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ABSTRACT 

 

It has been shown in the literature that the oil and gas industry deals with a 

substantial number of biases that impact project evaluation and portfolio performance. 

Previous studies concluded that properly estimating uncertainties will significantly 

impact the success of risk takers and their profits. Although a considerable number of 

publications investigated the impact of cognitive biases, few of these publications 

tackled the problem from a quantitative point of view.  

The objective of this work is to demonstrate the value of quantifying uncertainty 

and evaluate its impact on the optimization of oil and gas portfolios, taking into 

consideration the risk of each project. A model has been developed to perform portfolio 

optimization using Markowitz theory. In this study, portfolio optimization has been 

performed in the presence of different levels of overconfidence and directional bias to 

determine the impact of these biases on portfolio performance. 

The results show that disappointment in performance occurs not only because the 

realized portfolio net present value (NPV) is lower than estimated, but also because the 

realized portfolio risk is higher than estimated. This disappointment is due to both 

incorrect estimation of value and risk (estimation error) and incorrect project selection 

(decision error). The results of the cases analyzed show that, in a high-risk-tolerance 

environment, moderate overconfidence and moderate optimism result in an expected 

decision error of about 19% and an expected disappointment of about 50% of the 

estimated portfolio. In a low-risk-tolerance environment, the same amounts of moderate 
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overconfidence and optimism result in an expected decision error up to 103% and an 

expected disappointment up to 78% of the estimated portfolio. Reliably quantifying 

uncertainty has the value of reducing the expected disappointment and the expected 

decision error. This can be achieved by eliminating overconfidence in the process of 

project evaluation and portfolio optimization. Consequently, overall industry 

performance can be improved because accurate estimates enable identification of 

superior portfolios, with optimum reward and risk levels, and increase the probability of 

meeting expectations.  

 

 

 

  

 

 

 



 

iv 

 

DEDICATION  

 

I dedicate this thesis to my parents, my sister and my fiancé. 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to express my gratitude to my committee chair, Dr. McVay, for his 

supervision, guidance and encouragement throughout the course of this research; it was a 

great learning experience. I would like to thank my committee members, Dr. Barrufet, 

Dr. Lee and Mr. Voneiff, for their help and support. 

I would like to thank ExxonMobil Corporation and the Institute of International 

Education for offering me a scholarship and giving me the opportunity to pursue my 

education in my field of interest. Thanks to Texas A&M University and Harold Vance 

Department of Petroleum Engineering for providing the resources to pursue my Master’s 

degree. I would like to also thank my friends and colleagues, and special thanks to Mr. 

Dossary for collaborating and sharing his results.  

Last but not least, thanks to my father, Abdelkarim, my mother, Fawzia, my 

sister, Amal, and my fiancé, Youssef, for their continuous support and love that gives me 

the courage to carry on.   

 



 

vi 

 

TABLE OF CONTENTS 

Page 

ABSTRACT ..................................................................................................................     ii 

DEDICATION ..............................................................................................................     iv 

ACKNOWLEDGEMENTS ..........................................................................................      v 

TABLE OF CONTENTS ..............................................................................................     vi 

LIST OF FIGURES ......................................................................................................   viii 

1. INTRODUCTION AND BACKGROUND ..............................................................      1 

1.1 Introduction ..........................................................................................................      1 

1.2 Background ..........................................................................................................      2 
1.2.1 Uncertainty ...................................................................................................      2 
1.2.2 Portfolio Optimization ..................................................................................      6 

1.3 Objective ..............................................................................................................      9 

2. PRIOR MODELS ......................................................................................................    10 

2.1 The Begg and Bratvold Model .............................................................................    10 
2.2 The McVay and Dossary Model ..........................................................................    11 

3. THE MODEL ............................................................................................................    14 

3.1 The Methodology .................................................................................................    14 
3.1.1 Uncertainty Parameters ................................................................................    14 

3.1.2 The Model Description .................................................................................    15 
3.1.3 The Simulation .............................................................................................    20 

3.1.4 Portfolio Optimization ..................................................................................    24 
3.1.5 The Algorithm ..............................................................................................    26 

4. RESULTS ..................................................................................................................    44 

4.1 The Case of Moderate Overconfidence and Moderate Optimism ........................    44 

4.1.1 Expected Efficient Frontier Curves ..............................................................    44 
4.1.2 Expected Disappointment .............................................................................    53 
4.1.3 Expected Decision Error ..............................................................................    54 

4.1.4 Estimation Error ...........................................................................................    55 

 



 

vii 

 

Page 

4.2 Impact of Biases on the Estimated Portfolio ........................................................    56 
4.2.1 Variable Overconfidence and Fixed Directional Bias ..................................    56 

4.2.2 Variable Directional Bias and Fixed Overconfidence ..................................    58 
4.3 Impact of Overconfidence on Expected Disappointment and Expected Decision 

Error .....................................................................................................................    61 
4.3.1 Expected Disappointment .............................................................................    61 
4.3.2 Expected Decision Error ..............................................................................    63 

4.4 The Case of Pessimism ........................................................................................    66 
4.5 Summary of Results .............................................................................................    69 

4.5.1 Expected Disappointment as a Percentage of the Estimated Portfolio ........    69 

4.5.2 Expected Decision Error as a Percentage of the Estimated Portfolio ..........    72 

5. CONCLUSIONS AND FUTURE WORK ...............................................................    77 

5.1 Conclusions ..........................................................................................................    77 

5.2 Future Work .........................................................................................................    78 

NOMENCLATURE ......................................................................................................    80 

REFERENCES ..............................................................................................................    82 

 



 

viii 

 

LIST OF FIGURES 

Page 

Fig. 1— Relationship between the estimated distribution (shaded) and the true 

distribution (unshaded) as a function of overconfidence and directional         

bias (McVay and Dossary, 2012) ...................................................................    16 

 

Fig. 2— Comparison of the efficient frontier curves generated from two different     

Monte Carlo simulations ................................................................................    23 
 

Fig. 3— True and estimated expected values ...............................................................    25 

Fig. 4— Symbols used in the flowcharts ......................................................................    26 

Fig. 5–– The algorithm for the main function ...............................................................    28 

Fig. 6— The matrix generated by the “Set_Matrix” function .......................................    29 

Fig. 7— The “Set_Matrix” algorithm ...........................................................................    31 

Fig. 8— The “Get_Input” algorithm .............................................................................    32 

Fig. 9— The three main steps in the algorithm of the “Optimize” function .................    33 

Fig. 10—The multiplication of the two-dimensional array by the input NPV data to     

generate the initial set of possible portfolio NPVs .........................................    34 

 

Fig. 11—The first part of the “Optimize” function that generates the initial set of 

possible portfolios ..........................................................................................    36 

 

Fig. 12—The second part of the “Optimize” function that generates all the possible 

portfolios that fully use the budget .................................................................    38 

 

Fig. 13—The third part of the “Optimize” function that selects the optimum      

portfolios ........................................................................................................    40 

 

Fig. 14—The last part of the “Optimize” function that selects the realized portfolios .    42 

Fig. 15—Expected efficient frontier curves for 0.5 overconfidence & 0.5 directional  

bias .................................................................................................................    45 

 

Fig. 16––Example to illustrate the difference between risk tolerance and portfolio        

risk ..................................................................................................................    48 

file://pe-file/grads/houda.hdadou/Desktop/research/Deliverables/Thesis_Houda_Hdadou%20v9.docx%23_Toc359488519


 

ix 

 

 

Page 

Fig. 17—Expected efficient frontier curves for 0.5 overconfidence & 0.5 directional  

bias and a maximum risk tolerance of $1,325MM; ED, EDE and EE are 

calculated for a risk tolerance of $600MM ....................................................    52 

 

Fig. 18—Efficient frontier curves for the estimated expected portfolios at 0.5   

directional bias and variable overconfidence for a maximum risk tolerance      

of $2,500MM .................................................................................................    57 

 

Fig. 19—Efficient frontier curves for the estimated expected portfolios for a  

maximum risk tolerance of $2,500MM at 0.5 overconfidence and variable 

directional bias................................................................................................   59 

 

Fig. 20—Relationship between the estimated distribution (shaded) and the true 

distribution (unshaded) at a fixed overconfidence level and different  

directional bias levels .....................................................................................    61 

 

Fig. 21—Expected disappointment at 0.5 directional bias ............................................    63 

Fig. 22—Expected decision error at 0.5 directional bias ..............................................    65 

Fig. 23—Relationship between the estimated distribution (shaded) and the true 

distribution (unshaded) for a value-based parameter (e.g., PVOCF) at a      

fixed level of overconfidence and different levels of directional bias ...........    67 

 

Fig. 24—Expected efficient frontier curves for the case of -0.5 directional bias and      

0.5 overconfidence .........................................................................................    68 

 

Fig. 25—Comparison of the efficient frontier curves for the estimated expected 

portfolios for the case of optimism and pessimism at 0.5 overconfidence ....    69 

 

Fig. 26—ED%E for high-risk tolerance (dotted lines) and low-risk tolerance (solid  

lines) ...............................................................................................................    71 

 

Fig. 27—EDE%E for high-risk tolerance (dotted lines) and low-risk tolerance (solid 

lines) ...............................................................................................................    74 



 

1 

 

1. INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

The oil and gas industry faces a lot of uncertainties related to reserves estimation, 

production forecasting, pricing fluctuation, and many other factors. Estimation of each 

of these factors might vary from one estimator to another. Often, these estimations can 

have more than one value, thus requiring a range of possible values, and that range 

should properly account for the level of uncertainty of the estimator. Brashear et al. 

(1999) distinguished two types of uncertainties in the field of petroleum—underground 

uncertainties and aboveground uncertainties. The underground uncertainties are related 

to the reservoir and geological characteristics of a project, while the aboveground 

uncertainties are related to the fluctuations in prices, changes in demand and supply, 

changes in regulations and variations in estimators’ judgments. 

Capen (1976) pointed out that project planning and budget process is heavily 

dependent on estimations. According to him, properly estimating uncertainties will not 

only significantly impact profit, but it will also impact the success of the project. He 

conducted a set of experiments that showed that petroleum engineers, managers, 

decision makers, and estimators in general provide narrow ranges for their estimations 

due to their overconfidence. They underestimate uncertainty and overestimate the 

precision of their knowledge.  Rose (2004) stated that exploration departments of most 

petroleum companies delivered about only half of the estimated reserves over the last 

twenty years of the 20
th

 century. He also explained that the following issue is not 
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specific to exploration only since most companies fail to meet their forecast rates. The 

work of Tversky and Kahneman (1974) showed that people tend to base their judgment 

and estimation on a limited number of heuristic principles instead of properly assessing 

probabilities, which leads to biases. Decisions are usually based on the belief of the 

likelihood of an event or a value, thus the decision making process is impacted by the 

cognitive biases that occur when assessing probabilities. Choosing the right set of 

projects that would return the highest Net Present Value (NPV) and meet the 

performance criteria and budget constraints of a company is a task that requires not only 

familiarity with technical and financial concepts, but also a considerable awareness of 

the impact of biases.  Hence, in this work, I will demonstrate the value of quantifying 

uncertainty, and I will evaluate its impact. 

