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ABSTRACT 

 

The overall goal of this research is to understand roles of gut microbiota 

metabolites and adipocyte transcription factor (TF) network in health and disease by 

developing systematic analysis methods. As microbiota can perform diverse 

biotransformation reactions, the spectrum of metabolites present in the gastrointestinal 

(GI) tract is extremely complex but only a handful of bioactive microbiota metabolites 

have been identified. We developed a metabolomics workflow that integrates in silico 

discovery with targeted mass spectrometry. A computational pathway analysis where 

microbiota metabolisms are modeled as a single metabolic network is utilized to predict 

a focused set of targets for multiple reaction monitoring (MRM) analysis. We validated 

our methodology by predicting, quantifying in murine cecum and feces and 

characterizing tryptophan (TRP)-derived metabolites as ligands for the aryl hydrocarbon 

receptor.  

The adipocyte process of lipid droplet accumulation and differentiation is 

regulated by multiple TFs that function together in a network. Although individual TF 

activation is previously reported, construction of an integrated network has been limited 

due to different measurement conditions. We developed an integrated network model of 

key TFs - PPAR, C/EBP, CREB, NFAT, FoxO1, and SREBP-1c - underlying 

adipocyte differentiation. A hypothetic model was determined based on literature, and 

stochastic simulation algorithm (SSA) was applied to simulate TF dynamics. TF 

activation profiles at different stages of differentiation were measured using 3T3-L1 
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reporter cell lines where binding of a TF to its DNA binding element drives expression 

of the Gaussia luciferase gene. Reaction trajectories calculated by SSA showed good 

agreement with experimental measurement. The TF model was further validated by 

perturbing dynamics of CREB using forskolin, and comparing the predicted response 

with experimental data.  

We studied the molecular recognition mechanism underlying anti-inflammatory 

function of a bacterial metabolite, indole in DC2.4 cells. The indole treatment attenuated 

the fraction of cells that were producing the pro-inflammatory cytokine, TNFα and 

knockdown of nuclear receptor related 1 (Nurr1; NR4A2) resulted in less indole-derived 

suppression of TNFα production. The first discovery of NR4A2 as a molecular mediator 

of the endogenous metabolite, indole is expected to provide a new strategy for treatment 

of inflammatory disorders.  
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CHAPTER I 

INTRODUCTION 

 

1.1 BACKGROUND 

 The human gastrointestinal tract is colonized by ~10
14

 bacteria belonging to 

~1,000 species that are collectively termed the gut microbiota (1). The gut microbiota 

have been classically known to be important in two main capacities - the digestion of 

dietary molecules and the generation of energy from fermentation of indigestible 

carbohydrates to short-chain fatty acids (2). Recent studies have shown that the intestinal 

microbiota is a “super organ” that mediates a wide range of functions including innate 

and adaptive immunity, inflammation, cell proliferation, and communication with the 

gut epithelium and distant organs (3). Alterations in the microbiota composition and/or 

function (dysbiosis) are increasingly correlated to several disorders, including several 

inflammatory diseases of the gut such as inflammatory bowel disease (IBD) and colitis 

(4, 5), as well as obesity, insulin resistance and type 2 diabetes (T2D) (6, 7). The effects 

of dysbiosis are not localized to the GI tract alone but are seen systemically as well as 

studies have associated several allergies (8, 9) and autism (10) to intestinal microbiota 

dysbiosis. Increasing evidence shows that the functional outputs of the microbiota (i.e., 

metabolites) are important modulators of function in the host. For example, conversion 

of choline into methylamines and trimethylamine by the microbiota causes non-alcoholic 

fatty liver disease (NAFLD) (11) and cardiovascular diseases (12).  
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 Obesity is one of the most common diseases that have been strongly associated 

with microbiota dysbiosis. Obesity correlates with complications of several metabolic 

disorders (e.g., insulin resistance and T2D) and increases risk for many other diseases 

such as NAFLD, atherosclerosis, and certain cancers. Development of the obesity and 

metabolic disorders is a complex process and associated with pathways which connect 

metabolism and immune systems (13). Obesity is characterized by an increase in body 

fat mass, specifically in that of white adipose tissue (WAT) (14). Expansion of the body 

fat mass can occur either due to an increase in the number of adipocytes and/or an 

increase in size of adipocytes. The increase of adipocyte cell size is an important 

component of the increase in adipose tissue mass (15). Adipocyte enlargement arises as 

a result of genetic or environmental conditions that progressively increase lipid loading. 

The enzymes mediating adipocyte lipid accumulation and utilization are regulated 

through the temporally coordinated action of several transcription factors (16, 17). 

Therefore, it is important to understand the dynamics and interaction between different 

members of the regulatory network for modulating complex phenotypes such as lipid 

balance in adipocytes. Phylogenetic (16S rRNA) sequencing and metabolomics analysis 

have shown that the composition and metabolite profile of the intestinal microbiota are 

significantly altered in obese subjects (18, 19). The microbiota in obese subjects or 

animals are able to extract more energy from diet (20), and interact with epithelial host 

cells to control energy storage and expenditure (21). 
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1.2 MOTIVATION  

 In the United States, IBD is one of the five most prevalent gastrointestinal 

disease burdens and an overall care cost is more than $1.7 billion. Each year, there are 

more than 700,000 physician visits, 100,000 hospitalizations, and disability in 119,000 

patients due to IBD (http://www.cdc.gov/ibd/). Several studies have established a strong 

correlation between intestinal inflammatory disease such as Crohn’s disease and 

dysbiosis of the intestinal microbiota (22). For example, a clinical metabolomics study 

suggested that poor utilization of tryptophan and an imbalance of tryptophan-derived 

microbiota metabolites correlated strongly with ileal crohn’s disease (ICD) (23). 

Although there is a high level of interest in identifying microbiota metabolites as well as 

characterizing molecular mechanisms for their immunomodulatory functions, there has 

been little success due to the large number of metabolites present and the complex 

network of biosysnthetic reactions carried out by the microbiota (24). 

The prevalence of obesity and related metabolic disorders has vastly increased 

throughout the world. Medical care costs of obesity in the United States are about $147 

billion in 2008 (25). Approximately, 21 million people suffer from type 2 diabetes and an 

annual total cost for treatment is over $80 billion in the United States (26). Several 

therapies such as gastric bypass and suppression of appetite have been developed for 

control of obesity but have had little success. Therefore, there is a need to develop new 

approaches against obesity. Since adipocyte differentiation and enlargement is an 

orchestrated process by the sequential induction of key transcription factors, 
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understanding an entire network between the transcription factors will provide a 

framework for manipulating obesity.  

Recently, it is demonstrated that the bacterial metabolite indole attenuates 

indicators of inflammation and improves tight junction properties in intestinal epithelial 

cells (27). This study demonstrated for the first time that microbiota metabolites are not 

simply metabolic by-products but are active molecular determinants of cellular behavior 

and responses in vivo. Moreover, development of an integrated transcription factor 

network underlying adipocyte differentiation and lipid accumulation has offered a new 

insight into understanding of obesity related disorders. Accordingly, a study for 

microbiota metabolites-triggered change in the transcription factor network is expected 

to provide a clue for treatment of obesity and metabolic disorders.  

    

1.3 RESEARCH OBJECTIVES, IMPORTANCE, AND NOVELTY  

The spectrum of metabolites present in the GI tract is extremely complex, as the 

microbiota can carry out a diverse range of biosynthetic reactions (24), including those 

that are not present in the mammalian host (28). Classical approaches such as isolating 

and culturing individual bacteria and identifying metabolites produced by them has not 

yielded much success, as many bacterial species in the GI tract cannot be cultured under 

standard laboratory conditions. Although untargeted metabolomics for profiling and 

identifying metabolites produced in the GI tract have used in recent several studies (29-

31), the untargeted approach suffers from two limitations. First, the simultaneous 

identification and quantification of a large number of metabolites remains challenging, 
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because of the variations in the dynamic ranges of different metabolites (32). Second, it 

is extremely difficult to distinguish between metabolites produced by the microbiota 

from those produced by host metabolism, as the microbiota and host share significant 

similarity in the biochemical reactions that they can carry out. Therefore, the systematic 

prediction, identification and quantification of microbiota metabolites are a significant 

and novel contribution of this work.  

To our knowledge, this is the first study to present a novel methodology which 

integrates bioinformatic prediction of microbiota metabolites with targeted 

metabolomics. The methodology predicts a panel of target metabolites that can be 

uniquely ascribed to the microbiota biochemical reactions. Targeted metabolomics 

improves dynamic range of detection and provides absolute quantitation of metabolites. 

In future, extension of the study with different in vivo models that alter gut homeostasis 

and ecology will enable us to determine the effect of perturbations on the function of the 

microbiota and its effect on host function. The identification of a mechanism for the 

immunomodulatory role of indole on immune cells (i.e., inter-domain signal recognition) 

is also a novel aspect of this study. 

 During the cellular transformation from preadipocytes into mature adipocytes, 

cells engage a network of multiple transcription factors. While many studies have 

identified roles for different transcription factors, data from these studies provide limited 

information on both expression dynamics and interaction between regulatory network 

molecules. In fact, simple inhibition of an individual regulatory molecule often has 

adverse effects; for example, the inhibition of peroxisome proliferator activated receptor-
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γ (PPARγ) in vivo reduces adipogenesis, but also increases insulin resistance, one of the 

chief complications of type 2 diabetes mellitus (33). In order to understand entire 

regulatory events underlying differentiation and enlargement of adipocytes, integration 

for dynamic interactions between transcription factors is required.  

 The integrated model of the transcription factor network underlying 3T3-L1 

adipocyte differentiation is developed by combinatorial approach of experiment and 

simulation in this study. Furthermore, the model can be applied for prediction of overall 

change of transcription factor activity profiles triggered by a specific microbiota 

metabolite and its influence on development of obesity and metabolic disorders.  

The specific objectives were to:  

 Predict metabolites that can be derived from the dietary amino acid tryptophan 

(TRP) by the microbiota, quantify the levels of the predicted TRP derivatives in 

murine cecum and feces using multiple reaction monitoring (MRM) mass 

spectrometry and demonstrate the biological activity of the metabolites at their 

physiological concentrations measuring aryl hydrocarbon receptor (AhR) 

activation  

 Elucidate the molecular mechanism underlying recognition of TRP derivatives 

in eukaryotic cells 

 Develop an integrated network model of six adipocyte transcription factors 

(PPARγ, SREBP-1c, NFAT, CREB, C/EBPβ and FoxO1) based on published 

connections between the different molecules, validate the model by measuring 

of activation dynamics during adipocyte differentiation and by perturbing the 
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activation levels of CREB to determine its effects on the other transcription 

factors 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 GUT MICROBIOTA  

 The human gastrointestinal tract (GI) contains a variety of microorganisms which 

are collectively termed gut microbiota. This community of ~10
14

 bacteria is composed of 

at least 1000 different species and dominated by anaerobic bacteria (34). Firmicutes, 

Actinobacteria and Bacteroidetes are the main bacterial phyla in human gut microbiota. 

The largest bacterial phylum, Firmicutes contains more than 200 genera, including 

Bacillus, Lactobacillus, Clostridium and Mycoplasma (35). Genomes of gut microbiota 

contain more than 100 times the number of genes as compared to our genome and are 

being increasingly described as a super organ playing important roles in immune system, 

energy balance, metabolism and host defense (36).  

 

2.1.1 GUT MICROBIOTA AND DISEASES  

Alterations of gut microbiota have been associated with several disorders and 

metabolic diseases that occur not only in the GI tract but in distant sites. Inflammatory 

Bowel Disease (IBD) is one of the most commonly reported diseases that is associated 

with dramatic changes in gut microbiota. Studies have shown that the number of 

mucosal adherent bacteria belonging to species such as Proteobacteria and 

Enterobacteriaceae is increased in patients with IBD (37). The population of 

Bifidobacterium was also found to be significantly reduced in rectal biopsies from IBD 
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patients (38). In addition, a decreased distribution of Firmicutes and butyrate producers 

such as Clostridium was noted in IBD patients (39). Roediger and co-workers 

demonstrated that overgrowth of sulphate-reducing bacteria (SRB) is associated with 

acute ulcerative colitis (40). A metabolite of SRB, hydrogen sulfide was shown to have 

genotoxic properties and produce mucosal inflammation (41).       

Obesity is the most prevalent metabolic disease worldwide and is also associated 

with reduced bacterial diversity and alterations in metabolic pathways and bacterial 

genes in the GI tract (42). Ley and co-workers found obese mice have 50% more 

Firmicutes and less Bacteroidetes as compared to lean mice (18). This was associated 

with an increase of cecal short chain fatty acids (SCFA), implying increased 

fermentation by gut microbiota and energy harvest from diet (20). Colonization of GI 

tract in germ-free mice with microbiota from conventionally raised mice showed an 

increase of insulin resistance and body fat. In addition, the colonization study found that 

the increase of body fat correlated with downregulation of fasting induced adipocyte 

factor (FIAF) in gut epithelium. Since the FIAF is a secreted lipoprotein lipase (LPL) 

inhibitor, downregulation of FIAF leads to higher LPL activity and triglyceride (TG) 

storage in adipose tissue (21). In addition, gut microbiota modulate plasma LPS level 

that triggers chronic low grade inflammation leading to diabetes (7). Non-alcoholic fatty 

liver disease (NAFLD) is another disease related to obesity. The gut microbiota 

contribute to development of NAFLD through inflammasomes that shape metabolic 

pathways of lipid accumulation (43). Inflammasome deficiency caused changes in 

configuration of gut microbiota and exacerbated hepatic steatosis and inflammation 
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through influx of Toll-like receptor 4 (TLR4) and TLR9 agonists, leading to enhanced 

tumour-necrosis factor (TNF)-α expression. 

In addition to its effect on metabolic diseases, alterations in the gut microbiota 

have a significant impact on immune responses in the host. For example, a systemic 

autoimmune disease, Rheumatoid Arthritis (RA) is associated with changes in gut 

microbiota composition and function. In serum samples of RA patients, antibodies to P. 

gingivalis were reported to be more frequent than controls and C-reactive protein 

concentration and a titer of RA-related autoantibodies were higher in individuals 

infected with P. gingivalis (44). Moreover, RA is closely related to periodontal disease. 

In subjects of RA and periodontitis, serum antibodies against disease producing 

peropdontal bacteria were more frequently detected (45).                                                                                           

Immune system development is also associated with commensal gut microbiota. 

Following birth, breastfeeding confers beneficial effects in configuration of gut 

microbiota, including increased colonization of Bifidobacteria and reduced prevalence 

of an asthma-associated pathogen, C. difficile. Antibiotics ingested by infants suppress 

colonization of commensal bacteria and cause emergence of C. difficile (46). Penders 

and co-workers found that infants colonized with C. difficile and E. coli had higher risk 

of developing recurrent wheeze and eczema (47). The presence of C. difficile and E. coli 

could be associated with a decrease of beneficial bacteria, and results in less induction of 

Treg cells by the beneficial bacteria leading to immune dysregulation.     

 

 



 

11 

 

2.1.2 GUT MICROBIOTA-DERIVED METABOLITES  

Conversion of proteins, carbohydrates and nonnutritive compounds by gut 

microbiota leads to formation of a variety of metabolites that have adverse or beneficial 

effects on human health. The breakdown of complex carbohydrates in the colon results 

in oligo- and monomeric compounds which are further broken down to short chain fatty 

acids (SCFA) such as butyrate and propionate (48). The formation of SCFA in the colon 

significantly impacts host responses and function. The SCFA is a significant source of 

energy, contributing 10% of daily calorie requirement for health (49). Butyrate is a main 

energy source of colonic epithelial cells and colonocytes metabolize 90% of butyrate  

(50). It functions as a main regulator of growth by promoting proliferation of epithelial 

cells and enhancing differentiation. In intracolonic milieu, the SCFA lowers pH, which 

inhibits growth of pH sensitive pathogenic bacteria and prevents degradation of primary 

bile acids to carcinogenic secondary bile acids (51). It has been proposed butyrate lowers 

risk of colon cancer by inhibiting genotoxic activity of hydrogen peroxide and 

nitrosamides in colon cells (52). It has also been reported that butyrate plays a chief role 

in chronic inflammation of intestinal mucosa. In a clinical study of Crohn’s disease, 

butyrate was shown to decrease expression of proinflammatory cytokines such as 

interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNFα) by inhibiting activation 

of nuclear factor κB (NF-κB) (53).  

 While bacterial fermentaion of carbohydrates primarily occurs in a proximal 

colon, fermentation of proteins mainly occurs in a distal colon (54). Some of products 

resulting from the amino acid fermentation are associated with diseases. For example, 
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H2S (present as HS
-
 at neutral pH) which is formed through bacterial degradation of 

cystein and methionine was shown to cause DNA hypomethylation, leading 

abnormalities of cell proliferation in crypt epithelium in ulcerative colitis (55). In 

addition, sulfate-reducing bacteria (SRB) generates sulfide from dietary sulfate by 

coupling with oxidation of lactate, succinate, ethanol and H2 (56). The anaerobic 

fermentation of aromatic amino acids by gut microbiota gives rise to several indole and 

phenol-containing compounds. Phenolic metabolites such as p-cresol were proposed to 

act as a procarcinogen in the etiology of colon cancer (57). In a rat model of depression, 

plasma concentrations of indoxylsulfate and indole-3-acetate were decreased (58). These 

altered compounds are metabolic products of amino acids by gut microbiota (59). The 

indoxylsulfate is generated by gut microbiota containing tryptophanase metabolism and 

indole-3-acetate derives from transamination on tryptophan by gut microbiota.           

