particular the ‘up-tick’ on the non-regularized (dashed line) spectra is more pro-

nounced. This is entirely expected; the lower the resolution, the more quickly the

simulation accumulates energy in its latter wave modes due to the inability to resolve

even more gradual gradients of the velocity. The pronounced effect that the EV-LES

term presents is encouraging; notice that the introduction of the term presents a

spectrum which, topologically, more closely resembles the spectrum of the 2563 case
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and exhibits the expected −5/3 behavior in the inertial range.

Finally, figure 2.6 is even more dramatic. The non-regularized (dashed line) flow

is egregiously under-resolved; the ‘up-tick’ in the higher wave modes accumulates

with a rapidity such that it is near the blow-up state after only t = 3 seconds. The

impact of the EV-LES term is striking in this regard; not only does the flow exhibit

facets of the resolved DNS simulation (solid line) but it appears to track the −5/3

Kolmogorov line as well. At the current time verification of the production of the

−5/3 behavior of the EV-LES term is the only facet of the structure functions that

has been undertaken; more results in this direction are forthcoming.

2.3.4 Behavior of the enstrophy

Enstrophy is defined as the euclidean magnitude of the vorticity one-tensor ω =

∇× u; the characteristics of enstrophy structures in turbulent flow is a well studied

phenomena. Vorticity (enstrophy) tubes appeared, as predicted by some turbulence

theories of the time, in the landmark simulation of [27]. Since then the presence of

vorticity tubes has been studied and noted by other authors in the field [6, 37, 51];

more recent advances have shown that such vorticity structures appear in quantum

turbulence generated in superfluid helium [3]. A primary concern for the proposal

of the EV-LES model is the reproduction of known effects; to this end the requisite

vorticity filaments produced in past simulations and experiments should be a manifest

occurrence in the EV-LES model.

The qualitative investigation into the presence of vorticity filaments, at this stage,

was tested in the context of two different regimes; a fully resolved DNS flow and an

under-resolved flow. In both cases a test was run without EV-LES and, subsequently,

with EV-LES active. It is expected that the vortex filaments should surface in the

context of DNS with the addition of the EV-LES term as this term is expected to
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Figure 2.7: Vortex filaments at a resolution of N = 2563 mesh points

(a) DNS

(b) EV-LES

be, and according to numerical tests actually is, consistent with the Navier-Stokes

equations; at least in the discreet case. The results of the DNS run can be seen in

figure 2.7. Quantitative properties, such as the mean radius of vortex filaments, have

not yet been measured. Of more interest, however, is the case of an under-resolved

flow (without EV-LES) and a flow resolved with the assistance of the EV-LES term;

the operative query being whether or not the EV-LES term would ”clear up” the

excessive accumulation of energy, due to under-resolution, at the grid scales and

”reveal” the presence of vorticity filaments at all. Figure 2.8 shows a clear display of
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Figure 2.8: Surfaces of constant enstrophy. N = 643, ν = Re−1 = 2× 10−4

(a) DNS

(b) EV-LES

the action of the effect of under-resolution and the subsequent effect of EV-LES. In

the DNS case the accumulation of energy in the high wave modes causes subgrid-scale

‘noise’ pollution of the simulation whereas, when EV-LES is utilized, the sub-grid

scale ‘noise’ has been suitably dissipated by the turbulence model term to evince the

appearance of vortex filaments. The result is a visual manifestation of the enforcing

of the defining inequality underlying definition 2.1.
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3. A ONE-STAGE LEVEL SET METHOD WITH ENTROPY-VISCOSITY

3.1 Overview

In this section a brief outline of the current state of motion tracking for evolving

interfaces in two-phase (or multi-phase) flows is discussed; among such techniques

is the so-called level set method. Early iterations of the level set technique are men-

tioned in brief followed by mention of a proposed, novel one-stage technique based

on the seminal works of [17] and [40]. The novelty of our technique arises from

the fact that it is a one-stage procedure which captures well the full space level set

function; whereas other recent iterations of the technique discussed involve at least

two stages to achieve the same goal. One-stage methods for level set techniques are

not entirely new; It should be noted that the work of [57] is an impressive one-stage

technique for tracking a single (interface) level set, based on a one-stage re-distancing

technique. Such an approach has implications for problems such as fluid buckling or

other regimes where quantities are computed based only on a single (interface) level

set.

A two-phase flow regime refers to a system containing a gas and a liquid; the

phases are generally considered separated by an interface, called a meniscus, whereby

relative physical quantities, such as density or viscosity, across the interface are con-

sidered to be discontinuous. A multi-phase flow refers to the obvious generalization

of the notion of a two-phase flow. One of the main issues when constructing a nu-

merical approach to the solution of such flows is the issue of tracking the motion of

the evolving interfaces in the system; the approaches to this problem in the litera-

ture are varied. [46] offers an introduction of several methods; the survey categorizes

the methods via the dichotomy of fixed grid and moving-grid / adaptive-grid but
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focuses on the former with mention of sources for the latter. Within the family of

fixed grid methods two popular approaches are marker and volume of fluid methods.

Within the marker method category are surface and volume markers; the former uti-

lizes markers located only on the fluid interface(s) while the latter utilize markers

throughout the domain. [41] comments that the marker method incurs difficulty

in regimes embodying large, complex motion. For instance, coalescing markers in

regions of building curvature can introduce instabilities in the absence of re-gridding

whereas regridding can introduce local error; marker methods can also suffer from

topological issues such as the necessity to resort to ad-hoc methods to determine

connectivity when regions coalesce. [46] cites [11] as well as [56] for further reading

on the marker method.

Volume of fluid methods are also discussed in the survey; such methods entail the

assignment of a fraction of fluid quantity to each cell in the mesh and the interface

is constructed via a reconstruction technique. Due to the reconstruction of the

interface the actual boundary of the advancing front is, in fact, not tracked; instead

the interior of the region is tracked while advected and the boundary is reconstructed

as a best-fit approximation. The reconstruction technique is by no means unique

and [46] cite several options (ELVIRA, PY, least squares, etc); the reconstructed

interface is then advected according to the underlying flow field. Conservation law

implementation based such volume-of-fluid methods are thereby two-stage, advect-

reconstruct, methods; furthermore, the curvature of the interface can be difficult to

ascertain from the reconstruction. The inability to reliably reconstruct the curvature

of the interface, especially for complex flows, can have an impact on the underlying

physics of the model; for example, correctly prescribing surface tension, encountered

in rising bubble problems, relies on the curvature of the interface.

Another popular method for the advection of fluid interfaces is the level set
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method introduced in [41]. Our interests regarding the level set technique is the

treatment of a front propagating with respect to an underlying vector field, U; this

particular case is treated in by the author as an auxiliary problem after the devel-

opment of a more general theory. The poignant details, for our concern, is that a

family γ(t) of smooth, closed parametric curves can be considered to be generated

by advecting an initial smooth curve, γ(0); the interior of the region enclosed by

the front is denoted Ω. The authors consider the front to be level sets of a function

φ(x, y, t) = C (or φ(x, y, z, t) = C in three dimensions) where C is an arbitrary but

fixed constant and φ satisfies the conditions

φ(x, 0) =


> 1, x ∈ Ω

1, x ∈ ∂Ω

< 1, x ∈ Ωc

The equation satisfied by by φ is shown to be

φt + U · ∇φ = 0

φ(x, 0) = (1− d(x,Ω))+ + d(x,Ωc)

Where x+ := max{x, 0}. In practice, see for instance [52], the initial data for φ

is taken to be the signed distance to the interface; hence the interface is zero level

set of φ. One issue with the level set method, as pointed out in both [52] and

[40], is that proceeding an advective step (or steps) the function φ is no longer a

distance function and therefore requires a re-distantiation procedure; furthermore,

the method in which this procedure is typically carried out is not conservative. The

non-conservative nature of the canonical re-distancing incurs a loss of area; this issue

is corrected in [40] where a conservative re-distantiation technique is introduced.
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Consider a hyperbolic conservation law regularized with a first order viscosity

−ε∆φ:

φt + u · ∇φ− ε∆φ = 0

Where φ is a discontinuous phase function in a two-phase flow having φ = 1 in

the first phase and φ = 0 in the second phase. In the literature such a phase

function is generally approximated and the advection takes place without the use

of regularization; [52] utilize a mollified delta function with thickness in proportion

to the spatial mesh size while [40] utilize a smeared Heaviside function. Long-time

numerical solutions of this problem are known to introduce dispersion error. Towards

this end we consider the addition of a term of the form C = ε∇ · (φ(1 − φ) ∇φ|∇φ|) to

offset these dispersive effects; the term C is called an artificial compressive flux.

We will build both our regularization term, R, and compression term, C on the

foundation of the entropy-viscosity introduced in [14]; the forms of these terms will

given respectively by

R = −∇ · (νE∇φ) C = ∇ ·
(
νE
h
φ (1− φ) ∇φ|∇φ|

)

This is not altogether a new concept; [17] introduces the concept of an artificial

compressive flux and applies it in the context of monotonic finite difference schemes

for hyperbolic conservation laws with Riemann initial data; it is shown that the

monotonic schemes induce dispersion and that the compressor term acts to correct

this error and maintain the fidelity of the propagation front. The author relies on

the monotonic scheme to act as the regularization term whereas we make no such as-

sumption and include an explicit regularization; furthermore, our regularization also

has natural localization due its dependence on the entropy viscosity and we there-
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fore expect the formulation to be somewhat independent of the chosen discretization.

Towards this end we will utilize a finite element discretization. Further, the entropy-

viscosity offers a natural method of constructing a compressor; where [17] builds an

artificial compressor at each time step, when the location of shocks is unknown, we

may utilize the entropy-viscosity from the regularization which embodies the knowl-

edge of shock locations. Since the entropy-viscosity is based upon entropy production

it carries with it the ’knowledge’ of the locations of the shock fronts (as mentioned

in section 1.2: see [45]); it therefore lends itself naturally to this venture.

3.2 One-dimensional heuristics

The objective of this section is to analyze in detail the one-dimensional setting

as an impetus for a general formulation; the viewpoints herein are not new but are

presented to aid in the conceptualization of the general formulation. Consider the

one-dimensional transport equation in the whole space domain Ω = R:

∂tu+ β∂xu = 0, (x, t) ∈ R× R+, u(x, 0) = u0(x) (3.1)

It is further assumed that β > 0 is constant for simplicity; the solution is simple

transport along the one-parameter family of characteristic lines in the (x, t) plane,

with slope 1
β
, given by x = βt+ x0.

u(x, t) = u0(x− βt) (3.2)

For later comparison it is briefly recalled how this is established; if we consider a

frame of reference moving in the (x, t) plane along the characteristics of equation

(3.1), given by the coordinate transformation x̂ = x + βt, then equation (3.1) is
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expressed in this frame as

d
dt
û = 0, (x̂, t) ∈ R× R+, u(x̂, 0) = u0(x) (3.3)

Where û(x̂, t) = u(x+βt, t). In the case when the transported quantity is a physical

variable, such as density or other material property, the initial data is often piece-

wise constant and discontinuous; under such circumstances the function u is referred

to as multi-phase. The discrete values of the range are referred to as the phases of u.

High order numerical techniques for solving (3.1), such as continuous finite element

and Lax-Wendroff schemes, can introduce spurious oscillations at discontinuities or,

in the case of Lax-Friedrichs, damp high wave-number contributions and result in

excessive smoothing. (see, e.g. [2] ). In order to address such issues a perturbation

of (3.1) is considered

∂tu+ β∂xu− ε∂xxu = 0, (x, t) ∈ R× R+, u(x, 0) = u0(x) (3.4)

The dissipation term, −ε∂xxu has a regularizing effect on the solution; more

specifically, employing the aforementioned moving frame via the change of variables

x̂ = x+ βt, equation (3.4) becomes the heat equation for û(x̂, t) = u(x+ βt, t).

d
dt
û− ε∂x̂x̂û = 0, (x, t) ∈ R× R+, û(x, 0) = u0(x) (3.5)

The solution û(x, t), and by a linear change of variables u(x, t), is therefore smooth

for all times t > 0 and given by the formula
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û(x, t) =
1√
4πεt

∫ ∞
−∞

e−
(x−ξ)2

4εt u0(ξ)dξ → u(x, t)

=
1√
4πεt

∫ ∞
−∞

e−
(x−βt−ξ)2

4εt u0(ξ)dξ (3.6)

This regularity inducing effect is not limited to linear conservation equations; the

addition of a viscous regularization term, ε∂xxu, to the right hand side of the nonlinear

in-viscid burgers equation

∂tu+ u∂xu = 0, (x, t) ∈ R× R+, u(x, 0) = u0(x) (3.7)

allows for linearization by a Cole-Hopf transformation u = −2εφ−1∂xxφ.

∂tu+ u∂xu− ε∂xxu = 0 → ∂x(φ
−1∂tφ) = ε∂x(φ

−1∂xxφ)

∂x (φ−1∂tφ) = ε∂x (φ−1∂xxφ) → ∂tφ− ε∂xxφ = φf(t)
(3.8)

The resulting equation for φ, after substitution of u = −2εφ−1∂xxφ into (3.8), is

once more the heat equation, choosing the arbitrary function f(t) to be zero, and

the solution is thereby smooth. A brief historical perspective on the introduction

of an artificial numerical viscosity to systems of conservation equations is offered in

the introduction of [17]. In addition, existence and uniqueness results of solutions

to more general systems of such viscous perturbations of hyperbolic conservation

equations, their regularity, requirements on initial data and the convergence of the

method of vanishing viscosity (ε→ 0) is put forth in [9]; see for instance §7.3.2(b).

In both the linear and nonlinear cases put forth the addition of dissipative regular-

ization facilitates a reduction to solving the heat equation. The Gibb’s phenomena,

which can be excessive when solving (3.1), or likewise (3.7), with discontinuous ini-
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tial data and high order numerical schemes, is eased when those schemes are applied

instead to the regularized equations (3.4), likewise (3.8); a cost is paid in the loss of

numerical accuracy for long-time solutions due to accumulation of dissipation effects.

The original intent being the solution to equation (3.1), likewise (3.7), a logical next

step is the introduction of a counter-balancing term to offset the dissipative effects of

the viscous regularization. This is precisely the underlying context first proposed by

[17], embodied by the concept of an artificial compressor for dissipative finite differ-

ence schemes applied to Riemann problems, again by [41] for propagating flame fronts

where the balancing depends on the local curvature of the front and once more by by

[40] in the context of the level set method applied to two-phase transport; subsequent

coupling of level set methods with conservation laws was also discussed in [38]. Each

of the aforementioned papers applied their respective corrective procedures for the

dissipative effects of the utilized regularization as a ’second phase‘ of their numerical

procedure; thus these methods can be classified as two-step procedures.

It is the theme of this paper to utilize the addition of a counter-dissipation term,

g(u), allowing for the advent of a novel one-step procedure which achieves simi-

lar effects as the pre-existing two-step approaches. We motivate the regularization

heuristically in two ways : one physical impetus is given and one heuristic impetus,

based on the Harten artificial compressor approach, is given; both a one-dimensional

and general formulation is presented in section 3.2.3.

3.2.1 Physical motivation

Consider two perfectly conducting, thin metal rods each of infinite length and of

uniform initial temperature. Assume that, with respect to a reference temperature

K > 0, the leftward rod is fixed at temperature T = 1 while the rightward rod is

fixed at temperature T = 0. Suppose further that these two rods are then brought
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together; inducing seamless contact at the origin. Let V = [−L,L] be an interval in

R with L >> 0 and let u(x, t) represent the heat per unit volume contained in the

adjoined rods at the point x and time t. It is known that the change in total heat in

the region V is governed by the relation

d

dt

∫
V
udx = −

∫
∂V
F · ndS → d

dt

∫
V
udx = −

∫
V
div(F )dx (3.9)

Where F is the flux density through the boundary of V and the divergence theorem

has been applied to achieve the right-hand relation. Furthermore, in the case of

many physical quantities such as heat, we have the relation that F = −λ∂xu for

some λ ∈ R. Continuing un-abetted in this direction will lead to a derivation of the

canonical heat equation; instead, suppose that it is desirable to maintain, as much as

possible, the original temperatures of the two rods. That is we seek to approximate,

with a smooth function, the initial state of

u0(x) =


1 : x < 0, ∀t ≥ 0

0 : x > 0, ∀t ≥ 0
(3.10)

In order to accomplish this suppose a distribution, tightly packed with uniform

spacing 0 < h << 1 from each other, of infinitesimal warming and cooling sensors are

placed perfectly on the surface of the conjoined rods in the regions x < 0 and x > 0,

respectively. These theoretical sensors are designed to counteract the canonical heat-

flux field induced by the joining of the rods. At the moment the rods touch, heat

begins to flow and the distribution of heat is smoothed; the sensors are then activated

by their measuring of the heat distribution, u(x, t), at some positive time t0 ≈ 0.