1.2 Background 

1.2.1 Uncertainty 

In Capen’s (1976) experiments that evaluate the difficulty of assessing 

uncertainty, it has been observed that estimators tend to use the same range of 

estimations no matter what kind of range they were asked for. In one of Capen’s (1976) 

experiments, he asked 10 questions to a group of petroleum engineers and he required 

that they provide 90% confidence level ranges for their estimations; the average 

confidence level of the answers turned out to be 32%. The explanation for this behavior 

is that decision makers (and even experts) tend to build ranges that include expected 

events only rather than expected and possible events. The difference between including 

expected events versus including expected and possible events is considered as an 
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important source of uncertainty. Consequently, the ranges are usually too narrow. Welsh 

et al. (2005) conducted a study that is an extension of Capen’s (1976) experiment; they 

concluded that even if the industry personnel have familiarity and experience with the 

domain, their decision and estimations are still impacted by biases.  

Tversky and Kahneman’s (1974) study was on the same track. He explained the 

common practices of people when making judgments and decisions under uncertainty by 

a number of sets of heuristics that lead to biases. One of these heuristics is the 

representativeness that takes place when people are asked to estimate the probability that 

an object belongs to another. People tend to misjudge representativeness because they 

are insensitive to a set of factors such as the prior probability outcomes, the sample size, 

predictability, misconceived chance, validity, and regression. Availability is another 

heuristic that was studied by Tversky and Kahneman (1974) and it is explained as the 

ease of instances’ occurrence to one’s mind. Availability can be subject to biases due to 

the retrievability of instances, to the effectiveness of a search set, to imaginability, and to 

the illusory correlations. The stated factors are misleading in the decision-making 

process; the human brain does not have the most effective search tools especially when 

operating in the intuitive fast-response mode. Also, different starting points yield 

different estimates, which create adjustment and anchoring heuristics due to insufficient 

adjustment. Tversky and Kahneman (1974) concludes that these heuristics are 

economical and usually effective, but they also lead to systematic and predictable errors 

not only by “average” people, but also by experienced researchers when they think 

intuitively.  
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Begg and Bratvold (2008) reported that the work of Brown (1974) concludes that 

even if the estimates of project cash flow are not biased, the average of the actually 

realized cash flows will be lower than estimated, because the projects with higher NPV 

are preferably, and not randomly, selected. Harrison and March (1984) show that the 

standard decision-process is biased due to pre-decision expectations and post-decision 

evaluations, and the bias may lead to disappointment. Smith and Winkler (2006) and 

other authors reported a phenomenon called the “Optimizer’s Curse” or inevitable 

disappointment; it is the systematic bias resulting from the decision process itself. They 

(2006) considered a hypothetical situation consisting of 3 alternatives, each with value 

estimates that are considered to be their expected values resulting from a decision 

analysis study and assumed to be conditionally unbiased. All these papers have shown 

that bias occurs in the process of project evaluation and portfolio optimization.  Brashear 

et al. (2001) reported that in the 1990’s the largest US based E&P companies, both 

integrated majors and large independents, realized an average return on projects of 7% 

while the minimum estimated internal rate of return “hurdle rate” was set at 15%. The 

authors explain that this is a result of using evaluation methods that do not account for 

full uncertainties and risk. 

Begg and Bratvold (2008) investigated the uncertainty in estimates and the 

impact of prediction errors in the O&G industry. Their work started with a literature 

review that covered the different theories and observations mentioned above. They then 

studied three typical situations and their sensitivity analysis. The situations are an intra-

project alternative selection, project “go/no go” decisions, and a constrained portfolio 
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selection subject to a budget limit. They concluded that the expected disappointment is 

real and present but it does not appear to be large compared to the other prediction 

errors; the magnitude of the expected disappointment is in the order of 2% and 10% 

(2008). Also, as the development of a project starts, the level of uncertainty and the 

impact of bias lower because positive bias and real-time feedback are added and that 

counteracts the loss of value. Begg and Bratvold also observed that the larger the number 

of alternatives, the higher the expected disappointment.  

The study of McVay and Dossary (2012) measured the value of reliably 

assessing uncertainty. They built a mathematical model that describes the relationship 

between the true project value distribution(s) and the estimated project value 

distribution(s) in terms of two primary biases that affect the decision making process: 

overconfidence and directional bias. They then simulated the portfolio optimization 

process for the case of true values, the estimated values, and a realized case in which the 

decision is made based on the estimated values, but the value realized is based on the 

true distributions. Based on the results of these three simulations, McVay and Dossary 

(2012) calculated the expected disappointment (the difference between the realized NPV 

and the estimated NPV), and the expected decision error (the portion of expected 

disappointment due to the selection of the wrong projects). Their results showed that for 

moderate amounts of overconfidence and optimism, the expected disappointment is 30-

35% of the estimated NPV for the industry portfolios and optimization cases they 

analyzed. As the degrees of overconfidence and optimism are greater, the expected 

disappointment approached 100% of the estimated NPV. Both of Begg and Bratvold 
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(2008) and McVay and Dossary’s paper (2012) agree on the fact that there are 

systematic prediction errors that affect the process of project evaluation. Begg and 

Bratvold are more moderate, with a disappointment in the order of 2% to 10%, than 

McVay and Dossary, with an average disappointment of 30%-35%, about the magnitude 

of the impact of these errors on the decision making process. 

1.2.2 Portfolio Optimization 

Another relevant area for this study is portfolio optimization. Merritt and Miguel 

(2000) investigated and concluded that Monte Carlo simulation combined with 

Markowitz’ theory of efficient frontier provides a powerful integrated modeling 

environment to analyze the efficiency of assets in oil and gas companies. This technique 

ensures that value is maximized for a certain level of risk. It also identifies opportunities 

to decrease the level of risk while maintaining the current project value. Markowitz’ 

portfolio theory suggests that for any level of risk, there will be only one portfolio that 

returns a maximum reward and inversely, for any level of reward, there will be only one 

portfolio that minimizes the risk (Markowitz, 1952).  He names the portfolios that meet 

these conditions “the efficient frontier” and the plot named efficient frontier curve (EFC) 

has the return of the optimum portfolios plotted against their risk. Markowitz pointed out 

that a rational investor would seek a portfolio for which no other combination would 

have a higher return without increased risk or lower risk without loss of return. The 

choice of the portfolios along the efficient frontier depends on the decision-maker’s 

tolerance for risk (Brashear et al. 2001). 

 The sequential approach and the systems approach are techniques used in 
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portfolio optimization. On one hand, the sequential approach uses the whole distribution 

of a variable as input from one sub-module to the other. On the other hand, the systems 

approach uses as input the individual samples that iterate through all the sub-modules 

before going to other samples of the distribution. An example to illustrate these two 

techniques is using, as input variable, porosity that could be fitted into a distribution. The 

porosity can be used in the calculation of the original oil in place (OOIP). In the 

sequential approach, the whole distribution of porosity is input into the OOIP calculation 

process. While in the sequential approach, a single value of porosity is sampled from the 

distribution and input into the OOIP calculation process. Al-Harthy et al. (2006) 

compare the sequential and the systems approaches used to optimize portfolios. They 

conclude that the two methods complement each other in capturing inter-dependencies 

and intra-dependencies, which can add significant value to the decision-making process. 

According to their work, the systems approach captures the intra-dependence within a 

project. They also concluded that as the level of risk increases, the difference between 

the two approaches increases as well, and the impact of capturing dependency is greater 

using the systems approach. 

Another portfolio optimization method, used for a long time by E&P decision-

makers, is to rank projects by investment efficiency (IE) (the project NPV divided by the 

investment or CAPEX). Once all projects are ordered, the decision-makers select the 

projects in a descending order according to IE until the available budget is exhausted. 

Brashear et al. (1999) described this optimization method as conventional and labeled it 

the cherry-picking solution. They conducted an experiment where they evaluated 14 
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investment opportunities using both the conventional ranking method and using 

Markowitz portfolio theory. Their experiment showed that the conventional method of 

ranking does maximize return but it ignores risk. This optimization method maximizes 

risk as well, so if the decision-makers are unwilling to maximize risk, other optimal 

portfolios can be chosen from the efficient curve. 

Besides the work of Begg and Bratvold (2008) and McVay and Dossary (2012), 

few other quantitative studies have been conducted so far in the field of uncertainty 

quantification in combination with portfolio optimization. Most studies approached this 

area from a qualitative perspective or through surveys and experiments. Although the 

study of McVay and Dossary (2012) was based on a model that quantifies the impact of 

biases on oil and gas investments and portfolios, they used a basic portfolio optimization 

approach that consists of ranking projects and selecting a handful, from best to worst, 

until the budget is reached. It has been explained in the literature that Monte Carlo 

Simulation combined with Markowitz’ theory of efficient frontier provides good results 

because it accounts for the risk factor within the evaluation of projects, in addition to the 

fact that it is more representative of what is used in the industry. Also, the impact of 

underestimation of uncertainty has not been studied quantitatively in a Markowitz 

portfolio optimization context. Thus, this work investigates how uncertainty and 

cognitive biases impact portfolio optimization in the context of Monte Carlo simulation 

combined with Markowitz theory.   
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1.3 Objective 

The objective of this research is to demonstrate the value of quantifying 

uncertainty and assess its impact on the optimization of oil and gas portfolios, taking into 

consideration the risk factor carried within each project. Impact will be assessed by 

determining expected disappointment and expected decision error as a function of the 

two main cognitive bias parameters—overconfidence and directional bias.  
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2. PRIOR MODELS 

 

2.1 The Begg and Bratvold Model 

Begg and Bratvold (2008) wrote a paper in which they investigated the 

uncertainty in the estimates and prediction errors in the oil and gas industry. They also 

evaluated the importance and relevance of these errors on the overall portfolio 

performance. The authors looked at three different cases, a case for intra-project 

alternative selection using NPV as a metric, a case for "go"/"no go" decisions using 

positive NPV  as the decision criterion, and another case for selecting projects in a 

limited budget context using NPV/CapEx criterion. The last case is the one of interest as 

some of its input distributions will be used in this work. Begg and Bratvold model 

ranked the projects in the pool by IE (investment efficiency that is equal to NPV divided 

by CapEx) and successively selected projects until the budget limit was reached. They 

characterized the true distributions of IE and CapEx by lognormal distributions and the 

uncertainty by a pert distribution that models the variability of the SD. They sampled the 

true and expected values of NPV, CapEx and IE of the 100 projects from these 

distributions. Based on these variables they calculated the expected disappointment (ED) 

and the expected decision error (EDE). For the case they studied that had a $4298MM 

true return, the disappointment was 6.1% of this return and the decision error was 2.9% 

of the same return. Thus, the paper concludes that the bias is present and real, but it is 

not considerably large compared to other prediction errors. Begg and Bratvold also 

investigated the impact of the project pool size on the returns and on the decision error 



 

11 

 

and disappointment. Their experiment showed that the larger the pool out of which the 

projects are selected, the higher the portfolio values. As the number of available projects 

increase, the ED and EDE increase too. Though, for pools of 40 projects or higher, ED 

and EDE became fairly constant. ED%T and EDE%T are the ED and EDE as a 

percentage of the true portfolio, meaning they represent the ED and EDE respectively 

divided by the true NPV. This explains the tendency of ED%T and EDE%T with the 

increase in the number of projects, because the true NPV is also increasing at a rate 

higher than the decrease in ED and EDE.  

2.2 The McVay and Dossary Model 

The McVay and Dossary (2012) paper has the objective of quantitatively 

determining the value or the cost of properly accounting for uncertainty. They provide a 

new framework to model uncertainty. The new framework is based on the premise that 

all biases that affect oil and gas project selection can be boiled down to two factors: 

directional bias and overconfidence. The model presented in their paper optimizes 

portfolios by ranking projects from high to low IE and selecting projects in a descending 

order until the budget is exhausted. This optimization was done using true values and 

estimated values to simulate the performance of different portfolios in different settings. 

