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ABSTRACT

This thesis addresses the modeling of events in social media, with an emphasis on

the detection, tracking, and analysis of disaster-related events like the 2011 Tohuku

Earthquake in Japan. Successful event modeling is critical for many applications

including information search, entity extraction, disaster assessment, and emergency

monitoring. However, modeling events in social media is challenging since: (i) so-

cial media is noisy and oftentimes incomplete, in the sense that users provide only

partial evidence of their participation in an event; (ii) messages in social media are

usually short, providing only little textual narrative (thereby making event detection

difficult); and (iii) the size of short-lived events typically changes rapidly, growing

and shrinking in sharp bursts. With these challenges in mind, this thesis proposes a

framework for event modeling in social media and makes three major contributions:

• The first contribution is a signal processing-inspired approach for event detec-

tion from social media. Concretely, this research proposes an iterative spatial-

temporal event mining algorithm for identifying and extracting topics from

social media. One of the key aspects of the proposed algorithm is a signal

processing-inspired approach for viewing spatial-temporal term occurrences as

signals, analyzing the noise contained in the signals, and applying noise filters

to improve the quality of event extraction from these signals.

• The second contribution is a new model of population dynamics of event-related

crowds in social media as they first form, evolve, and eventually dissolve. To-

ward robust population modeling, a duration model is proposed to predict the

time users spend in a particular crowd. And then a time-evolving population

model is designed for estimating the number of people departing a crowd, which

ii



enables the prediction of the total population remaining in a crowd.

• The third contribution of this thesis is a set of methods for event analytics for

leveraging social media in an earthquake damage assessment scenario. Firstly,

the difference between text tweets and image tweets is investigated, and then

three features – tweet density, re-tweet density, and user tweeting count – are

extracted to model the intensity attenuation of earthquakes. The observation

that the relationship between social media activity vs. loss/damage attenuation

suggests that social media following a catastrophic event can provide rapid

insight into the extent of damage.

iii



ACKNOWLEDGEMENTS

I would like to give my sincere thanks to all who have helped me during my

graduate study, including my graduate advisor, my committees, my families and my

friends.

In the past two years, my advisor Dr. James Caverlee has given me unlimited

help to both my academic study and life. As my academic advisor, he is always

passionate and inspiring, and would like to encourage me to try all kinds of ideas.

And when I stumbled, he always offers me valuable advice and support so I can

move forward on my work. His cheerful attitude not only helped me go through

all difficulties, but also makes me always feel excited and proud of my work. He is

also the wonderful life teacher giving me many important lessons including willing

to encourage and help other and holding a positive attitude toward failures.

I am also thankful to my lab mates at Infolab. Senior graduate students Krishna

Kamath and Zhiyuan Cheng gave me tremendous help when I first joined the lab.

Thanks to them for sharing their data and experiences with me, discussing about my

research work and revising papers for me. Their have helped me improve both my

research and communication abilities. I am also thankful to Elham Khabiri, Kyumin

Lee, McGee, who solved a lot of confusions for me in my studies and life in the U.S.

Their patience helped me get used to this new life quickly. Also, I want to thank my

other lab mates, Amir Fayazi, Vandana Bachani, Wei Niu, Cheng Cao and Haokai

Lu, for bringing joys and happiness to my life in the past two years.

I wish to thank my husband for his love and support. He has always been mas-

sively supportive to me, and brought me lots of courage and happiness. Because

of his help, I can adjust myself to this new study and living environment quickly.

iv



Also many thanks to my parents and parents-in-law, they are so supportive to my

every decision, even sometimes they disagreed with me, they gave me enough room

to make up my own mind. Their understanding and support are the main reasons I

can successfully finish my study today. Love them all.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Event Detection — Spatial-temporal Event Mining . . . . . . 4
1.2.2 Event Tracking — Population Modeling . . . . . . . . . . . . 4
1.2.3 Event Analytics — Disaster Damage Assessment . . . . . . . 5

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. EVENT DETECTION : SPATIAL-TEMPORAL EVENT MINING . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Chanllenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 A Noise-Filtering Approach . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Filtering Random Noise . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Filtering Event Noise . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Iterative Event Extraction Method . . . . . . . . . . . . . . . 19

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.2 Parameter Setup . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3 Event Identification . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.4 Event Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3. EVENT TRACKING : POPULATION MODELING . . . . . . . . . . . . 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Challenges to Population Modeling . . . . . . . . . . . . . . . 40

vi



3.2.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Crowd-Based Population Model . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Estimating “Immigration” . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Modeling Duration to Estimate “Emigration” . . . . . . . . . 45
3.3.3 Building the Population Model . . . . . . . . . . . . . . . . . 50
3.3.4 Emission-Based Modeling . . . . . . . . . . . . . . . . . . . . 51

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 Is Duration Informative? . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Traffic Prediction with Population Model . . . . . . . . . . . . 57
3.4.3 User and Post Prediction with Population Model . . . . . . . 61

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4. EVENT ANALYTICS : DISASTER DAMAGE ASSESSMENT . . . . . . 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Approach and Findings . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Epicenter Estimation . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Intensity Attenuation . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Spread Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5. SUMMARY AND FUTURE RESEARCH OPPORTUNITIES . . . . . . . 78

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Future Research Opportunities . . . . . . . . . . . . . . . . . . . . . . 79

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



LIST OF FIGURES

FIGURE Page

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Noise in Term Temporal Signals . . . . . . . . . . . . . . . . . . . . . 15

2.2 Structure of Proposed Method . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Filtered Temporal Signals . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Average Purity of the Methods Using Random and Event Noise Filters 31

2.5 Comparison with Baseline Methods . . . . . . . . . . . . . . . . . . . 32

2.6 Event Retrieval Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Examples of Check-in Patterns . . . . . . . . . . . . . . . . . . . . . 45

3.2 Example of Duration Distributions for Location-Driven Crowds . . . 47

3.3 Examples of Duration Distributions for Event-Driven Crowds . . . . . 48

3.4 Duration Cumulative Distribution Fitness . . . . . . . . . . . . . . . 49

3.5 Comparison of Duration Distributions . . . . . . . . . . . . . . . . . . 55

3.6 Venue Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Traffic Prediction of Bridges of Manhattan . . . . . . . . . . . . . . . 59

3.8 NDCG for The Rush Hours Ranked by the Estimated Number of
Checkouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Estimating Check-outs for Events . . . . . . . . . . . . . . . . . . . . 62

3.10 Estimating Event-Related Posts . . . . . . . . . . . . . . . . . . . . . 63

4.1 Location Estimation Using Different Features . . . . . . . . . . . . . 71

4.2 The Densities Versus the Radius in JPEQ . . . . . . . . . . . . . . . 74

4.3 The Spread Speed of Tweets in JPEQ . . . . . . . . . . . . . . . . . . 76

viii



5.1 Connection between Social Media Models with Architecture Models. 81

ix



LIST OF TABLES

TABLE Page

2.1 Event Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Purity Results in Temporal Domain . . . . . . . . . . . . . . . . . . . 27

2.3 Purity in Spatial Domain . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Purity in Spatial-temporal Domain . . . . . . . . . . . . . . . . . . . 30

2.5 Average Purity Comparison . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 The Number of Detected Clusters . . . . . . . . . . . . . . . . . . . . 35

2.7 T-test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Extracted Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Event-driven Crowd Dataset . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Estimating Checkout User Count . . . . . . . . . . . . . . . . . . . . 64

3.3 Estimating Post Count . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Earthquake Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The Euclidean Distance Between Estimated Epicenter and Actual Epi-
center (Degree) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

x



1. INTRODUCTION

1.1 Motivation

Social media has recently become an omni-present platform for broadcasting news

and sharing information, enabling users to voluntarily report on events they have

experienced. Examples include short-text Twitter posts and photographs posted to

Facebook in response to political debates, earthquakes, concerts, and other real-world

events. With this growing user-driven evidence, new efforts arise in the large-scale

mining and tracking of events derived from social media, e.g., [1, 2, 3], leading to

new services that support intelligent emergency monitoring, finding nearby activities

(e.g., concerts, rallies), and improving access to online content.

These social media “footprints” when coupled with extremely granular spatio-

temporal information (e.g., timestamps and GPS-style geocodes), offers the tantaliz-

ing promise of a minute-by-minute and region-by-region account of a real-world event

as it unfolds. Indeed, recent work has illustrated this promise through automated

methods to aggregate Twitter posts for detecting the epicenter and trajectory of an

earthquake [4], for detecting earthquakes and building a predictive system to notify

people at-risk [5], and for constructing “theme cycles” from geo-located blog posts

for assessing the public’s response to Hurricane Katrina [6].

This thesis addresses the modeling of events in social media, with an emphasis

on three critical factors for successful event modeling: (i) event detection; (ii) event

tracking; and (iii) event analytics.

• Event Detection refers to the discovery of a specific activity that happens at a

certain time and in a certain place. While there has been a long history of event

extraction from traditional media like news articles, e.g., [7, 8], the growth of
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user-contributed and often on-the-ground reaction by regular social media users

provides new opportunities to identify events as they arise. For example, in one

exciting direction, researchers have shown how Twitter users may be treated as

social sensors [9], the signal (in this case, a tweet) posted by the sensors can be

used to estimate when and where an earthquake or a tornado happens. Similar

efforts have demonstrated the potential of social media event extraction, for

example [10], which uses user-contributed tags from the Flickr image sharing

site to extract events based on temporal and geographical features.

• Event Tracking identifies how users behave in or respond to a certain event

over time. Examples include tracking the mood changes of users over time,

determining the number of users posting about an event in different periods,

detecting the evolving topics users focused on in this event, and so on. Tracking

event-related crowds is important for many domains. For example, companies

and investors could adjust their marketing strategy, and allocate their limited

resources based on the population of users drawing attention on their prod-

ucts; and political groups could estimate the percentage of people voting for

or protesting against a new policy, with the help of population modeling for

crowds.

• Event Analytics refers to the application-specific analysis of events that have

been detected and tracked in social media. This thesis explores event analytics

in the context of earthquake damage assessment. Damage assessment with

social media is an important step for providing responders with rapid insight

into the extent of damage to be expected in the field and the locations of

greatest damage, which are both necessary for deciding how to best deploy the

limited emergency response and recovery resources during the initial moments
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Figure 1.1: Thesis Contributions

of an earthquake.

1.2 Contributions

This thesis proposes a framework for event modeling, which is compromised of

event detection, event tracking and event analytics components (as shown in Fig-

ure 1.1). Take the 2011 Tohoku earthquake as an example. When the disaster

happened, there are tens of thousands of text tweets and images posted on-line de-

scribing this event. From these messages, the event detection component extracts

related contents, event tracking component tracks the number of affected people,

and event analytics component mines the application-oriented information such as

epicenter and damage degree. Together, these general and application-oriented in-

formation are collected and provided to the damage assessment application.

Concretely, this thesis makes three contributions:
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1.2.1 Event Detection — Spatial-temporal Event Mining

The first contribution is a signal processing-inspired approach for event detection

from social media. While existing event detection work like [11, 12] have provided

many effective methods over long-form documents like news articles, which typi-

cally provide a rich source of context for event detection. Social media content, in

contrast, often provides only a short description, title, or tags, (and thereby little tex-

tual narrative) limiting the effectiveness of semantic similarity based event detection

techniques, and thus adds new challenges on event detection.

In this work, an iterative spatial-temporal event mining algorithm is designed

for identifying and extracting topics from social media. One of the key aspects of

the proposed algorithm is a signal processing-inspired approach for viewing spatial-

temporal term occurrences as signals, analyzing the noise contained in the signals,

and applying noise filters to improve the quality of event extraction from these signal-

s. The iterative event mining algorithm alternately clusters terms and then generates

new filters based on the results of clustering. Multiple filters are explored, includ-

ing Gaussian band-pass filters, Ideal band-pass filters, and others. The proposed

approach is evaluated through experiments on several event data sets; the results in-

dicate that the proposed method can effectively remove event noise, improving event

mining effectiveness from social media.

1.2.2 Event Tracking — Population Modeling

Second, this thesis models the population dynamics of event-related crowds as

they first form, evolve, and eventually dissolve. Crowd modeling is challenging since

1) user-contributed data in social media is noisy and oftentimes incomplete, in the

sense that users only reveal when they join a crowd through posts but not when they

depart; and 2) the size of short-lived crowds typically changes rapidly, growing and
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shrinking in sharp bursts. Toward robust population modeling, a duration model is

proposed to predict the time users spend in a particular crowd. And then a time-

evolving population model is designed for estimating the number of people departing

a crowd, which enables the prediction of the total population remaining in a crowd.

At last, the crowd models is validated through extensive experiments over 22 million

geo-location based check-ins and 120,000 event-related tweets.

1.2.3 Event Analytics — Disaster Damage Assessment

Finally, this thesis designs a set of methods for leveraging social media for the

earthquake damage assessment application. The potential of social media is inves-

tigated to provide rapid insights into the location and extent of damage associated

with two recent earthquakes – the 2011 Tohoku earthquake in Japan and the 2011

Christchurch earthquake in New Zealand. Firstly, the difference between text tweets

and media tweets is investigated (containing links to images and videos), and then

three features – tweet density, re-tweet density, and user tweeting count – are ex-

tracted to model the intensity attenuation of each earthquake. The observation that

the relationship between social media activity vs. loss/damage attenuation suggests

that social media following a catastrophic event can provide rapid insight into the

extent of damage.

1.3 Thesis Overview

The remainder of this thesis is organized into four parts, of which the first three

are about the contributions and the fourth is for conclusions. The outline is:

Section 2 — Event Detection : Spatial-temporal Event Mining — designs a new

signal-inspiring method to detect events from short-text posts from social media.

Section 3 — Event Tracking : Population Modeling — proposes a population

model based on duration to estimate the size of the on-line crowds.
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Section 4 — Event Analytics : Disaster Damage Assessment — discusses the

capacity of social media for providing quick assessment for earthquakes.

