GEOMETRY OF FEASIBLE SPACES OF TENSORS

A Dissertation
by
YANG QI

Submitted to the Office of Graduate Studies of Texas A\&M University
 in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Chair of Committee, J.M. Landsberg
Committee Members, Frank Sottile
Paulo Lima-Filho
Colleen Robles
Katrin Becker
Department Head, Emil Straube

August 2013

Major Subject: Mathematics

Copyright 2013 Yang Qi

Abstract

Due to the exponential growth of the dimension of the space of tensors $V_{1} \otimes \cdots \otimes V_{n}$, any naive method of representing these tensors is intractable on a computer. In practice, we consider feasible subspaces (subvarieties) which are defined to reduce the storage cost and the computational complexity. In this thesis, we study two such types of subvarieties: the third secant variety of the product of n projective spaces, and tensor network states.

For the third secant variety of the product of n projective spaces, we determine set-theoretic defining equations, and give an upper bound of the degrees of these equations.

For tensor network states, we answer a question of L. Grasedyck that arose in quantum information theory, showing that the limit of tensors in a space of tensor network states need not be a tensor network state. We also give geometric descriptions of spaces of tensor networks states corresponding to trees and loops.

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, J.M. Landsberg, for bringing these problems to my attention and very inspiring conversations. I am indebted for his constant support and guidance, both from a mathematical and human perspective.

I would like to thank my committee members, Dr. Colleen Robles, Dr. Frank Sottile, Dr. Paulo Lima-Filho, and Dr. Katrin Becker for the guidance and support throughout the course of this research.

I would like to thank the department faculty and staff, as well as my colleagues and friends for their support and help.

TABLE OF CONTENTS

Page
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv

1. INTRODUCTION AND BACKGROUND 1
1.1 Motivation 1
1.2 Equations for the secant varieties of Segre varieties 1
1.3 Tensor network states 5
2. PRELIMINARIES 7
2.1 Dimensions of secant varieties of Segre varieties 7
2.2 Subspace varieties 8
2.3 Strassen's equations 9
2.4 Inheritance and prolongation 9
2.5 Normal forms of points in $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ 10
3. EQUATIONS FOR THE THIRD SECANT VARIETY OF THE SEGRE PRODUCT OF N PROJECTIVE SPACES 12
3.1 Outline of the proof of the main result 12
3.2 Proof of the main theorem 14
3.2.1 Case 1: $T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right), T \notin S u b_{3,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$ 14
3.2.2 Case 2: $T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right), T \in S u b_{3,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right) \backslash$ $\operatorname{Sub}_{2,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$ 16
3.2.3 Case 3: $T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right), T \in S u b_{2,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$ 22
3.2.4 Case 4: $T \in \sigma_{2}\left(X_{2}\right)$ 31
4. ON THE GEOMETRY OF TENSOR NETWORK STATES 33
4.1 Definitions 33
4.2 Grasedyck's question 34
4.3 Connections to the GCT program 35
4.4 Critical loops 36
4.5 Zariski closure 37
4.6 Algebraic geometry perspective 41
4.7 Reduction from the supercritical case to the critical case with the same graph 42
4.8 Reduction of cases with subcritical vertices of valence one 43
4.9 Trees 43
5. SUMMARY 45
REFERENCES 46

1. INTRODUCTION AND BACKGROUND

1.1 Motivation

Tensors are ubiquitous in mathematics and the sciences, and are especially important in algebraic statistics, biology, signal processing, and complexity theory $[15,16,24,29,36,38]$. For example, in scientific computation the problem of determining the complexity of matrix multiplication can be viewed as decomposing a particular tensor (the matrix multiplication operator) according to its rank [28, 29]; in statistics, the problem of recovering the mixing matrix and source vector from the observation vector can be viewed as the symmetric tensor decomposition of the associated cumulants [25, 29, 37, 43]; in signal processing, CP decomposition, block term decomposition and other tensor decompositions are important [23, 27, 29]. In the study of tensors, the rank and border rank of a tensor are the standard measures of its complexity. Due to the geometric interpretations of rank and border rank, it is natural to study the secant varieties of Segre varieties since equations for these varieties produce tests for the border rank of a tensor. In practice, small secant varieties of Segre varieties play an important role as they correspond to tensors of low complexity. Another model defined to reduce the complexity of the spaces involved is tensor network states in quantum information theory. In this thesis we study both these models.

1.2 Equations for the secant varieties of Segre varieties

The study of equations for secant varieties of Segre varieties is a classical problem in algebraic geometry, but these equations are still far from being understood [29]. Before exploring the known results of these equations, let us review the basic definitions of rank, border rank and secant varieties of Segre varieties.

Definition 1. A function $f: A_{1} \times \cdots \times A_{n} \rightarrow \mathbb{C}$ is multilinear if it is linear in each factor A_{l}. The space of such multilinear functions is denoted by $A_{1}^{*} \otimes \cdots \otimes A_{n}^{*}$ and called the tensor product of the vector spaces $A_{1}^{*}, \ldots, A_{n}^{*}$. Elements $T \in A_{1}^{*} \otimes \cdots \otimes A_{n}^{*}$ are called tensors.

Definition 2. Given $\beta \in A_{1}^{*}, \ldots, \beta_{n} \in A_{n}^{*}$, define an element $\beta_{1} \otimes \cdots \otimes \beta_{n} \in$ $A_{1}^{*} \otimes \cdots \otimes A_{n}^{*}$ by $\beta_{1} \otimes \cdots \otimes \beta_{n}\left(u_{1}, \ldots, u_{n}\right)=\beta_{1}\left(u_{1}\right) \cdots \beta_{n}\left(u_{n}\right)$ for any $u_{i} \in A_{i}$. An element of $A_{1}^{*} \otimes \cdots \otimes A_{n}^{*}$ is said to have rank one if it is of the form $\beta_{1} \otimes \cdots \otimes \beta_{n}$ for some $\beta_{i} \in A_{i}^{*}$. The rank of a tensor $T \in A_{1} \otimes \cdots \otimes A_{n}$, denoted by $R(T)$, is the minimum number r such that $T=\sum_{u=1}^{r} Z_{u}$ with each Z_{u} of rank one.

Definition 3. A tensor T has border rank r, denoted by $\underline{R}(T)$, if it is a limit of tensors of rank r but is not a limit of tensors of rank s for any $s<r$.

Remark 1. Note that $R(T) \geq \underline{R}(T)$. If $T \in A_{1} \otimes A_{2}$ is a matrix, then $R(T)=\underline{R}(T)$. But this is not always true for $T \in A_{1} \otimes \cdots \otimes A_{n}$ when $n \geq 3$. For example, let $T=a_{1} \otimes b_{1} \otimes c_{1}+a_{1} \otimes b_{1} \otimes c_{2}+a_{1} \otimes b_{2} \otimes c_{1}+a_{2} \otimes b_{1} \otimes c_{1} \in A \otimes B \otimes C$. One can check T has rank 3 , but $T=\lim _{t \rightarrow 0} \frac{1}{t}\left[(t-1) a_{1} \otimes b_{1} \otimes c_{1}+\left(a_{1}+t a_{2}\right) \otimes\left(b_{1}+t b_{2}\right) \otimes\left(c_{1}+t c_{2}\right)\right]$, hence $\underline{R}(T)=2$.

Definition 4. Define the n-factor Segre variety to be the image of the map

$$
\begin{gathered}
\text { Seg }: \mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n} \rightarrow \mathbb{P}\left(A_{1} \otimes \cdots \otimes A_{n}\right) \\
\left(\left[v_{1}\right] \ldots,\left[v_{n}\right]\right) \mapsto\left[v_{1} \otimes \cdots \otimes v_{n}\right]
\end{gathered}
$$

Remark 2. $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \mathbb{P} A_{2}\right)$ is the set of rank one matrices, and $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$ is the set of rank one tensors.

Definition 5. The join of two varieties $Y, Z \in \mathbb{P} V$ is

$$
J(Y, Z)=\overline{\bigcup_{x \in Y, y \in Z, x \neq y} \mathbb{P}_{x y}^{1}},
$$

where $\mathbb{P}_{x y}^{1}$ is the projective line through x and y.
Definition 6. The join of k varieties $X_{1}, \ldots, X_{k} \subset \mathbb{P} V$ is defined by induction to be $J\left(X_{1}, \ldots, X_{k}\right)=J\left(X_{1}, J\left(X_{2}, \ldots, X_{k}\right)\right)$, and the k-th secant variety of Y is defined to be the join of k copies of $Y, \sigma_{k}(Y)=J(Y, \ldots, Y)$.

Remark 3. $\sigma_{k}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \mathbb{P} A_{2}\right)\right)$ is the set of matrices with rank at most k, and $\sigma_{k}\left(S e g\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ is the set of tensors with border rank at most k.

It is clear that the ideal of $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \mathbb{P} A_{2}\right)$ is generated by all the 2×2 minors, denoted by $\wedge^{2} A_{1}^{*} \otimes \wedge^{2} A_{2}^{*}$, and the ideal of $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \mathbb{P} A_{2}\right)\right)$ is generated by all the $(r+1) \times(r+1)$ minors, denoted by $\wedge^{r+1} A_{1}^{*} \otimes \wedge^{r+1} A_{2}^{*}$.

Given $W=A_{1} \otimes \cdots \otimes A_{n}$, define a flattening $A_{I} \otimes A_{J}$ of W to be a decomposition $\left(A_{i_{1}} \otimes \cdots \otimes A_{i_{p}}\right) \otimes\left(A_{i_{p+1}} \otimes \cdots \otimes A_{i_{n}}\right)$, where $I=\left\{i_{1}, \ldots, i_{p}\right\}$ and $J=\left\{i_{p+1}, \ldots, i_{n}\right\}$, $I \cup J=\{1, \ldots, n\}$, and $I \cap J=\varnothing$. Since $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$ can be embedded in $\operatorname{Seg}\left(\mathbb{P} A_{I} \times \mathbb{P} A_{J}\right)$, then $\wedge^{2} A_{I}^{*} \otimes \wedge^{2} A_{J}^{*}$ give equations for $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$. It turns out that $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$ is ideal theoretically defined by all the 2×2 minors of flattenings, i.e. all $\wedge^{2} A_{I}^{*} \otimes \wedge^{2} A_{J}^{*}$ generate the ideal for $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$.

Since $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ can be embedded in $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{I} \times \mathbb{P} A_{J}\right)\right), \wedge^{r+1} A_{I}^{*} \otimes$ $\wedge^{r+1} A_{J}^{*}$ give equations for $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$. When studying Bayesian networks, Garcia, Stillman and Sturmfels conjectured that all the 3×3 minors of flattenings give all the equations for $\sigma_{2}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ [22]. Landsberg and Manivel showed the set theoretic version of this conjecture is true [30], and Raicu proved the ideal theoretic version is true [45]. For more history, see [3, 30, 35, 45].

It turns out that minors of flattenings are not enough to define higher secant varieties of Segre varieties. In 1983 Strassen discovered equations for $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times\right.\right.$ $\left.\mathbb{P} A_{2} \times \mathbb{P} A_{3}\right)$) beyond 4×4 minors of flattenings [48]. Landsberg and Manivel proved $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \mathbb{P} A_{2} \times \mathbb{P} A_{3}\right)\right)$ is set theoretically defined by Strassen's equations and 4×4 minors of flattenings [20,31]. Landsberg and Weyman proved the ideal of $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \mathbb{P} A_{2} \times \mathbb{P} A_{3}\right)\right)$ is generated in degree 4 by the module which arises from Strassen's commutation condition [35].

For the fourth secant varieties of Segre varieties, Friedland showed $\sigma_{4}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times\right.\right.$ $\left.\left.\mathbb{P} A_{2} \times \mathbb{P} A_{3}\right)\right)$ is the zero set of certain equations of degree 5, 9 and 16 [20]. Bates and Oeding showed $\sigma_{4}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \mathbb{P} A_{2} \times \mathbb{P} A_{3}\right)\right)$ is the zero set of certain equations of degree 5, 6 and 9 by numerical methods [4]. Friedland and Gross gave this result a computer-free proof [21].

For higher secant varieties of Segre varieties, for example $\sigma_{6}\left(\mathbb{P}^{3} \times \mathbb{P}^{3} \times \mathbb{P}^{3}\right)$, there are no equations known. On the other hand, there are some qualitative descriptions of equations of secant varieties of Segre varieties. Draisma and Kuttler proved that for arbitrary fixed r, there is an uniform bound $d(r)$ such that $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ is set theoretically defined by equations of degree at most $d(r)$ for any n [17].

In this thesis, we determine set theoretic equations for the third secant variety of the Segre product of n projective spaces, and from the proof of this statement we derive an upper bound for the degrees of these equations. Given any partition $I \cup J \cup K=\{1, \ldots, n\}, \sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ can be embedded in $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{I} \times\right.\right.$ $\left.\mathbb{P} A_{J} \times \mathbb{P} A_{K}\right)$), thus Strassen's equations for all the partitions $I \cup J \cup K=\{1, \ldots, n\}$ and 4×4 minors for all the flattenings give us equations for $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$. Our main result is [44]:

Theorem 1. $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ is set theoretically defined by Strassen's
equations of all partitions $I \cup J \cup K=\{1, \ldots, n\}$ and all 4×4 minors of flattenings.

Corollary 1. $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ is set theoretically defined by Strassen's equations of degree 4 for the partitions $\{i\} \cup\{j\} \cup\{1, \ldots, \widehat{i}, \cdots, \widehat{j}, \cdots, n\}$ and all 4×4 minors of flattenings.

1.3 Tensor network states

Tensor network states are interesting models in physics defined to reduce the complexity of the spaces involved. In physics, tensors describe states of quantum mechanical systems. If a system has n particles, its state is an element of $H_{1} \otimes$ $\cdots \otimes H_{n}$ with H_{j} Hilbert spaces. In numerical many-body physics, in particular solid state physics, one wants to simulate quantum states of thousands of particles, often arranged on a regular lattice (e.g., atoms in a crystal). Due to the exponential growth of the dimension of $H_{1} \otimes \cdots \otimes H_{n}$ with n, any naive method of representing these tensors is intractable on a computer. Tensor network states were defined by restricting to a subset of tensors that is physically reasonable, in the sense that the corresponding spaces of tensors are only locally entangled because interactions (entanglement) in the physical world appear to just happen locally. These spaces are associated to graphs, i.e. for a fixed graph, we can associate complex vector spaces to each vertex and edge, and define a corresponding tensor network state. More precisely:

Let V_{1}, \ldots, V_{n} be complex vector spaces, let $\mathbf{v}_{i}=\operatorname{dim} V_{i}$. Let Γ be a graph with n vertices $v_{j}, 1 \leq j \leq n$, and m edges $e_{s}, 1 \leq s \leq m$, and let $\vec{e}=\left(e_{1}, \ldots, e_{m}\right) \in \mathbb{N}^{m}$. Associate V_{j} to the vertex v_{j} and an auxiliary vector space E_{s} of dimension e_{s} to the edge e_{s}. Make Γ into a directed graph. (The choice of directions will not effect the end result.) Let $\mathbf{V}=V_{1} \otimes \cdots \otimes V_{n}$. For $\Gamma, s \in e(j)$ means e_{s} is incident to v_{j}, $s \in \operatorname{in}(j)$ are the incoming edges and $s \in \operatorname{out}(j)$ the outgoing edges.

Define a tensor network state $T N S(\Gamma, \vec{e}, \mathbf{V})$ to be:

$$
\begin{align*}
& \operatorname{TNS}(\Gamma, \vec{e}, \mathbf{V}):= \tag{1.1}\\
& \qquad\left\{T \in \mathbf{V} \mid \exists T_{j} \in V_{j} \otimes\left(\otimes_{s \in i n(j)} E_{s}\right) \otimes\left(\otimes_{t \in o u t(j)} E_{t}^{*}\right), T=\operatorname{Con}\left(T_{1} \otimes \cdots \otimes T_{n}\right)\right\},
\end{align*}
$$

where Con is the contraction of all the E_{s} 's with all the E_{s}^{*} 's.
Such spaces have been studied since the 1980's, and go under different names: tensor network states, finitely correlated states (FCS), valencebond solids (VBS), matrix product states (MPS), projected entangled pairs states (PEPS), and multiscale entanglement renormalization ansatz states (MERA), see, e.g., $[14,18,19,26$, $46,49]$ and the references therein. We will use the term tensor network states.

If Γ is a tree, then $T N S(\Gamma, \vec{e}, \mathbf{V})$ is closed [24]. Lars Grasedyck asked if every tensor network state is Zariski closed. In this thesis, we give a counterexample and show a tensor network state is not closed if the corresponding graph contains a cycle whose vertices have non-subcritical dimensions. We also give geometric descriptions of spaces of tensor networks states corresponding to trees and loops.

Grasedyck's question has a surprising connection to the area of Geometric Complexity Theory, in that the result is equivalent to the statement that the boundary of the Mulmuley-Sohoni type variety associated to matrix multiplication is strictly larger than the projections of matrix multiplication (and re-expressions of matrix multiplication and its projections after changes of bases). Tensor Network States are also related to graphical models in algebraic statistics [29].

2. PRELIMINARIES

2.1 Dimensions of secant varieties of Segre varieties

Terracini's lemma is a fundamental tool to compute the dimension of a join variety. Let Y, Z be projective varieties, and \widehat{Y}, \widehat{Z} be the cones over Y, Z.

Lemma 1 (Terracini's lemma). Let $(v, w) \in \widehat{Y} \times \widehat{Z}$ be a general point, and $[u]=$ $[v+w] \in J(Y, Z)$, then

$$
\widehat{T}_{[u]} J(Y, Z)=\widehat{T}_{[v]} Y+\widehat{T}_{[w]} Z,
$$

where $\widehat{T}_{[v]} Y$ denotes the affine tangent space of Y at $[v]$.
Definition 7. We call a variety $X \subset \mathbb{P}^{n}$ nondegenerate if it spans \mathbb{P}^{n}, i.e. is not contained in any hyperplane. If $X \subset \mathbb{P}^{n}$ is an irreducible nondegenerate variety whose r-th secant variety $\sigma_{r}(X)$ has dimension strictly less than $\min \{r \operatorname{dim} X+r-1, n\}$, we say that X is defective, and define the defect $\delta_{r}(X)=r \operatorname{dim} X+r-1-\operatorname{dim} \sigma_{r}(X)$.

Here we list some known results on the dimensions of secant varieties of Segre varieties, for more results see $[1,8-11,13]$.

Theorem $2([12])$. Consider $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{a_{1}-1} \times \cdots \times \mathbb{P}^{a_{n}-1}\right)\right)$, and assume $a_{n} \geq$ $\prod_{i=1}^{n-1} a_{i}-\sum_{i=1}^{n-1} a_{i}-n+1$.

1. If $r \leq \prod_{i=1}^{n-1} a_{i}-\sum_{i=1}^{n-1} a_{i}-n+1$, then $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{a_{1}-1} \times \cdots \times \mathbb{P}^{a_{n}-1}\right)\right)$ has the expected dimension $r\left(a_{1}+\cdots+a_{n}-n+1\right)-1$;
2. If $a_{n}>r \geq \prod_{i=1}^{n-1} a_{i}-\sum_{i=1}^{n-1} a_{i}-n+1$, then $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{a_{1}-1} \times \cdots \times \mathbb{P}^{a_{n}-1}\right)\right)$ has defect $\delta_{r}=r^{2}-r\left(\prod_{i=1}^{n-1} a_{i}-\sum_{i=1}^{n-1} a_{i}-n+1\right)$;
3. If $r \geq \min \left\{a_{1}, \ldots, a_{n}\right\}$, then $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{a_{1}-1} \times \cdots \times \mathbb{P}^{a_{n}-1}\right)\right)=\mathbb{P}^{\prod_{i=1}^{n} a_{i}-1}$.

Theorem 3 ([13]). The secant varieties of the Segre product of k copies of \mathbb{P}^{1}, $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}\right)\right)$, have the expected dimension except when $k=2,4$.

2.2 Subspace varieties

Subspace varieties are important auxiliary varieties in the study of equations for secant varieties.

Definition 8. The subspace variety $\operatorname{Sub}_{b_{1}, \ldots, b_{n}}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$ is defined to be

$$
\operatorname{Sub}_{b_{1}, \ldots, b_{n}}\left(A_{1} \otimes \cdots \otimes A_{n}\right):=\mathbb{P}\left\{T \in A_{1} \otimes \cdots \otimes A_{n} \mid \operatorname{dim}\left(T\left(A_{j}^{*}\right)\right) \leq b_{j}\right\} .
$$

Proposition 1 ([29]). The ideal of the subspace variety $\operatorname{Sub}_{b_{1}, \ldots, b_{n}}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$ is generated in degrees $b_{j}+1$ for $1 \leq j \leq n$ by the irreducible modules in $\wedge^{b_{j}+1} A_{j}^{*} \otimes$ $\wedge^{b_{j}+1}\left(A_{1}^{*} \otimes \cdots \otimes A_{j-1}^{*} \otimes A_{j+1}^{*} \otimes \cdots \otimes A_{n}^{*}\right)$.

The following Kempf-Weyman desingularization of $\operatorname{Sub}_{b_{1}, \ldots, b_{n}}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$ is useful for finding equations, minimal free resolutions, and establishing properties of singularities $[29,50]$.

Proposition 2 ([50]). Consider the product of Grassmannians

$$
B=G\left(b_{1}, A_{1}\right) \times \cdots \times G\left(b_{n}, A_{n}\right)
$$

and the bundle

$$
p: \mathcal{S}_{1} \otimes \cdots \otimes \mathcal{S}_{n} \rightarrow B
$$

where \mathcal{S}_{j} is the tautological rank b_{j} subspace bundle over $G\left(b_{j}, A_{j}\right)$. Assume that $b_{1} \leq \cdots \leq b_{n}$. Then the total space \tilde{Z} of $\mathcal{S}_{1} \otimes \cdots \otimes \mathcal{S}_{n}$ maps to $A_{1} \otimes \cdots \otimes A_{n}$. The map $\tilde{Z} \rightarrow A_{1} \otimes \cdots \otimes A_{n}$ gives a desingularization of $\operatorname{Sub}_{b_{1}, \ldots, b_{n}}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$.