This experiment was done for the cases of constrained and unconstrained budget. The 

paper shows that a moderate level of overconfidence and optimism results in a 

disappointment of 30-35% of estimated NPV and an expected decision error of 1-5% of 

estimated NPV.  As the level of optimism and overconfidence increases, the 

disappointment approaches 100% of the estimated value. Their paper shows that 



 

12 

 

reduction in overconfidence reduces the expected disappointment even if bias remains 

constant.  

McVay and Dossary’s paper shows that the EDE%E is relatively small compared 

to the ED%E. ED%E reaches 100% while EDE%E does not exceed 10%. This means 

that most of the disappointment results from the estimation error rather than the decision 

error. The paper concludes that the value of reliably quantifying uncertainty resides in 

reducing disappointment to improve industry performance and identify superior projects. 

Using my model, I reproduced the experiment of McVay and Dossary for the case of 

constrained budget and deterministic bias. Both models were run for the same budget 

limit ($805MM) and number of projects (8 projects). This model was set to a high-risk-

tolerance limit to make the optimization insensitive to the risk factor. The risk factor was 

not used in the calculations of the expected disappointment and the expected decision 

error.  

 

Table 1—Summary of comparison to previous work 

DB OC 
ED%E EDE%E 

SPE160189 This work SPE160189 This work 

0.25 0.25 8.6% 8.8% 0.5% 0.6% 

0.5 0.25 21.8% 21.9% 0.4% 0.4% 

0.75 0.25 33.7% 33.7% 0.5% 0.6% 

-0.25 0.25 -26.5% -26.4% 0.8% 1.0% 

0.5 0.75 46.6% 46.7% 0.9% 1.1% 

0.75 0.75 63.5% 63.6% 0.9% 1.1% 

-0.25 0.1 -13.3% -13.2% 0.3% 0.4% 

0.5 0.5 35.1% 35.3% 0.8% 1.0% 

-0.5 0.5 -118.6% -118.9% 9.0% 9.0% 
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Table 1 summarizes the results of the two models for a few cases of different 

overconfidence and directional bias levels. The results of the expected disappointment 

and the expected decision error as a percentage of the estimated portfolio NPV were 

matched within 0.1-0.3%. 
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3. THE MODEL 

 

3.1 The Methodology 

3.1.1 Uncertainty Parameters 

Uncertainty is modeled by following McVay and Dossary’s (2012) premise that 

all the cognitive biases that affect oil and gas project evaluation can be represented by 

overconfidence and directional bias. These two parameters can be explained as follows: 

 Overconfidence: this parameter specifies the fraction of the true distribution that 

is not sampled by the estimators. As shown in Fig. 1, an overconfidence of 0.5 

means that the estimator is only considering 50% of the true distribution. This 

parameter ranges from 0 to 1. A value of 1 means that no range is considered and 

that it is a deterministic estimate. A value of 0 means, the whole distribution is 

considered. 

 Directional bias: this parameter specifies the location of the estimated 

distribution that is a subset of the true distribution. This subset could be located 

at the left end of the distribution, right end or anywhere in between (Fig. 1). This 

parameter ranges between -1 and 1. A value of -1 refers to extreme pessimism 

meaning that only the most pessimistic outcomes of the true distribution are 

considered by the estimator. Extreme pessimism means that there is no truncation 

from the low end of the true distribution, and all of the truncation is from the 

high end. A value of 1 refers to extreme optimism meaning that only the most 

optimistic outcomes of the true distribution are considered. In this case, there is 
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no truncation from the high end of the true distribution, and all of the truncation 

is from the low end. 0 directional bias means there is no bias, and the truncation 

of the true distribution is equal from both ends. For other values of directional 

bias, a linear interpolation is used to obtain the fractions of area truncated from 

each end. For a directional bias of 0.5, 75% of the area that is truncated, which 

depends on the value of overconfidence, is truncated from the left of the 

distribution, and 25% of the same area is truncated from the right end of the 

distribution. For cost-based parameters (E.g CapEx), the truncation will be in the 

opposite direction (Fig. 1). 

3.1.2 The Model Description 

The model simulates the impact of biases on the process of portfolio 

optimization; these biases are represented by overconfidence and directional bias. The 

portfolio optimization is done using Markowitz theory combined with Monte Carlo 

simulation. The model is built on @RISK by Palisade Corporation (2012).  
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Fig. 1—Relationship between the estimated distribution (shaded) and the true 

distribution (unshaded) as a function of overconfidence and directional bias 

(McVay and Dossary, 2012)  

 

Most of the parameters and distributions used in this work are similar to the ones 

used by McVay and Dossary (2012). Project economic performance is described using 

two random parameters—capital expenditure (CapEx) and the present value of the 

operating cash flow (PVOCF). PVOCF includes all cash outflows and inflows besides 
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the CapEx. NPV is PVOCF minus CapEx. CapEx and PVOCF were modeled by McVay 

and Dossary (2012) as independent random variables even if there may be some 

correlations between these two variables in real life. This model also includes another 

factor—the portfolio risk. According to the Markowitz (1952) framework, the risk is the 

variance of the return. Other applications of the Markowitz framework defined risk as 

the standard deviation of the portfolio return (Guerard, 2009) or as the semi-standard 

deviation of the portfolio return (Brashear et al., 2001). In this work, risk is defined as 

the standard deviation of the portfolio NPV.  

3.1.2.1 The True Project Value Distribution 

The true project value distribution is the distribution that would be attained in 

what Begg and Bratvold (2008) call unlimited-resource environments. To get these true 

distributions, the company needs unlimited time, money and computational ability to 

assess the available data in the best and most accurate way. The data should already be 

available and the unlimited resources are only for assessment and not for acquiring more 

data or running more tests. The portfolios consist of projects that are sampled from 

global distributions designed to model the project alternatives available for a typical 

O&G company. For each project, CapEx and PVOCF distributions are determined by 

sampling means and standard deviations from global distributions. The standard 

deviations are specified relative to the true expected values, so that large projects have 

large uncertainty, and small projects have small uncertainty. The global distributions and 

the complete parameter set used are as follows: 
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 Mean true PVOCF: sampled from a lognormal distribution with mean equal to 

$750MM, a SD equal to $750MM and then shifted positively by $300MM.  

 Standard deviation of true PVOCF: specified relative to the true PVOCF. It is the 

true expected PVOCF multiplied by a value sampled from a Pert distribution 

with minimum 0.3, mode 0.8, and maximum 1.3. 

 Mean true CapEx: sampled from a lognormal distribution with a mean equal to 

$600MM, a SD equal to $600MM and then shifted positively by $100MM.  

 Standard Deviation of true CapEx: calculated similarly to the SD of PVOCF, by 

multiplying the true expected CapEx by a value sampled from a Pert distribution 

with minimum 0.3, mode 0.8, and maximum 1.3. 

 Individual-project true CapEx and PVOCF are lognormal distributions. 

 True risk: the SD of the true NPV. Since NPV is the difference between the 

PVOCF and CapEx, and these two parameters are independent and uncorrelated, 

then the SD of the true NPV, which is true risk can be calculated as follows: 

                √                                                 ...............  (3.1) 

3.1.2.2 The Estimated Project Value Distribution 

The estimated project value distributions result from a typical probabilistic 

assessment done in industry in limited-resource environment, and it would include the 

biases present in typical O&G project evaluations.  To get these estimated distributions, 

directional bias and overconfidence are applied to the true distributions. Similarly to 

McVay and Dossary’s (2012) model, the same amount of directional bias and 
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overconfidence are applied to both CapEx and PVOCF. The directional bias makes the 

estimated PVOCF and CapEx shift in opposite directions. Hence, for the cases of 

optimism (positive directional bias), the estimated distribution for the PVOCF will be 

shifted in the positive direction while the estimated distribution for the CapEx will be 

shifted in the negative direction. The estimated risk is the SD of the estimated NPV 

(knowing that CapEx and PVOCF are considered independent and uncorrelated) and is 

calculated as follows: 

                      

√                                                          ..........................  (3.2) 

3.1.2.3 The Input Parameters 

The number of projects available for the portfolio optimization is set to eight. 

This number was chosen because it is sufficient to capture the impact of biases on 

portfolio optimization without exceeding the computational capacity available in the 

visual basic for applications (VBA) coding language. The budget used in this model is 

set to $400MM. Begg and Bratvold (2008) and McVay and Dossary (2012) used a 

budget of $5 billion for a pool of 100 projects (the average budget per project is 

$50MM). This model is using 8 projects, so I used the same average budget per project 

($50MM*8=$400MM). In all cases that I ran, this budget limit combined with the 8 

projects pool yielded portfolios that never included more than 5 projects.  
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3.1.3 The Simulation  

The portfolio optimization was performed for three different cases: the estimated 

case, the best-possible case and the realized case. These cases can be described as 

follows: 

 The best-possible case: uses the true value distributions attained in unlimited-

resource environments that were explained in the previous section. Projects are 

selected and reported using their true expected parameters. 

 The estimated case: uses the estimated value distributions resulting from typical 

industry limited-resources probabilistic assessments. Projects are selected and 

reported using their estimated expected parameters.  

 The realized case: selected based on estimated value distributions but it is 

assessed based on true value distributions. Each portfolio goes through the 

following cycle: selection, development and reporting. In the realized case, 

project selection is done using the estimated expected value distributions, but as 

the selected projects are being developed, the company realizes the true cost 

(CapEx) of each project. If the costs of the projects selected in the portfolio 

exceed the available budget, then the company has to give up the projects with 

the lowest investment efficiency (IE). IE is calculated by dividing the estimated 

expected NPV by the estimated expected CapEx. The way the model simulates 

this process is by first selecting the corresponding optimum estimated portfolio, 

and comparing the true CapEx of the selected projects to the available budget. If 

the total CapEx of the projects in the portfolio exceeds the available budget, then 
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the projects are ranked by IE and selected from high IE to low IE until the 

available budget is exhausted; an appropriate percentage of the last project is 

selected to fill the budget. This process assumes that projects with the highest IE 

are developed first and that the estimators know the true CapEx of the selected 

projects from day one of the development process. The reporting process is done 

using the true expected parameters because the reporting step occurs after the 

completion of the projects and by then the company is aware of the true costs, 

returns and risks. 

3.1.3.1 The Disappointment and The Decision Error 

In the previous models, the disappointment is defined as the estimated portfolio 

NPV minus the realized portfolio NPV. The decision error is the best-possible portfolio 

NPV minus the realized portfolio NPV. The estimation error is the estimated portfolio 

NPV minus the best-possible portfolio NPV. Thus, the estimation error is the 

disappointment minus the decision error. The decision error is always positive, and it is 

the part of disappointment that results from selecting the wrong projects.  

This thesis provides a new framework that defines a portfolio using not only the 

NPV but also the risk. Consequently, disappointment and decision error can occur not 

only because of decrease in the NPV but also because of increase in risk. Thus, 

disappointment and decision error can be considered as vectors in a two-dimensional 

space with a return component and a risk component. This will be further explained in 

the results section.  

 



 

22 

 

3.1.3.2 Monte Carlo Simulation 

The portfolio optimization process uses Monte Carlo simulation to get the 

expected values. In each Monte Carlo iteration, true distributions of PVOCF and CapEx 

are randomly generated for 8 projects. Based on these true distributions, the estimated 

distributions are calculated and input to the model. The model runs and performs the 

optimization of the three different portfolios. The output of the model is the portfolio 

NPV, risk, expected disappointment, expected decision error, expected disappointment 

as a percentage of the estimated portfolio value (ED%E) and expected decision error as a 

percentage of the estimated portfolio value (EDE%E).  

