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ABSTRACT 

 

In this work, we present methodologies for optimization of hydraulic fracturing design 

under uncertainty specifically with reference to the thick and anisotropic reservoirs in the 

Lower Tertiary Gulf of Mexico. In this analysis we apply a stochastic programming 

framework for optimization under uncertainty and apply a utility framework for risk 

analysis.      

 

For a vertical well, we developed a methodology for making the strategic decisions 

regarding number and dimensions of hydraulic fractures in a high-cost, high-risk offshore 

development.  Uncertainty is associated with the characteristics of the reservoir, the 

economics of the fracturing cost, and the fracture height growth. The method developed is 

applicable to vertical wells with multiple, partially penetrating fractures in an anisotropic 

formation. The method applies the utility framework to account for financial risk.   

 

For a horizontal well, we developed a methodology for making the strategic decisions 

regarding lateral length, number and dimensions of transverse hydraulic fractures in a 

high-cost, high-risk offshore development, under uncertainty associated with the 

characteristics of the reservoir. The problem is formulated as a mixed-integer, nonlinear, 

stochastic program and solved by a tailored Branch and Bound algorithm. The method 

developed is applicable to partially penetrating horizontal wells with multiple, partially 

penetrating fractures in an anisotropic formation.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction  

With current world energy demand reaching all times high, operators have pushed the 

limits of hydrocarbon exploration and production to ever-deeper waters and increasingly 

more hostile environments. For publicly owned companies, the search has additional 

geopolitical and geographic constraints limiting the areas of production. This has led 

exploration departments from a large number of exploration and production companies to 

the deepwater Gulf of Mexico, Lower Tertiary, Paleogene, Wilcox sands.  

 

The Wilcox formation contains upwards of 25 billion barrels of oil and by many is 

considered the final frontier in the Gulf (Lewis et al. 2007, Lach and Longmuir 2010). 

The high exploration success has led to a high degree of certainty of hydrocarbon 

presence (Mathur 2008). Its location under US federal waters means that geopolitical risks 

are minimized.  

 
However, at water depths approaching 10,000 ft, total formation depths of 30,000 ft, and 

overpressured reservoirs, significant technological constraints limit the design, 

completion, and production of developmental wells. Furthermore, commercial production 

requires high wellbore productivity to balance upfront initial costs. Current industry 

conjecture suggests that anticipated wellbore productivities are orders of magnitude lower 
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than previously found in the Gulf of Mexico. A major factor of the low wellbore 

productivity is low permeability.  

 

One especially attractive method for wellbore improvement in these fields is hydraulic 

fracturing (Dusterhoft, Strobel, and Szatny 2012). As many of the producing reservoirs in 

the Gulf of Mexico (GOM) are unconsolidated, high-permeability sandstones, generally 

requiring single zone-frac-pack completions, hydraulic fracturing for productivity in the 

GOM is still a new mindset (Haddad, Smith, and Moraes 2012). 

 

 Massive hydraulic fracturing is a costly operation, particularly offshore where logistic 

constraints and exorbitant rig rates add significant financial risk. Cost estimates are 

uncertain with highly variable nonproductive time. Limited production from analogous 

fields coupled with monumental appraisal drilling costs result in certain uncertainty in 

key reservoir and fracture design parameters. New tools and methodologies are needed for 

design and optimization of hydraulic fracturing in this high-risk environment.   

 

The objective of this work was to provide new approaches to fracture design for thick 

anisotropic reservoirs with uncertainty in reservoir parameters in the face of limited data 

and with significant financial risk as a result of reservoir depth and remoteness.  
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Deep-water Lower Tertiary Background  

The majority of current Gulf of Mexico production comes from the Micocene trend, 

which has had significant appraisal and development since the mid-1990s. As the 

Micocene trend exploration success dwindled in the 2000s, few geologists expected to 

find new oil in the Gulf, especially in older sediments. However, in 2001, Shell’s 

exploratory well Baha  No. 1, located in the Alaminos Canyon Block 857, drilled through 

4,500 ft of reservoir quality turbidite sands containing a 12-ft oil zone. Follow-up drilling 

in the Alaminos Canyon led to Wilcox discoveries of the Trident and Great White fields. 

Simultaneously, BHP Billiton discovered the Chinook formation in the Wilcox sands, 

located in Walker Ridge Block 206 (Wiltgen 2008).  

 

These discoveries motivated continued exploration in the Lower Tertiary. To date 12 

discoveries have been made out of 19 wells drilled, indicating high probability of 

exploration success (Mathur 2008). The established trend encompasses 34,000 square 

miles from Alminos Canyon, Keathley Canyon and Walker Ridge. Current geologic 

interpretation suggests the formations are thick turbidite sands with trap styles consisting 

of compressional Louann salt-cored symmetrical box folds, symmetrical salt pillows, and 

asymmetrical salt-cored thrust anticlines (Lewis et al. 2007).  
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Fig. 1.1. Gulf of Mexico trend 
 

The main technical challenges in the formations are water depth, reservoir depth, high 

temperatures and pressures, low permeability, and high viscosity. General reservoir 

properties are shown in Table 1.1 Furthermore, Fig. 1.1 shows the reservoir locations that 

are generally remote. Limited infrastructure exists, and lack of ultradeepwater drilling rigs 

presents additional operational challenges and constraints (Cunha et al. 2009). 
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Table 1.1 General Properties of the Lower Tertiary 
Water	
  Depth	
  (ft)	
   7000-­‐10000	
  	
   Permeability	
  (md)	
   5-­‐25	
  

Depth	
  (ft)	
   25000-­‐30000	
   Gravity	
  (API)	
  	
   20-­‐30	
  
Effective	
  Porosity	
  (%)	
   0.15-­‐.20	
   GOR	
  (cfb)	
   300-­‐500	
  

Gross	
  (ft)	
   1000-­‐1500	
   Viscosity	
  (cp)	
  	
   3.0-­‐20.0	
  
Net/Gross	
  (%)	
   50	
   Bubble	
  Point	
  (psi)	
   1000-­‐2000	
  

Temperature	
  (°F)	
   200-­‐250	
   Formation	
  Volume	
  Factor	
  (Rb/Stb)	
   1.1-­‐1.2	
  
Initial	
  Pressure	
  (psi)	
   20000-­‐25000	
   Water	
  Saturation	
  (%)	
   0.2-­‐0.3	
  

 
 

A key feature of the trend is that the reservoirs are thick and layered with much lower 

permeability than previous Gulf of Mexico Shelf and Miocene plays. Furthermore, some 

formations have effectively zero vertical permeability. Many have suggested that 

hydraulic fracturing may be the key to economic production (Haddad, Smith, and Moraes 

2012, Dusterhoft, Strobel, and Szatny 2012, Ogier et al. 2011, Cunha et al. 2009). Given 

the thickness of the reservoirs and limits on fracture height growth, partial fracture 

penetration must be accounted for. This work proposes an efficient semi-analytical 

method to determine productivity for partial penetration fractures in anisotropic media 

using the distributed volumetric source method. The flexibility of this method and its 

computational robustness will be shown to be vital for sensitivity analysis and 

optimization purposes.   

 

Currently, the most complex producing well in the lower tertiary is Petrobras’s CA003 

located in the Cascade formation in Walker Ridge Block 249 (Ogier et al. 2011). The 

CA003 is a 17° deviated well with 3 stacked vertical hydraulic fractures. The well 

encountered numerous mechanical problems during the lower completion phase, resulting 
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in 25 days of nonproductive time (NPT) (Ogier et al. 2011). For offshore operations, 

economic costs are significantly impacted by the spread rate, which is the daily cost of 

renting and operating a drilling rig, Currently, the spread rate is $1 million+, and 

combined with nearly 25 days of NPT, this easily added an additional $25 million to well 

costs. To date no horizontal wells have been drilled into the formations. Financial risks 

from NPT and hostile operating conditions are nontrivial and must be accounted for in the 

design phase of development.  

 

Decisions regarding an offshore project must be made well before a significant amount of 

information is realized. Appraisal drilling is costly and only reveals limited information 

about the entirety of a reservoir. For the Lower Tertiary, the uncertainty is even greater as 

production data is almost nonexistent. Cost estimates carry significant risk factors as 

operations at these depths and pressures are novel. These obstacles present a formidable 

task for the completion engineer attempting to design an optimal wellbore. New tools are 

needed to account for the uncertainty in reservoir properties and economic risks apparent 

with increasing complexity of operations. This work proposes new methodologies for 

tackling these problems, including the application of stochastic programming for design 

under uncertainty and the application of utility theory to account for risk.  
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Research Objectives  

The overall objectives of this study were: 

• To develop an efficient model for optimal fracturing design for partially 

penetrating fractures in anisotropic and multilayer formations by applying the 

distributed volumetric source method.  

• To develop a stochastic programing framework for fracture design under 

economic and reservoir uncertainty. The development included a two-stage 

stochastic program with simple recourse and a two-stage stochastic program with 

full recourse.  

• To apply utility theory for risk quantification in optimization and design of 

fracture treatments.  

• To combine the above-mentioned methods for fracture design and optimization for 

developmental wells in the Gulf of Mexico Lower Tertiary trend.  

 

Literature Review  

The literature review focuses on three distinct topics that are paramount to this work. The 

first subject is a review of hydraulic fracturing theory; the second subject is a review of 

the work done in stochastic modeling and optimization; and the third subject is a review 

of utility theory analysis pertaining to the petroleum industry.    
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Performance of Various Wellbore/Hydraulic Fracture Configurations  

Hydraulic fracturing is a stimulation technique used to increase the productivity of a 

wellbore. It involves pumping high-pressure liquid carrying proppant to induce fractures 

into petroleum-bearing rocks. The high-pressure liquid serves to create and propagate 

fractures while the proppant serves to prop the induced fracture open. Hydraulic 

fracturing began in the petroleum industry in 1947 and is one of the most studied topics in 

petroleum engineering. A review of the fundamental theory is given in this section.  

 

Prats (1961) investigated the effect of propped vertical fractures. He introduced the 

effective wellbore radius concept, suggesting that a larger hypothetical wellbore radius 

can represent the fracture. He introduced the parameter of fracture conductivity that is the 

product of fracture permeability and thickness.   

 

Gringarten (1974) developed a mathematical models to investigate infinite conductivity 

and uniform flux vertical fractures in infinite and bounded reservoirs. These models 

present semianalytical solutions for the pressure distribution created by the fracture via 

Green’s function.  

 

Cinco, Samaniego, and Dominguez (1978) developed a mathematical model to investigate 

the transient pressure response of a finite-conductivity vertical fracture in an infinite-slab 

reservoir. They introduced the parameter of dimensional fracture conductivity.  
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Mukherjee and Economides (1991) investigated horizontal wells with transverse 

hydraulic fractures. They introduced the choke skin effect to account for the radial 

convergent flow that occurs in horizontal wells with transverse fractures.  

   

Raghavan, Chen, and Agarwal (1997) developed a mathematical model to investigate the 

response of a horizontal well with multiple fractures. They presented correlations to 

determine long-term pressure performance and analytical procedures to evaluate pressure 

measurements in a horizontal well with multiple fractures.  

 

Valko and Economides (1998) introduced the concept of the proppant number as an 

optimization method for designing hydraulic fracture treatments. They demonstrated that 

there is an optimal fracture geometry for a given reservoir and proppant mass that 

corresponds to a maximum gain in wellbore productivity.  

 

Wattenbarger et al. (1998) noted that for low-permeability reservoirs, the pressure 

response of a fractured system may never reach pseudosteady state. They developed an 

analytical expression for the transient dimensionless production rate.  

 

Romero, Valko, and Economides (2002) extended the work done by Valko and 

Economides (1998) to include the effect of fracture face and choke skin for optimization 

proposes. They used Ozkan’s influence functions and a boundary element method to 
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calculate pseudosteady-state performance of a vertical well with a fully penetrating 

fracture.  

 

Valko and Amini (2007) introduced the distributed volumetric source (DVS) method for 

calculating the productivity index for various well-fracture configurations including fully 

and partially penetrating hydraulically fractured vertical wells with uniform flux, infinite 

conductivity, and finite conductivity in an anisotropic homogenous reservoir. The DVS 

approach is an efficient method that provides the productivity index and well testing 

derivative in transient and pseudosteady-state flow regimes.  

 

  

Uncertainty Analysis and Stochastic Modeling 

Stochastic models are used when parameters in the problem data are uncertain. In the field 

of petroleum engineering, uncertainty is natural as it is impossible to measure or see the 

entire reservoir or to predict future costs and prices. Stochastic models carry increasing 

complexity and computational burden by their nature, as a large or even infinite numbers 

of possible outcomes can be realized from a number of uncertain variables.  

Stochastic modeling in the petroleum industry dates back to the 1960s, however, it wasn’t 

until the 1990s that stochastic modeling gained rapid popularity and usage, largely with 

the advent of high performance computing. This rebirth, founded by geoscientists, was 

mainly due to the realization that many problems such as the architecture of flow units 

and the spatial distribution of rock properties could not be adequately addressed without 
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the use of probabilistic models (Yarus and Chambers 1994). Stochastic modeling took off 

in the geoscience communities under the guise of geostatistics and is now a fundamental 

aspect of the field.  

 

Throughout the past 20 years, stochastic modeling has evolved from the geosciences to 

the reservoir management field. Instead of simply portraying a number of possible 

realizations, the reservoir manager seeks to make decisions such as wellbore placement, 

production strategies, pipeline infrastructure, etc. under uncertainty. This highlights an 

often-confused distinction between stochastic models and methods (Haldorsen and 

Damsleth 1990): a stochastic model describes a statistical distribution while a method 

operates on a model.  

 

Currently, a well-accepted model for optimization in the petroleum industry is Monte 

Carlo sampling. Monte Carlo sampling is the repeated random selection of variables from 

a distribution. For optimization purposes, the Monte Carlo method revolves around fixing 

design variables, random sampling of uncertain parameters, and continued iteration of 

each to generate probability distributions of outcomes. An important aspect of the Monte 

Carlo method for optimization is the initial guess of first-stage design variables. If the 

guess is not good a large number of iterations may be required to reach optimal design 

parameters.  

 



 

 

12 

A clear distinction should be made between Monte Carlo sampling and Monte Carlo 

sampling with optimization. Monte Carlo sampling is a statistical method for generating 

plausible outcomes while Monte Carlo sampling with optimization involves the same 

sampling method but also seeks to optimize decision variables by iterative processes.    

 

The Monte Carlo method has been widespread in the petroleum industry for sampling and 

optimization purposes. Literally, thousands of papers exist in the petroleum industry on 

the use and application of the Monte Carlo method. Below selected reference will be 

given showing the breadth and popularity of the Monte Carlo method in all aspects of 

petroleum engineering.  

 

Stoian (1965) outlined the fundamentals and application of the Monte Carlo method and it 

application to the petroleum industry. Reed (1972) applied Monte Carlo for drilling 

optimization. Hughes and Murphy (1988) applied the Monte Carlo method to simulate 

unstable miscible and immiscible flow through porous media. Dear III, Beasley, and Barr 

(1995) applied Monte Carlo sampling to optimize mud system design. Zhang and 

Srinivasan (2005) used Monte Carlo for modeling permeability variation. Kabir et al. 

(2007) applied Monte Carlo sampling to well count decision making under uncertainty for 

gas/condensate reservoirs. Dong, Holditch, and McVay (2013) applied Monte Carlo 

sampling for resource evaluation in shale gas reservoirs.  
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An alternative and less used model for optimization is the stochastic programming model. 

Stochastic programs are models that explicitly seek to maximize an object function 

subject to constraints on functions of variable randoms. The stochastic model does not 

require fixed inputs of first-stage parameters or random sampling of uncertainty. The 

stochastic program implicitly searches over the entire range of design variables to find an 

optimum solution honoring all constraints.  

 

The origins of stochastic modeling date back to the work of Dantzig (1955). Currently 

stochastic programing has found widespread use in the finance industry, the distribution 

sector, the aviation industry, the agriculture industry, and so forth. Stochastic programing 

in the petroleum industry has largely been driven from the reservoir management 

perspective. Well placement optimization has been the major application of stochastic 

programs from the reservoir engineering discipline where uncertainties reveal themselves 

on the grid-block scale of the simulator. The main objectives of these programs are to 

optimize the exact location and number of wells for a specific reservoir. These are 

generally computationally expensive programs with numerous (even prohibitive) full-

scale simulations required.  There also has been significant work with stochastic 

programing in planning infrastructure for offshore developments. The objectives of these 

programs are to optimize the locations of production facilities, pipelines, and well 

locations. Generally, these programs use a simple or surrogate reservoir model as opposed 

to full-scale reservoir simulation. An extensive literature review for stochastic 

optimization is given below.  
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Haugland, Hallefjord, and Asheim (1988) applied a mixed-integer programming model to 

optimize the net present value (NPV)  for an offshore oilfield development. They 

optimized the number of wells, the timing of the drilling program, and the production 

profile to meet facility capacity. They did not account for uncertainties in the reservoir or 

fluid parameters but did include price uncertainty in the sensitivity analysis.  

 

Jonsbraten (1998) applied a mixed-integer stochastic program to optimize the expected 

NPV regarding offshore oilfield development. They extended the work of Haugland, 

Hallefjord, and Asheim (1988) but explicitly optimized the number of wells and location, 

the timing of the drilling program, the platform capacity, and the production profile under 

uncertain future oil prices. They directly optimized the variables for maximum expected 

NPV.  

 

Goel and Grossmann (2004) applied a stochastic program to facilitate decision making for 

offshore gas field development. The decisions they optimized on were the location and 

number of wells, the location and capacity of the production platform, and the number and 

location of pipeline connectors. Their objective function was the expected NPV, and the 

uncertainties were the size and deliverability of the fields. They approached the problem 

from the surface/process engineering prospective and used a simple linear model to 

describe the reservoir.  

 



 

 

15 

Guyaguler and Horne (2004) addressed geological uncertainty for well placement 

optimization. They use a hybrid genetic algorithm (GA) to determine the optimal well 

locations. Their method works as follows: the GA selects a well location and numerical 

simulation is carried out on a random selection of selected realizations of uncertain 

parameters. If the selection is feasible, the GA will revisit the well location with another 

set of realizations. The GA revisits the location with higher resultant outcomes and 

determines an apparent optimum.  

 

Guyaguler and Horne provide valuable insight into the problem of well placement under 

uncertainty by showing that the optimum location found by the algorithm never coincides 

with the truth-case optimum location. This is because the truth-case (deterministic) is 

never known. They show that the optimum location depends on the amount of risk the 

decision maker is willing to take. They apply utility theory to address the risk involved 

with different possible realizations.  

 

Ozdogan and Horne (2006) extended upon the work of Guyaguler and Horne (2004) to 

address the time-dependent uncertainty for well-placement optimization. They approach 

the well-placement problem sequentially, using time-dependent information to improve 

decision making and expected NPV. They used the production profiles from initial wells 

to determine the location of new wells. They proposed a pseudo-history method that 

recursively updates history matches in an effort to better predict actual well performance.  
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Tarhan, Grossmann, and Goel (2009) developed a stochastic program for planning 

offshore oil field infrastructure under decision-dependent uncertainty. They optimized the 

location and capacity of the production facility, the number and drilling schedule of wells, 

and specific production strategies. They extended upon the work of Goel and Grossmann 

(2004) by including a nonlinear reservoir model that accounts for water breakthrough. 

They considered uncertainty in the maximum oil rate, the recoverable oil, and water-

breakthrough time. They emphasized the importance of decision-dependent uncertainty or 

uncertainty that is realized from the decisions made.  