Given the physical paradigm, what is known regarding the behavior of heat, and the

desired affect of the counterbalancing term it is reasonable to set for the following
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requirements for g(u, t) :

• In order to counteract the flow of heat the counterbalancing term, induced by

the sensors, at time t0 > 0 should be supported in the region given by the set

{x ∈ R|u(x, t) ∈ (0, 1)}

• The sensors which generate the counterbalancing term sample the current heat

distribution; therefore the counterbalancing term should depend only on u. E.g.

g(u, t) = g(u). Furthermore, the heat distribution is continuous and therefore,

since g(u) should not introduce discontinuity, g(u) should be continuous in u.

• Since the initial state was given by equation (3.10) the state at time t0 > 0

will satisfy ∂xu ∈ [−C, 0] for some C > 0. That is, the heat flux (F = −∂xu)

is positive and hence directed from the hot leftward region towards the cold

rightward region.

• Since F = −λ∂xu is the the flux to be balanced the sign of the counterbalancing

term, g(u), should be equal to the sign of ∂xu. As h→ 0 the counterbalancing

term should exactly oppose the heat flux; it is therefore reasonable to assume

that the counterbalancing term is in proportion to the heat flux and the pro-

portionality constant is a function of h.

• Physically, the temperature should decrease in the hot region at the same rate

as it increases in the cold region; therefore the counterbalancing term should

be symmetric about the point of contact of the rods and the temperature there

should be the average of the initial condition extremities. Since g(u) depends

on u alone this implies that the function g̃(u) = g(u + T0) should be an even

function of u where T0 is the temperature at the point of contact of the rods.

In this case, T0 = 1
2
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• Since the rods are infinite in length and heat propagation distance is finite for

finite times it follows that the far extremities of the leftward rod should have

temperature T ≈ 1 and the far extremities of the rightward rod should embody

temperatures T ≈ 0.

From these items an equation, as well as boundary conditions, can be extracted as

well as properties of g(u); see equations (3.11), (3.12) and (3.13). The approximation

of

−λ∂xu+ C(h)g(u) = 0 C(h) ≥ 0, limh→0C(h) = 1 0 < h << 1 (3.11)

u(0, t) = 1
2
, ∀t > 0

limx→∞ u(x, t) = 0, ∀t ∈ [0,∞)

limx→−∞ u(x, t) = 1, ∀t ∈ [0,∞)

(3.12)

g (u) ∈ C1 (R)

g
Ä
−
Ä
u+ 1

2

ää
= g

Ä
u+ 1

2

ä
∀u ∈ R

g (u) < 0 ∀u ∈ (0, 1)

g (u) = 0 u ∈ {0, 1}

(3.13)

Resuming the derivation (3.9) and employing the notion of the balancing flux,

g(u), the flux field F , now comprised of the concentration dissipation term and the

counterbalancing term, is given by F = −λ∂xu + C(h)g(u) = 0 so that, for t > t0,

we have the integral relation

d

dt

∫
V
udx = −

∫
V
div(F )dx→

∫
V
∂tu− λ∂xxu+ ∂xg(u)dx = 0 (3.14)
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Letting V = [−L,L] denote an arbitrary symmetric sub-domain of R yields that

the equation to consider for time t ≥ t0 > 0 is given by

∂tu− λ∂xxu+ ∂x [g(u)] dx = 0, u(x, 0) = ũ(x, t0), t > 0 (3.15)

Where ũ(x, t0) denotes the solution to the usual heat equation with discontinuous

initial data at time t0; e.g. this represents the solution before the counterbalancing

sensors are activated. As per previous mention equation (3.15) is augmented with

boundary values given by (3.12); furthermore g(u) should be selected such that the

conditions (3.13) also hold.

3.2.2 Motivation via an artificial compression

In this section the artificial compression method (ACM) of [17] is first briefly

outlined; the level set method, a popular front capturing scheme, is then shown to

be in the spirit of an ACM. A conservative level set method proposed by [40] is, in

particular, discussed for the artificial compression flux (ACF) it employs; these two

perspectives provide the foundation for another route of motivation for our proposed

one-step method.

3.2.2.1 An overview of Harten’s artificial compression method (ACM)

The concept of an artificial compressor and the resulting artificial compression

method (ACM) was proposed first by [17]; Harten begins by outlining a need for the

ACM, via a class of dissipative finite difference schemes, and then proceeds to present

the ACM as a correction technique. In this seminal work, non-linear conservation

laws of the form (3.16) were considered.

∂tu+ ∂x [f(u)] = 0, u(x, 0) = u0(x), −∞ < x <∞ (3.16)
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In the case of intersecting characteristic lines classical solutions fail to exist; hence

weak solutions to (3.16) are considered and are defined by their satisfaction of the

integral relation

∫ ∞
0

∫ ∞
−∞

[φtu+ φxf(u)] dxdt+
∫ ∞
−∞

φ(x, 0)u0(x)dx = 0 (3.17)

Where φ(x, t) is any smooth compactly supported test function. The weak for-

mulation (3.17) admits piecewise continuous solutions of the original equation (3.16)

which satisfy the Rankine-Hugoniot condition (3.18) where (uL, uR, S) are the values

of u to the left and right, respectively, of the discontinuity and S is the speed of

propagation of the point of discontinuity.

f(uR)− f(uL) = S(uR − uL) (3.18)

In general equation (3.17) is not well posed in the sense that uniqueness cannot

be established in the class of all weak solutions; hence one approach for determining

physically relevant weak solutions is to consider those solutions obtainable as the

limit of the viscous problem (3.19) as ε → 0 [17]; the maximum principle allows for

only a single solution.

∂tu
ε + ∂x [f(uε)] = ε∂x [β(uε)∂xu

ε] , ε > 0, β > 0 (3.19)

To utilize the vernacular of Harten’s treatise: a discontinuity (uL, uR, S) is said

to possess a viscous profile if a solution to (3.19) exists of the form uε(x, t) = V (x−St
ε

)

with limx−St→∞ = uR and limx−St→−∞ = uL. Condition (3.20) then characterizes

when a viscous profile exists for a discontinuity (uL, uR, S); the condition is equivalent

to an entropy condition first presented by [39], cited by Harten, which characterizes
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the types of discontinuities (uL, uR, S) that can arise in the limit solution of (3.19).

[g0(u)− C] sgn(uR − uL) > 0, ∀u ∈ (uL, uR)

g0(u) := f(u)− Su, C := g0(uL) = g0(uR)
(3.20)

Harten discusses a class of numerical schemes, called monotone schemes, and

cites several results pertaining to them; among the most notable is that discrete so-

lutions to monotone schemes behave in similar fashion to solutions of a corresponding

modified parabolic equation (see [19]) given by

∂tw + ∂x [f(w)] = ∆t∂x [β(w, λ)∂xw] , β(w, λ) ≥ 0 (3.21)

and that (see [25]) monotone schemes which are also in conservation form posses

steady advancing fronts which are discrete versions of viscous profiles that arise in

the solution of the viscous limit problem (3.19) as ε→ 0

Finally Harten cites a now famous result of [31] which states that finite difference

schemes in conservative form which converge boundedly almost everywhere do so to

weak solutions of (3.16). The quintessential conclusion here is two-fold : namely that

monotonic schemes, by way of equation (3.21), act as a method of regularization and

that monotonic schemes in conservation form yield weak solutions which satisfy the

entropy condition (3.20) characterizing limit discontinuities. Harten then introduces

artificial compressors as a method of correcting the dissipation introduced in solving

(3.21), e.g. solving (3.16) with a monotonic finite difference scheme, and details an

implementation of an artificial compressor in a two-phase approach. The theoret-

ical motivation is to consider the original problem, equation (3.16), and supposing

a solution is obtained which possesses a shock, or contact discontinuity, given by

(uL, uR, S(t)); the speed of propagation is therefore S(t) and across the discontinu-
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ity the solution u jumps from uL to uR. Instead of solving the original problem,

(3.16),Harten proposes to solve a problem of the form

∂tu+ ∂x [f(u) + g(u, t)] = 0, u(x, 0) = u0(x), −∞ < x <∞ (3.22)

Where g(u, t), the artificial compressive flux (ACF), is any function satisfying

properties (3.23) and (3.24)

g(u, t) = 0, ∀u 6∈ (uL, uR) (3.23)

g(u, t)sign [uR(t)− uL(t)] > 0, ∀u ∈ (uL, uR) (3.24)

After presenting the definition of an artificial compressive flux (ACF) Harten then

proves compatibility for the modified equation with ACF; the proof can be found in

[17].

Theorem 3.1 [Harten] Suppose u(x, t) is a solution to equation (3.16); then if

g(u, t) is an ACF, u(x, t) solves (3.22). Furthermore, the entropy condition for the

modified equation, (3.22), is also satisfied.

The remainder of the paper is focused on an analysis of certain numerical schemes

applied to (3.16) and (3.22); it is shown that the same numerical scheme produces

better results, having more resolved shocks and contact discontinuities, when applied

to the latter equation. The refined results are therefore attributable to the presence

of the ACF; numerical results are given.
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3.2.2.2 A conservative level set method as an ACM

In the conclusion of [17] a generalized description of a method for augmenting a

pre-existing numerical scheme with a compression phase is outlined. Furthermore, a

particular conservative level set method, proposed by [40], can be seen as an appli-

cation of Harten’s approach to the area of front tracking methods.

Not every level set method is an ACM; in general a level set method refers to some

method in which a level set function, usually a distance function, is used to represent

a boundary or front between two or more regions. For example [41] employs a level

set technique for modeling curvature-dependent front propagation, [38] to that of gas

dynamics, and [52] to two-phase flow. Letting Γ denote the boundary of transition

from one area of interest to another a canonical level set approach is to utilize a a

level set function, |φ(x, t)| = miny∈∂Γ |y−x|; e.g. a signed distance function such that

φ(x, t) > 0 on one side of Γ and φ(x, t) < 0 on the other. In such a case, the level set

φ = 0 is the interface in question and, at some point, is acvected via a conservation

equation; in [52] ∂tφ + (u · ∇)φ = 0 is utilized whereas in [38] a Hamilton-Jacobi

like equation, ∂tφ+F (x)|φ|, is employed where F (x) is the magnitude of the normal

direction to the (level set) front at x.

[24] clearly describe the historical difficulty inherent in the canonical level-set ap-

proach; essentially, mass conservation is generally not enforced when advecting the

level-set function, φ, and the level set function can therefore lose its initial status

as a distance function as advection transpires. With the advantage that particular

schemes employed to advect the level-set function can automatically handle topolog-

ical changes, such as merging fronts etc, comes the disadvantage that with enough

advection the level set function loses its defining characteristic of being a distance

function all-together. At some point a re-distancing procedure must be carried out
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to re-imbue φ with this property; [52] offer many first-generation type details on

re-initializing the distance function as well as the loss of mass conservation incurred

by failure to do so.

The re-initialization procedure, necessitated by the lack of conservation of mass

when advecting a level set function, is costly; [52] mentions that initial efforts at such

incurred O(n3) time complexity, where n is the number of spatial grid points, and

offers an iterative approach based on solving an intermediate problem to steady state

after every time-step to re-initialize φ as a distance function. For sizable physical

problems, considered as being solved in the context of large parallel computations,

the sheer number of communications that would arise in the re-distancing proce-

dure, stemming from a complex boundary, is conceivably quite daunting. [43] put

forth a localized method of re-distancing which alleviates the necessity for a global

computation; while more palatable the approach is a four-step method, albeit on

a significantly reduced portion of the grid. One method of avoiding the need to

re-distance all-together is to introduce some mechanism for mass conservation; it

was the novel approach of [40] to propose a conservative method for this process by

adapting the work of Harten.

The remainder of this sections is dedicated to describing the method of [40]

and explicating its link to the the ACM of [17]. A smoothed Heaviside function is

utilized, φ(x) := Hε(x), as an approximation to a level set function; this outlook

acts analogously to the smoothing affect espoused by Harten’s proposed monotonic

schemes. Assuming a divergence free velocity field, ∇·u = 0, the level set is advected

by the standard conservation law

∂tφ+ u · ∇φ = 0 → ∂tφ+∇ · (uφ) = 0 (3.25)
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Following this advection a corrective step, an artificial compressor-like phase, is

then solved via equation (3.26); Kreiss utilizes a bit of extra, constant viscosity which

is not utilized explicitly by Harten’s formulation. The function f(φ) is defined by be

f(φ) = φ(1− φ) ∇φ|∇φ|

∂τφ+∇ · f(φ) = ε∆φ → ∂τφ+∇ · f̃(φ) = 0 (3.26)

The right hand side of equation (3.26) is the recasting into conservative form

where f̃ is defined by f̃(φ) = f(φ)− ε∇φ. Equation (3.26) is then solved to steady

state before the next advection; the parameter τ is utilized in lieu of t to signify a

false time and appropriate boundary conditions are prescribed. The choice of the

level set function φ(x) = Hε(x), in the context of Harten, signifies that uL = 0 and

uR = 1. Therefore an application of conditions (3.23) and (3.24) shows directly that

f̃(φ) is an ACF for the modified equation (3.22) with initial data u0(x) = H(x).

After reaching a steady state the compressed result is utilized as the initial data

for the next advection; the conservation of the interface level set avoids the need to

reinitialize the level set ‘distance’ function.

3.2.3 A proposed one-step approach

The conclusion of [40], pertinent to our proposal, is that the utilization of the

Harten ACM technique allowed for the creation of a conservative level-set adaptation

which avoids the need for the canonical re-initialization of the distance function.

The primary drawback being that the general ACM method, as described in [17]

and utilized in [40], requires an intermediate compression phase solved to steady

state; to its credit, however, the method should be lauded for its accomplishments

regarding the abdication of re-distancing which, at best, was a four-step procedure

(see [43]). We seek to alleviate this two-phase facet of the approach via proposition
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of a one-step method taking motivation from the discussions in sections 3.2.1 and

3.2.2; furthermore utilization of an entropy based viscosity in the formulation will

be leveraged for its natural efficacy in front-tracking methods. The formulation of

the proposed one-step approach is first broached without the entropy-viscosity for

clarity; entropy-viscosity is then briefly explained and introduced into the model.

3.2.3.1 The one dimensional case with constant viscosity and compression

coefficients

give you control over the gradient of u via modification of the compression func-

tion. This can act as a segue into the entropy-viscosity. Maybe recast this discussion

in that light.

For the time being, attention is still restricted to the one-dimensional case; recall

that the original problem we wish to solve is of the form given in equation (3.1) with

piecewise linear, discontinuous initial data u0(x) = 1−H(x). In order to abet issues

arising from high order methods introducing spurious oscillations at shock fronts

a small viscosity is added to (3.1) yielding (3.4) which facilitates a reduction to

equation (3.5). As outlined in the motivation sections, 3.2.1 and 3.2.2, the addition

of a term ν∂xg(u) is considered to counter-balance the dissipation. The resulting

equation therefore has the form (3.15) and, for the time being, we assume the initial

data is a smoothed step function as given in equation (3.15); contrary to the more

general formulation, equation (3.22), we consider the compressive term to depend

only on u.