Section 5 — Summary and Future Research Opportunities — concludes with a

summary of the thesis contributions and a discussion of future research.

6



2. EVENT DETECTION : SPATIAL-TEMPORAL EVENT MINING

This section describes a new spatial-temporal features based method to detect

events from short-text social media. An event is defined as a specific activity that

happens in a specific time and place [13]. Therefore, given a group of terms, if it

represents an event, the group of terms should satisfy three constraints: 1) the terms

are semantically consistent, 2) the terms should happen in the same time period,

and 3) the terms should appear in similar locations. Hence, event detection can be

defined as: given a set of terms S, to detect subsets from S so that each subset

Sk ∈ S is a set of terms satisfying the constraints.

2.1 Introduction

In general, existing event detection methods can be categorized into two type-

s: document-pivot approaches and feature-pivot approaches [13]. Document-pivot

approaches identify events by clustering documents (e.g., news articles) based on se-

mantic similarities, and then treating each cluster as an event. A series of works like

[11, 12] have shown the effectiveness of this method over long-form documents like

news articles, which typically provide a rich source of context for event detection. So-

cial media content, in contrast, often provides only a short description, title, or tags,

(and thereby little textual narrative) limiting the effectiveness of semantic similarity

based event detection techniques. As a result, many social media event detection

algorithms have relied on feature-pivot approaches, which group similar event-related

terms, for example by finding terms with a similar temporal distribution or spatial

footprint. In this way, event-related terms may be clustered together based on these

common signals (treating each term as a frequency function over either time or s-

pace). These feature-pivot approaches, e.g., [10, 13], have shown the potential of this

7



approach for scaling to event detection over user-contributed social media posts.

While encouraging, these feature-pivot based approaches may be susceptible to

noise in both the temporal and spatial signals they use, which can hinder the quality

of event detection. Specifically, three potential sources of noise are identified:

• Background-topic noise is noise introduced by topics unrelated to an event.

For example, the term “apple” has a periodic and strong background signal

(as illustrated in Figure 2.1(a)) which may be unrelated to a specific event like

Apple introducing a new iPad. This background noise may obscure the “apple”

signal for the iPad introduction, leading to poor event detection.

• Multi-event noise is noise introduced by events related to an event of interest.

For example, an event of interest like a tornado in Texas may occur at the

same time as multiple tornados striking in different regions of the country,

all triggering tornado-related social media posts. These other tornado posts

potentially introduce noise for detecting the event of interest.

• Random noise. The final source of noise is Random noise, which can be intro-

duced through the sparsity of data, in-correct timestamps or locations, misla-

beled geo-coordinates, term extraction error, and so on.

Each of these sources of noise may impact the quality of the spatial and temporal

term-based signals, leading to poor event detection. Hence, the thesis explores a

new approach for event detection from social media explicitly designed to target

these sources of noise.

Concretely, this section proposes a signal-processing inspired event detection

framework for social media. This signal processing-inspired approach views spatial-

temporal term occurrences as signals, analyzes the noise contained in the signals,
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and applies noise filters to improve the quality of event extraction from these signals.

The proposed approach incorporates this noise-filtering approach into an iterative

spatial-temporal event mining algorithm for identifying and extracting events from

social media. The iterative event mining algorithm alternately clusters terms using

their filtered signals, and then generates new filters based on the results of clustering.

Multiple filters are explored – including Gaussian band-pass filters, Ideal band-pass

filters, and others – in the comprehensive experimental setting. Over two tasks –

Event Identification and Event Retrieval based over two Twitter-based datasets – it

is found that the noise filtering based approach results in improved clustering results

over several baseline methods. The results also show that the proposed method in-

creases by around 7% than baseline methods regarding the clustering purity in the

Event Identification, and improves about 2% to 4% in the Event Retrieval based on

the metrics of 2nd Moment and Entropy.

2.2 Related Work

Event detection refers to the discovery of a specific activity that happens at a

certain time and in a certain place. Event detection is typically categorized into

two types: retrospective detection and on-line detection [8]. The former is to detect

events from collected historical documents [14, 15], and the latter tries to extract

events from real-time documents [7]. This thesis focuses on retrospective detection

methods.

Early retrospective detection approaches usually adopt clustering methods based

on semantic similarities of documents, e.g., [7] uses a modified version of TF/IDF to

measure the distance of documents, and cluster documents based on the estimated

distance. [8] uses a similar technique plus a time window and a decay factor for the

similarity measurement between documents. Many other efforts focus on detecting
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events from terms, focusing on measuring the semantic similarities of terms. [16]

and [12] use co-occurrences to measure the closeness of tags for landmark detection

and tag recommendation. [17] builds a tag graph using co-occurrence, but considers

multiple hops in the graph to compute the distance of tags.

Recently, many new features have been introduced for event detection, like temporal-

pattern, geo-location, user calendars, clicks and queries. For example, the work in

[18] detects events from click-through web data by considering each event as a set

of query-page pairs. [19] examines features first by using Discrete Fourier Transfor-

mation (DFT), and classifies features into important and un-important categories

for event extraction. [20] explores domains for events, discovers important event

categories and classifies extracted events based on latent variable models. [1] applie

multiple features including tag, time stamp and authors, and proposed a weighting

method to combine them for event extraction.

Temporal and spatial patterns also have been studied to discover relationships

including terms, posts in social network, and news articles. [21] utilizes the time

information to determine a set of bursty features which may occur in different time

windows, then it detects bursty events based on the feature distributions. [22, 23, 2]

use geo-location information integrated with a statistical model to detect the geo-

graphical topics. [13] observes the spatial-temporal patterns for tags, and adopts

a wavelet transform-based method to find tags with significant peaks in spatial-

temporal distribution, and then cluster these tags using DBSCAN to extract events.

[24] detects event by finding tags with bursts in temporal and spatial patterns. [10]

compare the 3D spatial-temporal distributions between terms to measure the close-

ness of different terms, and cluster the terms based on the distances to extract events.

Building on this related body of literature, the work presented here focuses on

the challenge of noise in the spatial-temporal term signals for event detection.
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2.3 Problem Statement

Given a collection of user-contributed social media documentsD = {d1, d2, ..., dT},

each document di can be presented as 〈W, t, l〉, where W is a list of terms from vocab-

ulary V , t is the published time of di, and l = (la, lo) is the associated geo-location,

consisting of latitude and longitude coordinates. It is assumed that there are K

events θ = {θ1, ..., θK} hidden in D and each document belongs to one of these

events. The goal is to detect these K hidden events from the observed documents.

Event: As described before, an event refers to a specific activity that happens in

a specific time and place [13]. Is defined with a group of terms satisfying three

constraints: 1) semantically consistent, 2) happen in the same time period, and 3)

appear in similar locations. Given a set of terms S, event detection is the process of

detecting subsets from S so that each subset Sk ∈ S is a set of terms satisfying the

constraints.

Term Signals: Term signals refer to the sequence of numbers representing the buck-

eted occurrence counts in the temporal, spatial or spatial-temporal domains (usually

normalized). They can also be regarded as samples of temporal, spatial or spatial-

temporal distributions of the term. Given a term wi ∈ V , Di = {di,t1 , di,t2 , ..., di,tM}

is used to denote the set of documents contains wi. A time sequence {t1, t2, ..., tM}

can be got from Di. Bucketing them into bins gives a temporal sequence of occur-

rence counts for wi: Ft,wi
= {fi,1, fi,2, ..., fi,T}, where T is the maximum time bin

index. Ft,wi
(temporal term signal) is the one dimensional term signal in the tempo-

ral domain. Similarly, given the geo-locations for wi, the two dimensional signal Fl,wi

(spatial term signal) can be derived by bucketing the location sequences of Di into a

P ∗Q grid. Given both the temporal and spatial sequences, a three dimensional sig-

nal Ft,l,wi
(spatial-temporal term signal) can be derived by gridding spatial-temporal
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stamps for wi into a T ∗ P ∗Q space.

Event Signal: Event signals for θk are the aggregation of the signals of terms belong

to θk. They can be regarded as samples of temporal, spatial or spatial-temporal

distributions of the event. Given a set of terms Sk for event θk, the event signals can

be computed using:

Ft,l,θk =
∑

E(wi)=θk

Ft,l,wi
λwi,θk (2.1)

where E(wi) refers to the corresponding event of wi and λwi,θ is the weight of wi.

2.3.1 Chanllenges

Given a set of terms S and their spatial-temporal signals, to detect events from

S or to find the subsets of S, the key question of the method is how to estimate the

distances between each pair of terms. In [23], the authors have shown how terms

associated with an event usually share a similar temporal-spatial pattern; in a related

direction, [10] finds that the spatial-temporal based distance can be used to measure

the closeness of terms.

However, when measuring the similarities between terms by comparing the pat-

terns of their spatial-temporal signals, one problem is that these signals can be easily

polluted by noise. This noise may obscure the actual spatial-temporal pattern for

terms and thus affect the similarity measurement. An ideal way is if for a term wi

associated with event θk ((E(wi) = θk)), the method can filter all the noise contained

in the signals of wi and extract only the signals belonging to event θk. So if the signals

belonging to the event θi are treated as the signals of the Region-of-Interest (ROI)

and other non-relevant signals are regarded as noise, the goal of proposed method is

to remove or reduce the noise and estimate the (ideally) noise-less Region-of-Interest

signals for terms.
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To begin the effort, three common types of noise that may impact event detection

in social media are identified:

• Background-topic noise refers to the signals caused by the daily topics like

eating, shopping, traveling, and so on. The background noise varies among

different words. For example, in Figure 2.1(a), the term ’apple’ is a common

word which has a periodical and strong background signal. Consider the event

“Steve Jobs resigned as Apple CEO”. Since ’steve jobs’ is not as common as

’apple’, its background noise power is much lower than that of ’apple’. There-

fore when comparing the closeness of them based on their term signals, the

background noise will push the two signals apart.

• Multi-event noise refers to the burst signal caused by other un-related events.

Given a word wi, it may belong to multiple events, so its spatial-temporal sig-

nals are actually the combination of the signals belonging to multiple events:

Ft,l,wi
=

∑
k Ft,l,wi,θk . For example, in Figure 2.1(b), two different tornados

happened around the 24th and 27th of August. To capture the signals belong-

ing to a tornado on the 24th of August, the noise associated with the tornado

on the 27th should be filtered.

• Random noise refers to the random signals introduced by the sparsity of data,

in-correct timestamps or locations, mislabeled geo-coordinates, term extraction

error, etc. For example, when the terms are extracted from the text of the

documents, it might introduce noise due to typos, abbreviations (very common

in social media), and so on.

Since Background-topic can be treated as a special event with periodical bursts

(Figure 2.1(a)), so the Background-topic noise and Multi-event noise are put into

one category – Event noise.
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2.4 A Noise-Filtering Approach

The section proposes a signal-processing inspired event detection framework for

social media that views spatial-temporal term occurrences as signals, analyzes the

noise contained in the signals, and applies noise filters to improve the quality of event

extraction from these signals. Additionally, this noise-filtering approach is incorpo-

rated into an iterative spatial-temporal event mining algorithm for identifying and

extracting events from social media. The iterative event mining algorithm alternate-

ly clusters terms using their filtered signals, and then generates new filters based on

the results of clustering.

To begin, based on the above analysis, term signals Ft,l,wi
for wi are viewed to be

comprised of three components: (i) Random noise Ft,l,wi,θr ; (ii) the Region-of-Interest

signals Ft,l,wi,θe belong to a specific event; and (iii) Event noises Ft,l,wi,θS−e
, where S

is the set of all the events.

Ft,l,wi
= Ft,l,wi,θe + Ft,l,wi,θS−e

+ Ft,l,wi,θr (2.2)

Toward the goal to better measure the similarities between words, a noise filter-

based approach is proposed for estimating the Ft,l,wi,θe from polluted signals. The

approach contains two types of filters: 1) the first filter aims to reduce Random noise

by smoothing the signals; 2) the second filter is based on a band-pass filter which

aims at keeping only Region-of-Interest signals, and removing background-topic and

multi-event noise Ft,l,wi,θS−e
.

2.4.1 Filtering Random Noise

The first filter adopted in this work is used for reducing Random noise from the

term signals (which, recall is a key step toward event detection). In speech and
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(a) Temporal Distribution of Term “apple” (b) Temporal Distribution of Term “Tornado”

Figure 2.1: Noise in Term Temporal Signals

image processing, the mean filter is an effective way to smooth the signal and reduce

un-correlated Random noise [25]. It is assumed that the Random noise contained in

the term signals are un-correlated, and therefore the method can directly apply the

mean filter to the signals. The key point of a mean filter is using the neighbors to

average the signal values. For every point in the signals, the value is smoothed with

the Equation 2.3.

F
′

t,l,wi
=

∑
t′∈N(t),l′∈N(l)

Ft,l,wi
Q(t

′
, l
′
) (2.3)

For mean filter, Q(t
′
, l
′
) is set with 1/M , where M is the number of neighbors,

N(t) refers to the set of neighbor points of t. A neighbor here is the point with

adjacent time unit to t and closed location to l = (la, lo). For example, if the

boundary is defined as N(t) = [t − 2, t + 2] and N(l) = [l − 2, l + 2], then all

the points which locate in the cubic owning length=2 and centered at (t, la, lo) are

regarded as the neighbors of the unit of (t, l).
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2.4.2 Filtering Event Noise

While the first filter may reduce Random noise, there is another challenge —

filtering the Event noise. Toward reducing the impact of Background-topic and

Multi-event noises, the method considers a band-pass filter. The idea of a band-pass

filter is to pass the signals in a Region-of-Interest, but filter or reduce the signals in

other regions. The key issues are how to find the Region-of-Interest for a particular

event, and how to estimate the band-pass filter Q(t, l|θk) based on the detected

Region-of-Interest. Once the filter Q(t, l|θk) is estimated, the Ft,l,wi
and Q(t, l|θk)

can be used to retrieve the signals belonging to θk with the Equation 2.4.

