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ABSTRACT 

 

Analogous to the extracellular matrix (ECM) of natural tissues, properties of a 

tissue engineering scaffold direct cell behavior and thus regenerated tissue properties. 

These include both physical properties (e.g. morphology and modulus) and chemical 

properties (e.g. hydrophobicity, hydration and bioactivity).  Notably, recent studies 

suggest that scaffold properties (e.g. modulus) may be as potent as growth factors in 

terms of directing stem cell fate. Thus, 3D scaffolds possessing specific properties 

modified for optimal cell regeneration have the potential to regenerate native-like 

tissues.  Photopolymerizable poly(ethylene glycol) diacrylate (PEG-DA)-based 

hydrogels are frequently used as scaffolds for tissue engineering. They are ideal for 

controlled studies of cell-material interactions due to their poor protein adsorption in the 

absence of adhesive ligands thereby making them “biological blank slates”. However, 

their range of physical and chemical properties is limited. Thus, hydrogel scaffolds 

which maintain the benefits of PEG-DA but possess a broader set of tunable properties 

would allow the establishment of predictive relationships between scaffold properties, 

cell behavior and regenerated tissue properties.  

Towards this goal, this work describes a series of unique hybrid inorganic-

organic hydrogel scaffolds prepared using different solvents and also in the form of 

continuous gradients. Properties relevant to tissue regeneration were investigated 

including: swelling, morphology, modulus, degradation rates, bioactivity, 

cytocompatibility, and protein adhesion. These scaffolds were based on the 
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incorporation of hydrophobic, bioactive and osteoinductive methacrylated star 

polydimethylsiloxane (PDMSstar-MA) [“inorganic component”] into hydrophilic PEG-

DA [“organic component”]. The following parameters were varied: molecular weight 

(Mn) of PEG-DA (Mn = 3k & 6k g/mol) and PDMSstar-MA (Mn = 1.8k, 7k, 14k), ratio of 

PDMSstar-MA to PEG-DA (0:100 to 20:80), total macromer concentration (5 to 20 wt%) 

and utilizing either water or dichloromethane (DCM) fabrication solvent. The use of 

DCM produced solvent induced phase separation (SIPS) resulting in scaffolds with 

macroporous morphologies, enhanced modulus and a more homogenous distribution of 

the PDMSstar-MA component throughout. These hybrid hydrogel scaffolds were 

prepared in the form of continuous gradients such that a single scaffold contains spatially 

varied chemical and physical properties. Thus, cell-material interaction studies may be 

conducted more rapidly at different “zones” defined along the gradient. These gradients 

are also expected to benefit the regeneration of the osteochondral interface, an interfacial 

tissue that gradually transitions in tissue type. The final aspect of this work was focused 

on enhancing the osteogenic potential of PDMS via functionalization with amine and 

phosphonate. Both amine and phosphonate moieties have demonstrated bioactivity. 

Thus, it was expected that these properties will be enhanced for amine and phosphonate 

functionalized PDMS. The subsequent incorporation of these PDMS-based macromers 

into the previously described PEG-DA scaffold system is expected to be valuable for 

osteochondral tissue regeneration.  
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CHAPTER I  

INTRODUCTION  

1.1. Background 

1.1.1. Osteochondral Defects 

Osteochondral Defects (OCDs) are areas of joint damage affecting both the 

cartilage and underlying subchondral bone (Figure 1.1) [1, 2].  These defects, which can 

result from injury and/or disease often lead to excruciating pain and an advanced form of 

osteoarthritis [1, 3-6].  

 

 

 

 

 

 

 

 

 

 
 

 

A common example of an OCD resulting from injury is “post-traumatic 

osteoarthritis” which affects approximately 5.6 million people in the United States 

Figure 1.1. Osteochondral defects are characterized by a loss of bone and cartilage tissue as well as the 
transition between these tissues. These defects (shown here in the medial femoral condyle) are both 
painful and progressive. 
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across all age groups [7-14].  OCDs in younger patients present an exceptionally 

difficult clinical problem due to the undesirable utilization of treatments such as joint 

replacement or joint fusion which limit activity [15, 16]. This is also the case for OCDs 

resulting from  osteochondral dissecans (i.e. disease) and sickle cell disease,[17] where 

the majority of those affected are physically active adolescents [18]. Osteochondral 

dissecans is a disease resulting in the deterioration of articular cartilage and thus a loss of 

lubrication and support in the joint. Cartilage is avascular and has poor intrinsic healing 

capabilities; therefore, loss of the cartilage-bone interface within a joint will lead to 

further bone deterioration, agonizing pain, and potentially osteoarthritis [19, 20].  Noting 

the prevalence of OCDs, the inability of cartilage to naturally repair, and the problems 

associated with long-term presence of these defects, the definite need for an 

osteochondral defect replacement or treatment option can be seen. 

1.1.2. Current Treatments of OCDs 

Smaller OCDs across articular cartilage-bone interface are generally treated by 

arthroscopic drilling, abrasion, or microfracturing [20, 21]. However, these mainly 

produce fibrocartilage at the defect site which is biomechanically inferior to articular 

cartilage and thus deteriorates over time [20, 22, 23]. Much research has focused on new 

techniques that fill defects with tissues that more closely mimic native osteochondral 

tissue. These treatments include autograft procedures,[24-27] such as the osteochondral 

autograft transfer system (OATS), where osteochondral cylindrical plugs are removed 

from a joint area of minor load and press-fitted into pre-drilled holes at the defect site 
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[28]. Another common autograft treatment involves periosteal/perichondrial 

transplantation to full-thickness defects [29]. However, autografts are limited in supply 

and often result in severe donor site morbidity, as well as graft delamination and 

endochondral ossification. The alternative use of allografts often results in failure due to 

infection and rejection [30-33]. Another treatment option is joint fusion, where pieces of 

bone or metal implants are used to stimulate fusion of the bones. However, this limits 

motion and is prone to infection and ultimately deterioration [34]. “Autologous 

chondrocyte transfer” (ACT) is another biological approach based on the implantation of 

a suspension of cultured autologous chondrocytes beneath a tightly sealed periosteal flap 

[35-37]. However, the use of ACT carries a number of limitations, essentially related to 

the complexity of the surgical procedure and the biological response of the periosteum 

[38-40]. Due to the limitations associated with the aforementioned treatments, OCDs 

ultimately necessitate replacement of the entire joint.  Annually in the US, >500,000 

total knee replacements (TKRs) are performed at a cost of >$11 billion [41, 42]. Despite 

it‟s prevelence, TKR is generally not effective as it results in chronic knee 

pain and stiffness, bleeding into the knee joint, and nerve damage and is also quite costly 

[42-47].  In general, current biological and replacement treatments show limited success 

as they do not consistently result in long-term repair.  

1.1.3. Tissue Engineering of OCDs 

Tissue engineering is an alternative approach for OCD repair that may avoid 

many of the limitations associated with current treatments [48]. A three-dimensional 
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scaffold is utilized to create an environment in which living cells can proliferate, 

differentiate, and ultimately produce a new extracellular matrix (ECM) [49]. 

Specifically, it has been shown that through defined scaffold cues, MSCs are able to 

acquire characteristics of cells derived from embryonic mesoderm, including osteoblasts 

(bone cells) and chondrocytes (cartilage cells) [50-52]. Regeneration of interfacial 

tissues is particularly complex. Conventionally, regeneration of the osteochondral 

interface has been attempted by connecting (via fibrin glue, sutures, or press fitting) two 

compositionally homogenous scaffolds designed to individually promote either bone or 

cartilage tissue growth [53-58]. However, the resulting individual tissues are not 

mechanically representative of the respective native tissues [59]. Finally, the inability of 

the scaffold to securely bind to the defect site results in a lack of cell infiltration and 

ultimate graft delamination [60, 61]. Thus, an improved approach to regenerate the 

osteochondral interface in which the engineered bone and cartilage tissues are joined via 

an interface characterized by a gradual transition in properties and interpenetration is 

necessary.   

Natural and synthetic polymers have been used to construct scaffolds for tissue 

engineering [62-64]. One major advantage that synthetic polymers have over natural 

polymers is their ability to offer superior control and range of chemical and physical 

properties [65-67]. The use of synthetic hydrogels as tissue engineering scaffolds has 

been the subject of extensive research [67-69]. Hydrogels are highly hydrated polymer 

networks consisting primarily of hydrophilic polymers which are crosslinked through 

chemical bonds or physical interactions [70-73]. Hydrogels are ideal for use as tissue 



 

5 

 

engineering scaffolds due to their superior biocompatibility which minimizes 

inflammation, thrombosis, and tissue damage, as well as their high diffusivity and 

elasticity which is analogous to many tissues [67-69]. It has been found that non-specific 

chemical and physical properties of scaffolds directly influence the properties (e.g. 

mechanical) of the regenerated tissue [74]. Altering the chemical nature of the scaffold, 

(e.g. bioactivity, chemical functionality, and hydrophilicity [75, 76]) as well as physical 

properties (e.g. scaffold morphology [77-84] and modulus [74, 85-87]) is known to 

influence cell behavior. Thus, a hydrogel scaffold that guides cellular behavior by nature 

of its physical and chemical properties could be designed to produce a gradual transition 

in regenerative tissue properties as an effective tool for tissue engineering the 

osteochondral interface.  

1.2. Approach 

1.2.1. Overview 

The two main obstacles hindering the regeneration of a native-like osteochondral 

interface are (1) deficient knowledge of the optimal scaffold properties which 

independently promote the regeneration of native-like bone and cartilage tissue and (2) 

the lack of a gradual transition and integration between these tissues. It is hypothesized 

that these challenges will be addressed by the inorganic-organic hydrogel scaffolds 

reported herein.  