Based on the discussion in the physical motivation section the desired goal is

to approximate the solution to (3.1), with the initial step data u0(x) = 1 − H(x),

via the use of the artificial compressive flux g(u) such that the result approaches

a smoothed-step configuration of u0(x) with small transition region. The boundary
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conditions (3.12) are assumed to augment equation (3.15) and the conditions on g(u)

are assumed given by (3.13). Under these assumptions the following small lemma is

proved quite easily:

Lemma 3.1 Suppose that u is a classical solution to (3.15) with boundary conditions

(3.12) and let g := g(u) satisfy the properties given by (3.13). If u reaches a steady

state, e.g. ∂tu = 0, then there exists x0 such that [νg(u)− λ∂xu](x0) = 0

Proof. Suppose ∂tu = 0 but no such x0 exists; therefore by assumption

∀x, [νg(u)− λ∂xu](x) = f(x)

Furthermore, the function f(x) is always non-zero. To rule out that, possibly, f(x) =

C for some C ∈ R assume that f(x) is constant. It follows from (3.12) and (3.13)

that

limx→±∞[νg(u)− λ∂xu](x) = limx→±∞ λ∂xu(x) = C

Suppose without loss of generality that C > 0, a similar line of argument will hold

for C < 0, then this implies that there exists L > 0 such that on the complement of

the set [−L,L] the function u is strictly increasing in x. This contradicts the limiting

assumptions of (3.12). It therefore follows that C = 0 which contradicts f(x) = C

nonzero. Therefore the function f(x) is non-constant and hence ∂xf(x) 6= 0. Since

u, by hypothesis, solves (3.15) it follows that

∂tu+ ν∂xg(u)− λ∂xxu = 0→ ∂tu+ ∂x[νg(u)− λ∂xu] = 0

∂tu+ ∂x[νg(u)− λ∂xu] = 0→ ∂tu+ ∂x[f(x)] = 0

∂tu+ ∂x[f(x)] = 0→ ∂tu = −∂xf(x) 6= 0
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So that ∂tu 6= 0 and u has not reached steady-state; this contradiction proves the

claim.

The effect of this small result is that, under a steady-state assumption, it can be

precisely demonstrated what the solution to certain compression cases will be and

judge the impact of the parameters ν and λ. For our choice of initial data the shock

discontinuity in the non-smoothed initial data, u0 = 1 − H(x), is characterized by

(uL, uR, S) = (1, 0, β); in light of the Harten ACF requirements, equations (3.23) and

(3.24), and motivated by the ACF of [40] the compression term is selected as

νg(u) = νu(u− 1), ν > 0 (3.27)

Note immediately that the compression (3.27) satisfies all three of the base cri-

terion given by (3.13); ν is a positive constant which, as we discuss later, is chosen

to posses the necessary units to ensure dimensional consistency. Inspired by [40]

assume that u is a steady-state solution to (3.15), (3.12) with ACF (3.27). Equation

(3.28) follows where k(t) is, for each t, the constant of integration; by lemma 3.1 it

follows that k(t) = 0.

ν∂xg(u)− λ∂xxu = 0→ νg(u)− λ∂xu = k(t) (3.28)

νg(u)− λ∂xu =→ κ =
1

g(u)
∂xu (3.29)

Where κ = ν
λ
, in tribute to Harten’s vernacular, is termed the artificial com-

pression coefficient (ACC); solving an equation of the form (3.29) is straightforward

if the function (g(u))−1 is integrable in u. Assuming this is the case (3.29) can be

recast as G‘(u)∂xu = 1, where G‘(u) = (g(u))−1; integrating both sides with respect
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to x will yield an implicit equation for u which can then be solved algebraically or

by other means. With g(u) given by equation (3.27) the resulting equation is (3.30)

which yields equation (3.31) for u; differentiation, with respect to x, also yields (3.32)

.

ln

Ç
1− u
u

å
= κx+ c(t) (3.30)

u (x, t) =
Ä
1 + eκx+c(t)

ä−1
(3.31)

∂xu (x, t) =
−κeκx

(1 + eκx)2
(3.32)

Figure 3.1: Steady state solutions, u(x, t), for various κ

(a) κ = 1/2 (b) κ = 1 (c) κ = 2

(d) κ = 10 (e) κ = 30 (f) κ = 60

Applying the boundary conditions (3.12) yields c(t) = 0; the limiting boundary

conditions, as x → ±∞, are seen to be satisfied. The effects of varying the ACC,
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κ = ν
λ
> 0, on the solution are shown in figure 3.1. If the steady state solutions

for various κ are considered then a description of the width of the transition region,

which from figure 3.1 clearly depends on κ, can be endeavored utilizing the closed

form in equation (3.31) with c(t) = 0. Intuitively, the transition region is where

the level set function undergoes the most pronounced phase change or, equivalently,

where the change from u ≈ 1 to u ≈ 0 is most noticeable. From figures 3.1 and 3.2

it is evident that as k → ∞, the derivative, ∂xu tends to a negative delta function,

−δ0(x), at zero. Hence |∂xu| = kekx(1 + ekx)−2 approximates a delta function at zero

as k →∞; in addition a quick computation shows that
∫
R |∂xu||dx = 1 for all κ > 0.

Therefore, since |∂xu| approximates a delta function as κ → ∞ and the region of

transition is, intuitively, where the derivative is nonzero, a region of transition can

conceptualized as a set E such that the integral over that set of |∂xu| nearly coincides

with unity.

Figure 3.2: Steady state graphs of |∂xu(x, t)| for various κ

(a) κ = 1 (b) κ = 10

(c) κ = 20 (d) κ = 30
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Definition 3.1 Suppose that u(x, t) is a steady-state solution to equation (3.15) with

boundary conditions (3.12). Let 0 ≤ γ < 1 be a fixed quantity. Then the region of

transition associated to γ is defined by the set Eγ = [−L,L] satisfying

∫ L

−L
|∂xu(x, t)|dx = γ (3.33)

(3.32) provides the following small result

Corollary 3.1 If the ACF is selected as given in equation (3.27) then transition

regions Eγ for a steady state solution to (3.15), with boundary conditions (3.12),

satisfy Eγ = [−L,L] where L = κ−1 (ln (γ + 1)− ln (1− γ))

Proof. Definition 3.1 and equation (3.32) give

γ =
∫ L

−L
|∂xu(x, t)|dx =

Ä
1 + e−κL

ä−1 −
Ä
1 + eκL

ä−1

After algebraic manipulation this leads to the equation

eκL − e−κL = 2γ + γeκL + γe−κL

Letting µ = eκL and gathering like terms leads to a quadratic equation in µ

(1− γ)µ2 − 2γµ− (γ + 1) = 0 → µ ∈
{
γ+1
1−γ ,−1

}
Since κ ≥ 0 and L ≥ 0 it follows that µ = eκL ≥ 1 therefore µ = γ+1

1−γ . Taking

logarithms and using µ = eκL yields the result.

The final conclusion presented by corollary 3.1 is that for any fixed 0 ≤ γ < 1 the

transition region Eγ = [−L,L] has the property that L→ 0 as 1
κ
; that is L = O(λ

ν
)
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so that the width of the transition region is inversely proportional to the ACC with

proportionality constant determined by γ.

typical approach for level set methods is to begin with a smoothed level-set func-

tion, with smoothing on the order of several grid spaces, in order to avoid excessive

spurious oscillation in the resulting solution. Ideally a piece-wise discontinuous level

set function would be preferred as this paradigm is more representative of multi-phase

flow; one advantage of considering equation (3.15) is that a smoothing step is essen-

tially ‘built in’ and such initial data are thereby permissible. It is quite straightfor-

ward to see the action of the smoothing heuristically; suppose that u0(x) = 1−H(x)

is the backwards facing Heaviside step function. It follows that ∂xu0(x) = 0 almost

everywhere so that equation (3.15), with g(u) ∈ C1(R), reduces to the heat equation

at time t = 0. Another way to see this is numerically; if one were to utilize, say,

an explicit time-stepping scheme to solve equation (3.15) the first evaluation of the

spatially discretized right-hand side will not have the compression term present

3.2.3.2 The general case and the utilization of an entropy-viscosity based ACC

In section 3.2.3.1 the case of constant λ and ν, thus a constant ACC κ = ν
λ
, was

considered. In this section we consider ν = ν(x) and λ = λ(x) constructed based off

of an entropy residual. Consider a brief dimensional analysis of equation (3.15) with

g(u) given by equation (3.27).

∂tu+ ν∂x (u (u− 1))− λ∂xxu = 0

Comparing the units of each term, specifically the viscous and compression terms,

we have νu
h

= λu
h2
→ ν = λ

h
. Comparing the first and third term yields u

t
= λu

h2
so

that, as expected, λ = h2

t
has units of viscosity. Therefore ν = λ

h
= h2

t
1
h

= h
t

has

units of velocity. If we consider equation (3.15) with smooth initial data it is evident

59



that the presence of the viscosity λ is not needed except to prevent the ACF term,

∂xg(u), from creating a shock; therefore if the viscosity, λ, were somehow able to

be localized around the region of transition, Eγ, the introduction of unnecessary

dissipation could be avoided. A simple, first-attempt, ad-hoc localization might

be procured by considering (3.15) with a space-time viscosity defined in terms of

Eγ = [−L,L] by

λ(x) =


0 L > L0 or x 6∈ [−L,L]

λ0 L < L0 and x ∈ [−L,L]
(3.34)

This approach would avoid dissipation outside of a particular transition region. If,

instead, a piece-wise linear initial data, such as the backwards step u0 = 1 −H(x),

were considered in lieu of smoothed data then the transition region would be the

degenerate set Eγ = {0}; this would force the use of some approximate transition

region Ẽγ = [−ε, ε]. However, any ε > 0 would technically introduce ‘too much’

viscosity; the appropriate viscosity to introduce in this case would be a delta mea-

sure. The concept of a transition region is essentially an attempt at shock capturing ;

in turn, equation (3.34) is therefore a viscosity constructed from a shock-capturing

technique. One particularly efficacious method of shock capturing, utilized for sys-

tems of hyperbolic conservation laws, is entropy production; entropy production is

measured in terms of an entropy residual. [45] has shown, numerically, that entropy

production in this context is concentrated at shocks and contact discontinuities for

certain central-difference discrete schemes and that the extent of the concentration

intensifies as the spatial grid spacing tends to zero. The numerical usage of entropy

production is not new;[1] utilize spurious entropy production to produce a posteriori

error estimations and applies these estimates to adapt local mesh refinements while

[45] utilizes this quantity to track shocks and to provide local scheme adaptations
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(e.g. linear versus nonlinear terms).

Drawing attention once more to the simplistic model viscosity (3.34) it is seen that

the shock capturing artifact, Eγ, is utilized to construct a localized viscosity. Based

on this attempt at introducing viscosity in the neighborhood of a shock, the natural

‘shock capturing’ behavior of entropy production is suggestive of good candidacy for

the foundation of the construction of a local viscosity for use in numerical schemes.

This novel, but evolutionary, concept was put forth in [14]; at each step a (variable)

viscosity is computed by evaluating a residual based on the entropy and this viscosity

is utilized in the (stabilized form of the) Galerkin formulation to evince the solution

method. The entropy production is expected, as in [45], to tend to zero in regions

where the solution in smooth, on the order of the local truncation error, and become

pronounced at shocks. [14] perform copious tests of entropy-viscosity applied to

both linear and nonlinear conservation laws for known model problems; the entropy-

viscosity performs quite well. It is worthwhile to note that the construction of a

localized entropy based on a residual is not a novel concept; e.g. in [26] a PDE

residual is utilized as a foundation for a localized viscosity. The original contribution

of [14] is the formation of a localized viscosity based on an entropy residual; as

discussed in [14], in the context of Burger’s equation, the entropy residual can be

non-zero even when the PDE residual vanishes in a distributional sense.

The essential details of the entropy-viscosity formulation are as follows : an

entropy function, E, is selected, an entropy pair, (E,F ), is constructed, a discreet

entropy residual, Dh(x, t), based on that pair is measured, numerically, and from

this residual, at each time step, a viscosity, to be utilized for the next time step,

is constructed. The reader is referred to [14] for a more involved discussion as well

as numerical results. For posterity the equation of the entropy-viscosity can be

considered as
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νE = min
Ä
cEh

2|Dh(x, t)|/||E(uh)− E(uh)||∞,Ω , cmaxh|u|
ä

(3.35)

Where h represents the local grid size, cE and cmax are tunable constants, which

depend on the approximation technique and the domain, and single vertical bars

represent absolute value. It is expected that Dh(x, t) ≈ 0 for smooth solutions or in

regions of smooth solution; see for instance [14, 45]. Returning to the initial problem,

linear transport of discontinuous data, discussed in section 3.2 the entropy viscosity

method, in arbitrary dimension proceeds by augmenting the model problem with the

entropy-viscosity regularization term; see equation (3.36).

∂tu+ β · ∇u = 0 → ∂tu+ β · ∇u = ∇ · (νE∇u) (3.36)

Before giving the multi-dimensional analogue of equation (3.15) we make mention

of a detail which, while not neglected, has been obscured somewhat. In section

3.2.1 a physical motivation was put forth which, among other things, detailed that

the counterbalancing compressive flux should be directed opposite the dissipation.

Furthermore, the dissipation in section 3.2.1 was determined by −∂xu and hence

directed towards − ∂xu
|∂xu| ; it follows that the counterbalancing compressive flux should

act in the direction ∂xu
|∂xu| . Re-examining the ACF requirements of [17] note that the

requirements put forth by equations (3.23) and (3.24) is precisely a codification

of this detail. In one dimension dispersion acs in the direction sign[uL − uR]; hence

(3.23) says that compression only acts where dispersion is active and (3.24) dictates

the direction that the compression acts. Figure 3.3 provides an illustration of the

compressive flux direction for each case.

In higher dimensions the direction of dispersion and compression require the use

of a unit vector to control their action; a sign is no longer sufficient on its own;
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Figure 3.3: Compressive flux directions

(a) uL > uR; leftward compression (b) uL < uR; rightward compression

in high dimension the compression is, in analogy with the one-dimensional case,

directed along the unit vector − ∇u|∇u| . The compression should therefore be directed

along the negative direction, ∇u|∇u| . This motivation fully explicates the appearance of

such a term in the conservative level set method proposed by [40]; more specifically

the version of the ACF selected therein is

g (φ) = ∇ ·
Ç
φ (1− φ)

∇φ
|∇φ|

å
. (3.37)

There is no concern as to whether or not the function to be compressed resembles

a forwards or backwards step; the sign of the unit normal in (3.37) handles the issue.

Our aim is to incorporate this term into the proposed single-phase method; thus far

the single-phase method has the form of equation (3.36). to do so it is necessary to

balance the units of equation (3.37) with those of equation (3.36). This procedure

was carried out at the beginning of the section and carries through in the exact same

manner so that in order to incorporate the full-dimensional compression term (3.37)

into the entropy-viscosity transport equation (3.36) the compression term must be

pre-multiplied by units of velocity. A local velocity is constructed from the entropy-

viscosity via νE
h

where h = h(x) is the local grid size. Finally, the fundamental
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n-dimensional form of the one-stage advection-diffusion-compression equation is

∂tu+ β · ∇u+∇ ·
Ç
νEh

−1 [u (1− u)]
∇u
|∇u|

å
−∇ · (νE∇u) = 0 (3.38)

Note that the artificial compression coefficient (ACC) for the compressive action

of equation (3.38) is κ = νEh
−1

νE
= h−1; corollary (3.1) sets the expectation that as

h → 0 the width of the transition region also goes to zero for smooth steady-state

solutions of (3.38).

3.2.4 Controlling compressive behavior

In the course of numerical application some minor modifications to the general

form of equation (3.38) have been formulated in order to produce some impact on

various paradigms and difficulties that arise in practice. This section details three

minor modifications to the general equation:

• A steady-state or minimum compression is introduced and a corresponding

first-order steady-state or minimum viscosity is added

• A compression strength coefficient is added

• A small parameter ε ≈ 0 is introduced into the gradient residing in the de-

nominator of the compressive in order to prevent the presence of removable

singularities; these cause division by zero computational errors.

These three facets are addressed in the order they are presented; beginning with

the steady-state, or minimum, compression term. Let αmin > 0 ∈ R and g(u) :=
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u(1− u); consider the modification to the compressor given by

∇ ·
(
νEh

−1g (u) ∇u|∇u|

)
→ ∇ ·

(
(νEh

−1 + αmin) g (u) ∇u|∇u|

)
(3.39)

Since, by (3.35), νE ≥ 0 equation (3.39) ensures, even for smooth quantities in the

absence of any advection, there is a minimal compression αmin present in the system

for all time. In order to prevent the formation of singularities, and to preserve the

form of the ACC κ = 1
h
, a corresponding first-order viscosity is added to augment

the viscous term in (3.38)

−∇ · (νE∇u) → −∇ · ((νE + hαmin)∇u) (3.40)

The next adaptation is the introduction of a compression strength; this is a pa-

rameter which can be adjusted to modify the ACC directly; let C > 0 and modify

equations (3.39) and (3.40) by introducing C as follows

∇ ·
Ç
C
Ä
νEh

−1 + αmin
ä
g (u)

∇u
|∇u|

å
(3.41)

−∇ · ((νE + hCαmin)∇u) (3.42)

The change allows more direct control over the artificial compressive coefficient,

κ, in regions of shock. In regions where νE ≈ 0, κ behaves as Cαmin
hCαmin = 1

h
and is

thus unchanged; whereas in regions where νE is large, such as in the vicinity of a

shock, κ ≈ CνE
νEh

= C
h
. The final modification to equation (3.38) that is proposed is

the addition of a small positive constant ε ≈ 0 to prevent numerical division by zero.