The number of Monte Carlo iterations needed to reach a stable output was 

determined to be 1,000. Fig. 2 shows two full Monte Carlo simulations that use the same 

input parameters; each is run for 1,000 iterations. The difference between the ED%E and 

the EDE%E between the two simulations is about 1%.  
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Fig. 2—Comparison of the efficient frontier curves generated from two different 

Monte Carlo simulations 

 

In McVay and Dossary (2012), the ED%E is calculated by taking the expectation 

of the percent disappointments from the Monte Carlo iterations, as shown in the 

following equation:  

         
               -         

             
   ........................................................................... (3.3) 

EDE%E is calculated using the same method. Begg and Bratvold (2008) 

calculated ED%E using the equation below: 

     
                  -            

                
  ........................................................................... (3.4) 
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The difference between the two methods is relatively small; thus, I used the first 

method to be consistent with McVay and Dossary’s (2012) work, which is the basis for 

my work. More detailed equations to calculate ED%E and EDE%E taking into 

consideration the risk factor are provided in the results section. 

3.1.4 Portfolio Optimization 

The portfolio optimization is done using Markowitz theory. As explained before, 

in each Monte Carlo iteration, true distributions of PVOCF and CapEx are randomly 

generated for 8 projects. Based on these true distributions, the estimated distributions are 

calculated and input to the model. The true and estimated expected project NPV and risk 

are also calculated and input to the model. Fig. 3 is a snapshot of the table that has the 

global distributions stored and the expected values generated. The user inputs the 

available budget, the maximum risk tolerance, the number of Monte Carlo iterations, and 

the number of risk-tolerance increments that the user wants to see on the graph. The risk-

tolerance limit is the risk limit that each portfolio should not exceed. Guerard (2009) 

states that the Markowitz procedure provides the optimal portfolio corresponding to the 

risk tolerance of any investor. The concept of risk tolerance will be explained further and 

illustrated with examples in the results section. The risk-tolerance limit starts from 0 and 

it increments until it reaches the maximum risk tolerance input by the user. The 

optimization is done every time the risk-tolerance limit is incremented. The risk-

tolerance limit is incremented by a uniform amount; this amount is equal to the 

maximum risk tolerance divided by the number of risk-tolerance increments input by the 

user.  
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Fig. 3—True and estimated expected values 

 

Using all the parameters input and generated, the code examines the different 

combinations of projects that make portfolios with up to 8 projects. All the possible 

portfolios are generated once, and then an optimization function runs through them all to 

determine the portfolio that returns the highest NPV, fully uses the available budget, and 

does not exceed the risk-tolerance limit. To fully use the available budget, a fraction of 

the last project is added. Each portfolio can have up to one partial project. Projects with 

negative estimated expected NPV are automatically excluded by the model; projects 

with a negative true expected NPV are not excluded. These specifications are inherited 

from the Begg and Bratvold (2008) and McVay and Dossary (2012) models. This work 

uses a particular set of global portfolio parameters that was described earlier in this 

section. The results and conclusions of this model can be different if using another set of 

global portfolio parameters. 
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3.1.5 The Algorithm 

The flowcharts included in this section explain the algorithm used to implement 

the model. The code is organized into four functions— Set_Matrix function, Get_Input 

function, Optimize function and Get_Mean_Values function. Each of these functions 

performs a different task that will be explained in the following sections. All of these 

functions are called from the main function. The symbols used in these flowcharts are 

explained in :  

 

 

 

 

 

 

 

 

 

 

 

An assignment is when a value is assigned to a variable. A call is used when a 

function is needed and it is located outside the calling function. Selection is used for the 

Fig. 4—Symbols 

used in the 

flowcharts 
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case of an “If else statement.” The term “Put” used in these algorithms means that an 

output is returned. 

3.1.5.1 The Main Function 

 The flowchart in Fig. 5 is illustrating the algorithm of the main function. This 

function takes, as input, the number of Monte Carlo iterations, the maximum risk 

tolerance, the available budget and the desired number of risk-tolerance increments. A 

counter is a variable that counts the number of iterations. When the code starts the 

counter is assigned a value of 1; it is then incremented by 1 at the end of each iteration. 

The Set_Matrix function is called to set the different combinations of 0s and 1s needed 

for generating the initial set of possible portfolios; the process is explained in the next 

section. Before entering the loop, the code verifies that the counter has a value below the 

required number of Monte Carlo iterations. If this condition is satisfied, the Get_Input 

function is called and the optimization function for each of the three portfolios 

(estimated, best-possible and realized) is called. The counter is then incremented. If the 

counter exceeds the number of Monte Carlo iterations, then the loop is left and 

Get_Mean_Values function is called to return the mean, or expected values of the 

outputs. Each iteration of the loop represents a full Monte Carlo iteration, because each 

loop gets a new sample of projects’ parameters, performs the optimization of the three 

portfolio types for the different risk tolerance increments, and returns the parameters of 

the three efficient frontiers.  
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Fig. 5––The algorithm for the main function 

 

3.1.5.2 Set_Matrix Function 

The Set_Matrix function builds a two-dimensional array, with 8 columns and 256 

rows, to set up the initial set of possible portfolios. A portfolio can include up to 8 

projects. A project that is included in the portfolio is represented by a value of 1, a 

project that is not included in the portfolio is represented by a value of 0, and a project 
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that is partially included is represented by a fraction greater than 0 and below 1. Initially, 

the matrix has only values of 0 and 1; the second step is to determine the projects 

fractions to include partial projects and fully use the available budget.  

The Set_Matrix function generates the matrix shown in Fig. 6. This matrix is 

stored in a two-dimensional array with 8 columns and 256 rows. The number 256 is the 

result of 2
8
 because a portfolio can have up to 8 projects and each project can have 2 

states; it can be either included in the portfolio and take a value of 1, or not included in 

the portfolio and take a value of 0. Hence, the matrix is populated by the participation 

levels of projects (the values of 1 and 0). 

 

 

Fig. 6—The matrix generated by the “Set_Matrix” function 
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The different combinations of portfolios generated at this level provide an initial 

set of possible portfolios. These portfolios are labeled as initial because an extra step will 

be performed on these portfolios to include partial projects and make sure all the 

portfolios fully use the available budget. Fig. 7 shows the algorithm for the Set_Matrix 

function. It is a nested loop, with all of the 8 variables starting with a value of 0. Then 

each of these values is incremented to have a value of 1. The increment occurs for one 

variable at a time. After each variable change, a different combination of variables is 

generated and stored as a row in the two-dimensional array. This process ensures 256 

combinations with no redundancies.  

3.1.5.3 Get_Input Function 

The Get_Input function shown in Fig. 8 reads the true and estimated expected 

values that are stored in the table shown on Fig. 3. For each Monte Carlo iteration, the 

expected values in the table (Fig. 3) are updated as they are randomly sampled from the 

global distributions described in the previous section. Thus, this function is called at the 

beginning of each Monte Carlo iteration to provide data for the optimization. 
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Fig. 7—The “Set_Matrix” algorithm 
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Fig. 8—The “Get_Input” algorithm 

 

3.1.5.4 Optimize Function 

The Optimize function performs the optimization of the portfolios at each 

particular risk-tolerance limit. It returns the portfolio that has the highest NPV, fully uses 

the available budget, and does not exceed the risk-tolerance limit. This function is 

designed in a generic way so that it can perform the optimization for any of the three 

types of portfolios (estimated, best-possible and realized). If true values are passed to the 

Optimize function, then it will optimize the best-possible portfolios; if estimated values 

are passed to this function, then it will optimize the estimated portfolios. For the realized 
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portfolios, optimization is not needed; this function will use the corresponding optimum 

estimated portfolios, impose the budget constraint on their true CapEx and return the 

true expected NPV, risk and CapEx. Since this function is generic, the rest of this section 

will use the parameter names (NPV, risk, CapEx) without specifying if they are true or 

estimated. 

The Optimize function generates the initial set of possible portfolios (provides 

the portfolios NPV, CapEx and risk). It then adds partial projects to these portfolios to 

fully use the available budget. The last step is to select the optimum portfolios that are 

within the risk-tolerance limit. Fig. 9 illustrates the major steps in the Optimize function. 

 

 
Fig. 9—The three main steps in the algorithm of the “Optimize” function 
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Fig. 10—The multiplication of the two-dimensional array by the input NPV data to 

generate the initial set of possible portfolio NPVs  

 

The first step in the algorithm of the Optimize function is to generate the initial 

set of possible portfolios using the output of both the Set_Matrix and Get_Input 

functions. The Set_Matrix function provides a matrix that stores the participations levels 

of the projects (Fig. 6). The Get_Input function provides the input data of the projects. 

The Optimize function multiplies the matrix by the input data stored in arrays (an array 

of the projects’ NPV, an array of the projects’ CapEx and an array of the projects’ risk). 



 

35 

 

This multiplication is done inside the Optimize function and it has the purpose of 

generating the NPV, CapEx and risk of the different possible portfolios. Fig. 10 is an 

example of the multiplication process of the matrix by the NPV data.  

The portfolio NPV is the sum of the projects’ NPVs multiplied by their level of 

participation in the portfolio (0 for projects not included, 1 for projects fully included, 

and a fraction between 0 and 1 for projects partially included). The portfolio CapEx is 

similarly calculated by summing up the projects’ CapEx values multiplied by their level 

of participation. According to Markowitz theory, the portfolio risk is the standard 

deviation of the portfolio NPV (Guerard, 2009); for the case of a portfolio with two 

projects, it is calculated as follows: 

               √                                 .......................................... (3.5) 

Where xi and x2 are the participation levels of project 1 and 2,   and   are the 

risk (standard deviation of the NPV) of each project and   is the correlation between the 

two projects. The projects used in this model are randomly sampled from a distribution 

and assumed independent and uncorrelated, meaning    . The multiplication process 

shown in Fig. 10 is repeated for the CapEx and the risk variables, and the result is three 

matrices of NPV, CapEx and risk for the same initial set of portfolios. To keep track of 

these portfolios a consistent array index is used for all arrays. For example, index 254 

refers to the same portfolio in the NPV matrix, the CapEx matrix and the risk matrix. An 

extra column is added to the matrix in Fig. 10 to store the portfolio NPV. The CapEx 

and risk matrices also have a 9
th

 column added to store the portfolio CapEx and Risk. 
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Hence the portfolio parameters as well as the details of the projects are stored in the 

matrices. This process is described in the first part of the Optimize function as illustrated 

in the flowchart in Fig. 11. 

 

 
Fig. 11—The first part of the “Optimize” function that generates the initial set of 

possible portfolios 

 

The next step is to create a new matrix that only contains the portfolios that fully 

use the budget. This new matrix excludes the portfolios that require a budget higher than 

the available budget. Portfolios that require a budget less than the available budget are 

subject to another step before they are added to this new matrix.  This step consists of 



 

37 

 

adding a partial project (a fraction of an unselected project) to these portfolios. This 

fraction is calculated by dividing the unused part of the budget by the CapEx of the 

projects not included in that specific portfolio, one at a time, because a portfolio can 

include only one partial project. Thus, if a portfolio includes 5 projects and is not fully 

using the available budget, the code first calculates the unused budget (available budget - 

portfolio CapEx) and divides it by the first unselected project to get the fraction of that 

project that is added to the portfolio to get one possible portfolio. It then divides by the 

CapEx of the second unselected project to get another possible portfolio and so on.  

The fraction that the code calculates (unused budget divided by the project 

CapEx) gives us the fraction of the partial project that can be added to the portfolio to 

fully use the budget. This fraction is then multiplied by the corresponding project NPV 

and risk to calculate how much NPV and risk this partial project adds to the portfolio. 