2.3 Strassen's equations

In 1983 V. Strassen [48] discovered equations for tensors of bounded border rank beyond minors of flattenings. We present a version of Strassen's equations due to G. Ottaviani, which is easy to generalize to higher cases.

Given $T \in A \otimes B \otimes C$, i.e. $T: B^{*} \rightarrow A \otimes C, I d_{A} \otimes T$ gives a linear map $A \otimes B^{*} \rightarrow A \otimes A \otimes C$, compose $I d_{A} \otimes T$ with the projection $A \otimes A \rightarrow \wedge^{2} A$ to define $T_{B A}^{\wedge}: A \otimes B^{*} \rightarrow \wedge^{2} A \otimes C$.

Theorem 4 ([42]). Let $T \in A \otimes B \otimes C$, and assume $3 \leq \operatorname{dim} A \leq \operatorname{dim} B \leq \operatorname{dim} C$. If $[T] \in \sigma_{r}(S e g(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C))$, then $\operatorname{rank}\left(T_{B A}^{\wedge}\right) \leq r(\operatorname{dim} A-1)$. Thus the size $r(\operatorname{dim} A-1)+1$ minors of $T_{B A}^{\wedge}$ furnish equations for $\sigma_{r}(\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C))$, which are called Strassen's equations.

Proof. If $T=a \otimes b \otimes c$, then the image of $T_{B A}^{\wedge}$ is $a \wedge A \otimes c$ and thus $\operatorname{rank}\left(T_{B A}^{\wedge}\right)=\operatorname{dim} A-$ 1 and the theorem follows because $\operatorname{rank}\left(\left(T_{1}+T_{2}\right)_{B A}^{\wedge}\right) \leq \operatorname{rank}\left(T_{1}{ }_{B A}\right)+\operatorname{rank}\left(T_{2 A}{ }_{B A}\right)$

Theorem $5([20,31]) \cdot \sigma_{3}(S e g(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C))$ is the zero set of the size 4 minors of flattenings and Strassen's equations.

2.4 Inheritance and prolongation

Inheritance is a general technique for studying equations of G-varieties.

Proposition 3 ([30]). For all vector spaces B_{j} with $\operatorname{dim} B_{j}=b_{j} \geq \operatorname{dim} A_{j}=$ $a_{j} \geq r$, a module $S_{\mu_{1}} B_{1}^{*} \otimes \cdots \otimes S_{\mu_{n}} B_{n}^{*}$ such that $l\left(\mu_{j}\right) \leq a_{j}$ for all j, is in the ideal $I_{d}\left(\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} B_{1} \times \cdots \times \mathbb{P} B_{n}\right)\right)\right)$ if and only if $S_{\mu_{1}} A_{1}^{*} \otimes \cdots \otimes S_{\mu_{n}} A_{n}^{*}$ is in the ideal $I_{d}\left(\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} B_{1} \times \cdots \times \mathbb{P} B_{n}\right)\right)\right)$.

Corollary $2([30])$. Let $\operatorname{dim} A_{j} \geq r, 1 \leq j \leq n$. The ideal of $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times\right.\right.$ $\left.\left.\mathbb{P} A_{n}\right)\right)$ is generated by the modules inherited from the ideal of $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P}^{r-1} \times \cdots \times\right.\right.$
$\left.\mathbb{P}^{r-1}\right)$) and the modules generating the ideal of $\operatorname{Sub}_{r, \ldots, r}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$. The analogous scheme and set theoretic results hold as well.

According to this corollary, when studying these equations we only need consider the small dimensional cases.

Prolongation is a general technique for finding equations of secant varieties. We list some basic facts about equations for secant varieties obtained by prolongation.

Proposition $4([29,47])$. Let $X, Y \subset \mathbb{P} V$ be subvarieties and assume that $I_{\delta}(X)=0$ for $\delta<d_{1}$ and $I_{\delta}(Y)=0$ for $\delta<d_{2}$. Then $I_{\delta}(J(X, Y))=0$ for $\delta \leq d_{1}+d_{2}-2$.

Corollary $3([29,47])$. Let $X_{1}, \ldots, X_{r} \subset \mathbb{P} V$ be varieties such that $I_{\delta}\left(X_{j}\right)=0$ for $\delta<d_{j}$. Then $I_{\delta}\left(J\left(X_{1}, \ldots, X_{r}\right)\right)=0$ for $\delta \leq d_{1}+\cdots+d_{r}-r$.

As a special case we have:

Proposition 5 ([29]). There are no nonzero degree $d \leq r$ homogeneous polynomials vanishing on $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$.

2.5 Normal forms of points in $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$

In this section we present how points of $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ are explicitly parametrized.

Proposition $6([5])$. Let X denote $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$ and $p=[v] \in \sigma_{2}(X)$, then v has one of the following normal forms:

1, $p \in X$;
$2, v=x+y$ with $[x],[y] \in X$;
3, $v=x^{\prime}$ with $x^{\prime} \in \widehat{T}_{[x]} X$.

Theorem $6([5])$. Let X denote $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$ and $p=[v] \in \sigma_{3}(X) \backslash \sigma_{2}(X)$, then v has one of the following normal forms:

1. $v=x+y+z$ with $[x],[y],[z] \in X$;
2. $v=x+x^{\prime}+y$ with $[x],[y] \in X$ and $x^{\prime} \in \widehat{T}_{[x]} X$;
3. $v=x+x^{\prime}+x^{\prime \prime}$, where $[x(t)] \subset X$ is a curve and $x^{\prime}=x^{\prime}(0), x^{\prime \prime}=x^{\prime \prime}(0)$;
4. $v=x^{\prime}+y^{\prime}$, where $[x],[y] \in X$ are distinct points that lie on a line contained in $X, x^{\prime} \in \widehat{T}_{[x]} X$, and $y^{\prime} \in \widehat{T}_{[y]} X$.

Normal forms for Theorem 6 are as follows:

Theorem $7([5])$. Let X denote $\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$ and $p=[v] \in \sigma_{3}(X) \backslash \sigma_{2}(X)$, then v has one of the following normal forms:

1. $v=a_{1}^{1} \otimes \cdots \otimes a_{1}^{n}+a_{2}^{1} \otimes \cdots \otimes a_{2}^{n}+a_{3}^{1} \otimes \cdots \otimes a_{3}^{n}$;
2. $v=\sum_{i=1}^{n} a_{1}^{1} \otimes \cdots \otimes a_{1}^{i-1} \otimes a_{2}^{i} \otimes a_{1}^{i+1} \otimes \cdots \otimes a_{1}^{n}+a_{3}^{1} \otimes \cdots \otimes a_{3}^{n}$;
3. $v=\sum_{i<j} a_{1}^{1} \otimes \cdots \otimes a_{1}^{i-1} \otimes a_{2}^{i} \otimes a_{1}^{i+1} \otimes \cdots \otimes a_{1}^{j-1} \otimes a_{2}^{j} \otimes a_{1}^{j+1} \otimes \cdots \otimes a_{1}^{n}+\sum_{i=1}^{n} a_{1}^{1} \otimes$ $\cdots \otimes a_{1}^{i-1} \otimes a_{3}^{i} \otimes a_{1}^{i+1} \otimes \cdots \otimes a_{1}^{n} ;$
4. $v=\sum_{s=2}^{n} a_{2}^{1} \otimes a_{1}^{2} \otimes \cdots \otimes a_{1}^{s-1} \otimes a_{2}^{s} \otimes a_{1}^{s+1} \otimes \cdots \otimes a_{1}^{n}+\sum_{i=1}^{n} a_{1}^{1} \otimes \cdots \otimes a_{1}^{i-1} \otimes a_{3}^{i} \otimes$ $a_{1}^{i+1} \otimes \cdots \otimes a_{1}^{n}$,
where $a_{j}^{i} \in A_{i}$, and the vectors need not all be linearly independent.

3. EQUATIONS FOR THE THIRD SECANT VARIETY OF THE SEGRE PRODUCT OF N PROJECTIVE SPACES

3.1 Outline of the proof of the main result

Our main result on equations of the third secant varieties of Segre varieties is:

Theorem 8. $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ is set theoretically defined by Strassen's equations of all partitions $I \cup J \cup K=\{1, \ldots, n\}$ and all 4×4 minors of flattenings.

Given $T \in A_{1} \otimes \cdots \otimes A_{n}$, for each A_{i} we fix a basis $\left\{a_{j}^{i}\right\}$ and its dual basis $\left\{\alpha_{j}^{i}\right\}$. Let $X_{k}:=\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{k} \times \mathbb{P}\left(A_{k+1} \otimes \cdots \otimes A_{n}\right)\right)$, and $X:=\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$.

Outline of the proof of the main result. If $T \in A_{1} \otimes \cdots \otimes A_{n}$ satisfies all the equations given by 4×4 minors of flattenings, we may assume that $3 \geq \operatorname{dim} A_{1} \geq$ $\cdots \geq \operatorname{dim} A_{n} \geq 2[30]$. If T satisfies Strassen's equations of the partition $\{1\} \cup\{2\} \cup$ $\{3, \ldots, n\}$, then $T \in \sigma_{3}\left(X_{2}\right)$. We split our discussion into 4 cases to show $T \in \sigma_{3}(X)$.

Case 1: $T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right)$ and $T \notin S u b_{3,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$, then T has one of the four types of the normal forms in Theorem 7 for $\sigma_{3}\left(X_{2}\right)$. Because 4×4 minors of $T: A_{1}^{*} \otimes A_{3}^{*} \rightarrow A_{2} \otimes A_{4} \otimes \cdots \otimes A_{n}$ vanish, T has to have the same type of normal form for $\sigma_{3}\left(X_{3}\right)$. Similarly, by considering 4×4 minors of $T: A_{1}^{*} \otimes A_{k}^{*} \rightarrow$ $A_{2} \otimes \cdots \otimes \widehat{A_{k}} \otimes \cdots \otimes A_{n}$ we use induction to show that T has to maintain the same type of normal form for $\sigma_{3}(X)$.

Case 2: $T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right)$ and $T \in S u b_{3,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right) \backslash S u b_{2,2, \ldots, 2}\left(A_{1} \otimes\right.$ $\cdots \otimes A_{n}$), then T has one of the normal forms in Theorem 7 for $\sigma_{3}\left(X_{2}\right)$. Because $\operatorname{dim} A_{2}=\cdots=\operatorname{dim} A_{n}=2$, the discussion of this case is more complicated than Case 1, and we split the argument into several subcases for each type of normal form. For each subcase, by considering 4×4 minors of $T: A_{1}^{*} \otimes A_{3}^{*} \rightarrow A_{2} \otimes A_{4} \otimes \cdots \otimes A_{n}$
and $T: A_{2}^{*} \otimes A_{3}^{*} \rightarrow A_{1} \otimes A_{4} \otimes \cdots \otimes A_{n}$, we show T has one of the normal forms for $\sigma_{3}\left(X_{3}\right)$. Note that the type of the normal form of T for $\sigma_{3}\left(X_{2}\right)$ could be different from the type of the normal form of T for $\sigma_{3}\left(X_{3}\right)$. By induction, we show that T has one of the normal forms of points in $\sigma_{3}(X)$.

Case 3: $T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right)$ and $T \in S u b_{2,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$. In this case, T has two types of normal forms, $T=\left(a_{1}^{1} \otimes a_{1}^{2}+a_{2}^{1} \otimes a_{2}^{2}\right) \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3}$ or $T=a_{1}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3}$ for some $b_{j}^{3} \in A_{3} \otimes \cdots \otimes A_{n}$. For the generic normal form $T=\left(a_{1}^{1} \otimes a_{1}^{2}+a_{2}^{1} \otimes a_{2}^{2}\right) \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3}$, we show that there is a rank 2 matrix ϕ_{21} in the kernel of $T_{A_{2} A_{1}}^{\wedge}: A_{1} \otimes A_{2}^{*} \rightarrow A_{3} \otimes \cdots \otimes A_{n}$, and $\phi_{21}(T) \in S^{2} A_{1} \otimes\left(A_{3} \otimes \cdots \otimes A_{n}\right)$. So if for each $2 \leq i \leq n, T$ has the generic type of normal form for $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \mathbb{P} A_{i} \times \mathbb{P}\left(A_{2} \otimes \cdots \otimes \widehat{A_{i}} \otimes \cdots \otimes A_{n}\right)\right)\right)$, then similarly we have a 2×2 matrix $\phi_{i 1} \in \operatorname{Ker}\left(T_{A_{i} A_{1}}^{\wedge}\right)$ with full rank, and $\phi_{n 1} \circ \cdots \circ \phi_{21}(T) \in S^{n} A_{1}$. Since each $\phi_{i 1}$ is nonsingular, $T \in \sigma_{3}(X)$ if and only if $\phi_{n 1} \circ \cdots \circ \phi_{21}(T) \in \sigma_{3}\left(\nu_{n}\left(\mathbb{P} A_{1}\right)\right)$, where ν_{n} is the n-th Veronese embedding. Since the equations for $\sigma_{3}\left(\nu_{n}\left(\mathbb{P}^{1}\right)\right)$ are known [33], we can check Strassen's equations and 4×4 minors of flattenings give equations for $\sigma_{3}(X)$ in this situation. If for some $2 \leq i \leq n$, say $i=2, T$ does not have the generic normal form for $\sigma_{3}\left(X_{2}\right), T$ must have the other type of normal form $T=a_{1}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3}$. By considering 4×4 minors of $T: A_{1}^{*} \otimes A_{3}^{*} \rightarrow A_{2} \otimes A_{4} \otimes \cdots \otimes A_{n}, T: A_{2}^{*} \otimes A_{3}^{*} \rightarrow A_{1} \otimes A_{4} \otimes \cdots \otimes A_{n}$, and $T: A_{1}^{*} \otimes A_{2}^{*} \otimes A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$, we deduce $T \in \sigma_{3}\left(X_{3}\right)$. Then we use induction to show $T \in \sigma_{3}(X)$ by checking each type of the normal forms in Theorem 7, under the assumption that T is not of the generic normal form for $\sigma_{3}\left(X_{2}\right)$. When proceeding by induction, because $\operatorname{dim} T\left(A_{3}^{*} \otimes \cdots \otimes A_{n}^{*}\right) \leq 3$ we can view T as a tensor in $T\left(A_{3}^{*} \otimes \cdots \otimes A_{n}^{*}\right) \otimes A_{3} \otimes \cdots \otimes A_{n}$ and reduce most cases to Case 2. For the remaining cases, we show directly $T \in \sigma_{3}(X)$.

Case 4: $T \in \sigma_{2}\left(X_{2}\right)$, then T has one of the three types of the normal forms
in Proposition 6 for $\sigma_{3}\left(X_{2}\right)$. We verify by induction that for each normal form $T \in \sigma_{3}(X)$.

3.2 Proof of the main theorem

We only need to show that if T satisfies Strassen's equations of all partitions $I \cup J \cup K=\{1, \ldots, n\}$ and 4×4 minors of all flattenings $I \cup J=\{1, \ldots, n\}$, then $T \in \sigma_{3}\left(S e g\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$. For each A_{i} we fix a basis $\left\{a_{j}^{i}\right\}$ and its dual basis $\left\{\alpha_{j}^{i}\right\}$. Let $X_{k}:=\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{k} \times \mathbb{P}\left(A_{k+1} \otimes \cdots \otimes A_{n}\right)\right)$, and $X:=\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)$. For any flattening $I \cup J=\{1, \ldots, n\}, 4 \times 4$ minors of $T: A_{I}^{*} \rightarrow A_{J}$ vanish if and only if $\operatorname{dim} T\left(A_{I}^{*}\right) \leq 3$. By Corollary 2 , we can assume $3 \geq \operatorname{dim} A_{1} \geq \cdots \geq \operatorname{dim} A_{n} \geq 2$. Since T satisfies Strassen's equations of the partition $\{1\} \cup\{2\} \cup\{3, \ldots, n\}$ and 4×4 minors of all flattenings, by Theorem 5 we have $T \in \sigma_{3}\left(X_{2}\right)$. We split our discussion into 4 cases to show $T \in \sigma_{3}(X)$.

$$
\text { 3.2.1 Case 1: } T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right), T \notin S u b_{3,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right)
$$

Since T has one of the normal forms in Theorem 7, we use induction to show $T \in \sigma_{3}(X)$ by verifying each normal form.

Type 1: Without loss of generality, let $T=a_{1}^{1} \otimes a_{1}^{2} \otimes u_{1}+a_{2}^{1} \otimes a_{2}^{2} \otimes u_{2}+a_{3}^{1} \otimes a_{3}^{2} \otimes u_{3}$, where $u_{i} \in A_{3} \otimes \cdots \otimes A_{n} . \operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies that $u_{i}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank ≤ 1 for all i, say $u_{i}=b_{i}^{3} \otimes v_{i}$ for some $b_{i}^{3} \in A_{3}$ and $v_{i} \in A_{4} \otimes \cdots \otimes A_{n}$. Therefore $T=a_{1}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3} \otimes v_{1}+a_{2}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3} \otimes v_{2}+a_{3}^{1} \otimes a_{3}^{2} \otimes b_{3}^{3} \otimes v_{3}$, i.e. $T \in \sigma_{3}\left(X_{3}\right)$.

Now we use induction, assume $T=a_{1}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3} \otimes \cdots \otimes b_{1}^{k}+a_{2}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3} \otimes \cdots \otimes b_{2}^{k}+$ $a_{3}^{1} \otimes a_{3}^{2} \otimes b_{3}^{3} \otimes \cdots \otimes b_{3}^{k}$, then $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{k}^{*}\right) \leq 3$ implies that $b_{i}^{k}: A_{k}^{*} \rightarrow A_{k+1} \otimes \cdots \otimes A_{n}$ has rank ≤ 1 for all $1 \leq i \leq 3$.

Type 2: $T=a_{1}^{1} \otimes a_{1}^{2} \otimes v_{2}^{3}+a_{1}^{1} \otimes a_{2}^{2} \otimes v_{1}^{3}+a_{2}^{1} \otimes a_{1}^{2} \otimes v_{1}^{3}+a_{3}^{1} \otimes a_{3}^{2} \otimes v_{3}^{3}$, where $v_{i}^{3} \in A_{3} \otimes \cdots \otimes A_{n}$. Since $T \notin \sigma_{2}\left(X_{2}\right), v_{1}^{3}$ and v_{3}^{3} are non-zero. $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$
implies v_{1}^{3} and $v_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ have rank 1 , say $v_{i}^{3}=b_{i}^{3} \otimes v_{i}^{4}$ for $i=1,3$ and some $b_{i}^{3} \in A_{3}, v_{i}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$, and for each $j=2,3, a_{1}^{2} \otimes v_{2}^{3}\left(\alpha_{j}^{3}\right)+a_{2}^{2} \otimes v_{1}^{3}\left(\alpha_{j}^{3}\right)$ is a linear combination of $a_{1}^{2} \otimes v_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{2} \otimes v_{1}^{3}\left(\alpha_{1}^{3}\right)$ and $a_{1}^{2} \otimes v_{1}^{3}\left(\alpha_{1}^{3}\right)$, then $v_{2}^{3}=b_{1}^{3} \otimes v_{2}^{4}+b_{2}^{3} \otimes v_{1}^{4}$ for some $b_{2}^{3} \in A_{3}$ and $v_{2}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$. Thus $T=a_{2}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3} \otimes v_{1}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes$ $b_{1}^{3} \otimes v_{2}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes b_{2}^{3} \otimes v_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes b_{1}^{3} \otimes v_{1}^{4}+a_{3}^{1} \otimes a_{3}^{2} \otimes b_{3}^{3} \otimes v_{3}^{4}$.

Now we use induction, and assume that $T=\sum_{i=1}^{k} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes$ $b_{1}^{k}+b_{3}^{1} \otimes \cdots \otimes b_{3}^{k}$, where $b_{j}^{i}=a_{j}^{i}$ for $i=1,2$ and $1 \leq j \leq 3$. The induction argument is similar to the case $k=3$ above.

Type 3: $T=a_{1}^{1} \otimes a_{2}^{2} \otimes v_{2}^{3}+a_{2}^{1} \otimes a_{1}^{2} \otimes v_{2}^{3}+a_{2}^{1} \otimes a_{2}^{2} \otimes v_{1}^{3}+a_{1}^{1} \otimes a_{1}^{2} \otimes v_{3}^{3}+a_{1}^{1} \otimes a_{3}^{2} \otimes$ $v_{1}^{3}+a_{3}^{1} \otimes a_{1}^{2} \otimes v_{1}^{3}$, where $v_{i}^{3} \in A_{3} \otimes \cdots \otimes A_{n}$. If $v_{1}^{3}=0, T$ has been discussed in Case 1 Type 1. If $v_{2}^{3}=0, T$ has been discussed in Case 1 Type 2. So we assume v_{1}^{3} and v_{2}^{3} are non-zero. $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $v_{1}^{3}=u_{1}^{3} \otimes u_{1}^{4}, v_{2}^{3}=u_{1}^{3} \otimes u_{2}^{4}+u_{2}^{3} \otimes u_{1}^{4}$ and $v_{3}^{3}=u_{1}^{3} \otimes u_{3}^{4}+u_{2}^{3} \otimes u_{2}^{4}+u_{3}^{3} \otimes u_{1}^{4}$ for some $u_{1}^{3}, u_{2}^{3}, u_{3}^{3} \in A_{3}$, and $u_{1}^{4}, u_{2}^{4}, u_{3}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$. Denote a_{j}^{i} by u_{j}^{i} when $i=1,2$, then $T=\sum_{1 \leq i<j \leq 4} u_{1}^{1} \otimes \cdots \otimes u_{2}^{i} \otimes \cdots \otimes u_{2}^{j} \otimes \cdots \otimes u_{1}^{4}+$ $\sum_{i=1}^{4} u_{1}^{1} \otimes \cdots \otimes u_{3}^{i} \otimes \cdots \otimes u_{1}^{4}$.