The directional portion of the compressor term, ∇u|∇u| , is augmented by ε to be ∇u
|∇u|+ε ;

in practice, ε = 1.1× 10−14 was utilized. The final one-stage compression-advection-
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diffisuion equation that was implemented is therefore

∂tu+ β · ∇u+∇·
Ç
C
Ä
νEh

−1 + αmin
ä

[u (1− u)]
∇u

|∇u|+ ε

å
−∇ · ((νE + hCαmin)∇u) = 0 (3.43)

3.3 Implementation and numerical results

3.3.1 Implementation details

Consider the equation (3.38) written as ∂tu = T (β, u). Time stepping is ap-

proached via the explicit SSP RK3 method with Butcher tableau given by (3.1); the

operator (3.2) is discretized in space via finite differences utilizing the staggered-grid

Marker and Cell distribution of unknowns. More specifically, scalar quantities are

considered at the center of cells while vector quantities are located at the midpoints

of faces; e.g., in two dimensions, scalar quantities are located at xij whereas the

components of the velocity, u = (u, v), are located at xi± 1
2
,j and xi,j± 1

2
respectively.

An in-depth discussion of the Marker and Cell method can be found in the appendix

of [16].

0 0 0 0

1 1 0 0

1
2

1
4

1
4

0

1
6

1
6

2
3

(3.1)

T (β, u) = −β · ∇u−∇ ·
Ç
C
Ä
νEh

−1 + αmin
ä

[u (1− u)]
∇u

|∇u|+ ε

å
+∇ · ((νE + hCαmin)∇u) (3.2)
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In addition, when computing the compressive term, u is smoothed by local aver-

aging before the directional component, ∇u
|∇u|+ε , is computed; this was due to small

numerical errors in u causing large spurious gradients. Furthermore, for each of the

Runge-Kutta iterates ki, an intermediate entropy-viscosity is formulated for use with

computation of the next iterate. In the presence of compression special care must be

taken regarding numerical error; specifically low-order dispersive waves; the general

reason for this is that the compression term seeks to compress these waves while the

dissipation term seeks to subdue them. The end result of this duality is that disper-

sive errors which are too large, in the presence of over-compression, tend to persist

in time and solidify as numerical artifacts; spurious dispersive waves cause numerical

entropy production and therefore both the entropy-viscosity based compression and

entropy-viscosity based dissipation are active in their locale. In order to abet the

issue with low order dispersive waves it is sufficient to ensure that their order is much

higher than the order upon which the compression term can act; e.g. dispersive er-

ror waves should only manifest at a sub-grid scale. The right-hand side of (3.2) is

written in divergence form; therefore if second order central differences are utilized

to treat first derivatives, at each step of computing an approximation to (3.2), the

leading error is O
Ä
h2

6
∂xixixiui

ä
. Thus solving ∂tui = T (β, u) on a uniform grid where

T (β, u) is in divergence form and the second order central finite difference is used to

compute the derivatives, ∂xi , is similar to solving the same equation using Q1 finite

elements and a lumped mass matrix (see [13]). In fact, [13] discuss a straight-forward

technique for eliminating dispersive error by approximating the inverse to the con-

sistent mass matrix for use as an error-correction term in an otherwise lumped mass

matrix scheme. The authors go on to detail applications of their method in higher

dimensions and with more general finite element spaces; however, since we desire to

construct a finite difference scheme for a dispersion-free one-dimensional derivative,
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for use in approximating the the operator (3.2) given in divergence form, their work

in one-dimension motivates the following lemma:

Lemma 3.1 Let φi be a discretization of a one-dimensional infinitely differentiable

function φ on a uniform mesh of size h. Define φ̃i = φi+(φi+1−2φi+φi−1)/6. Then

the usual central difference applied to φ̃ approximates the derivative of φ and is free

of low order dispersion; that is

φ̃i+1 − φ̃i−1

2h
= (∂xφ)i +O

Ä
h4
ä

(3.3)

The obvious generalizations to higher space dimensions apply by considering each

direction separately.

Proof. The proof follows by utilizing the definition of φ̃i, algebraic manipulation,

and use of the Taylor expansion at xi. The following expansions will be instrumental

φi+2 = φi + 2h (∂xφ)i +
4h2

2
(∂xxφ)i +

8h3

6
(∂xxxφ)i +

16h4

24
(∂xxxxφ)i +O(h5) (3.4)

φi+1 = φi + h (∂xφ)i +
h2

2
(∂xxφ)i +

h3

6
(∂xxxφ)i +

h4

24
(∂xxxxφ)i +O

Ä
h5
ä

(3.5)

φi−1 = φi − h (∂xφ)i +
h2

2
(∂xxφ)i −

h3

6
(∂xxxφ)i +

h4

24
(∂xxxxφ)i +O

Ä
h5
ä

(3.6)

φi−2 = φi − 2h (∂xφ)i +
4h2

2
(∂xxφ)i −

8h3

6
(∂xxxφ)i +

16h4

24
(∂xxxxφ)i +O

Ä
h5
ä

(3.7)

Computing (∂xφ̃)i utilizing the central difference formula (3.3) and gathering terms

then gives

φ̃i+1 − φ̃i−1

2h
=

1

2h
[φi+1 − φi−1] +

1

12h
[φi−2 − φi+2 + 2 (φi+1 − φi−1)] (3.8)
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Utilizing expansions (3.4)-(3.7) in the right-hand side of (3.8) yields

1

2h

ñ
2h (∂xφ)i +

2h3

6
(∂xxxφ)i +O

Ä
h5
äô

+
1

12h

ñ−12h3

6
(∂xxxφ)i +O

Ä
h5
äô

(3.9)

The result is evident; namely

φ̃i+1 − φ̃i−1

2h
= (∂xφ)i +O

Ä
h4
ä

(3.10)

This concludes the proof; generalization to higher dimensions is direct.

It bears mentioning that lemma (3.1) still has a leading error term which is

dispersive; however, the order is not significantly higher: O(h4) instead of O (h2).

The end result is that, in practice, the ACC can embody higher values, through the

use of the compression strength C, without preserving dispersive error waves.

In summary: however the reader chooses to implement a numerical method solv-

ing (3.38), for either smooth or discontinuous initial data, it is advised to select a

numerical approach in which low-order dispersive error is corrected for. This consid-

eration arises due to the action of the compression term in solidifying such numerical

artifacts into the long-term dynamics of the numerical solution. Herein we see the

primary ‘drawback’ of the proposed one-stage approach; i.e. previously mentioned

approaches suffered from the need to re-initialize a distance function [52, 43] or falsely

iterate an auxiliary problem to a steady state [17, 40] to enforce mass conservation.

The canonical ‘no-free-lunch’ mantra applies: the burden of implementing (3.38) is

one of suitably addressing low-order error correction. Typically this would could

cost a matrix inversion at every time step, e.g. computing M−1 to correct dispersion

or something of this nature, however the approximation technique of [13], reflected

in lemma (3.1), has allowed for a methodology by which this consideration can be

69



somewhat relaxed.

3.3.2 Numerical results

This section details numerical results for the implementation of (3.43), using

ε = 1.1 × 10−14, with SSP RK3 time-stepping, a CFL of 0.5, a second order spatial

discretization of (3.2) and dispersive error correction. We analyze a cadre of test cases

in a bounded domain with initial value φ(x, t) = φ0(x); each boundary edge, or face,

is considered an inflow and are therefore conditions of Neumann type. Finally, the

entropy viscosity, νE, utilizes a choice of entropy function; for these tests the convex

entropy function E (φ) =
Ä
φ− 1

2

ä40
was chosen. The choice of entropy function does

indeed play a role here; it is the foundation of the entropy viscosity and hence plays a

leading role in the compressive and diffusive behavior. For more on entropy functions

see [14, 45]. Results from [40] as well as a particle level-set method of [24], where

applicable, motivate the numerical tests chosen.

3.3.3 Rigid body rotation of Zaleska’s disc

The first numerical foray is the advection of a circular level step function; the

definition of the initial level-set function is quite simple and given by

φ0(x) =


1 : |x− x0| ≤ r0

0 : otherwise
(3.11)

We solve equation (3.43) with stationary, in time, ambient vector field β =

(−2π (y − 0.5) , 2π (x− 0.5)); the center of the circle at time t = 0 is taken to be

x0 = (0.75, 0.5) with radius r0 = 0.15. The expected motion is therefore that the

circle processes in a circumferential manner; a procession occurring for each time

increment. In the spirit of the work of [40] we show contours of the level set function

(3.11) initially and after various numbers of revolution; of note will be the explo-
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ration of the compression strength factor C as the mesh size goes to zero. The first

results shown are after a single revolution; the level sets φ = 0.05, φ = 0.50, and

φ = 0.95 are shown. Utilizing these contours one can compare this method to the

results of [40] directly.

3.3.3.1 Short time results

Figure 3.4: Solid revolution: 100× 100 mesh, one revolution

(a) C = 0.05 (b) C = 0.25 (c) C = 0.50 (d) C = 0.75

(e) C = 0.05 (f) C = 0.25 (g) C = 0.50 (h) C = 0.75

In this subsection short time, T = 1, results are reported; the circular level set

function (3.11), having radius r = 0.15, completes one complete revolution within

the 2D domain [0, 1] × [0, 1] and returns to its starting position. The first results

are contour plots with various compression strengths shown; in the spirit of [40],

three choice to show three contours per result has been made; in each of the three

cases the constant compression, αmin, is identical and equal to 0.05. The first case
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Figure 3.5: Solid revolution: 200× 200 mesh, one revolution

(a) C = 0.05 (b) C = 0.25 (c) C = 0.50 (d) C = 0.75

(e) C = 0.05 (f) C = 0.25 (g) C = 0.50 (h) C = 0.75

treated, shown in figure 3.4, is the 100 × 100 domain discretization of [0, 1] × [0, 1].

Subsequently, figure 3.5 shows the result of utilizing a 200 × 200 discretization of

same domain while figure 3.6 utilizes the finest discretization of 400 × 400 mesh

points. The top rows of figures 3.4, 3.5 and 3.6 show the contours φ = 0.05, 0.5, 0.95

for each of the values of the compression strength, C, mentioned for the resolutions

of 100 × 100, 200 × 200 and 400 × 400 respectively. Likewise, the bottom rows

depict the interface level set, φ = 0.5 following a single rotation, overlaid with the

initial data. Particularly striking is the the preservation of this interface level set,

φ = 0.5, for every compression strength and resolution. Low compression strength,

C = 0.05, clearly introduces some level set perturbations after a single revolution

whereas higher compression, C = 0.75, preserves the overall structure very well.

Despite the presence of the artifacts in the low-compression case the interface level

sets are preserved quite well; in the case of 400× 400 resolution the initial data and
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Figure 3.6: Solid revolution: 400× 400 mesh, one revolution

(a) C = 0.05 (b) C = 0.25 (c) C = 0.50 (d) C = 0.75

(e) C = 0.05 (f) C = 0.25 (g) C = 0.50 (h) C = 0.75

the interface level set are nearly indistinguishable.

In [40] several underlying methods were utilized to advect the level set function

including total variation diminishing (TVD) methods (first proposed by Harten him-

self), second order non-TVD methods, central difference methods, and several more;

the result is shown first without the intermediate compression phase and then, in

the spirit of [17], with the compression problem ‘tacked on’ after each time step.

[40] reports very good results; the results herein can be directly compared. Of note:

when the compression strength, C is too low, such as in the C = 0.05, 0.25 cases, the

artifacting produced is comparable to the non-TVD method result, sans compression

step, in [40].
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Figure 3.7: Solid revolution: 100× 100 mesh, twenty revolutions

(a) C = 0.05 (b) C = 0.25 (c) C = 0.50 (d) C = 0.75

(e) C = 0.05 (f) C = 0.25 (g) C = 0.50 (h) C = 0.75

3.3.3.2 Long time results

In [40] only a single revolution of the circular step function is considered; this

is justified as the authors are concerned mostly with displaying the efficacy of their

two-stage compression approach when utilized with a bevy of different already-known

methods. Of primary interest to us is the behavior of the compression parameter. In

section 3.3.3.1 it was seen that, for low compression strength values C, the result could

appear quite disparate overall despite the amenable preservation of the interface level

set.

In order to explore further the effect of the compression strength on the computed

solution some long-time tests were performed. These tests had an ending time of

T = 20 and, hence, twenty full revolutions of the initial data were made through

the domain; theoretically, the result should coincide exactly with the initial data
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Figure 3.8: Solid revolution: 200× 200 mesh, twenty revolutions

(a) C = 0.05 (b) C = 0.25 (c) C = 0.50 (d) C = 0.75

(e) C = 0.05 (f) C = 0.25 (g) C = 0.50 (h) C = 0.75

modulo some smoothing effect due the the viscosity being dominant at time t = 0.

As in section 3.3.3.1 figure 3.7 shows the results arising from the discretization of

[0, 1]× [0, 1] by a mesh of size 100× 100, figure 3.8 by a mesh of size 200× 200 and

figure 3.9 by a mesh of size 400×400. The results serve to reinforce the findings of the

single-revolution case as the presence of artifacts, in the context of low compression

strength, are exacerbated though the coincidence of the interface level set, φ = 0.5,

after twenty revolutions is still high. The general presentation of the results mirrors

that of the last section; the top row of figures 3.7, 3.8 and 3.9 show the contours φ =

0.05, 0.5, 0.95 for the indicated values of the compression strength, C, at resolutions

100 × 100, 200 × 200 and 400 × 400 respectively while the bottom row displays an

overlay of the interface level set, φ = 0.5, with the initial data.
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Figure 3.9: Solid revolution: 400× 400 mesh, twenty revolutions

(a) C = 0.05 (b) C = 0.25 (c) C = 0.50 (d) C = 0.75

(e) C = 0.05 (f) C = 0.25 (g) C = 0.50 (h) C = 0.75

3.3.4 Periodic vortex test

This test appears in [40]; the underlying concept here is to test the one-stage

compression in a slightly more complex regime. As in [40] the underlying vector field

is periodic, in time, and produces a twisting vortex-like effect. The velocity field is

given by

u(x, t) = sin (πx)2 sin (2πy) cos
Åtπ

2

ã
v(x, t) = −sin (πy)2 sin (2πx) cos

Åtπ
2

ã
The initial data is a circular level set function, as in section 3.3.3, with radius

r = 0.15 and initial position (0.5, 0.75); the choice of vector field dictates that the
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Figure 3.10: Periodic vortex: 100× 100, C = 0.75 αmin = 0.05

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Figure 3.11: Periodic vortex: 100× 100, C = 0.75 αmin = 0.75

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

initial data should curl counter-clockwise, stop and return to its initial position at

time t = 2 before curling clockwise and returning to its initial position at time t = 4.