Once this process is completed, all the possible portfolios are ready and stored in the 

new matrix. This process of generating the possible portfolios that fully use the available 

budget is illustrated in Fig. 12. 
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Fig. 12—The second part of the “Optimize” function that generates all the possible 

portfolios that fully use the budget 

 

The last step in the Optimize function is to search for the portfolio with the 

highest NPV within the risk-tolerance limit after each risk tolerance increment. The risk-
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tolerance limit starts from 0 and it is incremented by a uniform amount until it reaches 

the maximum risk-tolerance limit input by the user. This uniform amount is equal to the 

maximum risk-tolerance limit divided by the number of risk-tolerance increments that 

the user inputs. For example, if the user inputs a maximum risk limit of $2,500MM and 

inputs a number of risk-tolerance increments of 100, then the increment will be $25MM. 

After each risk-tolerance increment, the Optimize function will search for the portfolio 

with the highest NPV (from the set of possible portfolios that are already generated and 

stored in the previous steps) within the incremented risk-tolerance limit. Hence all the 

possible portfolios are generated only once per Monte Carlo iteration and the 

optimization is done from this pool of possible portfolios after each increment of the 

risk-tolerance limit. Fig. 13 is a flowchart that illustrates this last step in the optimize 

function algorithm.  

As mentioned before, the Optimize function is designed in a generic way, so that 

it can perform the optimization for any of the three types of portfolios (estimated, best-

possible and realized). If true values are passed to this function, then it will determine 

optimal best-possible portfolios; if estimated values are passed, then it will determine 

optimal estimated portfolios.  
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Fig. 13—The third part of the “Optimize” function that selects the optimum 

portfolios 

 

For the realized portfolios, optimization is not needed. The function will use the 

corresponding optimum estimated portfolios, then calculate realized portfolio results 
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using true project CapEx values (as budget constraints) and true NPV and risk values (to 

calculate portfolio performance) (Fig. 14). Similarly to McVay and Dossary’s (2012) 

approach for the realized portfolio, this function checks if the optimum estimated 

portfolio has a true CapEx that is higher than the available budget. Checking this 

condition is a way of simulating what happens in reality. In companies, the decision to 

develop a particular portfolio is made based on estimated values, but if the true CapEx of 

the selected projects turns out to be higher than the available budget (which is usually 

revealed early in the development), then the company either will not develop some 

projects or will reduce participation in some projects to stay within their capital budget. 

To determine which projects to forego or reduce participation, the projects are ranked by 

investment efficiency (IE), 

   
             

               
 ....................................................................................................... (3.6) 

  Then projects are selected from highest to lowest investment efficiency until the 

true CapEx of the selected projects is equal to the available budget. A fraction of the last 

project is included to fully use the budget. Fig. 14 illustrates the steps of this selection of 

the realized portfolio. 
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Fig. 14—The last part of the “Optimize” function that selects the realized portfolios 

 

3.1.5.5 Get_Mean_Values Function 

After each Monte Carlo iteration, the code generates the NPV and risk of the 

optimum portfolios. All these values are stored in arrays. The Get_Mean_Values 

function is called at the end of the simulation. This function goes through the stored 
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values and returns the mean or expected values that are then printed to tables and plotted 

on graphs. 
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4. RESULTS 

 

4.1 The Case of Moderate Overconfidence and Moderate Optimism 

I ran the model for the case of moderate Overconfidence (0.5) and moderate 

Optimism (positive directional bias of 0.5). The other input variables used for this run 

were as follows: a budget of $400 MM, a maximum risk-tolerance limit of $50,000 MM, 

1,000 Monte Carlo iterations and 500 risk-tolerance increments. This means at each of 

these 500 increments, the model will return the portfolio with the highest NPV and with 

a risk below or equal to the risk-tolerance limit. The risk-tolerance limit starts from 0 

and is incremented until it reaches the maximum risk-tolerance limit ($50,000MM in this 

case) input by the user. The risk-increment amount is uniform, and it is equal to the input 

maximum risk-tolerance limit divided by the total number of risk-tolerance increments; 

in this case, the risk-increment amount is equal to $100MM ($50,000MM divided by 

500).  

4.1.1 Expected Efficient Frontier Curves 

Fig. 15 shows the expected efficient frontier curves for the estimated portfolio, 

the realized portfolio and the best-possible portfolio. The curves were run as far out as 

they can go by setting a high maximum risk-tolerance limit; this case can be referred to 

as the unlimited-risk case. The curves are expected curves because they have been 

generated using Monte Carlo Simulation; they represent the mean of 1,000 runs. At 

different values of risk on the x-axis, the curves show the highest NPV for each of the 

three portfolios. These curves are plotted against the calculated expected portfolio risk as 
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opposed to the risk-tolerance level. The estimated portfolio NPV is plotted against the 

estimated portfolio risk, while the realized and the best-possible portfolio NPVs are 

plotted against the true portfolio risk.  

 

 
Fig. 15—Expected efficient frontier curves for 0.5 overconfidence & 0.5 directional 

bias 

 

The concept of risk tolerance was documented in the literature by a number of 

authors; they stated that the risk tolerance of the decision-maker is the main criterion for 

the choice of the optimum portfolio (Brashear et al., 2001; Guerard, 2009). Hence, the 

risk tolerance is the common factor between the three different portfolios. For each 

specific risk-tolerance limit, the model returns the optimum best-possible expected 

portfolio and the optimum estimated expected portfolio along with its corresponding 
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realized expected portfolio.  

The curve for the estimated portfolio is far above the best-possible and the 

realized portfolios’ curves; this is explained by the impact of optimism and 

overconfidence on the estimations of CapEx, NPV and risk. Following McVay and 

Dossary’s (2012) model, the same amount of directional bias and overconfidence is 

applied to both CapEx and PVOCF. As noted earlier, directional bias shifts PVOCF and 

CapEx in opposite directions. For the optimistic case, the estimated distribution for the 

PVOCF is shifted in the positive direction and the CapEx distribution is shifted in the 

negative direction. Thus, portfolio CapEx is underestimated and portfolio NPV (i.e., 

PVOCF minus CapEx) is overestimated. The estimated risk (the standard deviation of 

the estimated NPV) is calculated using the standard deviations of the estimated 

distributions of CapEx and PVOCF; these estimated distributions are obtained by 

truncating true distributions. A truncated distribution has a lower standard deviation than 

the original distribution. Thus, the portfolio risk is underestimated. Compounding the 

situation, more projects can be fit in the estimated portfolio because the portfolio risk 

and CapEx are underestimated.  

Conversely, the best-possible portfolio has a lower number of projects, a lower 

NPV and higher risk. This is because true distributions are used and, thus, the portfolio 

CapEx and risk are not underestimated, and the portfolio NPV is not overestimated.  

The projects for the realized portfolio are selected based on the estimated CapEx 

and PVOCF distributions, but the portfolio is developed and assessed using the true 

distributions. The realized portfolio has the same projects as the estimated portfolio, or a 
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subset of these projects in the event the true CapEx of the selected projects exceeds the 

available budget. The realized portfolio curve is either equal to or below (to the right of) 

the best-possible portfolio curve because (1) the best-possible portfolio curve is the 

highest portfolio NPV that could be realized using the true distributions of CapEx and 

PVOCF, and (2) the realized portfolio is selected based on the estimated risk (which is 

underestimated) and is assessed based on the true risk (which is higher).  

There is a difference between the risk tolerance and the portfolio risk. The 

portfolio risk is the risk that is calculated using the risks of the projects included in the 

portfolio. The risk tolerance is the risk criterion used to choose the optimum portfolio 

(Brashear et al., 2001; Guerard, 2009). In the cases studied, the portfolio risk (whether it 

is the risk of the estimated portfolio or the risk of best-possible portfolio) is usually 

lower than the risk-tolerance limit, and they are rarely equal. The difference between the 

risk tolerance and the portfolio risk (the estimated and best-possible portfolio risk) can 

be explained with the following example. A company might tolerate a risk that goes up 

to $100MM, but when optimizing a portfolio from a pool that contains a discrete set of 

projects, the optimum estimated portfolio might have a risk level that is equal to 

$55MM, which is lower than the risk-tolerance limit by $45MM. With the set of 

conditions and assumptions that I used, it is rare when the portfolio risk is exactly equal 

to the risk-tolerance limit, because (1) the optimization fills up the budget limit and not 

the risk limit; (2) the optimization uses a discrete set of projects (8 in this case) and can 

only include one partial project. The example shown in Fig. 16 illustrates the difference 

between the portfolio risk and the risk tolerance, explains how this difference is 
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magnified when considering the expected values, and sets the stage for Fig. 17. Fig. 16 

shows the risk of optimum portfolios selected in Monte Carlo iterations (to simplify the 

example, I assume that the Monte Carlo simulation has only two iterations, three risk 

tolerance limits, and the values were arbitrary selected for this example). The last row of 

the table gives the expected portfolio risk (the mean).  

 

 
Fig. 16––Example to illustrate the difference between risk tolerance and portfolio 

risk 

 

Fig. 16 shows that for a risk tolerance of $100MM, the expected value of the 

optimum portfolios is referred to as A, and it has an expected risk of $47.5MM. For a 

risk tolerance of $50MM, the expected value of the optimum portfolios is referred to as 

B, and it has an expected risk of $20MM. For a risk tolerance of $25MM, the expected 

value of the optimum portfolios is referred to as C, and it has an expected risk of $5MM. 

The expected value A is optimum for the risk tolerance of $100MM and not $47.5MM; 

if the risk tolerance is set to $47.5 then the expected value of the optimum portfolio will 
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be different, and if the risk tolerance is set to $50 then the expected value of the 

optimum portfolio will be B. The table shows that in some Monte Carlo iterations, even 

if the risk tolerance increases the same optimum portfolio is returned; this happens often 

because (1) the models uses a discrete set of 8 projects and only one partial project can 

be added; (2) the optimization fills up the budget limit and not the risk-tolerance limit. 

Hence, the difference between risk tolerance and the portfolio risk can be large. The 

expected value of the optimum portfolios A has an expected risk of $47.5MM for a risk 

tolerance of $100MM, which can create confusion because $47.5 is lower than the risk 

tolerance of $50MM. Even if the expected value A has an expected risk lower than the 

risk tolerance of $50MM, the accurate risk tolerance of A is $100MM, because $100MM 

is the limit that was imposed on the optimization (having a risk tolerance of $100MM 

allows the selection of the portfolio with the $55MM while a risk tolerance of $50MM 

would not have allowed it). Similarly, even if the risk level of B (that is $20MM) is 

below the $25MM risk tolerance level, the accurate risk tolerance of B is $50MM. This 

is due to (1) the use of a low number of projects; (2) the discrete nature of the results, 

and (3) the constraint of using one partial project.  