The induction argument is similar the above argument.
Type 4: $T=a_{2}^{1} \otimes a_{1}^{2} \otimes v_{2}^{3}+a_{2}^{1} \otimes a_{2}^{2} \otimes v_{1}^{3}+a_{1}^{1} \otimes a_{1}^{2} \otimes v_{3}^{3}+a_{1}^{1} \otimes a_{3}^{2} \otimes v_{1}^{3}+a_{3}^{1} \otimes a_{1}^{2} \otimes v_{1}^{3}$ for some $v_{j}^{3} \in A_{3} \otimes \cdots \otimes A_{n}$. Since $T \notin \sigma_{2}\left(X_{2}\right), v_{1}^{3} \neq 0$, then $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $v_{1}^{3}=u_{1}^{3} \otimes u_{1}^{4}, v_{2}^{3}=u_{1}^{3} \otimes u_{2}^{4}+u_{2}^{3} \otimes u_{1}^{4}, v_{3}^{3}=u_{1}^{3} \otimes u_{3}^{4}+u_{3}^{3} \otimes u_{1}^{4}$ for some $u_{j}^{3} \in A_{3}$, $u_{j}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$. Denote a_{j}^{i} by u_{j}^{i} for $i=1,2$, then $T=\sum_{i=2}^{4} u_{2}^{1} \otimes \cdots \otimes u_{2}^{i} \otimes \cdots \otimes$ $u_{1}^{4}+\sum_{i=1}^{4} u_{1}^{1} \otimes \cdots \otimes u_{3}^{i} \otimes \cdots \otimes u_{1}^{4}$.

The induction argument is similar.

$$
\begin{gathered}
\text { 3.2.2 Case 2: } T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right) \text {, } \\
T \in \operatorname{Sub}_{3,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right) \backslash \operatorname{Sub}_{2,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right)
\end{gathered}
$$

We show $T \in \sigma_{3}(X)$ by induction on each type of the normal forms.
Type 1: $T=a_{1}^{1} \otimes b_{1}^{2} \otimes b_{1}^{3}+a_{2}^{1} \otimes b_{2}^{2} \otimes b_{2}^{3}+a_{3}^{1} \otimes b_{3}^{2} \otimes b_{3}^{3}$, where $b_{j}^{2} \in A_{2}$ and $b_{j}^{3} \in A_{3} \otimes \cdots \otimes A_{n}$. Without loss of generality, we can assume b_{1}^{2} and b_{2}^{2} are linearly independent, then $b_{3}^{2}=b_{1}^{2}$ or $b_{3}^{2}=b_{1}^{2}+b_{2}^{2}$.

If $b_{3}^{2}=a_{1}^{2}$, since $\operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$, then either $b_{2}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 , or both b_{1}^{3} and b_{3}^{3} have rank 1 as maps $A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$.

When $b_{2}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 , let $b_{2}^{3}=a_{2}^{3} \otimes b_{2}^{4}$ for some $b_{2}^{4} \in$ $A_{4} \otimes \cdots \otimes A_{n}$. We only need to consider the case that at least one of b_{1}^{3} and $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 2 . Without loss of generality we can assume $b_{1}^{3}=u_{1}^{3} \otimes b_{1}^{4}+u_{3}^{3} \otimes b_{3}^{4}$ for some $u_{i}^{3} \in A_{3}$ and $b_{i}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$ where $i=1,3$, then $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ requires $b_{3}^{3}\left(\alpha_{j}^{3}\right)=x_{j} b_{1}^{4}+y_{j} b_{3}^{4}$ for some x_{j}, y_{j}, where $j=1,2$. Consider $A_{3} \otimes V_{4}$, where V_{4} is spanned by b_{1}^{4} and b_{3}^{4}, after a change of basis, we can assume $b_{1}^{3}=u_{1}^{3} \otimes b_{1}^{4}+u_{3}^{3} \otimes b_{3}^{4}$ and $b_{3}^{3}=\lambda u_{1}^{3} \otimes b_{1}^{4}+u_{1}^{3} \otimes b_{3}^{4}+\lambda u_{3}^{3} \otimes b_{3}^{4}$, or $b_{3}^{3}=\mu u_{1}^{3} \otimes b_{1}^{4}+\nu u_{3}^{3} \otimes b_{3}^{4}$. Then $T=T^{\prime}+a_{2}^{1} \otimes b_{2}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4}$, where $T^{\prime}=\left(a_{1}^{1}+\lambda a_{3}^{1}\right) \otimes$ $b_{1}^{2} \otimes u_{1}^{3} \otimes b_{1}^{4}+\left(a_{1}^{1}+\lambda a_{3}^{1}\right) \otimes b_{1}^{2} \otimes u_{3}^{3} \otimes b_{3}^{4}+a_{3}^{1} \otimes b_{1}^{2} \otimes u_{1}^{3} \otimes b_{3}^{4} \in \widehat{T}_{\left(a_{1}^{1}+\lambda a_{3}^{1}\right) \otimes b_{1}^{2} \otimes u_{1}^{3} \otimes b_{3}^{4}} X_{3}$, or $T=\left(a_{1}^{1}+\mu a_{3}^{1}\right) \otimes b_{1}^{2} \otimes u_{1}^{3} \otimes b_{1}^{4}+\left(a_{1}^{1}+\nu a_{3}^{1}\right) \otimes b_{1}^{2} \otimes u_{3}^{3} \otimes b_{3}^{4}+a_{2}^{1} \otimes b_{2}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4}$.

When b_{1}^{3} and $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ have rank 1 , say $b_{1}^{3}=a_{1}^{3} \otimes b_{1}^{4}$ and $b_{3}^{3}=u_{3}^{3} \otimes b_{3}^{4}$ for some $u_{3}^{3} \in A_{3}$ and $b_{i}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$ where $i=1,3$, and assume $b_{2}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 2 , $\operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ requires $u_{3}^{3}=a_{1}^{3}$ up to a scalar, and $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ requires $b_{1}^{4}=b_{3}^{4}$ up to a scalar, then $T=$ $\left(a_{1}^{1}+a_{3}^{1}\right) \otimes b_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes b_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{1} \otimes b_{2}^{2} \otimes a_{2}^{3} \otimes b_{2}^{3}\left(\alpha_{2}^{3}\right)$.

If $b_{3}^{2}=b_{1}^{2}+b_{2}^{2}, \operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies b_{1}^{3} or $b_{2}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1. If only one of them has rank 1 , without loss of generality we assume that $b_{2}^{3}=a_{1}^{3} \otimes$
$u_{1}^{4}+a_{2}^{3} \otimes u_{2}^{4}$, and $b_{1}^{3}=u_{1}^{3} \otimes u_{3}^{4} . \operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $b_{3}^{3}=u_{1}^{3} \otimes u_{4}^{4}$ for some $u_{4}^{4} \in$ $A_{4} \otimes \cdots \otimes A_{n} . \operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ requires that u_{3}^{4} and u_{4}^{4} are linearly dependent, then we can assume $u_{4}^{4}=u_{3}^{4}$. $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ also requires u_{4}^{4} is a linear combination of u_{1}^{4} and u_{2}^{4}. Consider $A_{3} \otimes V_{4}$, where V_{4} is the subspace of $A_{4} \otimes \cdots \otimes A_{n}$ spanned by u_{1}^{4} and u_{2}^{4}, after a change of basis, we can assume $b_{2}^{3}=a_{1}^{3} \otimes u_{1}^{4}+a_{2}^{3} \otimes u_{2}^{4}$ is still the identity matrix, and $b_{1}^{3}=b_{3}^{3}=a_{1}^{3} \otimes u_{2}^{4}$ or $a_{1}^{3} \otimes u_{1}^{4}$. Then $T=\left(a_{1}^{1}+a_{3}^{1}\right) \otimes b_{1}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4}+T^{\prime}$, where $T^{\prime}=a_{2}^{1} \otimes b_{2}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{2}^{1} \otimes b_{2}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{3}^{1} \otimes b_{2}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4} \in \widehat{T}_{a_{2}^{1} \otimes b_{2}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4}} X_{3}$, or $T=\left(a_{1}^{1}+a_{3}^{1}\right) \otimes b_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+\left(a_{2}^{1}+a_{3}^{1}\right) \otimes b_{2}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{2}^{1} \otimes b_{2}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}$.

If both b_{1}^{3} and b_{2}^{3} have rank 1 , let $b_{1}^{3}=a_{1}^{3} \otimes u_{1}^{4}$ and $b_{2}^{3}=u_{2}^{3} \otimes u_{2}^{4}$. If u_{1}^{4} and u_{2}^{4} are linearly independent, $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1. If u_{1}^{4} and u_{2}^{4} are dependent, say $u_{1}^{4}=u_{2}^{4}$, and if $u_{2}^{3}=a_{1}^{3}$ up to a scalar, since $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$, then $b_{3}^{3}\left(\alpha_{1}^{3}\right)=x b_{3}^{3}\left(\alpha_{2}^{3}\right)+y u_{1}^{4}$ for some x, y. So $T=\left(a_{1}^{1}+y a_{3}^{1}\right) \otimes b_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+\left(a_{2}^{1}+y a_{3}^{1}\right) \otimes b_{2}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{3}^{1} \otimes\left(b_{1}^{2}+b_{2}^{2}\right) \otimes\left(x a_{1}^{3}+a_{2}^{3}\right) \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)$. If u_{2}^{3} and a_{1}^{3} are independent, we can assume $u_{2}^{3}=a_{2}^{3}$, since $\operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$, then $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 .

Now we use induction. Assume $T=a_{1}^{1} \otimes b_{1}^{2} \otimes \cdots \otimes b_{1}^{k}+a_{2}^{1} \otimes b_{2}^{2} \otimes \cdots \otimes b_{2}^{k}+a_{3}^{1} \otimes$ $b_{3}^{2} \otimes \cdots \otimes b_{3}^{k}$, without loss of generality we can assume $b_{1}^{2}=a_{1}^{2}, b_{2}^{2}=a_{2}^{2}$, then $b_{3}^{2}=a_{1}^{2}$ or $b_{3}^{2}=a_{1}^{2}+a_{2}^{2}$. The induction argument is similar to the case $k=3$.

Type 2: $T=a_{1}^{1} \otimes b_{1}^{2} \otimes b_{2}^{3}+a_{1}^{1} \otimes b_{2}^{2} \otimes b_{1}^{3}+a_{2}^{1} \otimes b_{1}^{2} \otimes b_{1}^{3}+a_{3}^{1} \otimes b_{3}^{2} \otimes b_{3}^{3}$, without loss of generality we can assume $b_{1}^{2}=a_{1}^{2}$ and $b_{2}^{2}=a_{2}^{2}$, then $b_{3}^{2}=a_{1}^{2}$, or $b_{3}^{2}=a_{2}^{2}+\lambda a_{1}^{2}$ for some $\lambda \in \mathbb{C}$.

When $b_{3}^{2}=a_{1}^{2}, \operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ forces $b_{1}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 , say $b_{1}^{3}=a_{1}^{3} \otimes b_{1}^{4}$. If $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 2 , say $b_{3}^{3}=a_{1}^{3} \otimes b_{2}^{4}+a_{2}^{3} \otimes b_{3}^{4}$, then $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ requires that b_{1}^{4} and $b_{2}^{3}\left(\alpha_{2}^{3}\right)$ are both in the subspace spanned by b_{2}^{4} and b_{3}^{4}. After a change of basis, we can assume that $b_{3}^{3}=a_{1}^{3} \otimes b_{2}^{4}+a_{2}^{3} \otimes b_{3}^{4}$, and $b_{1}^{3}=a_{1}^{3} \otimes b_{2}^{4}$ or $b_{1}^{3}=a_{1}^{3} \otimes b_{3}^{4}$. We can assume $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{2}^{4}+\lambda b_{3}^{4}$ or $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{3}^{4}$. So we
have four cases:
Case 1: If $b_{1}^{3}=a_{1}^{3} \otimes b_{3}^{4}$ and $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{2}^{4}+\lambda b_{3}^{4}, T=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes$ $\left(\lambda a_{2}^{3}\right) \otimes b_{3}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes$ $a_{2}^{3} \otimes b_{3}^{4}$. Let $S(t)=\left(a_{1}^{1}+t a_{3}^{1}+t^{2} a_{2}^{1}\right) \otimes\left(a_{1}^{2}+t^{2} a_{2}^{2}\right) \otimes\left(a_{1}^{3}+t a_{2}^{3}+t^{2} \lambda a_{2}^{3}\right) \otimes\left(b_{3}^{4}+t b_{2}^{4}+t^{2} b_{2}^{3}\left(\alpha_{1}^{3}\right)\right)$, then $T=S^{\prime \prime}(0)$.

Case 2: If $b_{1}^{3}=a_{1}^{3} \otimes b_{3}^{4}$ and $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{3}^{4}$, then $T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes$ $a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}} X_{3}$, and $T^{\prime \prime}=a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4} \in \widehat{T}_{a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}} X_{3}$.

Case 3: If $b_{1}^{3}=a_{1}^{3} \otimes b_{2}^{4}$ and $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{2}^{4}+\lambda b_{3}^{4}, T=T^{\prime}+\left(\lambda a_{1}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+\left(a_{2}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4} \in$ $\widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}} X_{3}$.

Case 4: If $b_{1}^{3}=a_{1}^{3} \otimes b_{2}^{4}$ and $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{3}^{4}$, then $T=T^{\prime}+\left(a_{1}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+\left(a_{2}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}} X_{3}$.

If $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 , say $b_{3}^{3}=\left(x a_{1}^{3}+y a_{2}^{3}\right) \otimes b_{3}^{4}$, and b_{1}^{4} and b_{3}^{4} are linearly independent, $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ forces $b_{2}^{3}\left(\alpha_{2}^{3}\right)$ is a linear combination of b_{1}^{4} and b_{3}^{4}. We can assume $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{1}^{4}$ or $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{3}^{4}+\lambda b_{1}^{4}$. If $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{1}^{4}$, $T=T^{\prime}+a_{3}^{1} \otimes a_{1}^{2} \otimes\left(x a_{1}^{3}+y a_{2}^{3}\right) \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}+$ $a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$. If $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{3}^{4}+\lambda b_{1}^{4}$, we can assume $b_{3}^{3}=a_{2}^{3} \otimes b_{3}^{4}$ or $b_{3}^{3}=\left(a_{1}^{3}+\mu a_{2}^{3}\right) \otimes b_{3}^{4}$. If $b_{3}^{3}=a_{2}^{3} \otimes b_{3}^{4}$, then $T=T^{\prime}+\left(a_{1}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes\left(\lambda a_{2}^{3}\right) \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in$ $\widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$. If $b_{3}^{3}=\left(a_{1}^{3}+\mu a_{2}^{3}\right) \otimes b_{3}^{4}$, and if $\mu \neq 0$, let $\widetilde{a_{2}^{3}}=a_{1}^{3}+\mu a_{2}^{3}$, then $T=$ $T^{\prime}+\left(1 / \mu a_{1}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes \widetilde{a_{2}^{3}} \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left[b_{2}^{3}\left(\alpha_{1}^{3}\right)-1 / \mu\left(b_{3}^{4}+\lambda b_{1}^{4}\right)\right]+a_{1}^{1} \otimes a_{1}^{2} \otimes$ $\left(\lambda / \mu \widetilde{a_{2}^{3}}\right) \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$. If $\mu=0, T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes\left(\lambda a_{2}^{3}\right) \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in$ $\widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$, and $T^{\prime \prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}} X_{3}$. If b_{1}^{4} and b_{3}^{4} are linearly dependent, say $b_{1}^{4}=b_{3}^{4}$, then $T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=$
$a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+\left(a_{2}^{1}+x a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$, and $T^{\prime \prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{2}^{3}\left(\alpha_{2}^{3}\right)+\left(y a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}} X_{3}$.

When $b_{3}^{2}=a_{2}^{2}+\lambda a_{1}^{2}, \operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies three cases. Case 1: $b_{1}^{3}=a_{1}^{3} \otimes b_{1}^{4}$ and $b_{2}^{3}=a_{1}^{3} \otimes b_{2}^{4}$ for some $b_{1}^{4}, b_{2}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$; Case 2: $b_{1}^{3}=a_{1}^{3} \otimes b_{1}^{4}$ and $b_{3}^{3}=a_{1}^{3} \otimes b_{3}^{4}$ for some $b_{1}^{4}, b_{3}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$; Case $3: b_{1}^{3}=a_{1}^{3} \otimes b_{1}^{4}$ and $b_{3}^{3}=a_{2}^{3} \otimes b_{3}^{4}$ for some $b_{1}^{4}, b_{3}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$.

For case 1 , if $b_{3}^{3}=u_{3}^{3} \otimes u_{3}^{4}$ for some $u_{3}^{3} \in A_{3}$ and $u_{3}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$, then $T=T^{\prime}+a_{3}^{1} \otimes\left(a_{2}^{2}+\lambda a_{1}^{2}\right) \otimes u_{3}^{3} \otimes u_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes$ $a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$. If $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank $2, \operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ requires $b_{1}^{4}=b_{2}^{4}$ up to a scalar, and b_{1}^{4} is a linear combination of $b_{3}^{3}\left(\alpha_{1}^{3}\right)$ and $b_{3}^{3}\left(\alpha_{2}^{3}\right)$, say $b_{3}^{3}\left(\alpha_{1}^{3}\right)=x b_{3}^{3}\left(\alpha_{2}^{3}\right)+y b_{1}^{4}$ or $b_{1}^{4}=b_{3}^{3}\left(\alpha_{2}^{3}\right)$ up to a scalar, then $T=\left(a_{1}^{1}+a_{2}^{1}+y \lambda a_{3}^{1}\right) \otimes a_{1}^{2} \otimes$ $a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+\left(a_{1}^{1}+y a_{3}^{1}\right) \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{3}^{1} \otimes\left(a_{2}^{2}+\lambda a_{1}^{2}\right) \otimes\left(x a_{1}^{3}+a_{2}^{3}\right) \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)$, or $T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{3}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{3}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{3}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$, and $T^{\prime \prime}=\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes \lambda b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{3}^{1} \otimes a_{1}^{2} \otimes\left(\lambda a_{2}^{3}\right) \otimes b_{1}^{4} \in \widehat{T}_{a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$.

For case 2 , if $b_{3}^{4}=b_{1}^{4}$ up to a scalar, then $b_{1}^{3}=b_{3}^{3}$ up to a scalar, and $T=$ $a_{1}^{1} \otimes a_{1}^{2} \otimes b_{2}^{3}+\left(a_{1}^{1}+a_{3}^{1}\right) \otimes a_{2}^{2} \otimes b_{1}^{3}+\left(a_{2}^{1}+\lambda a_{3}^{1}\right) \otimes a_{1}^{2} \otimes b_{1}^{3}$, which is discussed in Case 2 Type 1. Hence we assume b_{1}^{4} and b_{3}^{4} are linearly independent. $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{1}^{4}$ up to a scalar, then $T=T^{\prime}+a_{3}^{1} \otimes\left(a_{2}^{2}+\lambda a_{1}^{2}\right) \otimes a_{1}^{3} \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in$ $\widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$.

For case $3, \operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ requires $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{1}^{4}$ up to a scalar. Then $T=T^{\prime}+a_{3}^{1} \otimes\left(a_{2}^{2}+\lambda a_{1}^{2}\right) \otimes a_{2}^{3} \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes$ $b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$.

Now we assume $T=\sum_{i=1}^{k} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}+b_{3}^{1} \otimes \cdots \otimes b_{3}^{k}$. The induction argument is similar to the case $k=3$.

Type 3: $T=a_{1}^{1} \otimes b_{2}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes b_{1}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes b_{2}^{2} \otimes b_{1}^{3}+a_{1}^{1} \otimes b_{1}^{2} \otimes b_{3}^{3}+a_{1}^{1} \otimes b_{3}^{2} \otimes$ $b_{1}^{3}+a_{3}^{1} \otimes b_{1}^{2} \otimes b_{1}^{3}$. Without loss of generality, we can assume $b_{1}^{2}=a_{1}^{2}, b_{2}^{2}=a_{2}^{2}$, and $b_{3}^{2}=x a_{1}^{2}+y a_{2}^{2} . \operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies two cases. Case $1: b_{1}^{3}=a_{1}^{3} \otimes b_{1}^{4}$ for some $b_{1}^{4} \in A_{4} \otimes \cdots \otimes A_{n}, b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{1}^{4}$ up to a scalar, and $b_{2}^{3}\left(\alpha_{1}^{3}\right)=b_{3}^{3}\left(\alpha_{2}^{3}\right)+\lambda b_{1}^{4}$ for some $\lambda \in \mathbb{C}$; Case 2: $b_{1}^{3}=a_{1}^{3} \otimes b_{1}^{4}$, and $b_{2}^{3}=a_{1}^{3} \otimes b_{2}^{4}$ for some $b_{1}^{4}, b_{2}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$.

For case $1, T=a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes$ $b_{3}^{3}\left(\alpha_{2}^{3}\right)+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes$ $a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes(y+\lambda) a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+\left(x a_{1}^{1}+\lambda a_{2}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}$. Let $S(t)=$ $\left[a_{1}^{1}+t a_{2}^{1}+t^{2}\left(x a_{1}^{1}+\lambda a_{2}^{1}+a_{3}^{1}\right)\right] \otimes\left[a_{1}^{2}+t a_{2}^{2}+t^{2}(y+\lambda) a_{2}^{2}\right] \otimes\left(a_{1}^{3}+t a_{2}^{3}\right) \otimes\left[b_{1}^{4}+t b_{3}^{3}\left(\alpha_{2}^{3}\right)+t^{2} b_{3}^{3}\left(\alpha_{1}^{3}\right)\right]$, then $T=S^{\prime \prime}(0)$.