Ft,l,wi,θk = Ft,l,wi
Q(t, l|θk) (2.4)

where Q(t, l|θk) is the band-pass filter for θk in the spatial-temporal domain.

To detect the Region-of-Interest for a certain event θk, it is proposed to aggregate

all the signals of the terms belonging to event θk, and then label the region which

contains the strongest signals as the Region-of-Interest. The idea behind this method

is to use the neighbors to filter un-correlated noises and strengthen the signals be-

longing to θk. In signal processing, mean filtering is used to sum multiple polluted

signals. For example, if s1, s2, ..., sK is K different samples of the signal s polluted

by noises, then the mean filter uses λ1s1 +λ2s2 + ...+λKsK , (λ1 +λ2 + ...+λK = 1)

to approach the un-polluted signal s. If the noise and signal are un-correlated, then

with increasing K, the strength of the noise will be reduced to 1/
√
K [25]. Here,

since individual terms can be polluted by some event noises which are usually un-

correlated, by averaging the signals of term wi with the signals of its neighbors, the

noise introduced by different events will be reduced.

Unlike the neighbors in Section 2.4.1, which are found based on the adjacent time
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unit or spatial grid, the neighbors here refer to the terms belonging to the same event.

However, since the method lacks access to a ground truth of which terms belong to

which events, first it uses a clustering method to find the neighbors for term wi, then

the signals belonging to the same cluster are averaged using Equation 2.1 to arrive

at the the estimated event signals. Regarding the clustering method, k-means is

adopted in this thesis if the number of actual clusters is already known, and Affinity

Propagation is used if it is unknown.1 Next, based on the estimated event signals,

the band-pass filter for events is further built up.

In particular, several different band-pass filters are considered to explore their

appropriateness for event detection from social media:

Gaussian Band-pass Filter: In the Gaussian filter, it assumes that Q(t, l|θk) for

θk can be represented as a single Gaussian. Then the event signals Ft,l,θk is used to

train the parameters of Q(t, l|θk).

Q(t, l|θk) =
1

σ
√

2π
exp{−(x− µ)2

2σ2
} (2.5)

where x is the vector of 〈t, l〉.

Ideal Band-pass Filter: In the Ideal filter, it assumes in a cubic region of the

filter (the center is the point with the strongest signal), each point has an identified

weight, which is much larger than the other points outside the region.

Q(t, l|θk) =


λ
r

x ∈ [xl, xr]

η 1−λ
R−r else

(2.6)

1Affinity Propagation identifies the high-quality set of exemplars among the data points and
forms corresponding clusters of points around these exemplars, through exchanging messages be-
tween the points [26].
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Figure 2.2: Structure of Proposed Method

where λ is the cumulative frequency probability of the region [xl, xr], xl and xr are

the left-up and right-down coordinators respectively. r is the area of the region, R

is the whole area of the boundary, and η is the penalty factor (set 0.1 in this work).

Average Band-pass Filter: In the Average filter, Q(t, l|θk) is assigned with event

signals directly. And for Average Filter, the λwi,θk in Equation 2.1 is set with 1/N ,

N is the number of terms belonging to θk.

Weighted Average Band-pass Filter: Similar to the Average Filter, the Weight-

ed Average filter Q(t, l|θk) is also assigned with Ft,l,θk in Equation 2.1, but the λwi,θk

is assigned unevenly in the Weighted Average filter. The Equation for Weighted

Average filter is modified from Equation 2.1 to Equation 2.7.

F̂t,l,wi
= λFt,l,wi

+
(1− λ)

Nθ

∑
E(w′ )=θandw′ 6=wi

Ft,l,w′ (2.7)

where λ is the weight for the original signals, Nθ is the size of cluster θ.

Experimentally, these different band-pass filters are compared to evaluate their

effectiveness at removing event-based noise.
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2.4.3 Iterative Event Extraction Method

Based on the noise filters discussed above, the thesis proposes a new method to

detect events from a set of terms. The framework of the proposed method is shown

in Figure 2.2, which is mainly compromised of two parts: clustering and filtering.

The clustering part, implemented in the clustering component, is used to cluster

terms using the distances computed with the filtered signals, and to generate the

new noise filters with the clustering results. For distances based on spatial-temporal

signals, the Manhattan distance is used, and different distances like temporal dis-

tance, spatial distance are tried. More details about the distance measuring are

given in Section 2.5.2. For clustering, K-means (if the number of events is known)

or Affinity Propagation (if the number of events is un-known) is adopted to cluster

the terms. Then based on the clustering results, the event signal Ft,l,θ is computed

with Equation 2.1 and passed to the filtering component.

The filtering part is comprised of two components: Random noise filtering com-

ponent which is used to filter the Random noise in the initial signals, then passes the

filtered signals to the clustering components. Event noise filtering component that

is used to filter the Event noise. It generates the filter Q(t, l, |θ) based on the the

Ft,l,θ from clustering component, and then applies Q(t, l|θ) to the Ft,l,wi
to generate

the new Ft,l,wi,θ for wi using Equation 2.4.

An iterative method is used to integrate the clustering and Event noise filtering

components. The details of proposed method are shown in the Algorithm 1. First

the mean filter is used to reduce the Random noise, and pass the filtered signals

to the clustering component. For the initial clustering, the co-occurrence based

distance is used to cluster the terms, then the band-pass filters is generated based

on the clustering results using the method in Section 2.4.2, next the signals for the
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Algorithm 1 Noise Filter Based Event Detection

Input: termSig, initC
Init: C ←− initC; isChanging ←− True; iter ←− 0
while isChanging and iter ¡ MaxIter do

Clear(eventSig, filter)
for each cluster c in C do

for each term w in c do
eventSig[c] ←− eventSig[c] + termSig[w]

end for
end for
for each cluster c in C do
filter[c] ←− GenBandFilter(eventSig[c])

end for
for each term w in c do
termSig[w] ←− GenNewSig(termSig[w], filter[c])

end for
for each pair of terms wi and wj do
termDis[wi, wj]←− Dis(termSig[wi], termSig[wj])

end for
newC ←− Clustering(termDis)
isChanging ←− TestChanging(C, newC)
iter ←− iter + 1
C ←− newC

end while
return C, termSig, termSignal[w], filter

terms are filtered using estimated band-pass filters and pass the filtered signals to the

clustering component. The clustering component re-estimates the distances between

terms based on the filtered signals and re-clusters the term using estimated distances.

The clustering and Event noise filtering iteratively proceed until the clusters of terms

do not change anymore or the iteration count reaches the threshold. At last, the

clustering results are outputted as the detected events.

In Algorithm 1, the input term signals TermSig is the signal filtered by Mean

filter. The cluster C is initialized with the clustering results using Co-occurrence

based distance. With the clusters C, firstly event signals eventSig are computed for
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each cluster, then band-pass filters filter are generated with eventSig. Next the

new term signals are generated by applying filter to the TermSig, and distances

between terms termDis are estimated with the new term signals TermSig. Then

the terms are re-clustered based on the estimated distances. This process repeats

until the clusters do not change or reach the max iteration count maxIter.

2.5 Experiments

To evaluate the effectiveness of the proposed filter based method for event ex-

traction, two sets of experiments are designed: Event Identification (EI) and Event

Retrieval (ER). Event Identification refers to identifying the clusters from pre-labeled

terms whose hidden topics are already known. Event Retrieval is to retrieve clusters

from selected terms without knowing the hidden topics. Two data sets are collect-

ed for the experiments: Event Identification data set which contains 4 sub sets of

manually labeled terms and corresponding tweets; Event Retrieval data set that has

2,000 selected terms occurred in March 2011, and related tweets from February to

August 2011. In the EI experiments, the effects of different filters are firstly evaluat-

ed including Event noise filters (like Gaussian, Ideal band-pass filters) and Random

noise filters (Mean filter). Based on the evaluation results, the best filters are picked

and applied to the proposed Algorithm 1. The identification results are compared

with two baseline methods – Co-occurrence based method [27] and Co-occurrence-

Spatial-Temporal (CST) based method [13]. In the ER experiments, the proposed

method is evaluated with the selected 2,000 terms to detect their underground top-

ics, and the results are evaluated with different metrics including 2nd Moment and

Entropy. Manual evaluation is also applied to the results by studying the Relevance

of extracted events.
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2.5.1 Data Collection

Two sets of data are collected for the two sets of experiments respectively.

Table 2.1: Event Dataset

Dataset Events Period Selected Terms # of Tweets

IRENE
Irene Hurricane

Steve Jobs resigns
Earthquake in US

08/20/2011
-08/30/2011

hurricane, irene, tornado
steve, ceo, apple

earthquakepocalypse
234,785

JPEQ1

Fire
Transportation

Asylum
Nuclear

General Information

03/11/2011
-03/20/2011

smoke, fire, crack
train, bridge, traffic

refugee, asylum, ground
nuclear, fukushima

magnitude, epicenter

123,502

March

Japan Earthquake
Arab Spring

New Zealand Earthquake
Government shut down

Background topic

03/01/2011
-03/30/2011

earthquake, epicenter
syria, civil war

new zealand, earthquake
federal, shutdown

@, are, rt

312,021

August

Irene Hurricane
Steve Jobs resign

Earthquakepocalypse
Arab Spring

background topic

08/01/2011
-08/30/2011

hurricane, irene, tornado
steve, ceo, apple

earthquakepocalypse
libya, rebel, gaddafi

@, are, rt

723,943

1 The selected terms in JPEQ contain 17 English words and 58 Japanese words. The
terms here are translated ones.

Event Identification (EI) Data Set: The EI data set is collected for Event

Identification. In this data set, the hidden topics in the set of documents are pre-

identified, and each selected term is pre-labeled with one of the topics. Specifically, 4

data sets are collected, in which each includes 3 to 5 events selected from Wikipedia.

For each event, a two-steps method is applied to get related terms and messages: (i)

determining keywords that best describe the event using word association; and (ii)
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using keywords selected in the previous step and other event specific constraints to

retrieve tweets for the event. In the first step, to select keywords for an event, one

or two obvious keywords are identified for an event, like ‘Irene’ for Hurricane Irene.

Using the keyword(s) the method goes through the dataset and find other terms that

appear together with the keyword(s). 1,000 top most frequent terms are selected and

then their tf values (i.e., term count per day) are calculated during the time span

T = T1 + T2 (period T1 plus T2 days before the starting day of T1). In addition,

the words with tfT1 < 3 ∗ tfT2 are filtered, where tfT1 and tfT2 denote the average

tf during T1 and T2 (T2 is set to 10). Then from the rest of the words, about 15

terms with the highest tf are selected for each event. In the second step, the tweets

containing the selected words are retrieved, and posted in the specific time frame

and geographical region listed in Table 3.1.

All the chosen events are grouped into 4 sub sets according to when the events

happened. The first set March includes 5 events in March 2011. The second one

August contains 5 events in August 2011. The third data set IRENE contains 3

events on August 24th, 2011, and the fourth data set JPEQ contains only Japan

Sendai Earthquake 2011 with 5 sub topics in the earthquake. The details of the

events are listed in Table 3.1.

Event Retrieval (ER) Data Set: The ER data set is collected for Event Retrieval.

In this data set, the ground truth about the hidden events is unknown, and the size

of the data set is much larger than EI data set. The ER data set contains 2,000 terms

extracted from the tweets in March 2011, and all the tweets in the sampled set with

these terms from February 2011 to August 2011. Specifically, each tweet is tokenized

in the sampled set according to blank space, and filter all the non-alphabetical words

and stop words. For all the terms on March, all the terms whose term frequency (tf)
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do not satisfy tf(March) > 3∗tf(February) or tf < 10, 000 are filtered out. For the

rest of the terms, their timestamps are retrieved from the tweets, and the timestamps

are bucketed into bins with a width of 1 day to get the vector 〈p1, p2, ..., p180〉 for

each term. pi is the normalized tweet count for day i. Entropies are then calculated

and used for sorting all the words. At last, 3 sub sets with top 500, top 1,000 and

top 2,000 terms are collected for March 2011.

2.5.2 Parameter Setup

For each selected term in the EI data set and ER data set, the temporal, spatial,

spatial-temporal signals, and the co-occurrence between each pair of them are first

computed. And then the distance between each pair of terms are measured based

on the extracted signals.

Temporal Distance: For temporal signals of terms, given the period and bounding

box in Table 2.1, the timestamps of terms are bucketed into bins. The width of each

bin is 1 hour in the Experiment 2.5.3. For Experiment 2.5.4, 1 day is used as the

width. And then the Ft,wi
– the count of term wi in each bin is calculated and

normalized. The temporal distances based on Ft,wi
between wi and wj is defined

with:

Dt(wi, wj) =
∑
t

|Ft,wi
− Ft,wj

| (2.8)

Spatial Distance: For spatial signals of terms, the bounding-boxes for terms are

separated into 100 ∗ 100 mesh grids, and the normalized term count for each grid

Fl,wi
is calculated. The temporal distance between any wi and wj is defined with:

Dl(wi, wj) =
∑
l

|Fl,wi
− Fl,wj

| (2.9)

Spatial-Temporal Distance: To extract the temporal-spatial signals of terms, for
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each day, the bounding-boxes for terms are gridded into 100 ∗ 100 mesh grids, and

then the term count Ft,l,wi
for each time unit t and each spatial grid l are counted

and normalized. The spatial-temporal distance between wi and wj is defined with:

Dt,l(wi, wj) =
∑
t,l

|Ft,l,wi
− Ft,l,wj

| (2.10)

Co-occurrence Distance: First, the co-occurrence count o(wi, wj) of each pair of

terms is counted, and the total co-occurrence count O(wi) for wi is computed with

O(wi) =
∑

j,j 6=i o(wi, wj). Then the distance between wi and wj is defined with

Equation 2.11 [27].