Herein, a series of “hybrid” 3D hydrogel scaffolds were prepared based on 

combining an inorganic and organic macromer and using both aqueous and organic 
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fabrication solvents. Scaffold physical and chemical properties were controlled by 

altering molecular weight (Mn) of PEG-DA (Mn = 3k & 6k g/mol) and PDMSstar-MA 

(Mn = 1.8k, 7k, 14k), ratio of PDMSstar-MA to PEG-DA (0:100 to 20:80), total 

macromer concentration (5 to 20 wt%) and utilizing either water (DI-H2O) or 

dichloromethane (DCM) as the fabrication solvent. The subsequent preparation of these 

hybrid hydrogel scaffolds in the form of continuous gradients will allow for rapid 

assessment of cell-material interactions and is also expected to benefit the regeneration 

of interfacial tissues which gradually transition between tissue types (Figure 1.2). The 

final aspect of this work was focused on the functionalization of a PDMS macromer with 

phosphonate and amine groups towards enhancing PEG-DA scaffold bioactivity and 

osteoinductivity.  
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Figure 1.2. Scaffolds fabricated herein contain a broad range of spatially varied chemical and physical 
properties and thus, will be beneficial towards the rapid assessment of cell-material interactions and the 
ultimate regeneration of interfacial tissues. 
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1.2.2. PEG-DA Hydrogels as Tissue Engineering Scaffolds 

The resistance to protein and cell adhesion of PEG-DA hydrogels in the absence 

of precisely introduced adhesive ligands makes them particularly useful to study cell-

material interactions [88-92]. However, their range of physical, as well as chemical 

properties is limited, thus restricting their utility for such studies. Accordingly, the aim 

of the research herein is the fabrication of a series of hydrogel scaffolds which maintain 

the benefits of PEG-DA but possess a broader range of tunable properties. In addition, a 

method to gradually transition these properties within a single hydrogel scaffold is 

presented. These gradient scaffolds will allow for a more rapid assessment of the 

relationship between scaffold properties, cell behavior and regenerated tissue properties. 

The ability to gradually transition the properties of a single scaffold is also expected to 

benefit the regeneration of the osteochondral interface, an interfacial tissue that 

gradually transitions in tissue type.  

1.2.3. Modification of PEG-DA Hydrogel Properties via Solvent Induced Phase 

Separation (SIPS) 

An organic fabrication solvent was employed as a tool to extend the physical 

properties of PEG-DA hydrogels [93]. Using a solvent-based precursor solution in 

substitution of the conventional aqueous precursor solution has been reported to promote 

a phase separation of the growing polymer chains during photocure. This results in 

polymer rich networks surrounding polymer lean domains (i.e. pores) [93-95] and thus a 

macroporous morphologies. Macroporous hydrogels have shown particular utility to 
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enhance tissue engineering outcomes [79, 82, 84, 96, 97]. Furthermore, increased pore 

size has been shown to enhance degradation rates [98].  Thus, pore size can be used to 

design scaffolds that ideally degrade at a rate corresponding with tissue regeneration 

[99]. Thus, PEG-DA hydrogels prepared via SIPS exhibited macroporous morphologies 

[93, 100]. In addition, SIPS resulted in increased modulus but did not necessarily effect 

total swelling compared to analogous water-fabricated hydrogels. Thus, within this 

library of scaffolds pairs of hydrogels were identified whose modulus and hydration or 

morphology and hydration were uncoupled.  Such scaffolds would permit independent 

study of these properties on cell behavior. Furthermore, the tunable porosity, modulus 

and degradation rates of these scaffolds are expected to enhance their utility as 

environments for tissue regeneration as well as provide a means to study these effects on 

cell behavior.  

1.2.4. Modification of PEG-DA Hydrogel Properties via Incorporation of Methacrylated 

Star Poly(dimethyl siloxane) (PDMSstar-MA)via SIPS 

Inorganic, hydrophobic PDMSstar-MA was incorporated into organic PEG-DA 

hydrogel scaffolds to extend the range of physical properties and chemical properties 

[100]. This was expected given the unique properties of PDMSstar-MA: (1) low glass 

transition temperature (Tg = -127 ˚C), (2) hydrophobicity and (3)  inorganic nature.  

When incorporated into a PEG-DA hydrogel, the flexibility of low Tg PDMSstar-

MA is expected to alter mechanical properties. The hydrophobicity of PDMSstar-MA 

renders it insoluble in H2O but soluble in DCM such that fabrication via SIPS alters its 
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distribution throughout the PEG-DA matrix [100, 101]. In addition, scaffold 

hydrophobicity has also been shown to influence osteogenic differentiation [102-104]. 

Previous studies have demonstrated that the incorporation of inorganic silicon-

containing materials into organic scaffolds enhances their bioactivity [105-107]. Munoz-

Pinto et al. demonstrated that PDMSstar-PEG scaffolds guide mesenchymal stem cells 

toward osteogenic differentiation with increased amounts of the bone cell marker, 

osteocalcin being observed with increased amounts of PDMS star-MA [108]. Thus, 

PDMSstar-PEG hydrogels prepared via SIPS can be used to alter scaffold physical and 

chemical properties including modulus and osteoinductivity. 

1.2.5. Fabrication of PDMSstar-PEG Hydrogels as Continuous Gradients 

These hybrid PDMSstar-PEG hydrogels were then fabricated in the form of 

continuous gradients (such that a single scaffold contains spatially varied chemical and 

physical properties) in both DI-H2O and DCM (Figure 1.2) [109]. Three-dimensional 

continuous gradients have been reported [110-113]. Recently, Chatterjee and co-workers 

used a gradient maker to produce continuous gradient hydrogel scaffolds based on an 

organic macromer [poly(ethylene glycol)-diacrylate, PEG-DA] and an aqueous 

fabrication solvent [114]. In this study, this method has been applied to prepare “hybrid” 

continuous gradient hydrogel scaffolds based on combining an inorganic and organic 

macromer and using both aqueous and organic fabrication solvents. Their rapid 

production and achievable range of properties not only allow for rapid screening of cell-

material interactions, but would also prove useful towards the regeneration of interfacial 



 

10 

 

tissues which require scaffolds comprised of spatially organized material compositions 

[114, 115]. Given the bioactivity and osteoinductivity of PDMSstar-MA, these hybrid 

scaffolds are of particular interest for bone and osteochondral tissue engineering. 

1.2.6. Chemical Functionalization of PDMS towards Enhanced Bioactivity and 

Ostoeinductivity 

The final aspect of this work is focused on further enhancing the bioactivity and 

osteoinductivity of PDMS macromer via functionalization with amine and phosphonate 

groups. Well-defined (2D) models have been used to study the effects of amine and 

phosphonate on cell behavior [116-119]. Keselowsky et al. demonstrated that surfaces 

grafted with amine groups up-regulated osteoblast-specific gene expression, alkaline 

phosphatase enzymatic activity, and matrix mineralization [117]. The positive charge on 

these functional groups at neutral pH may explain this phenomenon [117]. Increasing 

phosphonate content of graft copolymers on the surface of biomaterials increased 

osteoblast-like cell adhesion and proliferation [120]. Also, the addition of pendant 

phosphorous-containing groups to polymers has shown to result in more complete 

mineralization and at a faster rate in vitro [121, 122]. Phosphorous-based scaffolds are of 

particular interest for bone tissue regeneration given the ideal osteoinductive 

environment they are able to provide [123-125]. Saltzman et al. found that the adhesion 

and growth of osteoblast-like cells within acrylamide gels increased with increasing 

phosphonate content [123]. While, Anseth et al. incorporated pendant phosphate groups 
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into PEG hydrogels and found that this increased both the rate and degree of 

mineralization within the hydrogel even in the absence of hMSCs [126].  

Thus, it was hypothesized that amine and phosphonate functionalized PDMS will 

exhibit enhanced bioactivity and osteoinductivity. The subsequent incorporation of these 

PDMS-based macromers into the previously described PEG-DA scaffold system is 

expected to provide a method to study their effect on cell behavior in a 3D environment. 

These scaffolds are also anticipated to be valuable for osteochondral tissue regeneration.  

1.3. Innovation 

1.3.1. Manipulation of PEG-DA Hydrogel Properties via SIPs and PDMSstar  

Grunlan and co-workers were the first to incorporate PDMSstar-MA into PEG-DA 

hydrogel scaffolds [127]. These were limited to those prepared with an aqueous 

precursor solution and prepared as “single composition” hydrogels. Munoz-Pinto et al. 

demonstrated that these scaffolds guide MSCs toward osteogenic differentiation with 

increased amounts of the bone cell marker, osteocalcin being observed with increased 

amounts of PDMS star-MA [108]. Unique to the proposed research is the use of SIPS to 

fabricate PEG and PDMSstar-PEG hydrogel scaffolds with macroporous morphologies 

and controlled distribution of the inorganic component. Until now, SIPS has only been 

utilized to prepare macroporous poly(N-isopropylacrylamide) (PNIPAAm) hydrogels 

[94, 95]. Macroporous hydrogels have shown particular utility to enhance tissue 

engineering outcomes as they allow for cell ingrowth and enhanced degradation rates 

[79, 82, 84, 96-98]. However, conventional PEG-DA hydrogels (i.e. fabricated by the 
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photopolymerization of aqueous precursor solutions) are generally limited in their size 

and amount of native pores (i.e. approximately 5–10 μm pore size for a Mn = 3.4k to 

6k),[128] whereas a pore size of 100-250 μm is considered ideal for bone tissue 

regeneration [129, 130]. In addition to producing macropores, SIPS alters the 

distribution of the inorganic, hydrophobic PDMSstar-MA due to its improved solubility in 

DCM versus water. As PDMSstar-MA is bioactive and osteoinductive, its controlled 

redistribution within the PEG-DA matrix is significant. The homogeneous redistribution 

is also expected to alter the way in which PDMSstar-MA impacts scaffold physical 

properties due to the distinct properties it possesses (i.e. low Tg, hydrophobic, inorganic). 