For case 2, if $b_{2}^{4}=\lambda b_{1}^{4}$ for some $\lambda \in \mathbb{C}$, then $b_{2}^{3}=\lambda b_{1}^{3}, T=\left[(y+\lambda) a_{1}^{1}+a_{2}^{1}\right] \otimes a_{2}^{2} \otimes$ $b_{1}^{3}+\left(x a_{1}^{1}+\lambda a_{2}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3}$, which is discussed in Case 2 Type 1. Thus we assume b_{1}^{4} and b_{2}^{4} are independent. $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $b_{3}^{3}\left(\alpha_{2}^{3}\right)=b_{1}^{4}$ up to a scalar, so $T=a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes$ $a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes\left(x a_{1}^{2}+y a_{2}^{2}\right) \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}$. Let $S(t)=\left[a_{1}^{1}+t a_{2}^{1}+t^{2} a_{3}^{1}\right] \otimes\left[a_{1}^{2}+t a_{2}^{2}+t^{2}\left(x a_{1}^{2}+y a_{2}^{2}\right)\right] \otimes\left(a_{1}^{3}+t^{2} a_{2}^{3}\right) \otimes\left[b_{1}^{4}+t b_{2}^{4}+t^{2} b_{3}^{3}\left(\alpha_{1}^{3}\right)\right]$, then $T=S^{\prime \prime}(0)$.

Now we assume $T=\sum_{i<j} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{j-1} \otimes b_{2}^{j} \otimes b_{1}^{j+1} \otimes \cdots \otimes$ $b_{1}^{k}+\sum_{i=1}^{k} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{3}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}$, and use induction to show $T \in \sigma_{3}(X)$. The induction argument is similar to the case $k=3$.

Type 4: $T=a_{2}^{1} \otimes b_{1}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes b_{2}^{2} \otimes b_{1}^{3}+a_{1}^{1} \otimes b_{1}^{2} \otimes b_{3}^{3}+a_{1}^{1} \otimes b_{3}^{2} \otimes b_{1}^{3}+a_{3}^{1} \otimes b_{1}^{2} \otimes b_{1}^{3}$. If $b_{2}^{2}=b_{1}^{2}, T=a_{2}^{1} \otimes b_{1}^{2} \otimes b_{2}^{3}+a_{1}^{1} \otimes b_{1}^{2} \otimes b_{3}^{3}+a_{1}^{1} \otimes b_{3}^{2} \otimes b_{1}^{3}+\left(a_{2}^{1}+a_{3}^{1}\right) \otimes b_{1}^{2} \otimes b_{1}^{3}$, which is discussed in Case 2 Type 2. Hence we can assume $b_{i}^{2}=a_{i}^{2}$ for $1 \leq i \leq 2$. Assume $b_{3}^{2}=x a_{1}^{2}+y a_{2}^{2}$, then $T=\left(y a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes b_{2}^{3}+\left(y a_{1}^{1}+a_{2}^{1}\right) \otimes a_{2}^{2} \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{1}^{2} \otimes$ $\left(b_{3}^{3}-y b_{2}^{3}\right)+\left(x a_{1}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes b_{1}^{3}$. Therefore after a change of basis, we only need
to consider the case $T=a_{2}^{1} \otimes a_{1}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes a_{2}^{2} \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3}+a_{3}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3}$. $\operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $b_{1}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 , say $b_{1}^{3}=a_{1}^{3} \otimes b_{1}^{4}$ for some $b_{1}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$.

If $b_{3}^{3}\left(\alpha_{1}^{3}\right)$ and $b_{3}^{3}\left(\alpha_{2}^{3}\right)$ are linearly independent, $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $b_{1}^{4}, b_{2}^{3}\left(\alpha_{2}^{3}\right)$ are in V_{4}, where V_{4} is spanned by $b_{3}^{3}\left(\alpha_{1}^{3}\right)$ and $b_{3}^{3}\left(\alpha_{2}^{3}\right)$. For the subspace $A_{3} \otimes V_{4}$, after a change of basis, we can assume a_{1}^{3} and $a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)$ are preserved, and $b_{1}^{4}=b_{3}^{3}\left(\alpha_{1}^{3}\right)$, or $b_{1}^{4}=b_{3}^{3}\left(\alpha_{2}^{3}\right)$. So we have two cases:

Case 1: If $b_{1}^{4}=b_{3}^{3}\left(\alpha_{1}^{3}\right)$, assume $b_{2}^{3}\left(\alpha_{2}^{3}\right)=x b_{3}^{3}\left(\alpha_{1}^{3}\right)+y b_{3}^{3}\left(\alpha_{2}^{3}\right)$, then $T=T^{\prime}+\left(y a_{2}^{1}+\right.$ $\left.a_{1}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)$, where $T^{\prime}=a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{1} \otimes a_{1}^{2} \otimes\left(x a_{2}^{3}\right) \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+$ $a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+\left(a_{1}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right) \in \widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)} X_{3}$.

Case 2: If $b_{1}^{4}=b_{3}^{3}\left(\alpha_{2}^{3}\right)$, we can assume $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{3}^{3}\left(\alpha_{1}^{3}\right)+\lambda b_{3}^{3}\left(\alpha_{2}^{3}\right)$ for some $\lambda \in \mathbb{C}$, or $b_{2}^{3}\left(\alpha_{2}^{3}\right)=\lambda b_{3}^{3}\left(\alpha_{2}^{3}\right)$. If $b_{2}^{3}\left(\alpha_{2}^{3}\right)=b_{3}^{3}\left(\alpha_{1}^{3}\right)+\lambda b_{3}^{3}\left(\alpha_{2}^{3}\right), T=a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{1} \otimes$ $a_{1}^{2} \otimes\left(\lambda a_{2}^{3}\right) \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)+a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes$ $b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)$. Let $S(t)=\left(a_{2}^{1}+t a_{1}^{1}+t^{2} a_{3}^{1}\right) \otimes$ $\left(a_{1}^{2}+t^{2} a_{2}^{2}\right) \otimes\left(a_{1}^{3}+t a_{2}^{3}+t^{2} \lambda a_{2}^{3}\right) \otimes\left(b_{3}^{3}\left(\alpha_{2}^{3}\right)+t b_{3}^{3}\left(\alpha_{1}^{3}\right)+t^{2} b_{2}^{3}\left(\alpha_{1}^{3}\right)\right)$, then $T=S^{\prime \prime}(0)$. If $b_{2}^{3}\left(\alpha_{2}^{3}\right)=\lambda b_{3}^{3}\left(\alpha_{2}^{3}\right), T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{1} \otimes a_{1}^{2} \otimes \lambda a_{2}^{3} \otimes$ $b_{3}^{3}\left(\alpha_{2}^{3}\right)+a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right) \in \widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)} X_{3}$, and $T^{\prime \prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right) \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{2}^{3}\right)} X_{3}$.

If $b_{3}^{3}\left(\alpha_{2}^{3}\right)=\lambda b_{3}^{3}\left(\alpha_{1}^{3}\right)$ for some $\lambda \in \mathbb{C}$, then we can assume $b_{3}^{3}=a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)$ or $b_{3}^{3}=a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)$. Thus we have four cases:

Case 1: If $b_{3}^{3}=a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right), b_{3}^{3}\left(\alpha_{1}^{3}\right)$ and b_{1}^{4} are linearly independent, we can assume $b_{2}^{3}\left(\alpha_{2}^{3}\right)=x b_{1}^{4}+y b_{3}^{3}\left(\alpha_{1}^{3}\right)$ for some $x, y \in \mathbb{C}$ due to $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right)$, then $T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{1} \otimes a_{1}^{2} \otimes x a_{2}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes$ $a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$, and $T^{\prime \prime}=a_{2}^{1} \otimes a_{1}^{2} \otimes y a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right) \in$ $\widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)} X_{3}$.

Case 2: If $b_{3}^{3}=a_{1}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)$ and $b_{3}^{3}\left(\alpha_{1}^{3}\right)=\mu b_{1}^{4}$ for some $\mu \in \mathbb{C}, T=T^{\prime}+a_{2}^{1} \otimes a_{1}^{2} \otimes$
$a_{2}^{3} \otimes b_{2}^{3}\left(\alpha_{2}^{3}\right)$, where $T^{\prime}=a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+\left(\mu a_{1}^{1}+a_{3}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in$ $\widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$.

Case 3: If $b_{3}^{3}=a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right), b_{3}^{3}\left(\alpha_{1}^{3}\right)$ and b_{1}^{4} are linearly independent, we can assume $b_{2}^{3}\left(\alpha_{2}^{3}\right)=x b_{1}^{4}+y b_{3}^{3}\left(\alpha_{1}^{3}\right)$ due to $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right)$, then $T=T^{\prime}+\left(y a_{2}^{1}+a_{1}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)$, where $T^{\prime}=a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{1} \otimes a_{1}^{2} \otimes x a_{2}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in$ $\widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$.

Case 4: If $b_{3}^{3}=a_{2}^{3} \otimes b_{3}^{3}\left(\alpha_{1}^{3}\right)$ and $b_{3}^{3}\left(\alpha_{1}^{3}\right)=\mu b_{1}^{4}$ for some $\mu \in \mathbb{C}, T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{3}\left(\alpha_{1}^{3}\right)+a_{2}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{3}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$, and $T^{\prime \prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes \mu b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{2}^{3}\left(\alpha_{2}^{3}\right) \in \widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}} X_{3}$.

Now assume $T=\sum_{i=2}^{k} b_{2}^{1} \otimes b_{1}^{2} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}+\sum_{i=1}^{k} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes$ $b_{3}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}$, and use induction to show $T \in \sigma_{3}(X)$. The induction argument is similar to the case $k=3$.
3.2.3 Case 3: $T \in \sigma_{3}\left(X_{2}\right) \backslash \sigma_{2}\left(X_{2}\right), T \in S u b_{2,2, \ldots, 2}\left(A_{1} \otimes \cdots \otimes A_{n}\right)$

Since $\operatorname{dim} T\left(A_{3}^{*} \otimes \cdots \otimes A_{n}^{*}\right) \leq 3$, then after a change of basis we can assume $T\left(A_{3}^{*} \otimes \cdots \otimes A_{n}^{*}\right) \subset V$, where V is spanned by $\left\{a_{1}^{1} \otimes a_{1}^{2}+a_{2}^{1} \otimes a_{2}^{2}, a_{1}^{1} \otimes a_{2}^{2}, a_{2}^{1} \otimes a_{1}^{2}\right\}$ or $\left\{a_{1}^{1} \otimes a_{1}^{2}, a_{1}^{1} \otimes a_{2}^{2}, a_{2}^{1} \otimes a_{1}^{2}\right\}$. So T has 2 types of normal forms.

Type 1: $T=\left(a_{1}^{1} \otimes a_{1}^{2}+a_{2}^{1} \otimes a_{2}^{2}\right) \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3}$, we reduce the problem to finding equations for $\sigma_{3}\left(\nu_{n}\left(\mathbb{P}^{1}\right)\right)$, which has been settled.

Lemma 2. Let $T \in A \otimes B \otimes C$, where $\operatorname{dim} A=\operatorname{dim} B$. If there is an element $\phi \in \operatorname{Ker}\left(T_{B A}^{\wedge}\right)$ with full rank, then $\phi(T) \in S^{2} A \otimes C$.

Proof of the lemma. Let $\left\{a_{i}\right\},\left\{b_{j}\right\},\left\{c_{k}\right\}$ be bases for A, B, C respectively, and $\left\{a^{i}\right\},\left\{b^{j}\right\},\left\{c^{k}\right\}$ their dual bases. Let $T=\sum \alpha^{i j k} a_{i} \otimes b_{j} \otimes c_{k}$, then $T_{B A}^{\wedge}: a_{l} \otimes b^{j} \mapsto$ $\sum_{i, k} \alpha^{i j k}\left(a_{l} \wedge a_{i}\right) \otimes c_{k}$. Let $\phi=\sum \beta_{j}^{l} a_{l} \otimes b^{j} \in \operatorname{Ker}\left(T_{B A}^{\wedge}\right)$, then $\sum \beta_{j}^{l} \alpha^{i j k}\left(a_{l} \wedge a_{i}\right) \otimes c_{k}=0$, which means $\sum_{j} \beta_{j}^{l} \alpha^{i j k}=\sum_{j} \beta_{j}^{i} \alpha^{l j k}$. Since $\phi(T)=\sum \beta_{j}^{l} \alpha^{i j k} a_{i} \otimes a_{l} \otimes c_{k}$, then $\phi(T) \in S^{2} A \otimes C$.

Let V be a complex vector space. Given $\phi \in S^{d} V$, let $\phi_{a, d-a} \in S^{a} V \otimes S^{d-a} V$ denote the $(a, d-a)$-polarization of ϕ. As a linear map $S^{a} V^{*} \rightarrow S^{d-a} V, \operatorname{rank}\left(\phi_{a, d-a}\right) \leq$ r if $[\phi] \in \sigma_{r}\left(\nu_{d}(\mathbb{P} V)\right)[33]$.

Theorem 9 ([33]). $\sigma_{3}\left(\nu_{3}\left(\mathbb{P}^{n}\right)\right)$ is ideal theoretically defined by Aronhold invariant and size 4 minors of $\phi_{1,2} . \sigma_{3}\left(\nu_{d}\left(\mathbb{P}^{n}\right)\right)$ is scheme theoretically defined by size 4 minors of $\phi_{2,2}$ and $\phi_{1,3}$ when $d \geq 4$.

Now given any $T \in A_{1} \otimes \cdots \otimes A_{n}$, if there is some $1 \leq i \leq n$, and for any $j \neq i$, there is a $\phi_{j i} \in \operatorname{Ker}\left(T_{A_{j} A_{i}}^{\wedge}\right)$ with full rank, then $\widetilde{T}=\phi_{n i} \circ \cdots \circ \phi_{1 i}(T) \in S^{n} A_{i}$ has the same rank with T. If T satisfies 4×4 minors of flattenings, \widetilde{T} satisfies size 4 minors of symmetric flattenings, by Theorem $9 \widetilde{T} \in \sigma_{3}\left(\nu_{n}\left(\mathbb{P}^{1}\right)\right)$, then $T \in \sigma_{3}(X)$. If T is of Type 1, we always have $a_{1}^{1} \otimes a_{2}^{2}+a_{2}^{1} \otimes a_{1}^{2} \in \operatorname{Ker}\left(T_{A_{2} A_{1}}\right)$ with full rank, hence if for any $2 \leq i \leq n, T$ is of Type 1 when viewed as a tensor in $A_{1} \otimes A_{i} \otimes\left(A_{2} \otimes \cdots \otimes\right.$ $\left.A_{i-1} \otimes \widehat{A_{i}} \otimes A_{i+1} \otimes \cdots \otimes A_{n}\right)$, then $T \in \sigma_{3}(X)$. If $T \in A_{1} \otimes A_{2} \otimes\left(A_{3} \otimes \cdots \otimes A_{n}\right)$ is not of Type 1 , then it must be of Type 2 , and we will use induction to show that $T \in \sigma_{3}(X)$ in this situation.

Type 2: $T=a_{1}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3}+a_{1}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3}+a_{2}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3}$, the dimension of $T\left(A_{2}^{*} \otimes A_{3}^{*}\right)$ implies $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 , or $b_{2}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 .

If $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 , say $b_{3}^{3}=a_{1}^{3} \otimes b_{3}^{4}$, and $b_{2}^{3}: A_{3}^{*} \rightarrow$ $A_{4} \otimes \cdots \otimes A_{n}$ has rank 2 , say $b_{2}^{3}=a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{2}^{4}$, then $\operatorname{dim} T\left(A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $b_{1}^{3}\left(\alpha_{2}^{3}\right)=\lambda b_{1}^{4}+\mu b_{2}^{4}$ for some $\lambda, \mu \in \mathbb{C}$. If b_{3}^{4}, b_{1}^{4} and b_{2}^{4} are linearly independent, then $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ forces $b_{1}^{3}\left(\alpha_{1}^{3}\right)=x b_{3}^{4}+y b_{1}^{4}+z b_{2}^{4}$ for some $x, y, z \in \mathbb{C}$, thus $T=a_{1}^{1} \otimes a_{1}^{2} \otimes\left(y a_{1}^{3} \otimes b_{1}^{4}+z a_{1}^{3} \otimes b_{2}^{4}+\lambda a_{2}^{3} \otimes b_{1}^{4}+\mu a_{2}^{3} \otimes b_{2}^{4}\right)+a_{1}^{1} \otimes a_{2}^{2} \otimes\left(a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{2}^{4}\right)+$ $\left(x a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}$. For the subspace $A_{3} \otimes V_{4}$, where $V_{4} \subset A_{4} \otimes \cdots \otimes A_{n}$ is spanned by b_{1}^{4} and b_{2}^{4}, after a change of basis we can assume $a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{2}^{4}$ is preserved, a_{1}^{3}
is mapped to $u a_{1}^{3}+v a_{2}^{3}$ for some $u, v \in \mathbb{C}$, and $y a_{1}^{3} \otimes b_{1}^{4}+z a_{1}^{3} \otimes b_{2}^{4}+\lambda a_{2}^{3} \otimes b_{1}^{4}+\mu a_{2}^{3} \otimes b_{2}^{4}$ is of the Jordan canonical form, i.e. $a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{2}^{4}$, or $a_{1}^{3} \otimes b_{1}^{4}$, or $a_{1}^{3} \otimes b_{2}^{4}$, or $\beta a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{3} \otimes b_{2}^{4}+\beta a_{2}^{3} \otimes b_{2}^{4}$ for some $0 \neq \beta \in \mathbb{C}$. Hence we have:

Subcase 1: $T=a_{1}^{1} \otimes\left(a_{1}^{2}+a_{2}^{2}\right) \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes\left(a_{1}^{2}+a_{2}^{2}\right) \otimes a_{2}^{3} \otimes b_{2}^{4}+\left(x a_{1}^{1}+a_{2}^{1}\right) \otimes$ $a_{1}^{2} \otimes\left(u a_{1}^{3}+v a_{2}^{3}\right) \otimes b_{3}^{4}$.

Subcase 2: $T=a_{1}^{1} \otimes\left(a_{1}^{2}+a_{2}^{2}\right) \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4}+\left(x a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes$ $\left(u a_{1}^{3}+v a_{2}^{3}\right) \otimes b_{3}^{4}$.

Subcase 3: $T=T^{\prime}+\left(x a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes\left(u a_{1}^{3}+v a_{2}^{3}\right) \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes$ $b_{2}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}} X_{3}$.

Subcase 4: $T=T^{\prime}+\left(x a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes\left(u a_{1}^{3}+v a_{2}^{3}\right) \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes\left(\beta a_{1}^{2}+\right.$ $\left.a_{2}^{2}\right) \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes\left(\beta a_{1}^{2}+a_{2}^{2}\right) \otimes a_{2}^{3} \otimes b_{2}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes\left(\beta a_{1}^{2}+a_{2}^{2}\right) \otimes a_{1}^{3} \otimes b_{2}^{4}} X_{3}$.

If $b_{3}^{4}=p b_{1}^{4}+q b_{2}^{4}$ for some $p, q \in \mathbb{C}$, for $A_{3} \otimes V_{4}$, after a change of basis we can assume a_{1}^{3} and $a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{2}^{4}$ are preserved, $b_{3}^{4}=b_{1}^{4}$ or b_{2}^{4}, and $a_{2}^{3} \otimes b_{1}^{3}\left(\alpha_{2}^{3}\right)$ is of the form $x_{1}^{1} a_{1}^{3} \otimes b_{1}^{4}+x_{2}^{1} a_{1}^{3} \otimes b_{2}^{4}+x_{1}^{2} a_{2}^{3} \otimes b_{1}^{4}+x_{2}^{2} a_{2}^{3} \otimes b_{2}^{4}$. If $b_{3}^{4}=b_{1}^{4}$ we have:

Subcase 5: $T=T^{\prime}+a_{1}^{1} \otimes\left(x_{2}^{2} a_{1}^{2}+a_{2}^{2}\right) \otimes a_{2}^{3} \otimes b_{2}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left[b_{1}^{3}\left(\alpha_{1}^{3}\right)+\right.$ $\left.x_{1}^{1} b_{1}^{4}+x_{2}^{1} b_{2}^{4}\right]+a_{1}^{1} \otimes a_{1}^{2} \otimes\left(x_{1}^{2} a_{2}^{3}\right) \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$.

If $b_{3}^{4}=b_{2}^{4}$, by changing a_{2}^{3}, b_{2}^{4} and a_{1}^{2}, we can assume $x_{1}^{2}=1$ or 0 . So we have:
Subcase 6: $T=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left[b_{1}^{3}\left(\alpha_{1}^{3}\right)+x_{1}^{1} b_{1}^{4}+x_{2}^{1} b_{2}^{4}\right]+a_{1}^{1} \otimes a_{1}^{2} \otimes\left(x_{2}^{2} a_{2}^{3}\right) \otimes b_{2}^{4}+$ $a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4}$. Let $S(t)=\left(a_{1}^{1}+t^{2} a_{2}^{1}\right) \otimes\left(a_{1}^{2}+t a_{2}^{2}\right) \otimes\left(a_{1}^{3}+t a_{2}^{3}+t^{2} x_{2}^{2} a_{2}^{3}\right) \otimes\left[b_{2}^{4}+t b_{1}^{4}+t^{2}\left(b_{1}^{3}\left(\alpha_{1}^{3}\right)+x_{1}^{1} b_{1}^{4}+x_{2}^{1} b_{2}^{4}\right)\right]$, so $T=S^{\prime \prime}(0)$.

Subcase 7: $T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left[b_{1}^{3}\left(\alpha_{1}^{3}\right)+x_{1}^{1} b_{1}^{4}+x_{2}^{1} b_{2}^{4}\right]+a_{1}^{1} \otimes$ $a_{1}^{2} \otimes\left(x_{2}^{2} a_{2}^{3}\right) \otimes b_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}} X_{3}$, and $T^{\prime \prime}=a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+$ $a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}} X_{3}$.