Bile acids facilitate lipid absorption and participate in regulation of cholesterol, 

triglyceride and energy homeostasis, and the gut microbiota have been reported to 

modulate bile acid profiles (i.e., the spectrum of molecules produced) through 

dehydroxylation, oxidation, sulfation and deconjugation, resulting in generation of 

secondary or tertiary bile acids (60). For example, deconjugation of glycocholate by 

bacteria generates cholate, which is transformed to deoxycholate by the bacterial enzyme 

7-α-dehydoxylase. Suhre and co-workers detected that deoxycholate levels are higher in 

plasma from diabetic patients (61). Deoxycholate is the secondary bile acid and 

constitutes a major part (35%) of circulating bile acid pool in human. The secondary bile 

acids can passively enter the bile acid pool or be excreted to feces. The loss of bile acids 
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in feces is compensated by de novo biosynthesis of bile acids in the liver. Therefore, the 

higher level of deoxycholate in diabetic patients indicates alterations in the composition 

of bile acid pool and related biosynthetic pathways including conversion of primary to 

the secondary bile acids by gut microbiota. This observation is supported by the fact that 

composition of gut microbiota is between control and diabetic individuals (62).        

 

2.2 METABOLOMIC ANALYSIS OF GI TRACT  

To date, a majority of the observations on the alterations in gut microbiota in 

different disease models have been derived from high throughput sequencing studies. 

The metagenome data derived from these sequencing studies provide information only 

on alterations in the microbiota composition (i.e., population changes and/or enriched 

gene content) but do not provide information on functional changes arising from these 

alterations (63). Recent studies have used mass spectrometry (MS) methods to profile 

alterations in the metabolite levels (i.e., the products of metabolic reactions) from fecal 

material and biofluids to determine functional changes arising due to alterations in the 

metagenome. Analytical techniques such as high resolution nuclear magnetic resonance 

(NMR) spectroscopy, FTICR (Fourier transform ion cyclotron resonance)-MS, and 

chromatography have been coupled with MS enable comprehensive profiling of 

metabolites that are correlated to microbiota in the GI tract.  

Zheng and co-workers (29) applied an untargeted LC-MS (ultra performance 

liquid chromatography coupled to a tandem quadrupole-time-of-flight mass 

spectrometry) and GC-MS (gas chromatography coupled with a time-of-flight mass 
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spectrometry) to profile metabolite changes in a rodent model of antibiotic exposure. In 

this study, panels of 223 fecal and 202 urinary metabolites were significantly altered, 

showing extensive gut microbiota modulation of host metabolism involving tryptophan, 

tyrosine and short-chain fatty acid metabolism. In another untargeted MS study, 

metabolites in plasma of germ-free (GF) mice were compared to samples of 

conventional mice (64) to demonstrate that a large number of compounds in circulation 

can be attributed to the presence of microbiota in the GI tract. Specifically, phenyl 

group-containing organic acids considerably increased in presence of gut microbiota. In 

addition, the levels of indole-containing metabolites derived from tryptophan such as 

indoxylsulfate and indole-3-propionic acid (IPA) were decreased in GF mice as 

compared to conventional mice. When GF mice were injected with IPA, the high serum 

level of IPA detected after 1 h decreased more than 90% within 5 h, indicating that the 

presence of IPA in serum of conventional mice results from continuous production from 

gut microbiota. Indoxylsulfate, a known nephrotoxin that accumulates in blood of 

patients suffering from chronic kidney failure (65), is generated by transformation of a 

bacterial metabolite indole in liver. This finding illustrates bacterial metabolites can 

reach other organs and be modified by mammalian chemical processes, resulting broad 

effects on the entire body.   

Antunes and co-workers (66) used Fourier transform ion cyclotron resonance MS 

with direct infusion (DI-FT-ICR-MS) to obtain the chemical composition of the GI tract 

upon antibiotic treatment. They observed that antibiotic treatment disrupted homeostasis 

of hormone such as steroids which have been implicated in immunological responses to 
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infection and affected levels of 87% of detected 2230 metabolite features. Predictive 

mapping of altered metabolites to corresponding metabolic pathways identified various 

host metabolic functions such as steroid, bile acid, fatty acid and eicosanoid metabolism 

as being altered. Marchesi and co-workers (67) investigated fecal extracts of Crohn’s 

disease (CD) and ulcerative colitis (UC) patients by employing high resolution 
1
H NMR 

spectroscopy (68). In both fecal extracts of CD and UC patients, levels of methylamine, 

trimethylamine, acetate and butyrate were reduced, implying a change in gut microbial 

community. In a CD patient study of 15 twin pairs, individuals with ileal CD had 

increased abundance of E. coli and a lower abundance of F. prausnitzii as compared to 

healthy co-twins (69). This study also showed that increased fecal levels (i.e., poor 

utilization) of tryptophan and pnenylalanine correlated with ileal CD.  

 

2.3 AHR SIGNALING IN GI TRACT   

 The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor 

that has been shown to play a significant role in the intestinal immune system (70, 71). 

AhR is a member of the basic helix-loop-helix / Per-Arnt-Sim homology superfamily 

which plays a central role in sensing environmental factors such as light and oxygen.  

The AhR is localized in the cytoplasm and it translocates to the nucleus upon binding 

ligands such as polycyclic aromatic hydrocarbons. In the nucleus, ligand bound AhR 

forms heterodimers with the AhR nuclear translocator (Arnt) protein. The AhR-Arnt 

complex activates expression of genes containing the dioxin response element (DRE; 

GCGTG). Well known AhR target genes that are regulated by the AhR include 
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xenobiotic metabolizing enzymes such as Cyp1A1 of the cytochrome P450 family 

member (72).     

 While the AhR was identified as a part of xenobiotic metabolism, it has 

demonstrated function in immune response as well. AhR is expressed in cells involved 

in the innate immune response such as innate lymphoid cells (ILC) and in CD4
+
 T cells 

which are crucial for the adaptive immunity (70). Li and co-workers investigated AhR 

expression in a broad range of immune cells isolated from various tissues. Intraepithelial 

lymphocytes (IEL) (30) from skin and intestine demonstrated a high level of AhR 

expression. AhR deficient mice were short of IELs, which resulted in reduction of anti-

microbial peptides, an altered microbiota composition, a low level of epithelial turnover, 

and increased susceptibility for intestinal inflammation (71). Similarly, Kiss and co-

workers showed AhR deficient mice had decreased immune response and were highly 

susceptible to infection with Citrobacter rodentium (70). On the other hand, activation 

of AhR signaling inhibited colitis and inflammation in GI tract of mice (68). In addition 

to control of the immune response, it has been shown that AhR functions as a tumor 

suppressor. Fan and co-workers examined a role of AhR in the liver tumorigenesis 

induced by a genotoxic chemical diethylnitrosamine (DEN) (73). DEN-exposed Ahr
−/− 

mice exhibited elevation of tumor incidence in livers as compared to that in wild type 

littermates. They also found that expression levels of proinflammatory cytokines such as 

IL-6 and TNFα were higher in Ahr
−/− 

mice than Ahr
+/+

 counterpart. Hall and co-workers 

reported that activation of AhR inhibits a metastatic process in breast cancer cell lines 
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(74). Treatment of exogenous AhR agonists inhibited motility and cell invasiveness in a 

Boyden chamber assay.        

 Ligands for AhR include various toxic halogenated aromatic hydrocarbons, 

heterocyclic amines, polycyclic aromatic hydrocarbons and a variety of indole 

containing compounds (75-77). Although many dietary compounds were initially 

suggested as natural ligands for AhR, several reports have indicated that endogeneous 

physiological ligands for AhR exist. For example, in absence of added exogenous 

ligands, expression of AhR dependent genes was induced in vitro (78, 79) and AhR 

knockout mice showed developmental defects (80). To date, many studies have 

demonstrated that a plant specific tryptophan derivative, indole-3-carbinol and its acidic 

condensation product such as indolo[3,2-b]carbazole are AhR ligands (72, 81, 82). In 

addition, endogeneous metabolites of tryptophan such as tryptamine and indole acetic 

acid were shown to bind to and activate AhR (83). Several photooxidation products of 

tryptophan were identified to bind to AhR with a high affinity and induce AhR 

dependent gene expression (84, 85). Wincent and co-workers demonstrated that 6-

formylindolo[3,2-b]carbazole (FICZ) is formed by exposure of tryptophan to visible ligh 

t and FICZ acts a substrate for CYP1A1, CYP1A2 and CYP1B1 (86). In addition, they 

found sulfo conjugates of phenolic metabolites of FICZ are present in human urine. 

These findings indicate that FICZ is naturally occurring activators of AhR signaling 

pathway.      
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2.4 TRANSCRIPTIONAL CONTROL OF ADIPOCYTE DIFFERENTIATION  

Adiposity can arise through either an increase in the number of adipocytes 

(hyperplasia) and/or an increase in the size of adipocytes (hypertrophy). Hyperplasia 

involves recruitment, proliferation and differentiation of preadipocytes while 

hypertrophy occurs due to an increase of lipid content in adipocytes (15).   

  The morphological changes and accumulation of lipid during adipogenesis are 

caused by shifts in the set of genes that are expressed at different stages of differentiation 

(17). Adipogenesis is known to follow a well characterized sequence of events that are 

regulated by the activity of different transcription factors. Initial growth arrest of 

preadipocytes is induced upon hormonal stimulation and then one or two additional 

rounds of cell division (clonal expansion) follows. During this period, there is a temporal 

increase in the expression of CCAAT/enhancer binding protein β (C/EBPβ) and C/EBPδ 

(87). It was demonstrated ectopic expression of C/EBPβ and C/EBPδ in 3T3-L1 

preadipocytes induces adipogenesis without extracellular hormones (87, 88). 

Subsequently, expression of peroxisome proliferator activated receptor- γ (PPARγ) and 

C/EBPα is stimulated (89). Several studies showed a direct link between PPARγ and 

C/EBPs. Ectopic expression of C/EBPβ and/or C/EBPδ in nonadipogenic NIH 3T3 

fibroblasts induced PPARγ, and exposure to PPARγ ligands prompted differentiation 

into adipocytes (90). Moreover, functional regulatory elements of C/EBP were identified 

in the PPARγ promoter (91). Recently, it was shown that the ectopic expression of 

C/EBPβ in fibroblasts was incapable of inducing C/EBPα without PPARγ ligands. In 

addition, retroviral expression of C/EBPβ in pparγ
-/-

 mouse embryonic fibroblasts did not 
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stimulate expression of C/EBPα (92). On the other hand, C/EBPα-deficient embryonic 

fibroblasts did not express PPARγ and restoration of C/EBPα restored PPARγ 

expression levels (93). Therefore, the principal pathway of adipogenesis appears to 

involve 3 steps: i) expression of PPARγ induced by C/EBPβ and C/EBPδ, ii) activation 

of C/EBPα by PPARγ, and iii) positive feedback loop between PPARγ and C/EBPα.  

It is well established that PPARγ and C/EBPα function as master regulators for 

differentiation of adipocytes (94). Coexpression of PPARγ and C/EBPα could 

transdifferentiate myoblasts into adipocytes (95). Loss of function studies demonstrated 

a dominant role of PPARγ for fat cell formation and differentiation. PPARγ deficiency 

in mice caused embryonic lethality due to a placental defect. A mutant mouse that was 

rescued by using wild type tetraploid cells showed severe lipodystrophy (96). In another 

study, embryonic stem cells with homozygous deletion of PPARγ gene could not 

differentiate into adipocytes and did not participate in adipose tissue formation (97). 

Similar with PPARγ studies, C/EBPα knockout mice died soon after birth due to 

inability of glucose production, as C/EBPα is required for gluconeogenesis in liver (98). 

Ablation of the c/ebpα gene in tissues except liver showed that C/EBPα is required for 

WAT formation. In addition, deficiency of C/EBPα expression resulted in insulin 

resistance in cell culture models (93).    

Sterol regulatory element binding protein-1c (SREBP-1c) was identified as an E-

box binding transcription factor involved in adipogenesis (99). SREBP-1c promotes 

adipogenesis and activates expression of lipoprotein lipase and fatty acid synthase 

although it cannot initiate adipogenesis by itself (100). In adipose tissue, expression of 
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SREBP-1c increases in response to feeding and insulin stimulates expression of SREBP-

1c in 3T3-L1 cells (101). It was shown that SREBP-1c could activate PPARγ expression 

by binding to the PPARγ promoter (102). Dominant negative SREBP-1c expression 

inhibited adipogenesis but the inhibition could be overcome by treatment with a PPARγ 

ligand, thiazolidinedione (TZD). This result suggests a possible role of SREBP-1c in the 

production of endogenous PPARγ ligands (103).  

Cyclic AMP (43) response element binding protein (CREB) is another primary 

regulator involved in initiating adipocyte differentiation. Stimulation of CREB activity is 

induced by differentiation inducing reagents such as insulin and dexamethasone. A study 

by Zhang and co-workers provides convincing evidence that CREB is activated at a very 

early time point in adipogenesis and participates in induction of C/EBPβ expression 

(104). This result is consistent with an earlier study which mentioned a role of cAMP 

signaling for C/EBPβ expression (87). CREB exerts its function by binding to promoters 

of C/EBPβ and/or C/EBPδ and activate several adipocyte specific genes such as 

phosphoenolpyruvate carboxykinase (PEPCK) and adipocyte specific fatty acid binding 

protein (aP2). In 3T3-L1 cells, expression of dominant negative CREB blocks 

adipogenesis while expression of constitutively active CREB induces adipocyte 

differentiation (16).    

Nuclear factor of activated T cell (NFAT) is a member of the transcription factor 

family that regulates early immune response and cytokine production. It was shown that 

blocking the nuclear translocation of NFAT inhibits adipogenesis and NFAT is able to 

bind to aP2 promoter (105). NFAT has also been proposed as a regulator of PPARγ 
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activity since NFAT forms a composite enhancer complex with C/EBP and associates 

physically with PPARγ (106).    

Forkhead transcription factor FoxO1 is induced in an early stage of adipocyte 

differentiation but activation of FoxO1 is delayed until the end of clonal expansion phase. 

FoxO1 has been shown to attenuate PPARγ activation in 3T3-L1 adipocytes (107). 

Constitutively active FoxO1 prevented preadipocyte differentiation while dominant 

negative FoxO1 restored adipocyte differentiation of fibroblasts from insulin receptor 

deficient mice.  

As described above, the expression and activation of transcription factors were 

orchestrated in a temporally controlled manner to regulate adipogenesis. Based on the 

interactions between the transcription factors in the literature, Table 2.1 summarizes 

interactions between transcription factors and external stimuli that regulate their activity.  

 

2.5 INFLAMMATORY SIGNALING IN ADIPOSE TISSUE   

Obesity is characterized by chronic low-grade inflammation and progressive 

infiltration of macrophages during obesity development. In a hypertrophic state, 

adipocytes secrete TNFα, which stimulates preadipocytes to produce monocyte 

chemoattractant protein-1 (MCP-1) (108). In addition, endothelial cells within the 

adipose tissue secrete MCP-1 in response to the TNFα. The overproduction of MCP-1 

induces macrophage infiltration into the adipose tissue (109, 110). Increased secretion of 

leptin and decreased production of adiponectin in adipocytes also stimulate transport of 

macrophages to the adipose tissue and contribute to accumulation of macrophages (111).   
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Table 2.1. Interactions between the transcription factors to regulate adipogenesis 

   

Effector Target Type of interaction Reference 

CREB C/EBPβ Activation (87), (104) 

CREB C/EBPδ Activation (87) 

NFAT PPARγ Activation (106) 

FoxO1 PPARγ Repression (107) 

C/EBPβ PPARγ Activation (90), (91) 

C/EBPδ PPARγ Activation (90), (91) 

PPARγ C/EBPα Activation (92) 

C/EBPα PPARγ Activation (93) 

SREBP-1c PPARγ Activation (102) 
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Physical damage to endothelium, caused by crowding or oxidative damage due to a 

lipolytic condition may also contribute to the macrophage recruitment. Once 

macrophages are actively present, they perpetuate a cycle of macrophage recruitment, 

production of the inflammatory cytokines and impairment of adipocyte function (112).   

TNFα is one of crucial mediators in the adipose tissue inflammation. Increased 

levels of TNFα correlate with development of insulin resistance (113) whereas TNFα 

deficient obese mice remain insulin sensitive (114). Macrophage-derived TNFα which 

acts through TNFα receptors of adipocytes induces production of proinflammatory 

cytokines and lipolysis while suppressing production of anti-inflammatory cytokines in 

adipocytes. Saturated fatty acids (SFAs) are released during macrophage induced 

adipocyte lipolysis, and several studies have shown SFAs are endogeneous ligands for 

Toll-like receptor 4 (TLR4) which is necessary for recognition of lipopolysaccharide 

(LPS) (115). The TLR4 activation by SFAs induces expression of inflammatory genes 

through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

dependent mechanism (116). An in vitro coculture study with macrophages and 

adipocytes showed that SFAs upregulate expression of TNFα in macrophages through a 

mitogen-activated protein kinase (MAPK) activity (117). Adipocyte derived T helper 

cell (Th2) produced cytokines such as interleukin-4 (IL-4) and IL-13 regulate 

macrophage polarization (proinflammatory M1 state or anti-inflammatory M2 state) 

which in turn influences production of proinflammatory cytokines in adipocytes. IL-13 

treatment increased expression of PPARδ in macrophages, and adipocytes cocultured 
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with PPARδ null macrophages produced more TNFα, MCP-1 and IL-6 as compared to 

wild type macrophages (118).  