In the context of the vortex experiment we took the opportunity to also test the

minimum compression parameter αmin more thoroughly. It was found that C = 0.75

and αmin = 0.75 yielded results on par with the vortex test of [40]; a low value,

αmin ≈ 0.05, produced ‘wobble’ or ‘smushed’ effects in the non-interface level sets of

φ. As in previous sections various discretizations are utilized to delineate the role of

mesh resolution juxtaposed with the parameter αmin; the compression strength, C,

is kept at the constant value C = 0.75 throughout. Each figure illustrates the results

of the advected level set function, for the particular corresponding parameters, at
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Figure 3.12: Periodic vortex: 200× 200, C = 0.75 αmin = 0.05

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Figure 3.13: Periodic vortex: 200× 200, C = 0.75 αmin = 0.75

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

the four time positions t = 1, 2, 3, 4. Figures 3.10 and 3.11 correspond to the values

αmin = 0.05 and αmin = 0.75, respectively, on a 100 × 100 mesh of the domain

[0, 1]× [0, 1]. Likewise figures 3.12 and 3.13 correspond to the same variation in αmin

on with an underlying mesh of 200 × 200 grid points; figures 3.14 and 3.15 are also

given in the same manner but correspond to an underlying mesh of 400× 400 mesh

points. In the αmin = 0.05 cases it was found that the interface level set φ = 0.05

coincided well with the initial data in the 200× 200 and 400× 400 case despite the

other clearly egregious distortions; in the αmin = 0.75 case, however, the interface

level agreed quite well with the initial data for all three discretizations.
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Figure 3.14: Periodic vortex: 400× 400, C = 0.75 αmin = 0.05

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Figure 3.15: Periodic vortex: 400× 400, C = 0.75 αmin = 0.75

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

3.3.5 Non-periodic vortex test

This test appears in [24] and a similar experiment, though with little mention,

also arises in [40]; the context of the former is the testing of an extensions of a

hybrid particle / level-set method, first introduced by [7], utilizing self-adaptive

oriented particles. Our purpose at this time is not a direct comparison with their

work but rather to gauge the efficacy of our method in the context of some of the

tests suggested therein. Towards that end we consider the non-periodic (in time)

vortex given by the vector field
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Figure 3.16: Non-periodic vortex at t = 3: 200× 200, C = 0.75

(a) αmin = 0.25 (b) αmin = 0.05 (c) αmin = 0.005 (d) αmin = 0

Figure 3.17: Non-periodic vortex at t = 3: 400× 400, C = 0.75

(a) αmin = 0.25 (b) αmin = 0.05 (c) αmin = 0.005 (d) αmin = 0

u(x, t) = −2sin(πy)cos(πy)sin2(πx)

v(x, t) = 2sin(πx)cos(πx)sin2(πy)

This vector field continually twists the initial data into a inwardly-spiraling con-

figuration as t → ∞; thus the initial data is thinned continuously until it can no

longer be resolved by the grid scale. The purpose here is to observe how well the

compressive term can resolve, and maintain the fidelity of, thin regions. [40] notices
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some tearing associated to lack of mesh fidelity in his tests whereas [24] notes that the

edges of the vortex, in usual level-set approaches, can become ‘jagged’. Indeed, our

findings corroborate the necessity of mesh fidelity; the usual benchmark discretiza-

tion of 100 × 100 mesh points was too low to yield meaningful, reportable results.

The end result was also quite sensitive to the parameter αmin; high values ‘pinched

off’ thin structures. Figure 3.16 shows the results, for various αmin on a 200 × 200

mesh of [0, 1]× [0, 1] whereas figure 3.17 considers a finer discretization of 400× 400

grid points. In the context of these test case only the interface level set, φ = 0.5, was

tracked as we have no frame of reference, e.g. returning to a starting position, for

any other level set configuration. As the interface level set, φ = 0.5, thins it stands to

reason that too much compression could cause the same type of ‘pinching’ phenom-

ena, creating small circular islands, noticed in [40]; towards this end it is expected

that the constant compression parameter αmin might better preserve the interface

level set when it takes on smaller values. This is precisely the effect that is noticed:

in figure 3.16 the effect of αmin on the interface level set is quite noticeable and is

best at αmin = 0. As expected, high values of αmin cause the sequestration of the tail

of the interface level set into smaller island-like nodes. In the 400× 400 case, figure

3.17, the effect is much less pronounced; the cases αmin = 0.05, 0.005, 0 are nearly

indistinguishable with αmin = 0.25 exhibiting only a minor pooling phenomena in

the tail.

3.3.6 The LeVeque test

[35] proposed a test case for conservative advection algorithms [7]; a sphere of

radius r = 0.15, initially at (0.35, 0.35, 0.35) is advected on a 1003 grid point mesh,
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via the vector field

u(x, y, z, t) = 2sin2(πx)sin(2πy)sin(2πz)cos
Ä
π t
T

ä
v(x, y, z, t) = −sin(2πx)sin2(πy)sin(2πz)cos

Ä
π t
T

ä
w(x, y, z, t) = −sin(2πx)sin(2πy)sin2(πz)cos

Ä
π t
T

ä
The value T = 3 modulates the periodicity of the field in time; other values of T can

of course be employed but the chosen value is the canonical one. As noted by [7], and

echoed by [24], this test is notoriously difficult for level-set methods alone; towards

this end [7] and [24] developed hybrid particle-level-set methods which perform quite

well at tracking the interface, φ = 0.5, level set via the use of marker particles. The

difficulty in this test lies in the behavior of the advected sphere in the approximate

time interval t ∈ [1.2, 1.8] where the surface of the object becomes so thin that it slips

below the resolution of the mesh; as noted in [7] this causes most level set methods

to ‘lose track’ of this portion of the interface after time t ≈ 1.8 and, as the object is

re-assembled by the periodic motion of the vector field, results in a dramatic change

in the interface topology. Such behavior breaks the mass conservation of the method

as the entire region, which is almost a disc in shape, is lost from the simulation;

the object begins as a sphere and ends as two disjoint masses. The one-stage com-

pressive level set proposed was indeed able to overcome this obstacle; however this

did involve some experimentation with the compression parameters. The parameters

for the entropy-viscosity (cmax, cE), the compressive strength, C, and the minimum

compression αmin (see equations (3.35) and (3.43) ) used were
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cmax cE C αmin

0.015625 0.1 1.2 0.0

We found this highly unusual because, typically, the parameters cmax and cE, defin-

ing the entropy viscosity, need no case-by-case adjustment; they are thought of as

artifacts of the domain Ω and the mesh alone. In the context of this problem there

is some motivation for this highly unusual approach; [24] utilizes an adaptive tech-

nique to increase the density of particles in this very thin region. The term ‘thin

region’ refers to that portion of the object at time t ≈ 1.5 (half the period) whereby

the object embodies a surface incident to a plane; the distribution of the interface

level set, φ = 0.5, is sparse atop this plane and hence the region appears to ‘tear’

here. This ‘tearing’, we suspect, causes large gradients in this region and, hence, the

entropy residual used to construct the entropy viscosity is expected to be large. The

substantial value of the entropy residual would, by equation (3.35), result in the use

of the first-order term to construct the entropy-viscosity; the entropy-viscosity then

determines the amount of compression. In the thin region too much compression

would result in the breaking of the ‘strands’ which are, barely, holding the region

together; this leads to the disjointing of the object as time increases past t = 1.5.

The key to maintaining the fidelity of the region, we suspect, lies in the control

of the compression in thin regions, it must be small, while ensuring large-enough

compression to maintain the bulk portions of the level-set as well.

The choice of cmax and cE allows this semi-adaptive behavior to be evinced in

the current framework while the otherwise large value of compression strength, C,

allows for a larger bulk-compression to be realized. If this is indeed the correct

interpretation it hints strongly at an avenue for adaptive techniques to be developed

from (3.43) based on the local ‘thinness’ of an object. As a final mention we note
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Figure 3.18: Results of the LeVeque advection test. 100× 100× 100

the re-occurrence of a phenomena noted in [24]. The loss of resolution in the ‘thin’

region causes the presence of small specks of mass to disjoint themselves from the

level set. These small aberrations, as mentioned, are noted in the corresponding

adaptive tests of [24]; the main difference being that, in the case of the one-stage

compression method (3.43), these aberrations are damped to zero by the dissipative

entropy-viscosity regularization by the time t ≈ 3 has been reached. The results are

presented in figure 3.18; the last frame in the figure, denoted by the boxed outline,

shows the initial data, at time t = 0, juxtaposed with the final result at time t = 3.

The frame at time t = 1.5 shows the ‘thin region’ most prominently; it is demarcated

by the ‘grating’ on the flat portion of the object.
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4. INTEGRAL COMMUTATOR THEORY FOR CONSISTENCY ANALYSIS

4.1 The one-dimensional point of view

The objective of this section is to review the current paradigm of consistency

error analysis via Taylor expansions for P1 finite elements and to motivate a novel

approach based on an integral commutator. The introduction of these concepts is

carried out in one spatial dimension in order to facilitate the analysis.

4.1.1 A P 1 approximation

This subsection briefly outlines a general problem and discusses the approxima-

tion problem using P 1 (orQ1) finite elements in one dimension. This material is by no

means new; it is reviewed for completeness. Consider the following one-dimensional

transport equation in the domain Ω = (a, b)

∂tu+ β∂xu = 0, u(x, 0) = u0(x), (x, t) ∈ Ω× R+ (4.1)

equipped with periodic boundary conditions. The velocity field, β ∈ R, is assumed

constant. The solution to (4.1) is u0(x − βt), where we have identified u0 and its

periodic extension. To frame the Galerkin linear approximation problem, the do-

main Ω = (a, b) is partitioned into N intervals [xi, xi+1] for i = 0, 1, . . . , N − 1.

Let the quantity hi+ 1
2

:= |xi+1 − xi| denote the diameter of the cell [xi, xi+1].

Let {ψ0, ψ1, . . . , ψN−1} be the family composed of the continuous and piecewise

linear Langrange polynomials associated with the nodes {x0, . . . , xN} and define

Xh = span {ψ0, ψ1, . . . , ψN−1}.

Let U0(x) ∈ Xh denote a reasonable approximation of u0(x); it could be for

instance the Lagrange interpolate or the L2 projection of u0. An semi-discrete ap-
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proximate solution to (4.1), say U ∈ C1 ([0, T ] ; Xh), is constructed by using the

Galerkin technique. This approximation satisfies U(x, 0) = U0(x) and

b(U, v) :=
∫

Ω
(∂tU + β∂xU) v dx = 0, ∀v ∈ Xh, ∀t ≥ 0. (4.2)

Upon using the expansion U(t, x) =
∑N
j=1 U (t, xj)ψj(x), the above problem can be

reformulated as follows:

0 = b(U, ψi) =
N∑
j=1

(cij∂tU(t, xj) + bijU (t, xj)) (4.3)

cij =
∫

Ω
ψjψi dx, bij = β

∫
Ω
∂xψjψi dx. (4.4)

The result is a system of ordinary differential equations

CU̇(t) = −BU(t), (4.5)

which can be solved using suitable methods.

4.1.2 Consistency error analysis

The consistency error of approximation methods is traditionally obtained by in-

serting the exact solution into the discrete equations defining the approximation.

This leads us to the following

Definition 4.1 (Consistency error) Let u denote the solution to (4.1). The con-

sistency error, at the node xi, for the Galerkin approximation (4.2), where the coef-

ficients are defined by (4.4), is defined to be

Ri[u](t) =
Å∫

Ω
ψi dx

ã−1
Ñ

N∑
j=1

(cij∂tu(t, xj) + biju(t, xj))

é
. (4.6)
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The expression (4.6) is reminiscent of those found in the consistency error analysis of

finite difference schemes. The traditional approach to evaluate the truncation error

consists of taking the difference of the partial differential equation applied to the

solution and the scheme applied to the solution both taken at the fixed grid point

xi. Taylor series about xi are then utilized to find the consistency error. We define

the order of the truncation error for the linear Galerkin approximation in the same

spirit as in the finite difference case just discussed.

Definition 4.2 (Order of the consistency error) The consistency error is of or-

der α at the point xi if

Ri[u](t) = O (hα) (4.7)

In the next two subsections two one-dimensional example problems, one per section,

are discussed which utilize the linear Galerkin approximation just discussed; the

consistency error at a node xi is found for each utilizing the usual Taylor expansion

approach. The difference between the two examples is solely in the method utilized to

compute the coefficients bij and cij of the expressions (4.3) and, consequently, (4.6).

In the first case, that of the consistent mass matrix, no quadrature is utilized and the

coefficients are determined exactly; this yields a particular Taylor expansion showing

that the method is free of low-order dispersive consistency error. In the second case

a quadrature is utilized to ensure that the linear system (4.5) for the approximate

solution is diagonal; this approach is called mass lumping and is a common technique

in various fields of computational science due to its ease of solution at each time step.

It will be shown in the example that the employment of mass lumping introduces

a low-order dispersive consistency error. The examples given have been previously

discussed in [13]; their treatment incurs extra detail here in order to illustrate the

tedious nature of Taylor expansion based analysis.
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4.1.3 Analysis of the consistent mass matrix

Consider the model problem (4.1), with solution u, and the one dimensional

P1 Galerkin linear approximation, U , to (4.2). We will assume for simplicity that

the mesh {[xi, xi+1]}N−1
i=1 is uniform with step size h; e.g. |xi+1 − xi| = h for all

i = 1, 2, . . . , N − 1. Under this assumption the coefficients cij and bij in (4.6) satisfy

bij =


±β 1

2
if j = ±1,

0 otherwise,

cij =



1
6
h if j = ±1,

2
3
h if j = i,

0 otherwise.

Proposition 4.1 Consider the semi-discrete scheme (4.2) with the consistent mass

matrix. The dominating term in the consistency error at the grid points {xi}0≤i≤N

is fourth order and is equal to β h4

180
∂xxxxxu(xi, t).

Proof. This is a standard result, but we are going to go through the details of

the proof to illustrate the tedious nature of the Taylor expansion based traditional

analysis. Consider xi fixed, giving xi±1 = xi±h, so that the consistency error, (4.6),

is

Ri[u](t) =
2

3
∂tu(xi, t) +

1

6
∂tu(xi+1, t) +

1

6
∂tu(xi−1, t)

+ β
1

2h
(u(xi+1, t)− u(xi−1, t))

The classical Taylor expansion approach compares the above to the partial differential

equation evaluated at xi; to do so we need to formulate an approximation, using the

above, to ∂tu(xi, t) + β∂xu(xi, t). This is precisely the step in the process which can

be a source of difficulty even in one dimension; the main caveat being that human
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intervention is required where a purely computational analysis is preferable. By

adding and subtracting 1
3
∂tu(xi, t) to the above equation we can recover the term

∂tu(xi, t); gathering terms yields

Ri[u](t) = ∂tu(xi, t) +
1

6
(∂tu(xi+1, t)− 2∂tu(xi, t) + ∂tu(xi−1, t))

+
β

2h
(u(xi+1, t)− u(xi−1, t)) .

We make use of the Taylor expansions for ∂tu(xi±1, t) about xi given by

∂tu(xi+1, t) = ∂tu(xi, t)± h∂txu(xi, t) +
h2

2
∂txxu(xi, t)

± h3

6
∂txxxu(xi, t) +

h4

24
∂txxxxu(xi, t) + . . .

to reduce the expression ∂tu(xi+1, t)− 2∂tu(xi, t) + ∂tu(xi−1, t) to

∂tu(xi+1, t)− 2∂tu(xi, t) + ∂tu(xi−1, t)

= h2∂txxu(xi, t) +
h4

12
∂txxxxu(xi, t) +O(h6)

Since u solves (4.1) the time derivatives is replaced in the above expansion by using

∂txxu(xi, t) = ∂xx(∂tu(x, t)) = −β∂xxxu(x, t),

∂txxxxu(xi, t) = ∂xxxx(∂tu(x, t)) = −β∂xxxxxu(x, t).

Substituting back into the expression for the consistency error yields

Ri[u](t) = ∂tu(xi, t) +−βh
2

6
∂xxxu(xi, t) +−βh

4

72
∂xxxxxu(xi, t)

+ β
1

2h
(u(xi+1, t)− u(xi−1, t))
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Taylor expansions about xi in the term β 1
2h

(u(xi+1, t)− u(xi−1, t)) gives

β
1

2h
(u(xi+1, t)− u(xi−1, t)) = β∂xu(xi, t) + β

h2

6
∂xxxu(xi, t)

+ β
h4

120
∂xxxxxu(xi, t) +O(h6)

Summing these expressions gives the approximation desired

Ri[u](t) = ∂tu(xi, t) + β∂xu(xi, t)− β
h4

180
∂xxxxxu(xi, t) +O(h5)

= −β h4

180
∂xxxxxu(xi, t) +O(h5)

Where we used that u solves (4.1) to simplify the expression.

4.1.4 Analysis of the lumped mass matrix

The traditional rational for lumping the mass matrix in the linear system (4.5)

is that the matrix C is diagonal; this eliminates the necessity to invert any matrices

when using an explicit method to approximate the time evolution of the system. The

process of mass lumping equates to utilizing the quadrature formula
∫ b
a f(x) dx ≈

(b− a)1
2
(f(a) + f(b)) to compute the coefficients of (4.3) on each cell [xi, xi+1]. This

gives

bij =


±β 1

2h
if j = ±1,

0 otherwise,

cij =


1 if j = i,

0 otherwise.