If $b_{2}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1 , say $b_{2}^{3}=a_{1}^{3} \otimes b_{2}^{4}$ for some $b_{2}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$, and $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 2 , say $b_{3}^{3}=a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{3}^{4}$ for some
$b_{1}^{4}, b_{3}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$, then $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{3}^{*}\right) \leq 3$ implies $b_{1}^{3}\left(\alpha_{2}^{3}\right)=\lambda b_{1}^{4}+\mu b_{3}^{4}$ for some $\lambda, \mu \in \mathbb{C}$. If b_{3}^{4}, b_{1}^{4} and b_{2}^{4} are linearly independent, then $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{2}^{*} \otimes A_{3}^{*}\right) \leq 3$ forces $b_{1}^{3}\left(\alpha_{1}^{3}\right)=x b_{1}^{4}+y b_{2}^{4}+z b_{3}^{4}$ for some $x, y, z \in \mathbb{C}$. For the subspace $A_{3} \otimes V_{4}$, where $V_{4} \subset A_{4} \otimes \cdots \otimes A_{n}$ is spanned by b_{1}^{4} and b_{3}^{4}, after a change of basis we can assume $a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{3}^{4}$ is preserved, a_{1}^{3} is mapped to $u a_{1}^{3}+v a_{2}^{3}$ for some $u, v \in \mathbb{C}$ under the new basis, and $x a_{1}^{3} \otimes b_{1}^{4}+z a_{1}^{3} \otimes b_{3}^{4}+\lambda a_{2}^{3} \otimes b_{1}^{4}+\mu a_{2}^{3} \otimes b_{3}^{4}$ is of the Jordan canonical form, i.e. $a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{3}^{4}$, or $a_{1}^{3} \otimes b_{1}^{4}$, or $a_{1}^{3} \otimes b_{3}^{4}$, or $\beta a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{3} \otimes b_{3}^{4}+\beta a_{2}^{3} \otimes b_{3}^{4}$ for some $0 \neq \beta \in \mathbb{C}$. Hence we have:

Subcase 8: $T=\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}+a_{1}^{1} \otimes\left(y a_{1}^{2}+\right.$ $\left.a_{2}^{2}\right) \otimes\left(u a_{1}^{3}+v a_{2}^{3}\right) \otimes b_{2}^{4}$.

Subcase 9: $T=\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}+a_{1}^{1} \otimes\left(y a_{1}^{2}+a_{2}^{2}\right) \otimes$ $\left(u a_{1}^{3}+v a_{2}^{3}\right) \otimes b_{2}^{4}$.

Subcase 10: $T=T^{\prime}+a_{1}^{1} \otimes\left(y a_{1}^{2}+a_{2}^{2}\right) \otimes\left(u a_{1}^{3}+v a_{2}^{3}\right) \otimes b_{2}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes$ $a_{1}^{3} \otimes b_{3}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4} \in \widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}} X_{3}$.

Subcase 11: $T=T^{\prime}+a_{1}^{1} \otimes\left(y a_{1}^{2}+a_{2}^{2}\right) \otimes\left(u a_{1}^{3}+v a_{2}^{3}\right) \otimes b_{2}^{4}$, where $T^{\prime}=\left(\beta a_{1}^{1}+a_{2}^{1}\right) \otimes$ $a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+\left(\beta a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4} \in \widehat{T}_{\left(\beta a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}} X_{3}$.

If $b_{2}^{4}=p b_{1}^{4}+q b_{3}^{4}$ for some $p, q \in \mathbb{C}$, for $A_{3} \otimes V_{4}$, after a change of basis we can assume a_{1}^{3} and $a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{3} \otimes b_{3}^{4}$ are preserved, $b_{2}^{4}=b_{1}^{4}$ or b_{3}^{4}, and $a_{2}^{3} \otimes b_{1}^{3}\left(\alpha_{2}^{3}\right)$ is of the form $x_{1}^{1} a_{1}^{3} \otimes b_{1}^{4}+x_{2}^{1} a_{1}^{3} \otimes b_{3}^{4}+x_{1}^{2} a_{2}^{3} \otimes b_{1}^{4}+x_{2}^{2} a_{2}^{3} \otimes b_{3}^{4}$. If $b_{2}^{4}=b_{1}^{4}$ we have:

Subcase 12: $T=T^{\prime}+\left(x_{2}^{2} a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left[b_{1}^{3}\left(\alpha_{1}^{3}\right)+\right.$ $\left.x_{1}^{1} b_{1}^{4}+x_{2}^{1} b_{3}^{4}\right]+a_{1}^{1} \otimes a_{1}^{2} \otimes x_{1}^{2} a_{2}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}} X_{3}$.

If $b_{2}^{4}=b_{3}^{4}$, by changing a_{2}^{3}, b_{3}^{4} and a_{2}^{2}, we can assume $x_{1}^{2}=1$ or 0 . So we have:
Subcase 13: $T=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left[b_{1}^{3}\left(\alpha_{1}^{3}\right)+x_{1}^{1} b_{1}^{4}+x_{2}^{1} b_{3}^{4}\right]+a_{1}^{1} \otimes a_{1}^{2} \otimes\left(x_{2}^{2} a_{2}^{3}\right) \otimes b_{3}^{4}+$ $a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4}$. Let $S(t)=\left(a_{1}^{1}+t a_{2}^{1}\right) \otimes\left(a_{1}^{2}+t^{2} a_{2}^{2}\right) \otimes\left(a_{1}^{3}+t a_{2}^{3}+t^{2} x_{2}^{2} a_{2}^{3}\right) \otimes\left[b_{3}^{4}+t b_{1}^{4}+t^{2}\left(b_{1}^{3}\left(\alpha_{1}^{3}\right)+x_{1}^{1} b_{1}^{4}+x_{2}^{1} b_{3}^{4}\right)\right]$, so $T=S^{\prime \prime}(0)$.

Subcase 14: $T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left[b_{1}^{3}\left(\alpha_{1}^{3}\right)+x_{1}^{1} b_{1}^{4}+x_{2}^{1} b_{3}^{4}\right]+a_{1}^{1} \otimes$ $a_{1}^{2} \otimes\left(x_{2}^{2} a_{2}^{3}\right) \otimes b_{3}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}} X_{3}$, and $T^{\prime \prime}=a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{1}^{4}+$ $a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{3}^{4} \in \widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{3}^{4}} X_{3}$.

If both b_{2}^{3} and $b_{3}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ have rank 1 , say $b_{2}^{3}=a_{1}^{3} \otimes b_{2}^{4}$ and $b_{3}^{3}=u_{3}^{3} \otimes b_{3}^{4}$ for some $u_{3}^{3} \in A_{3}$ and $b_{2}^{4}, b_{3}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$, and $b_{1}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 2, say $b_{1}^{3}=a_{1}^{3} \otimes u_{1}^{4}+a_{2}^{3} \otimes u_{2}^{4}$ for some $u_{1}^{4}, u_{2}^{4} \in A_{4} \otimes \cdots \otimes A_{n}, b_{2}^{4}, u_{1}^{4}$ and u_{2}^{4} are linearly independent, then $b_{3}^{4}=x b_{2}^{4}+y u_{1}^{4}+z u_{2}^{4}$ for some $x, y, z \in \mathbb{C}$. After a change of basis, we can assume $x=0$ or $1, u_{3}^{3}=a_{1}^{3}$ or a_{2}^{3}. For the subspace $A_{3} \otimes V_{4}$, where V_{4} is spanned by u_{1}^{4} and u_{2}^{4}, after a change of basis we can assume $a_{1}^{3} \otimes u_{1}^{4}+a_{2}^{3} \otimes u_{2}^{4}$ and a_{1}^{3} are preserved, and $y u_{1}^{4}+z u_{2}^{4}=u_{1}^{4}$ or u_{2}^{4}. Then we have:

Subcase 15: If $u_{3}^{3}=a_{1}^{3}, x=0, y u_{1}^{4}+z u_{2}^{4}=u_{1}^{4}$, then $T=\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes$ $u_{1}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}$.

Subcase 16: If $u_{3}^{3}=a_{1}^{3}, x=0, y u_{1}^{4}+z u_{2}^{4}=u_{2}^{4}$, then $T=T^{\prime}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4}} X_{3}$.

Subcase 17: If $u_{3}^{3}=a_{1}^{3}, x=1, y u_{1}^{4}+z u_{2}^{4}=u_{1}^{4}$, then $T=\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes$ $\left(u_{1}^{4}+b_{2}^{4}\right)+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{1}^{1} \otimes\left(a_{2}^{2}-a_{1}^{2}\right) \otimes a_{1}^{3} \otimes b_{2}^{4}$.

Subcase 18: If $u_{3}^{3}=a_{1}^{3}, x=1, y u_{1}^{4}+z u_{2}^{4}=u_{2}^{4}$, then $T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}} X_{3}$, and $T^{\prime \prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4}} X_{3}$.

If $u_{3}^{3}=a_{2}^{3}$, for the subspace $A_{3} \otimes V_{4}$, after a change of basis we can assume $a_{1}^{3} \otimes u_{1}^{4}+a_{2}^{3} \otimes u_{2}^{4}$ and a_{2}^{3} are preserved, $y u_{1}^{4}+z u_{2}^{4}=u_{1}^{4}$ or u_{2}^{4}, and a_{1}^{3} is mapped to $\lambda a_{1}^{3}+\mu a_{2}^{3}$ for some $\lambda, \mu \in \mathbb{C}$ under the new basis. Then we have:

Subcase 19: If $x=0, y u_{1}^{4}+z u_{2}^{4}=u_{1}^{4}$, then $T=T^{\prime}+a_{1}^{1} \otimes a_{2}^{2} \otimes\left(\lambda a_{1}^{3}+\mu a_{2}^{3}\right) \otimes b_{2}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{1}^{4} X_{3} .}$.

Subcase 20: If $x=0, y u_{1}^{4}+z u_{2}^{4}=u_{2}^{4}$, then $T=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+\left(a_{1}^{1}+a_{2}^{1}\right) \otimes$ $a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes\left(\lambda a_{1}^{3}+\mu a_{2}^{3}\right) \otimes b_{2}^{4}$.

By adjusting a_{2}^{2}, we can assume $\lambda a_{1}^{3}+\mu a_{2}^{3}=a_{2}^{3}$ or $a_{1}^{3}+\mu a_{2}^{3}$. So we have:
Subcase 21: If $\lambda a_{1}^{3}+\mu a_{2}^{3}=a_{2}^{3}, x=1, y u_{1}^{4}+z u_{2}^{4}=u_{1}^{4}, T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes b_{2}^{4}} X_{3}$, and $T^{\prime \prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{1}^{4}} X_{3}$.

Subcase 22: If $\lambda a_{1}^{3}+\mu a_{2}^{3}=a_{2}^{3}, x=1, y u_{1}^{4}+z u_{2}^{4}=u_{2}^{4}, T=\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes$ $\left(u_{2}^{4}+b_{2}^{4}\right)+a_{1}^{1} \otimes\left(a_{2}^{2}-a_{1}^{2}\right) \otimes a_{2}^{3} \otimes b_{2}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}$.

Subcase 23: If $\lambda a_{1}^{3}+\mu a_{2}^{3}=a_{1}^{3}+\mu a_{2}^{3}, x=1, y u_{1}^{4}+z u_{2}^{4}=u_{1}^{4}$, let $c_{1}^{2}=a_{1}^{2}, c_{2}^{2}=a_{2}^{2}-a_{1}^{2}$, $v_{1}^{4}=u_{1}^{4}+b_{2}^{4}$ and $v_{2}^{4}=b_{2}^{4}$, then $T=a_{1}^{1} \otimes a_{1}^{3} \otimes\left(c_{1}^{2} \otimes v_{1}^{4}+c_{2}^{2} \otimes v_{2}^{4}\right)+a_{1}^{1} \otimes a_{2}^{3} \otimes\left(c_{1}^{2} \otimes\right.$ $\left.u_{2}^{4}+\mu c_{1}^{2} \otimes v_{2}^{4}+\mu c_{2}^{2} \otimes v_{2}^{4}\right)+a_{2}^{1} \otimes a_{2}^{3} \otimes c_{1}^{2} \otimes v_{1}^{4}=T^{\prime}+a_{1}^{1} \otimes c_{2}^{2} \otimes\left(a_{1}^{3}+\mu a_{2}^{3}\right) \otimes v_{2}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes c_{1}^{2} \otimes a_{1}^{3} \otimes v_{1}^{4}+a_{1}^{1} \otimes c_{1}^{2} \otimes a_{2}^{3} \otimes\left(\mu v_{2}^{4}+u_{2}^{4}\right)+a_{2}^{1} \otimes c_{1}^{2} \otimes a_{2}^{3} \otimes v_{1}^{4} \in \widehat{T}_{a_{1}^{1} \otimes c_{1}^{2} \otimes a_{2}^{3} \otimes v_{1}^{4}} X_{3}$.

Subcase 24: If $\lambda a_{1}^{3}+\mu a_{2}^{3}=a_{1}^{3}+\mu a_{2}^{3}, \mu \neq 0, x=1, y u_{1}^{4}+z u_{2}^{4}=u_{2}^{4}$, let $c_{1}^{2}=a_{1}^{2}$, $c_{2}^{2}=\mu a_{2}^{2}-a_{1}^{2}, v_{1}^{4}=u_{2}^{4}+b_{2}^{4}$ and $v_{2}^{4}=b_{2}^{4}$, then $T=\left(a_{1}^{1}+a_{2}^{1}\right) \otimes c_{1}^{2} \otimes a_{2}^{3} \otimes v_{1}^{4}+a_{1}^{1} \otimes$ $c_{2}^{2} \otimes\left(\frac{1}{\mu} a_{1}^{3}+a_{2}^{3}\right) \otimes v_{2}^{4}+a_{1}^{1} \otimes c_{1}^{2} \otimes a_{1}^{3} \otimes\left(u_{1}^{4}+\frac{1-\mu}{\mu} v_{2}^{4}\right)$.

Subcase 25: If $\lambda a_{1}^{3}+\mu a_{2}^{3}=a_{1}^{3}, x=1, y u_{1}^{4}+z u_{2}^{4}=u_{2}^{4}$, then $T=T^{\prime}+\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes$ $a_{2}^{3} \otimes\left(u_{2}^{4}+b_{2}^{4}\right)$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{1}^{1} \otimes\left(a_{2}^{2}-a_{1}^{2}\right) \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes\left(a_{1}^{3}-a_{2}^{3}\right) \otimes b_{2}^{4} \in$ $\widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}} X_{3}$.

If b_{2}^{4} is in the subspace V_{4} spanned by u_{1}^{4} and u_{2}^{4}, after a change of basis of $A_{3} \otimes V_{4}$ we can assume b_{1}^{3} is preserved, and $b_{2}^{4}=u_{1}^{4}$ or u_{2}^{4}. So we have:

Subcase 26: If $b_{2}^{4}=u_{1}^{4}, T=a_{1}^{1} \otimes\left(a_{1}^{2}+a_{2}^{2}\right) \otimes a_{1}^{3} \otimes u_{1}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes u_{3}^{3} \otimes b_{3}^{4}$.
Subcase 27: If $b_{2}^{4}=u_{2}^{4}, T=T^{\prime}+a_{2}^{1} \otimes a_{1}^{2} \otimes u_{3}^{3} \otimes b_{3}^{4}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes$ $u_{1}^{4}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes u_{2}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes u_{2}^{4}} X_{3}$.

Subcase 28: If $b_{1}^{3}: A_{3}^{*} \rightarrow A_{4} \otimes \cdots \otimes A_{n}$ has rank 1, say $b_{1}^{3}=u_{1}^{3} \otimes b_{1}^{4}$ for some $u_{1}^{3} \in A_{3}$ and $b_{1}^{4} \in A_{4} \otimes \cdots \otimes A_{n}$, then $T=a_{1}^{1} \otimes a_{1}^{2} \otimes u_{1}^{3} \otimes b_{1}^{4}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes b_{2}^{4}+a_{2}^{1} \otimes a_{1}^{2} \otimes u_{3}^{3} \otimes b_{3}^{4}$.

Now we assume $T \in \sigma_{3}\left(X_{k-1}\right)$, and T is of Type 2 , but is not of Type 1 when viewed as a tensor in $A_{1} \otimes A_{2} \otimes\left(A_{3} \otimes \cdots \otimes A_{n}\right)$. For each normal form, we show by induction that $T \in \sigma_{3}(X)$.

Subtype 1: $T=b_{1}^{1} \otimes \cdots \otimes b_{1}^{k}+b_{2}^{1} \otimes \cdots \otimes b_{2}^{k}+b_{3}^{1} \otimes \cdots \otimes b_{3}^{k}$. Since we assume $T\left(A_{3}^{*} \otimes \cdots \otimes A_{n}^{*}\right) \subset V$, where V is spanned by $a_{1}^{1} \otimes a_{1}^{2}, a_{1}^{1} \otimes a_{2}^{2}$, and $a_{2}^{1} \otimes a_{1}^{2}$, then $b_{j}^{1} \otimes b_{j}^{2} \in$ $A_{1} \otimes A_{2}$ has rank 1 for any $1 \leq j \leq 3$ implies $b_{j}^{1}=a_{1}^{1}$ or $b_{j}^{2}=a_{1}^{2}$. Hence we have two subcase: $T=a_{2}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3} \otimes \cdots \otimes b_{1}^{k}+a_{1}^{1} \otimes a_{2}^{2} \otimes b_{2}^{3} \otimes \cdots \otimes b_{2}^{k}+\left(\lambda a_{1}^{1}+\mu a_{2}^{1}\right) \otimes a_{1}^{2} \otimes b_{3}^{3} \otimes \cdots \otimes b_{3}^{k}$ or $T=a_{1}^{1} \otimes a_{2}^{2} \otimes b_{1}^{3} \otimes \cdots \otimes b_{1}^{k}+a_{2}^{1} \otimes a_{1}^{2} \otimes b_{2}^{3} \otimes \cdots \otimes b_{2}^{k}+a_{1}^{1} \otimes\left(\lambda a_{1}^{2}+\mu a_{2}^{2}\right) \otimes b_{3}^{3} \otimes \cdots \otimes b_{3}^{k}$. Here we only show the first case since the argument for the second case is similar. For the first subcase, if $\lambda=0, T$ has been discussed in Case 3 Type 1, so we assume $\lambda \neq 0$. Now let $c_{1}^{1}=a_{2}^{1} \otimes a_{1}^{2}, c_{2}^{1}=a_{1}^{1} \otimes a_{2}^{2}$, and $c_{3}^{1}=\left(\lambda a_{1}^{1}+\mu a_{2}^{1}\right) \otimes a_{1}^{2}$. From the argument of Case 2 Type 1, we can deduce directly that $T \in \sigma_{3}\left(X_{k}\right)$ except for the following several subcases.

Exceptional Subcase 1: $b_{j}^{3}=a_{j}^{3}$ for $1 \leq j \leq 2, b_{3}^{3}=a_{1}^{3}+a_{2}^{3}, b_{2}^{k}=a_{1}^{k} \otimes u_{1}^{k+1}+a_{2}^{k} \otimes$ u_{2}^{k+1} for some $u_{1}^{k+1}, u_{2}^{k+1} \in A_{k+1} \otimes \cdots \otimes A_{n}, b_{1}^{k}=b_{3}^{k}=a_{1}^{k} \otimes u_{1}^{k+1}, b_{1}^{i}=b_{2}^{i}=b_{3}^{i}$ for all $4 \leq i \leq k-1$, then there is no harm to assume $k=4$. So $T=\left(c_{1}^{1}+c_{3}^{1}\right) \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes u_{2}^{5}+$ $c_{2}^{1} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5}+c_{2}^{1} \otimes a_{2}^{3} \otimes a_{2}^{4} \otimes u_{2}^{5}+c_{3}^{1} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{2}^{5}$. When $\mu \neq-1, T=\left[\lambda a_{1}^{1}+(\mu+\right.$ 1) $\left.a_{2}^{1}\right] \otimes a_{1}^{2} \otimes\left(a_{1}^{3}+\frac{\mu}{\mu+1} a_{2}^{3}\right) \otimes a_{1}^{4} \otimes u_{2}^{5}+T^{\prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes$ $a_{2}^{4} \otimes u_{2}^{5}+a_{1}^{1} \otimes \frac{\lambda}{\mu+1} a_{1}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{2}^{5} \in \widehat{T}_{a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{2}^{5}} X_{4}$. When $\mu=-1, T=T^{\prime}+T^{\prime \prime}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes \lambda a_{1}^{3} \otimes a_{1}^{4} \otimes u_{2}^{5}+\left(\lambda a_{1}^{1}-a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{2}^{5} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{2}^{5}} X_{4}$, and $T^{\prime \prime}=a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes a_{2}^{4} \otimes u_{2}^{5} \in \widehat{T}_{a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{2}^{5}} X_{4}$.

Exceptional Subcase 2: $T=\left(c_{1}^{1}+c_{3}^{1}\right) \otimes a_{1}^{3} \otimes b_{1}^{4} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes u_{1}^{k+1}+\left(c_{2}^{1}+c_{3}^{1}\right) \otimes$ $a_{2}^{3} \otimes b_{1}^{4} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes u_{1}^{k+1}+c_{2}^{1} \otimes a_{2}^{3} \otimes b_{1}^{4} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{2}^{k} \otimes u_{2}^{k+1}$. It is harmless to assume $k=4$. When $\mu \neq-1, T=\left[\lambda a_{1}^{1}+(\mu+1) a_{2}^{1}\right] \otimes a_{1}^{2} \otimes\left(a_{1}^{3}+\frac{\mu}{\mu+1} a_{2}^{3}\right) \otimes a_{1}^{4} \otimes$ $u_{1}^{5}+\frac{1}{\mu+1} a_{1}^{1} \otimes\left[(\mu+1) a_{2}^{2}+\lambda a_{1}^{2}\right] \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes a_{2}^{4} \otimes u_{2}^{5}$. When $\mu=-1$, $T=T^{\prime}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes a_{2}^{4} \otimes u_{2}^{5}$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes \lambda a_{1}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes$ $a_{1}^{4} \otimes u_{1}^{5}+\left(\lambda a_{1}^{1}-a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5}} X_{4}$.