Adiponectin which is secreted from adipocytes exerts a protective role against 

inflammation by promoting macrophage polarization toward an anti-inflammatory M2 

phenotye (119). The adiponectin expression is stimulated by PPARγ ligands such as 

thiazolidiedione (TZD) (120). In addition to PPARγ, other transcription factors such as 

SREBP-1c and C/EBPα have been demonstrated to positively regulate transcription of 

the adiponectin gene (121, 122). In human primary macrophages, PPARγ, PPARα and 

Liver X receptor (LXR) agonists were shown to increase expression of adiponectin 

receptors, implying that these transcription factors synergistically drive toward an anti-

inflammatory state (123). On the other hand, adiponectin expression is negatively 

regulated by TNFα and IL-6 (124, 125). As mentioned above, obesity-derived adipose 

tissue inflammation associates with comprehensive molecular mechanisms.  

 

2.6 NR4A REGULATION IN INFLAMMATION  

The nuclear receptor  superfamily has emerged as a therapeutic target for the 

treatment of several diseases such as atherosclerosis, diabetes and obesity (126). Studies 

on the mechanisms used by the nuclear receptor familiy to sense environmental cues and 

translate the signals into specific gene expression have expanded our understanding of 

these diseases. In addition to ligand activated transcription factors such as PPARγ, 

retinoid X receptor (RXR) and liver X receptor (LXR) (127), many orphan receptors 

whose ligands remain unknown are included in the NR superfamily. Among the orphan 
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receptors, the NR4A subgroup consists of neuron-derived clone 77 (Nur77; NR4A1), 

nuclear receptor related 1 (Nurr1; NR4A2) and neuron derived orphan receptor 1 (NOR1; 

NR4A3).  

Members of the NR4A subgroup are operated in a ligand independent manner 

(128). Structural studies have revealed that NR4A members do not possess a 

conventional ligand-binding pocket due to bulky side chains of hydrophobic amino acid 

residues (129-131). However, several small molecules have been recently described as 

agonists that may interact in unconventional ways. These molecules can work either by 

modulating C-terminal LBD (131) or N-terminal AF-1 transactivation domain (132).  

Expression of NR4A members is known to be rapidly induced by various stimuli in a 

wide range of cultured cells and tissues. Such stimuli includes agonists of G protein-

coupled receptors (133, 134), activators of protein kinase and cAMP signaling (135, 

136), UV light (137) and mechanical stress (138). Once expression is induced, NR4A 

members bind to nerve growth factor-induced protein B responsive element (NBRE; 

AAAGGTCA) as monomers (139). As homodimers or heterodimers with the other 

NR4A member, they bind to Nur-responsive element, which consists of a repeat of 

AAAT(G/A)(C/T)CA sequence . In addition, NR4A1 and NR4A2 (but not NR4A3) can 

form heterodimers with the RXR and bind to a combination of the NBRE and retinoic 

acid response elements (140).  

Recent functional studies have pointed a critical role of NR4A members in 

control of inflammation. Three NR4A receptors are induced in macrophages during 

inflammation. The expression of NR4As in macrophages depends on the activation of 
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NF-κB signaling (141). Interestingly, functional studies indicated that NR4A receptors 

both repress and activate inflammatory genes in macrophages. For example, inducible 

kinase inhibitor of nuclear factor kappa-B kinase (IKK)i/IKKε which is a NF-κB 

activating kinase was identified as a direct NR4A1 target gene and expression of NR4A1 

in macrophages potentiated inflammatory gene expression in response to LPS (142). On 

the other hand, Bonta and co-workers showed that overexpression of each NR4A 

receptor reduces expression of MCP-1, IL-6 and macrophage inflammatory protein 1α 

(MIP1α) (143). In addition, Saijo and co-workers demonstrated that NR4A2 represses 

transcription of TNFα and IL-1β in macrophages and microglia. This transrepression is 

mediated by recruitment of corepressor for element-1 silencing transcription factor 

(CoREST) complex to a target promoter and clearance of NF-κB (144).  

Several natural and synthetic compounds have been recently identified as 

agonists for NR4A receptors, but endogenous ligands have not been identified. The first 

agonist 6-mercaptopurine was identified through high throughput screening for all 

NR4A members and some related thiopurine compounds were demonstrated to activate 

NR4A3. Activation of NR4A2 and NR4A3 by 6-mercaptopurine was independent of the 

ligand-binding domain (LBD) and involved modulation of activation function-1 (AF-1) 

within the amino-terminal regulatory domain (129, 145, 146). Several compounds based 

on 1,1-bis(3’-indolyl)-1-(p-substituted phenyl)methanes (C-DIMs) have been identified 

as agonists of NR4A1. In deletion studies, C-DIM activity was dependent on the LBD of 

NR4A1. The C-DIMs have been demonstrated to induce proapoptoic pathways in cancer 

cells, supporting a proapoptoic function of NR4A1 (132, 147). A series of compounds 



 

27 

 

based on a benzimidazole scaffold were discovered by in silico screening methods. 

These compounds were shown to be potent agonists of NR4A2 in vitro (148). Zhan and 

co-workers identified cytosporone B from Dothiorella sp. HTF3 as an agonist of NR4A1, 

which binds to the LBD and induces apoptosis in cancer cells in vitro (149). Thus, 

manipulation and exploitation of NR4A by these small molecule agonists from the 

preliminary studies may provide therapeutic modalities against inflammatory diseases.       
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CHAPTER III 

PREDICTION, IDENTIFICATION, AND QUANTIFICATION OF 

MICROBIOTA METABOLITES IN MURINE GUT USING IN SILICO 

TARGETED METABOLOMICS 

 

3.1 INTRODUCTION 

The human gastrointestinal (GI) tract is colonized by ~10
14

 bacteria belonging to 

~1,000 species that are collectively termed the microbiota. Disruptions in the microbiota 

composition (dysbiosis) are increasingly correlated to not only gut diseases such as 

inflammatory bowel disease (IBD) and colitis (4), but also obesity, insulin resistance and 

type 2 diabetes (6, 42). There is increasing evidence that the functional outputs of the 

microbiota, specifically the metabolites they produce, are important modulators of host 

physiology. For example, recent work from our laboratory demonstrated that the 

tryptophan (TRP)-derived bacterial metabolite indole attenuates indicators of 

inflammation and improves tight junction properties in intestinal epithelial cells (27). An 

increase in the conversion of dietary choline into trimethylamine by the gut microbiota 

has also been correlated to non-alcoholic fatty liver disease (11) and cardiovascular 

diseases (12). 

Despite a high level of interest, only a handful of bioactive microbiota 

metabolites in the GI tract have been identified. One major challenge is that the spectrum 

of metabolites present in the GI tract is extremely complex, as the microbiota can carry 

out a diverse range of biotransformation reactions, including those that are not present in 
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the mammalian host (28). Classical approaches such as isolating and culturing individual 

bacteria and identifying metabolites produced in these cultures has not yielded much 

success, as many bacterial species in the GI tract cannot be cultured under standard 

laboratory conditions. Moreover, this approach also does not account for community-

level interactions between the bacteria as metabolites produced by one bacterial species 

can be utilized or modified by other species resident in the local microenvironment. 

Another challenge is that it is also extremely difficult to determine whether a metabolite 

is the product of microbiota or host metabolism, as most metabolite classes are present in 

both bacteria and mammals due to the high degree of conservation of metabolic 

pathways across organisms. 

In addressing these challenges, metabolomics of fecal or bodily fluid samples has 

emerged as an attractive approach to explore the metabolite profiles of the GI tract, and 

to compare these profiles under different conditions. Mass spectrometry (MS)-based 

approaches have been especially useful in high-throughput identification of a broad 

spectrum of metabolites. For example, a recent study by Zheng and co-workers (29) used 

chromatographic separation coupled with MS to characterize the impact of antibiotic 

treatment on the metabolome of rat fecal and urine samples, and observed that the levels 

of more than 200 metabolites were significantly altered. Interestingly, TRP-derived 

compounds such as indole and tryptamine were among the significantly altered 

metabolites in both fecal and urine samples. In a related study, Antunes and co-workers 

(66) used Fourier transform ion cyclotron resonance MS to detect more than 2,000 

metabolite features in murine fecal samples, and found that a single high dose of 
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streptomycin causes significant changes in 88% of these features. In addition to MS, 

highresolution NMR spectroscopy has also been used to broadly profile the metabolites 

whose levels in feces, bodily fluids or host tissues are significantly altered by 

interventions (such as bariatric surgery) that are expected to perturb the gut microbiota 

(150). In general, MS offers greater sensitivity compared to NMR, and has become the 

dominant analytical platform for metabolomics (151).  

To date, a majority of MS studies on profiling GI tract metabolites have utilized 

an untargeted approach to achieve high throughput. While this approach offers the 

benefit of potential for discovery, it also has several drawbacks. Due to the complexity 

of the mass spectra obtained, especially when full scan tandem mass spectrometry 

(MS/MS) is employed, metabolite identification can be difficult, as it is difficult to 

discriminate between ions and ion fragments having the same mass-to-charge ratio (m/z). 

High-resolution time-of-flight (TOF) mass spectrometers can somewhat alleviate this 

problem (151). However, quantification remains a challenge, because the dynamic range 

of different metabolites in a biological sample can span up to nine orders of magnitude 

(32), and an untargeted approach precludes tailoring of MS parameters for ionization and 

fragmentation of specific, low-abundance metabolites. In contrast, targeted approaches, 

where the analytes are determined a priori, can use quantitative methods such as multiple 

reaction monitoring (MRM) that afford custom optimization of MS parameters for 

individual metabolites to enable sensitive detection. On the other hand, a targeted 

approach is limited in its discovery potential, as only a focused set of metabolites is 

analyzed simultaneously. Expanding the number of MRM transitions, and thus detecting 
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more analytes in a single run, requires a reduction in the dwell time to preserve peak 

shape, which can compromise sensitivity (151). 

In this work, we present a novel targeted metabolomics methodology that 

addresses the inherent discovery limitation by integrating an in silico prediction step into 

the MS workflow to identify bioactive microbiota metabolites. To date, bioinformatics 

tools have been utilized in metabolomics generally for post-hoc analysis to process raw 

data (152), or perform statistical comparisons (153). Recently, Greenblum and co-

workers presented an elegant metagenomic study that places obesity or IBD-associated 

variations in human gut microbiota gene abundances in the context of a microbial 

community-level metabolic network reconstructed in silico (154). Here, we similarly 

model microbiota metabolism using a metabolic network representing a single 

“microbial metabolic organ” to computationally explore the products of microbiota 

metabolism. We thus exploit efficient computational algorithms for network analysis and 

the growing catalogue of annotated microbial genomes to conduct in silico discovery 

experiments. As a result, the analytical effort can focus on a relatively small number of 

metabolites to support facile quantitation. To validate our methodology, we use 

computational pathway analysis to predict bacterial products of tryptophan (TRP) 

metabolism, and utilize MRM coupled with liquid chromatography (LC) to quantify the 

levels of the predicted metabolites in murine cecum and feces. To determine bioactivity 

of the metabolites, we use a Gaussia luciferase (Gluc) reporter system measuring aryl 

hydrocarbon receptor (AhR) activation. Our results have the potential to facilitate 

mechanistic studies on host-bacteria interactions in the intestinal tract.  



 

32 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 MATERIALS 

 All chemicals including HPLC-grade solvents and high-purity metabolite 

standards were purchased from Sigma-Aldrich (St. Louis, MO) unless noted otherwise.  

 

3.2.2 PREDICTION OF MICROBIOTA METABOLITES 

 We used a probabilistic pathway construction algorithm to predict possible 

metabolites that can derived from a given source metabolite through the metabolic 

reactions of the gut microbiota. Previously, the algorithm was used to explore novel 

synthesis pathways for both native and nonnative metabolites in a particular microbial 

host (Escherichia coli) (155). In this study, the algorithm was modified to construct 

bacterial biotransformation pathways that are nonnative to the mammalian host organism, 

i.e. mouse, such that the intermediates of the constructed pathways could be 

unambiguously sourced to bacterial metabolism. A list of metabolic reactions for the 

mouse was compiled from published genome-scale models (156, 157) and manually 

crossreferenced with the KEGG database to identify the corresponding reaction and 

compound identification numbers. The algorithm recursively constructs a tree, starting 

from a source metabolite as a root of the tree. A single reaction is randomly selected 

from a list of candidate bacterial reactions in the KEGG enzyme database that involve 

the source metabolite as a main reactant. This list, obtained through KEGG’s FTP site, 

comprised all bacterial enzymes catalogued in the database as specified by the genes 
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entry. An enzyme was determined to be bacterial if at least one bacterial species encoded 

the enzyme in its genome. The selected reaction is then added to the tree and represented 

by an edge. This edge expands the tree by attaching new nodes representing the product 

metabolites and cofactors of the selected reaction. The construction thus proceeds in a 

depth-first fashion. Each of these nodes is a new root for the recursion, unless the 

corresponding metabolite or cofactor is already present in the host organism or was 

previously added to the tree. To achieve reasonable runtimes (on the order of tens of 

minutes for a run of 1,000 – 2,000 iterations), the size of the search space was 

constrained by placing an upper limit on the number of reactions that can be used to 

construct a pathway. In this study, the upper limit was varied from 20 to 50, which had 

no observable impact on the distribution of the predicted metabolites. When the addition 

of a reaction to the tree violates the upper limit, the algorithm backtracks and proceeds 

by adding to the tree another reaction that has not been previously explored, effectively 

identifying an alternative pathway. If none of these alternative routes satisfy the pathway 

length limit, the algorithm further backtracks and continues from there. The algorithm 

finishes when all permitted-length branches of the tree terminate in a metabolite that is 

native to the host organism. Due to the probabilistic nature of selecting the reactions, the 

completed tree does not exhaustively enumerate all possible pathways. Rather, each tree 

represents a single pathway from the source metabolite to one or more product 

metabolites that are native to the host organism. Therefore, the search is iterated many 

times to explore a diverse number of possible pathways. In our previous work, we found 

that the probabilistic search matches an exhaustive search in terms of sampling diversity, 
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and dramatically outperforms the exhaustive search in terms of computational efficiency 

(155).  

 

3.2.3 SAMPLE COLLECTION 

Female C57BL/6 mice at 5 weeks and 14 weeks of ages were purchased from 

Jackson Laboratories (Bar Harbor, Maine) and allowed to orient to colony for 1 week. 

All mice were maintained in a pathogen free animal facility located at Texas A&M 

Health Science Center. The animals were handled in accordance with the Institutional 

Animal Care and Use Committee guidelines under an approved animal use protocol. The 

young and old mice (n = 7) were sacrificed at 6 and 15 weeks of age, respectively. The 

entire cecum (tissue with luminal contents) and fecal pellets were collected from each 

animal. The samples were weighed, flash frozen, and stored at -80oC before processing 

for extraction.  

 

3.2.4 METABOLITE EXTRACTION 

Metabolites were extracted from cecum or fecal pellets luminal contents and 

fecal samples using a solvent-based method (158) with minor modifications. Briefly, 1.5 

ml of ice-cold methanol/chloroform (2:1, v/v) was added to a sample tube containing a 

pre-weighed luminal content or fecal sample. After homogenization on ice, the sample 

tube was centrifuged under refrigeration (4 
o
C) at 15,000 × g for 10 min. The supernatant 

was then transferred to a new sample tube through a (70-μm) cell strainer. After adding 

0.6 mL of ice-cold water, the sample tube was vortexed vigorously and centrifuged 
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under refrigeration (4 
o
C) at 15,000 × g for 5 min to obtain phase separation. The upper 

and lower phases were separately collected into fresh sample tubes with a syringe, taking 

care not to disturb the interface. To improve signal intensity for MS, 500 μL of the polar 

phase was concentrated by solvent evaporation in a Savant speedvac concentrator 

(Thermo Scientific, Asheville, NC), and then reconstituted in 50 μL of methanol/water 

(1:1, v/v). Extracted metabolites were stored at -80
o
C until analysis.  

 

3.2.5 METABOLITE ANALYSIS 

Prior to sample analysis, MS parameters were optimized for each target 

metabolite to identify the MRM transition (precursor/product fragment ion pair) with the 

highest intensity under direction injection at 10 μL/min. The following parameters were 

optimized operating in positive mode: declustering potential (DP), entrance potential 

(EP), collision energy (CE), and collision cell exit potential (CXP). The optimized 

parameter values for the target metabolites analyzed in this study are shown in Table 3.1. 

The target metabolites in samples were detected and quantified on a triple quadrupole 

linear ion trap mass spectrometer (3200 QTRAP, AB SCIEX, Foster City, CA) coupled 

to a binary pump HPLC (1200 Series, Agilent, Santa Clara, CA). Peak identification and 

integration were performed using Analyst software (version 5, Agilent, Foster City, CA). 

Samples were maintained at 4
o
C on an autosampler prior to injection. Chromatographic 

separation was achieved on a hydrophilic interaction column (Luna 5 μm NH2 100 Å  250 

mm × 2 mm, Phenomenex, Torrance, CA) using a solvent gradient method (159).  
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Table 3.1. Optimized MRM-MS parameters for detection of TRP metabolites 

 

Compound Precursor (Da) Product (Da) DP (V) EP (V) CE (V) CXP (V) 

Indole 118.0 91.0 41.0 10.0 27.0 2.5 

Indole 3-acetate 176.0 130.0 31.0 9.0 19.0 4.0 

Indole 3-acetamide 175.0 130.0 26.0 10.0 19.0 4.0 

Tryptamine 161.0 144.2 11.0 4.0 15.0 4.0 

Hydroxyindole 134.1 77.1 26.0 10.0 37.0 2.5 

Tryptophan 205.0 188.0 21.0 10.0 17.0 4.0 
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Solvent A was an ammonium acetate (20 mM) solution in water with 5 % acetonitrile 

(v/v). The pH of solvent A was adjusted to 9.5 immediately prior to analysis using 

ammonium hydroxide. Solvent B was pure acetonitrile. Injection volume was 10 μL. 