1.3.2. Fabrication of PDMSstar-PEG Scaffolds as Continuous Gradients 

Novel gradient hydrogel scaffolds were subsequently fabricated based on the 

wt% ratio of the PDMSstar-MA to PEG-DA macromer, the total wt% concentration of 

macromer in the precursor solution (water or DCM), and the molecular weight (Mn) of 

both PEG-DA and PDMSstar-MA. A previously reported continuous gradient making 

strategy was utilized to rapidly prepare scaffolds with gradually transitioning chemical 

and physical properties that will be subsequently characterized [114]. The approach 

presented herein offers a method for the systematic and rapid examination of scaffold-

mediated MSC response over a broad range of properties, as well as, a method for the 

regeneration of a native-like osteochondral interface.  
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1.3.3. Phosphonate and Amine Functionalized PDMS-MA 

Much research has revealed the osteoinductivity and/or bioactivity of silicon 

[102-104], phosphonates [116, 121, 125] and amines [117, 118]. Herein, amine 

functionalized PDMS macromer were prepared. Also, a rational and protocol were given 

for the synthesis of phosphonate functionalized PDMS. Their subsequent methacrylation 

will allow for incorporation into PEG-DA hydrogel scaffolds via photo-crosslinking. It 

is expected that these novel macromers combined with previously described fabrication 

processes (i.e. SIPS and continuous gradients) will provide a platform for the rapid 

assessment of a broad range of properties. These studies are anticipated to result in the 

establishment of an ideal environment for bone, cartilage, and bone – cartilage 

interfacial tissue regeneration.  
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CHAPTER II  

TUNING PEG-DA HYDROGEL PROPERTIES VIA SOLVENT-INDUCED PHASE 

SEPARATION (SIPS)* 

2.1. Overview 

Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are widely utilized to 

probe cell-material interactions and ultimately for a material-guided approach to tissue 

regeneration. In this study, PEG-DA hydrogels were fabricated via solvent-induced 

phase separaration (SIPS) to obtain hydrogels with a broader range of tunable physical 

properties including morphology (i.e. porosity), swelling and modulus (G„) (Figure 2.1).  

 
 
 

 

 

 

 
 

 

 

 

 

 
 
*Reprinted with permission from “Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)” 
by Bailey BM, Hui V, Fei R, Grunlan MA, 2011. J Mater Chem, 21, 18776-82, Copyright [2011] by The Royal 
Society of Chemistry. http://pubs.rsc.org/en/content/articlelanding/2011/JM/c1jm13943f  
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Figure 2.1. Reported hydrogel fabrication via SIPS and resulting enhanced porous structure. 

http://pubs.rsc.org/en/content/articlelanding/2011/JM/c1jm13943f
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In contrast to conventional PEG-DA hydrogels prepared from an aqueous precursor 

solution, the reported SIPS protocol utilized a dichloromethane (DCM) precursor 

solution which was sequentially photopolymerized, dried and hydrated.  Physical 

properties were further tailored by varying the PEG-DA wt% concentration (5 wt% - 25 

wt%) and Mn (3.4k and 6k g/mol). SIPS produced PEG-DA hydrogels with a 

macroporous morphology as well as increased G„ values versus the corresponding 

conventional PEG-DA hydrogels. Notably, since the total swelling was not significantly 

changed versus the corresponding conventional PEG-DA hydrogel, pairs or series of 

hydrogels represent scaffolds in which morphology and hydration or G„ and hydration 

are uncoupled.  In addition, PEG-DA hydrogels prepared via SIPS exhibted enhanced 

degradation rates.  

2.2. Introduction 

As with the extracellular matrix (ECM) in natural tissues, the physical properties 

of tissue engineering scaffolds mediate cell behavior including regeneration [131-135]. 

Most notable are scaffold morphology (e.g. porosity) [77, 78, 81, 136-139] and modulus 

[74, 86, 87, 140]. Thus, regeneration of tissues which closely resemble native tissues 

may be accomplished through a material property-guided approach. Towards this goal, 

scaffolds whose physical properties can be precisely tuned over a broad range are 

essential. 

Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels have been widely utilized 

as scaffolds for the regeneration of diverse tissues [90, 91, 98, 141-144]. They are 
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particularly useful to probe cell-material interactions due to their resistance to protein 

and cell adhesion in the absence of the controlled introduction of adhesive ligands [88-

92]. The limited range of physical properties which may be obtained for PEG-DA 

hydrogels restricts their utility to study material-guided cell behavior. For instance, 

hydrogel mechanical properties may be tuned over a limited range by altering the weight 

% (wt%) concentration of PEG-DA in the precursor solution or the crosslink density as 

determined by PEG-DA number average molecular weight (Mn) [98, 145]. However, 

these changes simultaneously alter swelling behavior and so limit the ability to uncouple 

modulus and swelling and thus the impact of each on the cellular response [146]. 

Hydrogel scaffold morphology including porosity is also known to influence cell 

behavior [77, 147-150]. Macroporous hydrogels have shown particular utility to enhance 

tissue engineering outcomes [79, 97, 151]. Furthermore, increased pore size has been 

shown to be useful to enhance degradation rates [82, 152]. In order to increase their pore 

size range, several strategies have been used to produce PEG-DA hydrogels with 

macroporous morphologies, including: salt leaching [153, 154], cryogelation [155, 156], 

and gas foaming [157]. However, each method is associated with specific limitations 

such as difficulty leaching poragens (salt leaching), high temperatures or low pressures 

(gas foaming), and extremely low temperatures (cryogelation) [64, 158].  

To successfully produce functional tissues, it is highly desirable that the scaffold 

degrade at a rate which parallels regeneration [64, 67, 99]. Because of the stability of 

ether bonds and limited number of hydrolytically unstable ester crosslinks, PEG-DA 

hydrogels do not readily degrade under physiological conditions [159]. A variety of 
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synthetic strategies have been reported to enhance degradation of PEG-DA hydrogels, 

including incorporation of polyester segments [160-162], crosslinking to form labile 

bonds [163-165] and introduction of enzymatically unstable peptides [89, 166]. 

However, these alter the scaffold chemistry which is known to illicit changes in cell 

behavior [76, 167, 168].  

Solvent-induced phase separation (SIPS) has been utilized to prepare 

macroporous poly(N-isopropylacrylamide) (PNIPAAm) hydrogels [94, 95]. During 

SIPS, a solvent system is utilized which promotes phase separation of the growing 

polymer chain and network during cure. In this study, PEG-DA hydrogels were formed 

via SIPS by photocuring dichloromethane (DCM) precursor solutions rather than 

aqueous precursor solutions as is used to formed conventional PEG-DA hydrogels. 

Precursor solutions were formed with DCM at various wt% concentrations (5 wt% - 25 

wt%) and Mn‟s (3.4k and 6k g/mol) of PEG-DA and subsequently dried and hydrated. 

These concentrations and Mn‟s represent those typically utilized to prepare PEG-DA 

scaffolds for tissue engineering studies. The resulting macroporous morphology, 

swelling behavior, modulus, and degradation behavior was related to composition and 

compared to analogous conventional PEG-DA hydrogels fabricated from aqueous 

precursor solutions.  
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2.3. Materials and Methods 

2.3.1. Materials 

Allyl methacrylate, acryloyl chloride, triflic acid, 2,2-dimethyl-2-phenyl-

acetophenone (DMAP), 1-vinyl-2-pyrrolidinone (NVP), triethylamine (Et3N), MgSO4, 

K2CO3, hexamethyldisilazane (HMDS) and solvents were obtained from Sigma Aldrich. 

HPLC grade toluene and CH2Cl2 and NMR grade CDCl3 were dried over 4Å molecular 

sieves. Poly(ethylene glycol) (PEG) [PEG-6000; MW = 5000-7000 g/mol and PEG-

3400; MW = 3000-3700 g/mol per manufacturer‟s specifications] were obtained from 

BioChemika. The precise Mn‟s of PEG-3400 (3393 g/mol) and PEG-6000 (6143 g/mol) 

were back-calculated from 1H NMR end-group analysis of the corresponding diacrylated 

products.   

2.3.2. PEG-DA Synthesis 

PEG-DA (3.4k g/mol or 6k g/mol) were prepared as previously reported [127]. 

PEG-3400 (23.5 g, 7.0 mmol), Et3N (1.95 mL, 14.0 mmol) and acryloyl chloride (2.27 

mL, 28.0 mmol) were reacted to obtain PEG-DA (15.2 g, 63% yield). 1H NMR (δ, ppm): 

3.62 (s, 297H, -OCH2CH2), 5.81 (dd, 2H, J = 10.5 and 1.2 Hz, -CH=CH2), 6.13 (dd, 2H, 

J = 17.4 and 10.5 Hz, -CH=CH2), 6.40 (dd, 2H, J = 17.3 and 1.5 Hz, -CH=CH2). By 1H 

NMR end-group analysis, Mn of PEG-DA (3.4k g/mol) was determined to be 3393 g/mol 

(∼3400 g/mol). PEG-6000 (24 g, 4.0 mmol), Et3N (1.12 mL, 8.0 mmol) and acryloyl 

chloride (1.30 mL, 16.0 mmol) were reacted to obtain PEG-DA (31 g, 63% yield). 1H 

NMR (δ, ppm): 3.61 (s, 547H, -OCH2CH2), 5.81 (dd, 2H, J = 10.4 and 1.5 Hz, -
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CH=CH2), 6.13 (dd, 2H, J = 16.8 and 10.5 Hz, -CH=CH2), 6.40 (dd, 2H, J = 17.3 and 

1.5 Hz, CH=CH2). By 1H NMR end-group analysis, Mn of PEG-DA (6k g/mol) was 

determined to be 6143 g/mol (∼6000 g/mol). 