 

Ettehad, Jablonowski and Lake (2011) formally introduced stochastic programming as a 

method to optimize offshore gas field developments under uncertainty. They applied a 

linear stochastic two-stage program with recourse. They used a gas-tank model with two 

compartments to model the reservoir. The constraints include maximum well production 

rate, facility capacity, and compressor power requirements. Their objective function is 

maximization of expected NPV. The first-stage decisions in their model include the 

number of wells to drill, facility capacity, and compressor power. The second-stage 

decisions in their model are operating conditions and production schedule. They 

introduced uncertainties in original gas in place and transmissibility between reservoir 

compartments. The uncertainties are realized after the first-stage decision has been made. 

Ettehad et al. compared the stochastic program to a Monte Carlo optimization scheme and 

noted the robustness of the stochastic solution in terms of computational efficiency and 
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flexibility. This appears to be the only application of a formal stochastic program with 

recourse in the Society of Petroleum Engineers literature.  

 

As shown above, there is a breadth of literature concerning the well-placement problem 

and the infrastructure-planning problem. However, only three papers in the literature 

address wellbore completion/stimulation under uncertainty.  

 

Wehunt (2006) discussed the use of probabilistic methods for predicting well performance 

under uncertainty. He presented tabulated values of skin and constructed a cumulative 

density function for different completion types. He coupled these uncertainties in 

reservoir parameters and used Monte Carlo sampling to probabilistically predict well 

productivity. He did not provide an optimization procedure but showed the use of 

historical values of skin for probabilistically predicting future performance.   

 

Ouyang (2007) discussed the role of uncertainty on well performance for oil wells with 

different completion types. He used commercial completion software and discussed the 

sensitivities using different completion types. He did not offer any guidance on 

optimization or design under uncertainty but simply presented data on his specific case.  

 

Birchenko et al. (2008) investigated the impact of reservoir uncertainty on horizontal well 

completions with inflow-control devices (ICDs) with inflow-control valves. They 

presented probabilistic results from different geological realizations of wells with inflow 
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control devices. They concluded that ICDs increase mean recovery and limit risk. 

However, they did not offer an optimization methodology but just presented specific data 

for a specific case.  

 

As seen from the above summary, optimization of fracture design under uncertainty is still 

uncharted territory. This is the main motivation of this work. To approach the problem, 

following the style of Ettehad et al. (2011), the classical theory of stochastic programming 

with recourse was applied. A brief review of stochastic programming with recourse is 

given below.  

 

The first stochastic program was developed by Dantzig (1955). This pioneering work set 

forth the basic modeling for the two-stage stochastic program with recourse. He provided 

a framework to optimize decisions made in a number of stages with each decision stage 

dependent on the last and ending with a random outcome. This work provided a 

procedural formulation to solve linear programs containing stochastic input. The 

motivation of this work was to optimize the allocation of a carrier fleet to meet anticipated 

but uncertain demands.  

 

Raiffa and Schlaifer (1961) developed the concepts of opportunity loss and the expected 

value of perfect information in decision theory analysis. Opportunity loss is quantification 

of the consequences of an action made without perfect knowledge of a future outcome. It 

explicitly measures the value of a suboptimal decision made before a specific realization 
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of a future outcome and the optimal decision concerning the exact future outcome. They 

extend this work to determine the expected value of perfect information or the worth of 

complete information regarding a future outcome. This is the value a decision maker 

would pay for complete information about a specific future realization.  

 

Madansky (1960) and Mangasarian and Rosen (1964) expanded Raiffa’s (1961) work by 

providing the bounds of the expected value of perfect information for stochastic linear and 

nonlinear programs respectively. This information provides the potential worth of more 

accurate predictions of future outcomes and is a useful measure when deciding if more 

data gathering is worthwhile.   

 

Birge (1982) noted that, in certain situations, it is impossible to gain further information 

about the future. He introduced a new measure, the value of the stochastic solution, which 

is the value of solving the more complex stochastic solution versus the simpler mean-

value solution. The mean-value problem uses the expected value of an uncertain variable 

in a sole deterministic program. He demonstrated by Jenson’s (1906) inequality that the 

solution obtained by the stochastic program is always equal to the solution obtained from 

the mean-value program.  

 

The expected value of perfect information and the value of the stochastic solution are the 

fundamental motivations for the use of stochastic programming. The values have direct 

application to the petroleum industry. The expected value of perfect information may be 
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used when determining if further appraisal drilling or more core sampling is warranted. 

The value of the stochastic solution demonstrates that using averages or expected values 

for modeling and design purposes may result in suboptimal design. For example, as will 

be shown in this work, the use of an average permeability as opposed to a distribution of 

permeability for fracture design will result in a suboptimal design when uncertainty exists. 

 

The stochastic program with recourse will be used extensively in this work as applied to 

fracture and wellbore design under reservoir and economic uncertainties.  

 

In decision analysis a common optimization variable is the expected NPV. However, as 

noted by many, expected NPV in itself does not capture the inherent risk (Campbell, 

Campbell, and Brown 1999, Begg, Bratvold, and Campbell 2001, Guyaguler and Horne 

2004, Newendorp 1978, Esmaiel and Heeremans 2006). An alternate metric for 

optimization is utility, which is a quantitative measure of the decisions makers’ 

comparative preference to different asset values.  

 

The numerical concept of utility was introduced by von Neumann and Morgenstern 

(1944) in their pioneering work and brought into the petroleum industry by Newendorp 

(1967). The utility function represents a quantitative description of the decision maker’s 

preference. The motivation of utility theory is in the fact that different decisions may have 

the same expected value but possibly radically different ranges in regard to the possibility 
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of different outcomes. A literature review of the applications of utility theory in the 

petroleum literature is given below.  

 

Newendorp and Root (1967) introduced utility theory to quantify the risk inherent with 

different drilling investments. They demonstrated that decision makers have different 

levels of tolerance for profits and losses. He directly applied utility theory to account for 

the difference level of risk decisions makers were willing to take for deciding when to 

drill, not drill, or farm out.  

 

Cozzolino (1977) reinforced the concepts of utility shown by Newendorp and Root (1967) 

in the language of von Neumann and Morgenstern. He investigated the use of the 

exponential utility function again with application for drilling investments. He also 

introduced the risk-aversion criteria first shown in the mathematical literature by Pratt 

(1964). 

  

Harrison (1982) applied utility theory for decisions regarding fishing operations. He 

applied probabilistic distributions for the expected utilities of successful and unsuccessful 

fishing operations. He used a linear utility function for the expected cost relationship and 

derived distributions from historical data on fishing operations.  

 

Walls (1995) provided a thorough overview of corporate risk tolerance and capital 

allocation. He investigated risk tolerance levels and provided a holistic approach to capital 
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budgeting decision. He highlighted inadequacies of solely using decision metrics such as 

the NPV and internal rate of return. He discussed the use of an exponential utility as a 

consistent measure of value for varying investments.  

 

Guyaguler and Horne (2004) applied utility theory in the optimization of well placement 

under geological uncertainty. They used a theoretical exponential utility function with 

regards to expected NPV. They showed multiple optimum locations based on the decision 

makers’ preference to risk.  

 

Yu et al. (2011) applied utility theory for quantitative decision analysis regarding optimal 

drilling practices. They formulated a multivariate utility function to account for 

economics, environmental impacts, perception, and safety of the drilling process. They 

developed an approach to optimize drilling technology selection for numerous preferences 

associated with a range of attributes. This work encompassed various industry and 

government sources, indicating increasing interest in the applications of utility to the oil 

and gas industry.   

 

Utility theory has been applied to various applications in the petroleum industry from 

drilling to well placement. The theory is well accepted in the industry with dedicated 

chapters in numerous texts  [Newendorp (1978) , Mian (2011)]. However, the theory has 

never been directly applied to completion design or-specifically-to fracture design. This 

work is intended to fill the gap.  
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CHAPTER II 

THEORY AND BASIC CONCEPTS  

 

Darcy’s Law 

The fundamental equation governing fluid flow through porous media is Darcy’s (1856) 

law, which states that the flux is proportional in magnitude to the pressure gradient of the 

potential field.  

𝐯 = !"
!
  ∇Φ   ....................................................................................................   (2.1) 

where 𝑘 is the permeability,  𝜌 is the fluid density, 𝜇 is the fluid viscosity, and  Φ  is the 

flow potential. The flow potential is defined as the work required to transfer a unit mass 

of liquid from rest to standard state in porous media.  

∇Φ = 𝑣𝑑𝑝 + 𝑔𝑧 + !!

!
!
!!  ...............................................................................   (2.2) 

where 𝑣 is the specific volume, 𝑔 is the gravitational constant, 𝑧 is the height (above 

datum), 𝑝 is pressure, and 𝑢 is the average microscopic velocity. Neglecting the kinetic 

and gravitational energy term for an incompressible fluid, Darcy’s law can be written as 

Eq. 2.3. 

𝐯 = !"
!
∇𝑝 .......................................................................................................   (2.3) 

 

The Diffusivity Equation 

The 3-dimensional mass balance in vector notation yields  

∇ ∙ 𝜌𝐯 = !(!")
!"

  ............................................................................................   (2.4) 
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where 𝜙 is porosity and 𝑡 is time. The equation of state for a slightly compressible fluid is 

given by 

𝜌 = 𝜌![1+ 𝑐 𝑝 − 𝑝! ]  ................................................................................   (2.5) 

 

where 𝑐 is compressibility.  

For anisotropic media the permeability will be different in each direction. The hydraulic 

diffusivity 𝜂 can be expressed as  

𝜂! =
!!

!!!!
,   .....................................................................................................   (2.6) 

 

where 𝑖 = 𝑥,𝑦, and  𝑧  and 𝑐! is the total system compressibility. 

Combining Eq. 2.4 with Darcy’s law and ignoring higher-order nonlinear terms, the 

diffusivity equation for slightly compressible fluids in Cartesian coordinates is defined as 

!"
!"
= 𝜂!

!!!
!!!

+ 𝜂!
!!!
!!!

+ 𝜂!
!!!
!!!

 .......................................................................   (2.7) 

 

The Distributed Volumetric Source Method 

The distributed volumetric source is a flexible method to solve the diffusivity equation. In 

this method it is assumed that the source is box-shaped: 

!"
!"
= 𝜂!

!!!
!!!

+ 𝜂!
!!!
!!!

+ 𝜂!
!!!
!!!

+ !(!,!,!,!)
!!!

 ......................................................   (2.8) 

 

𝑄 𝑥,𝑦, 𝑧, 𝑡 =   𝑈 𝑡 − 𝑡!
! !!!!
!  !!

𝑈 𝑥 − 𝑐𝑥 − 𝑑𝑥 − 𝑈 𝑥 − 𝑐𝑥 + 𝑑𝑥    𝑈 𝑦 −

𝑐𝑦 − 𝑑𝑦 − 𝑈(𝑦 − 𝑐𝑦 + 𝑑𝑦)    𝑈 𝑧 − 𝑐𝑧 − 𝑑𝑧 − 𝑈(𝑧 − 𝑐𝑧 + 𝑑𝑧)   ......................   (2.9) 
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where 𝑈 is the Heaviside function and 𝛿 is the Dirac delta function. 

 

This mathematical formulation is formidable due to the added nonlinearity in the source 

term. However, as first shown by Valko and Amini (2007), the 3-dimensional pressure 

response can be represented as product of three 1-dimensional pressure responses via the 

Newman (1936) principle.  

𝑝!" 𝑥! ,𝑦! , 𝑧! , 𝑡! = 𝑋 𝑥! , 𝑡! 𝑌 𝑥! , 𝑡! 𝑍 𝑧! , 𝑡!    ....................................   (2.10) 

This method, termed distributed volumetric sources, adds greater flexibility in problem 

characterization, allowing for increasingly complex source and parameter descriptions. 

Pertinent to the petroleum-engineering field, the DVS method can be used to calculate 

fully and partially penetrating hydraulically vertical and horizontal fractured wells with 

uniform flux, infinite conductivity, and finite conductivity at any position in an 

anisotropic homogenous reservoir. Fig. 2.1 is a schematics of the DVS model. 
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Fig. 2.1. Schematics of the DVS Method 
 

In a similar manner, Thambynayagam (2011) solved the diffusivity equation with an 

explicit sink term by applying successive Fourier and Laplace transforms. 

Thambynayagam nearly solves the same problem proposed by Valkó and Amini, but only 

considers 1-dimensional and 2-dimensional sources. His closest representation of a 

volumetric source is his case of a rectangular (planer) source. For 2-dimentional sources 

located at (𝑥!,𝑦!, 𝑧!), (𝑥!,𝑦!, 𝑧!), (𝑥!,𝑦!, 𝑧!), (𝑥!,𝑦!, 𝑧!),  the solution for a continuous 

source is given by:  

𝑝 =

! !!!!
!  !!  !  !  !

𝑞 𝑡 − 𝑡! − 𝜏   Θ!  
! !!!!

!!
, 𝑒!(

!
!)
!!!! +!!!!

!

Θ!  
! !!!!

!!
, 𝑒!(

!
!)
!!!!   {Θ!

! !!!!"
!!

, 𝑒!(
!
!)
!!!! + Θ!

! !!!!"
!!

, 𝑒!(
!
!)
!!!! +
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Θ!
! !!!!"

!!
, 𝑒!(

!
!)
!!!! +

Θ!
! !!!!"

!!
, 𝑒!(

!
!)
!!!! }{Θ!

! !!!!"
!!

, 𝑒!(
!
!)
!!!! +

Θ!
! !!!!"

!!
, 𝑒!(

!
!)
!!!! + Θ!

! !!!!"
!!

, 𝑒!(
!
!)
!!!! +

Θ!
! !!!!"

!!
, 𝑒!(

!
!)
!!!! }𝑑𝜏   .......................................................................   (2.11) 

 

 

where Θ!  is the elliptical theta function of the third kind and Θ! is the integral of the 

elliptical theta function of the third kind. Thambynayagam defined the elliptic theta 

functions as piecewise functions of two time series.  

Θ! 𝜋𝑥, 𝑒!!!! =
1+ 2 𝑒!!!!!! cos 2𝑛𝜋𝑥!

!!! ,         𝑒!!!! > !
!

!
!"

𝑒!
(!!!)!

! ,!
!!!!                              𝑒!!!! > !

!

   ............   (2.12) 

 

He extended this solution to determine the spatial average pressure of the source by 

integrating over the source area [ 𝑦!" − 𝑦!" 𝑧!" − 𝑧!" ]. 

𝑝!"# =

!! !!!! !"
!  !!  !    

𝑞 𝑡 − 𝑡! − 𝜏   Θ!  
! !!!!

!!
, 𝑒!(

!
!)
!!!! +!!!!

!

Θ!  
! !!!!

!!
, 𝑒!(

!
!)
!!!!   {Θ!

! !!!!"
!!

, 𝑒!(
!
!)
!!!! +

Θ!
! !!!!"

!!
, 𝑒!(

!
!)
!!!! + Θ!

! !!!!"
!!

, 𝑒!(
!
!)
!!!! +

Θ!
! !!!!"

!!
, 𝑒!(

!
!)
!!!! }{Θ!

! !!!!"
!!

, 𝑒!(
!
!)
!!!! +
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Θ!
! !!!!"

!!
, 𝑒!(

!
!)
!!!! + Θ!

! !!!!"
!!

, 𝑒!(
!
!)
!!!! +

Θ!
! !!!!"

!!
, 𝑒!(

!
!)
!!!! }𝑑𝜏   ......................................................................   (2.13) 

 

where Θ!
∬ is the second integral of the elliptical theta function of the third kind 

 

The strength in Thambynayagam’s methods is his use of two time series in the elliptical 

theta function. Solving the solution in this piecewise manor will allow the series to 

converge faster than in the previous Valkó and Amini formulation, in which a sole time 

series is used. Furthermore, the introduction of the special average pressure as opposed to 

a point pressure offers a possibly better representation of the physical situation.  

 

The solution of the DVS method yields the transient and pseudosteady-state 

dimensionless pressure and the dimensionless pressure derivative, which are the 

foundations of petroleum engineering.   

 

For purposes of this work the DVS, takes the form given below.  

𝐿 = 𝑥!𝑦!           𝐾 = 𝑘!𝑘!   ............................................................................   (2.14) 

 

𝑡! =
!

!  !!  !  !!
  .................................................................................................   (2.15) 

 

𝑝! =
!  !  !!
!  !  

  (𝑝 − 𝑝!!")  ..................................................................................   (2.16) 
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𝐽! =
!  

!  !  !!
!

(!!"#!!!")
  .....................................................................................   (2.17) 

 

Productivity Index  

The performance of a wellbore is precisely described by the productivity index, which is 

the ratio of the flow rate to the pressure drawdown.  

𝐽 = !
!!!!!"

= !  !  !!
!!!"  

𝐽! ....................................................................................   (2.18) 

 

The dimensionless productivity index 𝐽! is a function of dimensionless pressure and time. 

(Ramey and Cobb 1971). 

𝐽! =
!

!!!!!!!
 ..................................................................................................   (2.19) 

 

In boundary-dominated flow, the dimensionless productivity index will become time 

invariant. For a vertical well in boundary-dominated flow, the productivity index is given 

as 

𝐽! =
!

!" !!
!!

!.!"!!
 ............................................................................................   (2.20) 

 

For a hydraulically fractured well, the dimensionless productivity index will depend on 

the fracture conductivity and the penetration ratio: 

𝐶!" =
!!  !!"#
!  !!

 .................................................................................................   (2.21) 
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𝐼𝑥 = 2   !!
!!

  ......................................................................................................   (2.22) 

 

where 𝐶!" is dimensionless conductivity, 𝑘! is proppant pack permeability under in-situ 

stress, 𝑤!"# is the fracture width, 𝑥! is the fracture half length, and 𝑥! is the side length of 

rectangular reservoir. 

 

Valko and Economides (1998) have shown that the optimal performance of a fracture 

solely depends on the proppant number, which is a ratio of the flow capacity of the 

fracture to the flow capacity of the reservoir.  

𝑁!"#! = 𝐼!!𝐶!" = 2 !!
!
!!"#!
!!"#

= 4 !!
!
!!!!
!!!!!

= !
!!
𝐼!!𝐶!" .  ....................................   (2.23) 

 

For a given proppant number, a single fracture geometry will correspond to optimal 

productivity. This concept applies to fully and partial penetrating fractures.  

 

Generally, the calculation of 𝐽! for a fractured well is a daunting task except for certain 

cases in which the fracture receives uniform flux from the reservoir or has infinite 

conductivity. For these situations, analytical calculations of 𝐽! are possible. When the 

fracture has finite conductivity, rigorous calculations of 𝐽! must apply numerical 

discretization schemes to capture the varying strength of flow along the fracture. One such 

method is the boundary element method given by Romero, Valko, and Economides 

(2002) However, analytical approximations for finite conductivity fractures have been 
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developed to avoid the arduous numerical computations. The first approximation given by 

Prats (1961) is the equivalent wellbore radius concept. In the approximation, the fracture 

is treated as a larger wellbore.  

𝑟!! = 𝑟!𝑒!!!   .................................................................................................   (2.24) 

 

where 𝑠! is the fracture skin. Cinco, Samaniego, and Dominguez (1978) applied this 

concept to directly relate the fracture skin to fracture conductivity. While Cinco, 

Samaniego, and Dominguez (1978) presented only graphical results, Meyer and Jacot 

(2005) presented simple analytical calculations for determining the equivalent wellbore 

radius.  

𝑟!! =
!!
!

!!"
!!

.   ..................................................................................................   (2.25) 

 

For a horizontal well with a transverse hydraulic fracture, the convergent radial flow to 

the wellbore will cause an additional pressure drop inside the fracture. This pressure drop 

can be approximated by a choke skin given by Mukherjee and Economides (1991) 

𝑠! =
!!
!!!

ln !
!!!