The gradient method, including solvent flow rate and composition, is shown in Table 3.2.  

 

3.2.6 PARTITION OF METABOLITES IN EXTRACTION SOLVENT  

 Since only the upper (polar) phase of the biphasic metabolite extract was used for 

analysis, the partition of all five metabolites between the two phases was determined for 

absolute quantification. Briefly, 5 μL of the metabolite’s stock solution (1 mg/mL) was 

dispensed into a 1.5 mL microfuge tube. To this pure stock solution, 750 μL of 2:1 

methanol:chloroform was added, followed by 300 μL of water. Following centrifugation 

and phase separation, the upper phase was collected and analyzed for the target 

metabolite using the corresponding optimized MRM parameters. The difference between 

measured and theoretical amounts of the metabolite was used to determine the partition 

between phases. For example, the theoretical amount of tryptophan in the stock solution-

solvent mixture is 25 nmol. The measured concentration in the upper phase was 34 μM, 

which corresponds to an estimated total amount of ~27 nmol in the upper phase (volume 

800 μL), suggesting that all of the tryptophan is recovered within a margin of (e.g. 

pipetting) error. Similarly, all other metabolites analyzed in this study showed full 

partition into the upper phase, except indole. For indole, of the 42 nmol dispensed, only   
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Table 3.2. Solvent gradient method for metabolite separation 

  

Time (min) 

Flow rate 

(µL/min) 

A (%) B (%) 

0 300 15 85 

15 300 100 0 

28 300 100 0 

30 300 15 85 

50 300 15 85 
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17 nmol was recovered in the upper phase, indicating that the actual amount of indole 

extracted from the tissue is ~2.5 times greater than the measured amount.  

 

3.2.7 STATISTICAL ANALYSIS 

 Comparisons of medians between the metabolite levels of young and old mice 

were performed with the non-parametric two-sided Mann-Whitney U-test. The null 

hypothesis that the two medians are the same was rejected for p < 0.05. Comparisons of 

means for the reporter experiments were performed using the Student’s t-test. The null 

hypothesis that the two means are the same was rejected for p < 0.05. 

 

3.2.8 CELL CULTURE 

 A MCF-7 human breast cancer cell line was obtained from ATCC (Manassas, 

VA). MCF-7 cells were cultured at 37 °C with 5 % CO2 in RPMI 1640 medium (MP 

Biomedicals, Solon, OH) supplemented with 10% (v/v) fetal bovine serum (FBS), 

glucose (2.5 g/L), HEPES (10 mM), sodium pyruvate (1 mM), sodium bicarbonate (2 

g/L), penicillin (100 U/ml) and streptomycin (100 μg/ml). A stably transfected rat 

hepatoma (H4IIE) cell line containing an AhR-responsive enhanced green fluorescent 

protein (EGFP) reporter was kindly provided by Prof. Michael Denison (University of 

California, Davis, CA) (160). The H4IIE cells were cultured at 37 °C with 5 % CO2 in 

alpha minimum essential medium (Mediatech, Manassas, VA) supplemented with 10 % 

(v/v) FBS, glucose (3.5 g/L), sodium bicarbonate (2.2 g/L), penicillin (100 U/ml) and 
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streptomycin (100 μg/ml). Serum-free medium was used for assays on AhR activity in 

the H4IIE reporter cells.  

 

3.2.9 CONSTRUCTION OF GAUSSIA LUCIFERASE REPORTER PLASMID 

 A lentiviral reporter plasmid for monitoring activation of AhR was constructed as 

described below. AhR response elements (RE) in target promoter were identified using 

the TRANSFAC database 7.0 Public. An oligonucleotide containing three repeats of the 

binding sequence (CTGAGGCTAGCGTGCGT) separated by 4 - 6 bases (spacer 

sequence) was chemically synthesized with two restriction enzyme (EcoRI and AfeI) 

cleavage sites at the ends. The RE oligonucleotide was cloned into a lentiviral vector 

(161) in which expression of the Gaussia luciferase (Gluc) is under the control of a 

minimal CMV promoter and red fluorescent protein (RFP) is constitutively expressed. 

Expression of Gluc is induced when ligand-activated AhR binds to its RE. Clones 

containing the correct RE were identified by multiple restriction enzyme digests and 

verified by sequencing.  

 

3.2.10 GENERATION OF A STABLE MCF-7 REPORTER CELL LINE 

 A stable MCF-7 AhR reporter cell line was generated by lentiviral transduction. 

To produce lentiviral particles, AhR reporter plasmid and helper plasmids psPAX 

(plasmid 12260, Addgene, MA) and pMD2.G (plasmid 12259, Addgene) were co-

transfected into 293T/17 cells using the calcium phosphate transfection method (162). 

After 24 h following the transfection, the medium was replenished and 5 mM of sodium 
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butyrate was added. After an additional 24 h of incubation, culture supernatants 

containing viral particles were collected, pooled, filtered with 0.45 μm filters, and 

centrifuged for 2 h at 4°C at 48000 x g. The viral titer was measured using a Lenti-X 

qRT-PCR titration kit (Clontech, Palo Alto, CA). To transduce MCF-7 cells, a 

concentrated aliquot of virus particles (~1 x 10
8 
IFU) was added to the cells in presence 

of Polybrene (hexadimethrine bromide). After 4 h of incubation with the virus particles, 

the medium was replenished. 

 

3.2.11 AHR ACTIVATION STUDIES 

 The MCF-7 and H4IIE reporter cells were seeded in 24-well tissue culture plates 

and grown to 70% confluence. Cells were treated with indicated concentrations of target 

metabolites (i.e., indole, tryptamine, indole-3-acetate, indole-3-pyruvate and indole-3-

acetamide). The negative and positive controls were 0.1% (v/v) N, N-

dimethylformamide (DMF) and 20 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 

respectively. For assays using the MCF-7 reporter cells, 20 μL of culture supernatant 

was collected at 24 h and 48 h post-treatment. The MCF-7 supernatant samples were 

stored at -20 °C until the secreted luciferase activity was measured. The luciferase 

activity (relative light units; RLU) was used to calculate the rate of Gluc production 

(RLU divided by the time over which Gluc was secreted). To account for differences in 

cell density between different experiments, the Gluc production rate was normalized by 

the intensity (relative fluorescence units; RFU) of the constitutively expressed RFP 

measured at 550/600 nm excitation/emission. The AhR activity reported by H4IIE cells 
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was quantified using fluorescence optical microscopy based on the green fluorescence 

intensity of EGFP. 

 

3.3 RESULTS 

 

3.3.1 TRYPTOPHAN DERIVATIVES 

 Starting with tryptophan as the source metabolite, biochemical transformation 

pathways were computationally constructed from candidate bacterial reactions 

catalogued in the KEGG database (163). As the goal was to predict metabolic 

derivatives that could be formed by the gut microbiota, but not the murine host, pathway 

construction was terminated when a metabolite was encountered that could also be 

formed through host (murine) metabolism. Due to the probabilistic nature of the pathway 

construction algorithm, the results can vary with the number of iterations. Therefore, we 

performed a series of simulations with varying iteration numbers, and examined the 

diversity of predicted metabolic derivatives. No further increase in the number of unique 

metabolic derivatives was observed beyond iteration number 1,500 (Fig. 3.1A). 

Moreover, the ordering of the metabolic derivatives in terms of their relative selection 

frequency also remained constant. Holding the iteration number constant at 1,500, we 

next performed 50 separate runs of the pathway construction algorithm to calculate 

average frequencies for the selected metabolic derivatives (Fig. 3.1B). Of the 26 

predicted metabolic derivatives, 12 derivatives with the highest selection frequency 

accounted for > 90% of all metabolite selections as pathway intermediates. Interestingly,  
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Fig. 3.1. Probabilistic pathway construction with a tryptophan source. (A) Number of 

unique metabolites selected using probabilistic pathway construction with TRP as the 

source metabolite. (B) Average selection frequencies of TRP pathway metabolites at 

iteration number 1,500 (50 repeated runs). (C) Correlation of metabolite selection 

frequency and distance from the source metabolite. In (B) and (C), error bars indicate 

standard deviations.  
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a significant correlation between selection frequency and reaction distance (number of 

enzymatic steps) from the source metabolite TRP was not observed for these 12 most 

frequently selected metabolites. However, there was a significant negative correlation 

between selection frequency and reaction distance when all 26 metabolites were 

included in the analysis (Fig. 3.1C). The metabolite farthest away from the source 

metabolite was acetyl-phosphate, with an average reaction distance of 10.5, which is 

well below the pathway length limit of 50 we set for the algorithm. 

 Representative tryptophan biotransformation routes and intermediates predicted 

by the pathway construction algorithm are shown in Fig. 3.2. To explore potential 

biotransformation of TRP products that could be present in the intestinal mucosa, we 

also analyzed the metabolic derivatives of two neighboring metabolites, tryptamine and 

indole, both of which can be formed from TRP in a single enzymatic step. Tryptamine 

can be formed via an aromatic-L-amino-acid decarboxylase (EC 4.1.1.28), which is 

encoded by the dopa decarboxylase gene (ddc) in the mouse (164), although the 

expression of this enzyme has not been reported in intestinal tissue. Indole can be 

formed via tryptophanase (tnaA), which is expressed in a number of species of the 

murine gut microbiome. For tryptamine, the number of unique derivatives identified by 

our algorithm was 54 at an iteration number of 1,500. Similar to tryptophan, the 

selection frequencies were highly uneven, with 10 metabolites accounting for >95% of 

all metabolite selections. Every one of these 10 metabolites was also predicted as TRP 

derivatives. For indole, the maximal number of unique derivatives identified by our 

algorithm was only three: 1-(2-carboxyphenylamino)-1-deoxy-D- ribulose 5-phosphate,  
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Fig. 3.2. Representative tryptophan biotransformation routes and intermediates predicted 

by the pathway construction algorithm. Metabolites quantified in this study using MRM 

MS are indicated in bold. Arrows representing enzymatic reactions are labeled by the 

corresponding enzyme commission number (EC#). Some reactions (e.g. conversion of 

tryptophan into indolepyruvate) can be catalyzed by multiple enzymes. Similarly, some 

metabolic derivatives (e.g. indole-3-acetaldehyde) can be produced through multiple 

routes. 
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indoleglycerol phosphate, and N-(5-phospho-D-ribosyl)anthranilate. The iteration 

number needed to obtain a stable set of relative selection frequencies for the predicted 

derivatives was also lower than TRP or tryptamine (only 200), presumably due to the 

lower connectivity of reactions involving indole. Similar to the high-frequency 

tryptamine derivatives, every indole derivative was a subset of the predicted TRP 

derivatives. 

 

3.3.2 QUANTIFICATION OF METABOLITES USING MULTIPLE REACTION 

MONITORING (MRM) 

 Of the 12 high-frequency metabolites predicted by the pathway algorithm to be 

derived from TRP by bacteria, a subset was selected for MRM analysis based on 

availability of pure standards and ease of ionization and fragmentation. For example, 

indole 3-acetaldehyde was excluded, because a high-purity was not available to generate 

a standard curve. Indole 3-pyruvate was excluded, because it ionized poorly, and thus 

had a high limit of detection (LOD) in comparison with the other metabolites targeted 

for analysis. The final panel of metabolites targeted for analysis comprised indole, 

hydroxyindole, indole 3-acetate, indole 3-acetamide, tryptamine and TRP. 

Hydroxyindole was added to the panel based on recent reports suggesting that it is 

derived from indole through bacterial reactions (20). All six metabolites were 

simultaneously identified and quantified in murine fecal and cecum extracts using MRM 

MS following separation by hydrophilic interaction chromatography (HILIC). 

Metabolite identification was performed based on both chromatographic retention time 
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and mass signatures, as we found that even an optimized MRM transition (precursor-

product ion pair) did not always uniquely identify a metabolite in a complex biological 

sample. For indole, the optimal ion pair transition based on MS signal intensity was 

118/91 m/z. The elution time of this transition ranged from 2.2 and 2.9 min for standards 

containing the corresponding high-purity chemical (Fig. 3.3A). The linear response of 

signal area under curve (AUC) with respect to concentration is shown for concentrations 

up to 85 μM (Fig. 3.3A; R
2
 = 0.998, p < 10

-4
), with an estimated LOD (defined as the 

peak height of 10-times the baseline signal) of 4.6 μM. For tissue extracts, we observed 

multiple peaks corresponding to the signal-optimized indole transition, highlighting the 

importance of matching the retention time to unambiguously identify a metabolite (Fig. 

3.3B, Fig. 3.4 for chromatograms of all metabolites). To determine whether the MRM 

method could be used to detect physiological differences in metabolite levels, we 

compared the fecal pellet and cecum concentrations of TRP and its derivatives in young 

(age 6 weeks) and old (age 15 weeks) female C56BL/6 mice fed standard chow (Fig. 

3.5). All six metabolites were detected in both fecal pellet and cecum extracts from 

young and old mice. For cecum extracts, statistically significant differences (p < 0.05) 

were found between young and old mice for all metabolites except tryptamine. For fecal 

extracts, statistically significant differences were found only for indole 3-acetate. Unlike 

the fecal extracts, metabolite levels in the cecum extracts could be meaningfully 

expressed as tissue concentrations by normalizing the absolute molar quantities with 

respect to the weight of the source tissues and approximating tissue density with that of   
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Fig. 3.3. LC-MS/MS chromatogram for indole. (A) indole standard (107 ng/L). Peaks 

correspond to 118 > 91 (m/z) MRM transition. Retention time of indole lies between 

2.2 and 2.9 minutes. Signal Area Under Curve (AUC) is also plotted as a function of 

indole concentration (R
2
 =0.998, p < 10

-4
). (B) Representative sample with peaks 

corresponding to the 118 → 91 (m/z) MRM transition. Sample shown was extracted 

from the cecum of a young mouse (6 weeks of age).  
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Fig. 3.4. LC-MS/MS chromatogram for all target metabolites. (A) Indole 3-Acetate, 

MRM: 176>130 (B) Indole 3-Acetamide, MRM: 175>130 (C) Hydroxyindole MRM: 

134.1>77.1 (D) Tryptophan MRM: 205>188 (E) Tryptamine, MRM: 161>144.2, 

standards (left) and metabolite extracts of week 5 cecum samples (right).  
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Fig. 3.5. Comparison of metabolite concentrations between young (6 weeks of age) 
and old (15 weeks of age) mice. Metabolite concentrations were normalized to the 

corresponding mass of fecal pellet. (A) cecum extracts (B) fecal extracts. 
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water (1 g/ml). For example, after accounting for the partition of indole between the 

polar and nonpolar phases of the metabolite extraction solvent, the normalized tissue 

concentrations for indole ranged from 9.7 to 40 μM These are conservative estimates, as 

it is expected that the efficiency for the extraction of metabolites from tissue into solvent 

is less than 100 %.  

 

3.3.3 ACTIVATION OF AHR BY MICROBIOTA METABOLITES 

 We investigated if the identified microbiota metabolites could be putative ligands 

in host cells and activate eukaryotic signaling pathways. Specifically, we investigated 

the ability of identified microbiota metabolites to act as agonists for the AhR, as 

previous studies (83) have shown that endogenous TRP-derived metabolites can activate 

AhR signaling. MCF-7 cells with a stably integrated Gaussia luciferase (Gluc) reporter 

plasmid for AhR binding activity were incubated with 100 μM microbiota metabolites or 

20 nM TCDD (positive control) for 48 h, and luciferase activity in culture supernatants 

was measured. Exposure to TCDD, a high-affinity AhR agonist, resulted in a 2-fold 

increase in the rate of AhR-driven luciferase activity (RLU/h/RFU) as compared to the 

solvent control (Fig. 3.6). Exposure to indole-3-acetate, tryptamine and indole-3-

pyruvate also resulted in similar induction of AhR activity. Indole-3-acetamide resulted 

in a 1.3-fold statistically significant (p < 0.02) increase in AhR binding activity at 24 h 

but not at 48 h. Interestingly, indole did not induce activation of AhR, suggesting that 

the core indole moiety is by itself not sufficient to elicit a significant response. Similar 

results were also observed in the H4IIE rat liver reporter cell line using GFP as the     
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Fig. 3.6. AhR activation by TRP-derived metabolites. Activity assays were 

performed at a dose of 100 μM for each metabolite. AhR activity is reported as the 

rate of luciferase activity normalized to red fluorescence of constitutively expressed 

RFP (RLU/h/RFU). Positive and negative controls were 20 nM TCDD and 0.1% 

(v/v) DMF, respectively. 
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  Fig. 3.7. Microbiota metabolites screen for AhR activation in the H4IIE reporter cells. 

The H4IIE cells containing an AhR-responsive enhanced green fluorescent protein 

(EGFP) reporter were seeded in 24-well tissue culture plates and cultured to 70% 

confluence. Cells were treated with 100 μM of target metabolites or 0.1 % (v/v) of 

DMF. Green fluorescent images were taken at 48h post-treatment. (A) DMF, (B) 

indole, (C) indole-3-acetate, (D) tryptamine, (E) indole-3-pyruvate, (F) indole-3-

acetamide 
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readout (Fig. 3.7). For metabolites that induced AhR binding activity at 100 μM, we 

performed dose response experiments to determine concentration effects on induction of 

AhR activity. Exposing MCF-7 reporter cells to increasing concentrations of indole-3-

acetate and tryptamine resulted in a dose-dependent increase in AhR activity (Fig. 3.8). 