2.3.3. NMR 

 1H NMR spectra were obtained on a Mercury 300 300 MHz spectrometer 

operating in the Fourier transform mode. Five percent (w/v) CDCl3 solutions were used 

to obtain spectra. Residual CHCl3 served as an internal standard.   

2.3.4. Hydrogel Preparation 

PEG-DA hydrogels formed via SIPS were prepared from DCM-based precursor 

solutions whereas conventional PEG-DA hydrogels were prepared from aqueous 

precursor solutions. Precursor solutions were prepared at concentrations of 5, 10, 15, 20, 

and 25 wt% PEG-DA (Mn = 3.4k or 6k g/mol) in DCM or deionized (DI) water. 10 L 

of photoinitiator solution (30 wt% solution of DMAP in NVP) was added per one mL of 

the precursor solution. Solutions were vortexed for one minute following both the 

addition of polymer and the subsequent addition of the photoinitiator solution. Planar 

hydrogel sheets (1.5 mm thick) were prepared by pipetting the precursor solution 

between two clamped microscope slides (75 x 50 mm) separated by Teflon spacers and 

exposing the mold to longwave UV light (UV-Transilluminator, 6 mW/cm2, 365 nm) for 

a total of 6 min with rotation to the alternate side after 3 min. After removal from the 

mold, the water-based hydrogel sheets were rinsed with DI water and soaked in a Petri 
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dish containing DI water (60 mL) for 2 days with daily water changes to remove catalyst 

impurities. The DCM-based sheets were rinsed with DCM then air dried for 30 min to 

permit evaporation of DCM and subsequently placed in a Petri dish containing DI water 

(60 mL) to remove any remaining DCM. During the first hour of soaking, the water was 

changed every 15 min and thereafter daily for 2 days. All hydrogels were permitted to 

soak in DI water for a total of 72 hr prior to testing.  

2.3.5. Sol Content 

Five discs (13 mm diameter) were punched from a single hydrogel sheet with a 

die. After air-drying for 30 min, each disc was placed in an open scintillation vial and 

dried at room temperature (RT) in a vacuum oven (30 in. Hg, 24 hr). Dried discs were 

then weighed (Wd1), returned to the vial and 10 mL DCM was added to each. The vials 

were capped and placed on a rocker table (250 rpm) for 48 hr to remove sol (i.e. 

uncrosslinked material). The discs were subsequently removed and weighed (Wd2). Sol 

Content is defined as: sol content = [(Wd1 - Wd2)/ Wd1]*100.  

2.3.6. Morphology 

Water-swollen hydrogels discs (13 mm diameter) were flash frozen in liquid 

nitrogen for 1 min and immediately lyophilized for 24 hr (Labconco Centri Vap Gel 

Dryer System). Specimen cross-sections were subjected to Pt/Pd-sputter coating and 

viewed with a field emission scanning electron microscope (FEI Quanta 600 FE-SEM) 

at an accelerated electron energy of 10 keV.  
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2.3.7. Equilibrium Swelling  

Three discs (13 mm diameter) were punched from a single sheet with a die. Each 

disc was placed in a sealed vial containing 20 mL DI water for 48 hr at RT, removed, 

blotted with filter paper to remove surface water, and weighed (Ws). Equilibrium 

swelling ratio is defined as: swelling ratio = (Ws - Wd)/Wd, where Ws is the weight of the 

water-swollen hydrogel and Wd is the weight of the vacuum dried hydrogel (30 in. Hg, 

60 ºC, 24 hr).  

2.3.8. Dynamic Mechanical Analysis (DMA) 

Three discs (13 mm diameter) were prepared as above. Storage modulus (G‟) of 

each disc was measured in the compression mode with a dynamic mechanical analyzer 

(TA Instruments Q800) equipped with parallel-plate compression clamp with a diameter 

of 40 mm (bottom) and 15 mm (top). A water-swollen disc (13 mm diameter) was 

blotted with a Kim Wipe, clamped between the parallel plates and silicone oil placed 

around the exposed hydrogel edge to prevent dehydration. Following equilibration at 25 

°C (5 min), the samples were tested in a multi-frequency-strain mode (1 to 30 Hz).  

2.3.9. Degradation 

Six hydrogel discs (8 mm diameter) were prepared as above. After soaking in DI 

water for 3 hr, an initial swollen weight was recorded. Three discs were each placed into 

a well plate (secured with Parafilm and covered with foil) containing 1 mL 0.05M NaOH 

and maintained at 37 ºC on a rocker table at 50 rpm. The NaOH solution was exchanged 
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every 12 hr.  Swollen weights were recorded at regular intervals (Ws) until the hydrogel 

exhibited a loss in weight with a corresponding loss in mechanical integrity. The time 

required for the disc to completely dissolve was also recorded. The remaining three 

hydrogel discs were vacuum dried (30 in. Hg, 60 ºC, 24 hr) and their weights recorded 

(Wd). S ratio (SR) is defined as: swelling ratio = (Ws - Wd)/Wd. Results reported are 

based on the average of the three individual specimens.  

2.4. Results and Discussion 

2.4.1. Hydrogel Fabrication 

Both the hydrogels formed via SIPS and the conventional hydrogels were 

transparent (Figure 2.2).  However, the cross-section of PEG-DA hydrogels formed by 

SIPS displayed a sponge-like or coarser texture. To verify the efficacy of 

photocrosslinking, sol content values of hydrogels were measured (Supplemental Table 

S1). Sol contents of PEG-DA hydrogels fabricated from DCM precursor solutions (~3-

9%) and aqueous precursor solutions (~1-9%) were similarly low.  

 
 
 

 

Figure 2.2. Macroscopic images of conventional PEG-DA hydrogels fabricated from an aqueous 
precursor solution [left] and PEG-DA hydrogels fabricated via SIPS with a DCM precursor solution (and 
subsequently dried and hydrated) [right]. (PEG-DA: Mn = 6k g/mol; 10 wt% concentration). 
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2.4.2. Morphology 

Conventional PEG-DA hydrogels photopolymerized from aqueous precursor 

solutions  at typical concentrations cannot be imaged via SEM as they collapse during 

the freezing/freeze-drying process [151]. In contrast, SEM images of PEG-DA hydrogels 

prepared via SIPS were obtained and revealed open porous structures (Figure 2.3). 

During SIPS, phase separation of the growing polymer chains and network from the 

solvent leads to polymer rich as well as polymer lean domains (i.e. pores) which upon 

hydration, fill with water. Depending on the extent as well as rate of phase separation 

prior to a final three-dimensional structure determined by significant crosslinking, the 

porosity will vary somewhat. A macroporous morphology was observed when PEG-DA 

hydrogels were prepared at concentrations between 10 and 25 wt%. Notably, for the 

hydrogel series based on 3.4k PEG-DA, higher wt% concentrations produced 

increasingly larger pores. At the same wt% concentration, hydrogels based on 6k PEG-

DA exhibited a different morphology versus the corresponding hydrogel based on 3.4k 

PEG-DA. Thus, SIPS is useful to achieve macroporous morphologies which may be 

tuned by PEG-DA wt% concentration as well as Mn.   
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5 wt% (3k PEG-DA) 5 wt% (6k PEG-DA)

10 wt% (3k PEG-DA) 10 wt% (6k PEG-DA)

15 wt% 6k (PEG-DA)15 wt% (3k PEG-DA)

20 wt% (3k PEG-DA) 20 wt% (6k PEG-DA)

25 wt% (3k PEG-DA) 25 wt% (6k PEG-DA)

Figure 2.3. SEM images of PEG-DA hydrogels fabricated via SIPS. (Scale bars = 100 μm) 
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2.4.3. Equilibrium Swelling  

PEG-DA hydrogels formed via SIPS generally exhibited similar swelling to the 

analogous conventional PEG-DA hydrogel (Figure 2.4). The exceptions are hydrogels 

formed at very low (5 wt%) concentrations which produced substantially lower swelling 

for hydrogels prepared by SIPS.  For a given PEG-DA Mn at a concentration between 

10-25 wt%, rather similar and, in some cases, statistically similar swelling ratios were 

achieved when prepared via SIPS versus from an aqueous precursor solutions. This was 

somewhat unexpected given the macroporous morphology of hydrogels prepared via 

SIPS (Figure 2.3) which is typically associated with enhanced water uptake [94, 154]. 

The lack of swelling increase for PEG-DA hydrogels prepared via SIPS may be 

attributed to reduced water uptake in the polymer-rich regions of the hydrogels. Thus, 

SIPS changes the distribution of water rather than the total water uptake in the resulting 

PEG-DA hydrogels. In addition, certain pairs of PEG-DA hydrogels prepared via SIPS 

at different concentrations also exhibit quite similar swelling ratios (e.g. 6k g/mol at 15 

and 20 wt%). Hydrogel swelling (i.e. hydration) is an important scaffold property given 

its impact on cell behavior in terms of local environment and diffusion of waste and 

nutrients [67]. Thus, the impact of scaffold morphology on cell behavior decoupled from 

total hydration may be studied by utilizing series of PEG-DA scaffolds formed via SIPS 

and conventional PEG-DA hydrogels. 
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2.4.4. Modulus 

During DMA, hydrogel stiffness was measured in terms of the storage modulus 

(G‟) as a function of frequency of the applied strain in compression (Figure 2.5). For a 

given PEG-DA Mn at a specific concentration (5-25 wt%), G‟ was substantially higher 

for hydrogels fabricated via SIPS compared those fabricated from aqueous precursor 

solutions. As previously observed [98, 145] for conventional PEG-DA hydrogels, G‟ 

increased with increasing crosslink density (i.e. reducing PEG-DA Mn) or increasing 

PEG-DA concentration. The same compositional changes to PEG-DA hydrogels 

fabricated via SIPS similarly produced an increase in G‟. For conventional PEG-DA 

hydrogels, increased crosslink density or concentration produces a concomitant decrease 

in swelling such that the impact of G‟ on cell behavior may not be uncoupled from the 
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Figure 2.4. Swelling ratio of PEG-DA hydrogels fabricated with 3.4k g/mol (left) and 6k g/mol (right) 
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effect of hydration [146].  From the series of PEG-DA hydrogels formed via SIPS and 

aqueous precursor solutions, a pair or more of hydrogels with similar hydration (Figure 

2.4) but different G‟ (Figure 2.5) are available.  Thus, PEG-DA hydrogels prepared via 

SIPS affords the opportunity to study the influence of modulus on cell behavior 

decoupled from hydration. 