Exceptional Subcase 3: $T=\left(c_{1}^{1}+y c_{3}^{1}\right) \otimes a_{1}^{3} \otimes b_{1}^{4} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes u_{1}^{k+1}+\left(c_{2}^{1}+y c_{3}^{1}\right) \otimes$

$$
a_{2}^{3} \otimes b_{1}^{4} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes u_{1}^{k+1}+c_{3}^{1} \otimes\left(a_{1}^{3}+a_{2}^{3}\right) \otimes b_{1}^{4} \otimes \cdots \otimes b_{1}^{k-1} \otimes\left(x a_{1}^{k}+a_{2}^{k}\right) \otimes b_{3}^{k}\left(\alpha_{2}^{k}\right)
$$ for some $x, y \in \mathbb{C}$. It is harmless to assume $k=4$. When $y \mu+1 \neq 0, T=$ $\left[y \lambda a_{1}^{1}+(y \mu+1) a_{2}^{1}\right] \otimes a_{1}^{2} \otimes\left(a_{1}^{3}+\frac{y \mu}{y \mu+1} a_{2}^{3}\right) \otimes a_{1}^{4} \otimes u_{1}^{5}+a_{1}^{1} \otimes\left(\frac{y \lambda}{y \mu+1} a_{1}^{2}+a_{2}^{2}\right) \otimes a_{2}^{3} \otimes$ $a_{1}^{4} \otimes u_{1}^{5}+\left(\lambda a_{1}^{1}+\mu a_{2}^{1}\right) \otimes a_{1}^{2} \otimes\left(a_{1}^{3}+a_{2}^{3}\right) \otimes\left(x a_{1}^{4}+a_{2}^{4}\right) \otimes b_{3}^{4}\left(\alpha_{2}^{4}\right)$. When $y \mu+1=0$, $T=T^{\prime}+\left(\lambda a_{1}^{1}+\mu a_{2}^{1}\right) \otimes a_{1}^{2} \otimes\left(a_{1}^{3}+a_{2}^{3}\right) \otimes\left(x a_{1}^{4}+a_{2}^{4}\right) \otimes b_{3}^{4}\left(\alpha_{2}^{4}\right)$, where $T^{\prime}=a_{1}^{1} \otimes a_{1}^{2} \otimes y \lambda a_{1}^{3} \otimes$ $a_{1}^{4} \otimes u_{1}^{5}+y\left(\lambda a_{1}^{1}+\mu a_{2}^{1}\right) \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5}+a_{1}^{1} \otimes a_{2}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5} \in \widehat{T}_{a_{1}^{1} \otimes a_{1}^{2} \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes u_{1}^{5}} X_{4}$.

Subtype 2: $T=\sum_{i=1}^{k} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}+b_{3}^{1} \otimes \cdots \otimes b_{3}^{k}$. Since $T\left(A_{3}^{*} \otimes \cdots \otimes A_{n}^{*}\right) \subset V$, where V is spanned by $a_{1}^{1} \otimes a_{1}^{2}, a_{1}^{1} \otimes a_{2}^{2}$ and $a_{2}^{1} \otimes a_{1}^{2}$, and $b_{1}^{1} \otimes b_{1}^{2} \in V$ has rank 1 , we can assume $b_{1}^{1}=a_{1}^{1}, b_{1}^{2}=a_{1}^{2}$. If b_{2}^{1} and b_{1}^{1} are linearly independent, then assume $b_{2}^{1}=a_{2}^{1}$, otherwise assume $b_{3}^{1}=a_{2}^{1}$. If b_{2}^{2} and b_{1}^{2} are linearly independent, then assume $b_{2}^{2}=a_{2}^{2}$, otherwise assume $b_{3}^{2}=a_{2}^{2}$. Since $b_{3}^{1} \otimes b_{3}^{2}$ is a rank 1 matrix in V, then $b_{3}^{1} \otimes b_{3}^{2}=\left(x a_{1}^{1}+y a_{2}^{1}\right) \otimes a_{1}^{2}$ or $b_{3}^{1} \otimes b_{3}^{2}=a_{1}^{1} \otimes\left(x a_{1}^{2}+y a_{2}^{2}\right)$. Hence we have three subcases:

Subcase 1: $T=\sum_{i=3}^{k} a_{1}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3} \otimes \cdots \otimes b_{1}^{i-1} \otimes\left(b_{2}^{i}+\frac{2}{k-2} b_{1}^{i}\right) \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}+$ $a_{2}^{1} \otimes a_{2}^{2} \otimes b_{3}^{3} \otimes \cdots \otimes b_{3}^{k}$, which is discussed in Case 3 Type 1.

Subcase 2: $T=\left(a_{2}^{1} \otimes a_{1}^{2}+a_{1}^{1} \otimes a_{2}^{2}\right) \otimes b_{1}^{3} \otimes \cdots \otimes b_{1}^{k}+\sum_{i=3}^{k} a_{1}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3} \otimes \cdots \otimes b_{1}^{i-1} \otimes$ $b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}+a_{1}^{1} \otimes a_{1}^{2} \otimes b_{3}^{3} \otimes \cdots \otimes b_{3}^{k}$, which has been discussed in Case 3 Type 1 after a change of basis.

Subcase 3: $T=\left(a_{2}^{1} \otimes a_{1}^{2}+a_{1}^{1} \otimes a_{2}^{2}\right) \otimes b_{1}^{3} \otimes \cdots \otimes b_{3}^{k}+\sum_{i=3}^{k} a_{1}^{1} \otimes a_{1}^{2} \otimes b_{1}^{3} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes$ $b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}+b_{3}^{1} \otimes b_{3}^{2} \otimes b_{3}^{3} \otimes \cdots \otimes b_{3}^{k}$, where b_{3}^{1} and a_{1}^{1} are independent, or b_{3}^{2} and a_{1}^{2} are independent. Let $c_{1}^{1}=a_{1}^{1} \otimes a_{1}^{2}, c_{2}^{1}=a_{2}^{1} \otimes a_{1}^{2}+a_{1}^{1} \otimes a_{2}^{2}, c_{3}^{1}=b_{3}^{1} \otimes b_{3}^{2}$, and V_{1} denote the subspace of $A_{1} \otimes A_{2}$ spanned by c_{1}^{1}, c_{2}^{1} and c_{3}^{1}, since $b_{3}^{1} \otimes b_{3}^{2}=\left(x a_{1}^{1}+y a_{2}^{1}\right) \otimes a_{1}^{2}$ or $b_{3}^{1} \otimes b_{3}^{2}=a_{1}^{1} \otimes\left(x a_{1}^{2}+y a_{2}^{2}\right)$, by the argument of Case 2 Type 2, we have $T \in \sigma_{3}\left(X_{k}\right)$ directly except for a few subcases. From the argument of Case 2 Type 2, we can see it is harmless to assume $k=4$ when considering these exceptional subcases.

Exceptional Case 1: $b_{j}^{3}=a_{j}^{3}$ for $j=1,2, b_{j}^{4}=a_{1}^{4} \otimes b_{1}^{5}$ for some $b_{1}^{5} \in A_{5} \otimes \cdots \otimes A_{n}$, $b_{3}^{3}=a_{2}^{3}+\lambda a_{1}^{3}$ for some $\lambda \in \mathbb{C}, b_{3}^{4}: A_{4}^{*} \rightarrow A_{5} \otimes \cdots \otimes A_{n}$ has rank 2 , say $b_{3}^{4}=$ $a_{1}^{4} \otimes u_{1}^{5}+a_{2}^{4} \otimes u_{2}^{5}$, and b_{1}^{5} is a linear combination of u_{1}^{5} and u_{2}^{5}, then by redefining a_{2}^{1} and a_{2}^{2}, we can assume $c_{3}^{1}=a_{2}^{1} \otimes a_{1}^{2}$ or $a_{1}^{1} \otimes a_{2}^{2}, u_{1}^{5}=b_{1}^{5}-\mu u_{2}^{5}$ for some $\mu \in \mathbb{C}$ or $u_{2}^{5}=b_{1}^{5}$. If $c_{3}^{1}=a_{2}^{1} \otimes a_{1}^{2}, u_{1}^{5}=b_{1}^{5}-\mu u_{2}^{5}$, then $T=a_{1}^{1} \otimes\left[a_{2}^{2}-(1+\lambda) a_{1}^{2}\right] \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes$ $b_{1}^{5}+\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes\left[(1+\lambda) a_{1}^{3}+a_{2}^{3}\right] \otimes a_{1}^{4} \otimes b_{1}^{5}+a_{2}^{1} \otimes a_{1}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes\left(a_{2}^{4}-\mu a_{1}^{4}\right) \otimes u_{2}^{5}$. If $c_{3}^{1}=a_{2}^{1} \otimes a_{1}^{2}, u_{2}^{5}=b_{1}^{5}, T=T^{\prime}+a_{1}^{1} \otimes\left(a_{2}^{2}-\lambda a_{1}^{2}\right) \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes b_{1}^{5}$, where $T^{\prime}=$ $a_{2}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes b_{1}^{5}+a_{1}^{1} \otimes a_{1}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes a_{1}^{4} \otimes b_{1}^{5}+a_{2}^{1} \otimes a_{1}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes a_{1}^{4} \otimes u_{1}^{5}+$ $a_{2}^{1} \otimes a_{1}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes a_{2}^{4} \otimes b_{1}^{5} \in \widehat{T}_{a_{2}^{1} \otimes a_{1}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes a_{1}^{4} \otimes b_{1}^{5}} X_{4}$. If $c_{3}^{1}=a_{1}^{1} \otimes a_{2}^{2}, u_{1}^{5}=x b_{1}^{5}+y u_{2}^{5}$ for some $0 \neq x, y \in \mathbb{C}, T=a_{1}^{1} \otimes\left(a_{1}^{2}+a_{2}^{2}\right) \otimes\left[x a_{2}^{3}+(x \lambda+1) a_{1}^{3}\right] \otimes a_{1}^{4} \otimes b_{1}^{5}+\left(a_{2}^{1}-\right.$ $\left.\frac{x \lambda+1}{x} a_{1}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes b_{1}^{5}+a_{1}^{1} \otimes a_{2}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes\left(y a_{1}^{4}+a_{2}^{4}\right) \otimes u_{2}^{5}$. If $c_{3}^{1}=a_{1}^{1} \otimes a_{2}^{2}$, $u_{2}^{5}=b_{1}^{5}, T=T^{\prime}+\left(a_{2}^{1}-\lambda a_{1}^{1}\right) \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes b_{1}^{5}$, where $T^{\prime}=a_{1}^{1} \otimes a_{2}^{2} \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes b_{1}^{5}+a_{1}^{1} \otimes$ $a_{1}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes a_{1}^{4} \otimes b_{1}^{5}+a_{1}^{1} \otimes a_{2}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes a_{1}^{4} \otimes u_{1}^{5}+a_{1}^{1} \otimes a_{2}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes a_{2}^{4} \otimes b_{1}^{5} \in$ $\widehat{T}_{a_{1}^{1} \otimes a_{2}^{2} \otimes\left(a_{2}^{3}+\lambda a_{1}^{3}\right) \otimes a_{1}^{4} \otimes b_{1}^{5}} X_{4}$. If $x=0, b_{1}^{4}=b_{2}^{4}$ and $b_{3}^{4}: A_{4}^{*} \rightarrow A_{5} \otimes \cdots \otimes A_{n}$ all have rank 1.

Exceptional Case 2: If $c_{3}^{1}=a_{2}^{1} \otimes a_{1}^{2}, b_{1}^{4}=b_{3}^{4}=a_{1}^{4} \otimes b_{1}^{5}$ for some $b_{1}^{5} \in A_{5} \otimes \cdots \otimes A_{n}$, $b_{2}^{4}=a_{1}^{4} \otimes u_{1}^{5}+a_{2}^{4} \otimes u_{2}^{5}$ for some $u_{1}^{5}, u_{2}^{5} \in A_{5} \otimes \cdots \otimes A_{n}$, and $u_{1}^{5}=x u_{2}^{5}+y b_{1}^{5}$ for some $x, y \in \mathbb{C}$, then $T=a_{1}^{1} \otimes\left[(y-\lambda-1) a_{1}^{2}+a_{2}^{2}\right] \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes b_{1}^{5}+\left(a_{1}^{1}+a_{2}^{1}\right) \otimes a_{1}^{2} \otimes$ $\left[a_{2}^{3}+(\lambda+1) a_{1}^{3}\right] \otimes a_{1}^{4} \otimes b_{1}^{5}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left[x a_{1}^{4}+a_{2}^{4}\right] \otimes u_{2}^{5}$. If $c_{3}^{1}=a_{1}^{1} \otimes a_{2}^{2}$, then $T=a_{1}^{1} \otimes\left(a_{1}^{2}+a_{2}^{2}\right) \otimes\left[a_{2}^{3}+(\lambda+1) a_{1}^{3}\right] \otimes a_{1}^{4} \otimes b_{1}^{5}+\left[a_{2}^{1}+(y-\lambda-1) a_{1}^{1}\right] \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes$ $b_{1}^{5}+a_{1}^{1} \otimes a_{1}^{2} \otimes a_{1}^{3} \otimes\left(x a_{1}^{4}+a_{2}^{4}\right) \otimes u_{2}^{5}$.

Subtype 3: $T=\sum_{i<j} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{j-1} \otimes b_{2}^{j} \otimes b_{1}^{j+1} \otimes \cdots \otimes$ $b_{1}^{k}+\sum_{i=1}^{k} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{3}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}$. If $b_{2}^{1}=b_{1}^{1}, b_{2}^{2}=b_{1}^{2}$ up to a scalar, then we can assume $b_{2}^{1}=b_{1}^{1}=a_{1}^{1}, b_{2}^{2}=b_{1}^{2}=a_{2}^{2}, b_{3}^{1}=a_{2}^{1}$, and $b_{3}^{2}=a_{1}^{2}$. This has been discussed in Case 3 Type 1. Otherwise, Let $c_{1}^{1}=b_{1}^{1} \otimes b_{1}^{2}, c_{2}^{1}=b_{2}^{1} \otimes b_{1}^{2}+b_{1}^{1} \otimes b_{2}^{2}$,
and $c_{3}^{1}=b_{2}^{1} \otimes b_{2}^{2}+b_{3}^{1} \otimes b_{1}^{2}+b_{1}^{1} \otimes b_{3}^{2}$. By the argument of Case 2 Type 3, we can see $T \in \sigma_{3}\left(X_{k}\right)$ except only one subcase, and by the argument of Case 2 Type 3 it is harmless to assume $k=4$ for the exceptional subcase, $b_{j}^{3}=a_{j}^{3}$ for $j=1,2$, $b_{3}^{3}=x a_{1}^{3}+y a_{2}^{3}$ for some $x, y \in \mathbb{C}, b_{1}^{4}=b_{2}^{4}=a_{1}^{4} \otimes b_{1}^{5}$ for some $b_{1}^{5} \in A_{5} \otimes \cdots \otimes A_{n}, b_{3}^{4}:$ $A_{4}^{*} \rightarrow A_{5} \otimes \cdots \otimes A_{n}$ has rank 2 , say $b_{3}^{4}=a_{1}^{4} \otimes u_{1}^{5}+a_{2}^{4} \otimes u_{2}^{5}$ for some $u_{1}^{5}, u_{2}^{5} \in A_{5} \otimes \cdots \otimes A_{n}$, u_{2}^{5} and b_{1}^{5} are linearly independent, and $u_{1}^{5}=\lambda u_{2}^{5}+\mu b_{1}^{5}$ for some $\lambda, \mu \in \mathbb{C}$. So $T=$ $\left[(x+\mu-5) c_{1}^{1}+2 c_{2}^{1}+c_{3}^{1}\right] \otimes a_{1}^{3} \otimes a_{1}^{4} \otimes b_{1}^{5}+\left[(y+2) c_{1}^{1}+c_{2}^{1}\right] \otimes a_{2}^{3} \otimes a_{1}^{4} \otimes b_{1}^{5}+c_{1}^{1} \otimes a_{1}^{3} \otimes\left(\lambda a_{1}^{4}+a_{2}^{4}\right) \otimes u_{2}^{5}$, which has been discussed in Case 3 Type 1.

Subtype 4: $T=\sum_{i=2}^{k} b_{2}^{1} \otimes b_{1}^{2} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}+\sum_{i=1}^{k} b_{1}^{1} \otimes \cdots \otimes$ $b_{1}^{i-1} \otimes b_{3}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k}$. If $b_{2}^{1}=b_{1}^{1}$ up to a scalar, T has been discussed in Case 3 Type 1. Otherwise, let $c_{1}^{1}=b_{1}^{1} \otimes b_{1}^{2}, c_{2}^{1}=b_{2}^{1} \otimes b_{1}^{2}, c_{3}^{1}=b_{2}^{1} \otimes b_{2}^{2}+b_{3}^{1} \otimes b_{1}^{2}$. From the argument of Case 2 Type 4, we can see $T \in \sigma_{3}\left(X_{k}\right)$.

$$
\text { 3.2.4 Case 4: } T \in \sigma_{2}\left(X_{2}\right)
$$

We assume $T \in \sigma_{2}\left(X_{k-1}\right)$, and show $T \in \sigma_{3}\left(X_{k}\right)$ by checking each type of the normal forms in Proposition 6.

Type 1: $T=b_{1}^{1} \otimes \cdots \otimes b_{1}^{k}$. Then $T=b_{1}^{1} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes b_{1}^{k}\left(\alpha_{1}^{k}\right)+b_{1}^{1} \otimes \cdots \otimes$ $b_{1}^{k-1} \otimes a_{2}^{k} \otimes b_{1}^{k}\left(\alpha_{2}^{k}\right)+b_{1}^{1} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{3}^{k} \otimes b_{1}^{k}\left(\alpha_{3}^{k}\right)$.

Type 2: $T=b_{1}^{1} \otimes \cdots \otimes b_{1}^{k}+b_{2}^{1} \otimes \cdots \otimes b_{2}^{k}$. Since there is some $1 \leq i \leq k-1$ such that b_{1}^{i} and b_{2}^{i} are linearly independent, then $\operatorname{dim} T\left(A_{i}^{*} \otimes A_{k}^{*}\right) \leq 3$ implies at least one of b_{1}^{k} and $b_{2}^{k}: A_{k}^{*} \rightarrow A_{k+1} \otimes \cdots \otimes A_{n}$ has rank 1 , and the other one has rank at most 2 , say $b_{1}^{k}=a_{1}^{k} \otimes b_{1}^{k+1}$ and $b_{2}^{k}=a_{1}^{k} \otimes b_{2}^{k+1}+a_{2}^{k} \otimes b_{3}^{k+1}$ for some $b_{1}^{k+1}, b_{2}^{k+1}, b_{3}^{k+1} \in A_{k+1} \otimes \cdots \otimes A_{n}$. Hence, $T=b_{1}^{1} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes b_{1}^{k+1}+b_{2}^{1} \otimes \cdots \otimes b_{2}^{k-1} \otimes a_{1}^{k} \otimes b_{2}^{k+1}+b_{2}^{1} \otimes \cdots \otimes b_{2}^{k-1} \otimes a_{2}^{k} \otimes b_{3}^{k+1}$.

Type 3: $T=\sum_{i=1}^{k} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{k+1} \otimes \cdots \otimes b_{1}^{k}$. Without loss of generality, we can assume b_{1}^{1} and b_{2}^{1} are linearly independent, and b_{1}^{2} and b_{2}^{2} are linearly independent, then $\operatorname{dim} T\left(A_{1}^{*} \otimes A_{k}^{*}\right) \leq 3$ implies $b_{1}^{k}: A_{k}^{*} \rightarrow A_{k+1} \otimes \cdots \otimes A_{n}$ has rank 1, say
$b_{1}^{k}=a_{1}^{k} \otimes b_{1}^{k+1}$ for some $b_{1}^{k+1} \in A_{k+1} \otimes \cdots \otimes A_{n}$, and $\left\{b_{1}^{k+1}, b_{2}^{k}\left(\alpha_{2}^{k}\right), b_{2}^{k}\left(\alpha_{3}^{k}\right)\right\}$ spans an at most 2 dimensional subspace. Thus we can assume $b_{2}^{k}\left(\alpha_{3}^{k}\right)=x b_{1}^{k+1}+y b_{2}^{k}\left(\alpha_{2}^{k}\right)$ for some $x, y \in \mathbb{C}$, then $T=T^{\prime}+a_{1}^{1} \otimes \cdots \otimes b_{1}^{k-1} \otimes\left(a_{2}^{k}+y a_{3}^{k}\right) \otimes b_{2}^{k}\left(\alpha_{2}^{k}\right)$, where $T^{\prime}=\sum_{i=1}^{k-2} b_{1}^{1} \otimes \cdots \otimes b_{1}^{i-1} \otimes b_{2}^{i} \otimes b_{1}^{i+1} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes b_{1}^{k+1}+b_{1}^{1} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes$ $b_{2}^{k}\left(\alpha_{1}^{k}\right)+a_{1}^{1} \otimes \cdots \otimes b_{1}^{k-1} \otimes x a_{3}^{k} \otimes b_{1}^{k+1} \in \widehat{T}_{b_{1}^{1} \otimes \cdots \otimes b_{1}^{k-1} \otimes a_{1}^{k} \otimes b_{1}^{k+1}} X_{k}$.

4. ON THE GEOMETRY OF TENSOR NETWORK STATES *

In this chapter we study tensor network states, and answer a question of L . Grasedyck that arose in quantum information theory, showing that the limit of tensors in a space of tensor network states need not be a tensor network state. [34]

4.1 Definitions

Let V_{1}, \ldots, V_{n} be complex vector spaces, let $\mathbf{v}_{i}=\operatorname{dim} V_{i}$. Let Γ be a graph with n vertices $v_{j}, 1 \leq j \leq n$, and m edges $e_{s}, 1 \leq s \leq m$, and let $\vec{e}=\left(e_{1}, \ldots, e_{m}\right) \in \mathbb{N}^{m}$. Associate V_{j} to the vertex v_{j} and an auxiliary vector space E_{s} of dimension e_{s} to the edge e_{s}. Make Γ into a directed graph. (The choice of directions will not effect the end result.) Let $\mathbf{V}=V_{1} \otimes \cdots \otimes V_{n}$. For $\Gamma, s \in e(j)$ means e_{s} is incident to v_{j}, $s \in \operatorname{in}(j)$ are the incoming edges and $s \in \operatorname{out}(j)$ the outgoing edges.