Exposure to indole 3-pyruvate, one of the in silico predicted metabolites, but not 

quantified due to poor ionization, also showed a dose dependent increase (Fig. 3.9). The 

dose-dependent increase in AhR-dependent reporter activity was also confirmed using 

H4IIE reporter cells (Fig. 3.10). 

 

3.4 DISCUSSION  

 In this study, we present a methodology for the prediction, identification and 

quantification of gut microbiota metabolites that integrates computational pathway 

analysis into a targeted metabolomics workflow. The effects of physiological or 

pathological perturbations on the microbiota have been investigated using metagenomic 

analyses characterizing the composition of the gut microbial community, the enrichment 

(or depletion) of bacterial genes, or the expression levels of genes for specific metabolic 

pathways (20, 165, 166). A limitation of these analyses is that they do not provide direct 

information on the products of bacterial metabolism such as which molecules are formed 

from bacterial biotransformation reactions and the concentrations at which these 

metabolic products are present. Thus, the ability to unambiguously identify bacterial 

metabolites and quantify their levels in the GI tract is expected to have a significant 

impact on the study of human gut microbiome function.   



 

55 

 

 

 

  

Fig. 3.8. Dose dependent activation of AhR upon exposure to indole-3-acetate and 

tryptamine. Data shown are mean ± standard deviation from four replicate 

experiments. Asterisk (*) indicates statistical significance at p < 0.05. 
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  Fig. 3.9. Dose dependent activation of AhR upon exposure to indole 3-pyruvate. 

Data shown are mean ± standard deviation from four replicate experiments. Asterisk 

(*) indicates statistical significance at p < 0.05.  
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Fig. 3.10. Dose-dependent AhR activation in the H4IIE reporter cells. (A) 
Tryptamine, (B) Indole 3-Acetate, and (C) Indole 3-Pyruvate. The H4IIE cells 

containing an AhR-responsive enhanced green fluorescent protein (EGFP) reporter 

were seeded in 24-well tissue culture plates and cultured to 70% confluence. Cells 

were treated with indicated concentrations of target metabolites. Green fluorescent 

images were taken at 48h post-treatment. 
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 One limitation of the in silico metabolite prediction step is that its reliability is 

predicated on the accuracy and completeness of the KEGG pathway database. While the 

KEGG database is continually and frequently updated, it is certainly possible that our 

predictions lag behind newly published discoveries regarding microbiota metabolism. 

For example, Wikoff and coworkers recently identified indole 3-propionate as a TRP-

derived metabolite that is produced by the gut microbiota (64). However, at the time of 

completion of this work, this metabolite was not listed in the KEGG compound database, 

and thus could not be identified by our algorithm. Similarly, the discrimination of 

bacterial metabolites from metabolites that could also be produced by host cells depends 

on an accurate model of host metabolism. The most relevant host genomes, e.g., mouse 

and human, have been sequenced and largely annotated, and several published models 

are available that exhaustively catalogue the metabolic reactions. However, prior studies 

with genome-scale model reconstruction suggest that several iterations may be required 

until the published models can be considered stable, consensus reconstructions (167).  

 Another limitation of the prediction algorithm is that it does not differentiate 

between reactions based on their gene abundance or expression level when constructing 

a possible biotransformation route. Consequently, each candidate reaction that can be 

connected to the source metabolite has an equal likelihood of selection, which unlikely 

reflects the true engagements of metabolic reactions in the gut microbiota. In principle, 

metabolites produced by reactions encoded by genes that are highly abundant and/or 

highly expressed should more likely be present at quantifiable levels compared to the 

products of depleted or minimally expressed pathways. In this regard, both of the present 
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limitations of the in silico prediction step could be addressed by incorporating 

metagenomic data on as they become available. Our pathway construction already 

accepts user-specified selection weights, and could be extended in a straightforward 

manner to explore a microbiota metabolic network weighted by relative gene 

abundances or expression levels. 

 A key advantage of MRM as a MS technique for targeted metabolomics is that 

the detection of precursor-product ion pairs offers greater specificity compared to full 

scan MS, while allowing absolute quantitation. This targeted approach also allows for 

enhanced sensitivity as well as improved LOD, because instrument-specific parameters 

can be tailored and optimized for the detection of each individual MRM transition, 

whereas full scan methods are restricted to one fixed set of parameters for all analytes, 

which may be suboptimal for the ionization and fragmentation of certain metabolites. In 

practice, even optimized MRM transitions may not represent a unique mass signature for 

a metabolite, as there are cases where multiple analytes present in a biological sample 

share the same transition. For example, indole 3-acetamide shows a strong signal for the 

175 → 130 transition, as does arginine, a highly abundant amino acid. This overlap in 

MRM transitions by different compounds underscores the critical importance of 

chromatographic separation in identifying metabolites. Another common problem that 

potentially compromises specificity is the tendency for metabolites possessing thermally 

labile bonds to decompose due to heated electrospray ionization (HESI). For example, a 

sample containing only high-purity TRP showed a strong signal for the indole transition 
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(118 → 91) at the same retention time as TRP (Fig. 3.6B), presumably due to partial 

decomposition into indole at the ion source.  

 To our knowledge, this is the first study to use MRM to quantify physiological 

concentrations of microbiota-produced metabolites present in intestinal tissue extracts. 

While the literature on absolute concentrations of microbiota metabolites is relatively 

sparse, we found good agreement between our results and previously reported values. In 

an early study, Whitt and coworkers used an enzymatic assay to determine an indole 

concentration of ~40 nmol/g tissue in murine cecum (168), which is comparable to our 

results (16 - 31 nmol/g tissue in cecum of young mice). The earlier study also reported 

that indole was absent in the cecum of germ-free mice, which is consistent with our 

pathway analysis algorithm’s prediction that indole is a product of bacterial metabolism. 

A comparison of samples from young and old mice suggests that the age of the host 

impacts the levels of microbiota metabolites in the GI tract as reflected in cecum and 

fecal concentrations of bacterial TRP derivatives. This observation is consistent with 

several recent studies showing that age may influence levels of other microbiota-

associated metabolites. For example, Vaahtovuo and coworkers reported differences in 

bacteria-derived cellular fatty acids in stool samples between 5 - 7 and 15 - 19 weeks old 

mice (169).  

 The AhR is a ligand-activated transcription factor that plays an important role in 

the mucosal immune system (71), and several TRP-derived chemicals have been 

identified as AhR ligands (81). In our study, we observed that three of the predicted TRP 

derivatives (indole 3-acetate, tryptamine and indole 3-pyruvate) were able to activate 
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AhR in a dose-dependent manner (Fig. 3.8, Fig. 3.9). This result is consistent with a 

previous study by Heath-Pagliuso et al., who showed that tryptamine and indole-3-

acetate function as AhR agonists (83). However, this previous study, while assuming 

that these two metabolites could be derived from TRP through enzymatic reactions, did 

not confirm that they are actually present in the GI tract in quantifiable amounts. In this 

work, we show that putative AhR agonists like tryptamine and indole-3-acetate are 

present in the cecum at intracellular concentrations (i.e., the levels present in the cecal 

bacteria and the surrounding tissue) ranging from 1 to 5 μM, and that they activate the 

AhR in vitro at concentrations of ~100 μM. This apparent discrepancy between the 

measured concentration of metabolites and the concentrations required to activate the 

AhR in vitro could be due to two reasons. First, the measured concentration of these 

metabolites is a conservative estimate, as it does not account for the metabolite 

extraction efficiency. Second, the concentrations needed to activate the AhR in vitro are 

extracellular concentrations (i.e., concentrations in the culture medium), and since the 

AhR is an intracellular (cytosolic) receptor, the extracellular medium concentrations may 

not equate to intracellular levels, depending on the rates of uptake and metabolism inside 

the cells. Further analysis is needed to model the kinetics of ligand uptake and 

processing that lead to the activation of the AhR. 

 An obvious extension of this work is to predict and identify molecules that can 

be derived by the intestinal microbiota from different source metabolites. One such 

source metabolite could be the amino acid phenylalanine that is reduced in the serum of 

germ-free mice, and therefore, a source of putative bioactive molecules. The 
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methodology described here can also be applied to identifying bioactive derivatives of 

environmental contaminants such as bisphenol A that can be generated in vivo by the GI 

tract microbiota and either have increased activity or have potentially different spectrum 

of activity (170).   
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CHAPTER IV 

ANALYSIS OF TRANSCRIPTION FACTOR NETWORK UNDERLYING 3T3-

L1 ADIPOCYTE DIFFERENTIATION 

 

4.1 INTRODUCTION 

Obesity is characterized by an increase in body fat mass, specifically in that of 

white adipose tissue (WAT) (14). Expansion of the body fat mass can occur either due to 

an increase in the number of adipocytes and/or an increase in size of adipocytes. The 

increase of adipocyte cell size is an important component of the increase in adipose 

tissue mass (15). Adipocyte enlargement arises as a result of genetic or environmental 

conditions that progressively increase lipid loading and therefore, cell size. The lipid 

content in adipocytes at any point is the result of a balance between formation and 

breakdown of lipid droplets in adipocytes. This lipid balance is extremely important as 

both high and low lipid levels have deleterious consequences. Several in vitro and in 

vivo studies (171-173) have shown that increased lipid loading and enlarged adipocytes 

correlate strongly with complications of obesity (e.g., recruitment of macrophages and 

inflammation, insulin resistance). Similarly, inadequate lipid levels in adipocytes are 

also not desirable as it leads to metabolic disorders and imbalance in supply of energy 

substrates to other organs such as the liver as well as insulin resistance (174). Therefore, 

control and regulation of the lipid balance in adipocytes (e.g., the ability to control lipid 

accumulation without significantly altering the extent of adipogenesis) is extremely 

important. 



 

64 

 

The enzymes mediating adipocyte lipid accumulation and utilization are 

regulated through the temporally coordinated action of several transcription factors (175, 

176).  In vitro studies have shown that during the clonal expansion of growth-arrested 

preadipocytes the expression of CCAAT/enhancer binding protein β (C/EBPβ) and δ 

(C/EBPδ) is increased (87). Subsequently, expression of peroxisome proliferator 

activated receptor- γ (PPARγ) and C/EBPα are stimulated (177). PPARγ is a master 

switch for adipocyte differentiation (176, 178), and along with sterol regulatory element 

binding protein-1c (SREBP-1c), directly controls the expression of several genes in 

lipogenesis. C/EBPα and C/EBPβ also sequentially regulate the expression of 

diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step in 

triacylglycerol (TG) synthesis and lipogenesis, while PPARγ also regulates the 

expression of lipases (adipose triacylglycerol lipase, ATGL) that functions in lipid 

breakdown. In addition, SREBP-1c promotes adipogenesis. Although SREBP-1c cannot 

initiate adipogenesis by itself (179), it can activate PPARγ expression (180) which leads 

to an increase in adipogenesis. Cyclic AMP response element binding protein (CREB) is 

another early-transcriptional regulator as compounds that upregulate CREB activity 

(e.g., insulin, dexamethasone) also induce differentiation (175). Nuclear factor of 

activated T cells (NFAT) was demonstrated to form a composite enhancer complex with 

C/EBP and potentiate PPARγ expression (181), while the forkhead transcription factor 

(FoxO1) has been shown to counter PPARγ activation in 3T3-L1 adipocytes (182). 

While these studies have identified roles for different transcription factors, data from 

these studies provide limited information on both expression dynamics and interaction 
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between regulatory network molecules generated in these studies. In fact, simple 

inhibition of individual regulatory molecules often has adverse effects; for example, the 

inhibition of PPARγ in vivo reduces adipogenesis, but also increases insulin resistance, 

one of the chief complications of type-2 diabetes mellitus (183). Therefore, it is 

important to consider the dynamics and interaction between different members of the 

regulatory network for modulating complex phenotypes such as lipid balance in 

adipocytes. 

  In this study, we developed an integrated network model of adipocyte 

transcription factors based on published connections between the different molecules, 

and validated it using measurements of activation dynamics during adipocyte 

differentiation and lipid loading. The model was verified by perturbing the activation 

levels of CREB and determining its effects on the other transcription factors. The 

transcription factor network is expected to provide a framework for manipulating 

adipocyte differentiation and lipid accumulation during obesity. 

 

4.2 MATERIALS AND METHODS 

 

4.2.1 MATERIALS 

  3T3-L1 cells were kindly provided by Prof. Barbara Corkey (Boston University 

School of Medicine, MA). Tissue culture reagents including Dulbecco's Modified 

Eagle's Medium (DMEM), calf serum (CS), fetal bovine serum (FBS), human insulin, 
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and penicillin/streptomycin were purchased from Invitrogen (Carlsbad, CA). Unless 

otherwise noted, all other chemicals were purchased from Sigma (St. Louis, MO). 

 

4.2.2 CELL CULTURE AND DIFFERENTIATION 

 3T3-L1 cells were seeded in 6-well tissue culture plates in preadipocyte growth 

medium consisting of DMEM supplemented with CS (10 % v/v), penicillin (200 U/ml) 

and streptomycin (200 μg/ml). Medium was replenished every other day. Two days post-

confluence, differentiation was induced using a standard adipogenic cocktail (1 μg/ml 

insulin, 0.5 mM isobutylmethylxanthine, and 1 μM dexamethasone) added to a basal 

medium (DMEM with 10 % FBS and penicillin/streptomycin). After 48 h, the first 

differentiation medium was replaced with a second differentiation medium consisting of 

the basal adipocyte medium supplemented with only 1 μg/ml of insulin. After another 48 

h, the second medium was replaced with the adipocyte basal medium and replenished 

every other day.  

 

4.2.3 CONSTRUCTION OF GAUSSIA LUCIFERASE REPORTER PLASMIDS  

Lentiviral reporter plasmids for monitoring activation of six transcription factors 

(TFs) - PPARγ, SREBP-1c, NFAT, CREB, C/EBPβ and FoxO1 - during adipocyte 

differentiation and lipid loading were constructed as described below. For each TF, 

consensus binding sites (response elements; RE) in target gene promoter regions were 

identified using TRANSFAC database 7.0 Public (AGGACAAAGGTCA for PPARγ, 

CATGTG for SREBP-1c, GGAAAATTTGAGTCA for NFAT, TGACGTCA for CREB, 
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ATTGCGCAAT for C/EBPβ and AGTTGGACGCGAC for FoxO1). Response element 

(RE) oligonucleotides containing the binding sequence for each TF were chemically 

synthesized. Each RE oligonucleotide consists of three consensus binding sequences 

separated by 4 - 6 bases (spacer sequence) and a unique restriction enzyme (EcoRI and 

AfeI) cleavage sites at the ends. The RE oligonucleotides were cloned into Gluc-DRE2-

viral vector (pCS-sMAR8-pA1-DRE2-hPGK-cHS4-tACTB-SPA-Gluc-CMVmin) (184) 

in which expression of the Gaussia luciferase (Gluc) is under the control of a minimal 

promoter. Expression of Gluc is induced only when a TF binds to its consensus binding 

site. Clones containing the correct RE were identified by multiple restriction enzyme 

digests and sequenced to verify fidelity.   

 

4.2.4 GENERATION OF STABLE REPORTER CELL LINES  

Stable reporter cell lines for each TF were generated by lentiviral transduction. 

To produce lentiviral particles, each TF reporter plasmid and two helper plasmids 

(psPAX; Addgene plasmid 12260 and pMD2.G; Addgene plasmid 12259, Dr. Trono, 

Lausanne, Switzerland) were co-transfected into 293T/17 cells using the calcium 

phosphate transfection method (185). After 24 h following the transfection, the medium 

was replenished and 5 mM of sodium butyrate was added, and incubated for an 

additional 24 h. Supernatants containing viral particles were collected, pooled, filtered 

with 0.45 μm filters, and centrifuged for 2 h at 4°C at 48000 xg. The viral titer was 

measured using a Lenti-X qRT-PCR titration kit (Clontech, Palo Alto, CA). To 

transduce 3T3-L1 preadipocytes, concentrated virus particles (~ 2 x 10
8
 IFU) were added 
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to the cells in presence of Polybrene (hexadimethrine bromide). The cells were incubated 

with the virus particles for 15 h, and the medium was replenished the next day. The 

efficiency of transduction was assessed by microscopic analysis.  

 

4.2.5 VALIDATION OF REPORTER PLASMID FUNCTION  

  Plasmids for constitutive expression of the TFs were purchased from Addgene 

(pCMV5-FLAG-FoxO1, pSV Sport SREBP-1c, pEGFP-C1 NFAT3, pcDNA flag PPAR 

gamma) or Invitrogen (pCMV-Sport6-CREB). 293T/17 cells were seeded in 6-well 

tissue culture plates, and ~1 μg of each expression plasmid was cotransfected along with 

the corresponding reporter plasmid (~ 1 μg) using the calcium phosphate transfection. 

For control experiments, the same amount of pEYFP-N1 plasmid (constitutive 

expression of yellow fluorescent protein) was transfected. At 48 h post-transfection, 

supernatants were collected and luciferase activity measured using the BioLux Gaussia 

Luciferase Flex assay kit (New England Biolabs, Ipswich, MA). Additionally, the 

PPARγ reporter plasmid was validated using thiazolidinedione (TZD) as the agonist. 