 
 
 

 

 

2.4.5. Degradation 

Increased pore size has been related to faster degradation rates [82, 152] and thus 

represents a strategy to tailor degradation without changing the chemical composition of 

the scaffold material. Because SIPS produces macroporous PEG-DA hydrogels at 10-25 

wt% concentrations (Figure 2.3), it was anticipated that its degradation rate would be 
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faster than the corresponding conventional PEG-DA prepared from aqueous precursor 

solutions. PEG-DA hydrogels were subjected to hydrolytic degradation under 

accelerated (basic) conditions (Figure 2.6). Degradation was measured in terms of the 

time to achieve maximum swelling before loss of mechanical integrity and also in terms 

of time to completely dissolve [160]. For solid aliphatic polyester films, hydrolytic 

degradation rate increases with film thickness due to an autocatalytic effect of more 

slowly diffusing acidic degradation products [169]. In the same way, the degradation 

rate of aliphatic polyester porous materials is increased with larger pore size and hence 

higher pore wall thickness [170]. In the case of PEG-DA hydrogels, hydrolysis of labile 

ester bonds releases poly(acrylic acid) (PAA) kinetic chains [171] which similarly may 

induce autoacceleration if diffusion its limited. Thus, the enhanced rate of degradation of 

PEG-DA hydrogels prepared via SIPS versus conventional hydrogels is attributed to the 

larger pore size and thicker pore wall of the former. As expected, for PEG-DA hydrogels 

prepared via SIPS, lower wt% concentrations led to shorter dissolution times. Also, at 

the same wt% concentration, the degradation rate was higher for hydrogels fabricated 

from 6k g/mol PEG-DA Mn (i.e. hydrogel crosslink density) versus 3.4k PEG-DA. The 

effect of concentration and Mn were similarly observed for conventional PEG-DA 

hydrogels. Given the limited susceptibility to hydrolysis of PEG-DA hydrogels, their 

fabrication by SIPS to produce enhanced degradation rates without alterations to its 

chemical nature is a useful to study cell behavior and ultimately tissue regeneration.  
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2.5. Conclusions 

PEG-DA hydrogels with broader, tunable physical properties which furthermore 

are uncoupled (i.e. not dependent on one another) would be extremely useful to study 

cell-material interaction and ultimately improve tissue regeneration. Towards this goal, 

PEG-DA hydrogels were formed via SIPS with 3.4k and 6k g/mol PEG-DA at various 

wt% concentrations (5-25 wt%). While conventional PEG-DA hydrogels are fabricated 

from an aqueous precursor solution, the reported SIPS protocol utilized a DCM 

precursor solution followed by drying and hydration after photopolymerization. When 

prepared via SIPS, PEG-DA hydrogels displayed a macroporous morphology (10-25 

wt%) but did not exhibit increased total swelling versus the corresponding conventional 

hydrogel. Thus, certain series of hydrogels represent scaffolds in which morphology and 
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hydration are uncoupled. In addition, PEG-DA hydrogels prepared via SIPS exhibited a 

substantial increase in modulus (G‟) versus the corresponding conventional hydrogel. In 

this case, a particular series of hydrogels represent scaffolds in which hydration and 

modulus are uncoupled. Lastly, because of the larger pore size, PEG-DA hydrogels 

fabricated via SIPS exhibited an increased degradation rate under accelerated conditions. 

Thus, PEG-DA hydrogels formed via SIP, particularly when combined with 

conventional PEG-DA hydrogels, form a useful library of scaffolds to study the 

influence of physical properties on cell behavior and ultimately regenerate tissues. 
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CHAPTER III  

PDMSSTAR-PEG HYDROGELS PREPARED VIA SOLVENT-INDUCED PHASE 

SEPARATION (SIPS) AND THEIR POTENTIAL UTILITY AS TISSUE 

ENGINEERING SCAFFOLDS* 

3.1. Overview 

Inorganic-organic hydrogels based on methacrylated star polydimethylsiloxane 

(PDMSstar-MA) and diacrylated poly(ethylene glycol) (PEG-DA) macromers were 

prepared via solvent-induced phase separation (SIPS). The macromers were combined in 

a dichloromethane (DCM) precursor solution and sequentially photopolymerized, dried 

and hydrated (Figure 3.1). The chemical and physical properties of the hydrogels were 

further tailored by varying the number average molecular weight (Mn) of PEG-DA (Mn = 

3.4k and 6k g/mol) as well as the weight % (wt%) ratio of PDMSstar-MA (Mn = 7k 

g/mol) to PEG-DA from 0:100 to 20:80. Compared to analogous hydrogels fabricated 

from aqueous precursor solutions, SIPS produced hydrogels with a macroporous 

morphology, a more even distribution of PDMSstar-MA, increased modulus and 

enhanced degradation rates.  

 

 

 
 
 
*Reprinted with permission from “PDMSstar-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and 
their potential utility as tissue engineering scaffolds” by Brennan M. Bailey, Ruochong Fei, Dany Munoz-Pinto, 
Mariah S. Hahn, and Melissa A. Grunlan, 2012. Acta Biomaterialia, 8, 4324-4333, Copyright [2012] by Acta 
Materialia Inc. Published Elsevier Ltd. 
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The morphology, swelling ratio, mechanical properties, bioactivity, non-specific protein 

adhesion, controlled introduction of cell-adhesion, and cytocompatibility of the 

hydrogels were characterized. As a result of their tunable properties, this library of 

hydrogels is useful to study material-guided cell behavior and ultimate tissue 

regeneration. 

 

 

 

 

 

 

3.2. Introduction 

In tissue engineering, the properties of the three dimensional scaffold guide cell 

behavior and ultimate tissue regeneration [131-135]. Physical properties of scaffolds 

known to impact cell behavior include modulus [74, 86, 87, 140] and morphology (e.g. 

porosity) [77-79, 81, 82, 84, 136, 137, 139, 172]. In addition, scaffold chemical 

properties influence cell behavior including bioactivity,[105, 106, 173] chemical 

functionality,[76] hydrophobicity,[102, 104, 174] and related hydration (i.e. swelling) 

[87, 175]. Therefore, a library of scaffolds having precisely tunable physical and 

PDMSstar-PEG 

DCM precursor solution

 

250 m

1.Photocure
2.Dry
3.Hydrate

Macroscopic image 
of SIPS fabricated 

hydrogel

Macroscopic image of 
SIPS fabricated hydrogel

Figure 3.1. Reported PDMSstar-PEG hydrogel fabrication via SIPS and resulting dissolution and 
distribution of PDMS. 
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chemical properties over a broad range would be a valuable tool to probe material-

guided cell behavior and enable the regeneration of functional tissues.   

Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are extensively utilized as 

scaffolds for the regeneration of numerous types of tissues [90, 91, 98, 141-144]. Their 

resistance to protein and cell adhesion in the absence of cell adhesive ligands makes 

them particularly useful to study cell-material interactions [88-92]. Thus, changes in cell 

behavior may be related to an associated material property change. However, PEG-DA 

hydrogels display a limited range of physical as well as chemical properties restricting 

their utility for such studies. For instance, the modulus of PEG-DA hydrogels may be 

tuned over a somewhat narrow range by altering the crosslink density (i.e. PEG-DA 

number average molecular weight, Mn) or the weight percent (wt%) concentration of 

PEG-DA in the aqueous precursor solution [98, 145]. However, these alterations 

simultaneously produce changes in swelling thereby restricting the ability to uncouple 

the effect of modulus and swelling on cellular response [176]. While morphological 

changes in general alter cell behavior,[177-179] a macroporous hydrogel morphology 

has shown particular utility in tissue regeneration [79, 97, 151]. PEG-DA (Mn = 3.4k and 

6k g/mol) hydrogels fabricated by the photopolymerization of aqueous precursor 

solutions exhibit pores smaller than ~5-10 μm [128]. Several strategies have been 

explored to produce macroporous PEG-DA hydrogels, including: salt leaching,[153, 

154] gas foaming [157] and cryogelation [155, 156]. However, difficulty leaching 

porogens (salt leaching), high temperatures or low pressures (gas foaming), and 

extremely low temperatures (cryogelation) [158] limits these techniques. 
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In general, the chemical nature of hydrogel scaffolds has been shown to have a 

significant impact on cell behavior [168, 180-183]. Alterations to the chemical nature of 

PEG-DA hydrogels have been largely limited to those that increase the rate of 

degradation. For instance, polyester segments [160, 184] and enzymatically unstable 

peptides [89, 166] have been introduced to enhance the otherwise limited degradation 

rate of PEG-DA hydrogels. The impact of chemical functionality incorporated into PEG-

DA hydrogels on cell behavior has been explored only to a limited extent [76]. Previous 

studies have demonstrated that the incorporation of inorganic silicon-containing 

materials into organic scaffolds enhances their bioactivity [105-107]. In addition, 

scaffold hydrophobicity has also been shown to influence osteogenic differentiation 

[102-104]. Previously, hydrogels were formed by introduction of an inorganic, 

hydrophobic methacrylated star polydimethylsiloxane (PDMSstar-MA) into PEG-DA 

hydrogels [101]. The insolubility of the PDMSstar-MA in the aqueous precursor solutions 

produced hydrogels comprised of discrete PDMSstar-enriched microparticles distributed 

throughout the PEG-DA hydrogel matrix. PDMSstar-MA content altered mechanical 

behavior without significant changes to hydration. Furthermore, previous study showed 

that these PDMS-PEG hydrogel scaffolds demonstrated the ability to guide 

mesenchymal stem cells (MSCs) towards osteogenic differentiation with increased levels 

of  PDMSstar-MA [108].  