Define a tensor network state $T N S(\Gamma, \vec{e}, \mathbf{V})$ to be:

$$
\begin{align*}
& \operatorname{TNS}(\Gamma, \vec{e}, \mathbf{V}):= \tag{4.1}\\
& \qquad\left\{T \in \mathbf{V} \mid \exists T_{j} \in V_{j} \otimes\left(\otimes_{s \in i n(j)} E_{s}\right) \otimes\left(\otimes_{t \in o u t(j)} E_{t}^{*}\right), T=\operatorname{Con}\left(T_{1} \otimes \cdots \otimes T_{n}\right)\right\},
\end{align*}
$$

where $C o n$ is the contraction of all the E_{s} 's with all the E_{s}^{*} 's.

Example 1. Let Γ be a graph with two vertices and one edge connecting them, then $T N S\left(\Gamma, e_{1}, V_{1} \otimes V_{2}\right)$ is just $\hat{\sigma}_{e_{1}}\left(S e g\left(\mathbb{P} V_{1} \times \mathbb{P} V_{2}\right)\right)$, the cone over the e_{1}-st secant variety of the Segre variety. To see this, let $\epsilon_{1}, \ldots, \epsilon_{e_{1}}$ be a basis of E_{1} and $\epsilon^{1}, \ldots, \epsilon^{e_{1}}$ the dual basis of E^{*}. Assume, to avoid trivialities, that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \geq e_{1}$. Given $T_{1} \in V_{1} \otimes E_{1}$ we may write $T_{1}=u_{1} \otimes \epsilon_{1}+\cdots+u_{e_{1}} \otimes \epsilon_{e_{1}}$ for some $u_{\alpha} \in V_{1}$. Similarly, given

[^0]$T_{2} \in V_{2} \otimes E_{1}^{*}$ we may write $T_{1}=w_{1} \otimes \epsilon^{1}+\cdots+w_{e_{1}} \otimes \epsilon^{e_{1}}$ for some $w_{\alpha} \in V_{2}$. Then $\operatorname{Con}\left(T_{1} \otimes T_{2}\right)=u_{1} \otimes w_{1}+\cdots+u_{e_{1}} \otimes w_{e_{1}}$.

The graph used to define a set of tensor network states is often modeled to mimic the physical arrangement of the particles, with edges connecting nearby particles, as nearby particles are the ones likely to be entangled.

Remark 4. The construction of tensor network states in the physics literature does not use a directed graph, because all vector spaces are Hilbert spaces, and thus selfdual. However the sets of tensors themselves do not depend on the Hilbert space structure of the vector space, which is why we omit this structure. The small price to pay is the edges of the graph must be oriented, but all orientations lead to the same set of tensor network states.

4.2 Grasedyck's question

Lars Grasedyck asked:
Is $\operatorname{TNS}(\Gamma, \vec{e}, \mathbf{V})$ Zariski closed? That is, given a sequence of tensors $T_{\epsilon} \in \mathbf{V}$ that converges to a tensor T_{0}, if $T_{\epsilon} \in T N S(\Gamma, \vec{e}, \mathbf{V})$ for all $\epsilon \neq 0$, can we conclude $T_{0} \in T N S(\Gamma, \vec{e}, \mathbf{V}) ?$

He mentioned that he could show this to be true when Γ was a tree, but did not know the answer when Γ is a triangle. In the physics literature they were implicitly assuming tensor network states were closed, so he asked this question.

Definition 9. A dimension \boldsymbol{v}_{j} is critical, resp. subcritical, resp. supercritical, if $\boldsymbol{v}_{j}=\Pi_{s \in e(j)} e_{s}$, resp. $\boldsymbol{v}_{j} \leq \Pi_{s \in e(j)} e_{s}$, resp. $\boldsymbol{v}_{j} \geq \Pi_{s \in e(j)} e_{s}$. If $T N S(\Gamma, \vec{e}, \boldsymbol{V})$ is critical for all j, we say $T N S(\Gamma, \vec{e}, \boldsymbol{V})$ is critical, and similarly for sub- and super-critical.

Theorem 10. TNS $(\Gamma, \vec{e}, \boldsymbol{V})$ is not Zariski closed for any Γ containing a cycle whose vertices have non-subcritical dimensions.

Notation 1. $G L(V)$ denotes the group of invertible linear maps $V \rightarrow V . G L\left(V_{1}\right) \times$ $\cdots \times G L\left(V_{n}\right)$ acts on $V_{1} \otimes \cdots \otimes V_{n}$ by $\left(g_{1}, \ldots, g_{n}\right) \cdot v_{1} \otimes \cdots \otimes v_{n}=\left(g_{1} v_{1}\right) \otimes \cdots \otimes\left(g_{n} v_{n}\right)$. (Here $v_{j} \in V_{j}$ and the action on a tensor that is a sum of rank one tensors is the sum of the actions on the rank one tensors.) Let $\operatorname{End}(V)$ denote the set of all linear maps $V \rightarrow V$. We adopt the convention that $\operatorname{End}\left(V_{1}\right) \times \cdots \times \operatorname{End}\left(V_{n}\right)$ acts on $V_{1} \otimes \cdots \otimes V_{n}$ by $\left(Z_{1}, \ldots Z_{n}\right) \cdot v_{1} \otimes \cdots \otimes v_{n}=\left(Z_{1} v_{1}\right) \otimes \cdots \otimes\left(Z_{n} v_{n}\right)$. Let $\mathfrak{g l}(V)$ denote the Lie algebra of $G L(V)$. It is naturally isomorphic to $\operatorname{End}(V)$ but it acts on $V_{1} \otimes \cdots \otimes V_{n}$ via the Leibnitz rule: $\left(X_{1}, \ldots, X_{n}\right) \cdot v_{1} \otimes \cdots \otimes v_{n}=\left(X_{1} v_{1}\right) \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{1} \otimes\left(X_{2} v_{2}\right) \otimes v_{3} \otimes$ $\cdots \otimes v_{n}+\cdots+v_{1} \otimes \cdots \otimes v_{n-1} \otimes\left(X_{n} v_{n}\right)$. (This is because elements of the Lie algebra should be thought of as derivatives of curves in the Lie group at the identity.) If $X \subset V$ is a subset, $\bar{X} \subset V$ denotes its closure. This closure is the same whether one uses the Zariski closure, which is the common zero set of all polynomials vanishing on X, or the Euclidean closure, where one fixes a metric compatible with the linear structure on V and takes the closure with respect to limits.

4.3 Connections to the GCT program

The triangle case is especially interesting because in the critical dimension case it corresponds to

$$
\operatorname{End}\left(V_{1}\right) \times \operatorname{End}\left(V_{2}\right) \times \operatorname{End}\left(V_{3}\right) \cdot \text { Mmult }_{e_{3}, e_{2}, e_{1}},
$$

where Mmult $_{e_{3}, e_{2}, e_{1}} \in V_{1} \otimes V_{2} \otimes V_{3}$ is the matrix multiplication operator. In Geometric Complexity Theory (GCT) people study Mmult and its $G L\left(V_{1}\right) \times G L\left(V_{2}\right) \times G L\left(V_{3}\right)$ orbit closure ([6]) which is a toy case of the varieties introduced by Mulmuley and Sohoni $[7,39,40]$. The varieties are $\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}$ and $\overline{G L_{n^{2}} \cdot l^{n-m} \operatorname{perm}_{n}}$, where $\operatorname{det}_{n} \in$ $S^{n} \mathbb{C}^{n^{2}}$ is the determinant, $n>m, l \in S^{1} \mathbb{C}^{1}$, $\operatorname{perm}_{m} \in S^{m} \mathbb{C}^{m^{2}}$ is the permanent, and an inclusion $\mathbb{C}^{m^{2}+1} \subset \mathbb{C}^{n^{2}}$ has been chosen. It was shown that $E n d_{\mathbb{C}^{2}} \cdot \operatorname{det}_{n} \neq$
$\overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}$ [32], and determining the difference between these sets is a subject of current research.

The critical loop case with $e_{s}=3$ for all s is also related to the GCT program, as it corresponds to the multiplication of n matrices of size three. As a tensor, it may be thought of as a map $\left(X_{1}, \ldots, X_{n}\right) \mapsto \operatorname{tr}\left(X_{1} \cdots X_{n}\right)$. This sequence of functions indexed by n, considered as a sequence of homogeneous polynomials of degree n on $V_{1} \oplus \cdots \oplus V_{n}$, is complete for the class $\mathbf{V P}_{e}$ of sequences of polynomials of small formula size, see [41].

4.4 Critical loops

Proposition 7. Let $\boldsymbol{v}_{1}=e_{2} e_{3}, \boldsymbol{v}_{2}=e_{3} e_{1}, \boldsymbol{v}_{3}=e_{2} e_{1}$. Then $T N S\left(\triangle,\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right), V_{1} \otimes\right.$ $V_{2} \otimes V_{3}$) consists of matrix multiplication and its degenerations (and their different expressions after changes of bases $)$, i.e. $T N S\left(\triangle,\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right), V_{1} \otimes V_{2} \otimes V_{3}\right)=\operatorname{End}\left(V_{1}\right) \times$ $\operatorname{End}\left(V_{2}\right) \times \operatorname{End}\left(V_{3}\right) \cdot M_{e_{2}, e_{3}, e_{1}}$. It has dimension $e_{2}^{2} e_{3}^{2}+e_{2}^{2} e_{1}^{2}+e_{3}^{2} e_{1}^{2}-\left(e_{2}^{2}+e_{3}^{2}+e_{1}^{2}-1\right)$. More generally, if Γ is a critical loop, $\operatorname{TNS}\left(\Gamma,\left(e_{n} e_{1}, e_{1} e_{2}, \ldots, e_{n-1} e_{n}\right), V_{1} \otimes \cdots \otimes V_{n}\right)$ is $\operatorname{End}\left(V_{1}\right) \times \cdots \times \operatorname{End}\left(V_{n}\right) \cdot M_{\vec{e}}$, where $M_{\vec{e}}: V_{1} \otimes \cdots \otimes V_{n} \rightarrow \mathbb{C}$ is the matrix multiplication operator $\left(X_{1}, \ldots, X_{n}\right) \mapsto \operatorname{trace}\left(X_{1} \cdots X_{n}\right)$.

Proof. For the triangle case, a generic element $T_{1} \in E_{2} \otimes E_{3}^{*} \otimes V_{1}$ may be thought of as a linear isomorphism $E_{2}^{*} \otimes E_{3} \rightarrow V_{1}$, identifying V_{1} as a space of $e_{2} \times e_{3}$-matrices, and similarly for V_{2}, V_{3}. Choosing bases $e_{s}^{u_{s}}$ for E_{s}^{*}, with dual basis $e_{u_{s}, s}$ for E_{s}, induces bases $x_{u_{3}}^{u_{2}}$ for V_{1} etc.. Let $1 \leq i \leq e_{2}, 1 \leq \alpha \leq e_{3}, 1 \leq u \leq e_{1}$. Then $\operatorname{con}\left(T_{1} \otimes T_{2} \otimes T_{3}\right)=\sum x_{\alpha}^{i} \otimes y_{u}^{\alpha} \otimes z_{i}^{u}$ which is the matrix multiplication operator. The general case is similar.

Proposition 8. The Lie algebra of the stabilizer of $M_{e_{n} e_{1}, e_{1} e_{2}, \ldots, e_{n-1} e_{n}}$ in $G L\left(V_{1}\right) \times$
$\cdots \times G L\left(V_{n}\right)$ is the image of $\mathfrak{s l}\left(E_{1}\right) \oplus \cdots \oplus \mathfrak{s l}\left(E_{n}\right)$ under the map

$$
\begin{aligned}
\alpha_{1} \oplus \cdots \oplus \alpha_{n} \mapsto & \left(I d_{E_{n}} \otimes \alpha_{1},-\alpha_{1}^{T} \otimes I d_{E_{2}}, 0, \ldots, 0\right)+\left(0, I d_{E_{1}} \otimes \alpha_{2},-\alpha_{2}^{T} \otimes I d_{E_{3}}, 0, \ldots, 0\right) \\
& +\cdots+\left(-\alpha_{n}^{T} \otimes I d_{E_{1}}, 0, \ldots, 0, I d_{E_{n-1}} \otimes \alpha_{n}\right)
\end{aligned}
$$

Here $\mathfrak{s l}\left(E_{j}\right) \subset \mathfrak{g l}\left(E_{j}\right)$ denotes the traceless endomorphisms and T as a superscript denotes transpose (which is really just cosmetic).

The proof is safely left to the reader.
Large loops are referred to as "1-D systems with periodic boundary conditions" in the physics literature and are often used in simulations. By Proposition 8, for a critical loop, $\operatorname{dim}\left(T N S(\Gamma, \vec{e}, \mathbf{V})=e_{1}^{2} e_{2}^{2}+\cdots+e_{n-1}^{2} e_{n}^{2}+e_{n}^{2} e_{1}^{2}-\left(e_{1}^{2}+\cdots+e_{n}^{2}-1\right)\right.$, compared with the ambient space which has dimension $e_{1}^{2} \cdots e_{n}^{2}$. For example, when $e_{j}=2$ for all $j, \operatorname{dim}(T N S(\Gamma, \vec{e}, \mathbf{V}))=12 n+1$, compared with $\operatorname{dim} \mathbf{V}=4^{n}$.

4.5 Zariski closure

Theorem 11. Let $\boldsymbol{v}_{1}=e_{2} e_{3}, \boldsymbol{v}_{2}=e_{3} e_{1}, \boldsymbol{v}_{3}=e_{2} e_{1}$. Then $T N S\left(\triangle,\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right), V_{1} \otimes\right.$ $\left.V_{2} \otimes V_{3}\right)$ is not Zariski closed. More generally any $\operatorname{TNS}(\Gamma, \vec{e}, \boldsymbol{V})$ where Γ contains a cycle with no subcritical vertex is not Zariski closed.

Proof. Were $T(\triangle):=\operatorname{TNS}\left(\triangle,\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right), V_{1} \otimes V_{2} \otimes V_{3}\right)$ Zariski closed, it would be $\overline{G L\left(V_{1}\right) \times G L\left(V_{2}\right) \times G L\left(V_{3}\right) \cdot M_{e_{2}, e_{3}, e_{1}}}$. To see this, note that the $G=G L\left(V_{1}\right) \times$ $G L\left(V_{2}\right) \times G L\left(V_{3}\right)$ orbit of matrix multiplication is a Zariski open subset of $T(\triangle)$ of the same dimension as $T(\triangle)$.

We need to find a curve $g(t)=\left(g_{1}(t), g_{2}(t), g_{3}(t)\right)$ such that $g_{j}(t) \in G L\left(V_{j}\right)$ for all $t \neq 0$ and $\lim _{t \rightarrow 0} g(t) \cdot M_{e_{2}, e_{3}, e_{1}}$ is both defined and not in $\operatorname{End}\left(V_{1}\right) \times \operatorname{End}\left(V_{2}\right) \times$ $\operatorname{End}\left(V_{3}\right) \cdot M_{e_{2}, e_{3}, e_{1}}$.

Note that for $(X, Y, Z) \in G L\left(V_{1}\right) \times G L\left(V_{2}\right) \times G L\left(V_{3}\right)$, we have

$$
(X, Y, Z) \cdot M_{e_{2}, e_{3}, e_{1}}(P, Q, R)=\operatorname{trace}(X(P) Y(Q) Z(R)) .
$$

Here $X: E_{2}^{*} \otimes E_{3} \rightarrow E_{2}^{*} \otimes E_{3}, Y: E_{3}^{*} \otimes E_{1} \rightarrow E_{3}^{*} \otimes E_{1}, Z: E_{1}^{*} \otimes E_{2} \rightarrow E_{1}^{*} \otimes E_{2}$.
Take subspaces $U_{E_{2} E_{3}} \subset E_{2}^{*} \otimes E_{3}, U_{E_{3} E_{1}} \subset E_{3}^{*} \otimes E_{1}$. Let $U_{E_{1} E_{2}}:=\operatorname{Con}\left(U_{E_{2} E_{3}}, U_{E_{3} E_{1}}\right)$ $\subset E_{2}^{*} \otimes E_{1}$ be the images of all the $p q \in E_{2}^{*} \otimes E_{1}$ where $p \in U_{E_{2} E_{3}}$ and $q \in U_{E_{3} E_{1}}$ (i.e., the matrix multiplication of all pairs of elements). Take X_{0}, Y_{0}, Z_{0} respectively to be the projections to $U_{E_{2} E_{3}}, U_{E_{3} E_{1}}$ and $U_{E_{1} E_{2}}^{\perp}$. Let X_{1}, Y_{1}, Z_{1} be the projections to complementary spaces (so, e.g., $X_{0}+X_{1}=I d_{V_{1}^{*}}$). For $P \in V_{1}^{*}$, write $P_{0}=X_{0}(P)$ and $P_{1}=X_{1}(P)$, and similarly for Q, R.

Take the curve $\left(X_{t}, Y_{t}, Z_{t}\right)$ with $X_{t}=\frac{1}{\sqrt{t}}\left(X_{0}+t X_{1}\right), Y_{t}=\frac{1}{\sqrt{t}}\left(Y_{0}+t Y_{1}\right), Z_{t}=$ $\frac{1}{\sqrt{t}}\left(Z_{0}+t Z_{1}\right)$. Then the limiting tensor, as a map $V_{1}^{*} \times V_{2}^{*} \times V_{3}^{*} \rightarrow \mathbb{C}$, is

$$
(P, Q, R) \mapsto \operatorname{trace}\left(P_{0} Q_{0} R_{1}\right)+\operatorname{trace}\left(P_{0} Q_{1} R_{0}\right)+\operatorname{trace}\left(P_{1} Q_{0} R_{0}\right)
$$

Call this tensor \tilde{M}. First observe that \tilde{M} uses all the variables (i.e., considered as a linear map $\tilde{M}: V_{1}^{*} \rightarrow V_{2} \otimes V_{3}$, it is injective, and similarly for its cyclic permutations). Thus it is either in the orbit of matrix multiplication or a point in the boundary that is not in $\operatorname{End}\left(V_{1}\right) \times \operatorname{End}\left(V_{2}\right) \times \operatorname{End}\left(V_{3}\right) \cdot M_{e_{2}, e_{3}, e_{1}}$, because all such boundary points have at least one such linear map non-injective.

It remains to show that there exist \tilde{M} such that $\tilde{M} \notin G \cdot M_{e_{2}, e_{3}, e_{1}}$. To prove some \tilde{M} is a point in the boundary, we compute the Lie algebra of its stabilizer and show it has dimension greater than the the dimension of the stabilizer of matrix
multiplication. One may take block matrices, e.g.,

$$
X_{0}=\left(\begin{array}{ll}
0 & * \\
* & 0
\end{array}\right), X_{1}=\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right)
$$

and Y_{0}, Y_{1} have similar shape, but Z_{0}, Z_{1} have the shapes reversed. Here one takes any splitting $e_{j}=e_{j}^{\prime}+e_{j}^{\prime \prime}$ to obtain the blocks.

For another example, if one takes $e_{j}=e$ for all j, X_{0}, Y_{0}, Z_{1} to be the diagonal matrices and X_{1}, Y_{1}, Z_{0} to be the matrices with zero on the diagonal, then one obtains a stabilizer of dimension $4 e^{2}-2 e>3 e^{2}-1$. (This example coincides with the previous one when all $e_{j}=2$.)

To calculate the stabilizer of \tilde{M}, first write down the tensor expression of $\tilde{M} \in V_{1} \otimes$ $V_{2} \otimes V_{3}$ with respect to fixed bases of V_{1}, V_{2}, V_{3}. Then set an equation $(X, Y, Z) \cdot \tilde{M}=0$ where $X \in \mathfrak{g l}\left(V_{1}\right), Y \in \mathfrak{g l}\left(V_{2}\right)$ and $Z \in \mathfrak{g l}\left(V_{3}\right)$ are unknowns. Recall that here the action of (X, Y, Z) on \tilde{M} is the Lie algebra action, so we obtain a system of linear equations. Finally we solve this system of linear equations and count the dimension of the solution space. This dimension is the dimension of the stabilizer of \tilde{M} in $G L\left(V_{1}\right) \times G L\left(V_{2}\right) \times G L\left(V_{3}\right)$.

To give an explicit example, let $e_{1}=e_{2}=e_{3}=e$ and let $X_{0}=\operatorname{diag}\left(x_{1}^{1}, \ldots, x_{e}^{e}\right)$, $Y_{0}=\operatorname{diag}\left(y_{1}^{1}, \ldots, y_{e}^{e}\right), Z_{0}=\operatorname{diag}\left(z_{1}^{1}, \ldots, z_{e}^{e}\right), X_{1}=\left(x_{j}^{i}\right)-X_{0}, Y_{1}=\left(y_{j}^{i}\right)-Y_{0}, Z_{1}=$ $\left(z_{j}^{i}\right)-Z_{0}$. Then

$$
\tilde{M}=\sum_{i, j=1}^{e}\left(x_{j}^{i} y_{j}^{j}+x_{i}^{i} y_{j}^{i}\right) z_{i}^{j}
$$

 define Y and Z in the same pattern with coefficients $\left.b \begin{array}{c}\left(\begin{array}{l}i \\ j \\ k\end{array}\right) \\ l\end{array}\right)$,s and $c_{\left(\begin{array}{c}i \\ j \\ j\end{array}\right)}^{l}$, s, respectively. Consider the equation $(X, Y, Z) \cdot T=0$ and we want to solve this equation for $a_{\left(\begin{array}{c}i \\ j \\ j\end{array}\right)}^{\substack{k}}$, s,
$b_{\left(\begin{array}{l}\left(\begin{array}{l}i \\ j \\ k\end{array}\right)\end{array}\right) \text { s and } c\left(\begin{array}{c}\binom{i}{j} \\ \vdots \\ l\end{array}\right)}$, s. For these equations to hold, the coefficients of z_{i}^{j},s must be zero. That is, for each pair (j, i) of indices we have:

For these equations to hold, the coefficients of y_{s}^{r} 's must be zero. For example, if $s \neq j, r \neq s$ then we have:

Now coefficients of x terms must be zero, for instance, if $i \neq j$ and $i \neq r$, then we have:

If one writes down and solves all such linear equations, the dimension of the solution is $4 e^{2}-2 e$.