Proposition 4.2 Consider the semidiscrete scheme given by (4.2) in the context of

the lumped mass matrix. The dominating term in the consistency error at the grid

points {xi}0≤i≤N is second-order and is equal to β h
2

6
∂xxxu(xi, t).
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Proof. The consistency error is

Ri[u](t) = ∂tu(xi, t) + β
1

2h
(u(xi+1, t)− u(xi−1, t))

The Taylor expansions for the terms u(xi±1, t) about xi are

u(xi+1, t) = u(xi, t)± h∂xu(xi, t) +
h2

2
∂xxu(xi, t)

± h3

6
∂xxxu(xi, t) +

h4

24
∂xxxxu(xi, t) +O(h5).

Utilizing these expansions in the expression for Ri[u](t) gives

Ri[u](t) = ∂tu(xi, t) + β∂xu(xi, t) + β
h2

6
∂xxxu(xi, t) +O(h4),

which concludes the proof.

The consistency error is therefore second-order and dispersive; this is in sharp

contrast with the fourth-order error from the previous example. The consistency

error arising from the use of the quadrature to approximate the coefficients cij, bij

comes at the cost of loosing super-convergence at the grid points.

4.1.5 An integral commutator to measure consistency error

We want to emphasize again that the Taylor approximation method for analysing

the consistency error, while familiar, relies on a tedious, error-prone process; one that

is, further, not easily forged into an algorithmic setting. Moreover, as will be shown

later, the Taylor approximation approach becomes increasingly intractable as we

consider higher dimensional problems; this is due to a non-linear increase in the

number of terms to be manipulated as the dimension increases. In this section we

introduce a new tool, the integral commutator, for analysis of the consistency error of
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the one dimensional model problem (4.1). The integral commutator approach offers

a direct route for determining the consistency error.

Definition 4.3 (Integral commutator in one dimension) Let g ∈ C0(Ω) and

let Π(g(x)) denote the continuous piecewise-linear Lagrange interpolant of the func-

tion g. Define the integral commutator for the P1 Galerkin linear approximation to

the one dimensional problem (4.1) by

Ci[g](t) =
Å∫

Ω
ψi dx

ã−1 Å∫
Ω
β [∂xΠ(g)− Π(∂xg)]ψi dx

ã
(4.8)

The principal motivation for the above definition is the following result, which up to

our knowledge, seems to be new:

Proposition 4.3 Suppose that u is the solution to model problem (4.1) then

Ri[u](t) = Ci[u](t)

Proof. Using (4.3), (4.6), and the fact that Π(∂tu+ β∂xu) = 0, we get

Ri[u](t)
∫

Ω
ψi dx =

N∑
j=1

(cij∂tu(t, xj) + biju(t, xj))

= b(
N∑
j=1

u(t, xj)ψj, ψi) = b(Π(u), ψi)

=
∫

Ω
[∂tΠ(u) + β∂xΠ(u)]ψi dx−

∫
Ω

Π(∂tu+ β∂xu)ψi dx

=
∫

Ω
[(∂tΠ(u)− Π(∂tu)) + β(∂xΠ(u)− Π(∂xu))]ψi dx
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From ∂tΠ(u(x, t)) =
∑N−1
j=0 ∂t (u(xj, t)ψj(x)) = [∂tu](xj, t)ψj(x) = Π(∂tu) it follows

that ∂tΠ(u)− Π(∂tu) = 0, which in turn implies that

Ri[u](t)
∫

Ω
ψi dx =

∫
Ω
β [∂xΠ(u)− Π(∂xu))]ψi dx = Ci[u](t)

∫
Ω
ψi dx

This concludes the proof.

Proposition 4.3 shows that the integral commutator is an alternate form for the

consistency error. At first it is not clear how to analyse the commutator expression

as it requires the use of the solution to (4.1) to be wielded in some way other than

the a-posteriori use of a Taylor expansion. It turns out that a key to analysis is an

a-priori use of Taylor’s theorem. Assuming that tu(t, x) is continuously k + 1 times

differentiable, then Taylor’s theorem yields u(x, t) = P ik[u](x, t) +Ri
k[u](x, t), where

P ik[u](x, t) is the Taylor polynomial of degree k expressed about the point xi and

Ri
k[u](x, t) is the corresponding remainder term:

P ik[u](x, t) = u(xi, t) +
1

2
∂xu(xi, t)(x− xi) + . . .+

1

k!
∂(k)
x u(xi, t)(x− xi)k

Ri
k[u](x, t) =

1

k!
(x− xi)k+1

∫ 1

0
(1− s)k∂k+1

x u(s(x− xi), t)ds

To simplify the discussion we assume that the point of interest is xi = 0 and therefore

drop the superscripts in Taylor terms; the analysis is the same at every point. Writing

u(x, t) = Pk[u](x, t) +Rk[u](x, t); then

C0(u) = C0 (Pk[u](x, t)) + C0 (Rk[u](x, t))

by linearity. Assume that C0(Rk[u](x, t)) = O(hk+1), a proposition which will be

proved in Lemma 4.1 for k odd, then it is evident by Proposition 4.3 that the
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consistency error at the origin, R0[u](x, t), can be analysed by considering only

C0(Pk[u](x, t)), e.g.

Corollary 4.1 Under the assumption that the integral commutator applied to the

Taylor remainder satisfies C0(Rk[u](x, t)) = O(hk+1) then the consistency error is

R0[u](t) =
∑k
m=0

1
m!
∂(m)
x u(0, t)C0(xm) +O(hk+1).

We now reprove Proposition 4.1 via the integral commutator; the reader should

note that, in the proof, tedious or ’tricky’ manipulations have been replaced by direct

computation via the integral commutator.

Proposition 4.4 (Integral commutator analysis) The semi-discrete scheme of

equation (4.2) with the consistent mass matrix has fourth order consistency error at

the grid points. That is, the expression R0[u](x, t) = O(h4).

Proof. From Corollary 4.1 and the selection of k = 3 it suffices to show that

C0(1) = C0(x) = C0(x2) = C0(x3) = 0. The cases C0(1) and C0(x) are immediately

zero. This follows from the fact that P1 and ∂xP1 = P0 are both invariant under Π.

Now consider C0(x2). The Lagrange interpolation preserves even-ness and odd-ness

of a function. That is, if g is an even function then so is Π(g); this can be checked as

it holds nodally, at each xj, and Π(g) is linear. Therefore ∂xΠ(x2) is the derivative of

an even function and therefore odd; likewise Π(∂xx
2) = Π(2x) = 2x is odd. Hence,

since ψ0 is even it follows that

∫
Ω

Π
Ä
∂xx

2
ä
ψ0(x) dx =

∫
Ω
∂xΠ

Ä
x2
ä
ψ0( dx) dx = 0
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Thus, the only task remaining is to compute C0(x3); to do so we split the integration

over the cells [−h, 0] and [0, h].

C0

Ä
x3
ä

=
β

h

∫ 0

−h

î
∂xΠ

Ä
x3
ä
− Π

Ä
∂xx

3
äó
ψ0 dx+

β

h

∫ h

0

î
∂xΠ

Ä
x3
ä
− Π

Ä
∂xx

3
äó
ψ0 dx

On both cells, [−h, 0] and [0, h], we have Π(x3) = h2x; on the cell [−h, 0] we have

3Π(x2) = −3hx, and on [0, h] we have 3Π(x2) = 3hx. Therefore:

∫ 0

−h

î
∂xΠ

Ä
x3
ä
− Π

Ä
∂xx

3
äó
ψ0 dx

=
∫ 0

−h

î
h2 + 3hx

ó
ψ0(x) =

∫ 0

−h

î
h2 + 3hx

ó Ç
1 +

1

h
x

å
dx = 0

∫ h

0

î
∂xΠ

Ä
x3
ä
− Π

Ä
∂xx

3
äó
ψ0 dx

=
∫ h

0

î
h2 − 3hx

ó
ψ0(x) =

∫ h

0

î
h2 − 3hx

ó Ç
1− 1

h
x

å
dx = 0

The result follows readily.

Remark 4.1 It is worth recalling that we made the simplifying assumption ψi = ψ0

by invoking a linear-shift change of variables. This can be done without loss of gen-

erality because the basis {ψ0, ψ1, . . . , ψN−1} is invariant under linear transformation;

it can also be noted that, by rescaling, we can consider the mesh size to be h = 1. As

a result the analysis of the commutator, for P1 finite elements, need only be carried

out for ψi = ψ0 on the interval [−1, 1] = support(ψ0). This theme will be repeated

in higher dimensions and is a general simplifying assumption assuming that the sup-
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ports of the basis functions {ψ0, ψ1, . . . , ψN−1} are self-similar; e.g. all supports can

be mapped into the support of ψ0 by a linear transformation so that there is only one

type of support.

This concludes the main points of the section; the regularity assumption utilized

in Corollary 4.1 is proven for the general n-dimensional case in Lemma 4.1.

4.2 Higher dimensional extensions and anti-dispersion

In this section the one dimensional concepts are extended to arbitrarily high

dimensions; in practice dimension two and three are of the most concern.

4.2.1 The integral commutator in arbitrary dimensions

In this section we briefly discuss the requisite definitions for the integral com-

mutator in high dimensions. Multi-index notation is utilized throughout the dis-

cussion; by a multi-index we mean an n-tuple α = (α1, α2, ..., αn) and the tuple 1m

is one in the mth position and zero elsewhere; e.g. (1m)j = δmj . The length of a

multi-index is |α| = ∑n
i=1 αi and a differential operator notation for multi-indices is

Dα := ∂α1
x1
∂α2
x2
..∂αnxn . We begin by re-stating the model problem, (4.1), in n dimen-

sional space. Let Ω be the domain Rn or the n-dimensional torus Tn. We seek the

solution to the following transport problem:

∂tu+ β · ∇u = 0, u(x, 0) = u0(x), (x, t) ∈ Ω× R+ (4.1)

equipped with periodic boundary conditions. The velocity field, β ∈ Rn, is again

assumed constant. The solution to solution to (4.1) is u0(x−βt) where we abusively

denote u0 the periodic extension of u0.

To frame the Galerkin linear approximation problem proceed by partitioning the

domain Ω into a mesh, Th, of elements (tetrahedra, hypercubes, etc) of diameter
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h and let N denote the number of degrees of freedom. The mesh family {Th}h>0

is assumed to be shape-regular. Let {ψ0, ψ1, . . . , ψN−1} be the family composed of

the continuous and piecewise linear Lagrange polynomials associated with the nodes

{x0, . . . , xN}. Let K ∈ Th denote a mesh element (a simplex, a quadrangle or a

parallelepiped); the diameter of K as well as a global mesh quantity, h, are defined

by

hK := diam(K) := max
x1,x2∈K

|x1 − x2| (4.2)

h := max
K∈Th

hK . (4.3)

Let Pk(Rn) and Qk(Rn) denote the polynomials of total degree k and partial

degree k, respectively, in n spatial dimensions. In the context of the present work

we will focus on piecewise linear approximation. Letting P denote either P1(Rn) or

Q1(Rn), we define the finite element approximation space as follows:

Xh =
¶
v ∈ C0(Ω;Rn) | v|Th ∈ P, ∀Th ∈ Th

©
, (4.4)

where C0(Ω;Rn) denotes the space of real-valued functions which are continuous over

Ω. Whenever the symbol Xh is used in the discourse the interpretation is ‘either

P 1(Ω) or Q1(Ω)’. Again we let U0(x) denote a reasonable approximation of u0(x);

such as the Lagrange interpolate or L2 projection of u0. An approximate solution

to (4.1) can then be constructed via an application of the Galerkin technique. A

solution U ∈ C1([0, T ]; Xh) is sought which satisfies U(x, 0) = U0(x) and

b(U, v) :=
∫

Ω
(∂tU + β · ∇U)v dx = 0, ∀v ∈ Xh. (4.5)
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In order to compute the solution U to (4.5) we once more represent U(t, x) in

terms of the basis functions {ψ0, ψ1, . . . , ψN−1} as U(t, x) =
∑N
j=1 U(t, xj)ψj(x). Then

0 = b(U, ψi) = b

Ñ
N∑
j=1

U(t, xj)ψj(x), ψi

é
=

N∑
j=1

(cij∂tU(t, xj) + bijU(t, xj)) (4.6)

cij =
∫

Ω
ψjψi dx, bij =

n∑
m=1

βm

∫
Ω
∂xmψjψi dx (4.7)

Note that the definition of consistency error, equation (4.6), is dimension inde-

pendent and that the order of the consistency error, equation (4.7), need only be

modified by replacing hi+ 1
2

with h; we do not repeat these definitions here. The

integral commutator in n dimensions is defined similarly to (4.1) :

Definition 4.1 (Integral commutator in n dimensions) Let g ∈ C0(Ω) and Π(g(x))

denote the P1 piecewise-linear Lagrange interpolant of the function g; e.g. Π(g(x)) =∑N
i=1 g(xi)ψi(x). Define the integral commutator for the P1 Galerkin linear approxi-

mation to the one dimensional problem (4.1) by

Ci[g] =
Å∫

Ω
ψi dx

ã−1
(

n∑
m=1

∫
Ω
βm [∂xmΠ(g)− Π(∂xmg)]ψi dx

)
(4.8)

Remark 4.1 If, in addition, g is a function of time such that ∀t0 ∈ [0, T ] we have

g(x, t0) ∈ C0(Ω) the extension of the integral commutator definition is immediate

and depends on t.

Some results are now established for the commutator which will be useful for

later analysis; we apply the commutator to a particular family of functions and, in

addition, prove an equivalence which will simplify consistency error analysis.

98



Corollary 4.1 Let α be a multi-index with |α| ≥ 1. Denote by ψi a nodal basis

function of Xh corresponding to the node xi. Then Ci[(x− xi)
α] is of order less than

or equal to O(h|α|−1)

Proof. Consider the quantity

Ci[(x− xi)
α] =

Å∫
Ω
ψi

ã−1 n∑
m=1

∫
Ω
βm [∂xmΠ ((x− xi)

α)]

−
Å∫

Ω
ψi

ã−1 n∑
m=1

∫
Ω
βm [Π (∂xm (x− xi)

α)]ψi dx.

Fix m ∈ {1, 2, ..., n}; the proof proceeds by showing that each of the expressions∫
Ω [∂xmΠ((x− xi)

α)]ψi dx and
∫

Ω [Π(∂xm (x− xi)
α))]ψi dx are order less than or equal

to O(h|α|−1). Accordingly, due to the multiplication by ψi in the integrand of these

expressions, we need only consider the integral over the support set Si = support(ψi)

and not the entire domain Ω. It suffices to prove that the order estimates hold when

integrating over an arbitrary cell K ⊂ Si, since, the mesh family being shape-regular,

the number of cells in Si is uniformly bounded with respect to h. For the first term

is estimated as follows:

|
∫
K

[∂xmΠ ((x− xi)
α)]ψi dx| ≤ ‖∂xmΠ((x− xi)

α ‖L∞(Ω)‖ψi‖L1(K)

≤ c h−1
K ‖Π((x− xi)

α ‖L∞(K)‖ψi‖L1(K)

≤ c h−1
K

Ç
max

xj∈V (K)
|xj − xi|α

å
‖ψi‖L1(K)

≤ c h−1
k h

|α|
K ‖ψi‖L1(K) ≤ c h|α|−1‖ψi‖L1(K),

where V (K) denotes the set of vertices of K. Note that we used the inverse inequality

‖∂xmΠ(f)‖L∞(K) ≤ c h−1
K ‖Π(f)‖L∞(K) and the property of the Lagrange interpolation
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‖Π(f)‖L∞(K) ≤ max
xj∈V (K)

|f(xj)|. The second quantity is treated similarly:

|
∫
K

[Π (∂xm (x− xi)
α)]ψi dx| ≤ ‖ψi‖L1(K)‖Π (∂xm (x− xi)

α) ‖L∞(K)

≤ αm‖Π
Ä
(x− xi)

α−1m
ä
‖L∞(K)‖ψi‖L1(K)

≤ c max
xj∈V (K)

|xj − xi|α−1m‖ψi‖L1(K)

≤ c h
|α|−1
K ≤ Ch|α|−1‖ψi‖L1(K).

This completes the proof since
∑
K⊂Si ‖ψi‖L1(K) =

∫
Ω ψi.

Remark 4.2 The proofs of the inverse inequalities and properties properties of the

Lagrange interpolant utilized to establish corollary (4.1) can be found in [8].