Do(wi, wj) =
O(wi)O(wj)

o(wi, wj)
(2.11)

For the terms which never co-occur, their distance is set with an infinite value.

Co-occur-Spatial-Temporal Distance: To integrate the co-occurrence, temporal

and spatial distances together, the Co-occurrence-Spatial-Temporal (CST) distance

is defined with Equation 2.12 [13].

Dt,l,o(wi, wj) = (Do(wi, wj) + 1)(Dt(wi, wj) +Dl(wi, wj)) (2.12)

Different filters are tested on removing the Random and Event noises contained

in the term signals. Mean filter is used to reduce the Random noise, band-pass filters

including Average filter, Weighted Average filter, Gaussian filter and Ideal filter are

tried to remove the Event noise.

Mean Filter: For the Mean filter, the number of neighbors for temporal distribution

is set to 4, so the [t− 2, t+ 2] is used for temporal signals. A square with width = 2

is used for spatial signals, and a cubic with width = 2 is used for spatial-temporal

signals.
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Average Band-pass Filter: In the average band-pass Filter, the weight λ in E-

quation 2.1 is set to 1/N , where N is the size of the cluster.

Weighted Average Band-pass Filter: For Weighted Average band-pass filter,

the weight λ in Equation 2.7 is set to 0.5.

Gaussian Band-pass Filter: For Gaussian band-pass filter, the µ in Equation 2.5

is estimated with the t with the highest term frequency (for temporal signals). σ is

estimated with the d where P ((t− d) : (t + d)|θ) = 0.68. For spatial and temporal-

spatial distributions, l and (t, l) are used instead of t respectively.

Ideal Band-pass Filter: For Ideal band-pass filter, the γ is computed with d where

P ((t − d) : (t + d)|θ) = 0.68, λ in Equation 2.6 is set with 0.1. l and (t, l) are used

for spatial and temporal-spatial distributions respectively.

2.5.3 Event Identification

In the Event Identification experiment on EI data set, two sets of experiments

are designed to evaluate the proposed method. The first set of experiments is to

apply different filters in the temporal, spatial and spatial-temporal domains to e-

valuate the effects of filters using the proposed method. In the second ones, the

proposed method are compared with the baseline methods including Co-occurrence

based and Co-occurrence-Spatial-Temporal (CST) based methods. K-means is used

as the clustering method, and the average results of 10 times experiments are used

for evaluation. Purity is used as the metrics.

Band-pass Filter Evaluation: Band-pass filters are studied in different domains

including temporal, spatial and spatial-temporal domain. The effects of the filter

in the temporal domain are firstly observed, then in each domain, 4 kinds of band-

pass filters including Average and Weighted Average band-pass, Ideal and Gaussian

filters are compared on the. The comparisons are conducted between the filter based
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methods and the method without filters.

(a) Temporal Distribution of Term “apple” (b) Temporal Distribution of Term “Tornado”

Figure 2.3: Filtered Temporal Signals

Take the term tornado in the event Irene as an example, as shown in Figure 2.1,

before filtering with Gaussian band-pass filter, the term signals of tornado have two

bursts, of which the second one belongs to the Irene Hurricane event. After filtering

by the Gaussian windows, the first burst is diminished in Figure 2.3. Another exam-

ple is the term ’apple’ in the event of CEO. Compared to the signals in Figure 2.1,

the filter effectively reduces the noises generated from the background topics.

Table 2.2: Purity Results in Temporal Domain

data set IRENE JPEQ March August Average
Temporal 0.750 0.683 0.400 0.429 0.565
Average 0.813 0.654 0.539 0.582 0.647

Weighted Average 0.881 0.735 0.548 0.504 0.667
Ideal 0.822 0.706 0.426 0.477 0.608

Gaussian 0.795 0.702 0.427 0.455 0.595
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Experiments in Temporal Domain: The Average, Weighted Average, Ideal and

Gaussian band-pass filters are used on the temporal signals for terms, and the clus-

tering results using filtered signals and unfiltered signals are compared in Table 2.2.

Table 2.2 indicates that generally the Event noise filters reduces the noises contained

in temporal signal, resulting in better estimation of the distances, and thus achieves

better clustering results. Compared with the method with un-filtered signals, the

average purities on the 4 data sets using Average filter, Weighted Average filter, Ide-

al filter and Gaussian band-pass filter are increased by 14.47%, 17.97%, 7.51% and

5.24% on purity respectively. The probability-based filter including Weight-average

and Average filter achieves the better results than the window-based filters (Gaussian

and Ideal band-pass filter). It is probably because that Gaussian and Ideal band-pass

filters put large weights on the detected ROI region, which dramatically change the

power of the signals. If the ROI region is not detected correctly, it will incorrect-

ly filter out the actual event signals, causing a severe damage which is different to

recover. While in the Average filter, the weights of ROI regions are less than these

of window-based filters. Thus it will moderately adjust the power of signals. Even

when the ROI region is not detected correctly, there will not be a lot of lost in event

signals.

In addition, the improvements on March and August data sets by the noise-filters

are more substantial than those on Irene and JPEQ data sets. It is because that

the common words in the data sets (March and August share 15 common words

representing a general topic), like ’we’, ’like’. There are more noises contained in

their signals resulting from the widely and daily usage of these words. Therefore, the

proposed methods with noise filters achieve better performance on these data sets.

Experiments in Spatial Domain: Table 2.3 shows the clustering results on the

4 data sets using the spatial signals of terms. Compared with the methods with
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un-filtered spatial signals, Average filter and Weighted Average filter improve the

clustering results by 12.67% and 11.72%. While the window-based methods degrade

the clustering performance. One possible reason is that assume the gaussian window

and rectangle window in the Gaussian and Ideal filters have only one center. However

in spatial domain, there are usually multiple centers for some events. For example,

for the Irene event, there might exist multiple topic centers due to the transition of

the center of hurricane. Therefore single gaussian and rectangle will incorrectly filter

the real event signals, and thus degrade the clustering purities. Another possible

reason could be that the performance of spatial signals are largely affected by the

population density of different regions. If the ROI regions is incorrectly detected due

to the population-affected tweet density, the single gaussian and rectangle window

will mistakenly filter out the actual event signals.

Table 2.3: Purity in Spatial Domain

data set IRENE JPEQ March August Average

Spatial 0.681 0.6623 0.375 0.378 0.524
Average 0.818 0.727 0.338 0.479 0.590

Weighted Average 0.750 0.733 0.433 0.425 0.585
Ideal 0.590 0.246 0.352 0.391 0.395

Gaussian 0.727 0.246 0.367 0.283 0.406

The clustering results in the spatial domain suggest that the spatial filters do not

significantly improve the purity of clusters compared to using the temporal based

filters, indicating that most events are not converged in a certain location but spread

to multiple areas, while they are more likely to be centered at a certain period.

Experiments in Spatial-Temporal Domain: Table 2.4 shows the clustering re-

sults using spatial-temporal signals. Surprisingly, the results suggest that before noise
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filtering, among the temporal, spatial and temporal-spatial signals, spatial-temporal

signals achieve the worst performance. That might be caused by that the sparsity

of data makes spatial-temporal signals insufficiently represented. And due to the

inaccurate representation with sparse data, there are more noises contained in the

spatial-temporal signals. Therefore the noise filters achieve the largest improvement

in this domain comparing to the results in the temporal and spatial domains. Aver-

agely, the increase on purity for the Average, Weighted Average, Ideal and Gaussian

band-pass filters reach to 32.96%, 28.10%, 26.73% and 34.04% respectively.

Table 2.4: Purity in Spatial-temporal Domain

data set IRENE JPEQ March August Average

Spatial-temporal 0.636 0.545 0.257 0.256 0.424
Average 0.727 0.532 0.441 0.554 0.563

Weighted Average 0.727 0.538 0.426 0.479 0.543
Ideal 0.727 0.532 0.470 0.418 0.537

Gaussian 0.727 0.532 0.500 0.513 0.568

Integrating Random Noise Filters: Next, the Random noise filter is integrated

with Event noise filter, and compare this method with the method using unfiltered

signals. For Random noise reduction, Mean filter is applied, and for Event noise

removing, the Average band-pass filter is used. The method using both Random

noise and Event noise filters is compared with: 1) the method only use Event noise

filter (Average band-pass filter), and 2) the method without any filters. The average

purities on the 4 data sets in different domains is shown in Figure 2.4.

In Figure 2.4, it is observed that by applying Mean filter, in both temporal

and spatial domains, the clustering purities decrease. And the purity only increase

slightly in the spatial-temporal domain. It is likely that the grain of the signals is
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Figure 2.4: Average Purity of the Methods Using Random and Event Noise Filters

large in this work, e.g., in the spatial domain, the grid is 1*1 degree, so the neighbors

for each grid are not closed. Therefore the mean filter, which uses the neighbors’

signals to smooth the grid’s signals, does not reduce the noises but introduces new

noises. And the same reason applies for the temporal signals. But for the spatial-

temporal domain, due to its higher dimension, the grain is smaller and thus the

neighbors are closer than those in the temporal and spatial domains, therefore the

Mean filter performs better.

2.5.3.1 Comparison with Baselines

Table 2.5: Average Purity Comparison

Methods Co-occur CST-based filtered CST-based

Purity 0.5875 0.5803 0.6244

Based on the results in the last section, Average band-pass filter is adopted

in the proposed method to filter noises in temporal and spatial signals, and the
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Figure 2.5: Comparison with Baseline Methods

Equation 2.12 is used to measure the closeness between terms. This method is

named Filtered CST-based method here, and compared with two baseline methods:

(i) Co-occurrence based method [10] using Equation 2.11 to computer the distances

between terms; (ii) CST-based method [13] which also uses Equation 2.12 to compute

the distances with term signals.

From Figure 2.5 and Table 2.5, it is observed that among three methods, the

co-occurrence based and CST-based methods achieve comparable performances. the

proposed Filter CST-based method perform the best over all the four data sets.

Averagely, the Filtered CST-based method has an improvement of 6.26% and 7.60%

over the co-occurrence based and CST-based methods. The results indicate the

proposed method is effective in filtering the noises in the signals and improves the

event identification.

2.5.4 Event Retrieval

To test whether the proposed method works on large data set, it is applied to the

event retrieval on the ER data set. ER data set contains about 2,000 selected terms

and their related tweets from March 2011 to August 2011. Affiliation propagation
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clustering is applied on ER data sets, and 2nd moment and Entropy are used as the

metrics to evaluate the cluster results. [10, 22, 1] suggest that better clustering results

will approach larger 2nd moment value and smaller entropy value in the temporal

domain, because larger second moment or smaller entropy indicate the internal terms

in the cluster share more similar and spiky patterns. The average second moment

and entropy definitions for clusters are given in Equation 2.13 and Equation 2.14.

moaverage =
∑
θ

Nθ

N

∑
t

F 2
t,θ (2.13)

entropyaverage =
∑
θ

Nθ

N

∑
t

−Ft,θlog(Ft,θ) (2.14)

where Nθ is the number of terms belonging to θ, N is the total number of terms.

Based on the clustering results, the temporal event signals Ft,θ is first computed

using Equation 2.1 for each cluster, then the moment and entropy are calculated

with Equation 2.13 and Equation 2.14 to evaluate the clustering results.

For the 3 data sets containing the top 500, top 1,000 and top 2,000 terms according

to the entropy values, in each data set the terms which never happen with others

are further filtered. Finally, 3 data sets with 345, 864, 1922 terms are collected

respectively. Three methods including Co-occurrence based, CST-based and Filtered

CST-based methods are applied on these data sets. The evaluation results are shown

in Figure 2.6.

Figure 2.6 shows that the Filtered CST-based method achieves the best results

according to both 2nd moment and entropy, indicating the positiveness of proposed

method. Averagely, Filter CST-based method improves by 3.75% and 1.69% than Co-

occurrence based method and CST-based method on 2nd moment, and improves by

1.87% and 1.04% on entropy. T-test results in Table 2.7 shows that the improvement
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(a) 2nd Moment

(b) Entropy

Figure 2.6: Event Retrieval Evaluation
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Table 2.6: The Number of Detected Clusters

Method top 500 top 1000 top 2000

total terms 345 864 1922
co-occurrence 91 186 336

CST-based 75 170 325
filtered CST-based 85 192 368

Table 2.7: T-test Results

Method v.s. Co-occur v.s CST-based

p-value (2nd moment) 0.0876 0.0317
p-value (entropy) 0.0074 0.0258

of the proposed method is significant comparing to the other two baseline methods

(with the significant level α = 0.1).

The top 8 events are selected based on the 2nd moment values, and listed in

Table 2.8. Manual evaluation is applied to the extracted events according to two

rules: Are they related to each other (Closeness)? Are they related to an event

(Relevance)? The first question is answered with Yes or No; the second question is

scored with 0, 1, 2 for each cluster, where 0 means“not an event”, 1 stands for “hard

to tell”, 2 represents“is an event”. 8 people from three different majors evaluate

these events, and the average scores are listed in Table 2.8.

For the Co-occurrence based method, all the terms are correctly clustered, but

the average score of the Relevance for the 10 events is the lowest with only 1.150. For

CST-based and Filtered CST-based method, the clusters are also correct regrading

the Closeness. According to the Relevance, the Filtered CST-based method reaches

the best Relevance scores with 1.575. Also it is also shown that for some clusters

extracted by all of these three clusters, Filtered CST-based method achieves the

better results than the other two methods. For example, the cluster in Co-occurrence
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Table 2.8: Extracted Events

Method Event
No.

Top 8 Detected Clusters Close. Rele.