− !
!

 .   .........................................................................   (2.26) 
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The material balance is the fundamental tool of reservoir engineering which relates the 

underground withdrawal of fluids to pressure drop inside the formation. The model relates 

the expansion of reservoir fluid, the expansion of reservoir rock, and water influx to the 

production. Ignoring water influx, the material balance can be expressed as  

!!
!"
= !"

!"!!!
    ...................................................................................................   (2.27)

 
 

Coupling the material balance with an inflow performance relationship (determined from 

the dimensionless productivity index) will yield a production forecast. It should be 

emphasized that the material balance considers the reservoir in entirety as a tank. In this 

form it does not account for reservoir compartmentalization or heterogeneity.  

 

For this work in designing wellbore completions for the Lower Tertiary, using a simple 

reservoir representation is logical. Many of these reservoirs have only had exploratory and 

limited appraisal drilling. Serious uncertainties exist in reservoir extent and heterogeneity. 

More importantly, a thick layer of allochtonous salt covers nearly 90% percent of the 

trend. From an exploration standpoint, even with WAz (wide azimuth seismic) mapping, 

individual sandstone reservoirs below this salt layer are nearly impossible (Lewis et al. 

2007). This vastly inhibits the accuracy of upscaling well-log properties for full-field 

numerical reservoir simulation.  

  

 

 

The Material Balance 
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Stochastic models are used in optimization problems involving uncertainty. The goal of a 

stochastic program is find a feasible solution that maximizes the expected value of a 

random variable (or variables). There are numerous types of stochastic programs 

including the classical two-stage stochastic linear programs with recourse, block separable 

or multistate recourse programs, and chance-constrained programs. The importance of a 

stochastic program is exemplified by two quantities: the expected value of perfect 

information (EVPI) and the value of the stochastic solution (VSS) (Raiffa and Schlaifer 

1961, Birge 1982). The EVPI measures the value of knowing the future (or uncertain 

parameters) with certainty while the VSS assesses the value of solving the more complex 

stochastic program with distribution as inputs over the simpler deterministic problem with 

single-valued input parameters (Birge and Louveaux 2011). The importance of the value 

of information (VOI) can be quantified through these quantities and can be used in the 

decision-making process. Bratvold, Bickel, and Lohne (2009) give an excellent overview 

of the VOI used in the oil and gas industry.  

 

Two Stage Stochastic Program with Recourse  

The general model of the linear two-stage program with recourse was first given by 

Dantzig (1955). 

min 𝑧(𝑥, 𝜉) = 𝑐!𝑥 + 𝐸![min𝑄 𝑥, 𝜉 𝜔 ]    

s. t.      𝐴𝑥 = 𝑏  
 
  
 

𝑊𝑦(𝜔) = ℎ(𝜔)− 𝑇(𝜔)     

𝑥 ≥ 0, y(𝜔) ≥ 0.   .........................................................................................   (2.28) 

Stochastic Models
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where  

𝑄 𝑥, 𝜉(𝜔) = min  {𝑞(𝜔)!𝑦 𝑊𝑦(𝜔) = ℎ(𝜔)− 𝑇(𝜔)𝑥,𝑦 ≥ 0}   ...............   (2.29) 

 

In the above formulations the vector  𝑥 is the first-stage decisions. These are the decisions 

that must be made without full information on the random event. The 𝑦 vector is the 

second-stage (recourse) decisions, which are made after a realization of 𝜉 has occurred. 𝜉 

is the vector representing a random realization of the uncertainty in data contained in 

𝜉(𝑞,𝑇,𝑊, ℎ) and 𝜔 is a random event. Mathematical expectation 𝐸!  for discrete sets is 

defined as 

𝐸![𝑄 𝑥, 𝜉 ] = 𝑝!𝑄 𝑥, 𝜉!!
!!! .   .................................................................   (2.30) 

 

where 𝑝! is the probability mass associated with realization 𝜉!. 

 

 When 𝜉 is a continuous variable, analytical solutions for Eq. 2.30 are rare except for 

simple cases(Shapiro, Dentcheva, and Ruszczyński 2009). However, for the case when 

the random vector 𝜉 is a discrete set or can be numerically discretized, Eq. 2.30 can be 

readily solved by standard techniques. When Eq. 2.30 is satisfied, the stochastic problem 

can be transformed into a larger deterministic problem. This formulation is known as the 

deterministic equivalent program (DEP) (Birge and Louveaux 2011;Shapiro et al. 2009). 
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The original model given by Dantzig defines the linear stochastic program. This concept 

can be extended to the general stochastic program (Mangasarian and Rosen 1964, 

Mangasarian 1964). 

min 𝑓! 𝑥 +   𝐸!𝑄 𝑥, 𝜉 .   .............................................................................   (2.31) 

 

𝑠. 𝑡      𝑔!! 𝑥 > 0, 𝑖 = 1… . ,𝑚!.   ....................................................................   (2.32) 

 

𝑄 𝑥, 𝜉 = inf 𝑓![ 𝑥,𝑦(𝜔)] .   ........................................................................   (2.34) 

 

The general nonlinear stochastic program is harder to solve and computationally more 

expensive but is able to capture a broader spectrum of problems.  

 

For the purposes of this work, the nonlinear stochastic program was used with the 

constraint of convexity in the objective function and constraints. This will ensure that the 

Karush-Kuhn-Tucker conditions are met and local optimums are the global optimum.  

Furthermore, by invoking convexity, the Jensen (1906) inequality applies and will have 

profound impacts on the optimal solution.  

𝜑(𝐸[𝑋] ≤ 𝐸[𝜑 𝑋 ] .   ...................................................................................   (2.35) 

 

In fact, Jensen’s inequality will demand that the solution of the stochastic program will 

always be greater than or equal to the solution of the deterministic mean value problem.  

  



 

 

36 

The Value of the Stochastic Solution  

The solution of the two-stage recourse problem can be written as: 

𝑅𝑃 = min! 𝐸! 𝑄 𝑥, 𝜉 .   ................................................................................   (2.36) 

 

If it is possible to remove all uncertainty in input variables and future outcomes, the two-

stage recourse problem can be reduced to a deterministic optimization problem. The 

optimal design could be readily achieved in this certain situation. This information is the 

expected value of perfect information (EVPI) and it measures the amount the uncertainty 

in the data is worth. It is the price a decision maker would pay for perfect information.  

The EVPI can be calculated by the difference between the so-called wait-and-see and 

here-and-now solution (the RP solution). (Madansky 1960). The wait -and-see solution is 

given by 

𝑊𝑆 = 𝐸![min 𝑧 𝑥, 𝜉 ] =𝐸!𝑄(𝑥 𝜉 , 𝜉) ,   ....................................................   (2.37) 

 

where 𝑥 𝜉  is an optimal solution and  𝑧(𝑥 𝜉 , 𝜉) is the optimal objective value to all to 

scenarios of min 𝑐!𝑥 + 𝐸!𝑄 𝑥, 𝜉  . The wait-and-see solution represents the optimal 

solution under which perfect information is known. The EVPI is defined as  

EVPI = RP−WS.   .......................................................................................   (2.38) 

 

Instead of solving the recourse problem, it is possible to replace all random variables by 

their expected values and solve the resulting mean value problem (Eq. 2.39). Although 
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easier to implement, this approach will not in general lead to the optimal solution of the 

stochastic program (Madansky 1960). 

𝐸𝑉 = min  𝑧(𝑥, 𝜉).   .......................................................................................   (2.39) 

 

The expected result of using the EV solution over all realizations can be determined: 

𝐸𝑉𝑉 = 𝐸!{𝑧 𝑥, 𝜉), 𝜉 } .   ........................................................................   (2.40) 

 

The value of the stochastic program as opposed to the deterministic program can be 

quantified through the EVV solution and the RP. This value represents the cost of 

ignoring the uncertainty and using a mean value in decision parameters. The value of the 

stochastic solution is  

𝑉𝑆𝑆 = 𝐸𝑉𝑉 − 𝑅𝑃.   ......................................................................................   (2.41) 

 

For the case of the convex stochastic program, Mangasarian (1964) has shown by 

Jensen’s inequality that the wait-and-see solution is always better than the recourse 

solution, which is always better than the expected value of mean value solution.  

WS ≤ RP ≤ EEV.   ........................................................................................   (2.42) 

 

Note that in the above discussion as in classical literature, the objective function is 

represented as cost and the optimization goal is to minimize the cost. For this work the 

objective function was a reward and the goal was to maximize the reward. This can be 

expressed as the dual problem, and thus all the mentioned theory holds.  
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Remarks on Stochastic Programming 

The term recourse means that decisions are made after uncertainty is revealed. In this case 

a set of decisions 𝑥 is made in the first stage where uncertainty exits. At some point later, 

a realization of random event 𝜉(𝜔) occurs, the second-stage data 𝑞 𝜔   ℎ(𝜔) and 𝑇(𝜔) 

are revealed, and a recourse action 𝑦(𝜔) is taken. In full recourse, 𝑦(𝜔)s are decisions 

that are made to optimize the current realization, which is deterministic optimization in 

itself. For the case where the recourse matrix 𝑊  is fixed, the problem is said to have fixed 

recourse.  

 

In certain situations, the second-stage decisions are automatic (Birge and Louveaux 

2011). In these cases, the 𝑦(𝜔)s take the form of penalties incurred from the first stage. 

This recourse is deemed simple recourse. The objective in this case is to select a first-

stage decision that will minimize the penalties incurred in the second (Hansotia 1980). In 

fact, simple recourse is defined if the state vector in each period is uniquely determined 

once all previous decisions and random vectors are known (Everitt and Ziemba 1979). 

 

Since the stochastic program objective function is an expectation, it is possible to directly 

extend the optimization to account for variability in the outcome. One method is to 

formulate the objective function as a variance instead of an expected value. The variance 

of set is defined as: 

𝑉 𝑌 = 𝐸[𝑌 − 𝐸(𝑌)]!]      ..............................................................................   (2.43) 
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The new objective function can take the form of  

min 𝑧(𝑥, 𝜉) = V![𝑄 𝑥, 𝜉 𝜔 ]  .....................................................................   (2.44) 

 

This will minimize the variance between the expected outcomes and the tightly bound 

actual solution. However, this function does not explicitly maximize expected value and 

may be unsatisfactory. Considering expected value and variance, an alternate objective 

function can be formulated: 

max 𝑧 𝑥, 𝜉 = (1− 𝛼)𝐸! 𝑄 𝑥, 𝜉 𝜔 − 𝛼V![𝑄 𝑥, 𝜉 𝜔 ]   .......................  (2.45) 

 

where 𝛼 is a weighting factor on the variance of the set.  

 

Although this formulation is robust, it does not capture the preference or risk of expected 

outcome. To explicitly account for risk, a utility function can be used.  

max 𝑧 𝑥, 𝜉 = 𝐸! 𝑢(𝑄 𝑥, 𝜉 𝜔 )   ...............................................................  (2.46) 

 

This formulation can be used to directly maximize expected value while accounting for 

risk between possible outcomes. The fundamentals of utility theory are discussed below.  

 

Utility Theory  

Mathematically utility is defined as: 

𝑢:𝑋 → ℝ  𝐿! < 𝐿!    implies  𝑢(𝐿!) ≤   𝑢(𝐿!)    ................................................   (2.47) 
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where 𝑢 is utility and 𝐿 is a lottery composed of a set of payoff and associated 

probabilities  (McKenna 1986). This states that a higher utility will be associated with a 

higher function value and a lower utility will be associated with a lower function value. 

Although the absolute utility will always be higher for higher function value in 

comparison to a lower function value, the derivative or marginal utility will be different. 

Pratt (1964) introduced the risk aversion function to quantify the degree of aversion to 

uncertainty in the utility function.  

𝑟 𝑥 = − !!!(!)
!!(!)

   .............................................................................................   (2.48) 

 

In a situation under uncertainty, the expected utility can be defined in a way similar to 

expected monetary value (Cozzolino 1977): 

𝐸 𝑢 𝑥 + 𝑧 = 𝑢 𝑥 + 𝑧 𝑓 𝑧 𝑑𝑧  ...............................................................   (2.49) 

 

where 𝐸 𝑢 𝑥 + 𝑧   is the expected utility for asset 𝑥 with utility 𝑢 , risk  𝑧 , and 

probability density function 𝑓 𝑧 , which can be continuous or discrete.  

 

For situations involving uncertainty a useful concept when discussing utility is the 

certainty equivalent (CE or cash equivalent) and risk premium (RP). For a decision maker 

with assets 𝑥, there is a risk premium 𝜋 𝑥, 𝑧  such that the decision maker would be 

indifferent to receiving risk 𝑧 or a nonrandom event 𝐸 𝑧 -  𝜋 𝑥, 𝑧  (Pratt 1964). This value 

is the cash equivalent 

𝜋! 𝑥, 𝑧 =   𝐸 𝑧 − 𝜋 𝑥, 𝑧   𝑡  ........................................................................   (2.50) 
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The cash equivalent is the no-risk certain amount of cash the decision maker is willing to 

exchange for a gamble—essentially the cash value of the decision under uncertainty. The 

risk premium is the value that a decision maker would give up for a nonrandom outcome 

as opposed to a random outcome (Newendorp and Schuyler 2000).  

 

Utility functions are useful in representing different risk attitudes. Three general cases of 

risk are conservative, neutral, and aggressive. The utility of a decision is represented by 

eqn. 2.51 which shows how levels of indifference between alternative  

𝑈 𝑥 = 𝑈 𝑥! 𝐼 + 𝑈 𝑥! (𝐼 − 1)   ..................................................................   (2.51)  

 

where 𝑥 is a decision, 𝑥! is a good alternative, 𝑥! is a poor alternative, and I is 

indifference between alternatives. The definition of good and poor in the above 

formulation are determined by the relative risk of each alternative. In this sense, a 

conservative risk profile would have an indifference value I = 0 ,while an aggressive risk 

profile would have an indifference value I = 1.   

 

By incorporating risk via the utility function, more consistent and logical decisions can be 

made.  
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Risk Neutral  

Risk neutral is defined as an attitude that indifferent to amount of capital at risk. The risk-

neutral utility curve is a linear line with unity slope. A risk-neutral decision maker will 

have the same policy of an expected monetary-value decision maker. A risk-neutral 

attitude may result when an event is repeatable and the absolute monetary value of the 

outcome is smaller than  the total net worth. The risk neutral utility will be used as a 

baseline for comparison to other risk profiles. The risk-aversion function is 0, implying no 

risk aversion, which is consistent with the above definition.  

 

Risk Conservative  

The risk-conservative (or risk-averse) attitude represents the willingness to take a certain 

payoff over a probabilistic payoff with possibly higher expected value; that is, a risk-

averse person would take a certain $0.5 or less in a game where there is a 50:50 chance of 

obtaining $1.00. Interestingly, the risk-conservative utility can take different mathematical 

forms with unique meanings. On such form suggested by Schuyler (2001) is the 

exponential utility function.  

𝑢 𝑥 = 𝑟 1− 𝑒!
!
!    .....................................................................................   (2.52) 

 

Applying Eq. 2.48,  

𝑟 𝑥 = − !!! !
!! !

=
!!

!
!
!

!!
!
!
= !

!
= 𝑐   ....................................................................   (2.53) 
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Eq. 2.52 shows a constant level of risk aversion regardless of the amount of total assets. 

Alternatively, it has been suggested that the level of risk aversion should decrease as total 

assets increase. A utility function of this form is the logarithmic form: 

𝑢 𝑥 = 𝑟  ln  (1+ 𝑥)  .....................................................................................   (2.54) 

 

 Applying equation Eq. 2.48,  

𝑟 𝑥 = − !!! !
!! !

= !
!!!

   ...................................................................................   (2.55) 

 

Eq. 2.53 shows the risk-aversion level decreasing (risk tolerance increases) with 

increasing asset value. Although the graphs have similar shapes, the two forms indicate 

significant different economical implications.  

 

 Risk-Aggressive Utility Curve  

The risk-aggressive profile is an attitude of the gambler. The gambler represents an 

attitude that would to take a probabilistic chance with a lower expected value but a chance 

to obtain a higher value than a certain payoff; that is, a risk-aggressive person would 

prefer to play a game with a 50:50 chance of winning $1.00 than to take a certain $0.5. 

This risk-aggressive behavior is not common in business practice as it has long-term 

negative expected value; however, some short-term decisions may be made using a risk-

aggressive utility. A cubic equation may be used to represent the risk-aggressive attitude.   

𝑢 𝑥 = 𝑥! + 𝑥   ..............................................................................................  (2.56) 
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The risk-aversion coefficient is 

𝑟 𝑥 = − !!! !
!! !

= − !!
!!!!!

   ............................................................................  (2.57) 

 

The risk-aversion coefficient is negative and decreasing with total wealth. This implies 

the risk seeker is willing to take more risk at lower total asset value.  

 

The above-mentioned utility curves (Fig. 2.2) apply to positive asset values. For negative 

asset values, the utility curves can be constructed in the same way but may be piecewise 

as the preference to negative values may be significantly different from those to positive 

asset values.  

 

 

Fig. 2.2. Utility curves for selected risk profiles 
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For purposes of this work, the utility used was marginal utility as opposed to cardinal 

utility. Marginal utility is defined in such a way that the utility value does not have 

significant physical or economic meaning; it can only be used for comparative purposes. 

Cardinal utility implies that the actual value of the utility is numerical and can be used as 

direct measure of the transformed variable.  

 

It must be stressed that the application of utility theory is nontrivial for offshore 

production and development. Given the extreme cost of developments and relatively small 

number of wells drilled, each and every decision requires extensive planning. Purely 

statistical approaches without accounting for risk are unacceptable in this environment: 

utility must be considered.  
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CHAPTER III 

MODEL DEVOLOPMENT AND DETERMINISTIC OPTIMIZATION 

 

Distributed Volumetric Source Method Update  

Combining the distributed volumetric source method of Valkó and Amini (2007) with 

Thambynaygam’s (2011) spatial average and a two-series representation of the elliptic 

theta function, Valkó  (2013)  developed a new formulation of the DVS method:  

𝑝 = !(!!!!)
!  !!  !  !  !

𝑞 𝑡 − 𝑡! − 𝜏 𝐿!𝐿!𝐿!𝑑𝜏
!!!!
!    ..................................................   (3.1) 

where 

𝐿! =
!!

!!"
!!
,!!"!!

,
!!
!!
! !

(!!"!!!")!
!!

=

Θ!
! !!"!!!"

!!
, 𝑒!(

!
!!
)!!!! + Θ!

! !!"!!!"
!!

, 𝑒!(
!
!!
)!!!! + !

!
Θ!

!!!"
!!

, 𝑒!(
!
!!
)!!!! +

!!!"
!!

, 𝑒!(
!
!!
)!!!!     and  𝑖 = 𝑥,𝑦, 𝑧  ...........................................................................   (3.2) 

 

To further improve algorithmic speed, an additional time cut is added to the elliptic theta 

function. This additional time cut is a simplification of the infinite series at large 

dimensionless time values.   

Θ! 𝜋𝑥, 𝑒!!!! =

1+ 2 𝑒!!!!!! cos 2𝑛𝜋𝑥!
!!! ,         𝑒!!!! > !

!

!
!"

𝑒!
(!!!)!

! ,!
!!!!                                  𝑒!!!! < !

!

              1                                                    𝑒!!!! > !
!