Recently, PEG-DA hydrogels were prepared via solvent induced phase 

separation (SIPS) which involved photopolymerization of a dichloromethane (DCM) 

precursor solution followed by sequentially drying and hydration [93]. During SIPS, a 
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solvent system is utilized which promotes phase separation of the growing polymer 

chain and network during cure [94, 95]. Compared to PEG-DA hydrogels fabricated 

from an aqueous precursor solution, hydrogels were macroporous and exhibited 

increased modulus values and enhanced degradation rates. Herein, the introduction of 

variable levels PDMSstar-MA into PEG-DA hydrogels fabricated via SIPS to produce 

bioactive, macroporous PDMSstar-PEG hydrogel scaffolds with enhanced modulus 

values and degradation rates is reported. In contrast to PDMSstar-PEG hydrogels 

fabricated from an aqueous solvent, the improved solubility of PDMSstar-MA in the 

DCM fabrication solvent enables its more homogeneous distribution throughout the 

hydrogel. A series of PDMSstar-PEG hydrogels were prepared via SIPS (i.e. from DCM 

precursor solutions) at 10 wt% total macromer concentration but with variable wt% 

ratios of PDMSstar-MA (7k g/mol) to PEG-DA  (3.4k and 6k g/mol) [0:100, 1:99, 10:90 

and 20:80]. The effect of hydrogel composition on physical and chemical properties, 

including equilibrium swelling (i.e. hydration), morphology, compressive modulus, 

degradation, bioactivity, protein resistance, controlled introduction of cell adhesion and 

cytocompatibility were assessed.  Properties of PDMSstar-PEG hydrogels fabricated via 

SIPS were compared to analogous hydrogels fabricated from an aqueous precursor 

solution. 
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3.3. Materials and Methods 

3.3.1. Materials 

Pt-divinyltetramethyldisiloxane complex (Karstedt‟s catalyst, 2 wt% in xylene), 

tetrakis(dimethylsiloxy)silane (tetra-SiH), and octamethylcyclotetrasiloxane (D4) were 

obtained from Gelest. Allyl methacrylate, acryloyl chloride, triflic acid, 2,2-dimethyl-2-

phenyl-acetophenone (DMAP), 1-vinyl-2-pyrrolidinone (NVP), triethylamine (Et3N), 

MgSO4, K2CO3, hexamethyldisilazane (HMDS), N3013 Nile Red (Nile Blue A 

Oxazone), NaOH, and solvents were obtained from Sigma Aldrich. HPLC grade toluene, 

CH2Cl2, and NMR grade CDCl3 were dried over 4Å molecular sieves. Poly(ethylene 

glycol) (PEG) [PEG-6000; MW = 5000-7000 g/mol and PEG-3400; MW = 3000-3700 

g/mol per manufacturer‟s specifications] were obtained from BioChemika. The Mn of 

PEG-3400 (3371 g/mol) and PEG-6000 (6072 g/mol) were back-calculated from 1H 

NMR end-group analysis of the corresponding diacrylated products. Phosphate buffered 

solution (PBS, pH = 7.4, without calcium and magnesium), HEPES, Dulbecco‟s 

Modified Eagle Medium (DMEM), fetal bovine serum (FBS), PSG solution (10,000 

U/mL penicillin, 10000 mg/L streptomycin, and 29.2 mg/mL  

L-glutamine), and PSA solution (10,000 U/mL penicillin, 10,000 mg/L streptomycin, 

and 25 mg/L amphotericin) were obtained from Mediatech. Peptide RGDS was obtained 

from American Peptide. Acryloyl PEG-succinimidyl valerate (acryloyl-PEG-SVA, 3.4 

kDa) was obtained from Laysan Bio Inc. Mouse smooth muscle precursor cells (10T1/2) 

were obtained from American Type Culture Collection (ATCC). 
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3.3.2. PDMSstar-MA Synthesis 

PDMSstar-MA was prepared as previously reported [185]. First, D4 (29.9 g, 100.8 

mmol), tetra-SiH (1.1 g, 3.3 mmol), triflic acid (60 μL), and HMDS (0.15 g, 0.93 mmol) 

were reacted. In this way, PDMSstar-SiH (24.9 g, 80% yield) was obtained as a colorless 

liquid, Mn/Mw = 7600/18,800 g/mol, PDI = 2.5. 1H NMR (δ, ppm): 0.064-0.113 (bm, 

1174H, SiCH3), 4.7 (m, 4H, SiH). IR (ν): 2125 cm-1 (Si-H). Next, PDMSstar-SiH (7.0 g, 

0.92 mmol), allyl methacrylate (0.26 g, 2.1 mmol), toluene (30 mL), and Karstedt‟s 

catalyst (100 μL) were reacted to obtain PDMSstar-MA (6.37 g, 88% yield) as a colorless 

liquid, Mn/Mw = 8300/22,000 g/mol, PDI = 2.6. 1H NMR (δ, ppm): 0.045-0.127 (bm, 

1673H, SiCH3), 0.559 (m, 8H, -SiCH2CH2CH2), 1.67 (m, 8H, -SiCH2CH2CH2), 1.92 (m, 

12H, -C(CH2)CH3), 4.10 (m, 8H, -SiCH2CH2CH2), 5.57 (m, 4H, -C(CH2)CH3), 6.11 (m, 

4H, -C(CH2)CH3). IR (ν): no Si-H peak.   

3.3.3. PEG-DA Synthesis  

PEG-DA (3.4k and 6k g/mol) were prepared as previously reported [101]. PEG-

3400 (23.5 g, 7.0 mmol), Et3N (1.95 mL, 14.0 mmol) and acryloyl chloride (2.27 mL, 

28.0 mmol) were reacted to obtain PEG-DA (15.2 g, 63% yield). 1H NMR (δ, ppm): 

3.62 (s, 297H, -OCH2CH2), 5.81 (dd, 2H, J = 10.5 and 1.2 Hz, -CH=CH2), 6.13 (dd, 2H, 

J = 17.4 and 10.5 Hz, -CH=CH2), 6.40 (dd, 2H, J = 17.3 and 1.5 Hz, -CH=CH2). By 1H 

NMR end-group analysis, Mn of PEG-DA (3.4k g/mol) was determined to be 3393 g/mol 

(∼3400 g/mol). PEG-6000 (24 g, 4.0 mmol), Et3N (1.12 mL, 8.0 mmol) and acryloyl 

chloride (1.30 mL, 16.0 mmol) were reacted to obtain PEG-DA (31 g, 63% yield). 1H 
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NMR (δ, ppm): 3.61 (s, 547H, -OCH2CH2), 5.81 (dd, 2H, J = 10.4 and 1.5 Hz, -

CH=CH2), 6.13 (dd, 2H, J = 16.8 and 10.5 Hz, -CH=CH2), 6.40 (dd, 2H, J = 17.3 and 

1.5 Hz, -CH=CH2). By 1H NMR end-group analysis, Mn of PEG-DA (6k g/mol) was 

determined to be 6143 g/mol (∼6000 g/mol). 

3.3.4. NMR 

 
1H NMR spectra were obtained on a Mercury 300 300 MHz spectrometer 

operating in the Fourier transform mode. Five percent (w/v) CDCl3 solutions were used 

to obtain spectra. Residual CHCl3 served as an internal standard.   

3.3.5. Hydrogel Preparation  

PDMSstar-PEG hydrogels formed via SIPS were prepared from DCM-based 

precursor solutions and analogous hydrogels were prepared from aqueous precursor 

solutions at the same concentrations for comparison. First, PEG-DA (3.4k or 6k g/mol) 

was added to either DCM or DI-H2O at 10 wt% total concentration in solvent. PDMSstar-

MA (7k g/mol) was then added at the following wt% ratios of PDMSstar-MA to PEG-

DA: 0:100, 1:99, 10:90 and 20:80. 10 L of photoinitiator solution (30 wt% solution of 

DMAP in NVP) was subsequently added per one mL of the precursor solution. Solutions 

were vortexed for one minute following each addition. Planar hydrogel sheets (1.5 mm 

thick) were prepared by pipetting the precursor solution between two clamped 

microscope slides (75 x 50 mm) separated by Teflon spacers and exposing the mold to 

longwave UV light (UV-Transilluminator, 6 mW/cm2, 365 nm) for a total of 6 min with 
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rotation to the alternate side after 3 min. After removal from the mold, the water-based 

hydrogel sheets were rinsed with DI water and soaked in a Petri dish containing DI water 

(60 mL) for 2 days with daily water changes to remove impurities. The DCM-based 

sheets were rinsed with DCM then air dried for 30 min to permit evaporation of DCM 

and subsequently placed in a Petri dish containing DI water (60 mL) to remove 

impurities and any remaining DCM. During the first hour of soaking, the water was 

changed every 15 min and thereafter daily for 2 days. All hydrogels were permitted to 

soak in DI water for 72 hr prior to testing.  