Co-occur-
rence Based

1 “geiger”,“tehachapi”,“fukishima”,“fukushima”,“clicks” Y 1.375
2 “japon”, “alerta” Y 1.625
3 “gears3beta”, “gearsviking”, “seaside” Y 1.625
4 “united”, “manutd” Y 1.250
5 “bernabeu”, “realmadrid”, “malaga”, “halamadrid”,

“realmadrid”
Y 1.750

6 “iremos”, “sortear”, “autografado”, “concorrer”, “aew”,
“cfmaritrindade”, “participem”

Y 1.375

7 “chernobyl”, “radiation”, “nuke” Y 1.500
8 “pipefitter”, “pipefitter” Y 0.125

MST Based

1 “geiger”,“tehachapi”, “fukishima”, “fukushima”, “click-
s”

Y 1.375

2 “alerta”, “japon” Y 1.625
3 “united”, “drogba”, “manutd” Y 1.500
4 “tsunamis”, “usgs”, “devastating”, “swept”, “naruto”,

“tornados”
Y 1.625

5 “lisalampanelli”, “chernobyl”, “radiation”, “nuke”, “ra-
dioactive”

Y 1.500

6 “iremos”, “sortear”, “autografado”, “concorrer”, “lo-
jacdbrasil”, “cfmaritrindade”, “participem”

Y 1.375

7 “messi”, “lionel”, “4-1”, “sesimbra”, “alves”, “ucl”, “pe-
nal”

Y 2.000

8 “provas”, “geografia”, “portugues”, “filosofia”, “biolo-
gia”, “muuuito”, “quimica”, “matematica”, “materia”,

Y 0.500

Filtered
CST Based

1 “earthquake”, “finder”, ”90999” Y 1.750
2 “geiger”, “tehachapi”, “fukishima”,“fukushima”, “click-

s”
Y 1.375

3 “alerta”, “japon” Y 1.625
4 “tsunamis”, “usgs”, “devastating”, “swept”, “naruto”,

“tornados”
Y 1.750

5 “iremos”, “sortear”, “cfmaritrindade”,“participem” Y 1.250
6 “mcilroyrory”, “united”,“drogba”, “manutd” Y 1.375
7 “messi”, “lionel”, “alves”, “ucl” Y 2.000
8 “bernabeu”, “realmadrid”, “realmadrid”, “malaga”,

“halamadrid”, “sorteia”
Y 1.625
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based method – “united”, “manutd”, the Relevance score is 1.250, because it can

only be inferred that this cluster is related to the soccer team Manchester United, but

cannot be specified which event they are related to. Filtered CST-based method both

approach a better score 1.375, because they detect more terms including “Drogba”,

and thus it can be concluded that it is an event about Didier Drogba with Manchester

United in March 2011. The reason that Co-occurrence based method only detects

two term is because of the lack of co-occurrence caused by the short content in tweets.

Since the proposed method considers both occurrence and spatial-temporal distance,

therefore it can find more similar terms with “united” or “manutd”. Another example

is the cluster in CST-based method – “mess”, “lione”, “4-1”, “sesimbr”, “alve”, “ucl”,

“pena”, the CST-based method in-correctly groups the terms “4-1” and “sesimbr” to

the cluster containing the terms “ucl”, “messi”, “lione” and “alve”. But actually they

are related to different games: “4-1” and “sesimbr” refers to the game Pinhalnovense

4 - 1 Sesimbra on 13th March 2011, and the other 4 terms are related to the game

Barcelona 3-1 Arsenal on 8th March 2011. The error is probably cause by that “4-

1”, “messi” and the others are popular terms that could occur in different events.

Therefore there exists Event noise in their signals which result in the mis-clustering.

By applying band-pass filter, the proposed method effectively reduces the Event noise

and correctly separates these two events.

2.6 Summary

This section addresses the problems of event detection from social media, focusing

on better estimating the distances between terms based on their spatial-temporal

signals for a specific event. The spatial-temporal term frequencies are treated as

signals, and introduce noise filters to filter different sources of noise. To remove the

Event noise, an iterative method is designed to cluster the terms based on the filtered
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signals, and the band-pass filters are generated to filter noise based on the clustering

results. Experiments on a series of collected EI data sets from Twitter indicate that

the proposed method can effectively remove the Event noises for terms, improving

the event identification performance. Also experiments on 6-months tweet data set

from Twitter show encouraging results for the proposed event-retrieval methods.
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3. EVENT TRACKING : POPULATION MODELING

3.1 Introduction

The previous section described how to detect events in social media based on a

signal-inspired method. Once an event is extracted, the next step is to track the

event. For example, how do subtopics evolve over time, how does the mood of users

affiliated with an event change over time, how large is the crowd associated with an

event, and how does this crowd size change over time. This section focus on tracking

event-driven crowds as they first form, evolve, and eventually dissolve through the

development of new population models for capturing the dynamics, duration, and

population of these crowds.

Toward the goal of modeling and tracking crowds in social media, this section

focuses on modeling the population dynamics of these crowds as they first form,

evolve, and eventually dissolve. The goal is to study the potential of social media for

building crowd population models that can estimate the dynamics, duration, and life-

cycle of crowds that may form in these systems. In this way, population models may

reveal crowds that will continue to grow and those that are on the decline, as well as

providing the basis for new advances. For example, robust population models built

over user-contributed posts could predict future population density of restaurants,

bars, and other local hotspots; urban planners and local governments could have

access to real-time population maps, reflecting the current movements of people

through space (rather than reflecting stale census estimates or relying on expensive

sensors); companies and investors could adjust their marketing strategy, and allocate

their limited resources based on the population of users drawing attention on their

products; and political groups could estimate the percentage of people voting for or
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protesting against a new policy, with the help of population modeling for crowds.

Concretely, the examination in this section are focused on two types of crowds:

• Event-driven crowds: reflecting a collection of people who are discussing

or participating in a specific event, e.g., users posting about the superstorm

Sandy or users participating in an anti-government protest in Syria.

• Location-driven crowds: reflecting groups who are bound to a certain place,

e.g., people posting messages from Manhattan or from a Starbucks located in

Pike Place, Seattle.

3.2 Preliminaries

This section describes the basics of population modeling, highlights several chal-

lenges to successfully developing models over social media, and presents the crowd-

based datasets used in the following sections.

3.2.1 Challenges to Population Modeling

Intuitively, population can be modeled using the number of births, deaths, im-

migration, and emigration. In the basic population model, suppose a place has a

population of Nt at time t. Denoting the number of newborns as Bt, the number of

deaths as Dt, the number of immigrants as It, and the number of emigrants as Et,

then the population for this place at time t+ 1 is defined as:

Nt+1 = Nt +Bt −Dt + It − Et (3.1)

According to Equation 3.1, the population increase from times t to t + 1 is the

difference between the number of births and deaths, plus the difference between the

numbers of immigrants and emigrants. In the context of short-lived crowds, it can

40



be assumed that the birth and death rates are close to 0, leading to a population

model based purely on immigration and emigration:

Nt+1 = Nt + It − Et (3.2)

Although seemingly straightforward, there are a number of challenges to model

population from user-contributed artifacts in social systems:

• While it is natural to estimate immigration using check-in data observed from

posts (reflecting users who newly joined a crowd), it is unclear how to estimate

checkout behavior. Users typically do not explicitly indicate the time that they

leave a crowd, meaning that population modeling via user-contributed posts

alone is insufficient.

• Crowds in social media may suffer from data sparsity due to small coverage—

since only a small percentage of people will post about their activities—and

a low posting frequency—since the posts of a user may be too infrequent to

capture fine-grained crowding behavior.

• Noise may also be introduced for many reasons including repetitive check-ins,

incorrect location information, and misclassification of crowd-related posts.

3.2.2 Data Collection

For the analysis and experiments in the following sections, two sets of data are

used: (i) a Location Dataset for analyzing location-driven crowds; and (ii) an

Event Dataset for analyzing event-driven crowds.

Location Dataset: The first dataset contains user posts from several popular

location-based services (e.g., Foursquare, Twitter, and Gowalla). Every post includes
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a timestamp (i.e., creation time) and the location (i.e., geographical co-ordinates)

where the message was posted. This dataset was collected between October 2010

and January 2011 and it contains more than 22 million posts from 603,796 unique

venues. About 62% of these posts are associated with a venue and every venue has

about 23 posts on average [28].

Event Dataset: The second dataset contains event-related tweets that were col-

lected using the Twitter API. Initially, around 1 billion tweets are collected from

February 2011 to March 2012 with an average of around 3 million tweets every day.

For the experiments using event-driven crowds focus are put on 6 major events in

the dataset, which are listed in Table 3.1.

To identify event-related tweets, first a set of keywords associated with each event

is determine, and then only tweets passing an event similarity threshold are kept.

To determine the set of keywords associated with an event, first one or two obvious

keywords are identified (like ‘Irene’ for Hurricane Irene). Using these seed keywords,

1,000 most co-occurring words are identified, and then their average term frequency

(tf) is calculated per day during the time span of the event (T1) and during the

ten days prior to the start of the event (T2), giving us tfT1 and tfT2. Then, the

words that occur relatively infrequently during the event are filtered: tfT1 < λtfT2,

where λ is a threshold set to 3 in this case. This method yields about 20-50 event-

related keywords, which are then used to represent an event as a vector. Next, the

term vector for each tweet is computed by tokenizing the tweet using whitespace as

a delimiter, and the cosine similarity of the keyword vector and the term vector is

calculated. Finally, all the tweets passing a similarity threshold are collected in the

dataset.

Noise Filtering: For the Location Dataset, the noises introduced by the incorrec-
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t location information are reduced by filtering out the check-ins from users whose

successive check-ins imply a rate of speed faster than 1000 miles-per-hour [28]. For

the Event Dataset, to reduce the noises caused by the misclassification of the event-

related tweets, only the tweets within a pre-specified time frame and geographic

boundary are kept. For example, Linsanity had a timeframe of the first two weeks

of February 2012 and was constrained to the geographic boundary of United States.

The tweets that are outside the time frame of the event or the corresponding bound-

ary are filtered, and finally above 10,000 related tweets are collected for each event

(Table 3.1).

Table 3.1: Event-driven Crowd Dataset

Event Period T1 Box B Top3 words #Tweet

JPEQ
03/11/2011
-03/15/2011

US
tsunami, japan,

earthquake
19281

Irene
08/20/2011
-08/24/2011

US
hurricane,

irene, tornado
10352

SteveJobs
10/05/2011

- 10/09/2011
US

steve jobs,
rip, apple

31738

Wedding
04/29/2011
-05/03/2011

UK
wedding,

royal, kate
21551

Linsanity
02/04/2012
-02/14/2012

US
jeremy lin,

linsanity, knicks
10369

Election
04/01/2012
-04/30/2012

US
obama, romney,

president
30098

3.3 Crowd-Based Population Model

This section develops the crowd-oriented population model. It shows how to esti-

mate the “immigration” (or check-in) population and the “emigration” (or checkout)

population, before fully developing the population and emission-based models for un-
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derstanding crowd dynamics.

3.3.1 Estimating “Immigration”

To estimate the number of “immigrants” for a crowd r, the temporal posting

pattern is modeled for r using the timestamps of user-contributed posts, and use

this pattern as check-in pattern to approximate the actual population of people

checking in at r given a time.

Using the posts from the two data sets, check-in patterns can be generated for

location-driven or event-driven crowds. For location-driven crowds, given a place

l, the timestamps of l’s posts are extract, and the timestamps are normalized into

24 time units representing the 24 hours in a day (if a user published multiple posts

in l within 24 hours, only her first post is used). An example check-in pattern for

McDonald’s is displayed in Figure 3.1a, where x-axis represents the time unit and

y-axis is the normalized count of check-ins, representing the check-in probability

given a certain time. It can clearly be seen that there are three peaks around 8:00,

12:00 and 18:00, and 12:00 has the highest frequency of check-ins. The peak times

are consistent with breakfast, lunch and dinner time, and indicate that McDonald’s

is most popular for a quick lunch. For event-driven crowds, given an event e and

its period, the timestamps of associated posts per hour are normalized (for users

who contribute multiple posts during the period of e, only the first one is taken into

account). For example, Figure 3.1b is the check-in frequency of the Royal Wedding

2011 in the UK between April 29th and April 30th. It is found that the check-ins

burst at April 29, 2011, and the peak hour is around 11:00 local time, which is exactly

the highlight of the whole wedding.

Similar check-in patterns have been studied in [28], [29] and [10], where the

check-in patterns associated with locations or event were shown to reveal semantic
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(b) Check-in Pattern for Royal Wedding 2011

Figure 3.1: Examples of Check-in Patterns

information, for example for automatically grouping related locations based on the

similarity of their check-in patterns (e.g., reflecting that coffee shops tend to have

similar “immigration” patterns).

3.3.2 Modeling Duration to Estimate “Emigration”

In analogy to check-ins, checkouts are used to estimate the number of “emigrants”

checking out from a specific crowd. However, since users only publish posts when

they join a crowd – like tweeting when they arrive at a place or participate in an

event, and do not explicitly post announcements when they leave – the checkout

number cannot be measured directly. To solve this problem, tho work proposes to

model the duration of time that users spend in crowd r to estimate when users will

check out from r. The duration d here refers to the time a user stays in crowd r.

The probability of d is formally defined in Equation 3.3, where R is a crowd, and the
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subscript indicates the time period (e.g., the crowd at time t).

P (d|r) = P (Rt+d+1 6= r, Rt+d = r, Rt+d−1 = r,

..., Rt+2 = r|Rt+1 = r, Rt 6= r)

(3.3)

Location-based durations: For location-driven crowds, it is assumed that once

someone checks in at location l, they will spend duration d at location l. From a

notation standpoint, the r in Equation 3.3 can be replaced by l to reflect a location-

based crowd. Hence, the duration d given a location l can be estimated using the

time span between every two posts from the same user, where the first post is from

l and the second post is the first one from a different location.