Corollary 4.2 Fix a choice of k ∈ N and a point xi ∈ Rn. Then Ci[(x− xi)
α] = 0

for all α with |α| ≤ k if and only if Ci[x
α] = 0 for all α with |α| ≤ k.

Proof. (←): Assume that Ci[x
α] = 0 for all α with |α| ≤ k. Let a multi-index

α = (α1, α2, . . . , αn) be such that |α| ≤ k and consider Ci[(x − xi)
α]. Utilizing the

binomial theorem to each component of (x− xi)
α and expanding the result yields a

sum of terms each having total order less than or equal to k. Applying the linearity

of the integral commutator, i.e. Ci[af + bg] = aCi[f ] + bCi[g], to the expansion of

(x−xi)
α and using the hypothesis renders each term in the resulting sum zero. This

concludes this direction of the proof.

(→): We proceed by induction on the order of α; we need to show that Ci[x
α] = 0

for all |α| ≤ k assuming that whenever |α| ≤ k all expressions Ci[(x−xi)
α] = 0 holds.

For the base case assume that |α| = 0. Then 1 = (x− xi)
α = xα and the result

follows by hypothesis. Now suppose that Ci[x
α0 ] = 0 for all |α0| ≤ j < k; we need
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to show that Ci[x
α] = 0 for all |α| = j + 1. Fix an α with |α| = j + 1. Consider

(x − xi)
α; by hypothesis Ci[(x − xi)

α] = 0. The leading term of the expansion of

(x − xi)
α is the product of the leading terms of the individual factors (xj − xji )

αj .

E.g. the leading term is precisely xα and (x− xi)
α = xα + p(x) where p(x) is a sum

of terms of total degree less than or equal to |α|−1 = j. The linearity of the integral

commutator and the hypothesis give

0 = Ci[(x− xi)
α] = Ci[x

α] + Ci[p(x)] = Ci[x
α]

since, by linearity of the commutator and the inductive hypothesis, Ci[p(x)] = 0.

This concludes the proof.

Remark 4.3 When performing point-wise consistency error analysis, in the upcom-

ing results, corollary (4.2) will allow us to trade a complex expression, Ci[(x−xi)
α],

for the simpler expression Ci[x
α].

Just as in the one-dimensional case, as given in proposition (4.3), we have the

principal result of equivalence of the integral commutator and consistency error:

Proposition 4.1 Suppose that u is the solution to the model problem (4.1) then

Ri[u](t) = Ci[u](t)

Proof. The arguments of proposition (4.3) slightly modified
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Ri[u](t)
∫

Ω
ψi dx =

N∑
j=1

(cij∂tu(xj, t) + biju(xj, t))

= b

Ñ
N∑
j=1

u(xj, t)ψj, ψi

é
= b (Π(u), ψi)

=
∫

Ω
[∂tΠ(u) + β · ∇Π(u)]ψi dx−

∫
Ω

Π (∂tu+ β · ∇u)ψi dx

=
∫

Ω

[
(∂tΠ(u)− Π(∂tu)) +

n∑
m=1

βm(∂xmΠ(u)− Π (∂xmu))

]
ψi dx

The rest now follows, just as in proposition (4.3), from the key property of the

Lagrange interpolant, namely : ∂tΠ(u)− Π(∂tu) = 0.

∫
Ω

[
(∂tΠ(u)− Π(∂tu)) +

n∑
m=1

βm(∂xmΠ(u)− Π(∂xmu))

]
ψi dx =

n∑
m=1

∫
Ω
βm [∂xmΠ(u)− Π(∂xmu))]ψi dx = Ci[u](t)

∫
Ω
ψi dx

This concludes the proof.

Just as in the one dimensional case the key to further analysis via the integral

commutator is the a-priori expansion of u, the solution to equation (4.4), in terms of

of the Taylor series. Assuming again that u is k+ 1 times continuously differentiable

in the variables x = (x1, x2, . . . , xn) the Taylor polynomial term P ik[u] and remainder

Ri
k[u] are given by

102



P ik[u](x, t) =
k∑
|α|=0

1

α!
Dαu(xi, t)(x− xi)

α (4.9)

Ri
k[u](x, t) =

∑
|α|=k+1

|α|
α!

(x− xi)
α
∫ 1

0
(1− s)|α|−1Dαu(xi + s(x− xi), t)ds (4.10)

Where α = (α1, α2, . . . , αn) is a multi-index, |α| := α1 + α2 + . . . + αn, α! :=

α1!α2! . . . αn! and if y = (y1, y2, . . . , yn) then yα := (yα1
1 , yα2

2 , . . . , yαnn ). previously

we simplify the discussion by assuming the mesh point of interest is x0 and drop the

superscript in the Taylor terms; we proceed by analysing C0[u] and R0[u]. Utilizing

the expansion about the node xi, as well as corollary (4.2), the n dimensional result

to corollary (4.1) now follows:

Corollary 4.3 ( Consistency-error analysis for the Integral Commutator)

Under the assumption that the integral commutator applied to the Taylor remainder

is of the order Ci(Ri
k[u](x, t)) = O(hk+1) in n dimensions then

Ri[u](t) =
k∑
|α|=0

1

α!
Dαu(xi, t)Ci(x

α) +O(hk+1)

The hypothesis Ci(Ri
k[u](x, t)) = O(hk+1), for odd k, in n dimensions is proven

in lemma (4.1), assuming a particular symmetry, closes the section. Before giving

the proof of the lemma we remark that it is not the case, in general, that in n

dimensions we have R0[u] = O(h4) as we do in one dimension; we will come to

see that, in fact, this is true in two dimensions if the mesh is selected with certain

symmetry properties. We will analyse to what extent this result does not depend on

the velocity, β, or initial date, u0(x), of the model problem and this will motivate

the definition of an anti-dispersive approximation setting.
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In order to establish lemma (4.1) the concept of a centro-symmetric set is needed;

we call a convex set, W , centro-symmetric about a point y ∈ W if whenever x ∈ W

then the line l(t) = (1 − t)y + tx is in W for t ∈ [−1, 1]. The point l(−1) is often

denoted by l(−1) = −x or l(−1) = x∗; this point is the ’reflection’ of x through the

point y.

Lemma 4.1 Let k ∈ N be odd; then if u is k+ 1 times differentiable in the variables

x = (x1, x2, . . . , xn) and Si = support(ψi) is centro-symmetric about the point xi then

Ci(Ri
k[u]) = O(hk+1).

Proof. By a linear change of coordinates we may assume, without loss of gener-

ality, that xi = 0 and that ψi = ψ0; we may then proceed by analysing Ci(R0
k[u]).

By definition

C0(R0
k[u](t, x))

=
Å∫

Ω
ψ0

ã−1
(

n∑
m=1

∫
Ω
∂xmΠ(Rk[u](t,x)))ψ0dx−

∫
Ω

Π(∂xmRk[u](t,x)))ψ0dx

)

The proof proceeds by analysing the two summed inner terms separately and showing

that they are each O(hk+2); the result will then follow from summing and the fact

that
∫

Ω ψ0 dx = O(h). In order to facilitate the remainder of the proof define the

function φj(s) = Dαu(t, sxj). The derivative φ′j(s) then satisfies

|φ′j(s)| = |
n∑

m=1

xj,mD
α+1mu(t, sxj)|

≤
n∑

m=1

|xj,m| max
|β|=|α|+1

|Dβu(t, sxj)|

≤ Ch max
|β|=|α|+1

|Dβu(t, sxj)| (4.11)

First term
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Consider the term
∫

Ω ∂xmΠ(R0
k[u](t,x)))ψ0dx and let S0 = support(ψ0) then

∫
Ω
∂xmΠ(R0

k[u](t,x)))ψ0dx =
N∑
j=1

R0
k[u](t, xj)

∫
S0

∂xmψjψ0 (4.12)

=
N/2∑
j=1

(R0
k[u](t, xj)−R0

k[u](t,−xj))
∫
S0

∂xjψjψ0

Note that each expression of the form ∂xmψj is either zero or O(h−1); therefore∫
S0
∂xmψjψ0 = O(C) since

∫
S0
ψ0 = O(h). Expanding the difference of the terms

(R0
k[u](t, xj)−R0

k[u](t,−xj)) in the above expression and using the fact that k is

odd yields

R0
k[u](t, xj)−R0

k[u](t,−xj)

=
∑

|α|=k+1

k + 1

α!
xαj

∫ 1

0
(1− s)k [(Dαg)(t, sxj)− (Dαg)(t,−sxj)] ds

=
∑

|α|=k+1

k + 1

α!
xαj

∫ 1

0
(1− s)k [φ(s)− φ(−s)] ds

=
∑

|α|=k+1

k + 1

α!
xαj

∫ 1

0
(1− s)k

∫ s

−s
φ′j(ξ)dξ

Taking absolute values and utilizing inequality (4.11) yields

|R0
k[u](t, xj)−R0

k[u](t,−xj)| ≤
∑

|α|=k+1

k + 1

α!
|xj|α

∫ 1

0

∫ s

−s
|φ′j(ξ)dξ|

≤
∑

|α|=k+1

k + 1

α!
Ch|xj|α max

|β|=|α|+1
|Dβu(t, sxj)|

= O(hk+2)
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Applying this inequality to (4.12) gives

|
∫

Ω
∂xmΠ(R0

k[u](t,x)))ψ0dx| ≤
N/2∑
j=1

|(R0
k[u](t, xj)−R0

k[u](t,−xj))||
∫
S0

∂xjψjψ0dx|

≤
N/2∑
j=1

O(hk+2)

Ç
|
∫
S0

∂xmψjψ0dx|
å

= O(hk+1)

This is the desired result for the first term.

Second term

For the second term :
∫
Ω Π(∂xmR0

k[u](t,x))ψ0dx. By definition this is

∫
Ω

Π(∂xmR0
k[u](t,x)))ψ0dx =

N∑
j=0

∂xmR0
k[u](t,xj)

∫
S0

ψjψ0dx

= O(h)
N∑
j=0

∂xmR0
k[u](t,xj)

Since terms of the form
∫
S0
ψjψ0 are O(h). To calculate the term ∂xmR0

k[u](xj) the

integral remainder equation (4.10) is utilized. Consequently

∂xmR0
k[u](t,x) = ∂xm

Ñ ∑
|α|=k+1

k + 1

!α

n∏
l=1

xαll

∫ 1

0
(1− s)kDαg(t, sx)ds

é
=

∑
|α|=k+1

k + 1

α!
(A(α; t,x) +B(α; t,x))

Where, letting x = (x1, x2, . . . , xn), the terms A(α; t,x) and B(α; t,x) are

A(α; t,x) =


αmx

αm−1
m

∏
l 6=m x

αl
l

∫ 1
0 (1− s)k(Dαg)(t, sx)ds if αm 6= 0

0 if αm = 0

B(α; t,x) =
n∏
l=1

xαll

∫ 1

0
(1− s)ks(Dα+1mg)(t, sx)ds

and 1m is the multi-index which is one in the mth position and zero elsewhere. Using
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these expressions the expression Π(∂xmRk[u](t,x)) is

Π(∂xmR0
k[u](t,x))

=
N∑
j=1

î
∂xmR0

k[u](t,xj)
ó
ψjψ0 =

N∑
j=1

[A(α; t,xj) +B(α; t,xj)]ψjψ0

=
N/2∑
j=1

[A(α; t,xj) + A(α; t,−xj) +B(α; t,xj) +B(α; t,−xj)]ψjψ0

The constituent expressions A(α; t,xj) + A(α; t,−xj), for αj 6= 0, and B(α; t,xj) +

B(α; t,−xj) can be simplified; note that the first simplification uses the fact that k

is odd.

A(α;t,xj) + A(α; t,−xj)

= αm(xj)
αm−1
m

n∏
l 6=m

(xj)
αl
l

∫ 1

0
(1− s) [(Dαg(t, sxj)−Dαg(t,−sxj)] ds

= αm(xj)
αm−1

∏
l 6=m

(xj)
αl
l

∫ 1

0
(1− s)k

∫ 1

0
∇(Dαg)(ξsxj) · 2xjdξds

B(α; t,xj) +B(α; t,−xj) =

n∏
l=1

(xj)
αl
l

∫ 1

0
(1− s)ks

î
(Dα+1mg)(t, sxj) + (Dα+1mg)(t,−sxj)

ó
ds

These equations yield the estimates

|A(α; t,xj) + A(α; t,−xj)| ≤ O(hk)

(
Ch sup

|α|=k+2

||Dαg||∞
)

= O(hk+1)

|B(α; t,xj) +B(α; t,−xj)| ≤ O(hk+1)

(
2C sup

|α|=k+2
||Dαg||∞

)
= O(hk+1)
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Using these estimates the result is

|
∫

Ω
Π(∂xmRk[u](t,x)))ψ0dx| ≤

N∑
j=0

|∂xmRk[u](t,xj)||
∫
S0

ψjψ0dx|

≤ O(h)
N∑
j=1

Ñ
|
∑

|α|=k+1

k + 1

α!
(A(α; t,xj) +B(α; t,xj)) |

é
≤ O(h)

N/2∑
j=1

∑
|α|=k+1

k + 1

α!
(|A(α; t,xj) + A(α; t,−xj)|) +

O(h)
N/2∑
j=1

∑
|α|=k+1

(|B(α; t,xj) +B(α; t,−xj)|)

= O(h) O(hk+1) = O(hk+2)

This concludes the result for term two.

Using the derived results and the fact that

|C0(R0
k[u](t, x))| ≤ h

n∑
m=1

Å
|
∫

Ω
∂xmΠ(R0

k[u](t,x)))ψ0dx|
ã

+

h
n∑

m=1

Å
|
∫

Ω
Π(∂xmR0

k[u](t,x)))ψ0dx|
ã

concludes the proof of the proposition.

Remark 4.4 Note that the support of ψ0 in one dimension is centro-symmetric;

this property was used in the one-dimensional proof implicitly when the fundamental

theorem of calculus was utilized. Indeed, the centro-symmetry assumption is utilized

to employ the fundamental theorem in higher dimensions.

4.2.2 Anti-dispersive spaces

Before proceeding to computational results in higher dimensions we discuss the

last concept of note for integral commutator based analysis of the model problem
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(4.1); anti-dispersivity. Intuitively speaking a Galerkin approximation setting is

called anti-dispersive if for every model problem of the form (4.1) the consistency

error satisfies Ci[u](t) = O(h4) for all i = 0, 1, . . . , N − 1. Proposition (4.4) showed

that P 1(R1) was anti-dispersive if a uniform mesh Th, of size h, were chosen. In

general both the mesh and the underlying approximation space play a role in the

consistency error; we refer to the choice of approximation space and underlying mesh

as an approximation setting. In two dimensions we will show that there exists a uni-

form mesh Th such that the P 1(R2) finite element approximation is an anti-dispersive

setting. For the purposes of this paper we will only be considering approximation

settings where the mesh, Th is uniform, of size h, and the finite element spaces are

one of

P k(Rn) =
¶
v ∈ C0

#(Rn) | ∀Th ∈ Th v|Th ∈ Pk(Rn)
©

Qk(Rn) =
¶
v ∈ C0

#(Rn) | ∀Th ∈ Th v|Th ∈ Qk(Rn) |
©

Definition 4.2 The finite element space P k(Rn) or Qk(Rn), defined on a uniform

mesh Th, is called an anti-dispersive setting, for the model problem (4.1), if and

only if for all i = 0, 1, . . . , N − 1 and t ∈ [0, T ] the point-wise consistency error

satisfies

Ri[u](t) = O(h4)

for every model problem of the form (4.1).

Provided some additional structure is assumed a necessary and sufficient condi-

tion for an approximation setting of to be anti-dispersive is achieved :

Lemma 4.2 Consider the finite element space Xh(Rn) = P k(Rn) or Xh(Rn) =
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Qk(Rn) defined on a uniform mesh Th; then if Th is such that for each basis function

{ψ0, ψ1, . . . , ψN−1} support(ψi(x)) is centro-symmetric about the node xi then the

approximation setting (Xh(Rn), Th) is anti-dispersive if and only if for every i =

0, 1, . . . , N − 1, every m = 0, 1, . . . , n and every multi-index α with |α| ≤ 3 we have

∫
Ω

[∂xmΠ(xα)− Π(∂xmxα)]ψi(x)dx = 0 (4.13)

Proof. (←) : Assume that for every i = 0, 1, . . . , N − 1, every m = 0, 1, . . . , n

and every multi-index α with |α| ≤ 3 equation (4.13) holds. Then, directly from

definition (4.1), for every i = 0, 1, . . . , N − 1, every m = 0, 1, . . . , n and every multi-

index α with |α| ≤ 3 we have Ci[x
α] = 0. Therefore, from corollary (4.3) and lemma

(4.1), the approximation setting is anti-dispersive.