   ...........   (3.3) 
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 This formulation allows for an efficient and accurate calculation of the transient and 

pseudosteady productivity indices for a uniform flux source term. This implies the 

solution will be valid for uniform flux vertical and horizontal wells and fractures. For the 

case when the source does not exhibit uniform flux (such as a finite-conductivity 

fracture), the solution will require modification. Although the DVS method can rigorously 

be used to calculate the finite-conductivity fracture as shown by Amini and Valkó (2010), 

it requires numerical discretization of the source to capture the unknown strengths of flow 

along the fracture. These large matrix computations vastly reduce the computational 

efficiency of the method. To capture the inherent finite-conductivity,  approximate 

equivalent flux sources are used.  

 

Distributed Volumetric Source Comparison  

For consistency in the modified DVS method,  we compared the new formulation to 

classical solutions including a uniform flux vertical well in the center of a square 

reservoir, a uniform flux vertical well in an irregularly shaped drainage area, and a 

uniform flux fracture in the center of a square drainage area.  
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Fully Penetrating Vertical Well  

Fig. 3.1 shows excellent agreement between the cylindrical source solution and the DVS 

method for a vertical well in the center of a square drainage area.  

 

 

 

Fig. 3.1. Vertical well, center of square reservoir  
 

 

The early time discrepancy reflects the fact that the DVS method considers area in the 

source to have flow potential, whereas the cylindrical-source method does not. This minor 

discrepancy is negligible for all practical purposes. It should be noted for computational 

purposes the DVS method vastly outperforms the cylindrical source method, which 
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requires numerical inversion. For using Mathematica 9 on MacBook Pro 2.5 GHz Intel 

Core i5, the computational times are summarized below. 

 

Table 3.1. Cylindrical Source and DVS Computational Time Comparison 
Method Cylindrical Source w/ 

Gaver,Wynn-Rho Inversion 
Distributed Volumetric Source 

Time (seconds) 664 3.01 
 

 

Fully Penetrating Vertical Well in Irregular Drainage Area  

Fig. 3.2 shows excellent agreement for wells in irregular drainage areas.  

 

 

Fig. 3.2 Vertical well, irregular drainage area  
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For a fully penetrating well in an irregular-shaped drainage area, it is common to compute 

the Dietz (1965) shape factor.  

𝐶! =
!!
!!!
𝑒!!!

!
!!    .............................................................................................   (3.4) 

 

where 𝛾 is the Eulergamma constant ≈   0.577 . 

 

Table 3.2 shows the DVS method is in excellent agreement with the classical solutions. 

 

Table 3.2. Dietz Shape Factors  
Drainage Shape Dietz Shape Factor DVS Shape Factor  

 30.882 30.865 

 

21.836 21.820 

 

5.379 5.374 

 

2.361 2.357 

 

1 
1 

2 
1 

4 
1 

1 
5 
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Uniform Flux Vertical Fracture  

Fig. 3.3 shows excellent agreement between the DVS method and the classical Gringarten 

solution. 

 

 

Fig. 3.3 Uniform flux, vertical facture  
 

Furthermore, the updated DVS method computationally outperforms the original DVS 

method proposed by Valko and Amini (2007).  

 

Table 3.3. DVS Computational Time Comparison  
Method Distributed Volumetric Source 

(Valko and Amini 2007). 
Distributed Volumetric Source 
Updated  

Time (seconds) 84.73 4.49 
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Finite Conductivity Fracture Approximation  

To account for fracture finite conductivity, the dimensionless productivity is modified by 

Eq. 3.5: 

𝐽! =
!

!
!!,!"#$%&'  !"#$

!!! !"
      ............................................................................    (3.5) 

 

where 𝛼! is a constant from a least-squares fit from the known dimensionless productivity 

index. This approximation is validated against the known values of dimensionless 

productivity index given by Valko and Economides (1998).  

 

Fig. 3.4 shows the approximation is valid for proppant numbers less than 1. Using this 

method the finite conductivity fracture productivity index can be directly calculated from 

the uniform flux fracture solution in a computationally robust manor. 
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Fig. 3.4 Vertical fracture, dimensionless productivity  
 

Proppant Allocation in Multilayer Reservoirs  

As noted before, some Lower Tertiary formations are multilayered stacked sands with 

varying fluid and reservoir quality. An example is the Cascade formation, which is 

composed of the Wilcox 1 & Wilcox 2 with permeability and height 25 md, 400 ft, and 

<10 md, 600 ft,  respectively (Haddad, Smith, and Moraes 2012). 

 

For a well completed in multiple layers without pressure communication, the productivity 

index can be determined from a summation of the inflows.  

𝑞! = 𝑞! + 𝑞!…+ 𝑞!   ....................................................................................   (3.6) 
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For a constant drawdown and the fluid properties, the total productivity index is given by 

Eq. 3.7.  

𝐽 = !
!!!!!"

= !  !  
!!!  

(𝑘!ℎ!𝐽!! + 𝑘!ℎ!𝐽!!…+ 𝑘!ℎ!𝐽!")  𝑡  ..............................   (3.7) 

where 𝑘!ℎ!𝐽!" are the permeability, height, and dimensionless productivity of each layer. 

 

The question poised is how to deviate a fixed amount of proppant in a vertical well with 

multiple completion zones for maximum wellbore performance. Assuming the zones do 

not have pressure communication and are fractured separately, each layer will have a 

separate proppant number (𝑵𝐩𝐫𝐨𝐩𝟏,𝑵𝐩𝐫𝐨𝐩𝟐…𝑵𝐩𝐫𝐨𝐩𝑵) depending on the permeability, 

height, and proppant allotted. For maximization of total productivity, the two-layer system 

with constant fluid properties the optimization is written as Eq. 3.8  

              maximize   
2  𝜋  
𝐵!𝜇  

(𝑘!ℎ!𝐽!!(𝑝!)+ 𝑘!ℎ!𝐽!!(𝑝!) 

                    𝑝! + 𝑝! = 1 

0 < 𝑝! < 1    0 < 𝑝! < 1   ...............................................................................  (3.8) 

 

Assuming full fracture height penetration, the dimensionless productivity can be readily 

calculated by the DVS method with the finite-conductivity approximation.  

 

By treating the proppant allocation percent 𝑝! as a discrete variable and enumerating, an 

optimal solution is found: the optimum placement of proppant occurs when the proppant 

number of each layer is equal.  
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𝑁!"#!$ = 𝑁!"#!$ = 𝑁!"#!!   ..........................................................................  (3.9) 

 

The result of this is that a majority of the proppant is allotted to the layer with the largest 

permeability × height product. It also signifies that the each layer will have the same half-

length but different widths. The layers will have the same dimensionless productivity 

indices but different absolute productivity indices. Analytically, the percent of total 

proppant allotted to each layer for a two-layer system can be found by Eqs. 3.10 to 3.12.  

!!"#!$
!!"#!$

= 1   .....................................................................................................  (3.10) 

!!!!
!!!!

= !!
!!
    ......................................................................................................  (3.11) 

𝑝! + 𝑝! = 1   ..................................................................................................  (3.12) 

 

where 𝒑𝟏and 𝒑𝟐are the percentage of proppant allotted to each layer respectively. Fig. 3.5 

shows the productivity index as a function of the ratio of proppant numbers for different 

productivity × height ratios. 
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Fig. 3.5 Productivity index vs. ratio of proppant numbers  
 
 

 
Table 3.4 Multilayer System Properties  
RESERVOIR AND FLUID  PROPPANT  
𝐴   =   500  acre 𝑀! = 1,000,000  lbm 
𝐵! =   1.1 𝑘!   = 100,000  md 
𝜇 =   5  𝑐𝑝 𝜙   =    .3     
 

The results can be generalized for an 𝑁-layer system. This analytical solution avoids the 

use of expensive numerical optimization.  
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1
𝑘!ℎ!

 
1

𝑘!ℎ!
     𝑝!  0 

 1
𝑘!ℎ!

 
1

𝑘!ℎ!
    𝑝!  0 

  ⋱ ⋱   ⋮ = ⋮ 

   1
𝑘!!!ℎ!!!

 
1

𝑘!ℎ!
  𝑝!!!  0 

1 1 1 1 1  𝑝!  1 

 

This result maximizes the productivity of a wellbore from an inflow performance mindset. 

It optimizes the production rate but does not account for possibly different oil-in-place 

and reservoir drive mechanisms.  
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CHAPTER IV  

STOCHASTIC OPTIMIZATION 

 

Fracture Design Under Uncertainty  

In the following example, the distributed volumetric source method is applied in a two-

stage recourse optimization where the vertical permeability is uncertain. This example 

will illustrate the expected value of the perfect information and the value of the stochastic 

solution.  

 

Partial Penetrating Fracture with Anisotropy Uncertainty 

The DVS method (Fig 4.1) is well-suited to calculate partially penetrating fractures in 

anisotropic media. This method is used to optimize fracture dimensions in a constrained 

system. In this example the uniform flux solution is used for simplicity and efficiency. 

The constraint on the system is that of constant fracture area (as the width is trivial for the 

uniform flux fracture). The fluid viscosity, porosity, and total compressibility of the 

system remain constant. The example goes through the step-step the optimization process, 

applying the stochastic method. 
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Fig. 4.1. DVS schematic  
 

 

The first problem is approached as a deterministic nonlinear program. The objective is to 

maximize dimensionless productivity by varying 𝑤!and 𝑤! while keeping the product 

𝑤!𝑤! constant. The fracture is located in the center of the reservoir, so  𝑐𝑥 = !
!
,  

𝑐𝑦 = !
!
, and  𝑐𝑧 = !

!
. The reservoir is box-shaped with 𝑥! = 𝑦! = 10  𝑧! For this problem, 

it is convenient to introduce a dimensionless term 𝑐𝑡𝑧, which is a factor representing the 

time it takes in a given direction to reach the boundary wall. 

𝑐𝑡𝑧 = !!
!!

!!!

!!!
   ....................................................................................................  (4.1) 

In case of reservoir anisotropy in the vertical direction with !!
!!
= !

!""
 and 𝑘! = 𝑘!, 

𝑐𝑡𝑧 = !
!""

!!!

!
= 1   ..........................................................................................  (4.2) 
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Note that for constant reservoir dimensions, variations in 𝑐𝑡𝑧 can be used to represent 

different anisotropy ratios. The optimization problem can mathematically be described as 

              max 𝐽!(𝑤! , 𝑐𝑡𝑧) 

              𝑤!𝑤! = 𝐶 

0 < 𝑤! <
!
!
, 0 < 𝑤! <

!
!
   ..............................................................................   (4.3) 

   

For an arbitrary constant = !
!
 , the optimal dimensions and dimensionless productivity are 

given in Table 4.1.  

Table 4.1 Optimal Fracture Dimensions and Productivity For Partially Penetrating 
Fracture  

𝒄𝒕𝒛 𝑤!,!"# 𝑤!,!"# 𝐽!,!"# 
1 .35 .25 1.14 

 

Instead of representing the value of anisotropy with a single value, a set of values is used 

{𝑐𝑡𝑧!, 𝑐𝑡𝑧!,… 𝑐𝑡𝑧!}. For simplicity, we assume in this case only three different 

permeability realizations {𝑐𝑡𝑧!, 𝑐𝑡𝑧!, 𝑐𝑡𝑧!}. For each case it is possible to optimize in a 

similar manner as shown above.  
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Fig. 4.2. Dimensionless height versus dimensionless productivity for different 
anisotropy ratios  
 
 

Table 4.2 Optimal Fracture Dimensions and Productivity for Different Anisotropy 
Ratios  

𝑪𝑻𝒁 𝑤!,!"# 𝑤!,!"# 𝐽!,!"# 
1 .35 .35 1.14 
5 .48 .26 1.41 

1/5 .27 .47 1.07 
 

 
Table 4.2 shows the optimal dimensions for each case in the above-mentioned situation. It 

is apparent that in the case of higher vertical permeability, the optimal solution favors 

more horizontal penetration as more flow is realized in the vertical direction. In the case 

of lower vertical permeability, the optimal favors almost full-fracture-height penetration 

because the flow is minimal in the vertical direction. Note the sensitivity changes in 

optimal design dimensions for the different permeabilities.  
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By the above analysis, it is readily achievable to optimize the fracture dimension for any 

given anisotropy ratio. These designs were determined with a single certain value for 

anisotropy. Now, assume that the three values of anisotropy {𝑐𝑡𝑧!, 𝑐𝑡𝑧!,… 𝑐𝑡𝑧!} have 

associated probabilities{𝑝!,𝑝!,…𝑝!} and it is only possible to identify the actual 

anisotropy after the fracture has been placed. For this uncertain situation, the permeability 

realization 𝑐𝑡𝑧(𝜔) will be a function of a random vector 𝜔. The objective function is now 

defined as 𝐽! 𝑤! , 𝑐𝑡𝑧(𝜔)  and will now depend on the specific realization of vertical 

anisotropy. The optimization is to determine what fracture dimensions will maximize the 

expectation 𝐸!"# over all of the realizations. The problem takes the form of a stochastic 

program with simple recourse.  

max𝐸𝒄𝒕𝒛[𝐽! 𝑤! , 𝑐𝑡𝑧 𝜔 ] 

𝑤!𝑤! = 𝐶 

0 < 𝑤! <
!
!
, 0 < 𝑤! < 1/2   .........................................................................   (4.4) 

For this discrete case, the expectation decomposes to a finite series.  

𝐸𝒄𝒕𝒛[𝐽! 𝑤! , 𝑐𝑡𝑧 𝜔 ] = 𝐽! 𝑤! , 𝑐𝑡𝑧 𝜔!!
!!! 𝑝(𝜔!)   ..................................   (4.5) 

Under this uncertain scenario, a new optimum is found. 

𝑤!,!"# = 0.32  and  𝑤!,!"# = 0.39 

Table 4.3. EVPI: Optimal Fracture Dimensions and Productivity  
𝑪𝑻𝒁 1 5 1/5 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 
𝑱𝑫 1.13 1.22 .98 1.11 
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This is the solution to the stochastic program given in Table 4.3, which maximizes long-

term (expected) productivity.  

 

 

Fig. 4.3. Stochastic solution: dimensionless height versus dimensionless productivity  
 

A metric to judge the stochastic solution against is the solution given by perfect 

information. This case would represent the expected value of productivity given a set of 

anisotropy realizations with associated probabilities, but for any given well the exact 

permeability is known. The concept is easily conceptualized in a reservoir where many 

wells are to be drilled in the formation. For each well the anisotropy is a random 

realization of the set but is known, and an optimum design can be implemented. The 

expected productivity would be the expected value of the 3 deterministic cases. Using the 

above values, 
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𝐸 𝐽! = 1.14   !
!
+ 1.41 !

!
+ 1.07 !

!
= 1.20   .........................................   (4.6) 

This quantity is known as the wait-and-see solution and represents the maximum 

achievable expected productivity if all uncertainty is removed. The difference between 

this value and the solution to the stochastic solution is the expected value of perfect 

information.  

𝐸𝑉𝑃𝐼 = 1.20− 1.11 = 0.09   .......................................................................   (4.7) 

This is the measure of the worth of uncertainty in terms of dimensionless productivity. 

Generally (although not in this example), the EVPI can be expressed as a monetary 

amount and is a metric that can be used to warrant additional data gathering.  

  

An alternative yet unfortunate approach to the stochastic program that is sometimes 

implemented is to solve the deterministic program with a mean value of the random 

variable. In this formulation, a weighted average anisotropy is used to and solve a single 

optimization problem. The problem is termed the mean value problem.  

max 𝐽!(𝑤! , 𝑐𝑡𝑧) 

𝑤!𝑤! = 𝐶 

0 < 𝑤! <
1
2 , 0 < 𝑤! < 1/2 

𝑐𝑡𝑧 = 𝑐𝑡𝑧 𝜔!!
!!! 𝑝 𝜔!    ............................................................................  (4.8) 

 

For this case, 

𝑐𝑡𝑧 = 1 !
!
+ 5 !

!
+ !

!
!
!
= 2.06   ..............................................................   (4.9) 
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For this situation a new optimal design is found: 

𝑤!,!"# = .28  𝑎𝑛𝑑  𝑤!,!"# = .45 

Table 4.4 Mean Value Solution: Optimal Fracture Dimensions and Productivity 
𝑪𝑻𝒁 1 5 1/5 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 
𝑱𝑫 1.10 1.267 .87 1.08 

 

As a direct result of Jensen’s inequality, the expected productivity from the mean value 

solution is always less than or equal to the stochastic solution. The difference is the value 

of the stochastic solution. In this case,  

𝑉𝑆𝑆 = 1.11− 1.08 = 0.03   ..........................................................................   (4.10) 

 

This number represents the expected gain in productivity for design under uncertainty 

rather than deterministically. Interesting insight comes from the ranges of possible 

solutions for different design criteria as shown in Table 4.5. 

 

Table 4.5 Summary of Stochastic Optimization  
𝑤! 𝑤!  𝐽!(𝐶𝑇𝑍 = 1) 𝐽!(𝐶𝑇𝑍 = 5) 𝐽!(𝐶𝑇𝑍 = 1/5) 𝐽!(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑) 
.35 .35 (𝐶𝑇𝑍 = 1)!"# 1.14 1.29 .89 1.10 
.48 .26 (𝐶𝑇𝑍 = 5)!"# 1.08 1.41 .67 1.05 
.27 .47 (𝐶𝑇𝑍 = 1/5)!"# 1.08 1.09 1.07 1.08 
.32 .39 𝐸[𝐽! 𝑤! , 𝑐𝑡𝑧 𝜔 !"!

 1.13 1.22 .98 1.11 
.28 .45 (𝐶𝑇𝑍  )!"# 1.10 1.26 .87 1.08 
 

 

There is a significant physical meaning of the optimal design from the stochastic solution. 

From the base case, there is a greater absolute change in productivity realizing lower 

permeability than higher permeability. In other words, there is a gain in productivity when 
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permeability is higher, but this gain does not offset the loss in productivity when the lower 

permeability state is realized.  

 

At first glance it might seem that geometric average of the vertical permeability ratio, 

𝐶𝑇𝑍 = 1, results in an expected value (1.10) that is close to the stochastic optimization 

solution expected value (1.11). While this is true, a closer look at the range of the 

productivity indices reveals that the stochastic solution has much tighter bounds. In the 

worst case—𝐶𝑇𝑍 = 1/5 —the stochastic solution design yields a productivity of 0.98 

while the geometric average design yields a productivity of 0.89, which is significantly 

worse. Of course, in the case where 𝐶𝑇𝑍 = 1, the geometric average design yields a better 

productivity of 1.13 versus 1.14. In the best-case = 5 , the geometric average design 

yields a higher productivity—1.26 versus 1.22 from the stochastic solution. This 

observation highlights the importance of variability and risk.  

 

For a repeatable decision, the solution to the stochastic analysis will result in long-term 

higher expected profits. However, as discussed above, for any single decision there will 

be a single outcome. Even when designing for the optimal long-term performance, there 

will be inherent variability of each exact outcome. This is the definition of risk. A decision 

maker may only be able to make a decision once, and using purely expected values of the 

objective variable may not yield satisfactory results. To resolve this issue as introduced 

above, utility theory is applied.  
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For this hypothetical situation, it is assumed that there is a threshold dimensionless 

productivity that must be met. For productivity above this level, the marginal gain in 

utility will diminish. For productivity below this level, the marginal loss in utility will be 

exacerbated. This risk profile can be precisely accounted for in modified exponential 

utility function.  

𝑢 𝐽! = 𝑟 1+ 𝑒!
!!!!!"!

! + 𝐽!"!   ..............................................................  (4.11) 

 

where 𝑟 is a coefficient reflecting the decision makers’ risk level, and 𝐽!"! is the threshold 

dimensionless productivity. 