PPARγ was overexpressed from plasmid (pcDNA flag PPAR gamma) in 3T3-L1 PPARγ 

reporter cells and 25μM TZD was used to activate PPARγ for 24 h. The C/EBPβ 

reporter cell line was validated by up-regulating C/EBPβ with 100 ng/mL oncostatin M 

(OSM) for 12 h (186). Luciferase activity in the supernatant was determined as 

described above.  
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4.2.6 MEASUREMENT OF TRANSCRIPTION FACTOR ACTIVITY PROFILES  

For profiling TF activation in each reporter cell line, 3T3-L1 preadipocyte 

reporter cells for each TF were seeded in 6-well tissue culture plates and differentiated 

into adipocytes as described above. At different stages post-differentiation, 30 µL 

supernatant samples were collected at 24 h post-medium change from day 0 (induction 

of differentiation) until day 17. Samples were stored at -20°C prior to assessing 

luciferase activity. The luciferase activity (Relative Light Units; RLU) measured was 

used to calculate the rate of Gluc production (RLU divided by the time over which Gluc 

was secreted). To account for differences in cell density between different experiments, 

the RLU rate was normalized with the red fluorescence intensity (Relative fluorescence 

units; RFU) measured at 550 nm (excitation) and 600 nm (emission). The fold-increase 

in TF activity was determined by normalizing the (RLU/h)/RFU at each time point to the 

corresponding value at the start of differentiation (i.e., day 0).      

 

4.2.7 PERTURBATION OF THE TRANSCRIPTION FACTOR NETWORK BY 

FORSKOLIN 

 CREB, C/EBPβ and PPARγ reporter cell lines were seeded in 6-well tissue 

culture plates and differentiated into adipocytes as described above. Cells were treated 

with 10 μM of forskolin or 0.1% DMSO at day 0 for 48 h. TF-driven luciferase activity 

in the supernatants was determined and the TF activation profiles were determined as 

described above. 
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4.2.8 TRANSCRIPTION FACTOR NETWORK  

 An interaction network model of the TFs analyzed in this study was assembled 

from the published literature (87, 90-93, 104, 180, 182, 187). A schematic of the model 

is shown in Fig. 4.1. The model included only four of the six measured TFs, i.e. CREB, 

C/EBP, PPARγ, and SREBP-1c, as interactions involving the other two TFs, NFAT and 

FoxO1 were not consistently documented in the literature. The guiding principles in 

assembling the model were simplicity and identifiability. While it is likely that some of 

the TFs interact with each other through intermediaries and co-activators, these 

molecules were not experimentally monitored in this study, and thus it was not 

attempted to model these details. Including additional details could have improved the fit 

of the model to the data by increasing the degree of freedom, but the “improved” fit 

would have occurred at the expense of diminished identifiability. For these reasons, the 

activation of a TF by another factor was assumed to occur directly, and modeled using 

simple mass action kinetics. The exception was the activation of PPAR by SREBP-1c, 

which was assumed to involve the induction of a metabolic enzyme leading to the 

production of an activating ligand. The identity of this ligand remains to be definitively 

established, and a number of candidates have been proposed such as 13-

hydroxyoctadecadienoic acid, 15-hydroxyeicosatetraenoic acid and 1-O-hexadecyl-2-

Azelaoyl-sn-glycero-3-phosphocholine (188, 189); however, there is reasonable 

consensus that SREBP-1c activation of PPAR involves the endogenous production of a 

metabolite ligand. Including the putative PPAR ligand, the TF network model    



 

71 

 

 

 

 

 

  

Fig. 4.1. Schematic of TF network model. Arrows indicate direction of interaction. 

Model parameters (k2, k5, k8, and k10) labeling dotted arrows represent first-order 

decay rate constants for the TFs. See text for abbreviations.  
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comprises 5 species whose levels varied continuously with time. In addition, the model 

included three input species representing the differentiation inducing hormones insulin, 

dexamethasone (DEX), and isobutylmethylxanthine (IBMX). The levels of these input 

species were set to one (arbitrary units) or zero to reflect the addition and withdrawal of 

the hormones at different stages of a differentiation experiment. For the initial induction 

period from time zero to 48 h, the levels of all three input species were set to one. For 

the second induction period from 48 h to 96 h, DEX and IBMX were set to zero, while 

insulin was kept at one. For the maintenance period from 96 h to end of the experiment, 

all input species were set to zero.  

The rates of change of the 5 time variant species were described using ordinary 

differential equations (ODEs). Partial differentiation equations or stochastic equations 

were not considered, because the data collected reflected the pooled averages of many (> 

10
6
) cells in a well-mixed environment. The general structure of the ODEs describing 

the TF dynamics was as follows. 

   

  
 ∑     

 

                                                                 

In equation (1), yi is the amount of active TF i, yj is the amount of a TF j that activates i, 

and kj>i is the rate constant for first-order activation of i by j. Every TF was assumed to 

decay at a rate proportional to its amount with a first-order degradation rate constant kd. 

The rate of production and degradation of the metabolite ligand was modeled similarly 

using first-order rate expressions. The full set of ODEs describing the dynamics of the 

TFs and ligand are listed in Table 4.1.  
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Table 4.1. Mass action kinetic model of TF interactions  

 

TF (or 

Ligand) 
Differential equation k min max median 

CREB 
1 2

dCREB
k IBMX k CREB

dt
   

k1 1.04E+01 1.50E+01 1.26E+01 

k2 8.65E-01 1.18E+00 9.93E-01 

C/EBP 4 3 7 5

dCEBP
k DEX k CREB k PPAR k CEBP

dt
   

 

k3 5.99E-07 2.25E+01 2.42E+00 

k4 2.17E-09 3.89E+00 1.65E+00 

k5 5.00E-01 8.79E+01 1.05E+01 

k7 9.12E-02 2.38E+01 2.96E+00 

PPAR 
6 12 8

dPPAR
k CEBP k Ligand k PPAR

dt
    

k6 3.43E-01 3.85E+01 1.50E+01 

k8 5.00E-01 5.35E+01 2.35E+01 

k12 2.27E-01 4.32E-01 2.82E-01 

SREBP-

1c 9 13 10

dSREBP
k Insulin k PPAR k SREBP

dt
    

k9 2.72E-01 1.56E+00 4.22E-01 

k10 8.61E-02 1.40E+00 2.52E-01 

k13 1.29E-08 4.74E-01 5.62E-02 

Ligand 
11 12

dLigand
k SREBP k Ligand

dt
   k11 8.37E-01 1.00E+02 4.89E+01 
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4.2.9 PARAMETER ESTIMATION 

 The model parameters, i.e. rate constants, were estimated from the 

experimentally obtained TF time course data (control condition without forskolin 

treatment) using a nonlinear constrained optimization procedure. The objective function 

was to minimize the sum of squared residuals (SSR) measuring the discrepancy between 

the measured and calculated TF levels for all time points. 

   ∑∑     
        

                                                           
  

 

In the above expression, yi,t refers to the ith TF activity level (in RLU/h/RFU) at time 

point t, with the superscript denoting experimentally measured or model calculated 

value. The optimization variables were the rate constants k1 through k14 describing 

activation (production) or degradation of the 5 model species (Table 4.1). The 

experimental data were averages of two independent experiments, where each 

experiment included two biological replicates for each TF. Parameter optimization was 

iterated 50 times. Each time, randomly generated noise drawn from a normal distribution 

was added to the experimental data. A noise level of 5 % standard deviation was used 

based on average variances in the measured TF activities across replicate experiments. 

For each of the 50 iterations, the optimization was repeated 5 times using a randomly 

generated set of initial parameter values. The upper bounds were set to 100 to ensure that 

the first-order rate parameters are within one order of magnitude from the observed rates 

of increase or decrease. The lower bounds on the TF degradation rate constants (k2, k5, 

k8 and k10) were set to 0.5, to ensure that there is a finite degradation rate for each of the 
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factors. We chose a minimal rate constant value that is equivalent to a half-life of ca. 36 

h, which is 5- to 10-fold longer than the reported half-lives of TF modeled in this study. 

The lower bounds on all other parameters were set to zero. The initial values of the TFs 

were set to one (‘1’) to reflect the normalization of the experimental data. The initial 

value of the metabolite ligand was set to zero, as it was assumed that the ligand is not 

present in preadipocytes prior to induction. The optimization was performed using the 

LSQNONLIN function (trust-region-reflective method) of the Optimization Toolbox in 

MATLAB (Natick, MA). 

 

4.2.10 SIMULATION OF THE TRANSCRIPTION FACTOR NETWORK  

 The TF network described above was evaluated by comparing the simulated TF 

time profiles against experimental data from a perturbed condition, i.e. forskolin 

exposure, which was not used in estimating the parameters. Model simulations were 

performed using all 50 sets of parameters, leading to 50 different sets of TF time 

profiles. Addition of forskolin, which rapidly increases intracellular cAMP (190), was 

modeled as step increase in IBMX during the first induction period (time 0 to 48 h) from 

a value of 1 to 1.7. This step increase in IBMX was set based on the measured profile of 

CREB, which is the direct target of IBMX in the model. All other model parameters and 

initial values were the same as the parameter estimation problem.  
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4.3 RESULTS  

 

4.3.1 GENERATION OF GAUSSIA LUCIFERASE REPORTER CELL LINES 

TRACKING TRANSCRIPTION FACTOR ACTIVITY  

  A panel of six transcription factors (TFs) (PPARγ, SREBP-1c, NFAT, CREB, 

C/EBPβ and FoxO1) was chosen to develop a regulatory network underlying adipocyte 

differentiation and lipid loading. Reporter plasmids were developed as described in 

Materials and Methods and validated by determining if activation of a transcription 

factor led to expression of the Gaussia luciferase gene from the reporter plasmid. For the 

transcription factors CREB, SREBP-1c, NFAT, and FoxO1, plasmids containing the full 

length gene for each TF were over-expressed in 293T/17 cells by transfection along with 

the corresponding reporter plasmid. Figure 4.2A shows 5-30 fold increase in luciferase 

activity when transcription factors were overexpressed for 48 h. The 3T3-L1 PPARγ 

reporter cell line was validated by over-expressing PPARγ and activating it with a 

chemical agonist, thiazolidinedione (TZD). Figure 4.2B shows that overexpression of 

PPARγ increases PPARγ-driven luciferase activity by 1.3-fold, and additional 

stimulation with 25 µM TZD resulted in a 1.5-fold increase in luciferase activity. The 

C/EBP reporter was validated by stimulating 3T3-L1 preadipocyte C/EBPβ reporter 

cells with the cytokine oncostatin M (OSM), which resulted in a 1.7 fold increase in 

C/EBPβ-driven luciferase activity (Fig. 4.2C). Together, these results confirmed the 

ability of the developed reporter cell lines to report activation of the different TFs. 
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Fig. 4.2. The six TF reporter constructs properly present activation of each target TF. 
(A) When plasmids for constitutive expression of TFs were cotransfected with 

corresponding reporter plasmids into 293T/17 cells, Gluc activities were induced. (B) 

When a plasmid for constitutive expression of PPARγ was transfected into 3T3-L1 

PPARγ reporter cells, there was 1.5 fold increase of Gluc activity. Treatment of a 

PPARγ agonist (TZD) contributed to 1.3 fold increase. (C) Treatment of a C/EBPβ 

agonist (OSM) on 3T3-L1 C/EBPβ reporter cells caused 1.7 fold increase. Data 

represent mean ± SD. 
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Fig. 4.3. 3T3-L1 PPARγ reporter cells after 19 days of induction for differentiation 

(A) transmitted light (B) red fluorescence microscopy images. 
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Lentivirus-mediated integration of the reporter plasmids into 3T3-L1 

preadipocytes did not affect the ability of the different reporter cells to differentiate into 

adipocytes. Figure 4.3 shows representative transmitted light and red fluorescence 

images of the PPARγ reporter cell line after 19 days in culture, and clearly demonstrate 

that adipocyte differentiation was not affected (i.e., reporter cells show comparable 

accumulation of lipid droplets and cell morphology to 3T3-L1 adipocytes without the 

reporter plasmid). Moreover, no differences in differentiation and lipid loading were 

observed between the different reporter cell lines (Fig. 4.4). In addition, more than 90% 

of reporter cells demonstrated RFP expression, and suggest proper integration of the 

reporter DNA.  

 

4.3.2 PROFILES OF TRANSCRIPTION FACTOR ACTIVITY DURING 

ADIPOCYTE DIFFERENTIATION AND ENLARGEMENT 

3T3-L1 preadipocyte reporter cells were differentiated into adipocytes and the 

activity of each TF was monitored throughout the differentiation and maturation process. 

The different TFs demonstrated markedly different activation dynamics. As shown in 

Fig. 4.5, CREB reporter cells demonstrated a pronounced 13-fold increase in normalized 

luciferase activity (RLU/h/RFU) on day1 after addition of differentiation media. 

However, this increase was transient as the normalized luciferase activity rapidly 

decreased and returned to day 0 levels by day 7. On the other hand, PPARγ reporter cells 

demonstrated a 3-fold increase in luciferase activity in the first 24 h after induction of 

differentiation. However, unlike CREB, this increase was sustained, as nearly 2-fold  
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Fig. 4.4. 3T3-L1 TF reporter cells after 19 days of induction for differentiation.  

Transmitted light images of (A) FoxO1, (C) CREB, (E) NFAT, (G) SREBP-1c and 

(I) C/EBPβ and red fluorescence images of (B) FoxO1, (D) CREB, (F) NFAT, (H) 

SREBP-1c and (J) C/EBPβ.  
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Fig. 4.5. TF activity profiles represented as fold of increase rates of Gaussia 

luciferase (Gluc) activities normalized with relative fluorescence units (RFU). The 

Gluc activities which reflect a degree of each TF binding onto response elements 

were measured every 24 h post-medium change from a time point of differentiation 

induction (day 0) to day 17. The increase rate of Gluc activity (RLU/h) was 

normalized with relative fluorescence units (RFU). The fold of the increase rate of 

Gluc activity was determined by normalizing the RLU/h/RFU at each time point to 

the corresponding value at the start of differentiation (i.e., day 0). Data represent 

mean ± SD. 
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higher activation of PPARγ was observed until day 17 post-differentiation compared to 

that in preadipocytes. This trend was especially noticeable beyond day 7 post-

differentiation. C/EBPβ, SREBP-1c, NFAT and FoxO1 all demonstrated similar 

activation dynamics with maximum activation observed at day 1 until day 3 and 

gradually decreasing to near-baseline values after day 5.  

 

4.3.3 SIMULATION OF TRANSCRIPTION FACTOR ACTIVITY PROFILES 

Based on literature reports, a simple network model was assembled describing 

the interactions between TFs as well as their stimulation by adipogenic hormones (Fig. 

4.1). Only a subset of the TFs (CREB, C/EBPβ, PPARγ, and SREBP-1c) was considered, 

as the interactions involving NFAT and FoxO1 were less clearly documented. Activation 

and decay of TFs were modeled using mass action kinetics (Table 4.1). The model’s rate 

parameters were fitted to the normalized activity profiles shown in Fig. 4.5 by 

minimizing the sum of squared residuals (SSR) between the measured and model-

calculated TF activity profiles.  

 Across 50 iterations of parameter optimization, the SSR varied from 4.82 to 7.22, 

with a mean value of 5.99. The mean values of the optimized parameters ranged from 

10
0
 to 10

1
, in terms of order of magnitude, except for the rate constant describing 

activation of SREBP-1c by PPARγ (k13). The estimated value of this rate constant 

ranged from 0 to 0.47 across the iterations, with a mean value of 0.06 and standard 

deviation of 0.12, indicating that this parameter is not statistically significantly greater 

than 0 (one-sided t-test, p > 0.05). A majority of the parameters were reasonably well 
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constrained, as assessed by the ranges of the values obtained across the iterations of 

parameter optimization (Table 4.1). The parameters with the greatest uncertainty were 

associated with the degradation rate of C/EBPβ (k5) and the production rate of the 

putative ligand for PPARγ (k11), as their estimated values ranged from 0.5 to 87.9 and 

0.8 to 100, respectively. Given the uncertainties in the estimated parameters, model 

simulations were performed using all of the 50 sets of optimized parameters to obtain 50 

sets of profiles from which means and standard deviations were calculated (Fig. 4.6).  

Overall, the simulated profiles were largely consistent with the measured profiles, 

and correctly ordered the peak activities for the TFs. Importantly, the simulations 

showed a sustained elevation in PPARγ activity that extends to day 11, in good 

agreement with the measured profile. On the other hand, there were noticeable 

differences between the shapes of the measured and simulated profiles. The rise and fall 

of the simulated profiles were generally somewhat sharper, presumably due to the 

simplifying assumptions regarding the concentrations of the hormones, which were 

modeled as step inputs. Specifically, the simulated profile for C/EBPβ showed an 

initially sharp rise until day 2, followed by a rapid decline, whereas the measured profile 

showed a broader peak extending from day 1 to day 5. In addition to the assumption 

regarding step change in the hormonal input levels, it is also possible that the 

discrepancy could be due to the fact that the C/EBPβ reporter cannot discriminate 

between other isoforms of C/EBP.  
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  Fig. 4.6. Simulated profiles of TF dynamics. Simulations were performed with each 
of the 50 sets of parameters estimated from the measurement profiles. The average 

profiles are shown in bold solid lines, with error bars representing one standard 

deviation across the 50 simulations. Red circles indicate measured TF activities.  
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4.3.4 PERTURBATION OF THE TRANSCRIPTION FACTOR NETWORK BY 

FORSKOLIN TREATMENTS  

In order to evaluate the TF network model, we perturbed the activity of CREB 

using forskolin, and investigated its effects on the activation of C/EBPβ and PPARγ. In 

the simulations, this perturbation was modeled as an increase in the concentration of 

IBMX relative to the unperturbed condition. As shown in Fig. 4.7, forskolin treatment on 

day 0 resulted in 1.7-fold increase in the maximum activation of CREB as compared to 

the control, while retaining the same activation dynamics. The maximum activation of 

C/EBPβ and PPARγ increased 1.3-fold and 1.5-fold, respectively, after forskolin 

treatment. These results are largely consistent with the model simulations, which also 

showed a positive, but attenuated fold-change in the C/EBPβ and PPARγ activities 

relative to the unperturbed condition (Fig. 4.8). When the average maximum activity of 

CREB (on day 1) was increased to 1.8-fold in the simulation (relative to the unperturbed 

simulation) by adjusting the initial IBMX input level, the corresponding increases in the 

C/EBPβ and PPARγ maximum activities (based on the averages of the simulated profiles) 

were 1.3-fold and 1.2-fold, respectively.   