Fig. 17 shows the expected efficient frontier curves for the estimated, the best-

possible and the realized portfolios for the case of 0.5 overconfidence and 0.5 directional 

bias. For the purpose of illustrating expected disappointment and expected decision error 

calculations, the curves in Fig. 17 were stopped at the risk-tolerance level after which 

further increase in the risk tolerance will not increase the expected NPV and risk of the 

estimated expected portfolio by much (further increase in the risk tolerance will increase 
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the expected NPV of the estimated expected portfolio by less than 0.5%). Increasing the 

risk-tolerance further will not significantly increase the estimated expected NPV and 

risk, while it will significantly increase the expected NPV and risk of the best-possible 

expected portfolio, which will make the best-possible expected curve go further from the 

estimated expected curve. For the case of the example shown in Fig. 17; the risk 

tolerance at which the curves stop is equal to $1,325MM, and the expected 

disappointment and expected decision error are calculated for a risk tolerance of 

$600MM. As explained before, the risk tolerance is the main criterion for the selection 

of optimum portfolios, so the risk tolerance is the common factor between the three 

different portfolios (estimated, best-possible and realized). For each specific risk-

tolerance limit and at each Monte Carlo iteration, the model returns the best-possible 

portfolio and the optimum estimated portfolio along with its corresponding realized 

portfolio. Expected disappointment and expected decision error are calculated using the 

expected values of NPV and risk. The example in Fig. 17 shows the expected value of 

the optimum portfolios for the three types of portfolios—the estimated, best-possible and 

realized portfolios (points E, B and R) for a risk tolerance limit of $600MM. This means, 

as explained in the algorithms, that $600MM is the risk tolerance limit capping the 

optimization of the estimated and best-possible portfolios at each of the Monte Carlo 

iterations (as opposed to capping the estimated expected and best-possible expected 

portfolios). Point E in Fig. 17 refers to the estimated expected NPV and estimated 

expected risk for a risk tolerance of $600MM. Hence, at point E, the estimated expected 

NPV is $1,945MM and the estimated expected risk is $465MM. As explained in the 
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example of Fig. 16, $465MM is the expected risk and it is different from the risk 

tolerance. If the risk tolerance is set to $465MM, the expected value of the optimum 

portfolio will not be point E; it will be another point on the estimated curve with a lower 

estimated expected NPV and risk (this is similar to the example in Fig. 16 where A is the 

expected value of the optimum portfolio for $100MM risk tolerance and not for 

$47.5MM risk tolerance). Point R refers to the realized expected NPV and risk that 

corresponds to point E. The realized expected NPV at point R is $1,194MM and the 

realized expected risk is $1,034MM. For the same risk-tolerance level of $600MM, point 

B refers to the best-possible expected NPV and risk. At point B, best-possible expected 

NPV is $397MM and the best-possible expected risk is $488MM. The difference 

between the expected risk at B ($488MM) and the risk tolerance ($600MM), which can 

create confusion, has been explained earlier and in the example of Fig. 16 (the case of 

the expected value A that although it has an expected risk lower than the risk tolerance 

of $50MM, the accurate risk tolerance of A is $100MM). It is because (1) the 

optimization uses a low number of projects; (2) the optimization completely fills up the 

budget limit and not the risk limit, and (3) the constraint of using one partial project. 

Plotting the expected curves versus the risk tolerance will not clarify this confusion, and 

it will deviate from the principle of efficient frontier curves. The best-possible curve can 

go further to the right as the risk tolerance increases, but as was stated in the beginning 

of this paragraph, for the purpose of illustrating expected disappointment and expected 

decision error calculations, all the curves in Fig. 17 were stopped at the risk-tolerance 

level at which the estimated curve stops, which is $1,325MM in this case.  
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Fig. 17—Expected efficient frontier curves for 0.5 overconfidence & 0.5 directional 

bias and a maximum risk tolerance of $1,325MM; ED, EDE and EE are calculated 

for a risk tolerance of $600MM 

 

The estimated expected risk and the best-possible expected risk are lower than 

the risk-tolerance limit, while the realized expected risk exceeds this risk-tolerance limit. 

This is because the optimization of the estimated portfolio and the best-possible portfolio 

is constrained by a risk-tolerance limit and a budget limit, while the realized portfolio is 

assessed based on the true risk (which is higher than the estimated risk and which was 

not considered in the project selection). As explained before, the projects for the realized 

portfolio are selected based on the estimated CapEx, PVOCF and risk, but the portfolio 

is developed and assessed using the true CapEx, PVOCF and risk. The true CapEx used 

to assess the realized portfolio is constrained by the budget limit but the true risk is not 
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constrained by the risk-tolerance limit. Hence, the realized portfolio is selected based on 

the estimated risk (which is underestimated), and it is assessed based on the true risk 

(which is higher and not capped by the risk-tolerance limit).  

4.1.2 Expected Disappointment  

In previous work, the expected disappointment (ED) has been defined as the 

NPV of the estimated portfolio minus the NPV of the realized portfolio. In this work, 

Markowitz theory is used, so portfolios are optimized based on not only the NPV but 

also the risk. Consequently, disappointment can occur not only because of decrease in 

NPV but also because of increase in risk. Thus, in this work disappointment is 

considered a vector in a two-dimensional space with a NPV component and a risk 

component.  NPV and risk are two different quantities with the same unit ($). This 

approach assumes that $1 of NPV is equivalent to $1 of risk, but based on how much a 

company values $1 of risk, the unit vectors of the two-dimensional Cartesian coordinate 

system can be adjusted. Expected disappointment is calculated using the expected values 

of risk and NPV. Using the example illustrated in Fig. 17, the ED for a $600MM risk-

tolerance limit is the vector   ⃗⃗⃗⃗  ⃗. The components of   ⃗⃗⃗⃗  ⃗ can be determined as follows:  

 E ⃗⃗ ⃗⃗ ⃗⃗    (
riskE-risk  

NPVE-NPV 
) ..................................................................................................... (4.1) 

These vectors can be expressed using unit vectors. The unit vectors in a standard 

2D Cartesian coordinate system are    ⃗ and    ⃗and their magnitude is 1 unit length. In this 

framework, the unit vectors are denoted as     ⃗⃗⃗⃗ ⃗⃗  ⃗ on the x-axis and    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗   on the y-axis, and 
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their magnitude is $1MM. The direction of the     ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is from right to left, because the 

lower the risk, the better. The direction of    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗   is to toward greater NPV. So the 

expected disappointment can be expressed as follows:  

ED ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ( eal  isk-Estimated  isk)risk⃗⃗ ⃗⃗ ⃗⃗   (Estimated NPV- eal NPV)NPV⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ............. (4.2) 

The disappointment is reported as the magnitude of the vector, and it is 

calculated as follows: 

‖   ⃗⃗ ⃗⃗ ⃗⃗  ‖ √(         -              )
 
 (             -        )

 
 ................ (4.3) 

The magnitude of the expected disappointment in the example shown in Fig. 17 : 

‖   ⃗⃗⃗⃗⃗⃗ ‖ √(        -      )
 
 (        -        )

 
= $943MM........... (4.4) 

4.1.3 Expected Decision Error 

In previous work, the expected decision error (EDE) has been defined as the 

NPV of the best-possible portfolio minus the NPV of the realized portfolio; it is that 

portion of disappointment due to selecting the wrong projects. Similarly to ED, EDE is 

calculated using not only the NPV component but also the risk component. Expected 

decision error is also calculated using the expected values of risk and NPV. Using the 

same example in Fig. 17, EDE for a $600MM risk-tolerance limit is the vector   ⃗⃗ ⃗⃗  ⃗. The 

components of   ⃗⃗ ⃗⃗  ⃗ can be determined as follows:  
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   ⃗⃗ ⃗⃗ ⃗⃗   (
      -      

    -    

) ....................................................................................................... (4.5) 

The EDE can be expressed in terms of the unit     ⃗⃗⃗⃗ ⃗⃗  ⃗ and    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗   as follows:  

EDE ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   ( eal  isk- est  isk)risk⃗⃗ ⃗⃗ ⃗⃗   ( est NPV- eal NPV)NPV⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   ............................ (4.6) 

The decision error is reported as the magnitude of the vector, and it is calculated 

as follows: 

‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ √(         -         )
 
 (        -        )

 
 ................................. (4.7) 

The magnitude of the expected decision error in the example shown in Fig. 17 is: 

‖   ⃗⃗ ⃗⃗ ⃗⃗ ‖ √(        -      )
 
 (      -        )

 
=$966MM .............. (4.8) 

4.1.4 Estimation Error  

In previous work, estimation error has been defined as the difference between the 

expected disappointment and the expected decision error; it is that portion of 

disappointment due to estimation errors. It can also be defined as the NPV of the 

estimated portfolio minus the NPV of the best-possible portfolio. Estimation error is also 

calculated using the expected values of NPV and risk. In Fig. 17, estimation error for a 

risk tolerance of $600MM is the vector    ⃗⃗⃗⃗⃗⃗ . Thus, estimation error can be calculated 

using the equations below:  
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  ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗ ......................................................................................................... (4.9) 

  ⃗⃗⃗⃗  ⃗ (
      -      

    -     

) ......................................................................................................... (4.10) 

The magnitude of the expected estimation error in the example shown in Fig. 17 : 

‖   ⃗⃗⃗⃗⃗⃗ ‖ √(      -      )
 
 (        -      )

 
          .............. (4.11) 

4.2 Impact of Biases on the Estimated Portfolio 

In this section, a sensitivity study is performed to assess the impact of varying 

overconfidence and directional bias on the expected efficient frontier curve of the 

estimated portfolio. The reason the estimated portfolio was specifically chosen for this 

sensitivity study is that the best-possible portfolio is not impacted by biases and the 

realized portfolio is dependent on the estimated portfolio.  

4.2.1 Variable Overconfidence and Fixed Directional Bias 

Fig. 18 shows the efficient frontier curves for the estimated expected portfolio at 

a fixed value of directional bias (0.5) and different values of overconfidence (high 0.75, 

medium 0.5 and low 0.25). The graph also includes the efficient frontier curve for the 

best-possible expected portfolio to visualize how far the estimates deviate from the truth 

case. By fixing the directional-bias level and looking at different levels of 

overconfidence, one can see how overconfidence impacts the estimates, or more 

specifically, the optimization of the estimated portfolio.  
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Fig. 18—Efficient frontier curves for the estimated expected portfolios at 0.5 

directional bias and variable overconfidence for a maximum risk tolerance of 

$2,500MM 

 

Fig. 18 shows that the higher the overconfidence, the higher the estimated NPV 

and the lower the estimated risk. This is because the impact of high overconfidence 

combined with optimism on the estimated distribution that is a subset of the true 

distributions. In this case, the estimated distributions are located at the right side of the 

PVOCF distribution and the left side of the CapEx distribution, which results in greater 

overestimation of the NPV and greater underestimation of the CapEx. Underestimation 

of CapEx also means more projects are selected, and overestimation of the NPV means a 

higher NPV is expected. Concerning the estimated risk, increasing overconfidence 

makes the estimated distribution narrower and the standard deviation lower. Hence, the 
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risk (the standard deviation of the estimated NPV) is more underestimated for high 

values of overconfidence.  

To conclude, Fig. 18 shows that increasing the level of overconfidence, with 

moderate optimism, increases underestimation of CapEx and risk, and increases 

overestimation of NPV. More projects are included in the estimated portfolio and a 

higher NPV and a lower risk are expected. 

4.2.2 Variable Directional Bias and Fixed Overconfidence 

Fig. 19 shows the efficient frontier curves for the estimated expected portfolio at 

a fixed value of overconfidence (0.5) and different values of directional bias (high 0.75, 

medium 0.5 and low 0.1) to evaluate the impact of directional bias on the estimates. The 

graph also includes the efficient frontier curve for the best-possible expected portfolio to 

visualize how far the estimates deviate from the truth case. 