 

The optimization problem can be set as before with a modification of the objective 

function.  

max𝐸𝒄𝒕𝒛[𝑢(𝐽! 𝑤! , 𝑐𝑡𝑧 𝜔 )] 

𝑤!𝑤! = 𝐶 

0 < 𝑤! <
!
!
, 0 < 𝑤! <

!
!
   ..............................................................................  (4.12) 

 

In this formulation the goal is to maximize the expected utility. It must be stressed again 

that the utility does not have physical meaning; it is a measure for comparative purposes. 
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Fig. 4.4. Dimensionless height versus utility for different anisotropy ratios   
 
  

Table 4.6. Summary of Stochastic Optimization with Utility  
𝑤! 𝑤!  𝑢(𝐶𝑇𝑍 = 1) 𝑢(𝐶𝑇𝑍 = 5) 𝑢(𝐶𝑇𝑍 = 1/5) 𝑢(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) 
.35 .35 (𝐶𝑇𝑍 = 1)!"# 1.14 1.27 .82 1.08 
.48 .26 (𝐶𝑇𝑍 = 5)!"# 1.09 1.33 .43 .95 
.27 .47 (𝐶𝑇𝑍 = 1/5)!"#	
   1.09 1.10 1.07 1.08 
.29 .42 𝐸[𝑢(𝐽! 𝑤! , 𝑐𝑡𝑧 𝜔 ) !"# 1.12 1.17 1.01 1.10 
 

Table 4.6 gives the stochastic program summary for the utility objective function. The 

optimal dimensions are shifted closer to the worst-case optimum. This is directly a result 

of the utility function by definition, which discounts lower productivity at a greater rate 

than productivity above the threshold. In essence, the happiness gained from realizing a 

good situation is lower than the loss realized in a bad situation. This behavior occurs due 

to the risk conservative profile that puts greater weight on the worst-case scenario. By 

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1	
  

1.1	
  

1.2	
  

1.3	
  

1.4	
  

0.25	
   0.3	
   0.35	
   0.4	
   0.45	
   0.5	
  

U
ti
lit
y	
  

Dimensionless	
  Height	
  	
  

CTZ=5	
  

CTZ=1	
  

CTZ=1/
5	
  	
  

CTZ	
  Expected	
  
	
  	
  



 

 

69 

using the utility formulation, risk can be directly quantified and accounted for in 

optimization purposes.  

 

At times, an exact utility function is difficult to formulate if the risk preference is 

unknown. An alternate optimization method that does not account explicitly for risk but 

solely variability in the outcome maximizes the expected outcome minus the variance of 

the outcomes.  

 

For this hypothetical case an optimization, is formulated by Eq. 4.13: 

max[(1− 𝑟)𝐸𝒄𝒕𝒛 𝐽! 𝑤! , 𝑐𝑡𝑧 𝜔 − 𝑟𝑉(𝐽! 𝑤! , 𝑐𝑡𝑧 𝜔 ] 

𝑤!𝑤! = 𝐶 

0 < 𝑤! <
!
!
, 0 < 𝑤! <

!
!
   ..............................................................................  (4.13) 

 

where 𝑟 is a coefficient reflecting the weighting of variance. Higher 𝑟 will reduce the 

variability while lower values will increase the variability. For 𝑟 = 1, the solution will 

solely minimize the variance, and for 𝑟 = 0, the solution will solely maximize the 

expected value.  
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Table 4.7 Summary of Stochastic Optimization with Variance  
 
𝑟 𝑤! 𝑤! 𝐽!(𝐶𝑇𝑍 = 1) 𝐽!(𝐶𝑇𝑍 = 5) 𝐽!(𝐶𝑇𝑍 = 1/5) 𝐽!(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑) 
0 .32 .39 1.13 1.22 .98 1.11 
.5 .29 .43 1.12 1.17 1.03 1.10 
1 .25 .49 1.05 1.05 1.05 1.05 

 

Table 4.7 shows that increasing the weighting factor on variance reduces the range of 

possible outcomes at the cost of expected value. This analysis can be used to directly 

account for variability when utility is unknown.  
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 CHAPTER V  

HYDRAULIC FRACTURE OPTIMIZATION: VERTICAL WELLS 

 

Fracture design for the Lower Tertiary will predominantly revolve around determining the 

optimal number of stages for a vertical well. In our investigation, reservoir uncertainty 

was manifested in the vertical permeability. Economic uncertainty existed in the total cost 

of the fracture treatment, which depended on the number of stages. Design uncertainties 

included fracture height growth. This was represented as a two-stage stochastic program 

with simple recourse.  

 

Background 

For the deterministic optimization, the optimal number of stages for a vertical well is 

determined for a constant set of economic and physical parameters. The objective 

functions were (1) net-present-value and (2) utility. The premise of this problem was to 

find the optimum trade-off between the number of fracture stages, fracture half length, 

width, and vertical penetration. Mathematically, we dealt with an integer nonlinear 

programming problem, as the number of stages  could not take on non-integer values.  

 

Constraints  

The main constraint in this optimization was fracture height growth. For a vertical well in 

a relatively thick homogenous formation, a radial (penny-shaped) fracture can be 
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expected. This implies an aspect of ratio of 1 where the total fracture length (two half-

lengths) equals the fracture height.  

𝑤! = 𝑤!   ........................................................................................................   (5.1) 

 

However, in lieu of this assumption, data from completion of the Cascade well given by 

Haddad, Smith, and Moraes (2012)  in Fig 5.1, shows an aspect ratio of 2 where the 

fracture half-length equals the fracture height.  

 

 

Fig. 5.1. Actual and planned fracture height growth (Haddad 2012) 
 

 

This implies  

!
!
𝑤! = 𝑤!   .....................................................................................................   (5.2) 

 

This data shows a designed fracture geometry of 𝑥! ≈ 150  ft and ℎ! ≈ 300  ft while the 

post-treatment analysis shows 𝑥! ≈ 200  ft and ℎ! ≈ 200  ft. The uncertainty in fracture 



 

 

73 

height growth in a highly anisotropic formation has profound implications on wellbore 

productivity. Therefore, in the following example we focus on the uncertainty in height 

growth and vertical permeability.  

 

Reservoir Inputs  

The deterministic inputs for the formation, wellbore, and operations are given in Table 

5.1.  

 

Table 5.1. Lower Tertiary Properties  
Depth	
  (ft)	
   30000	
   Gravity	
  (API)	
  	
   22	
  
Well	
  Spacing	
  (acre)	
   500	
   GOR	
  (cfb)	
   400	
  
Gross	
  (ft)	
   1500	
   Viscosity	
  (cp)	
  	
   5	
  
Net/Gross	
  (%)	
   50	
   Bubblepoint	
  (psi)	
   2500	
  
Effective	
  Porosity	
  (%)	
   .18	
   Formation	
  Volume	
  Factor	
  (Rb/Stb)	
   1.1	
  
Water	
  Saturation	
  (%)	
   0.25	
   Initial	
  Pressure	
  (psi)	
   20000	
  
Horizontal	
  Permeability	
  (md)	
   5	
  md	
   Drawdown	
  (psi)	
   5000	
  
 

The formation depth, oil gravity, and gas/oil ratio will significantly impact the reservoir 

abandonment pressure. From preliminary analysis, the vertical lift requirement results in a 

reservoir abandonment pressure of 12,000 psi. 

 

An important characteristic is the rather high drawdown of 5,000 psi. Generally, this 

drawdown is much higher than operators applied previously in the Gulf of Mexico 

Miocene and Outer Shelf plays. However, it is consistent with recent public well tests 

(Fig. 5.2).  
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Fig. 5.2. Results of public well tests (BOEM) 

 

Furthermore, the drawdown assumption is consistent with Dusterhoft, Strobel, and Szatny 

(2012) analysis of the Lower Tertiary.  

 

The stochastic reservoir inputs for this analysis were vertical permeability and fracture 

height growth. They are given in Table 5.2 .For simplicity, uniform distribution was used 

to demonstrate the value of stochastic programing.  

 

Table 5.2 Probabilistic Inputs for Stochastic Optimization  
Horizontal	
  to	
  Vertical	
  Permeability	
  Ratio	
  (kh/kv)	
   Probability	
  	
  

1	
   .25	
  
10	
   .25	
  
100	
   .25	
  
1000	
   .25	
  

Fracture	
  Height	
  Aspect	
  Ratio	
  	
   Probability	
  	
  
1	
   .5	
  
2	
   .5	
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At first glance, the horizontal to vertical permeability ratio of 1,000 may seem unrealistic, 

but according to Haddad, Smith, and Moraes (2012) and Ogier et al. (2011) there is 

effectively zero vertical permeability in the Cascade/Chinook field.  

 

Preliminary Analysis: Fractured Vertical Well Performance 

Before proceeding with the optimization, it is enlightening to highlight some subtle yet 

important outcomes of fracture performance in a thick anisotropic reservoir with partial 

vertical penetration.  

 

Effect of Partial Height Penetration and Vertical Anisotropy: 

Dimensionless Time and Dimensionless Productivity  

The effect of partial height penetration on dimensionless productivity for different 

anisotropy ratios is displayed in the graphs below (Figs. 5.3 to 5.6). The transient behavior 

is considered because situations with low vertical permeability and limited fracture height 

penetration do not reach pseudosteady-state behavior at the generally accepted 𝑡!" ≈ 0.1.  
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Fig. 5.3. Dimensionless productivity for Ix=1/8 and kz=kh 

 

 

Fig.5.4. Dimensionless productivity for Ix=1/8 and kz=kh/10  
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Fig. 5.5. Dimensionless productivity for Ix=1/8 and kz=kh/100  
 

 

 

Fig. 5.6. Dimensionless productivity for Ix=1/8 and kz=kh/1000 

10-­‐5	
   10-­‐4	
   10-­‐3	
   10-­‐2	
   10-­‐1	
   100	
   101	
  
0.00	
  

0.20	
  

0.40	
  

0.60	
  

0.80	
  

1.00	
  

1.20	
  
D
im
en
si
on
le
ss
	
  P
ro
du
ct
iv
it
y	
  
(-­‐
)	
  

Dimensionless	
  Time	
  (-­‐)	
  

td,pss	
  
	
  

10-­‐5	
   10-­‐4	
   10-­‐3	
   10-­‐2	
   10-­‐1	
   100	
   101	
  
0.00	
  

0.20	
  

0.40	
  

0.60	
  

0.80	
  

1.00	
  

1.20	
  

D
im
en
si
on
le
ss
	
  P
ro
du
ct
iv
it
y	
  
(-­‐
)	
  

Dimensionless	
  Time	
  (-­‐)	
  

td,pss	
  
	
  



 

 

78 

As expected, the dimensionless productivity in the transient and pseudosteady state are 

vastly reduced with decreasing vertical permeability and vertical penetration ratio. For the 

cases of kh/kv=1 and kh/kv=10, pseudosteady state is reached at the expected 𝑡!" ≈ 0.1. 

However, as the anisotropy increases to kh/kv=100 and kh/kv=1,000, pseudosteady state is 

not reached at 𝑡!" ≈ 0.1 but at a later time, depending on the exact conditions.  

 

An interesting condition is shown in Fig. 5.5 with anisotropy of kh/kv=1,000—distinct 

curvature at late dimensionless time that cannot be seen in the other figures. This 

phenomenon represents the boundary effects on productivity, in which the horizontal 

boundaries are felt much sooner than the vertical boundary. This behavior is exhibited for 

the other situations but is too rapid to see with relativity low values of anisotropy.  

 

The importance of including the transient behavior of the dimensionless productivity 

cannot be deemed trivial. Using only the pseudosteady-state productivity will 

underestimate wellbore performance at early absolute times for high levels of anisotropy 

and low vertical fracture penetration. For subsequent optimization purposes, when 

considering the risk and cost of additional stages, disregarding the transient behavior 

could incorrectly bias the design, forcing more vertical penetration when in reality it may 

not be needed.  
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Effect of Partial Penetration Vertical Anisotropy and Fracture Growth 

Assuming that fracture height growth follows a prescribed aspect ratio, it may be 

impossible to achieve the optimal dimensionless productivity given by unified fracture 

design. Assuming a fixed aspect ratio, the fracture height is intrinsically linked to the half-

length and subsequently average width. For a partially penetrating fracture height, this 

leads to comprises between fracture height, half-length, and width that are dependent on 

the horizontal and vertical permeability. The effect of finite conductivity in the fracture 

directly competes against the effect of partial height penetration in the reservoir. This 

leads to an interesting result for fractures with low proppant numbers, in which the 

optimal dimensions do not occur at full penetration. Graphs of height penetration 

following an aspect ratio of 2 (𝑥! = ℎ!) versus dimensionless productivity are presented 

in Figs. 5.7 to 5.9 below.   
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Fig. 5.7. Dimensionless productivity versus height penetration for Nprop=0.001 
 

 

Fig. 5.8. Dimensionless productivity versus height penetration for Nprop=0.01 
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Fig. 5.9. Dimensionless productivity versus height penetration for Nprop=0.1 
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Risk Analysis 

Offshore applications are subject to significant risk due to the hostile operating 

environment and extreme financial costs involved. Although hydraulic fracturing for 

productivity is common onshore with financial risks well understood, the same cannot be 

said for the offshore environment. For a complete analysis of the benefits of hydraulic 

fracturing, specific offshore risks must be accounted for.  

 

In comparison to the entire cost of drilling and completing an offshore well, the proppant 

cost is nearly insignificant. However, the risk associated with fracturing is paramount as 

any nonproductive time could result in millions of dollars. Ogier et al. (2011) outlined 

numerous completion-related problems related to multistage single fracturing in the 

Lower Tertiary: premature opening of the monitoring sleeve, a stuck service tool, a leak in 

the sump, and excessive erosion in the crossover tool. Fig. 5.10 gives a breakdown of the 

completion times related to each stage of the fracture process.  



 

 

83 

 

Fig. 5.10. Deepwater lower completion time analysis (from Ogier 2011) 
 

For future analysis and forecasting, the above data were used to calibrate a Markov 

Chains of nonproductive time. A Markov chain is formerly defined as  

Pr 𝑋!!! = 𝑥 𝑋! = 𝑥!,𝑋! = 𝑥!,… ,𝑋! = 𝑥! = Pr 𝑋!!! = 𝑥 𝑋! = 𝑥!   ...............   (5.3) 

 

The Markov chain represents an independent transition from one to state to next. The 

transition does not depend on the previous states, only on the current state. Using the 

above data and assuming a lognormal distribution. a series of Markov chains was 

generated to predict nonproductive time associated with fracturing additional stages. The 

Markov chain of non-productive-time versus number of fractures stages is given in Fig 

5.11  
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Fig. 5.11. Markov chain representation of NPT versus number of stages  
 

These realizations were used to generate probability density curves representing the time 
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Fig. 5.12. Fracture time versus number of stages  
 

These results can be used in determining the expected value and variation of possible 

times associated with fracturing additional stages.  
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Deterministic Optimization Results 

As mentioned above, the objective was to determine the optimal number of stages to 

fracture for a vertical well in an anisotropic formation subject to fracture height 

constraints. The objective function was the maximization of NPV and the number of 

stages were the decision variable. For this optimization, a maximum of 1 million lb of 

30/60 buaxite proppant were available. This constraint is consistent with current 

mechanical integrity standards of the completion equipment. A schematics of the 

optimization procedure is given in Fig. 5. 13.  

 

The trade off in the optimization is the fracture half-length and the total fracture height at 

any given stage. Since each individual fracture height is directly linked to the fracture 

half-length (via the aspect ratio), increasing the number of stages directly affects the 

overall vertical penetration.  

𝐻!"!#$ = 𝑁!"#$%ℎ!   ..........................................................................................  (5.4) 

 

In effect, increasing the number of stages will simply bypass the aspect ratio constraint 

and allow for a more theoretically optimal design.  
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Fig. 5.13. Optimization procedure 
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Aspect Ratio 1 

The first situation investigated is for an aspect ratio of 1 (2  𝑥! = ℎ!). The NPV and 

dimensionless productivity are graphed in Figs. 5.14 and 5.15. Tables 5.3 to 5.4 show the 

fracture dimensions, dimensionless parameters, and NPV at each stage.  

 

 

Fig. 5.14. NPV versus number of stages to fracture for Ar=1 
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Fig. 5.15. Dimensionless productivity versus number of stages to fracture for Ar=1 
 

Table 5.3. Optimization Results Ar=1: Fracture Properties  
#	
  of	
  

Fracture	
  	
  
Half	
  Length	
  

(ft)	
  
Average	
  Width	
  (in.)	
  	
   Fracture	
  Height	
  

(ft)	
  
Total	
  Height	
  

(ft)	
  	
  
1	
   337	
   0.079	
   337	
   337	
  
2	
   238	
   0.079	
   238	
   476	
  
3	
   194	
   0.079	
   194	
   583	
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   168	
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   168	
   673	
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   143	
   0.801	
   143	
   749	
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   125	
   750	
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Table 5.4. Optimization Results Ar=1: Fracture Conductivity, Vertical, and 
Horizontal Penetration Ratio  

#	
  of	
  
Fracture	
  

Dimensionless	
  
Conductivity	
  (Cfd)	
  

Horizontal	
  Penetration	
  
Ratio	
  (Ix)	
  

Vertical	
  Penetration	
  
Ratio	
  (Iz)	
  

1	
   0.39	
   0.144	
   0.44	
  
2	
   0.55	
   0.102	
   0.63	
  
3	
   0.68	
   0.083	
   0.77	
  
4	
   0.78	
   0.072	
   0.89	
  
5	
   0.89	
   0.064	
   0.99	
  
6	
   1.27	
   0.053	
   1	
  
7	
   1.71	
   0.046	
   1	
  

 

Table 5.5. Optimization Results Ar=1: NPV 
#	
  of	
  

Fracture	
  	
  
NPV(mm$)	
  
kh/kv=1	
  

NPV(mm$)	
  
kh/kv=10	
  

NPV(mm$)	
  
kh/kv=100	
  

NPV(mm$)	
  
kh/kv=1000	
  

1	
   62	
   18	
   -­‐33	
   -­‐73	
  
2	
   87	
   63	
   35	
   3	
  
3	
   85	
   76	
   61	
   45	
  
4	
   77	
   75	
   70	
   64	
  
5	
   68	
   68	
   68	
   68	
  
6	
   57	
   57	
   57	
   57	
  
7	
   45	
   45	
   45	
   45	
  

 

Table 5.7 shows that for different levels of reservoir anisotropy there are distinct optimal 

numbers of stages to fracture. For kh/kv=1, the optimal number of stage is 2; for kh/kv=10, 

the optimal number of stages is 3; for kh/kv=100, the optimal number of stages is 4; for 

kh/kv=1,000, the optimal number of stages is 5. As the anisotropy increases, the number of 

stages increases, the fracture half-length decreases, and the individual fracture height 

decreases while the net fractured height penetration increases. Furthermore, the fracture 

widths remain constant until the entire pay is fractured. This result is consistent with the 

preliminary analysis given in Figs. 5.7 to 5.9. For moderate proppant numbers, with any 
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level of anisotropy the optimal design always favors more vertical penetration. Since 

vertical penetration is directly linked to half-length until the entire formation is penetrated 

vertically, the width and corresponding fracture conductivity are comprised .  

Aspect Ratio 2  

The next situation investigated was for an aspect ratio of 2. The NPV and dimensionless 

productivity were graphed in Figs. 5.16 and 5.17. Tables 5.6 to 5.8 show the fracture 

dimensions at each stage, dimensionless parameters, and NPV at each stage.  