3.3.6. Sol Content  

 Three discs (13 mm diameter) were punched from a single hydrogel sheet with a 

die. After air-drying (30 min), each disc was placed in an open scintillation vial and 

dried at room temperature (RT) in a vacuum oven (14.7 psi, 24 hr). Dried discs were 

then weighed (Wd1), placed in a new vial and 10 mL DCM was added to each. The vials 

were capped and placed on a rocker table (250 rpm) for 48 hr to remove sol (i.e. 

uncrosslinked material). The discs were subsequently removed, air dried for 30 min, 

placed in an open vial, dried again at RT in a vacuum oven (30 in. Hg, 24 hr) and finally 

weighed (Wd2). Sol Content is defined as: sol content = [(Wd1 - Wd2)/Wd1] x100.  
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3.3.7. Morphology  

3.3.7.1. Scanning Electron Microscopy 

Water-swollen hydrogels discs (13 mm diameter) were flash frozen in liquid 

nitrogen for 1 min and immediately lyophilized for 24 hr (Labconco Centri Vap Gel 

Dryer System). Specimen cross-sections were subjected to Pt-sputter coating and viewed 

with a field emission scanning electron microscope (FEI Quanta 600 FE-SEM) at an 

accelerated electron energy of 10 keV.  

3.3.7.2. Confocal Laser Scanning Microscopy (CLSM)  

For a given hydrogel, a disc (8 mm diameter, 1.5 mm thickness) was punched 

from a hydrogel sheet with a die. A Nile Red solution was prepared as follows: 75 μL of 

a Nile Red solution (20 mg per mL of methanol) was dissolved in 8 mL of DI water and 

combined with 120 mL of PBS. Each hydrogel disc was sequentially soaked for 24 h in 

60 mL of the aforementioned Nile Red solution and then soaked for 3 days in 60 mL of 

PBS (exchanged daily). With each disc placed on a glass microscope slide and DI water 

dropped onto the disc to maintain hydration, images were captured with CLSM using a 

Leica TCS SP5 confocal microscope (Leica Microsystems, Bannockburn, IL; excitation 

filter of 488 nm and emission filter 490-570 nm). Images were obtained from 3 m 

sections in the z-direction. Images were assigned green for contrast. 
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3.3.8. Equilibrium Swelling  

Three discs (13 mm diameter) were punched from a single hydrogel sheet with a 

die. Each disc was placed in a sealed vial containing 20 mL DI water and placed on a 

rocker table (250 rpm) for 48 hr at RT.  Discs were then removed, blotted with filter 

paper to remove surface water, and weighed (Ws). Equilibrium swelling ratio (SR) is 

defined as: SR = (Ws - Wd)/Wd, where Ws is the weight of the water-swollen hydrogel 

and Wd is the weight of the vacuum dried hydrogel (30 in. Hg, 60 ºC, 24 hr).  

3.3.9. Dynamic Mechanical Analysis (DMA)  

Three discs (13 mm diameter) were prepared as above. Storage modulus (G‟) of 

each disc was measured in the compression mode with a dynamic mechanical analyzer 

(TA Instruments Q800) equipped with parallel-plate compression clamp with a diameter 

of 40 mm (bottom) and 15 mm (top). A water-swollen disc (13 mm diameter) was 

blotted with a Kim Wipe, clamped between the parallel plates and silicone oil placed 

around the exposed hydrogel edge to prevent dehydration. Following equilibration at 25 

°C (5 min), the samples were tested in a multi-frequency-strain mode (1 to 25 Hz).  

3.3.10. Degradation  

Six hydrogel discs (8 mm diameter) were prepared as above. After soaking in DI 

water for 3 hr, an initial swollen weight (Ws) was recorded. Three discs were each 

placed into a well of a 24-well plate containing 1 mL 0.05M NaOH, the well plate 

covered with Parafilm and foil and maintained at 37 ºC on a rocker table at 50 rpm. The 
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NaOH solution was exchanged every 12 hr.  Swollen weights (Ws) were recorded at 

regular intervals until the hydrogel exhibited an increase in swelling with a 

corresponding loss in mechanical integrity. The time required for the disc to completely 

dissolve was also recorded. The remaining three hydrogel discs were vacuum dried (30 

in. Hg, 60 ºC, 24 hr) and their weights recorded (Wd). Swelling ratio (SR) is defined as: 

SR = (Ws - Wd)/Wd.  

3.3.11. Bioactivity  

            3.3.11.1. Hydrogel Preparation 

A hydrogel sheet with 0:100 and 10:90 wt% PDMSstar-MA to PEG-DA  

(6 k g/mol) was prepared via SIPS as above. A disc (13 mm diameter) was punched from 

each sheet and each disc placed into a sealed centrifuge tube containing 40 mL of 1.5X 

simulated body fluid (SBF)[186] at 37 C. After two weeks, the hydrogel discs were 

removed and prepared for SEM imaging as above. 

           3.3.11.2. X-ray Diffraction Spectroscopy 

Powder X-ray diffraction data was collected on a Bruker D8 diffractometer  

fitted with LynxEYE detector (CuKa; 40kV, 40 mA; Bragg Brentano geometry;  

scan range: 5 - 70 degrees; step size: 0.05 degrees; step time: 1 s). 



 

43 

 

3.3.12. Nonspecific Protein Adhesion  

The adhesion of Alexa Fluor 555 dye conjugate of bovine serum albumin (AF-

555 BSA; MW = 66 kDa; Molecular Probes, Inc.) onto hydrogels was studied by 

fluorescence microscopy. For a given hydrogel, three hydrogel discs (14 mm diameter, 

1.5 mm thickness) were punched from a single hydrogel sheet and placed in PBS (15 

min) to ensure hydration. Immediately prior to transferring to a 24-well plate, discs were 

gently blotted with filter paper to remove PBS on the surface. Of the three discs, two 

discs were each placed in wells containing 1.5 mL of BSA (0.1 mg/mL of PBS) and the 

third disc was placed in a well containing 1.5 mL of PBS. Hydrogel discs were 

maintained in the dark at RT for 3 h. Next, from both the top and bottom surfaces of the 

discs, the BSA solution was carefully removed via aspiration and both sides of the disc 

were rinsed with fresh PBS 3 times for 1 h each time to permit the diffusion of 

unadsorbed protein out of the hydrogels before imaging. No measurable internal 

fluorescence signal was detected following rinsing. Each of these discs was returned to a 

well containing 1.5 mL of fresh PBS for imaging. 

A Zeiss Axiovert 200 optical microscope equipped with an A-Plan 5X objective 

(Axiocam HRC Rev. 2), and filter cube (excitation filter of 546 ( 12 nm [band-pass] and 

emission filter 575-640 nm [bandpass]) was used to obtain fluorescent images on three 

randomly selected regions of each hydrogel surface. The fluorescent light source was 

permitted to warm up for 30 min prior to image capture. Linear operation of the camera 

was ensured and constant exposure time used during the image collection to permit 

quantitative analyses of the observed fluorescent signals. The fluorescence microscopy 
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images were analyzed using ImageJ, which yielded the mean and standard deviation of 

the fluorescence intensity within a given image. For a given hydrogel composition, the 

average fluorescence intensity of the two discs exposed to AF-555 BSA was subtracted 

from that of the disc maintained only in PBS to ensure correction for of any fluorescence 

signal from the material itself. The background corrected fluorescence intensities for 

each hydrogel were then used to quantify AF-555 BSA levels adsorbed by comparison 

against a calibration curve constructed from the measured fluorescence intensities of AF-

555 BSA standard solutions. Standard solutions were prepared at 0, 0.005, 0.01, 0.02, 

and 0.04 mg/mL AF-555 BSA in PBS and each placed into an individual well. 

3.3.13. Controlled Introduction of Cell Adhesion and Spreading  

Hydrogel sheets were prepared with and without acrylate-derivatized cell-

adhesive peptide RGDS in the DCM precursor solutions. RGDS-modified hydrogel 

sheets (50 x 40 x 1 mm) were fabricated at different wt% ratios of PDMSstar-MA to 

PEG-DA (3.4k g/mol) [0:100, 1:99, 10:90 and 20:80] via SIPS as above but with 1 

μmol/mL (post-swelling) of acrylate-derivatized RGDS in the DCM precursor solutions. 

Acryloyl-PEG-RGDS was prepared by reacting acryloyl-PEG-SVA (3.4 kDa) with 

RGDS.[187] A PEG-DA hydrogel fabricated in water (“PEG Control”) was similarly 

formed with acrylate-derivatized RGDS from an aqueous precursor solution. The DCM-

based sheets were first air dried for 24 hr. Both the water-based and dried DCM-based 

sheets were  sterilized with two changes of ethanol/water (70/30; 24 h) and transferred 

into sterile Petri dishes where they were washed twice with sterile DI water (24 hr) and 
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finally rinsed twice with Dulbecco‟s PBS (pH = 7.2) supplemented with 1% PSA (24 

hr). Four (8 mm diameter) discs were punched from each sample and transferred into a 

48 well plate. 10T ½ cells were seeded onto the hydrogel surfaces at 10,000 cells/cm2. 

After being maintained for 24 hr at 37 C with 5% CO2 in DMEM (without phenol red) 

supplemented with 10% heat-inactivated FBS and 1% PSG, cell adhesion and spreading 

was examined at 24 h using a bright field microscopy (Zeiss Axiovert).  

3.3.14. Cytocompatibility  

Hydrogel sheets prepared for cell adhesion and spreading studies were likewise 

prepared for cytocompatiblity tests.  Hydrogel cytocompatiblity was assessed by 

measuring lactate dehydrogenase (LDH) levels released by 10T ½ cells 24 hr following 

cell seeding. Following the aforementioned sterilization protocol, four 8 mm hydrogel 

discs per sample type were transferred to separate wells of a 48 well plate. Harvested 

10T ½ cells were seeded onto the hydrogel surfaces at 6000 cells/cm2. After being 

maintained for 24 hr at 37 C as above, the media surrounding each specimen was 

collected for LDH measurements following manufacturer (Roche) protocol. 