Event-based durations: Different from location-driven crowds where a user can

only be in one crowd at a specific time t, event-driven crowds may attract participants

who express interest in multiple events since there is no physical requirement of being

present at a particular location. As a result, these users can follow multiple events

at the same time, and they may leave and return to a particular event e over time.

Therefore, the duration for event-driven crowds can be estimated in a different way:

from the posts related to an event, all the posts Rt1 , Rt2 , ..., Rtn (ti is the index of

posts) that belong to a user u are identified, and then the interval of her first and

last post is used as the duration d. ti(i = 1, 2.., n) do not need to be successive (like

the posts for location-driven crowds do). If there is only one tweet for a user in e,

then the duration is assumed 0, which means this user does not stay in e.

Example: Taking the crowds at McDonald’s and Best Buy as examples, the duration

distributions for these location-driven crowds are plotted in Figure 3.2. To illustrate

event-driven crowds, the duration distributions for the people involved in the Japan

earthquake and the Royal Wedding are shown in Figure 3.3.
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(a) Duration Distribution for McDonald’s
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(b) Duration Distribution for Best Buy

Figure 3.2: Example of Duration Distributions for Location-Driven Crowds

For McDonald’s and Best Buy, the probabilities peak in the first half an hour

and decrease following a power decay law when the duration increases, which appears

intuitively reasonable. However, It is also observe that the durations derived from

measuring inter-posts times display some anomalies. Since many users may post only

infrequently, the Figure 3.2 shows that there are a number of people apparently with

a duration of 24 hours or more at McDonald’s. Similarly, it shows a spike after 24

hours at McDonald’s and Best Buy, most likely capturing people who posts only for

these location and nowhere else (resulting in a one day “duration”).

Figure 3.3 shows that the duration probability for event-driven crowds also follows

a power decay law and has a long tail (Figure 3.3 only plots the duration distribution

of the users who spend d > 0 on the events). Compared with the location-driven

crowds, people tend to spend less time on events. For example, the probability
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(b) Duration Distribution for Royal Wedding

Figure 3.3: Examples of Duration Distributions for Event-Driven Crowds

P (d = 0|JPEQ) is 77.61%, whereas P (d = 0|Wedding) is 56.72%, which means that

fewer users stay associated with an event. That is consistent with the reality that

most people are just transient viewers for an event but not long-term participants.

And comparing to location-driven crowds, they have a longer tail, because events

usually last longer.

3.3.2.1 Duration Distribution Fitness

To better understand the duration distribution, given a crowd r, this section

examines a series of distributions which are commonly used for duration modeling.

In different applications, different probability density functions have been adopted

for duration modeling, e.g. [30] proved that the contact duration follows an Ex-

ponential pdf in a mobile ad-hoc network, [31] used a Weibull pdf to estimate the

response time for traffic incidents. Here, four alternatives are considered: Gaussian,
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Exponential[30], Gamma[31], and Weibull[32].

Taking two crowds as examples – McDonald’s and the Royal Wedding – their

cumulative distributions of duration is fitted using different pdfs, and the best-fit

results are illustrated in Figure 3.4.

12 24 36 48
0

0.5

0.97

Duration (Hour)

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

 

 

data
exponential
gamma
weibull
gauss

(a) Duration Fitting for McDonald’s
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(b) Duration Fitting for Royal Wedding

Figure 3.4: Duration Cumulative Distribution Fitness

In Figure 3.4, it is observed that the Weibull pdf fits the data best, followed

by the Gamma pdf, and then the Exponential pdf. The Gaussian pdf achieves

the worst fitness. Applying the Kolmogorov-Smirnov test also indicates that the

Weibull pdf fits the data better than other possibilities. Usually Weibull is more
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flexible than the Exponential distribution in which the probability of users staying

an additional period may depend on their current duration. Therefore it’s quite

suitable for modeling the duration for these two crowds.

3.3.3 Building the Population Model

Given the duration model defined in the previous section, now this section pro-

poses a time-evolving population model that estimates both when users will depart

a crowd and how many users are remaining in the crowd.

Given a crowd r and a time t, the number of people who will check out at time t

is the sum of the number of people who checked in at t0 and stay at the location for

t− t0 and the people who checked in at t1 and stay there for t− t1 and so on. The

people who checked in d hours ago before time t check out with probability P (d|r).

So denoted Qout(t|r), the population checking out from r at t is in Equation 3.4,

where Qin(t|r) is the check-in population given a crowd r at time t, and P (d|r) is

the duration probability for people to stay in r for duration d.

Qout(t|r) =

∫ t

t′=0

Qin(t
′|r)P (t− t′|r)dt′ (3.4)

Equation 3.4 is a convolution of check-in function and duration functions, the ef-

fect is that the volume of check-ins is smoothed and shifted backward by the duration

function.

Given a crowd r and a timestamp t, the remaining population is the difference

of the total number of people who have checked in before t and the total number of

people who have checked out before t. And people who checked in d hours ago before

time t would remain with the probability 1−C(d|r), where C(d|r) is the cumulative

distribution function for d. Therefore, the population remaining in r at t, denoted
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by Qrem(t|r), can be estimated as:

Qrem(t|r) =

∫ t

t′=0

Qin(t
′ |r)(1−

∫ t−t′

d=0

P (d|r)dd)dt
′

(3.5)

where
∫ t−t′
d=0

P (d|r)dd is the cumulative probability C(t− t′|r).

In the experiments described in Section 3.4, given a crowd r, a series of dis-

tributions including Gaussian, Exponential, Gamma and Weibull will be tried for

P (d|r).

3.3.4 Emission-Based Modeling

Based on the population model, the emissions of the crowds can be further es-

timated. An emission here refers to the products that a user “emits” during their

stay in a crowd. To illustrate, for a crowd of people attending the 2012 London

Olympics, some will “emit” videos and photos by uploading them to social media

sites like Facebook. For a crowd of Apple iPhone 5 fans, some will actually purchase

the iPhone, resulting in a crowd emission. For tourists visiting Manhattan, their

associated traffic volume can be viewed as an involuntary crowd-based emission.

The goal in this section is to develop an emission model for capturing these

crowd-based products. Depending on the application domain, the emission model

could be useful across a number of settings including web service providers, product

review systems, and hotspot detection applications. Concretely, this work focuses

the proposed model on the tweets emitted by a crowd based on the event-based

crowd population model.

To estimate the number of tweets, Equation 3.4 is modified to Equation 3.6

by considering the post count per user when they stay in crowd r. Given a time

t, the users staying in r are those whose check-in time ts ≤ t and checkout time

51



te > t (their duration is d = te − ts). The number of those people can be estimated

with Q(t|r) =
∫ t
ts=0

∫∞
te=t

Qin(ts|r)P (te − ts|r)dtsdte. And for each user, the expected

number of the posts is λ =
∑MaxN

n=1 nη(n), where n is the number of posts, η(n)

is the probability mass function (pmf) for n. And given a time t ∈ [ts, te), let the

probability that a user posts an annotation at t is γ(t|ts, te). Then the number of

posts at t can be computed with the user count Q(t|r) at t times the posts count per

user λγ(t|ts, te) at t. The formula is shown in Equation 3.6:

Qpost(t|r) = λ

∫ t

ts=0

∫ ∞
te=t

Qin(ts|r)P (te − ts|r)γ(t|ts, te)dtsdte (3.6)

The posting probability function γ(t|ts, te) is modeled with three distributions:

1) Uniform distribution; 2) Exponential distribution; and 3) U-shaped distribution.

These functions are used to check whether the posts of users are evenly distributed

or concentrated on the beginning or ending during the event duration [ts, te).

Uniform distribution: In this function, it is assumed that during period [ts, te),

each time point has the same probability to emit a post.

γ(t|ts, te) =


1

te−ts ts ≤ t < te

0 else

Exponential distribution: In this approach, it is believed that it is more likely for

people to post when they just check in, and then the chance for posting decreases

exponentially when time passes. In the following equation, α =
∫ te
t=ts

e−(t−ts)dt is the

normalizing factor.
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γ(t|ts, te) =

 αe−(t−ts) ts ≤ t < te

0 else

U-shaped distribution: This function assumes that people tend to post when they

check in and check out, so the chance is high at their check-in time, then decreases

exponentially until at the middle of the period [ts, te), then the chances increase

exponentially until at the checkout time. It is a combination of two Exponential

function, constituting a U-shape probability function.

γ(t|ts, te) =


αe−(t−ts) ts ≤ t < ts+te

2

αe−(te−t) ts+te
2
≤ t < te

0 else

where α =
∫ ts+te

2

t=ts
e−(t−ts)dt+

∫ te
t= ts+te

2
e−(te−t)dt is the normalizing factors for the

function.

3.4 Experiments

Three sets of experiments are designed to verify the proposed duration, popula-

tion and emission models respectively.

• In the first set of experiments, the goal is to analyze duration and determine if

it is informative. The interests lie in evaluating if for a given venue the duration

patterns modeled with data reflect the actual time users spend in the venue.

• The second set of experiments analyzes if the population model described in

this thesis can be used to predict traffic volume. To verify this, the traffic

information is used on Manhattan’s bridges as an example. Given the incoming

traffic volume to Manhattan, first the duration model is trained for Manhattan
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using Location Dataset. Then the checkout volume is estimated using proposed

population models and compare it with the actual outgoing volume to verify

these models.

• The third set of experiments verifies the population and emission models with

respect to event-driven crowds. It is evaluated if for a given event and its

posts, the population model can estimate the checkouts from that event and

the emission model can accurately predict actual number of posts written by

the crowd corresponding to that event.

3.4.1 Is Duration Informative?

Even though the duration as measured through inter-post gaps is clearly noisy and

not immediately informative, perhaps there are interesting patterns in this duration

distribution across crowds? Examining the duration patterns for venues of different

types, the duration distributions are plotted in Figure 3.5 , which include three

categories of venues: fast food restaurants, fitness centers, and casual restaurants.

To reduce the noise of incorrect large durations caused by infrequent posts, all the

d are removed with d > η, where η is set with 24 hours here. Interestingly, it

is observed that the duration distribution agrees with the expectation that venues

in the same category share very similar patterns. Across different categories, the

duration patterns of retail stores and fast-food restaurants are dramatically different

from the ones of fitness centers and restaurants, indicating that people tend to spend

less time on fast-food venues and retail stores than fitness centers and restaurants.

To further investigate whether the duration pattern can reflect the actual time

users spend in a location, this work checks the duration patterns of venues of different

types and proposes to analyze the semantic correlation between them, by grouping

related venues based purely on check-in and derived durations revealed through lo-

54



0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

0.2

Duration (Hour)

Pr
ob

ab
ilit

y
 

 
Burger King
Subway
McDonald’s
Taco Bell
KFC

(a) Duration Distribution for Fast-Food Shops

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.1

Duration (Hour)

Pr
ob

ab
ilit

y

 

 
Snap Fitness
Anytime Fitness
Planet Fitness
24 Hour Fitness
Life Time Fitness

(b) Duration Distribution for Fitness Studios

0 2 4 6 6 10 12 14 16 18 20 22 24
0

0.02

0.04

0.06

0.08

0.1

0.12

Duration (Hour)

Pr
ob

ab
ilit

y

 

 
Buffalo Wild Wings Grill & Bar
Olive Garden Italian Rstrnt
Buffalo Wild Wings
Outback Steakhouse
Waffle House

(c) Duration Distribution for Restaurants

Figure 3.5: Comparison of Duration Distributions

cation sharing services. it is believed if the duration model suggests the real pattern

of users’ behaviors in physical world, it can be used as a feature for semantic analysis

of locations.

114 venues are sampled with the largest number of posts (posts of all distinct

venues owning the same name are aggregated, e.g., combining all distinct Starbucks

into a single “Starbucks” location) and retrieve their features including: check-in
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feature in the form of 24 dimension vector (c1, c2, ..., c24), the ith(1 ≤ i ≤ 24) dimen-

sion in the vector stands for the probability of check-ins at ith hour during 24 hours;

and a duration feature containing 24 dimensions (d1, d2, ..., d24), the dth(1 ≤ d ≤ 24)

component is the probability of duration is equal to d hours.

Figure 3.6: Venue Classification

Given the semantic category information (“Food”, “Shop”, or “Home, Work and

Other”) retrieved from Foursquare for each of the 114 venues, the set of 114 venues

are considered as ground truth data, and the distribution of duration is considered

as another feature in addition to the check-in pattern to predict the category label

for the venues. A kNN classifier is applied (using Euclidean distance as similarity

measure between venues) on the set of 114 venues, and use 10-fold cross validation

to evaluate whether the use of duration distribution can improve the identification

of semantically-related venues. The classification results for kNN (k = 1, 2, 3, 4)

is shown in Figure 3.6. As shown in figure, augmenting a baseline classifier with

duration information yields positive results in most cases, suggesting that duration
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is an informative characteristic derived from location sharing services.

3.4.2 Traffic Prediction with Population Model

To verify the population model, this work proposes to use it to predict traffic

conditions. With this goal, it is needed to build a traffic prediction model. Simply,

an area is treated as an enclosed box with only several outlets, whereby people check

in and check out using these outlets. Suppose the check-ins for this area is already

known, using Equation 3.4, then the checkout population can be estimated. Take

Manhattan as an example, which is an enclosed area, the bridges and tunnels connect

Manhattan and the surrounding districts including New Jersey, Brooklyn, Queen-

s, Bronx. The traffic volumes on these bridges and tunnels from the surrounding

districts to Manhattan are treated as check-ins, and the traffic volumes from Man-

hattan to these areas are treated as checkouts. 19 two-way bridges and tunnels are

considered in this thesis, e.g., the Manhattan Bridge, Brooklyn Bridge, Queensboro

Bridge, Williamsburg Bridge, Gorge Washington Bridge, Holland Tunnel, Lincoln

Tunnel, Washington Bridge, Alexander Hamilton Bridge, and so on.