 

 

Fig. 5.16. NPV versus number of stages to fracture for Ar=2 
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Fig. 5.17. Dimensionless Productivity versus Number of Stages to Fracture for Ar=2 
 
 

Table 5.6. Optimization Results: Ar=2: Fracture Properties 
#	
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Fracture	
  	
  
Half	
  Length	
  

(ft)	
  
Average	
  Width	
  (in.)	
  	
   Fracture	
  Height	
  

(ft)	
  
Total	
  Height	
  

(ft)	
  	
  
1	
   476	
   0.079	
   238	
   238	
  
2	
   336	
   0.079	
   168	
   336	
  
3	
   274	
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   137	
   411	
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   476	
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Table 5.7. Optimization Results Ar=2: Fracture Conductivity, Vertical, and 
Horizontal Penetration Ratio  
#	
  of	
  Fracture	
   Dimensionless	
  

Conductivity	
  (Cfd)	
  
Horizontal	
  Penetration	
  

Ratio	
  (Ix)	
  
Vertical	
  Penetration	
  

Ratio	
  (Iz)	
  
1	
   0.277	
   0.203	
   0.31	
  
2	
   0.3982	
   0.144	
   0.448	
  
3	
   0.4812	
   0.12	
   0.55	
  
4	
   0.555	
   0.1	
   0.63	
  
5	
   0.621	
   0.091	
   0.71	
  
6	
   0.68	
   0.083	
   0.77	
  
7	
   0.735	
   0.077	
   0.839	
  

 

Table 5.8. Optimization Results Ar=2: NPV 
#	
  of	
  

Fracture	
  	
  
NPV	
  (mm$)	
  
kh/kv=1	
  

NPV	
  (mm$)	
  
kh/kv=10	
  

NPV	
  (mm$)	
  
kh/kv=100	
  

NPV	
  (mm$)	
  
kh/kv=1000	
  

1	
   58.9	
   -­‐3.35	
   -­‐75	
   -­‐130	
  
2	
   84.54	
   43.44	
   -­‐7.26	
   -­‐65.84	
  
3	
   85.29	
   59.19	
   22.8	
   -­‐19.4	
  
4	
   80.58	
   63.8	
   37.85	
   8.1	
  
5	
   73.73	
   63.135	
   45.12	
   23.8	
  
6	
   65.66	
   58.52	
   47.6	
   32.65	
  
7	
   57	
   53.86	
   46.8	
   37	
  

 

 

For each level of reservoir anisotropy, there is a distinct optimal number of stages. For 

kh/kv=1, the optimal number of stages is 3; for kh/kv=10, the optimal number of stages is 4; 

for kh/kv=100, the optimal number of stages is 6; for kh/kv=1,000 the optimal number of 

stages is 7. The results differ significantly from the previous case in which the aspect ratio 

was 1. For an aspect ratio of 2, the fracture propagates more in the horizontal direction 

than in the vertical direction. This impacts total wellbore performance as it takes more 

stages to cover the entire interval. In fact, even after 7 stages the overall vertical 
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penetration is significantly less than unity. The optimal design calls for more fracture 

stages to achieve satisfactory vertical coverage.  

 

For this aspect ratio, the effect of anisotropy is much more severe. Due to the limited 

height penetration for a single fracture, more stages are needed, increasing costs and 

decreasing NPV.  

 

Stochastic Optimization Reservoir Uncertainty  

Above we summarized the deterministic optimization for different ratios of vertical to 

horizontal permeability. The next step in the analysis was to consider the ratio of vertical 

permeability uncertain. For simplicity, we characterized the uncertainty with a discrete 

distribution of probabilities (Table 5.4). Again, two different cases of aspect ratios were 

considered. 

 

Aspect Ratio 1 

Fig. 5.18 shows the NPV for different vertical permeability as well as the expected NPV. 

Table 5.9 lists the NPV for each stage. 
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Figure 5.18 Expected NPV versus number of stages to fracture for Ar=1 
 
 

Table 5.9. Expected Net Present Results Ar=1 
#	
  of	
  Fracture	
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1	
   -­‐6.5	
  
2	
   47	
  
3	
   66.75	
  
4	
   71.5	
  
5	
   67.7	
  
6	
   57	
  
7	
   45	
  

 

 

Recalling the deterministic results, each realization of permeability had an optimal 
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the optimal number of stages is 5. Now, considering the uncertainty in each realization, 

the optimal number of stages is 4.  

 

Aspect Ratio 2 

Fig. 5.19 shows the NPV and the corresponding expected NPV for various vertical 

permeabilities . Table 5.10 lists the NPV for each stage. 

 

 

Fig. 5.19. Expected NPV versus number of stages to fracture for Ar=2 
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Table 5.10 Expected NPV s Results: Ar=2 
#	
  of	
  Fracture	
  	
   Expected	
  NPV	
  (mm$)	
  

	
  
1	
   -­‐37.36	
  
2	
   13.72	
  
3	
   36.97	
  
4	
   47.58	
  
5	
   51.50	
  
6	
   51.10	
  
7	
   48.66	
  

 

In the deterministic case, each realization of permeability had an optimal number of 

stages. For kh/kv=1, the optimal number of stage is 3; for kh/kv=10, the optimal number of 

stages is 4; for kh/kv=100, the optimal number of stages is 6; for kh/kv=1,000, the optimal 

number of stages is 7. Now, considering the uncertainty in each realization, the new 

optimal number of stages is 5 .  

 

As expected, when considering uncertainty the actual optimal number of stages falls in 

between the best- and worst-case scenarios. However, in the above analysis the expected 

NPV was used as an objective function. Even when designing for an expected outcome, 

only one single realization will occur, so designing 6 stages could result in any one of 4 

possible NPV outcomes {73,63,45,23}. For nonrepeatable situations, or when certain 

targets must be met, it may be warranted to impose a conservative risk profile. This can be 

systematically achieved by applying the utility formulation.  

 

For this case, a dimensionless modified exponential utility function is appropriate: 
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𝑢 𝑥 = 𝑟 1− 𝑒!
!
!    .....................................................................................  (5.5) 

 

The utility is dimensionless and monotonic. The actual value has no physical or economic 

meaning; its use is restricted for comparative purposes.   

 

Returning to the aspect ratio of 2, Fig. 5.20 and Table 5.11 show the effect of 

incorporating utility with a “very conservative” risk profile ( r=50). 

 

 

Fig. 5.20. Very conservative utility versus number of stages to fracture for Ar=2 
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Table 5.11 Optimization Results Ar=2: Reservoir Uncertainty, Very Conservative 
Utility 
#	
  of	
  Fracture	
  	
   Utility	
  	
  

kh/kv=1	
  
Utility	
  	
  
kh/kv=10	
  

Utility	
  	
  
kh/kv=100	
  

Utility	
  	
  
kh/kv=1000	
  

Utility	
  	
  
Expected	
  

	
  
1	
   0.75	
   0.22	
   0.01	
   0.02	
   0.25	
  
2	
   0.88	
   0.63	
   0.04	
   0.03	
   0.40	
  
3	
   0.89	
   0.76	
   0.40	
   0.04	
   0.52	
  
4	
   0.87	
   0.79	
   0.58	
   0.16	
   0.60	
  
5	
   0.84	
   0.78	
   0.65	
   0.41	
   0.67	
  
6	
   0.80	
   0.75	
   0.67	
   0.52	
   0.68	
  
7	
   0.74	
   0.72	
   0.66	
   0.57	
   0.67	
  

 

 

Applying the conservative profile determines the optimal utility for each realization. The 

optimal number of stages will be not different from the case when the NPV was the 

objective function. For kh/kv=1, the optimal number of stages is 3; for kh/kv=10, the 

optimal number of stages is 4; for kh/kv=100, the optimal number of stages is 6; for 

kh/kv=1,000, the optimal number of stages is 7. This is expected, as the optimization is still 

deterministic at this point.  

 

However, when applying uncertainty, the expected utility results in a different number of 

stages. For the conservative risk profile, the optimal number of stages is 6. In effect, the 

conservative utility reduces the number of stages and hence the overall risk, while 

maintaining reasonable expected NPV.  
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Fig. 5.21 and Table 5.12 show the effect on the less-risk-conservative profile (r=500). 

 

 

Fig. 5.21. Less conservative utility versus number of stages to fracture for Ar=2 
 
 

Table 5.12. Optimization Results Ar=1: Reservoir Uncertainty, Conservative Utility 
#	
  of	
  Fracture	
  	
   Utility	
  	
  

kh/kv=1	
  
Utility	
  	
  
kh/kv=10	
  

Utility	
  	
  
kh/kv=100	
  

Utility	
  	
  
kh/kv=1000	
  

Utility	
  	
  
Expected	
  

1	
   0.67	
   0.01	
   0.01	
   0.01	
   0.18	
  
2	
   0.93	
   0.50	
   0.01	
   0.01	
   0.36	
  
3	
   0.95	
   0.67	
   0.27	
   0.01	
   0.47	
  
4	
   0.89	
   0.72	
   0.44	
   0.10	
   0.54	
  
5	
   0.82	
   0.71	
   0.52	
   0.28	
   0.59	
  
6	
   0.74	
   0.66	
   0.54	
   0.38	
   0.58	
  
7	
   0.65	
   0.61	
   0.54	
   0.43	
   0.56	
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By applying a less-risk-conservative profile, the outcome is the same as that of the NPV 

optimization. This illustrates the flexibility of the utility function: direct levels of risk can 

be assigned in many different ways, and it is possible to be moderately risk conservative, 

but not overly conservative (effectively leaving the NPV optimization decision 

unchanged). 

 

Stochastic Optimization Cost Uncertainty 

The Markov chains and probability density function generated above give an excellent 

quantification of the risk associated with increasing the number of stages in the fracturing 

operation. In the previous optimization, the NPV was determined by the expected value of 

the associated number of stages. However, similar to the discussion before, using the 

expected value does not account for associated risk. In order to directly quantify the risk, 

the utility function was applied.   

 

Fig. 5.22 and Table 5.13 show the utility per stage associated with the completion cost 

risk.  
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Fig. 5.22. Cost Uncertainty Utility Versus Number of Stages to Fracture for Ar=2 
 

Table 5.13 Optimization Results Ar=2: Cost Uncertainty Utility 
#	
  of	
  Fracture	
  	
   Utility	
  	
  

kh/kv=1	
  
Utility	
  	
  
kh/kv=10	
  

Utility	
  	
  
kh/kv=100	
  

Utility	
  	
  
kh/kv=1000	
  

1	
   0.71	
   0.12	
   0.04	
   0.00	
  
2	
   0.80	
   0.50	
   0.08	
   0.01	
  
3	
   0.79	
   0.71	
   0.21	
   0.01	
  
4	
   0.77	
   0.70	
   0.42	
   0.02	
  
5	
   0.70	
   0.65	
   0.44	
   0.04	
  
6	
   0.60	
   0.53	
   0.37	
   0.08	
  
7	
   0.45	
   0.36	
   0.20	
   0.12	
  

 

 

In considering the completion cost uncertainty, the optimal utility generally results in a 

lower number of fractures. This is the case for kh/kv=1, kh/kv =10, and kh/kv =100, in 

which each individual optimum number of stages is less than the optimum given by the 
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NPV criteria. Logically this is intuitive: as the number of stages increases, the risk 

increases; and in order to limit risk, we must limit the number of stages. However, for 

kh/kv=1,000, the optimum number of stages is still 7, the same as in the case of expected 

NPV optimization. This can be understood if we recall that there are such significant 

losses in wellbore productivity at lower fracture penetration for that anisotropy level, and 

that even with reduced risk tolerance, the best decision is to fracture “as much as 

possible.”  

 

Stochastic Optimization: Reservoir and Cost Uncertainty 

In the above examples the uncertainty had a profound effect on decision-making. In 

considering reservoir risk (vertical permeability variation), risk analysis favored more 

fracture stages to ensure maximum penetration. In considering economic risk 

(nonproductive completion time), risk analysis favored fewer fracture stages to minimize 

high costs. For the next analysis, reservoir and cost uncertainty were considered 

simultaneously. Firstly, we graphed the effect of the fracturing cost and reservoir 

uncertainty on NPV. Figs. 5.23 and 5.24 show the effects for aspect ratios of 2 and 1 

respectively.  
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Fig. 5.23. Facture Cost uncertainty versus reservoir uncertainty Ar=2  
 

 

Fig. 5.24. Facture cost uncertainty versus reservoir uncertainty Ar=1  
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As seen, with a low number of stages the fracture cost risk is minimal but the reservoir 

risk is high. As the number of stages increases, the fracturing risk increases while the 

reservoir risk decreases. If the reservoir risk is calculated solely with respect to variation 

in vertical permeability (as in our case), the risk can be entirely eliminated when the entire 

zone is fractured (Fig 5.24). For any given situation, the optimal solution will depend on 

the range of uncertainties associated with each risk.  

 

Using the previous example, for an aspect ratio =2 and conservative risk profile r=20, the 

expected utilities is given in Fig. 5.25 and Table 5.14. 

 

 

Fig. 5.25. Reservoir and cost uncertainty utility versus number of stages to fracture 

for Ar=2 
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Table 5.14. Optimization Results Ar=2: Reservoir and Cost Uncertainty Utility 

#	
  of	
  
Fracture	
  	
  

Utility	
  	
  
kh/kv=1	
  

Utility	
  	
  
kh/kv=10	
  

Utility	
  	
  
kh/kv=100	
  

Utility	
  	
  
kh/kv=1000	
  

Utility	
  	
  
Expected	
  

	
  
1	
   0.71	
   0.12	
   0.04	
   0.00	
   0.22	
  
2	
   0.80	
   0.50	
   0.08	
   0.01	
   0.35	
  
3	
   0.79	
   0.71	
   0.21	
   0.01	
   0.43	
  
4	
   0.77	
   0.70	
   0.42	
   0.02	
   0.48	
  
5	
   0.70	
   0.65	
   0.44	
   0.04	
   0.49	
  
6	
   0.60	
   0.53	
   0.37	
   0.08	
   0.40	
  
7	
   0.45	
   0.36	
   0.20	
   0.12	
   0.29	
  

 

 

Considering both reservoir and completion cost uncertainty, a new optimum was found at 

5 stages. Not surprisingly, this is a further compromise: the optimum number of stages is 

generally higher than the one considering only the operational cost risk, but generally 

lower than the one considering only the reservoir risk.   

 

Stochastic Optimization: Fracture Height Uncertainty 

The final case considered fracture height uncertainty as well as reservoir uncertainty. For 

this case, height growth follows an aspect ratio of either 1 or 2. Figs. 5.26 and Tables 

5.15-5.16 show the expected NPV for each aspect ratio realization and the conditional 

expectation for all permeability realizations.  
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Fig. 5.26. Expected NPV versus number of stages to fracture for fracture height 
uncertainty  
 

Table 5.15 Optimization Results, Fracture Height Uncertainty: NPV  
#	
  of	
  

Fracture	
  	
  
Exp.	
  NPV	
  (mm$)	
  

kh/kv=1	
  
Exp.	
  NPV	
  (mm$)	
  

kh/kv=10	
  
Exp.	
  NPV	
  (mm$)	
  

kh/kv=100	
  
Exp.	
  NPV	
  (mm$)	
  

kh/kv=1000	
  
1	
   60.45	
   7.325	
   -­‐54	
   -­‐101.5	
  
2	
   85.77	
   53.22	
   13.87	
   -­‐31.42	
  
3	
   85.14	
   67.595	
   41.9	
   12.8	
  
4	
   78.79	
   69.4	
   53.925	
   36.05	
  
5	
   70.71	
   65.4175	
   56.41	
   45.75	
  
6	
   61.33	
   57.76	
   52.3	
   44.825	
  
7	
   51.33	
   49.4342	
   45.9	
   41	
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Table 5.16. Optimization Results Fracture Height Uncertainty: Expected NPV 
#	
  of	
  Fracture	
  	
   	
  Condition	
  Expected	
  NPV(mm$)	
  

	
  
1	
   -­‐21.93	
  
2	
   30.36	
  
3	
   51.86	
  
4	
   59.67	
  
5	
   59.52	
  
6	
   54.05	
  
7	
   46.83	
  

 

 

Considering the uncertainties in fracture height and vertical permeability, each realization 

of permeability results in an expected NPV based on the fracture height realizations. Each 

permeability realization determined an optimal number of stages. The conditional 

expectation was then taken over all permeability realizations to determine the optimal 

number stages for both height and permeability uncertainty. The optimal number of stages 

for conditional expectation is 4. Interestingly, this is only slightly better than the NPV for 

5 stages, but it has more variation. Again, to account for the risk, the utility theory is 

applied as show in Fig. 5.27 and Table 5.17. 
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Fig. 5.27. Reservoir and fracture height utility versus number of stages to fracture  
 

Table 5.17. Optimization Results, Fracture Height Uncertainty: Expected Utility  
#	
  of	
  Fracture	
  	
   Utility	
  	
  

kh/kv=1	
  
Utility	
  	
  
kh/kv=10	
  

Utility	
  	
  
kh/kv=100	
  

Utility	
  	
  
kh/kv=1000	
  

Utility	
  	
  
Expected	
  

1	
   0.74	
   0.11	
   0.00	
   0.00	
   0.21	
  
2	
   0.92	
   0.65	
   0.20	
   0.10	
   0.40	
  
3	
   0.91	
   0.78	
   0.52	
   0.22	
   0.56	
  
4	
   0.87	
   0.81	
   0.67	
   0.45	
   0.69	
  
5	
   0.82	
   0.78	
   0.70	
   0.58	
   0.72	
  
6	
   0.75	
   0.72	
   0.67	
   0.59	
   0.68	
  
7	
   0.66	
   0.65	
   0.61	
   0.56	
   0.62	
  

 

 

Systematically accounting for risk in the cases of both reservoir and fracture height 

uncertainty results in a new optimal number of stages. By no surprise, the optimum is 6. 
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Increasing the number of stages mostly compensated for the reservoir risk and tightened 

the range of outcomes .  

 

Remarks 

This analysis provided interesting insights. When reservoir permeability was a risk, the 

design favored more stages to fracture, but when completion cost was a risk, the design 

favored fewer stages to fracture. When fracture height growth was a risk, there was no 

general trend; in some cases the design favored more stages, in some other cases, less.  

 

The analysis also hinted at a more general aspect of design under uncertainty, which is 

how decisions we make affect overall uncertainty. When the reservoir permeability was 

the risk, adding more stages reduced and even eliminated it. The economic risk, although 

seemingly out of the grasp of engineering, can be managed with best practices such as 

detailed “practice runs” in test facilities. The same cannot be said for fracture height-

growth risk. No matter what decision is made, there is no way of eliminating that risk; the 

uncertainty exists in nature, and all that can be done is to design for the best-expected 

outcome or use more “out-of-box” thinking such as spending more resources on 

information that can reduce the particular uncertainty.  

 

In essence, this analysis allows for specific quantification for associating a dollar value 

with specific geology and rock mechanics information. The differences in outcome (NPV) 

of the possible realizations can be directly used quantify the value of information and 
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whether further information gathering is warranted. It comes as no surprise that such 

information is more valuable (or the lack of it is more detrimental) in an offshore 

development than in traditional, onshore development.   

 

Tables 5.18 to 5.20 summarize the results of these quantifications.  