 

4.4 DISCUSSION  

In this study, we developed an integrated transcription factor (TF) network model 

underlying adipocyte differentiation and enlargement and validated it using dynamic 

activation profiles of different TFs during differentiation of preadipocytes into 

adipocytes and lipid accumulation. Dynamic activation profiles of the different TFs were     
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Fig. 4.7. Perturbation of CREB activity profiles by forskolin treatments. Cells were 

treated with 10 μM of forskolin or 0.1% DMSO at day0 for 48 h. For each time 

point, fold of RLU/h/RFU was calculated by dividing with a value of day 0. Data 

represent mean ± SD. *: p < 0.05  
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  Fig. 4.8. Simulations of TF activity profiles representing the forskolin treatment 

(dashed blue line) and vehicle control (solid black line) conditions. 
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obtained using 3T3-L1 reporter cell lines where binding of a transcription factor to its 

recognition sequence leads to expression of a Gaussia luciferase reporter gene. Since the 

luciferase gene has a secretion leader sequence, non-invasive dynamic profiling of TF 

activity is possible by monitoring the culture supernatant for luciferase activity. This 

approach enabled us to directly monitor TF function (i.e., binding to its recognition 

sequence) as opposed to inferring activity from mRNA and protein data. The non-

invasive measurement technique also allows for frequent sampling, which, in turn, 

facilitates data-based model construction. Lastly, this approach also allows for TF 

activation profiles to be derived from the same population of cells over the 

differentiation and maturation.   

The differentiation of 3T3-L1 preadipocytes into mature adipocytes is 

characterized by accumulation of lipid droplets and alteration of cell shape which are 

mediated by multiple enzymes and regulatory TFs. While previous data on the activation 

of different TFs underlying adipocyte differentiation and enlargement are available in 

the literature, differences in the experimental conditions and readout methods limit their 

utility for developing an integrated network model. In this study, we address this by 

developing a TF model using time-course data from the same cell population. 

Our results show that different TFs demonstrate distinct activation profiles 

during adipocyte differentiation and enlargement, which are consistent with published 

reports. The temporal correlation between CREB and C/EBPβ is one such example (Fig. 

4.5) where activation of C/EBPβ follows the activation of CREB until day5. Zhang and 

coworkers (104) have demonstrated that CREB induces expression of C/EBPβ at 8 h 
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after induction of the adipogenic program. Similarly, SREBP-1c has been shown to 

promote adipogenesis by generation of a PPARγ ligand (179), and it has been proposed 

that SREBP-1c could activate expression of PPARγ by binding to a PPARγ promoter 

(180). NFAT has also been proposed as a regulator of PPARγ activity since NFAT 

associates physically with PPARγ (187). Our data show that both SREBP-1c and NFAT 

show comparable activation profiles as C/EBPβ, which is known to precede and activate 

expression of PPARγ (191), during the initial differentiation phase(days 1-3). Thus, our 

data provide corroborating evidence for SREBP-1c and NFAT in regulating PPARγ 

activity. PPARγ is a key TF which plays critical roles for induction and maintenance of 

fully differentiated adipocytes. Our data also show that PPARγ activity increased 

gradually from the induction of differentiation and stayed elevated between days 7 and 

11. While the activation levels decreased after day 11, they were still significantly higher 

than baseline (preadipocyte) levels for the duration of the experiment. Interestingly, only 

PPARγ demonstrated sustained activation as the activity of other TFs decreased to pre-

induction levels after adipocyte maturation (days 7-10). This result is consistent with the 

primary role for PPARγ in adipocyte differentiation and enlargement. Interestingly, 

FoxO1 did not show significant activation over the time course of the experiment. A 

recent study has shown that a direct protein-protein interaction leads to repression of 

PPARγ activity by FoxO1 (192). However, since FoxO1 interferes with PPARγ by 

recruitment to the PPARγ response element, measurement of FoxO1 binding to its own 

response element may not show any correlation to alterations in PPARγ activity. 
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To more quantitatively characterize the interactions between TFs regulating the 

adipocyte differentiation program, we assembled a mass action model of TF activation 

and decay based on connections documented in the published literature. For four of the 

TFs monitored in this study, namely CREB, C/EBPβ, PPARγ, and SREBP-1c, there was 

a general consensus regarding the activation cascade. For the sake of parsimony, we 

modeled the cascade as a sequence of direct activation events between TFs. The sole 

exception was the activation of PPARγ by SREBP-1c, as there was strong evidence that 

SREBP-1c activation induces the production of a metabolite ligand for PPARγ (103). As 

published data on adipocyte TF network activation rates were not available, the rate 

parameters were estimated from the measured profiles collected in this study. Outside of 

the general assumption that the rate constants have to be nonnegative, the only other 

constraint applied to the parameters was to set a lower bound for the turnover rates of the 

TFs.  The estimated decay rate constants were significantly higher than the lower bound, 

ranging from ~1 day
-1

 to ~23 day
-1

. These decay rate constants correspond to half-life 

ranges of ~17 h to ~40 min, which are comparable to published turnover rates of TFs 

(193-198). As alluded to earlier, there is substantial uncertainty regarding the estimated 

decay rate constant for C/EBPβ. One possible explanation is that the reporter construct 

measured not only C/EBPβ, but also the other isoforms of the C/EBP family. In 

particular, the measured profile could reflect the activation of C/EBP, which follows 

the earlier activation of the β and  isoforms during the initial stages of adipogenesis. 

Conflating the , β and  isoforms could lead to an apparent broadening of the peak TF 

activity period, as the decline in the β and  isoforms could be masked by the rise in the 
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 isoform. It is thus possible that two distinct sets of activation and decay rates, and 

correspondingly discriminatory measurements, may be needed to more accurately model 

the dynamics of C/EBP. 

The other large uncertainty in parameter estimation involved the production rate 

of the PPARγ ligand upon induction of SREBP-1c. Similar to the C/EBP decay rate 

parameter, the simplest explanation is the lack of direct and specific experimental 

observations on the dynamics of the putative ligand. Moreover, it is likely that multiple 

ligands are produced in differentiating adipocytes (199), although a dominant 

endogenous ligand has not yet been conclusively identified. Another, related limitation 

regarding the interpretation of the simulated ligand time profile is that it is not possible 

to determine an absolute concentration range for the ligand, because normalized TF time 

profiles were used in fitting the model.  

Despite these limitations, the mathematical model revealed several noteworthy features 

of the adipocyte TF network. First, model simulations of forskolin stimulation showed 

that an increase in CREB activity is attenuated as the stimulus propagates to C/EBP and 

PPARγ, indicating correct ordering of upstream and downstream TFs. This prediction 

was in good agreement with measured data, which also showed an attenuation of TF 

stimulation downstream from CREB. Second, the estimated values for rate parameters 

suggest that feedback activation of SREBP-1c by PPARγ is negligible in comparison to 

activation of SREBP-1c by insulin, corroborating the downstream placement of SREBP-

1c relative to PPARγ in recently published studies (200, 201). Third, the estimated 

parameters suggest that the strength of the positive activation loop between C/EBP and 
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PPARγ is comparable to the strengths of the activation cascades connecting the TFs to 

hormonal inputs. This finding is consistent with previous experiments showing that 

direct (e.g. genetic) manipulation of either C/EBP or PPARγ could drive the adipogensis 

program to similar extents as hormonal stimulation (93, 202).  

The integrated model of the TF network developed in this study provides a 

powerful tool for direct control of the entire regulatory network and further adipocyte 

metabolism. For example, we can predict overall change of activity profiles for key TFs 

triggered by a specific perturbation (i.e. agonist or antagonist) and its influence on 

expression levels of target genes which are regulated by the TFs. We expect the 

systematic understanding for the TF network will be a key basis to develop a new 

treatment against obesity. In addition, the combinatorial approach of experiment and 

simulation reported in this study will be applicable to understand complex networks in 

other cellular regulatory mechanisms.   
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CHAPTER V 

MECHANISMS UNDERLYING RECOGNITION OF TRYPTOPHAN 

DERIVATIVES IN HOST CELLS 

 

5.1 INTRODUCTION 

The human gastrointestinal (GI) tract consists of ~10
14 

bacteria belonging to 

~1,000 species which are collectively termed gut microbiota. Recently, the microbiota 

metaboliteshave been considered as important modulators of host physiology instead of 

metabolic byproducts. For example, our laboratory demonstrated that tryptophan (TRP)-

derived bacterial metabolite indole attenuates several inflammatory indicators in 

intestinal epithelial cells (IECs) (27). In addition, non-alcoholic fatty liver disease and 

cardiovascular diseases correlates with conversion of choline into trimethylamine by the 

gut microbiota (11, 12).   

In our prior work (Chapter  III), we predicted bacterial products of TRP 

metabolism by computational pathway analysis, and quantified physiological levels of 

the predicted metabolites in murine cecum and feces by utilizing multiple reaction 

monitoring (MRM) mass spectrometry. Further, the TRP derivatives were characterized 

as bioactive molecules by demonstrating agonist activity for aryl hydrocarbon receptor 

(AhR). However, the mechanisms underlying recognition of the TRP derivatives (i.e., 

the receptor(s) involved, the signaling pathways utilized) have not been elucidated yet. 

Identification of molecular signaling targets for the TRP derivatives is necessary to 

comprehensively understand the influence of the TRP derivatives on host cell function.    
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The AhRis a ligand-activated transcription factor that has been shown to play an 

important role in the intestinal immune system (70, 71). In the absence of ligand, AhR is 

localized in the cytoplasm. Upon ligand binding, AhR translocates into the nucleus 

where it heterodimerizes with the AhR nuclear translocator (Arnt) protein. The AhR-

Arnt complex specifically interacts with the dioxin response element (DRE) in promoter 

regions of various target genes and modulates their transcription. In addition, the AhR 

modulates target gene expression through interaction with nuclear factor-κB (NF- κB) 

p65 (203). The AhR interacts with a wide spectrum of diverse natural or synthetic 

compounds such as halogenated aromatic hydrocarbons, heterocyclic amines, polycyclic 

aromatic hydrocarbons and several indole containing compounds (75-77). Although 

many dietary compounds were initially suggested as natural ligands for AhR, several 

reports have indicated that endogeneous physiological ligands for AhR exist (78-80). For 

example, endogeneous metabolites of tryptophan such as tryptamine and indole acetic 

acid were shown to bind to and activate AhR (83). 

Several studies showed that synthetic 3,3’-diindolylmethane (DIM) derivatives 

(i.e., DIM-C-pPhCF3, DIM-C-pPhOCH3, DIM-C-Ph) activates NR4A1, a member of the 

nerve growth factor–induced B (NGFI-B) subfamily of orphan nuclear receptors (132, 

147).  The DIM is generated through heterodimerization of indole-3-carbinol in the acid 

environment of the gut (81) and exhibits anticancer activities through activation of the 

AhR (204). The NR4A subgroup consists of neuron-derived clone 77 (Nur77; NR4A1), 

nuclear receptor related 1 (Nurr1; NR4A2) and neuron derived orphan receptor 1 (NOR1; 

NR4A3). Recent functional studies have pointed a critical role of NR4A members in 
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control of inflammation. For example, NR4A2 represses transcription of TNFα and IL-

1β through recruitment of corepressor for element-1 silencing transcription factor 

(CoREST) complex to a target promoter and clearance of NF-κB (144). To date, 

endogenous ligands for NR4A receptors have not been identified. 

Dendritic cells (DCs) are specialized antigen presenting cells (APCs) that possess 

unique properties for adaptive immune responses. DCs migrate from peripheral tissues 

to lymphoid tissues in which they present antigens to T cells (205). DCs exist in 

functionally distinct immature and mature cells. The immature DCs in the peripheral 

tissues are mainly phagocytic cells while mature DCs in lymphoid tissues are 

characterized by high surface expression of co-stimulatory molecules for T cell 

activation (205). In the gut, DCs distribute in the lamina propria of the small and large 

intestine, the Peyers patch and mesenteric lymph nodes (206, 207). Intestinal DCs have 

been shown to drive development of regulatory T cells (Treg) which are essential to 

counteract inflammatory responses (208). In addition, intestinal DCs impart gut-homing 

properties to lymphocytes and induce B cells to acquire expression of IgA which 

supports several mucosal functions (206, 209). Although the exact role of DCs in 

intestinal disease is unknown, several observations in models of inflammatory diseases 

suggest that aberrant DCs derive dysregulated inflammation (210).     

The goal of this study is to elucidate the molecular recognition mechanism(s) 

underlying sensing on TRP derivatives and in anti-inflammatory function. In previous 

studies (70, 71, 141-144), both AhR and NR4A receptors have shown to play important 

roles in modulation of inflammation. Moreover, endogeneous metabolites of tryptophan 
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have shown to activate AhR, and synthetic derivatives of DIM retaining AhR activation 

have been demonstrated as NR4A agonists (83, 147). Therefore, we hypothesized that 

TRP derivatives are recognized by AhR and/or NR4A receptors and the sum of these 

interactions determines the extent of anti-inflammatory activity. Our data indicate that 

knockdown of NR4A2 attenuates, but not completely abolishes, the anti-inflammatory 

activity of indole to suppress expression of pro-inflammatory cytokine TNFα in 

dendritic cells. Our results suggest that NR4A2 is an anti-inflammatory signaling target 

of indole. In a future knockdown study of AhR, it will be clarified whether AhR also 

functions as a receptor for indole signaling.         

 

5.2 MATERIALS AND METHODS 

 

5.2.1 CELL CULTURE  

 The DC2.4 murine dendritic cell line was obtained from ATCC (Manassas, VA). 

DC2.4 cells were cultured at 37 °C with 5 % CO2 in Dulbecco's Modified Eagle's 

Medium (DMEM) supplemented with 5% (v/v) fetal bovine serum (FBS), glucose (3.5 

g/L), sodium bicarbonate (2 g/L), nonessential amino acids (0.1 mM), HEPES (10 mM), 

penicillin (100 U/ml) and streptomycin (100 μg/ml).  

 

5.2.2 WESTERN BLOT ANALYSIS  

 Whole cell lysates were extracted using RIPA buffer. The lysates were heated at 

100 °C for 5 min, separated on 4% to 20% SDS-PAGE (BIO-RAD, Hercules, CA) and 
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transferred to a nitrocellulose membrane (Invitrogen, Carlsbad, CA). The membrane was 

blocked with 5 % (v/v) nonfat dry milk in Tris-buffered saline overnight and incubated 

with a 1:500 dilution of anti-NR4A2 antibody (clone N-20) (Santa Cruz Biotechnology, 

Santa Cruz, CA) for 1 h at room temperature. After washing for 15 min, a 1:5000 

dilution of a goat anti-rabbit IgG antibody (Santa Cruz Biotechnology, Santa Cruz, CA) 

was added, and the membrane was incubated for 45 min. After washing for 20 min, the 

membrane was incubated with a SuperSignal Kit (Pierce Chemical, Rockford, IL) for 5 

min and imaged using Bio-rad Model 3000 VersaDoc Imaging System. 

 

5.2.3 LENTIVIRUS PRODUCTION AND INFECTION OF DC2.4 CELLS  

293T/17 cells were seeded at 8 × 10
5 
cells per 6 well tissue culture plate in 2 ml 

DMEM supplemented with heat inactivated 10% (v/v) FBS. Next day, cells were 

transfected with pLKO.1-puro NR4A2 shRNA or non-target control plasmids (Sigma, 

St. Louis, MO) and two helper plasmids (psPAX; Addgene plasmid 12260 and pMD2.G; 

Addgene plasmid 12259, Dr. Trono, Lausanne, Switzerland) using a TransIT-293 

Transfection Reagent (Mirus Bio, Madison, WI) following the protocol recommended 

by the manufacturer. After 6 h, the medium was removed and replaced with fresh 2 ml 

OptiMEM (Invitrogen, Carlsbad, CA) and 10 % (v/v) FBS. At 48 h post-transfection, 

supernatants containing viral particles were collected and filtered with a 0.45 μm PES 

membrane (VWR, Radnor, PA). To transduce DC2.4 cells, the virus particles were 10-

fold diluted in the culture medium and added to the cells in presence of Polybrene 
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(hexadimethrine bromide). After 4 h, the virus particles were removed and the cells were 

cultured in replenished medium until further analysis.  

 

5.2.4 QUANTITATIVE RT-PCR 

At 3 days and 4 days post-transduction, total RNA was isolated using a RNA 

Miniprep kit (Qiagen, Valencia, CA) according to instructions of the manufacturer. The 

primers for analysis of expression levels of NR4A2 gene were designed by using 

PrimerQuest online software (5’-GCACGTCAAAGAACTGGAAAG-3’ and 5’-

TGCCTGCAGGTTAGGAAATAG-3’). qRT-PCR was performed by using a SYBR 

Green iScript one-step RT-PCR kit in a MyiQ single-color real-time PCR detection 

system (BIO-RAD, Hercules, CA). The templates were analyzed in triplicates in 25 μl 

reactions, and 100 ng of total RNA was used for each reaction with the final forward and 

reverse primer concentrations at 0.1 μM each. The average threshold cycles (Ct) 

calculated by the MyiQ optical system software were normalized to average Ct values of 

18S rRNA, and relative changes between the samples were determined. 