The same construction works for larger loops and cycles in larger graphs as it is essentially local - one just takes all other curves the constant curve equal to the identity.

Remark 5. When $e_{1}=e_{2}=e_{3}=2$ we obtain a codimension one component of the boundary. In general, the dimension of the stabilizer is much larger than the dimension of G, so the orbit closures of these points do not give rise to codimension one components of the boundary. It remains an interesting problem to find the codimension one components of the boundary.

4.6 Algebraic geometry perspective

We recast the previous section in the language of algebraic geometry and put it in a larger context. This section also serves to motivate the proof of the previous section.

To make the parallel with the GCT program clearer, we describe the Zariski closure as the cone over the "closure" of the image of the rational map (i.e., the closure of the map defined on a Zariski open subset)

$$
\begin{align*}
& \mathbb{P} E n d\left(V_{1}\right) \times \mathbb{P} \operatorname{End}\left(V_{2}\right) \times \mathbb{P} \operatorname{End}\left(V_{3}\right) \rightarrow \mathbb{P}\left(V_{1} \otimes V_{2} \otimes V_{3}\right) \tag{4.2}\\
&([X],[Y],[Z]) \mapsto(X, Y, Z) \cdot\left[M_{e_{2}, e_{3}, e_{1}}\right] .
\end{align*}
$$

(Compare with the map ψ in $[7, \S 7.2]$.) A dashed arrow is used to indicate the map is not everywhere defined.

The indeterminacy locus (that is, points $([X],[Y],[Z])$ where the map is not defined), consists of $([X],[Y],[Z])$ such that for all triples of matrices P, Q, R,

$$
\operatorname{trace}(X(P) Y(Q) Z(R))=0
$$

In principle one can obtain (4.5) as the image of a map from a succession of blow-ups of $\mathbb{P} \operatorname{End}\left(V_{1}\right) \times \mathbb{P} \operatorname{End}\left(V_{2}\right) \times \mathbb{P} \operatorname{End}\left(V_{3}\right)$.

One way to attain a point in the indeterminacy locus is to take $\left(\left[X_{0}\right],\left[Y_{0}\right],\left[Z_{0}\right]\right)$ as described in the proof. Taking a curve in G that limits to this point may or may not give something new. In the proof we gave two explicit choices that do give something new.

A more invariant way to discuss that $\tilde{M} \notin \operatorname{End}\left(V_{1}\right) \times \operatorname{End}\left(V_{2}\right) \times \operatorname{End}\left(V_{3}\right) \cdot M_{e_{2}, e_{3}, e_{1}}$
is to consider an auxiliary variety, called a subspace variety,
$S u b_{f_{1}, \ldots, f_{n}}(\mathbf{V}):=\left\{T \in V_{1} \otimes \cdots \otimes V_{n} \mid \exists V_{j}^{\prime} \subset V_{j}, \operatorname{dim} V_{j}^{\prime}=f_{j}\right.$, and $\left.T \in V_{1}^{\prime} \otimes \cdots \otimes V_{n}^{\prime}\right\}$,
and observe that if $T \in \times_{j} \operatorname{End}\left(V_{j}\right) \cdot M_{\overrightarrow{\mathbf{e}}}$ and $T \notin \times_{j} G L\left(V_{j}\right) \cdot M_{\overrightarrow{\mathbf{e}}}$, then $T \in$ $\operatorname{Sub}_{f_{1}, \ldots, f_{n}}(\mathbf{V})$ where $f_{j}<e_{j}$ for at least one j.

The statement that " \tilde{M} uses all the variables" may be rephrased as saying that $\tilde{M} \notin S u b_{e_{2} e_{3}-1, e_{2} e_{1}-1, e_{3} e_{1}-1}\left(V_{1} \otimes V_{2} \otimes V_{3}\right)$.
4.7 Reduction from the supercritical case to the critical case with the same graph

For a vector space W, let $G(k, W)$ denote the Grassmannian of k-planes through the origin in W. Let $\mathcal{S} \rightarrow G(k, W)$ denote the tautological rank k vector bundle whose fiber over $E \in G(k, W)$ is the k-plane E. Assume $f_{j} \leq \mathbf{v}_{j}$ for all j with at least one inequality strict. Form the vector bundle $\mathcal{S}_{1} \otimes \cdots \otimes \mathcal{S}_{n}$ over $G\left(f_{1}, V_{1}\right) \times$ $\cdots \times G\left(f_{n}, V_{n}\right)$, where $\mathcal{S}_{j} \rightarrow G\left(f_{j}, V_{j}\right)$ are the tautological subspace bundles. Note that the total space of $\mathcal{S}_{1} \otimes \cdots \otimes \mathcal{S}_{n}$ maps to \mathbf{V} with image $\operatorname{Sub}_{\vec{f}}(\mathbf{V})$. Define a fiber sub-bundle, whose fiber over $\left(U_{1} \times \cdots \times U_{n}\right) \in G\left(f_{1}, V_{1}\right) \times \cdots \times G\left(f_{n}, V_{n}\right)$ is $T N S\left(\Gamma, \vec{e}, U_{1} \otimes \cdots \otimes U_{n}\right)$. Denote this bundle by $T N S\left(\Gamma, \vec{e}, \mathcal{S}_{1} \otimes \cdots \otimes \mathcal{S}_{n}\right)$.

The supercritical cases may be realized, in the language of Kempf, as a "collapsing of a bundle" over the critical cases as follows:

Proposition 9. Assume $f_{j}:=\Pi_{s \in e(j)} e_{s} \leq \mathbf{v}_{j}$. Then $T N S(\Gamma, \vec{e}, \boldsymbol{V})$ is the image of the bundle $T N S\left(\Gamma, \vec{e}, \mathcal{S}_{1} \otimes \cdots \otimes \mathcal{S}_{n}\right)$ under the map to \boldsymbol{V}. In particular

$$
\operatorname{dim}(T N S(\Gamma, \vec{e}, \boldsymbol{V}))=\operatorname{dim}\left(T N S\left(\Gamma, \vec{e}, \mathbb{C}^{f_{1}} \otimes \cdots \otimes \mathbb{C}^{f_{n}}\right)\right)+\sum_{j=1}^{n} f_{j}\left(\boldsymbol{v}_{j}-f_{j}\right)
$$

Proof. If $\Pi_{s \in e(j)} e_{s} \leq \mathbf{v}_{j}$, then any tensor $T \in V_{j} \otimes\left(\otimes_{s \in i n(j)} E_{s}\right) \otimes\left(\otimes_{t \in o u t(j)} E_{t}^{*}\right)$, must lie in some $V_{j}^{\prime} \otimes\left(\otimes_{s \in \text { in }(j)} E_{s}\right) \otimes\left(\otimes_{t \in \text { out }(j)} E_{t}^{*}\right)$ with $\operatorname{dim} V_{j}^{\prime}=f_{j}$. The space $T N S(\Gamma, \vec{e}, \mathbf{V})$
is the image of this subbundle under the map to \mathbf{V}.

This type of bundle construction is standard, see [29,50]. Using the techniques in [50], one may reduce questions about a supercritical case to the corresponding critical case.
4.8 Reduction of cases with subcritical vertices of valence one

The subcritical case in general can be understood in terms of projections of critical cases, but this is not useful for extracting information. However, if a subcritical vertex has valence one, one may simply reduce to a smaller graph as we now describe.

Proposition 10. Let $T N S(\Gamma, \vec{e}, \boldsymbol{V})$ be a tensor network state, let v be a vertex of Γ with valence one. Relabel the vertices such that $v=v_{1}$ and so that v_{1} is attached by e_{1} to v_{2}. If $\boldsymbol{v}_{1} \leq e_{1}$, then $T N S\left(\Gamma, \vec{e}, V_{1} \otimes \cdots \otimes V_{n}\right)=T N S\left(\tilde{\Gamma}, \overrightarrow{\tilde{e}}, \tilde{V}_{1} \otimes V_{3} \otimes \cdots \otimes V_{n}\right)$, where $\tilde{\Gamma}$ is Γ with v_{1} and e_{1} removed, $\overrightarrow{\tilde{e}}$ is the vector $\left(e_{2}, \ldots, e_{n}\right)$ and $\tilde{V}_{1}=V_{1} \otimes V_{2}$.

Proof. A general element in $\operatorname{TNS}\left(\Gamma, \vec{e}, V_{1} \otimes \cdots \otimes V_{n}\right)$ is of the form $\sum_{i, j=1}^{e_{1}, e_{2}} u_{i} \otimes v_{i z} \otimes w_{z}$, where $w_{z} \in V_{3} \otimes \cdots \otimes V_{n}$. Obviously, $\operatorname{TNS}\left(\Gamma, \vec{e}, V_{1} \otimes \cdots \otimes V_{n}\right) \subseteq \operatorname{TNS}\left(\tilde{\Gamma}, \overrightarrow{\tilde{e}}, \tilde{V}_{1} \otimes\right.$ $\left.V_{3} \otimes \cdots \otimes V_{n}\right)=: \operatorname{TNS}(\tilde{\Gamma}, \vec{e}, \tilde{\mathbf{V}})$. Conversely, a general element in $\left.\operatorname{TNS}(\tilde{\Gamma}, \overrightarrow{\tilde{e}}, \tilde{\mathbf{V}})\right)$ is of the form $\sum_{z} X_{z} \otimes w_{z}, X_{z} \in V_{1} \otimes V_{2}$. Since $\mathbf{v}_{1} \leq e_{1}$, we may express X_{z} in the form $\sum_{i=1}^{e_{1}} u_{i} \otimes v_{i z}$, where $u_{1}, \ldots, u_{v_{1}}$ is a basis of V_{1}. Therefore, $\operatorname{TNS}(\Gamma, \vec{e}, \mathbf{V}) \supseteq$ $T N S(\tilde{\Gamma}, \overrightarrow{\tilde{e}}, \tilde{\mathbf{V}})$.

4.9 Trees

With trees one can apply the two reductions successively to reduce to a tower of bundles where the fiber in the last bundle is a linear space. The point is that a critical vertex is both sub- and supercritical, so one can reduce at valence one vertices iteratively. Here are a few examples in the special case of chains. The result is similar to the Allman-Rhodes reduction theorem for phylogenetic trees [2].

Example 2. Let Γ be a chain with 3 vertices. If it is supercritical, $\operatorname{TNS}(\Gamma, \vec{e}, \boldsymbol{V})=$ $V_{1} \otimes V_{2} \otimes V_{3}$. Otherwise $T N S(\Gamma, \vec{e}, \boldsymbol{V})=S u b_{e_{1}, e_{1} e_{2}, e_{2}}\left(V_{1} \otimes V_{2} \otimes V_{3}\right)$.

Example 3. Let Γ be a chain with 4 vertices. If $\boldsymbol{v}_{1} \leq e_{1}$ and $\boldsymbol{v}_{4} \leq e_{3}$, then, writing $W=V_{1} \otimes V_{2}$ and $U=V_{3} \otimes V_{4}$, by Proposition 10, TNS $(\Gamma, \vec{e}, \boldsymbol{V})$ is the set of rank at most e_{2} elements in $W \otimes U$ (the secant variety of the two-factor Segre). Other chains of length four have similar complete descriptions.

Example 4. Let Γ be a chain with 5 vertices. Assume that $\boldsymbol{v}_{1} \leq e_{1}, \boldsymbol{v}_{5} \leq e_{4}$ and $\boldsymbol{v}_{1} \boldsymbol{v}_{2} \geq e_{2}$ and $\boldsymbol{v}_{4} \boldsymbol{v}_{5} \geq e_{3}$. Then $T N S(\Gamma, \vec{e}, \boldsymbol{V})$ is the image of a bundle over $G\left(e_{2}, V_{1} \otimes V_{2}\right) \times G\left(e_{3}, V_{4} \otimes V_{5}\right)$ whose fiber is the set of tensor network states associated to a chain of length three.

5. SUMMARY

In this thesis we study two feasible spaces of tensors, the third secant variety of the product of n projective spaces $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$, and tensor network states. These spaces arise in numerous applications such as signal processing and quantum information theory.

We determine the set theoretic defining equations of $\sigma_{3}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$. For higher secant varieties of Segre varieties, it is known [17] that there is a uniform bound $d(r)$ such that $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ is defined by equations of degrees at most $d(r)$ for any n, and [30] when $\operatorname{dim} A_{i} \geq r$ for all $1 \leq i \leq n$, the equations of $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ can be obtained from the equations of the r-th secant variety of the Segre product of n copies of \mathbb{P}^{r-1},s, i.e. $\sigma_{r}(\operatorname{Seg}(\underbrace{\mathbb{P}^{r-1} \times \cdots \times \mathbb{P}^{r-1}}_{n-\text { copies }}))$. We conjecture that when $\operatorname{dim} A_{i} \geq r$ for all i, the equations for $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} A_{1} \times \cdots \times \mathbb{P} A_{n}\right)\right)$ can be obtained from the equations for the r-th secant variety of the Segre product of only r copies of \mathbb{P}^{r-1},s, i.e. $\sigma_{r}(\operatorname{Seg}(\underbrace{\mathbb{P}^{r-1} \times \cdots \times \mathbb{P}^{r-1}}_{r \text { copies }}))$.

We discuss under what conditions tensor network states are closed under the Zariski topology, equivalently (in our situation) the Euclidean topology. The research of the $G L_{n^{2}}$ orbit closure of the determinant $\operatorname{det}_{n}, \overline{G L_{n^{2}} \cdot \operatorname{det}_{n}}$, in the GCT program provides additional motivation to study the geometry of tensor network states. In particular, when Γ is a triangle, the corresponding tensor network state is $\overline{G L\left(V_{1}\right) \times G L\left(V_{2}\right) \times G L\left(V_{3}\right) \cdot M u l t}$, where Mult is the matrix multiplication operator. Very little of the geometric properties even the triangle tensor network state are known, for example, the number of irreducible components of it is still unknown.

REFERENCES

[1] H. Abo, G. Ottaviani, and C. Peterson. Induction for secant varieties of Segre varieties. Trans. Amer. Math. Soc., 361:767-792, 2009.
[2] E.S. Allman and J.A. Rhodes. Mathematical models in biology: an introduction. Cambridge University Press, Cambridge, 2004.
[3] E.S. Allman and J.A. Rhodes. Phylogenetic ideals and varieties for the general Markov model. Adv. in Appl. Math., 40:127-148, 2008.
[4] D.J. Bates and L. Oeding. Toward a salmon conjecture. Experiment. Math., 20:358-370, 2011.
[5] J. Buczyńnski and J.M. Landsberg. On the third secant variety. to appear in Journal of Algebraic Combinatorics.
[6] P. Bürgisser and C. Ikenmeyer. Geometric complexity theory and tensor rank [extended abstract]. STOC'11 Proceedings of the 43rd ACM Symposium on Theory of Computing, pages 509-518, 2011.
[7] P. Bürgisser, J.M. Landsberg, L. Manivel, and J. Weyman. An overview of mathematical issues arising in the geometric complexity theory approach to $V P \neq V N P$. SIAM J. Comput., 40:1179-1209, 2011.
[8] M.V. Catalisano, A.V. Geramita, and A. Gimigliano. On the rank of tensors, via secant varieties and fat points. In Zero-dimensional schemes and applications (Naples, 2000), volume 123 of Queen's Papers in Pure and Appl. Math., pages 133-147. Queen's Univ., Kingston, ON, 2002.
[9] M.V. Catalisano, A.V. Geramita, and A. Gimigliano. Ranks of tensors, secant varieties of Segre varieties and fat points. Linear Algebra Appl., 367:263-285, 2002.
[10] M.V. Catalisano, A.V. Geramita, and A. Gimigliano. Higher secant varieties of Segre-Veronese varieties. In Projective varieties with unexpected properties, pages 81-107. Walter de Gruyter, Berlin, 2005.
[11] M.V. Catalisano, A.V. Geramita, and A. Gimigliano. Higher secant varieties of the Segre varieties $\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}$. J. Pure Appl. Algebra, 201:367-380, 2005.
[12] M.V. Catalisano, A.V. Geramita, and A. Gimigliano. On the ideals of secant varieties to certain rational varieties. J. Algebra, 319:1913-1931, 2008.
[13] M.V. Catalisano, A.V. Geramita, and A. Gimigliano. Secant varieties of $\mathbb{P}^{1} \times$ $\cdots \times \mathbb{P}^{1}$ (n-times) are NOT defective for $n \geq 5$. J. Algebraic Geom., 20:295-327, 2011.
[14] J.I. Cirac and F. Verstraete. Renormalization and tensor product states in spin chains and lattices. J. Phys. A: Math. Theor., $46(504004$ (34pp)), 2009.
[15] P. Comon. Tensor decompositions, state of the art and applications. Mathematics in Signal Processing V, 71:1-24, 2002.
[16] P. Comon and C. Jutten. Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, 2010.
[17] J. Draisma and J. Kuttler. Bounded-rank tensors are defined in bounded degree. http://arxiv.org/abs/1103.5336, 2011.
[18] M. Fannes, B. Nachtergaele, and R.F. Werner. Valence bond states on quantum spin chains as ground states with spectral gap. J. Phys. A: Math. Gen., 24:185190, 1991.
[19] M. Fannes, B. Nachtergaele, and R.F. Werner. Finitely correlated states on quantum spin chains. Comm. Math. Phys., 144:443-490, 1992.
[20] S. Friedland. On tensors of border rank l in $\mathbb{C}^{m \times n \times l}$. Linear Algebra and its Applications, 438:713-737, 2013.
[21] S. Friedland and E. Gross. A proof of the set-theoretic version of the salmon conjecture. J. Algebra, 356:374-379, 2012.
[22] L.D. Garcia, M. Stillman, and B. Sturmfels. Algebraic geometry of bayesian networks. Journal of Symbolic Computation, 39:331-355, 2005.
[23] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor approximation techniques. arXiv:1302.7121, 2013.
[24] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus, volume 42 of Springer Series in Computational Mathematics.
[25] S. Hoşten and S. Ruffa. Introductory notes to algebraic statistics. Rend. Istit. Mat. Univ. Trieste, 37:39-70, 2005.
[26] S. Iblisdir, J.I. Latorre, and R. Orus. Entropy and exact matrix-product representation of the laughlin wave function. Phys. Rev. Lett., 98(6)(060402), 2007.
[27] T.G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM Review, 51:455-500, 2009.
[28] J.M. Landsberg. The border rank of the multiplication of 2×2 matrices is seven. J. Amer. Math. Soc., 19:447-459, 2006.
[29] J.M. Landsberg. Tensors: Geometry and Applications, volume 128 of Graduate Studies in Mathematics. AMS, Providence, 2011.
[30] J.M. Landsberg and L. Manivel. On the ideals of secant varieties of Segre varieties. Found. Comput. Math., 4:397-422, 2004.
[31] J.M. Landsberg and L. Manivel. Generalizations of Strassen's equations for secant varieties of Segre varieties. Comm. Algebra, 36:405-422, 2008.
[32] J.M. Landsberg, L. Manivel, and N. Ressayre. Hypersurfaces with degenerate duals and the geometric complexity theory program. arXiv:1004.4802, 2010.
[33] J.M. Landsberg and G. Ottaviani. Equations for secant varieties of Veronese and other varieties. Annali di Matematica Pura ed Applicata, 2011.
[34] J.M. Landsberg, Y. Qi, and K. Ye. On the geometry of tensor network states. Quantum Information 8 Computation, 12:346-354, 2012.
[35] J.M. Landsberg and J. Weyman. On the ideals and singularities of secant varieties of Segre varieties. Bull. Lond. Math. Soc., 39:685-697, 2007.
[36] L.-H. Lim and P. Comon. Multiarray signal processing: tensor decomposition meets compressed sensing. Comptes Rendus de l'Academie des sciences, Series IIB - Mechanics, 338(6):311-320, 2010.
[37] P. McCullagh. Tensor methods in statistics. Monographs on Statistics and Applied Probability. Chapman \& Hall, London, 1987.
[38] J. Morton and L.-H. Lim. Principal cumulant component analysis. preprint, 2009.
[39] K. Mulmuley and M. Sohoni. Geometric complexity theory. i. an approach to the p vs. np and related problems. SIAM J. Comput., 31:496-526, 2001.
[40] K. Mulmuley and M. Sohoni. Geometric complexity theory. ii. towards explicit obstructions for embeddings among class varieties. SIAM J. Comput., 38:11751206, 2008.
[41] M.B. Or and R. Cleve. Computing algebraic formulas with a constant number of registers. Proceeding STOC '88 Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 254-257, 1988.
[42] G. Ottaviani. Symplectic bundles on the plane, secant varieties and lüroth quartics revisited. Quad. Mat., 21:315-352, 2007.
[43] L. Pachter and B. Sturmfels (eds.). Algebraic Statistics for Computational Biology. Cambridge University Press, New York, 2005.
[44] Y. Qi. Equations for the third secant variety of the Segre product of n projective spaces. preprint, 2013.
[45] C. Raicu. Secant varieties of Segre-Veronese varieties. arXiv: 1011.5867, 2010.
[46] A.W. Sandvik and G. Vidal. Variational quantum monte carlo simulations with tensor network states. Phys. Rev. Lett., 99:589-591, 2007.
[47] A. Simis and B. Ulrich. On the ideal of an embedded join. J. Algebra, 226:1-14, 2000.
[48] V. Strassen. Rank and optimal computation of generic tensors. Linear Algebra Appl., 52/53:645-685, 1983.
[49] F. Verstraete, M.M. Wolf, D. Perez-Garcia, and J.I. Cirac. Criticality, the area law, and the computational power of projected entangled pair states. Phys. Rev. Lett., 96(22):220601(1)-220601(4), 2006.
[50] J. Weyman. Cohomology of vector bundles and syzygies, volume 149 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.

[^0]: *Reprinted with permission from "On the geometry of tensor network states" by J.M. Landsberg, Y. Qi and K. Ye, 2012, Quantum Information \& Computation, Vol 12, Page 346-354, Copyright [2012] by Rinton Press (Princeton, New Jersey).