 

 

Table 5.18. Aspect Ratio 2 
	
   Aspect	
  Ratio	
  2	
   #	
  of	
  fractures	
  	
  

Deterministic	
  

Expected	
  NPV	
  kh/kv	
  =1	
   3	
  
Expected	
  NPV	
  kh/kv	
  =10	
   4	
  
Expected	
  NPV	
  kh/kv	
  =100	
   6	
  
Expected	
  NPV	
  kh/kv	
  =1000	
   7	
  

Stochastic	
  	
  

Expected	
  NPV	
  Reservoir	
  Risk	
   5	
  
Expected	
  Utility	
  	
  Reservoir	
  Risk	
  	
   6	
  
Expected	
  Utility	
  Completion	
  Cost	
  Risk	
  kh/kv	
  =1	
   2	
  
Expected	
  Utility	
  Completion	
  Cost	
  Risk	
  kh/kv	
  =10	
   3	
  
Expected	
  Utility	
  Completion	
  Cost	
  Risk	
  	
  kh/kv	
  =100	
   5	
  
Expected	
  Utility	
  Completion	
  Cost	
  Risk	
  kh/kv	
  =1000	
   7	
  
Expected	
  Utility	
  Completion	
  Cost	
  and	
  Reservoir	
  Risk	
   5	
  

 

Table 5.19. Aspect Ratio 1 
	
   Aspect	
  Ratio	
  1	
   #of	
  fractures	
  

Deterministic	
  

Expected	
  NPV	
  kh/kv	
  =1	
   2	
  
Expected	
  NPV	
  kh/kv	
  =10	
   3	
  
Expected	
  NPV	
  kh/kv	
  =100	
   4	
  
Expected	
  NPV	
  kh/kv	
  =1000	
   5	
  

Stochastic	
  
NPV	
  -­‐Reservoir	
  Risk	
   4	
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Table 5.20. Fracture Height Uncertainty  
	
   Aspect	
  Ratio	
  Uncertainty	
  	
   #of	
  fractures	
  

Stochastic	
  	
  

Expected	
  NPV	
  kh/kv	
  =1	
   2	
  
Expected	
  NPV	
  kh/kv	
  =10	
   4	
  
Expected	
  NPV	
  kh/kv	
  =100	
   5	
  
Expected	
  NPV	
  kh/kv	
  =1000	
   5	
  

	
   Conditional	
  NPV	
  –Reservoir	
  Risk	
   4	
  
	
   Expected	
  Utility	
  kh/kv	
  =1	
   2	
  
	
   Expected	
  Utility	
  kh/kv	
  =10	
   4	
  
	
   Expected	
  Utility	
  kh/kv	
  =100	
   5	
  
	
   Expected	
  Utility	
  kh/kv	
  =1000	
   6	
  
	
   Conditional	
  Expected	
  Utility	
  –Reservoir	
  Risk	
   5	
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CHAPTER VI  

HYDRAULIC FRACTURE OPTIMIZATION: HORIZONTAL WELLS 

 

The optimization of a horizontal well with multiple transverse fractures was next 

formulated as a mixed-integer, nonlinear, two-stage stochastic program with full recourse. 

The well length, number of fractures, and fracture dimensions were used as decision 

variables. The well length was a continuous variable while the number of fractures was an 

integer value. The first-stage decision was the length of the horizontal well. The second-

stage decisions were the number and dimensions of multiple transverse fractures. There 

was initial uncertainty in the permeability before the well was drilled. After the well was 

drilled, but before it was fractured, the uncertainty was revealed. This assumption is 

natural, as during the drilling process core samples may be collected and well logs may be 

run to deduce permeability. The objective was to maximize the expected NPV and 

subsequently the expected utility.  

 

Deterministic Problem  

Before solving the stochastic program it is imperative to formulate the underlying 

deterministic program. In this case it consisted of the optimization of a horizontal well 

with multiple transverse fractures with certainty in all parameters and constraints. For this 

analysis, we assumed that there was a constant budget constraint linking the drilling and 

completion costs. The premise of this problem was to find the optimum tradeoff between 

horizontal well length, number of fractures, and fracture dimensions, all coupled under 
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economic constraints. We hypothesized that resources (money) spent on drilling longer 

laterals can be better allocated on fracturing and vice versa. At the extreme, it was 

possible that all the resources could be spent on drilling—leaving no capital for 

fracturing—or almost all resources could be spent on fracturing. 

 

This problem falls under the larger category of mixed integer nonlinear programming 

(MINLP). Mixed integer comes from the fact that decision variables are mixed (some 

have continuous values, others integer values). For this case, the well length was 

continuous in a given interval. Although this may not be entirely true as drillpipe length 

and production tubing may be discrete values, for all practical purposes this assumption is 

valid. However, the number of fractures has an integer value. The problem is considered 

nonlinear as the objective function and constraints contain nonlinear functions with 

respect to the decision variables. This is true both for the productivity of the well/fracture 

configuration and the associated costs.  

 

Generally, the solutions of mixed-integer, nonlinear programs are complex and require 

numerical optimization. Analytical gradient approaches cannot be applied as the integer 

variables impose nondifferentiability in the objective function. Purely probabilistic 

methods such as genetic algorithms, particle swarm algorithms, or simulated annealing 

optimizations do not guarantee global optimization and may require unnecessary 

calculations. Direct-search methods such as the Nelder-Mead simplex method seem 

attractive, but they may have computational issues. However, instead of relying on pre-
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coded, standard optimization packages, this problem can be readily solved by the branch-

and-bound technique. 

 

The branch-and-bound technique is a nonheuristic global optimization method that uses 

bounding to constrain the search space where local optimization or enumerations can be 

employed. The branch-and-bound method revolves around partitioning the feasible region 

into mutually exclusive sets (branching), determining provable upper and lower bounds 

(bounding) on the objective function for each set, and then terminating (fathoming) 

suboptimal solution sets based on the upper and lower bounds. No further calculations are 

done on sets that have been fathomed, vastly reducing the search space and, 

correspondingly, the actual evaluation burden. The strength of the branch-and-bound 

method is the ability to remove en masse large sets of suboptimal solutions. The weakness 

in the method is that it can lead to complete enumeration if the bounding fails.  

 

Constraints  

For any mixed-integer problem where enumeration (at some point) is required, additional 

constraints actually improve algorithmic performance by reducing the feasible domain. 

For this purpose economic, operational, and physical constraints were considered for the 

dual purpose of achieving a more realistic design and to reduce the computational burden.  
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Economic Constraints  

For this optimization, as mentioned above the total capital available for drilling and 

completing was directly connected: the total capital less the capital spent on drilling was 

spent on completing. No leftover capital was allowed. This constraints ensured convexity 

in the objective function.  

 

Operational Constraints  

The main operational constraint in this optimization was the proppant mass per stage 

allowed. At high injection velocity the proppant (especially bauxite) exhibits abrasive 

behavior, damaging the service tools and completion hardware. Currently,1 there is a 

mechanical limit on the amount of proppant that is pumped through the tool as well as the 

frac sleeve. This limit is estimated at a 750,000- to 1 million-lbm/sleeve. For this work, no 

more than 1 million lbm of proppant was allowed per stage.  

 

Physical Constraints 

Fracture Height Growth 

For vertical fractures extending from a horizontal wellbore, radial (penny shape) fractures 

can be reasonable assumed. This leads to an aspect ratio constraint of  

𝑤! = 𝑤!   ........................................................................................................  (6.1) 

 

                                                
1 Private Conservation with Haliburton Completion Engineer  
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Although this assumption is a simplification of the actual fracture propagation profile, in 

practice fracture design engineers everywhere use it, either explicitly or implicitly (in the 

form of “model calibration” for a given area). 

 

Minimum Fracture Spacing: 

During the process of hydraulic fracturing there is a reorientation of the in situ stress 

around the propped fracture. This occurs because the imposed stress perpendicular to the 

fracture is larger then the imposed stress parallel to the fracture. This phenomenon may 

directly affect the growth of subsequent hydraulic fractures. Experience shows that the 

integrity of the individual fractures cannot be assured if they are placed too close.  

 

Preliminary Analysis  

Partial Penetration and Choke Skin 

The productivity of a horizontal well with transverse fractures is significantly different 

from the productivity of a fractured vertical well. For a horizontal well with a transverse 

fracture the flow inside the fracture will not be linear. The flow will converges radially in 

the x-z plane to the wellbore. This radial convergence is a strong function of fracture 

geometry, particularly the fracture height. As the fracture height grows, the pressure drop 

due to convergence increases. Effectively this results in a non-productive part of the 

fracture.  
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The main parameter affecting fracture performance is the conductivity. Generally the 

fracture conductivity is defined with respect to the fracture half-length. However, for a 

transverse fracture, the vertical fracture conductivity must also be considered.    

𝐶!",! =
!  !!  !!"#
!  !!

   ............................................................................................  (6.2) 

 

As the fracture height increases, the vertical conductivity decreases, impeding 

productivity. This effect is exacerbated in higher-permeability reservoirs.  

 

In chapter 5,  full penetration was almost always favored over partial penetration for its 

effect of on productivity in vertical wells. Now, since the fracture experiences additional 

convergence pressure drop, the same cannot be said. As the fracture height increases, the 

effect of partial penetration is reduced, but the effect of convergence flow is increased. 

This phenomenon sets a limit on the expected productivity of a transverse fracture in a 

horizontal well. The productivity of a transverse fracture cannot ever reach the 

productivity of a fracture in a vertical well, if the same amount of proppant is used. In 

some cases it can be orders of magnitude less.   

 

Dimensionless productivity versus vertical penetration ratio is given in Figs. 6.1 and 6.2 

for several cases. Note the change in scale on the vertical axes.  
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Fig. 6.1. Dimensionless productivity versus vertical penetration ratio for kh=1 md 
 

 

Fig. 6.2. Dimensionless productivity versus vertical penetration ratio for kh=10 md 
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  For the case of lower horizontal permeability 𝑘! = 1  md, the productivity increases 

nearly linearly with vertical penetration. The fracture exhibits relatively high conductivity 

and the convergence pressure drop is rather small. However, for the higher horizontal 

permeability case 𝑘! = 10  md, the fracture conductivity is lower, resulting in higher 

pressure loss due to convergence. Therefore, the increase in productivity for larger 

fracture heights is only moderate.  

 

This effect is given in Fig. 6.3, which displays the dimensionless productivity versus 

vertical penetration ratio parametrically, for different horizontal permeabilities.  

 

 

Fig. 6.3. Dimensionless productivity versus vertical penetration ratio for various 
permeabilities  
 

0	
  

0.05	
  

0.1	
  

0.15	
  

0.2	
  

0.25	
  

0.3	
  

0.1	
   0.2	
   0.3	
   0.4	
   0.5	
   0.6	
   0.7	
   0.8	
   0.9	
   1	
  

D
im
en
si
on
le
ss
	
  P
ro
du
ct
iv
it
y	
  
(-­‐
)	
  

Vertical	
  Penetration	
  Iz	
  (-­‐)	
  



 

 

121 

 

For 𝑘! = 10  md, the productivity increase with more penetration is minuscule. Note that 

for the above comparison, the fracture width and half-length remained constant. In terms 

of amount of proppant required, the difference between a vertical penetration of 1/10 and 

1 is 10-fold. Injecting 10 times more proppant, solely for height growth, the relative 

productivity increased 2, 1.8, and 1.6-fold for 𝑘! = 10  md, 𝑘! = 5md, and 𝑘! = 1  md, 

respectively. These increases with respect to the base case, 𝐼! = 0.1  ,   is given in Fig. 6.4. 

The fold of increase is defined as: 

𝐹 = !!",!"
!!",!"!!/!"

   ................................................................................................  (6.3) 

 

 

 

Fig. 6.4. Folds of increase versus vertical penetration ratio for various permeabilities 
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The lower permeability case experiences the greatest productivity increase with respect to 

fracture height penetration.  

 

Constant Aspect Ratio 

For fracture growth that follows an aspect ratio of one, the previous analysis was repeated 

with 𝐼! = 𝐼! (Fig. 6.5). 

 

 

Fig. 6.5. Dimensionless productivity versus vertical penetration ratio for various 
permeabilities and Ar=1 
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permeability, the productivity increases more rapidly and gains significantly more folds 

on increase (Fig. 6.6). The folds of increase are given below and defined as  

𝐹 = !!",!"
!!",!"!!/!"

   ................................................................................................  (6.4) 

 

 

 

Fig. 6.6. Folds of increase versus vertical penetration ratio for various permeabilities 
and Ar=1 
 

 

 The effect is more pronounced when fracture growth follows a fixed aspect ratio. The 

lowest permeability formation gains the most productivity.  

 

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

0.1	
   0.2	
   0.3	
   0.4	
   0.5	
   0.6	
   0.7	
   0.8	
   0.9	
   1	
  

Fo
ld
s	
  
on
	
  o
f	
  I
nc
re
as
e	
  
(-­‐
)	
  

Vertical	
  Penetration	
  Iz	
  (-­‐)	
  



 

 

124 

Number of Fractures  

The next step in the analysis was to investigate how the number of fractures affects total 

productivity. For this analysis, we assumed that each fracture drains a uniform individual 

area. We also assumed that the fracture dimensions are constant. For a horizontal well 

with transverse fractures, the cumulative well productivity is the sum of the individual 

fracture productivities. For constant fracture dimensions and equal drainage area, the total 

well productivity is  

𝐽!" = 𝐽!"𝑛!   ...................................................................................................  (6.5) 

 

For the case of a partially penetrating horizontal well, the fractures at the ends of the well 

will have a different drainage area and fracture location. The total well productivity can 

be expressed as a sum of the inner and outer fracture productivities.  

𝐽!" = 𝐽!",!""#$(𝑛! − 2)+ 2𝐽!",!"#$%(𝑛! − 2)   .............................................  (6.6) 

 

For clarity, the first case investigated was the fully penetrating horizontal well with fully 

penetrating (both horizontal and vertical) uniform flux fracture. Fig. 6.7 displays the 

individual and total dimensionless productivity.  
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Fig. 6.7. Dimensionless productivity versus number of fractures for fully penetrating 
uniform flux fractures 
 

 

As expected, the individual productivity increased linearly with number of fractures and 

the total productivity increased exponentially with number of fractures.  
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Fig. 6.8. Dimensionless productivity versus number of fractures for partially 
penetrating uniform flux fractures 
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layering. For a 250-ft fracture with an aspect ratio of 1, the horizontal penetration is 

approximately 𝐼!=1/8 and the vertical penetration is 𝐼!=1/3. Additionally, due to the 

relatively large reservoir permeability, the fracture conductivity is crucial. Fig. 6.9 shows 

the results, for this situation, in which fracture conductivity and partial penetration were 

both considered.  

 

 

Fig. 6.9. Dimensionless productivity versus number of fractures for partially 
penetrating finite conductivity transverse fractures  
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quickly flattens with increasing number of fractures. The total productivity is an order of 

magnitude less than in the previous case.  

 

Fig. 6.10 shows the productivity versus number of fractures for different horizontal 

permeabilities.  

 

 

Fig. 6.10. Dimensionless productivity versus number of fractures for partially 
penetrating finite conductivity transverse fractures for various permeabilities  
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Fig. 6.11 shows the folds of increase versus number of fractures for different horizontal 

permeabilities. The folds of increase are defined with respect to a single fracture.  

𝐹 = !!",!
!!",!

   .......................................................................................................  (6.7) 

 

 

Fig. 6.11. Folds of increase versus number of fractures for partially penetrating 
finite conductivity transverse fractures for various permeabilities 
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distribute a fixed proppant mass in terms of number of stages and dimensions of each 

fracture. In the extremes, it is possible to create a single large fracture or an infinite 

number of small fractures. The optimum design will depend on reservoir properties, on 

proppant properties, and on constraints.  

 

Fig. 6.12 shows the total wellbore productivity versus number of fractures. However, the 

number of fractures is directly linked to proppant mass available, and thus the number of 

stages sets the fractures dimensions.  

𝑀!,!"#  !"#$%&"'!  
!  !,!"!#$
!!

   ..................................................................................  (6.8) 

𝑀!,!"#  !"#$%&"'!  2𝑥!𝑤!ℎ!  (1− 𝜙!)𝜌!   ...........................................................  (6.9) 

𝑀  !,!"!#$ = 𝑁!2𝑥!𝑤!ℎ!  (1− 𝜙!)𝜌!   .............................................................  (6.10) 

 

Various horizontal permeabilities result in distinct optimum configurations with respect to 

number of fractures and dimensions of the individual fractures. For the 𝑘! = 1  md case, 

the optimum number of fractures is 𝑁! = 8 with 2𝑥! = ℎ! = 275  ft. For the 𝑘! = 5  md 

case, the optimum number of fractures is 𝑁! = 16 with 2𝑥! = ℎ! = 175  ft. For the 

𝑘! = 10  md case, the optimum number of fractures is 𝑁! = 23 with 2𝑥! = ℎ! = 135  ft. 
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Fig. 6.12. Dimensionless productivity versus number of fractures and fracture 
penetration ratio for partially penetrating finite-conductivity transverse fractures 
for various permeabilities 
 

Due to the difference in total productivity, the scale in Fig. 6.12 does not easily portray 

the optimum values for the cases 𝑘! = 5  md and 𝑘! = 10  md. Fig. 6.13 shows the folds 

of increase with respect to number of fractures and the optimums are easier to recognize. 

The folds of increase are defined as  

𝐹 = !!",!
!!",!

   .......................................................................................................  (6.11) 
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Fig. 6.13. Folds of increase versus number of fractures and fracture penetration 
ratio for partially penetrating finite-conductivity transverse fractures for various 
permeabilities 
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Wellbore Length and Fracture Configuration Optimization   

The next step in the analysis was to add the effect of wellbore length. For this analysis, we 

assumed that the wellbore length and fracture costs are directly linked. In other words, 

resources (capital) are spent on a combination of drilling and completing. Thus, the 

drilling cost is a function of wellbore length and increases with length. Similarly, the 

fracturing cost is a function of the mass of proppant injected into the formation and 

increases with proppant mass.  

 

Furthermore, the drilling cost increases linearly with wellbore length. Admittedly, this is a 

simplification, but it captures the main effect. This assumption also implies a discount in 

drilling rig cost from multiwell contracting.  

 

The fracturing cost also increases linearly with the proppant mass. Again, this assumption 

may not be entirely valid, as individual stimulation vessels have a certain capacity 

resulting in a piecewise behavior in terms of cost. Also, hydraulic horsepower and 

fracturing fluid requirements tend to bias the overall cost behavior toward exponential 

dependence on injected proppant mass. These issues can be handled easily by considering 

piecewise linear cost functions if the detailed information is at hand.  
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Mathematically the optimization follows: 

max𝑁𝑃𝑉[𝑊! ,𝑁! ,𝑤! ,𝑤! ,𝑤!] 

𝑊!

𝑁!
= 𝐶! 

𝑤!𝑤! = 𝐶! 

𝑤! = 𝐶! 

𝑤!𝑤!𝑤! = 𝐶! 

𝑐!𝑊! + 𝑐!𝑁!𝑤!𝑤!𝑤! = 𝐶!  ...........................................................................................  (6.12)  

 

Example: Budget 500 Million  

In this analysis the budget was set to $500 million (including allocated platform capital 

expenditure, CAPEX). Figs. 6.14 to 6.17 show wellbore length versus NPV for various 

permeability cases. Tables 6.3 and 6.4 report the well length, optimum number of 

fractures, half-length, inner fracture spacing, and NPV.  