Fig. 19 shows that as directional bias increases, at moderate overconfidence, the 

efficient frontier curve of the estimated expected portfolio goes further, and is slightly 

lower. This is an artifact of the way directional bias and risk are defined. A directional 

bias of zero means that the truncation of the true distribution occurs equally from both 

ends. Fig. 20 illustrates that for the case of PVOCF, as directional bias increases 

(increased optimism), an area fraction is truncated from the left side and added to the 

right side. This makes the estimated distribution more spread out because most of the 

area (probability) in a lognormal distributions is concentrated to the left. Thus, removing 

a small area fraction from the left side of the distribution and adding it to the right side 

will make the estimated distribution more spread out. For the case of CapEx, the 
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increase in directional bias (increased optimism) results in removing an area fraction 

from the right and adding it to the left side. The difference in the spread for the case of 

CapEx is not significant because of the shape of the lognormal distribution, which is 

skewed to the right. Hence, because of the shape of the lognormal distribution, 

increasing directional bias (increased optimism), increases the spread out of the 

estimated distribution of PVOCF, which increases the estimated risk.  

 

 
Fig. 19—Efficient frontier curves for the estimated expected portfolios for a 

maximum risk tolerance of $2,500MM at 0.5 overconfidence and variable 

directional bias 

 

The higher the directional bias, the more spread out is the estimated distribution 

of PVOCF. A large spread of the estimated distribution makes the standard deviation 

higher. The estimated risk is defined as the standard deviation of the estimated NPV, and 

is calculated using the standard deviation of the estimated PVOCF and estimated CapEx. 
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Thus, the higher the directional bias, the larger is the estimated risk, especially at high 

values of directional bias. On one hand, the increase in directional bias (increased 

optimism) makes overestimation of PVOCF and underestimation of CapEx greater, 

which should increase the performance of the estimated portfolio. On the other hand, the 

increase in directional bias (increased optimism) makes estimated risk greater, which 

reduces the number of projects selected and decreases the portfolio NPV. These two 

factors offset each other, and the results in Fig. 19 show that for high directional bias, 

the increase in the estimated risk seems to have the biggest impact and lowers the 

performance of the estimated portfolio. In addition, the higher the directional bias level, 

the further the curves go on both the NPV axis and the risk axis. This can be explained 

by the fact that the increase in directional bias (increased optimism) increases both the 

estimated NPV and the estimated risk. This artifact is the result of the way directional 

bias and risk have been defined. Fig. 20 shows an example of how the spread in the 

estimated distributions (the shaded area) increases with the increase in directional bias 

(increased optimism) at a fixed overconfidence level for CapEx and PVOCF. 
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Fig. 20—Relationship between the estimated distribution (shaded) and the true 

distribution (unshaded) at a fixed overconfidence level and different directional 

bias levels  

 

4.3 Impact of Overconfidence on Expected Disappointment and Expected Decision 

Error 

4.3.1 Expected Disappointment  

Fig. 21 is a plot of the expected disappointment at different values of risk 

tolerance for a fixed value of directional bias (0.5) and different values of 

PVOCF CapEx

Directional 

Bias=1

Directional 

Bias=0.75

Directional 

Bias=0.5

Directional 

Bias=0.1

Overconfidence = 0.5
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overconfidence (high 0.75, medium 0.5 and low 0.25), which corresponds to the case 

shown in Fig. 18. The expected disappointment curves shown in Fig. 21 stop at the risk-

tolerance level at which the corresponding estimated portfolio (with similar 

overconfidence and directional bias levels) stops. Hence, these expected disappointment 

curves in Fig. 21 go further to the right for low values of overconfidence, as shown and 

explained in Fig. 18.  

The highest values of expected disappointment occur at 0.75 overconfidence, the 

second highest at 0.5 and the lowest at 0.25.  Hence it can be concluded that the higher 

the overconfidence, the higher the expected disappointment. As explained in the 

previous section, overconfidence combined with optimism results in underestimation of 

CapEx and risk, and overestimation of NPV. At a fixed value of directional bias, the 

more overconfidence is increased, the more the estimated values deviate from the true. 

Hence, increasing overconfidence increases the difference between the realized portfolio 

performance (based on true values) and the estimated portfolio performance (based on 

estimated values), which increases the expected disappointment. The curves show that 

the higher the risk-tolerance level, the higher the expected disappointment. This is 

because at high-risk-tolerance values, the difference between the realized curve and the 

estimated curve grows larger as the realized curve shifts further to the right because of 

underestimation of risk (Fig. 17). The first values of expected disappointment in Fig. 21 

are equal to zero because the three portfolios (estimated, realized, best-possible) cannot 

fit in any project within that risk-tolerance limit knowing that, as explained in the 



 

63 

 

previous section, each portfolio should (1) not exceed the risk-tolerance limit (2) fully 

use the available budget. 

 

 
Fig. 21—Expected disappointment at 0.5 directional bias 

 

4.3.2 Expected Decision Error  

Fig. 22 is a plot of the expected decision error for different values of risk 

tolerance at a fixed level of directional bias (0.5) and different values of overconfidence, 

which corresponds to the case shown in Fig. 18. The curves stop at the risk-tolerance 

level at which the corresponding estimated portfolio (with similar overconfidence and 

directional bias levels) stops. Hence, the expected decision error curves in Fig. 22 go 

further to the right for low values of overconfidence, as shown and explained in Fig. 18. 
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These expected decision error curves in Fig. 22 show that higher levels of 

overconfidence have higher associated expected decision error. The decision error is 

caused by choosing the wrong portfolios. At a fixed value of directional bias, the higher 

the overconfidence, the more the estimated expected values deviate from the true 

expected values. Moreover, increasing overconfidence makes the estimated distribution 

even narrower, which decreases the standard deviation and makes the estimated risk 

much smaller than the true risk. Hence, increasing overconfidence makes the estimated 

values deviate more from the true values, which increases the expected decision error.   

The expected decision error increases at lower levels of risk tolerance, and 

becomes constant or decreases at high levels of risk tolerance. This is because having 

high-risk tolerance makes the risk limit (one of the two limiting factors of the 

optimization) less constraining. Having one of the limiting factors less constraining, 

makes the pool of portfolios (out of which the optimum portfolio is selected) larger, 

which reduces the probability of choosing a suboptimal portfolio and consequently 

reduces the decision error. Also, the best-possible portfolio is more constrained by the 

risk-tolerance limit than the realized portfolio, and the lower the risk-tolerance limit the 

more constrained is the best-possible portfolio (resulting in a high decision error at low-

risk-tolerance). As explained before, the projects of the realized portfolio are selected 

based on the estimated values (in which the risk is underestimated), and then the true 

CapEx of the realized portfolio is constrained by the budget limit while the true risk of 

the realized portfolio (which is higher) is not constrained. Hence, decision error is large 

at low-risk-tolerance limits, because the risk-tolerance limit is too small for the best-
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possible portfolio (selects projects based on true risk, which is higher) to pick up 

projects, while the realized portfolio (selects projects based on estimated risk, which is 

lower) has projects included in it. As the risk tolerance increases, the best-possible 

portfolio starts picking up projects, which reduces the decision error. 

 

 
Fig. 22—Expected decision error at 0.5 directional bias 

 

The first values of expected decision error in Fig. 22 are equal to zero because 

the risk-tolerance limit is so small that the estimated portfolio (and consequently the 

realized portfolio) as well as the best-possible portfolio cannot fit in any project within 
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that risk-tolerance limit, knowing that each portfolio should fully use the available 

budget. A portfolio can have one partial project as long as this partial project is fully 

using the available budget, but sometimes the risk-tolerance limit is so small that none of 

the partial projects within this limit can fully use the available budget. 

4.4 The Case of Pessimism  

In the case of pessimism, or negative directional bias, the estimations will be 

conservative to reflect the pessimistic attitude of estimators. Thus, with negative 

directional bias, the estimated distribution of PVOCF is shifted in the negative direction, 

and the estimated distribution of CapEx is shifted in the positive direction. 

Consequently, the portfolio NPV is underestimated and the portfolio CapEx is 

overestimated. Pessimism combined with risk should result in overestimated risk. 

Overestimated risk means an estimated distribution with a greater spread than the true 

distribution, which is referring to the concept of underconfidence. This work models 

biases using the work of McVay and Dossary (2012) that choose to not model 

underconfidence because it is uncommon in industry. Pessimism in this work refers to 

the direction of the overconfidence, which results in an estimated risk always lower than 

the true risk. In the presence of overconfidence, negative directional bias combined with 

the lognormal distributions of value-based parameter (e.g., PVOCF) results in an 

underestimated risk (Fig. 23). Fig. 24 is an expected efficient frontier curve for the case 

of pessimism (-0.5 directional bias) and overconfidence (0.5), with the same $400MM 

budget limit and the same maximum risk-tolerance limit of $2,500MM (a higher 

maximum risk-tolerance limit will let the best-possible curve go further out until it 
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exceeds the realized portfolio curve, but it will tremendously increase the running time). 

Unexpectedly, running the model for this case provides an estimated expected portfolio 

curve that is shifted to the left (Fig. 24).  

 

 
Fig. 23—Relationship between the estimated distribution (shaded) and the true 

distribution (unshaded) for a value-based parameter (e.g., PVOCF) at a fixed level 

of overconfidence and different levels of directional bias  
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Fig. 24—Expected efficient frontier curves for the case of -0.5 directional bias and 

0.5 overconfidence 

 

Fig. 25 shows that for the same overconfidence level (0.5), the estimated 

expected portfolio curve in the case of pessimism (-0.5 DB) is underperforming (lower 

NPV, higher CapEx) compared to the estimated expected curve of the corresponding 

optimistic case (0.5 DB), as expected.  This is because pessimism results in 

underestimation of NPV and overestimation of CapEx. In the presence of 

overconfidence and negative directional bias, the estimated expected portfolio curve is 

expected to be located to the right and underneath the realized expected portfolio curve, 

but this not the case due to the way risk and biases are defined. 
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Fig. 25—Comparison of the efficient frontier curves for the estimated expected 

portfolios for the case of optimism and pessimism at 0.5 overconfidence 

 

4.5 Summary of Results 

4.5.1 Expected Disappointment as a Percentage of the Estimated Portfolio 

In previous work, ED%E is defined as the expected disappointment as a 

percentage of the estimated NPV. In this work, ED%E is defined as the expected 

disappointment as a percentage of not only the estimated NPV but also the estimated 

risk. This definition is used because disappointment is expressed in terms of NPV and 

risk, so it is more consistent to consider both NPV and risk of the estimated portfolio; 

especially that this work uses Markowitz theory that considers that each portfolio has a 

reward (NPV) and risk level. ED%E is calculated at each Monte Carlo iteration by 

dividing the magnitude of the disappointment by the magnitude of the estimated 

portfolio using the following equation: 
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√                                                     

√                                  
     .................... (4.12) 

Fig. 26 is a plot of the ED%E at different values of overconfidence and 

directional bias for high-risk and low-risk tolerance. The dotted curves refer to high-risk 

tolerance and the solid line curves refer to low-risk-tolerance. The high-risk-tolerance 

level is determined as the risk-tolerance level after which further increase in the risk 

tolerance will not increase the expected NPV and risk of the estimated expected portfolio 

by much. This risk level is different from a case to another, because the extent to which 

the estimated expected curve goes to the right is dependent on the level of 

overconfidence and directional bias. The low-risk-tolerance level is when the EDE%E 

peaks (as shown in Fig. 22), which occurs at around 15% of the high-risk-tolerance 

level. Three different levels of overconfidence (high at 0.75, medium at 0.5 and low at 

0.25) and three different levels of directional bias (high at 0.75, medium at 0.5 and low 

at 0.1) are examined. As pointed out in the literature review section, the petroleum 

industry is typically optimistic in its estimates; thus, only positive directional bias 

(optimism) is considered in this plot. 
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Fig. 26—ED%E for high-risk tolerance (dotted lines) and low-risk tolerance (solid 

lines) 

 

 

 

Fig. 26 shows that for both high-risk tolerance and low-risk tolerance, the higher 

the overconfidence level, the greater the ED%E, which is similar to the results of McVay 

and Dossary (2012). As directional bias decreases, ED%E increases, especially at low-

risk-tolerance. This is an artifact of the impact of directional bias on the spread of the 

estimated distribution and the estimated risk. This result is not observed in the cases 

investigated by McVay and Dossary (2012), because they do not use the risk factor. As 

explained in the previous sections, decreasing directional bias makes the estimated risk 

smaller, which further underestimates the risk. Consequently, the difference between the 

true and the estimated risk is even greater resulting in higher disappointment. For high-

risk-tolerance environments, the optimization is less sensitive to the underestimation of 
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risk and more sensitive to the overestimation of NPV and underestimation of CapEx that 

results from increasing directional bias (increased optimism); this is caused by what was 

explained in earlier sections as the two opposing impacts of increasing directional bias. 