(→) : Now assume the approximation setting is anti-dispersive. We need to

show that for every i = 0, 1, . . . , N − 1, every m = 0, 1, . . . , n and every multi-

index α with |α| ≤ 3 equation (4.13) holds; fix a particular choice of i and m in

this range and let xi = ((xi)1, (xi)2, . . . , (xi)m) be the corresponding ith degree of

freedom. By hypothesis, for all model problems of the form (4.1), we have that

Ri[u] = O(h4). Since, by lemma (4.1), Ci[x
α] = O(h|α|−1) corollary (4.3) and lemma

(4.1) imply that, for all model problems,
∑3
|α|=0

1
α!
Dαu(xi, t)Ci(x

α) = 0 must follow;

in particular it must hold for specific model problems of our choosing. Fix a multi-

index α0 = (α1, α2, . . . , αn) with |α0| ≤ 3. Let t0 ∈ [0, T ] be fixed and take β =

1m, being one in the mth position and zero elsewhere, and consider the initial data

u0(x) =
n∏
j=1

[((x)j − (xi)j)]
(α0)j . The corresponding solution to (4.1) is then

u(x, t) = [((x)m − (xi)m − t)](α0)m
n∏

j 6=m
[((x)j − (xi)j)]

(α0)j
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Let α̂ be a multi-index; we then have Dα̂u(xi, t) = (α0!)δ(α0, α̂); here, the quantity

δ(α0, α̂) is defined to be equal to one if α0 = α̂ and zero otherwise. Therefore the

identity
∑3
|α|=0

1
α!
Dαu(xi, t)Ci(x

α) = 0, applied to this particular problem, implies

that Ci[x
α0 ] = 0 must follow. Since β = 1m it follows that

0 = Ci[x
α0 ] =

∫
Ω

[∂xmΠ(xα0)− Π(∂xmxα0)]ψi(x)dx

Since α0 was any multi-index satisfying |α0| ≤ 3 the above must hold for all such

multi-indices; this is precisely the statement that equation (4.13) must hold for all

|α| ≤ 3. In addition, note that equation (4.13) is independent of the choice of β or

initial data u0(x) for the model problem (4.1). This concludes the proof of the ’only

if’ statement and, hence, the corollary.

Lemma 4.3 Suppose the hypotheses of Lemma 4.2 are satisfied. Then for every

0 ≤ |α| ≤ 2 equation (4.13) holds.

Proof. We argue case by case and utilize the centro-symmetry hypothesis of the

basis function support sets. We may consider the node xi to be the origin by a linear

shift and an application of corollary 4.2. Suppose that |α| = 0. Then xα = 1 and

Kj(1) = 0. If |α| = 1 then Π(xα) ∈ Xh so that, once again, Kj(x
α) = 0. Note that

if f is even (resp. odd) then Π(f) is even (resp. odd) and therefore Kj(f) is odd

(resp. even). It follows that if |α| = 2 then Kj(x
α) is odd and since Si = support(ψi)

is centro-symetric about xi with ψi(x) even then
∫
Si
Kj(x

α)ψidx = 0

Combining these two results together in a final corollary gives

Corollary 4.4 Suppose the hypotheses of Lemma 4.2 are satisfied. Then the approx-

imation setting (Xh, Th) is anti-dispersive if and only if for every i = 0, 1, . . . , N −1,
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every m = 0, 1, . . . , n and |α| = 3

∫
Ω

[∂xmΠ(xα)− Π(∂xmxα)]ψi(x)dx = 0

Proof. Lemmas 4.2 and 4.3.

4.3 Q1(Rd) is anti-dispersive

In this section we show that the approximation setting Q1(Rd) on a uniform mesh

is anti-dispersive. The one dimensional result generalizes to d dimensions and will

be presented beforehand; in fact we will see that the desired one dimensional result

was already established in section 4.1.5. For g ∈ C0(Ω) let Kj(f) := ∂xjΠ(f) −

Π(∂xjf) denote the kernel of equation (4.13) and recall the definition Qk(Rn) =¶
v ∈ C0

#(Rn) | ∀Th ∈ Th v|Th ∈ Qk(Rn) |
©
; furthermore, the space of polynomials of

partial degree k over Rd is Qk(Rd) = span ({xα1
1 x

α2
2 ...x

αd
d | 1 ≤ α1, α2, ..., αd ≤ k}).

We can immediately establish the one-dimensional result.

Corollary 4.1 Q1(R) is anti-dispersive

Proof. From corollary 4.4 we need to show that
∫

ΩK1(xα)ψi(x) dx = 0 for α =

0, 1, 2, 3 and for every 0 ≤ i ≤ N − 1 where N − 1 is the total number of nodes of a

uniform mesh Th. Since all of the sets support(ψi(x)) have the same geometry type

in one dimension it suffices to show that
∫

ΩK1(xα)ψ0(x) dx = 0 for α = 0, 1, 2, 3. All

other values of i will follow from a linear change of variables and corollary 4.2. This

result is precisely what is shown in the proof of proposition 4.4 as Q1(R) = P 1(R).

This proves this claim.

We now want to approach the d dimensional result. To do so fix a choice of d

and define a collection of sign functions corresponding to the d coordinate positions
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of x = (x1, x2, . . . , xd) ∈ Rd as σi(x) := H(xi)−H(−xi) Where H : R→ R denotes

the Heaviside function

H(x) =


1 : x > 0

0 : x ≤ 0

The proof of the d-dimensional result will be shown to be reducible to proving

the conditions of Corollary 4.4 hold for i = 0. Towards that end note that the

basis function ψ0(x) is supported on the d-dimensional hypercube support(ψ0(x)) =

[−1, 1]d. If we consider the Lagrange interpolant restricted to the support of ψ0 we

get the following result

Lemma 4.1 Consider a monomial p(x1, x2, . . . , xd) =
d∏
i=1

xαiai ∈ Qk(Rd) and for each

1 ≤ j ≤ d define the monomial p̂j(x1, x2, . . . , xd) :=
d∏

i=1,i 6=j
xαiai . The Lagrange inter-

polant Π : C0(Rd) → Q1([−1, 1]d) and the integral kernel Kj : C1(Rd) → C0(Rd)

applied to p(x) satisfy the following relations

Π(p) = Π
Ä
xα1
a1
xα2
a2
. . . xαdad

ä
=

d∏
i=1

Π (xαii ) =
d∏
i=1

Ä
σi(xi)

αi+1xi
äH(αi)

(4.1)

Kj(p) = Kj
Ä
xα1
a1
xα2
a2
. . . xαdad

ä
= Kj

Ä
x
αj
j

ä
Π
Ä
p̂j
ä

(4.2)

Proof. Note first that H(αi) is the Heaviside function applied to the exponent

αi ≥ 0 and has the effect of setting (σi(xi)
αi+1xi)

H(αi) = 1 if αi = 0. The Heaviside

function is utilized in this manner for overall compactness of notation. To establish

equation (4.1) define S(x) =
d∏
i=1

(σi(xi)
αi+1xi)

H(αi); then S(x) ∈ Q1(Rd) and coincides

with Π(xα1
a1
xα2
a2
. . . xαdad ) ∈ Q1(Rd) at the vertices of [−1, 1]d. The two functions are

therefore equal. Now fix 1 ≤ j ≤ d and αj ∈ Z+; set αi = δijαj. Then Π(x
αj
j ) =

(σi(xi)
αi+1xi)

H(αi) as a special case. To establish equation (4.2) we utilize equation
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(4.1) both in the identity Π(x
αj
j ) = (σj(xj)

αj+1xj)
H(αj) and to factor the Lagrange

interpolation of a monomial as the product of the interpolations of its constituent

terms

Kj(xα1
a1
xα2
a2
. . . xαkak ) = ∂xjΠ(xα1

a1
xα2
a2
. . . xαkak )− Π(∂xjx

α1
a1
xα2
a2
. . . xαkak )

= ∂xj

(
k∏
i=1

Π(xαiai )

)
−

Ñ
αjΠ(x

αj−1
j )

k∏
i 6=j

Π(xαiai )

é
=

Ñ
∂xjΠ(xαjaj )

∏
i 6=j

Π(xαiai )

é
−

Ñ
αjΠ(xαj−1

aj
)
∏
i 6=j

Π(xαiai )

é
=
Ä
∂xjΠ(xαjaj )− Π(∂xjx

αj
aj

)
ä∏
i 6=j

Π(xαiai ) = Kj(x
αj
j )Π(p̂j)

This concludes the proof of the identities.

We are now ready to establish the d-dimensional result

Proposition 4.1 Q1(Rd) is anti-dispersive

Proof. A uniform grid for Qk(Rd) consists of d dimensional hypercubes of equal

side length; therefore, a unique such grid exists which contains the origin and x-

y plane. If we consider Q1(Rd) then the degrees of freedom lie on the hypercube

vertices; as a consequence the support of each basis function ψi(x) of Q1(Rd) will

have the same type of support geometry. Therefore applying a linear change of

coordinates and Corollary 4.2 it suffices, by Corollary 4.4, to show for 1 ≤ m ≤ d and

all multi-indices |α| ≤ 3 that
∫

ΩKm(xα)ψ0dx = 0. The proof of the d-dimensional

result will be shown to be reducible to proving the conditions of Corollary 4.4 hold

for i = 0. Towards that end note that the basis function ψ0(x) is supported on the

d-dimensional hypercube support(ψ0(x)) = [−1, 1]d. If we consider the Lagrange

interpolant restricted to the support of ψ0 we get the following result The basis
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function ψ0(x) can be expressed in terms of the sign functions as ψ0(x) =
d∏
i=1

(1 −

σi(xi)xi). Let α = (α1, α2, . . . , αd) be a multi-index with |α| ≤ 3 and fix 1 ≤ j ≤ d.

Then in particular 0 ≤ αj ≤ 3 and an application of equation (4.1) and Fubini’s

theorem gives

∫
Ω
Kj(xα)ψ0dx =

∫
[−1,1]d

Kj(xα1
a1
xα2
a2
. . . xαkak )

d∏
i=1

(1− σi(xi)xi)dx

=

Ç∫
[−1,1]

Kj(x
αj
j )(1− σj(xj)xj) dxj

å ∫
[−1,1]d−1

Π(p̂j)
∏
i 6=j

(1− σi(xi)xi)dx

The integral
∫
[−1,1]Kj(x

αj
j )(1−σj(xj)xj) dxj =

∫
ΩKj(x

αj
j )ψ0(xj) dxj = 0 as Corol-

lary (4.1) requires all expressions of this form where 0 ≤ αj ≤ 3 are zero. This

concludes the proof.

4.4 P 1(R2) antidispersivity

Recall the finite element approximation space space P k(Rd) is defined by

P k(Rn) =
¶
v ∈ C0

#(Rn) | ∀Th ∈ Th v|Th ∈ Pk(Rn)
©

In section 4.1 consistency error was analyzed in one dimension for the consistent P 1

mass matrix. In the one dimensional setting there is a unique uniform mesh, Th,

of size h which contains the origin given by intervals of the form [xi, xi+1] where

xi+1 − xi = h for every i; furthermore every basis function ψi(x) of P 1(R1) has

the same type of support geometry in the one-dimensional setting. It follows then

that Proposition 4.4 is a proof that the approximation setting (P 1(R1), Th) is anti-

dispersive. In the case of P 1 finite elements in higher dimensions than one there are

several uniform meshes that have the property that the shape functions have centro-

symmetric support; this was not the case with Q1 finite elements. In the following
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sections we present an anti-dispersive approximation setting for P 1(R2) and provide

some computed results for P 1(R3).

In two dimensions we consider the mesh generated by tiling the following plane

with the triangles, having edge length h; this tiling, along with its shaded and anno-

tated typical nodal support, is shown in figure 4.1. The degrees of freedom, as well as

the mesh nodes, coincide with the vertices of the triangles. The support set of a typ-

ical nodal basis function is observably centro-symmetric about the center mesh node

and every node has the same geometry type for its associated basis function support

set. Therefore, as in previous sections, it suffices to show that Corollary 4.4 is satis-

fied for i = 0; all other values of i will follow by linear translation and an application

of Corollary 4.2. We continue to utilize the notation Kj(f) = ∂xjΠ(f) − Π(∂xjf)

where Π : C0(R2)→ P 1(R2) is the Lagrange interpolant.

Figure 4.1: Tiling for a uniform P 1(R2) finite element mesh

(a) Basic tile (b) Shaded, annotated nodal sup-
port

Proposition 4.1 Let Th be the mesh generated by tiling figure 4.1. Then the ap-
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proximation setting (P 1(R2), Th) is anti-dispersive.

Proof. As discussed it suffices to show that Corollary 4.4 holds for i = 0. Let

S0 = support(ψ0(x)) and consider
∫
S0
Kj(x

α)ψ0dx for j = 1, 2 and |α| = 3. Since xα

is odd Kj(x
α) is even. Let T1, T2, . . . , T6 be the triangles, numbered as in figure 4.1,

comprising the set S0; since ψ0 is even on S0 we have

∫
S0

Kj(x
α)ψ0dx = 2

∫
T1∪T2∪T3

Kj(x
α)ψ0dx

xα ∂x T1 T2 T3 ∂y T1 T2 T3

x3 1/24 −1/12 1/24 0 0 0
y3 0 0 0 1/24 1/24 −1/12
x2y 0 1/12 −1/12 −1/24 1/12 −1/24
xy2 −1/24 −1/24 1/12 0 −1/12 1/12

Table 4.1: Values of
∫
Ti
Kj(x

α)ψ0(x)dx on the individual triangular elements of
support(ψ0)

Considering each possibility for xα where |α| = 3 on each triangle the computed

values for the expression
∫
Ts
Kj(x

α)ψ0(x)dx where 1 ≤ s ≤ 3 and j = 1, 2 are

given in Table 4.1. It follows that for each j = 1, 2 we have
∫
T1∪T2∪T3 Kj(x

α)ψ0dx =
3∑
s=1

∫
Ts
Kj(x

α)ψ0dx = 0 so that the anti-dispersivity condition of Corollary 4.4 is

satisfied. This completes the proof.
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5. SUMMARY AND CONCLUSION

As indicated in sections 1.1 and 1.3 the inherent difficulties of the incompressible

Navier-Stokes equations at high Reynolds number are significant; despite these diffi-

culties they remain the foundation of pragmatic engineering undertakings. Therefore,

while progress towards a comprehensive theoretical understanding is a vein of cur-

rent research, the engineering and scientific communities benefit greatly from the

application of new mathematical ideas and techniques towards computational as-

pects of the issue. The accomplishments of the current work is mainly two-fold:

first, from a mathematical point of view, the efficacy of entropy-viscosity for us-

age in modern models has been demonstrated; the notion of localized viscosity has

transitioned from its inception as an a-posteriori error correction technique into a

more central role. From a scientific computing and engineering vantage point the

entropy-viscosity has been demonstrated as a useful tool in reducing the overwhelm-

ing complexity requirements typically associated with simulating incompressible flow

at high Reynolds numbers; both in the absence and presence of a diffusionless tracer

or immiscible fluid.

In chapter 2 a large eddy simulation (LES) model was proposed based on an

entropy-viscosity; the results show that, at a minimum, such a model can evince a

a sixty-four fold reduction in computational complexity while refraining from over-

damping turbulent effects. In chapter 3 a one-stage advection-compression method

is broached which combines several previous approaches into a monolithic frame-

work; the artificial compressor (ACF) is based on an entropy-viscosity. In chapter

4 an integral commutator approach to consistency error was developed; such an

approach gives rise to the theory of anti-dispersive approximation spaces and a suc-
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cinct, computable form of the consistency error. The implications of the integral

commutator theory extend beyond the simple wrest from the cumbersome Taylor

approach; rather, as discussed, it can be utilized to verify schemes are free of low-

order dispersion error via a set of simple computations, construct correction schemes

for use with mass lumping techniques and has potential for use as a general theo-

retical framework for error analysis. Indeed, the theory was applied at the end of

chapter 4 to prove previously unapproachable results regarding Q1 finite elements in

arbitrary dimension.
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