The traffic volume data comes from the report “New York City Bridge Traffic

Volumes 2010” [33]. It lists the average hourly traffic volumes importing to and ex-

porting from Manhattan through the bridges in 2010, which are two 24-hour volume

vector (in1 , in2 , ... in24) and (out1, out2, ... out24). (in1, in2, ... in24) is used as

check-in data, and (out1, out2,

... out24) as the ground truth. Equation 3.4 is used to estimate the number of check-

outs. The duration pdf P (d|Manhattan) in Equation 3.4 describing how long people

stay in Manhattan is trained with the data set containing 22 millions geo-located

based posts. A duration is computed by considering the interval of two successive

posts by the same user in the Manhattan (and neighboring) areas. For example,
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if a user checks in at Brooklyn at t1, then he posts in Manhattan at t2, t3, ..., tn−1,

and then checks in at Brooklyn again at tn, tn − t1 is considered as a duration.

With the prior knowledge that most traffic volume come from commuters shuttling

between two districts, the durations larger than 12 hours are filtered. At last 1,673

durations are collected to train P (d|Manhattan). Both discrete and continuous func-

tions including Gaussian, Gamma, Exponential and Weibull pdfs are experimented

for P (d|Manhattan).

In Figure 3.7, the green dotted line is the repeat check-in frequencies of 4 days,

the red solid line is the estimated checkout population using the incoming volumes

and the P (d|Manhattan), and the blue dotted line is the actual outgoing volume

(checkouts). To illustrate, Figure 3.7a shows the check-ins and checkouts for the

Queensboro Bridge. The peak time of check-ins is about 8 am, the peak time of

actual checkouts is about 5 pm, which is intuitively consistent with habits arranged

around a work schedule. The estimated checkouts display a similar trend with the

actual ones and also peak at 5 pm. In Figure 3.7b and 3.7c, the estimated checkouts

also fit the ground truth well. This suggests that the duration distribution can

correctly capture the lag between check-ins and checkouts, and that the population

modeling method with duration is effective in estimating the size of crowds, and

correctly capturing the dynamics in population with time passing. It is also notice

that the estimated checkouts do not exactly fit the actual checkouts. This difference is

attributed to three main reasons: 1) in real traffic, not all incoming vehicles will also

depart (check out) by the same route; 2) outgoing volumes may also be contributed

by other crowds which are not shuttling between Manhattan and its four neighbor

districts; and 3) incomplete coverage of users’ trajectory may lead to inaccurate

estimation of their duration.

Though the exact traffic volume is hard to predict, the relative volumes can be
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(a) Traffic Estimation for Queensboro Bridge
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(b) Traffic Estimation for Williamsburg Bridge
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(c) Traffic Estimation for Brooklyn Battery Tunnel

Figure 3.7: Traffic Prediction of Bridges of Manhattan

predicted using the estimated checkouts. So the time units is ranked according to

the number of checkouts, and compare the ranked list with the list ranked with

actual checkout volumes. Thus the prediction problem may be viewed as a rank

problem. And since the top ranked time units (rush hours) are what being concerned

with most, therefore NDCG (normalized DCG - discounted cumulative gain) is used

as the metric to evaluate the ranked results. The equation of NDCG is given in
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Figure 3.8: NDCG for The Rush Hours Ranked by the Estimated Number of Check-
outs

Equation 3.7, where the reli is the score for a time unit, IDCG - ideal DCG -

is the maximum possible DCG till position k. To calculate reli, first the number

of checkouts Qout(t|Manhattan) is computed for 24 time units using the proposed

models, then the units are ranked decreasingly with Qout(t|Manhattan) and assign

each unit a score according to its rank, e.g. the 1st unit is given 24, 2nd is given 23.

The ranked results are shown in Figure 3.8.

NDCG@k =
DCG

IDCG
=
rel1 +

∑k
i=2

reli
log2 i

IDCG
(3.7)

For different NDCG@k, the population models all achieve above 70% gains, es-

pecially the model using discrete duration distribution reach above 80% gains for all

ks. This indicates that the checkout trends can be well estimated with the proposed

population model. The different continuous duration achieves comparable perfor-

mances, where generally Weibull slightly outperforms the other distributions, which

is consistent with the hypothesis test result in Section 3.3.2.1. The discrete duration

distribution is better than the continuous ones; one reason is the limited data un-
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dertrains the models, and the trained continuous model oversmooths the checkouts.

3.4.3 User and Post Prediction with Population Model

In this part, two sets of experiments are conducted to verify the population model

and emission model respectively. In the first experiment, the population model is

used to estimate the checkouts for the event-driven crowds. Given an event e, the

ground truth of checkouts Qu(t|e) are collected using the number of users who publish

a post about e at t and never tweet about e after t. The input data check-ins Qin(t|e)

are collected with the number of new users per hour. The P (d|e) is trained with all

the pairs of two successive posts related to event e of the same user. Equation 3.4 is

used to estimate the number of users who check out Qout(t|e) at time t.

In the second experiment, the emission model is applied to estimate the number

of posts for events. Given an event e, Qw(t|e) - the number of tweets about e per

hour is collected as the ground truth and check-ins Qin(t|e) as the inputs. Equation

3.6 is used to calculate the emitting posts. In Equation 3.6, the expected posts

number λ and P (d|t) are trained with Event Dataset. To verify the emission model,

the estimated post is compared number with the actual post number Qw(t|e), and

residual sum of squares (RSS) is used to evaluate the results.

In both of the experiments, for each event, the tweets are randomly divided

into two parts: training data containing the tweets of 80% users and testing data

containing the tweets of 20% users.

In Figure 3.9 and Figure 3.10, it is shown that the cumulative errors between

the estimated checkouts with the actual checkouts. (The X axis in Figure 3.10 is

the elapsed time since the start time of events.) The models are compared with the

method with no durations. The cumulative error is calculated using Equation 3.8.
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(a) Check-in and Check-outs for Japan Earthquake
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(b) Check-in and Check-outs for Steve Jobs’s Death
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(c) Check-in and Check-outs for US President Election

Figure 3.9: Estimating Check-outs for Events

Error(t) =
t∑

t′=0

|Qest(t
′|e)−Qreal(t

′|e)| (3.8)

In Figure 3.9, the blue dotted line is the error between the actual checkouts and

the estimated checkouts using the method with no duration (without duration, the

number of checkouts is the same with that of check-ins). In all three examples in

Figure 3.9, the proposed models outperform the method with no duration. Among
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(a) Posts for Japan Earthquake
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(c) Posts for US President Election

Figure 3.10: Estimating Event-Related Posts

the models with different duration pdfs, the Gaussian pdf achieve the worst results in

the short-term events, and approaches a good result in the long-term event. Weibull,

Gamma and Exponential pdfs have very similar performance, and averagely they

achieve the better results than Gaussian distribution. This fact again validates the

analysis in Section 3.3.2.1. The discrete function performs the best in the short-term

events, probably because that limited training data set does not perfectly display
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the properties of given pdfs, leading to that all the continuous pdfs do not well fit

the data set.

Figure 3.10 shows that cumulative error for the estimated count of posts for

different events. Based on the previous experimental results, the discrete duration

distribution is adopted for estimating the post count. In Figure 3.10, the blue dotted

line is the cumulative error between the actual counts of posts and the estimated ones

of posts using the method with no duration (without duration, the posts are the ones

contributed by check-in users). In all three examples, the proposed models are better

than that with no duration. And among different emission distributions, the Uniform

pdf achieves the best performance, Exponential pdf achieves the worst performance.

This result indicates that for the people who would like to stay in an event (most

users do not stay in an event, their duration is 0), they tend not to write all their

posts at the beginning, neither only post at the beginning and end time of the event,

in fact they are more likely to evenly distribute their annotations.

Table 3.2: Estimating Checkout User Count

event no dura. Discrete Exp. Gamma Gauss Weibull
JPEQ 68.000 33.382 40.436 40.411 46.033 39.963
Irene 32.665 38.199 39.814 40.767 41.863 40.619
SteveJobs 165.360 59.049 66.456 70.199 71.288 70.361
Wedding 169.505 84.436 103.266 100.767121.192 98.166
Linsanity 56.665 28.165 29.143 28.917 28.948 29.008
Election 47.138 42.355 43.379 44.206 44.935 44.186

Next, the RSS is listed for the estimated number of checkout users and posts in

Table 3.2 and 3.3. Table 3.2 shows that the root RSS of estimated checkouts and

posts using the proposed models are much smaller than those of the method without
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considering duration. For each data set, the best model reduce the root RSS by

50.91%, -16.94%, 64.29%, 50.19%, 50.30% and 10.15% respectively. Among all the

duration distributions, discrete function achieves the best performance. Exponential,

Gamma, Weibull distribution approach very similar results, Gauss pdf perform worst

averagely.

Table 3.3 shows that for each event, the best model reduce the root RSS by

59.55%, 26.66%, 56.03%, 77.97%, 60.00% and 37.05% respectively. Generally, U-

niform distribution gets the best results, while for event Irene and Linsanity, the

U-shape distribution is the best. The two events have a similarity that they both

have multiple bursts, since Irene hurricane is a swift disaster and Linsanity erupted

every time Knicks wins. Users’ comments tend to concentrate in these bursts, and

U-shape pdf has two bursts, so it might fit the data better than other pdfs. And for

royal wedding, the Exponential performs the best, this might be due to the fact that

the royal wedding is the shortest-term event in these events. People are likely to talk

about the event intensively right at the wedding procession, but will not look back

later after the wedding.

Table 3.3: Estimating Post Count

event no dura. Uniform Exponential U-shape
JPEQ 200.242 80.997 102.046 88.372
Irene 61.073 46.811 59.630 44.790

Steve Jobs 218.958 96.285 211.488 127.921
Wedding 862.541 293.299 190.059 335.976
Linsanity 121.737 48.691 74.615 43.432
Election 117.694 74.089 80.998 78.141

In conclusion, though the training data is very noisy and sparse, the duration
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model is informative for the location-driven crowds. The proposed population model

based on duration modeling is effective in estimating the checkout population for

both location-driven and event-driven crowds. And the emission model works well

on estimating the post number for event-driven crowds.

3.5 Summary

This section proposes to model population given user-contributed posts for crowd-

s. Opportunity for and challenges to population modeling in this noisy and incom-

plete domain are examined, and a novel time-evolving population model is proposed.

To model the population, the distribution of duration derived from posting data is in-

vestigated, and it is observed that the durations for location-driven and event-driven

crowds follow an power decay law. In addition, given the check-ins and duration

models, it is able to estimate the checkout population for crowds at a specific time.

This work further applies the population models to emission modeling for crowds to

estimate the volume of their posts. Finally, the population model is applied to the

traffic prediction and event-driven crowds’ population estimation problems. Evalua-

tion with the examples of Manhattan and a set of events shows effectiveness of the

proposed models.
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4. EVENT ANALYTICS : DISASTER DAMAGE ASSESSMENT

4.1 Introduction

The previous sections describe how to detect events and track the population of

crowds in social media. In this section, this thesis explores event analytics in the

context of earthquake damage assessment. The research goal in this section is to

investigate the capacity of social media for conveying damage information, which

is an important step for providing responders with rapid insight into the extent of

damage to be expected in the field and the locations of greatest damage, which are

both necessary for deciding how to best deploy the limited emergency response and

recovery resources during the initial moments of an earthquake.

This initial study assesses the quality, coverage, and capacity of two types of

social media: text-only tweets, which are typically short and require little effort to

post, and media-containing tweets, which include links to either images or videos

and are intuitively more expensive in the sense that the person posting must expend

effort to capture the picture or video. The initial investigation is reported through

an examination of the 2011 Tohoku earthquake in Japan and the 2011 Christchurch

earthquake in New Zealand. The study suggests that media tweets provide more

valuable location information than text tweets, and that both provide comparable

evidence of the linear intensity attenuation function for earthquakes, indicating a

similar ability to serve as the foundation of rapid damage assessment for earthquakes.

4.2 Related Work

Recently, with the thriving development of social network services, scientists have

begun to study the use of social media on large-scale crises, and apply it to detect,

track, summarize and assess them. For example, [34] and [35] examined the social life
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of micro-blogged information and show how social media can be used for summarizing

hazards. By studying 106 million tweets generated, [36] found the majority (over

85%) of detected topics are headline news or persistent news, indicating Twitter

plays a more important role as an information source.

Location sharing services have also attracted increasing attention in the last cou-

ple of years, and recently have been studied for emergency events. [34] analyzed the

temporal, spatial and social dynamics of tweets during a fire emergency, and dis-

cussed how the location-based social network can be a source to collect information

during emergencies. [4] treated every user as a sensor, and applied Kalman filter

to the signals generated by these human-powered sensors to locate an earthquakes’

epicenter and to predict the trajectory of the resulting typhoons. [37] explored the

relationship between the spatial pattern of geolocated SMS (Short Message Service)

messages and the building damage.

Images are increasingly playing a more significant role in disaster detection and

summarization. [38] described the evolution of Flickr’s role during disaster response

and recovery efforts, and discussed this evolutionary growth pattern as a communi-

ty forum for disaster-related activities. [39] extracted images semantic information

under translation model, and use a time-line to summarize the 2011 Tohoku earth-

quake.