Similarly to McVay and Dossary’s (2012) results, at 0 overconfidence, ED%E is always 

equal to 0 even at nonzero directional bias.  

Moderate overconfidence (0.5) and moderate optimism (0.5) result in an 

expected disappointment of 50% of the estimated NPV and estimated risk in a high-risk-

tolerance environment. The same amount of moderate overconfidence and directional 

bias result in an expected disappointment that goes up to 78% of the estimated NPV and 

estimated risk in a low-risk-tolerance environment. ED%E is lower in high-risk-

tolerance environments because the estimated NPV and risk (by which the 

disappointment is divided) are high. For the same amount of moderate overconfidence 

(0.5) and moderate optimism (0.5), McVay and Dossary (2012) model results in ED%E 

of 30-35%, which are lower than the ED%E this model generates. This difference is due 

to considering the risk factor in this model, while McVay and Dossary (2012) model can 

be considered as having an unlimited risk tolerance. Hence, it can be deduced that as risk 

tolerance increases, ED%E becomes less significant because the estimated NPV and risk 

increase at a rate higher than the rate of increase of disappointment and decision error. 

4.5.2 Expected Decision Error as a Percentage of the Estimated Portfolio 

Fig. 27 is a plot of the EDE%E at different values of overconfidence and 

directional bias for high-risk and low-risk tolerance (similar Fig. 26 but for the case of 

EDE%E). In previous work, EDE%E is defined as the expected decision error as a 
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percentage of the estimated NPV. This work defines EDE%E as the expected decision 

error as a percentage of the estimated NPV and risk. This is because decision error is 

expressed in terms of NPV and risk, so it is more consistent to consider both NPV and 

risk of the estimated portfolio. EDE%E is calculated at each Monte Carlo iteration by 

dividing the magnitude of the decision error by the magnitude of the estimated portfolio 

using the following equation: 

      
√                                           

√                                  
     .................................. (4.13) 

The high-risk tolerance (dotted line curves in Fig. 27) and the low-risk tolerance 

(the solid line curves in Fig. 27) were determined in the same way they were determined 

for the plots of Fig. 26. Similarly to McVay and Dossary’s (2012) results, as the level of 

overconfidence increases, the EDE%E increases as well for both high and low-risk-

tolerance. The increase in EDE%E due to the increase in overconfidence is less 

significant for higher values of directional bias. This is because at high values of 

directional bias, the estimated risk is higher and closer to the true risk, which reduces the 

decision error. In addition, the EDE%E is the expected decision error divided by the 

estimated risk and the estimated NPV, and as shown in Fig. 18 at high values of 

directional bias, the estimated portfolio goes further to the right reaching high values of 

estimate risk and NPV. Hence, although the expected decision error increases, but 

dividing it by a large estimated NPV and risk makes the EDE%E smaller. 

The curves show that the lower the directional bias, the higher the decision error. 

This is because of the artifact resulting from the way directional bias and risk are 
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defined. This result is not observed in the cases investigated by McVay and Dossary 

(2012), because they do not use the risk factor. As explained previously, high values of 

directional bias result in a greater spread out of the estimated distribution, which 

overestimates the risk. The higher the estimated risk, the closer it is to the true risk, 

which makes the decision error smaller.  

 

 
Fig. 27—EDE%E for high-risk tolerance (dotted lines) and low-risk tolerance (solid 

lines) 

 

Similarly to McVay and Dossary’s (2012) results, at 0 overconfidence, EDE%E 

is always equal to 0 even at nonzero directional bias. Fig. 27 shows that for moderate 

overconfidence (0.5) and moderate optimism (0.5) result in an expected decision error of 

19% of the estimated NPV and estimated risk for a high-risk-tolerance environment. The 

same amount of moderate overconfidence and directional bias results in an expected 
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decision error that goes up to 103% of the estimated NPV and estimated risk for a low-

risk-tolerance environment. As explained earlier, the EDE%E is high in low-risk-

tolerance environments, because the realized portfolio is not subject to the risk-tolerance 

limit while the best-possible portfolio and the estimated portfolio are constrained by a 

low-risk-tolerance limit. Hence the decision error (the difference between the risk of the 

best-possible portfolio and the realized portfolio) is large and it is divided by a low 

estimated NPV and estimated risk. Hence, EDE%E reaches very high values, because 

the risk tolerance is very low and the true risk is very high that, in some cases, the best-

possible portfolio does not include any projects, while the realized portfolio has projects 

that usually return a low NPV and high risk. 

EDE%E is less significant in high-risk-tolerance environments because the 

estimated NPV and risk (by which the decision error is divided) are high. For the same 

amount of moderate overconfidence (0.5) and moderate optimism (0.5), McVay and 

Dossary (2012) model results in EDE%E of 1-5%, which are lower than the EDE%E this 

model generates. This difference is due to considering the risk factor in this model, while 

McVay and Dossary (2012) model can be considered as having an unlimited risk 

tolerance. Hence it can be deduced that as risk tolerance increases, EDE%E becomes 

less significant because the risk limit is less constraining, which makes the pool of 

portfolios (out of which the optimum portfolio is chosen) larger, this reduces the 

probability of choosing a suboptimal portfolio.  

From the plots in this section, it can be concluded that even if uncertainty will be 

always present, reliably quantifying uncertainty can be achieved by focusing on reducing 
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overconfidence, while other biases are reduced in the process. Reliably quantifying 

uncertainty can be achieved by providing ranges that are wide enough to include not 

only expected outcomes but also possible outcome. This will have the value of 

significantly reducing the expected disappointment and the expected decision error. 

Consequently, overall industry performance can be improved because accurate estimates 

enable identification of superior portfolios that have optimum reward and risk levels; it 

also increases the probability of meeting expectations.  



 

77 

 

5. CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions 

This work shows that, in the presence of overconfidence and directional bias 

(optimism and pessimism), disappointment in portfolio performance occurs not only 

because the realized portfolio NPV is lower than estimated, but also because the realized 

portfolio risk is higher than estimated. This disappointment is due to both incorrect 

estimation of value and risk (estimation error) and incorrect project selection (decision 

error). More conclusions, based on portfolio modeling results using a particular set of 

global portfolio parameters, are listed below: 

 Increasing overconfidence, even if directional bias remains fixed, increases 

expected disappointment and expected decision error. 

 When risk tolerance is high relative to potential portfolio values, moderate 

overconfidence (0.5) and moderate optimism (0.5) result in an expected 

disappointment of about 50% and an expected decision error of about 19% and of 

the estimated portfolio value. 

 When risk tolerance is low relative to potential portfolio values, the same 

amounts of moderate overconfidence and directional bias result in an expected 

disappointment up to 78% and an expected decision error up to 103% of the 

estimated portfolio value. The EDE%E reaches very high values at low risk 

tolerance. 
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 For the same amount of moderate overconfidence (0.5) and moderate optimism 

(0.5), McVay and Dossary’s (2012) model results in ED%E and EDE%E that are 

lower than the ones generated by this model. ED%E and EDE%E are larger in 

this work because they include additional disappointment and decision error from 

the risk component, which was not considered in earlier work. 

 For the case of pessimism, in the presence of overconfidence, the model 

generates estimated expected portfolios that have higher NPV and lower risk than 

the realized expected portfolios. While unexpected, this results because, in the 

model employed, pessimism relates only to the direction of bias and does not 

mean pessimism in risk, i.e., underconfidence.  

Reliably quantifying uncertainty can be achieved by focusing on reducing 

overconfidence, while other biases are reduced in the process. Reliably quantifying 

uncertainty has the value of significantly reducing the expected disappointment and the 

expected decision error, which will improve the overall industry performance. 

5.2 Future Work  

 Increase the number of projects and consider the opting of adding more than one 

partial project per portfolio to overcome the discretization issue noticed in the 

results.  

 In this work, disappointment and decision error are considered vectors in a two-

dimensional space with a NPV component and a risk component. This approach 

assumes that $1 of NPV is equivalent to $1 of risk, which might not be always 

valid. Investigate other measures of disappointment and decision error. 
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 In this work, ED%E is defined as the expected disappointment as a percentage of 

the estimated NPV and risk; and EDE%E is defined as the expected decision 

error as a percentage of the estimated NPV and risk. The equations to calculate 

ED%E and EDE%E are explained in the results section. Further investigation of 

other methods to calculate the ED%E and EDE%E can be informative.  

 The way directional bias and risk have been defined results in an artifact—

increasing directional bias increases the estimated risk, which impacts the results 

as explained in the thesis. Further investigation could be helpful. 

 Implement the model using a more powerful coding language that has dynamic 

structures and more capacity to be able to use a higher number of projects. 

 Although PVOCF and CapEx implicitly cover aboveground (price fluctuations) 

and underground (reservoir properties) parameters, extending the project’s scope 

to deal with these parameters directly will enable modeling them with a higher 

resolution. 

 The results and conclusions of this work are based on a particular set of global 

portfolio parameters. It would be useful to investigate other global portfolios to 

check if these conclusions are general. 
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NOMENCLATURE 

 

Best NPV  The net present value of the best-possible portfolio 

Best risk  The risk of the best-possible portfolio 

CapEx   Capital expenditure 

Counter  Variable used to count the number of iterations 

DB   Directional bias 

ED   Expected disappointment 

EDE   Expected decision error 

ED%E Expected disappointment as a percentage of the estimated 

portfolio value 

EDE%E Expected decision error as a percentage of the estimated portfolio 

value 

ED%T Expected disappointment as a percentage of the true portfolio 

value 

EDE%T  Expected decision error as a percentage of the true portfolio value 

EFC   Efficient frontier curve 

Estimated NPV The net present value of the estimated portfolio 

Estimated risk  The risk of the estimated portfolio 

E&P   Exploration and production 

IE   Investment efficiency 

NPV   Net present value 
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   The best-possible expected net present value at point B 

NPVE   The estimated expected net present value at point E 

NPV    The realized expected net present value at point R 

OC   Overconfidence 

O&G   Oil and gas 

OOIP   Original oil in place 

Port   Portfolio 

PVOCF  Present value of the operating cash flow 

Real NPV  The net present value of the realized portfolio 

Real risk  The risk of the realized portfolio 

‖   ⃗⃗⃗⃗⃗⃗ ‖   The magnitude of the vector    ⃗⃗⃗⃗⃗⃗  

    
 
   The best-possible expected risk at point B 

riskE   The estimated expected risk at point E 

risk    The realized expected risk at point R 

SD   Standard deviation 

VBA   Visual basic for applications  

xi    The participation level of project i  

     The standard deviation of the NPV (risk) of project i 

     The correlation factor 

$MM   Million dollars 
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