 

5.2.5 FLOW CYTOMETRY AND INTRACELLULAR CYTOKINE STAINING  

Changes in TNFα production in response to DMF (solvent control) or indole 

were determined by intracellular cytokine staining (ICS). DC2.4 cells infected with 

NR4A2 shRNA lentiviral particles were transferred into a 96 well U-bottom tissue 

culture plate at 2 days post- transduction, and exposed to indole or DMF overnight (~19 

h). Next day, 5 µg/ml lipopolysaccharide (LPS) (Invivo Gen, San Diego, CA) and 1,000-
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fold diluted GolgiPlug (BD Biosciences, San Jose, CA) were added to the cells for 4 h. 

After two washes in PBSA (PBS supplemented with 0.5% BSA), cells were fixed with 4% 

paraformaldehyde on ice, permeabilized with Perm/Wash buffer (BD Biosciences, San 

Jose, CA) and stained with Alexa Fluor 700 TNFα antibody (BD Biosciences, San Jose, 

CA) for 1 h. The cells were resuspended in PBSA and stored in the dark at 4°C until 

analysis. Unstained or unstimulated cells were used as negative controls. Data were 

acquired on a BD FACSAria II cell sorter system (BD Biosciences, San Jose, CA) and 

analyzed with FlowJo software (Tree Star, Ashland, OR).    

 

5.3 RESULTS 

 

5.3.1 EXPRESSION OF NR4A RECEPTORS IN DC2.4 CELLS 

In an effort to identify a NR4A member involved in recognition and 

inflammatory signaling of indole, we investigated expression levels of NR4A receptors 

in DC2.4 cells. Western blot analysis using an antibody that recognizes NR4A1 or 

NR4A2 receptor showed that expression of NR4A2 was much higher than NR4A1 (Fig. 

5.1). Based on this result, NR4A2 was firstly targeted for a functional study of 

knockdown.  

 

5.3.2 KNOCKDOWN OF NR4A2 BY SHRNA LENTIVIRAL TRANSDUCTION  

After transient lentiviral transduction of NR4A2 shRNA, expression levels of 

NR4A2 mRNA were measured by qRT-PCR to determine a time point for the most 
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efficient knockdown.  At 3 days post-transduction, the NR4A2 mRNA level was reduced 

to 47% of the control. However, the NR4A2 mRNA level increased back up to 88% of 

the control at 4 days post-transduction. Accordingly, all experiments were conducted at 

3 days post-transduction to investigate the impact of NR4A2 knockdown on TNFα 

production.   

 

5.3.3 A ROLE OF NR4A2 ON ANTI-INFLAMMATORY SIGNALING OF 

INDOLE IN DC2.4 CELLS   

Previously, our lab reported that indole exerts anti-inflammatory effects on 

intestinal epithelial cells (IECs) (27). To test if indole exposure alters DC2.4 function, 

we exposed DC2.4 cells to 0.5 mM and 1 mM indole overnight (~ 19 h) before 

stimulation with LPS (1 μg/ml) for 4 h followed by intracellular cytokine staining (ICS) 

and flow cytometry. Similar to the effects on IECs, the indole treatment attenuated the 

fraction of cells that were producing the pro-inflammatory cytokine TNFα (i.e., 13 % 

decrease with 0.5 mM and 29 % decrease with 1 mM indole) (Fig. 5.2A). Control DC2.4 

cells were treated with DMF solvent control. These data demonstrate that indole 

attenuates indicators of inflammation in DC2.4 cells. To explore an involvement of the 

NR4A2 in anti-inflammatory signaling of indole, DC2.4 cells were transduced with 

NR4A2 shRNA lentiviral particles and its effect on TNFα production was investigated at 

3-days post-transduction. As shown in Fig. 5.2B, ~ 53% knockdown of NR4A2 resulted 

in less suppression of TNFα production than the untransduced control (i.e., 3 % decrease    
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Fig. 5.1. Expression of NR4A receptors in DC2.4 cells. The western blot analysis 

was performed in quadruplicate.       



 

102 

 

 

 

  

Fig. 5.2. The NR4A2 knockdown attenuates indole-derived suppression of TNFα 
production in DC2.4 cells. ICS and flow cytometry of TNFα were performed after 

exposure to indole overnight (~ 19 h) followed by stimulation with LPS (1 μg/ml) 

for 4 h. (A) Untransduced cells (B) NR4A2 shRNA lentivirus transduced cells.  
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with 0.5 mM and 14 % decrease at 1 mM indole). From these data, it can be concluded 

that the NR4A2 is important in mediating the anti-inflammatory effects of indole in 

DC2.4 cells.  

      

5.4 DISCUSSION  

Increasing evidence suggests that the metabolites produced by the 

gastrointestinal (GI) tract microbiota are important modulators of human health and 

disease (48, 211). For example, the bacterial metabolite indole has been recently shown 

to strengthen host cell-barrier properties and modulate inflammation by increasing anti-

inflammatory IL-10 and decreasing pro-inflammatory IL-12 and IL-8 cytokines (27). 

Although several microbiota-derived metabolites have been identified and studied for 

their function, in-depth research is required to understand molecular mechanisms 

underlying sensing and signaling of these metabolites.  

Dendritic cells (DCs) play an important role in initiation and maintenance of 

immune responses by helping naïve T cells to develop into effector T-helper (Th) cells. 

Depending on microenvironment and stimuli, DCs produce various cytokines (IL-12, IL-

6, TNFα, IL-10, TGFβ, etc.) that determine type and function of Th cells and thus DCs 

play a critical role in shaping overall immunity (212-214).  In addition to dietary and 

microbial signals, intestinal DCs take microbiota metabolites from intestinal lumen and 

epithelial cell layer to orchestrate function of gut-associated lymphoid tissue (210, 215). 

Due to the diffusible nature of indole (64), we hypothesized that DCs in the Peyers 

patches are exposed to microbiota metabolites such as indole by M-cell transcytosis (206) 
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and these metabolites likely alter production of cytokines by DC’s, thereby, leading to 

modulation of mucosal inflammation. Since indole was previously shown to alter 

production of several inflammatory cytokines in IECs (27), we first tested indole among 

several TRP derivatives to monitor a change of DCs’ production of a pro-inflammatory 

cytokine (i.e., TNFα). As shown in Fig. 5.2A, the indole treatment resulted in a 

significant decrease of in cell population that were expressing TNFα. This result 

demonstrates that indole is recognized by DC2.4 cells and exerts the anti-inflammatory 

effect.        

To elucidate the signaling pathway(s) through which the anti-inflammatory 

effects of indole are mediated in DC2.4 cells, we carried out knockdown of the NR4A2 

nuclear receptor and investigated the resultant effect on DC 2.4 function. NR4A2 is a 

member of the NR4A subfamily of orphan nuclear receptors (132, 147). NR4A receptors 

act as transcription factors, regulating expression of downstream genes in apoptosis, 

proliferation, cell migration, angiogenesis and inflammation (216). Saijo and co-workers 

reported that NR4A2 represses transcription of TNFα and IL-1β in macrophages and 

microglia, and this trans-repression is mediated by recruitment of co-repressor for 

element-1 silencing transcription factor (CoREST) complex to a target promoter and 

clearance of NF-κB (144). Although the NR4A subfamily is known to be operated in a 

ligand independent manner (128), several compounds based on 1,1-bis(3’-indolyl)-1-(p-

substituted phenyl)methanes (C-DIMs)  have been recently identified as agonists for 

NR4A (132, 147). DIM is generated through heterodimerization of indole-3-carbinol in 

the acid environment of the gut (81). Since indole-3-carbinol can be structurally 
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considered as a derivative of the indole, we hypothesized that indole attenuates 

production of TNFα in part through activation of NR4A2. As shown in Fig. 5.2B, 

NR4A2 knockdown resulted in a smaller down-regulation of TNFα upon indole 

exposure as compared to the control. This result demonstrates that activation of NR4A2 

is required for down-regulation of TNFα production by indole in DC2.4 cells. Similar 

results were also obtained in primary DC’s (not shown).  

While knockdown of NR4A2 resulted in a decrease in the indole-mediated 

suppression of TNFα, complete abolishment of TNFα expression was not observed. This 

could be due to low knockdown efficiency (~53%) or due to the presence of additional 

receptors that can bind indole and mediate its effect on inflammatory cytokine 

production.  

An example of a second receptor for indole is the aryl hydrocarbon receptor 

(AhR). The AhR is a ligand-activated transcription factor that plays an important role in 

the intestinal immune system (70, 71). Immunomodulation by AhR activation in DCs 

has been reported in several studies. For example, the AhR agonist benzo(α)pyrene was 

shown to inhibit TNFα secretion by LPS-stimulated mouse bone marrow-derived 

dendritic cells (217). The decrease of TNFα production was likely due to AhR activation 

because the AhR antagonist alpha-naphthoflavone counteracted the effect of 

benzo(α)pyrene. In another study, the well-known AhR agonist TCDD suppressed 

binding of NF-κB/Rel which has been described to be involved in pro-inflammatory 

gene regulation such as IL-6 to its response element and blocked translocation into the 

nucleus in TNFα treated DC2.4 cells (218, 219). Current work in our laboratory is 
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focused on evaluating the effects of AhR knockdown on the indole-mediated down-

regulation of TNFα expression in DC 2.4 cells.   

In summary, we have identified NR4A2 as a nuclear receptor to which indole 

binds to induce changes in TNFα production in DC 2.4 cells. Activation of NR4A2 is 

essential for maximal anti-inflammatory activity of indole in DC2.4 cells. Although 

exogeneous and synthetic ligands for NR4A2 are previously reported, this is the first 

report of a putative endogenous ligand for NR4A2 and provides a new tool for 

modulation of inflammatory disorders.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

  

6.1 CONCLUSIONS  

In this work, we have successfully presented a methodology for the systematic 

prediction, identification and quantification of metabolites produced by the intestinal 

microbiota (Chapter III). We predicted tryptophan (TRP) derived metabolites by 

constructing biochemical transformation pathways from candidate bacterial reactions in 

the KEGG database and excluding metabolites which could be formed through host 

metabolism. Among predicted TRP derivatives, the final panel of metabolites (i.e., 

indole, hydroxyindole, indole 3-acetate, indole 3-acetamide, tryptamine, TRP) was 

quantified in murine fecal and cecum extracts using MRM mass spectrometry. To our 

knowledge, this is the first study to use MRM mass spectrometry for absolute 

quantification of microbiota metabolites in murine tissue samples. Additionally, some of 

the identified metabolites (i.e., indole 3-acetate, tryptamine, indole 3-pyruvate) were 

shown to activate AhR signaling, thus suggesting putative biological roles for these 

metabolites. The strength of our methodology is the ability to unambiguously identify 

bacterial metabolites by discriminating host-derived metabolites and quantify their 

physiological levels in the GI tract. This systematic approach is expected to have a 

significant impact on the study of human gut microbiome function and lead to the 

discovery of derivatives of natural compounds generated in the body with biological 

significance that have not previously been investigated.   
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We developed an integrated network model of dynamics of key transcription 

factors (i.e., PPAR, C/EBP, CREB, NFAT, FoxO1, SREBP1c) underlying adipocyte 

differentiation and lipid loading (Chapter IV). A hypothetical network model was 

determined based on published connections, and stochastic simulation algorithm was 

applied to simulate random fluctuations of the transcription factors. Transcription factor 

activation profiles were experimentally measured using 3T3-L1 reporter cell lines where 

the binding of a transcription factor to its DNA binding element drives expression of the 

Gaussia luciferase gene. The simulated profiles were consistent with the measured 

profiles, and correctly ordered peak activities of the transcription factors. The model was 

further verified by perturbing the activation level of CREB and determining its effects on 

CREB-downstream transcription factors (i.e., PPAR, C/EBP). The integrated model of 

the transcription factor network developed in this study is expected to provide a 

powerful tool for direct control of the entire regulatory network and a framework for 

manipulating adipocyte metabolism against obesity.  

We investigated the molecular recognition mechanism of indole and its anti-

inflammatory signaling in DC2.4 cells (Chapter V). It was shown that indole suppresses 

the production of pro-inflammatory cytokine, TNFα, upon LPS stimulation. To 

understand how indole exerts the anti-inflammatory effect in DC2.4 cells, a functional 

study of NR4A2 knockdown was performed. The NR4A2 knockdown resulted in less 

suppression of indole on TNFα production. This result indicates that NR4A2 is a 

molecular mediator of indole for the suppression of TNFα production. The finding of 
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indole as a NR4A endogeneous ligand is expected to provide a new strategy for 

treatment of inflammatory disorders.    

 

6.2 RECOMMENDATIONS 

An extension of the methodology described in Chapter III is to predict and 

identify microbiota metabolites which can be derived from different source compounds. 

One such source compound could be phenylalanine of which derivatives have been 

shown to be associated with several diseases such as diabetes and autism. For example, 

phenylacetylglutamine whose precursor, phenylacetic acid is produced by gut bacterial 

metabolism was found in higher concentrations in the plasma of diabetic patients (61) 

and lower levels in urine of autistic children as compared to control (220). The 

methodology can also be applied to identifying bioactive derivatives of environmental 

contaminants such as bisphenol A which was demonstrated to modulate glucose 

transport (221) and increase lipid accumulation in adipocytes (222).   

In the studies of Chapter III and Chapter V, we only focused on regulation of 

bacterial metabolites on host function. In the future work, an interplay model in which 

microbiota metabolites are converted to other compounds by host metabolism can be 

explored to understand comprehensive contribution of microbiota metabolites on human 

diseases. For example, hippurate whose expression levels decrease in urine of autistic 

individuals is formed by hepatic glycine conjugation of dietary and gut microbial-

derived benzoate (223). In liver, gut bacterial metabolite indole is transformed to indoxyl 

by cytochrome P-450, and the indoxyl is further converted to indoxyl sulfate by 
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sulfotransferase (64). The indoxyl sulfate is known to accumulate in the blood of 

patients with chronic kidney failure (65). In this way, co-metabolites generated by host 

enzymes from metabolites produced by the microbiota, could play an important role in 

health and disease. It should be noted that the algorithm presented in Chapter III can be 

modified to predict these co-metabolites by starting with a specific microbiota 

metabolite and constructing host-derived transformation pathways shown in Chapter III.      

Gut microbiota are important factors in obesity and metabolic disorders, but little 

is known about direct influence of microbiota metabolites on adipocyte differentiation 

and inflammation. The integrated transcription factor (TF) network we developed in 

Chapter IV can be used as a platform to investigate how microbiota metabolites 

modulate adipocyte differentiation, lipid accumulation, and inflammation. A strategy for 

this purpose is as follows. First, the TRP derivatives identified in Chapter III are used to 

treat 3T3-L1 TF reporter cells showing the earliest activation (i.e., CREB) or persistent 

activation at a later stage of differentiation process (i.e., PPARγ). After getting TRP 

metabolites-triggered perturbation of CREB or PPARγ profiles, a change in the 

activation of other TFs and of the entire TF network can be determined, as any 

perturbation to the TF network is expected to lead to a change in the expression level of 

target genes which are regulated by these TFs.   

Obesity is characterized by low-grade chronic inflammation and macrophage 

infiltration. To mimic the environment of macrophage infiltration, the spent medium of 

LPS-stimulated macrophage J774A.1 cells can be introduced into the 3T3-L1 adipocyte 

culture medium. In a preliminary study, it was demonstrated that the spent medium of 
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LPS-stimulated J774A.1 cells induced activation of NFAT (data not shown). In addition, 

the binding activity of NFAT was shown to be significantly increased in white adipose 

tissues of obese mice as compared to control (224). Therefore, an increase of the NFAT 

activity by the spent medium of LPS-stimulated J774A.1 cells can be linked to adipocyte 

inflammation during obesity development. A study to investigate whether microbiota 

metabolites are involved in modulation of adipocyte inflammation can be carried out in 

two ways, as TRP metabolites can modulate secretion of pro-inflammatory molecules in 

J774A.1 cells or interfere with pro-inflammatory signaling in 3T3-L1 cells. In the first 

approach, TRP-derived metabolites can be added to the J774A.1 culture medium during 

LPS stimulation to modulate composition of the spent medium. Then, the spent medium 

with altered composition can be used to stimulate 3T3-L1 NFAT reporter cells to 

monitor a change of NFAT activity. In the second approach, 3T3-L1 NFAT reporter 

cells can be exposed to TRP metabolites after introducing spent medium from LPS-

stimulated J774A.1 cells.  

In the functional study of NR4A2 knockdown (Chapter V), it was demonstrated 

that NR4A2 is a molecular mediator of anti-inflammatory signaling of indole. The AhR 

is another attractive target for the knockdown study because several TRP-derived 

metabolites were shown to have ability of AhR activation in our and other reports. If 

knockdown of AhR also attenuates indole-derived suppression of TNFα production, we 

can hypothesize both NR4A2 and AhR participate in sensing of indole for anti-

inflammatory activity. Further, our data in which the NR4A2 knockdown did not 

completely abolish indole-derived suppression of TNFα production support a possibility 
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that the anti-inflammatory activity is an output of the sum of several mechanisms. 

Simultaneous knockdown of NR4A2 and AhR is expected to provide information on the 

extent to which the different pathways are involved in indole-mediated suppression of 

cytokine production in DC 2.4 cells. For other TRP derivatives which may show indole-

like behavior, a similar approach can be applied to identify mechanisms involved in 

mediating their anti-inflammatory functions.  

Together, these strategies and experiments can provide fundamental 

understanding of the interaction between intestinal microbiota and mucosal host 

interactions cells, which can in turn lead to the development of novel treatment strategies 

and modalities against obesity and gastrointestinal inflammation. 
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