4.3 Data Collection

For the study, two Twitter-based datasets were collected, which are associated

with the March 2011 Tohoku earthquake in Japan and the February 2011 Christchurch

earthquake in New Zealand. For each, the earthquake-related tweets are identified

from an ongoing crawl hosted in Infolab of TAMU that collects around 3 millions

geo-located tweets per day. To identify tweets related to each event, several key-
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words were first selected with the largest counts co-occuring with the seed words

“earthquake”, “”, and then filtered some of them according to tf-idf. For Japan,

75 earthquake-related keywords were identified (17 in English, 58 in Japanese); for

New Zealand, 15 earthquake-related keywords were identified. Based on these key-

words, all tweets, containing at least one of these keywords within the earthquake

time-window, were selected. The details for the two collected data sets are listed in

Table 4.1.

Table 4.1: Earthquake Data Sets

Event Time Frame Selected Terms #Tweet

JPEQ
03/11/2011
-03/15/2011

earthquake, epicenter,
eqjp, honshu, fukushima

207,876

NZEQ
02/20/2011
-02/30/2011

earthquake, christchurch,
new zealand, victim, rescue

38,699

The Tohuku earthquake dataset (JPEQ) contains 207,876 tweets, of which 35.41%

contain a URL (which links to an image, video, or webpage). The Christchurch

earthquake dataset (NZEQ) contains 38,699 tweets, of which 32.55% contain a URL.

Each URL-containing tweet is considered as a media tweet, whereas all other tweets

are considered as text tweets. On inspection, a random sample of media tweets were

found to overwhelmingly include on-site pictures of earthquake damage.

4.4 Approach and Findings

To begin the examination of these two kinds of geo-located social media, a series of

investigations are constructed intended to assess the quality, coverage, and capacity

of social media in the aftermath of the two earthquakes.

• Epicenter estimation: Firstly, the quality of the two kinds of tweets is assessed

for estimating the actual epicenter of each earthquake. Three different features
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are considered as input to this task, including the tweet density, the re-tweet

density, and the average tweets count per user.

• Intensity attenuation: Based on the detected epicenter, the three features are

further modeled versus the radius from the epicenter to study the intensity

attenuation pattern for earthquakes. It is well known that for any given specific

earthquake there exists an “attenuation relationship” that relates the shaking

intensity with respect to the distance to the earthquake’s epicenter [40]. Are

such a pattern in text and media tweets witnessed? And which factors model

intensity attenuation the best?

• Spread speed: The temporal and spatial features of tweets are integrated to

examine the speed of propagation of text and media tweets. This spread speed

is important for understanding the influence of social media for disaster com-

munication.

4.4.1 Epicenter Estimation

In the first study, the capacity of social media is investigated to estimate the

epicenter of each earthquake. Three different tweet-based features are considered for

epicenter estimation and compare across both text and media tweets. For this case,

all tweets are bucketed by applying a grid overlaid on the bounding box of Japan

and New Zealand. A grid width of 0.01 degrees is used, which corresponds to about

1.11 km. For each grid cell, the following three features are computed based on the

geo-located tweets:

• Tweet density (TD). The first feature is the number of tweets for each grid cell

divided by the area of the cell. In this way, the density of tweets is identified

for each cell. Intuitively, this feature captures the assumption that people are
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more likely to post a text or media tweet in the regions that are more severely

damaged.

• Re-tweet density (RD). The second feature is the number of re-tweets for each

grid cell divided by the area of the cell. Perhaps severely damaged areas re-

tweet more. Or perhaps areas outside of the most damaged regions re-tweet

based on first-hand accounts from closer to the epicenter.

• User tweeting count (UC). The third feature measures the average number of

tweets per user (number of tweets divided by the number of users) from a

particular grid cell. The intuition here is that users who are in a damaged

region may tend to be engaged with the event longer than those who are not so

close, so they might emit more tweets than those who are outside the damaged

region.

Figure 4.1: Location Estimation Using Different Features

For each feature and for each type of tweet (text versus media), the grid cell

with the maximum value is identified as the detected epicenter. In Figure 4.1, the
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estimated epicenters using the text tweets density and text re-tweets density is lo-

cated around Tokyo, which has the largest population density in Japan. This fact

indicates that the count of text tweets can be easily affected by the population, so

they are not good evidence for epicenter estimation. The re-tweet density feature

locates the epicenter to the areas which are not badly damaged, which suggests that

people who are in the safe places tend to re-tweet posts of others but not generate

original content.

In contrast, media tweet density and users’ media tweeting count perform the

best; the epicenter detected by these features are located in most severe region in

the earthquake, and are closest to the actual epicenter. These results suggest that

media tweets perform better on epicenter estimation. This is probably due to that

media tweets are more likely to happen in the local place of a region of crisis because

the scene in the images should be actually observed, while text tweet can happen

anywhere no matter where the scene it describes really happens. Therefore, the

location information for media tweets is more credible than that of text tweets.

Table 4.2: The Euclidean Distance Between Estimated Epicenter and Actual Epi-
center (Degree)

Event
TD RD UC

text media text media text media
JPEQ 3.747 1.080 6.950 12.927 3.747 1.080
NZEQ 7.066 0.100 3.095 3.111 7.066 0.100

In Table 4.2, the distance between the estimated epicenter and the actual epicen-

ter is measured (from Wikipedia) with Euclidean distance. It is found that for both

JPEQ and NZEQ, the media tweets perform better than text tweets. And the tweet

density and user tweeting count achieve the same good results. For JPEQ, since
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the epicenter is located in the ocean, the detected epicenter is located in the most

severely affected region of Japan, so the smallest distance is about 1 degree. For

NZEQ, the detected center is close to the actual center, with 0.1 degree difference.

Together, these results show that tweet density and user tweeting count are the

best features for identifying the epicenter of an earthquake, that re-tweets tend to

happen in the regions that are less affected, and that location information of media

tweet is more credible than that of text tweets.

4.4.2 Intensity Attenuation

Based on the detected epicenter, the relationship between text and media tweets

on intensity attenuation is examined next. It is well known that for any given

specific earthquake there exists an “attenuation relationship” that relates the shaking

intensity with respect to the distance to the earthquake’s epicenter. For this study,

the same three feature are reconsidered as before – tweet density, re-tweet density

and users’ tweeting count – as well as the two different types of tweets (text and

media).

Rather than consider a simple grid, increasing concentric circles are considered

around the epicenter. Given an epicenter o for a certain region, the features for the

circle region centered at o with radius r are extracted. Then r is increased by 0.01

degree (about 1.11 km), and the features are extracted for the ring area outside the

inner circle. At last, the values of features against the radius r are observed. Given

the detected epicenter, which has the largest tweet density, the values for the three

features versus the radius from the epicenter are shown in Figure 4.2.

Figure 4.2a shows that in the areas close to the epicenter, the log density of tweets

is linearly related with the radius r, which means the density decreases following a

power law. This linear relationship is consistent with the previous seismic intensity
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(a) Log Tweet Density

(b) Log Re-tweet Density

(c) Log Tweeting Count Per User

Figure 4.2: The Densities Versus the Radius in JPEQ
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research [40] on the power law decay in intensity of earthquakes. This suggest that

tweet density could be used as a proxy for actual seismic readings toward constructing

rapid damage assessments based purely on social media content. It is shown that

text and media tweets have similar trends, indicating that both are suitable for

earthquake intensity estimation.

Figure 4.2b shows the relationship between re-tweet density and distance from

the epicenter. Interestingly the re-tweet densities firstly stay stable, then decrease

exponentially when the distance from the epicenter exceeds 10 km. With respect

to the results from Figure 4.2a, it is known that in the nearest 10 km region, the

re-tweet rate (re-tweet density/tweet density) increases with the distance from the

center, because the re-tweet density stays constant and the tweet density decreases.

This result is consistent with the previous finding in epicenter estimation that people

tend to re-tweet more from the (more distant) less damaged area. These more distant

re-tweeters are serving as a communications hub spreading the posts from the more

direct observers.

Figure 4.2c shows the results that the tweeting count per user versus the distance

from the center. Surprisingly, the tweeting count per user is not affected by the

distances. For most regions they stay constant, but burst in certain regions. User

tweeting counts appear to largely depend on particular population and media centers

(e.g., where newspapers and government agencies are located), and so it is unrelated

to the radius from the epicenter.

4.4.3 Spread Speed

Finally, the dynamics of tweets are examined: how fast does social media spread

in the aftermath of an earthquake? The temporal and spatial features of tweets are

integrated to examine the speed of propagation of text and media tweets. For each
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minute from the onset of each earthquake, the average distance of posted tweets is

computed from the epicenter, allowing us to compute the average spread distance

versus time. The spread distance in the first 90 minutes is shown in Figure 4.3.

(a) Text Tweets

(b) Media Tweets

Figure 4.3: The Spread Speed of Tweets in JPEQ

For text tweets, it is seen that the spread distance and time are linearly related.

As time passes, tweets spread more rapidly in terms of distance. In contrast, that

media tweets are less frequent and have a more chaotic spread. Applying linear

regression to the two, the correlation coefficients is computed: r = 0.626, slope

l = 0.693 for media tweet, and r = 0.910, l = 1.020 for text tweet. The correlation
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coefficient shows that spread distance of text tweets is linearly related to the passing

time, indicating a constant spread speed for text tweets. And the spread speed

(represented by slope) of text tweets is about 1.020 degrees per minute (about 113.34

km per minute), which is much faster than media tweets, which have a speed of 0.639

degree per minute (71.01 km per minute). Consistent with the results in Figure 4.3,

the correlation coefficient of media tweets suggest they are more chaotic than text

tweets.

4.5 Summary

Based on this investigation into geo-located text and media tweets in the 2011

Tohoku earthquake and the 2011 Christchurch earthquake, encouraging evidence has

been observed. First, it is found that media tweets provide more valuable location

information than text tweets, and thus play a more important role in epicenter detec-

tion. Second, they both provide comparable evidence of the linear intensity attenua-

tion function for earthquakes, indicating a similar ability to serve as the foundation

of rapid damage assessment for earthquakes. The findings of a relationship between

social media activity vs. density attenuation suggests that social media following a

catastrophic event can provide a rapid insight into the extent of damage to be ex-

pected in the field, and that this relationship can then be used to infer the locations

of severest damage, as well as where to best deploy emergency response and recovery

resources.
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5. SUMMARY AND FUTURE RESEARCH OPPORTUNITIES

This section presents a summary of this dissertation and potential future research

avenues in this area.

5.1 Summary

This thesis addresses the event modeling problems, focusing on event detection,

event tracking and event analytics. Successful event modeling is critical for many

services including information search, entity extraction, disaster assessment, and

emergency monitoring. Hence, this thesis made three contributions:

The first work is designing a new signal processing-inspired approach for event

detection. In this work, an iterative spatial-temporal event mining algorithm is

designed for identifying and extracting topics from social media. One of the key

aspects of the proposed algorithm is a signal processing-inspired approach for viewing

spatial-temporal term occurrences as signals, analyzing the noise contained in the

signals, and applying noise filters to improve the quality of event extraction from

these signals. The proposed approach is evaluated through experiments on collected

Events data sets; the results indicate that the proposed method can effectively remove

Event noise, improving event mining effectiveness from social media.

Second, this thesis models the population dynamics of crowds driven by an even-

t or other stimulus. In the proposed population modeling, a duration model is

introduced to predict the time users spend in a particular crowd. And then a time-

evolving population model is designed for estimating the number of people departing

a crowd, which enables the prediction of the total population remaining in a crowd.

At last, the crowd models is validated through extensive experiments over 22 million

geo-location based check-ins and 120,000 event-related tweets.
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Finally, given the specific scenario — earthquake damage assessment, the poten-

tial of social media is investigated for providing rapid insights into the location and

extent of damage associated with the earthquakes. Firstly, the difference between

text tweets and media tweets is investigated, and then three features – tweet density,

re-tweet density, and user tweeting count – are extracted to model the intensity at-

tenuation of each earthquake. The observation that the relationship between social

media activity vs. loss/damage attenuation suggests that social media following a

catastrophic event can provide rapid insight into the extent of damage.

5.2 Future Research Opportunities

• Multiple Duration Models: Section 3 has discussed how to estimate the

population for crowds based on duration models. There two types of crowds

are examined: (i) event-driven crowds and (ii) location-driven crowds. Future

research in this direction can observe other types of crowds like conversation-

driven crowds and interests-driven crowds. Besides, although different pdfs

have been tested for duration modeling, it was assumed that there only exists

one duration pdf for a single crowd. In the future work, multi-duration models

will be adopted for a single crowd. For example, when people have a dinner in a

restaurant at 6 pm, the time they will spend there would probably be different

from that they spend at 10 am, therefore the duration models adopted for these

two periods should also be different.

• Damage Assessment with Architecture Engineering: Section 4 has dis-

cussed event modeling in damage assessment application. In the continuing

work, this connection will be investigated through partnerships with structural

engineers. For example, [40] builds a 3-d (damage, death and downtime) mod-

el to connect seismic hazard intensity attenuation models with loss models,
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and thus provides a rapid method to estimate the structure damage, downtime

and deaths in the earthquake. By studying the relationship of seismic hazard

intensity attenuation models [40] and tweet density model in Figure 5.1, can

a function be found to map the y-axis values in Figure 5.1a to those in Fig-

ure 5.1b?(Figure 5.1a is the attenuation relationship between intensity measure

(IM) and the radial distance from the epicenter [40]; Figure 5.1b is the atten-

uation relationship between tweets density and the radial distances.) If this

mapping function can be found, then tweet density model can be connected to

the 3-d model directly, hence the losses in the earthquake including damage,

downtime and deaths can be estimated directly from social media.

Other future work could be: Can any holes can be found in the coverage of

social media due to power outages, lack of population, and lack of access to

social media tools? To what extend can the content of media tweets (e.g.,

images and videos) be incorporated into these models to refine their damage

assessments? These and related questions motivate the ongoing investigation

into the linkage between social media and traditional methods of post-disaster

damage assessment.
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(a) Seismic Hazard Intensity Attenuation Model [40]

(b) Tweets Density Attenuation Model

Figure 5.1: Connection between Social Media Models with Architecture Models.
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