 

For various permeabilities there is a clear optimum combination of wellbore length, 

number of fractures, and fracture dimensions. A general trend is observed: increasing the 

well length results in an increasing number of fractures. For the low-permeability case 

(𝑘! = 1  md), the optimum NPV corresponds to a well length of 3,989 ft with 8 fractures. 
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Fig. 6.14. NPV versus number of fractures and well length for kh=1 md 
 

Table 6.1. Optimization Results kh=1 md: Well Length, Number of Fractures, and 
NPV 
Well	
  Length	
  (ft)	
   Opt	
  #	
  of	
  

Fractures	
  
Half	
  Length(ft)	
   Fracture	
  Spacing	
  (ft)	
   NPV	
  ($mm)	
  

500	
   2	
   377	
   500	
   -­‐361	
  
1000	
   4	
   377	
   500	
   -­‐300	
  
1500	
   4	
   377	
   500	
   -­‐245	
  
2000	
   5	
   377	
   500	
   -­‐205	
  
2500	
   6	
   377	
   500	
   -­‐167	
  
3000	
   7	
   377	
   500	
   -­‐130	
  
3500	
   7	
   359	
   583	
   -­‐107	
  
4000	
   8	
   308	
   571	
   -­‐103	
  
4500	
   8	
   278	
   642	
   -­‐106	
  
5000	
   10	
   218	
   555	
   -­‐122	
  
5500	
   14	
   166	
   423	
   -­‐150	
  
6000	
   20	
   195	
   315	
   -­‐195	
  
6500	
   25	
   43	
   254	
   -­‐300	
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Fig. 6.15. NPV versus number of fractures and well length for kh=5 md 
 

Table 6.2. Optimization Results, kh=5 md: Well Length, Number of Fractures, and 
NPV 
Well	
  Length	
  (ft)	
   Opt	
  #	
  of	
  

Fractures	
  
Half	
  Length	
  (ft)	
   Fracture	
  Spacing	
  (ft)	
   NPV	
  ($mm)	
  

500	
   2	
   377	
   500	
   -­‐351	
  
1000	
   4	
   377	
   500	
   -­‐238	
  
1500	
   4	
   377	
   500	
   -­‐184	
  
2000	
   5	
   377	
   500	
   -­‐138	
  
2500	
   6	
   377	
   500	
   -­‐90	
  
3000	
   7	
   377	
   500	
   -­‐46	
  
3500	
   9	
   317	
   437	
   1.9	
  
4000	
   11	
   263	
   400	
   46	
  
4500	
   13	
   218	
   375	
   84	
  
5000	
   15	
   178	
   357	
   114	
  
5500	
   18	
   126	
   323	
   129	
  
6000	
   24	
   89	
   315	
   115	
  
6500	
   26	
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   254	
   -­‐11	
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Fig. 6.16. NPV versus number of fractures and well length for kh=10 md 
 

Table 6.3. Optimization Results, kh=10 md: Well Length, Number of Fractures, and 
NPV 
Well	
  Length	
  (ft)	
   Opt	
  #	
  of	
  

Fractures	
  
Half	
  Length	
  (ft)	
   Fracture	
  Spacing	
  

(ft)	
  
NPV	
  ($mm)	
  

500	
   2	
   377	
   500	
   -­‐345	
  
1000	
   4	
   377	
   500	
   -­‐230	
  
1500	
   5	
   377	
   500	
   -­‐175	
  
2000	
   6	
   377	
   500	
   -­‐130	
  
2500	
   8	
   377	
   500	
   -­‐70	
  
3000	
   10	
   377	
   500	
   -­‐29	
  
3500	
   13	
   263	
   291	
   31	
  
4000	
   16	
   218	
   266	
   90	
  
4500	
   18	
   185	
   266	
   145	
  
5000	
   20	
   254	
   264	
   195	
  
5500	
   22	
   123	
   261	
   232	
  
6000	
   24	
   89	
   260	
   246	
  
6500	
   26	
   43	
   254	
   155	
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Table 6.4. Deterministic Optimization Results  
Permeability	
  (md)	
   Opt.	
  Well	
  Length	
   Opt	
  #	
  of	
  

Fractures	
  
Opt	
  Half	
  Length	
  

(ft.)	
  
NPV	
  ($mm)	
  

1	
   3989	
   8	
   328	
   -­‐100	
  
5	
   5580	
   19	
   124	
   130	
  
10	
   5921	
   23	
   97	
   246	
  

 

Increasing permeability shifts the optimal values to longer wellbore lengths and  more but 

smaller fractures. For 𝑘! = 5  md and 𝑘! = 10  md, the optimal well length and number of 

stages are 5,580 ft. and 5,921 ft, and the number of fractures is 19 and 23, respectively. 

These observations are consistent with the preliminary analysis in that the lower-

permeability formation benefits more from increasing fracture size while the higher-

permeability formation benefits more from increasing the number of fractures. However, 

from the preliminary analysis alone, the effect of wellbore length couldn’t be deduced. 

This analysis  indicated that the optimal number of fractures and well length are 

inherently linked. This result warrants further investigation.  

 

Recalling the constraint of minimum fracture spacing of 250 ft, we observed that the 

optimal number of fractures is well below the admissible number for 𝑘! = 1  md. 

However, for the case of 𝑘! = 10  md, the optimal number of fractures is limited by the 

imposed constraint (the constraint becomes sharp.) If rock mechanical constraints were 

ignored, this effect would shift the optimal scenario towards even more but smaller 

fractures. The horizontal well with transverse fractures starts to “look” like a horizontal 

well with a larger wellbore. This effect is the result of the relatively low fracture 
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conductivity and radial convergence in higher-permeability formations. When the 

horizontal permeability is reduced, the fracture conductivity is higher and the number of 

fracture stages and fracture dimensions call for a unique optimum configuration where the 

constraints are not sharp.  

 

The effect of the maximum proppant per stage is also interesting. The maximum proppant 

per stage corresponds to a fracture half-length of 377 ft. This, combined with the 

minimum fracture spacing constraint, severely limits the NPV of short wellbores, and a 

situation arises when not all the proppant is used but the budget is already spent. In these 

situations, the actual NPV may be a bit higher (if some of the costs could be saved). 

Nevertheless, such phenomena usually signify an unfavorable set of conditions, 

questioning the rationale for the whole project.   

 

Branch-and-Bound Algorithm 

To efficiently determine optimal wellbore length and fracture configurations, a branch and 

bound scheme was developed. The method revolves around maintaining upper and lower 

bounds for the number of fractures and well length. A modified golden-section search 

algorithm was implemented as the one-dimensional subspace search technique. The 

scheme works as follows: 

• Prescreen phase 1: This prescreen phase eliminates wellbore and fracture 

configurations that do not meet the system constraints. This is used to eliminate 

wellbore fracture configurations in which the number of fractures exceeds the 
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minimum spacing requirement or the proppant mass per fracture is larger than the 

specified constraint.  

• Prescreen phase 2: This prescreen phase eliminates wellbore and fracture 

configurations that can be determined as suboptimal without a production 

forecast. For instance, there is no need to test configurations with n-1 fractures for 

a given wellbore length, if at least n full fractures will exhaust the available 

budget.  

• Main Phase: After the prescreening has determined a feasible set of solutions, the 

golden-search algorithm is implemented with respect to well length. For each well 

length, a suboptimization for number and dimensions of the fractures is 

undertaken. To increase the optimization efficiency (by applying petroleum 

engineering considerations), the bound on the numbers of fractures is 

simultaneously updated, as the well length is. In general, longer well lengths 

require a higher number of fractures if they are considered to be optimal 

candidates. If the lower bound on the well length is increased, the lower bound on 

number of fractures is simultaneously increased to the latest suboptimal number 

of fractures. If the upper bound on the well length is decreased, then the upper 

bound on the number of fractures is simultaneously decreased in a similar 

manner. To ensure no candidates are eliminated light handedly, fuzzy logic is 

implemented and, depending on the exact well length, the bounds are slightly 

relaxed with regard to the existing best suboptimum.   
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Stochastic Optimization Reservoir Uncertainty  

In the stochastic optimization, the objective function was the maximization of expected 

NPV. The random variable in this optimization is the horizontal permeability. For this 

optimization, two different scenarios were analyzed. The first scenario was simple 

recourse, in that the uncertainty in permeability was only revealed after all decisions had 

been made. This scenario was similar to the optimization of the vertical well. The second 

scenario was full recourse, in that after the first-stage decisions had been made, the 

uncertainty was revealed, and second stage could be optimized. In this case, the first stage 

decisions corresponded to well length and the second stage decisions were the number of 

fractures. Uncertainty in permeability was revealed after the first stage (well drilling), but 

before the second stage (well fracturing). The goal was to find the optimal well length and 

number of fractures to optimize expected NPV.  

max𝐸!![𝑁𝑃𝑉(𝑊! ,𝑁! ,𝑤! ,𝑤! ,𝑤!)] 

𝑊!

𝑁!
= 𝐶! 

𝑤!𝑤! = 𝐶! 

𝑤! = 𝐶! 

𝑤!𝑤!𝑤! = 𝐶! 

𝑐!𝑊! + 𝑐!𝑁!𝑤!𝑤!𝑤! = 𝐶! 

𝑘! 𝜔 = 1,5,10  

𝜔 = {!
!
, !
!
, !
!
}    .......................................................................................................................  (6.13)  

The permeability values and associated probabilities are given in Table 6.5. 
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Table 6.5. Probabilistic Inputs  
Permeability	
  (md)	
   Probabilities	
  	
  

1	
   1/3	
  
5	
   1/3	
  
10	
   1/3	
  

 

 

The first step in stochastic programming is to calculate the expected value of perfect 

information, which is a metric to judge the (negative) value of uncertainty. For this case, 

the expectation of the optimal NPVs (determined above) were used to determine the EVPI 

(Table 6.6). 

 

Table 6.6. Optimization Results: Expected Value of Perfect Information  
Permeability	
  (md)	
   1	
   5	
   10	
   Expected	
  

NPV	
   -­‐100	
   130	
   246	
   91	
  
 

 
The next step in the analysis is to determine the mean-value solution. The mean value of 

permeability corresponds to 5.33 md. Performing a deterministic optimization (similar to 

the procedure above) results in an NPV of $138 million, approximately 1.5x higher than 

the expected value associated with perfect information (Table 6.7).   

 

Table 6.7 Optimization Results: Mean Value Solution  
Permeability	
  (md)	
   Opt	
  Well	
  Length	
   Opt	
  #	
  of	
  

Fractures	
  
Opt	
  Half	
  Length	
  (ft)	
   NPV	
  

($mm)	
  
5.33	
   5580	
   19	
   126	
   138	
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However, the NPV calculated above may not be realistic. The key idea of stochastic 

programming is that the deterministic NPV corresponding to the average permeability 

always overestimates the expected value. Using the same design parameters, the NPV for 

each permeability realization was calculated and the expected NPV was found.  

 

Table 6.8. Optimization Results: Expected NPV 
Permeability	
  

(md)	
  
Well	
  
Length	
  

#	
  of	
  
Fractures	
  

Half	
  Length	
  (ft)	
   NPV	
  ($mm)	
  

1	
   5580	
   19	
   126	
   -­‐158	
  
5	
   5580	
   19	
   126	
   129	
  
10	
   5580	
   19	
   126	
   232	
  

Expected	
   	
   	
   	
   67.6	
  
 

 

The NPV of $67.6 million represents the mean-value solution. This value is substantially 

lower than the NPV calculated using the mean value of permeability and is lower than the 

expected value of perfect information.  

 

For the simple recourse optimization, the solution involved determining a single best set 

of wellbore length, number of fractures, and fracture dimensions that will maximize 

expected NPV. The optimal solutions and expected NPVs are given below. For simple 

recourse, there was no change in design throughout the entire procedure; that is, the well 

length and number of fractures were kept the same for all designs (Table 6.9).   

 



 

 

144 

Table 6.9. Optimization Results: Simple Recourse Solution    
Permeability	
  (md)	
   Well	
  Length	
   #	
  of	
  Fractures	
   Half	
  Length	
  (ft)	
   NPV	
  ($mm)	
  

1	
   5510	
   20	
   120	
   -­‐155	
  
5	
   5510	
   20	
   120	
   129	
  
10	
   5510	
   20	
   120	
   232	
  

Expected	
   	
   	
   	
   68.7	
  
 

 
As shown, the expected NPV increases to $68.7 million, approximately1.5%. 

Interestingly, the design favors a wellbore length that is less than the corresponding length 

of the mean value solution, but has more fractures. The range of possible outcomes is 

reduced by this method, decreasing the worst-case scenario by almost $3 million. Note 

that for the simple recourse optimization, the design parameters are a single set.  

 

Although the above design improved expected NPV, it did not address the realization of 

uncertainty. For the full recourse solution, we took into account, that after a well is drilled 

the permeability is known to a better extent, and the design can be altered. The goal was 

to determine the optimal well length that accounts for the future realization of uncertainty. 

The results are given in Table 6.10. 

 

Table 6.10 Optimization Results: Full Recourse Solution    
Permeability	
  (md)	
   Well	
  Length	
   #	
  of	
  Fractures	
   Half	
  Length	
  (ft)	
   NPV	
  ($mm)	
  

1	
   5490	
   13	
   218	
   -­‐149	
  
5	
   5490	
   19	
   124	
   129	
  
10	
   5490	
   22	
   119	
   233	
  

Expected	
   	
   	
   	
   71.1	
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As seen, the optimal well length is 5,490 ft, which is less than the corresponding number 

in the mean-value solution and in the simple recourse solution. However, note that now 

the number of fractures varies for each realization. The expected NPV from this result is 

$71.1 million , which is approximately 5% better than the mean-value solution and 3% 

better than the simple recourse solution. Furthermore, the range of possible outcomes is 

reduced, limiting risk and improving expectations. The expected NPV less the mean-value 

solution is the value of the stochastic solution representing the improvement of applying 

stochastic programming; in this case, it amounts to $3.5 million (Table 6.11).  

 

Table 6.11. Optimization Results: Summary     
Solution	
   Mean	
  Value	
  	
   Simple	
  Recourse	
  	
   Full	
  Recourse	
  	
   EVPI	
   VSS	
  

NPV	
  (mm$)	
   67.6	
   68.7	
   71.1	
   91	
   3.5	
  

 

 
Remarks 

Applying the stochastic programming methodology will systematically increase expected 

NPV when uncertainty exists. For this example, the stochastic methodology increased 

expected NPV by 5%. Although not glamorous, consistently improving project 

expectations by 5% might be the key to success. Furthermore, a by-product of this 

analysis is that a dollar value can be associated to the specific information. The expected 

value of perfect information is significantly higher than the mean-value and full recourse 

solution. This difference represents the value that we could gain by eliminating 

uncertainty. For this case, the value of uncertainty is nearly $24 million. The higher this 

value, the more warranted are further exploration and appraisal. This value can be used 
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directly to quantify the benefit of risk reduction and may justify budget for further 

investigations (of geological, petrophysical, rock-mechanics, and similar nature.)  

 

Another aspect emerging from this work is that of the benefit of flexible design. This is 

shown by the difference in the simple and full recourse results. By adapting the design as 

new information is revealed, better outcomes can be expected. In the simple recourse 

there was no realization of uncertainty (or it wasn’t acted on), while in the full recourse 

there was. In this analysis, we assumed that the permeability became known after the well 

was drilled. Of course, this might not always be the case. But in general, there will be a 

significant narrowing of the probability distribution. The monetary difference between 

these two solutions (in the example, $2.4 million) may be used to justify the budget for 

gathering more data (from sources such as cores and logs) after the well has been drilled. 

The stochastic programming approach also appears to assign a shadow value to any 

information involved. 

 

This methodology shows the importance of uncertainty analysis. In some cases the mean 

value solution will yield design parameters similar to the stochastic optimum; at other 

times, they will be significantly different. However, this can only be known after the 

stochastic analysis has been undertaken. A good start in any case is to determine the mean 

value and the expected value of perfect information. If the difference is small, no 

stochastic programming is needed. If the difference is large and the full recourse solution 

can significantly increase expectations, then no additional steps need to be taken. On the 
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other hand, if the difference is large, but the full recourse does not significantly improve 

expectations, more information gathering might be the key to success. 
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CHAPTER VII  

SUMMARY AND CONCLUSIONS 

 

Summary  

The primary purpose of this work was to develop a methodology for completion design 

under uncertainty in reservoir and economic parameters. In particular, this work focused 

on offshore hydraulic fracturing completions for thick, anisotropic reservoirs in the 

deepwater Gulf of Mexico Lower Tertiary play.  

 

In this work we performed the following tasks: 

• Confirmed and applied the method of distributed volumetric sources (DVS) for 

transient and pseudosteady-state production forecasts for various well-fracture 

configurations in an anisotropic formation.  

• Applied the stochastic programming framework to hydraulic fracture design under 

physical (reservoir) and economic uncertainty.  

• Formulated systematic risk analysis by application of utility theory.  

• Formulated and solved the corresponding mixed-integer nonlinear optimization 

problem, in particular for horizontal wells, in regards to well length, number, and 

dimensions of transverse fractures.  

• Developed a branch-and bound type technique to effectively find the optimum 

solution.  
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• Demonstrated the value of the stochastic solution and value of the perfect 

information in a high-risk offshore environment. 

 

Conclusions 

The application of the distributed volumetric source method, stochastic programming, and 

utility framework presented here systematically allows the completion engineer to 

optimally design wellbores, accounting for reservoir, physical, and economic risks.  

• The distributed volumetric source is a fast, accurate, and consistent method to 

determine the transient and pseudosteady-state wellbore productivity and 

production profiles for a large number of fracture/well configurations pertinent to 

industry applications. 

• Stochastic programming, with emphases on recourse, provides a powerful 

decision-making framework, yielding designs with higher expected value and 

quantifying the value of information (or loss of value due to the lack of 

information).  

• The branch-and-bound algorithm can be adopted to solve the resulting 

optimization problems in an effective way, allowing the use of petroleum 

engineering knowledge to reduce computations.  
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Specific findings from this work follow: 

• Fracture configuration optimization that considers both the transient and 

pseudosteady-state flow regimes and material balance will ultimately lead to better 

economic decisions than the original (simplified) unified fracture design approach. 

• For a fractured vertical well:  

o When designing under reservoir uncertainty, more stages are favored. 

o When designing under cost uncertainty, fewer stages are favored. 

• For a fractured horizontal well:  

o There is an optimal well length, number of fractures, and fracture geometry 

for a given budget. 

o Lower-permeability formations generally exhibit larger folds of 

productivity increase by increasing individual fracture dimensions.  

o Higher-permeability formations generally exhibit larger folds of 

productivity increase by increasing the number of stages. 

 

Recommendations for Future Work 

This work focused largely on proppant management and completion risks in the offshore 

environment. Water treatment, logistical, and surface facility constraints should be 

investigated in terms of offshore hydraulic fracturing.  

 

Future work in stochastic programming for petroleum engineering should continue in the 

area of hydraulic fracturing. Multistage recourse optimization should be examined. One 
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possible extension is to use additional data (seismic monitoring and pressure fall off from 

previous stages of hydraulic fracturing treatment) to re-design upcoming stages.  

 

Risk analysis for the horizontal well should be continued. More representative probability 

characterization for drilling and completion of the horizontal well must be obtained. 

Utility theory should be applied to economic, reservoir, fracture-height growth, and 

numerous other uncertainties.  

 

The branch-and-bound algorithm (especially the bounding procedures within it) should be 

mathematically proven and improved upon. Applying basic petroleum engineering 

insight, instead of just relaying on computational power, may be more efficient in 

improving optimization robustness.  
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APPENDIX 

Table A.1. Economic Inputs for Horizontal Well:  
Fixed CAPEX per well:  $250,000,000 

Vertical Drilling Segment &Upper Completion  $150,000,000 

Horizontal Drilling Segment  $15,000/ ft  

Fracture Cost  $7.5/lbm proppant  

Rig Rate  $1,000,000/day  

 

Note that the fracture cost and drilling cost are all-inclusive, representing the entire 

process and equipment.  

 

Table A.2. Cost Calculation Factors 
Corporate Tax Rate 35% 

Royalty Rate 15% 

Discount Rate 10% 

 
 