3.4. Results and Discussion 

3.4.1. Hydrogel Fabrication  

Figure 3.2 shows the appearance of precursor solutions and the corresponding 

hydrogel. As was previously observed,[93] pure PEG-DA hydrogels fabricated via SIPS 

were similarly transparent compared to the corresponding PEG-DA hydrogel (i.e. 
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fabricated from an aqueous precursor solution). Aqueous precursor solutions became 

hazy upon addition of hydrophobic PDMSstar-MA due to its water-insolubility [101] 

(Figure 3.2). Due to the improved solubility of PDMSstar-MA in DCM, precursor 

solutions were less hazy and the corresponding hydrogels were not as opaque. To 

validate photocrosslinking efficacy, hydrogel sol contents were measured. Sol content 

values of PDMSstar-PEG hydrogels fabricated from DCM precursor solutions (~2-11%) 

and aqueous precursor solutions (~0.5-8%) were similarly low (Table 3.1).  

 
 

 

 
(20:80) 
DCM 

(0:100) 
H2O 

(20:80) 
H2O 

(0:100) 
DCM 

Figure 3.2. Precursor solutions [top] and corresponding hydrogels [bottom] formed from an aqueous 
precursor solution (left) and via SIPS (right) (i.e. with a DCM precursor solution followed by 
subsequent drying and hydration) with 6k g/mol PEG-DA. 
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3.4.2. Morphology and Distribution of PDMS  

Recently, macroporous PEG-DA hydrogels were prepared via SIPS by 

employing a DCM precursor solution [93]. During SIPS, macropores are produced by 

the separation of the growing polymer chains and network from the solvent into polymer 

rich and polymer lean domains (i.e. pores) that subsequently fill with water during 

hydration. Because pure PEG-DA hydrogels formed via SIPS did not significantly 

collapse during prior freeze-drying, their morphology could be examined by SEM [93]. 

However, SEM images of PDMSstar-PEG hydrogels revealed that they had significantly 

collapsed (Figure 3.3).  

Thus, the porosity as well as PDMSstar-MA distribution of hydrated hydrogels 

was characterized with CLSM (Figure 3.4). Regions of the hydrogels containing the 

Table 3.1. Sol Content of SIPS and analogous conventional hydrogels. 

 

Hydrogel  
formed  by 
SIPS 

 

 

 

 
% sol content 

 
Hydrogel formed 
in water 

 
% sol content 

PEG-DA: Mn = 3.4k  g/mol  PEG-DA: Mn = 3.4k g/mol  

PDMSstar-PEG wt%  PDMSstar-PEG wt%  

0:100 3.9 ± 1.6 0:100 0.5 ± 0.7 

1:99 2.0 ± 2.8 1:99 5.7 ± 1.2 
10:90 4.0 ± 0.2 10:90 7.2 ± 1.4 
20:80 6.7 ± 5.0 20:80 8.4 ± 0.7 

PEG-DA: Mn = 6k g/mol  PEG-DA: Mn = 6k g/mol  

PDMSstar-PEG wt%  PDMSstar-PEG wt%  
0:100 3.2 ± 0.8 0:100 5.0 ± 0.8 
1:99 2.8 ± 0.4 1:99 5.6 ± 0.4 
10:90 5.0 ± 1.2 10:90 5.5 ± 1.9 
20:80 10.8 ± 0.3 20:80 4.3 ± 1.7 

a Prepared from an aqueous precursor solution 
b Data taken from ref 60. 
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hydrophobic PDMSstar-MA were stained by the hydrophobic dye whereas water-filled 

pores were unstained. With increased levels of PDMSstar-MA, hydrogel pore size 

increased and became macroporous at wt% ratios ≥ 10 wt%. Furthermore, the PDMSstar-

MA is more uniformly distributed versus analogous PDMSstar-PEG hydrogels fabricated 

from an aqueous precursor solution in which discrete  PDMS-enriched microparticles 

were observed [101]. Thus, SIPS is useful to achieve macroporous morphologies as well 

as a more uniform distribution of PDMS.  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
(3k) PDMS:PEG (0:100) (6k) PDMS:PEG (0:100) 

(3k) PDMS:PEG (1:99) (6k) PDMS:PEG (1:99) 

(3k) PDMS:PEG (10:90) (6k) PDMS:PEG (10:90) 

(3k) PDMS:PEG (20:80) (6k) PDMS:PEG (20:80) 

Figure 3.3. SEM images of PDMSstar-PEG hydrogels fabricated via SIPS. (scale bars = 50 μm) 



 

49 

 

 

3.4.3. Equilibrium Swelling 

Swelling of PDMSstar-PEG hydrogels formed via SIPS was lower than that of the 

corresponding PDMSstar-PEG hydrogels produced from aqueous precursor solutions 

(Table 3.2, Figure 3.5). For “water fabricated” PDMSstar-PEG hydrogels, PDMSstar-MA 

content did not substantially alter hydration, likely due to the discrete nature of the 

(3.4k) PDMS:PEG (1:99) (6k) PDMS:PEG (1:99) 

(6k) PDMS:PEG (10:90) (3.4k) PDMS:PEG (10:90) 

(3.4k) PDMS:PEG (20:80) (6k) PDMS:PEG (20:80) 

Figure 3.4. CLSM images of hydrated PDMSstar-PEG hydrogels prepared with different wt% ratios of 
PDMSstar-MA:PEG-DA from a DCM precursor solution (i.e. via SIPS). PDMS-enriched regions stained 
with hydrophobic dye (Nile Red). (scale bars = 250 μm) 
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PDMS-enriched microparticles. Hydrophobic PDMSstar-MA is more soluble in DCM 

versus water and so becomes more evenly distributed throughout the hydrogels prepared  

via SIPS (Figure 3.4). As a result, increased PDMSstar-MA content produced a 

systematic decrease in swelling. While the macroporous nature of PDMSstar-PEG 

hydrogels formed via SIPS is expected to increase swelling [94, 154]. PEG-DA 

hydrogels prepared via SIPS likewise did not exhibit enhanced swelling versus PEG-DA 

hydrogels fabricated from aqueous precursor solutions [93] which may be due to 

reduced swelling of polymer-rich region. Thus, the distribution of water rather than total 

water uptake is changed by using SIPS to form PDMSstar-PEG hydrogels. 

 

Table 3.2. Hydrogel Swelling Ratio and Adsorption of BSA Protein. 

 

Hydrogel  
formed   
by SIPS 

 

 

 

Swelling  
Ratio 

 
mg BSA 
adsorbed per 
cm

2
 (x 10

-4
)
b 

 
 Hydrogel formed 

in water
a
 

Swelling  
Ratio 

mg BSA 
adsorbed per 
cm

2
 (x 10

-4
)
b
 

Mn = 3.4k  g/mol (PEG-DA)   Mn = 3.4k g/mol (PEG-DA)  

   PDMSstar-PEG wt%   PDMSstar-PEG wt%   

0:100 7.2 ± 0.01 2 ± 0.4  0:100 8.6 ± 0.02  5 ± 1 

1:99 7.0 ± 0.04 25 ± 2  1:99 8.5 ± 0.03 14 ± 6 
10:90 5.7 ± 0.04 10 ± 3  10:90 7.8 ± 0.02  6 ± 3 
20:80 4.9 ± 0.09 19 ± 6  20:80 7.6 ± 0.09 19 ± 2 

PEG Mn = 6k g/mol (PEG-DA) 

  

PEG Mn = 6k g/mol (PEG-DA) 

   PDMSstar-PEG wt%   PDMSstar-PEG wt% 
0:100 9.8 ± 0.09 10 ± 7  0:100 9.3 ± 0.2 12 ± 5 
1:99 9.1 ± 0.10 16 ± 2  1:99 9.7 ± 0.1 15 ± 2 
10:90 7.6 ± 0.06 11 ± 2  10:90 9.2 ± 0.1 13 ± 3 

   20:80 6.5 ± 0.13 19 ± 6  20:80 8.8 ± 0.1 10 ± 1 

a Prepared from an aqueous precursor solution 
b Data taken from ref 60. 
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3.4.4. Modulus 

Hydrogel stiffness was quantified in term of the compressive storage modulus 

(G‟) obtained by DMA (Figure 3.6). As previously reported for PED-DA hydrogels,[98, 

188] G‟ of PDMSstarPEG hydrogels prepared via SIPS increased with higher crosslink 

density (i.e. lower PEG-DA Mn). G‟ was substantially higher for hydrogels fabricated 

via SIPS compared to the corresponding hydrogels fabricated from aqueous precursor 

solutions. There are two contributing factors to this observation. First, for a given 

composition, PDMSstar-PEG hydrogels prepared via SIPS exhibited reduced swelling 

(Figure 3.5) which is typically associated with enhanced rigidity [175]. Second is the 

effect of the macroporous morphology of the hydrogels prepared via SIPS (Figure 3.4). 

Indeed, despite minor changes in swelling, pure PEG-DA hydrogels prepared via SIPS 

were macroporous and exhibited a pronounced increase in G‟ versus when fabricated in 
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Figure 3.5. Swelling ratio of PDMSstar-PEG hydrogels fabricated with 3.4k g/mol (left) and 6k g/mol 
(right) PEG-DA from a DCM precursor solution (i.e. via SIPS) or from an aqueous precursor solution. 
Statistical significance was determined by student‟s t-test where (*): p < 0.05 and (#): p > 0.05. 
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water [93]. For hydrogels formed via SIPS, the associated thicker pore walls may be the 

source of the increase in G‟. 

 

 

 

3.4.5. Degradation 

Hydrolytic degradation of PDMSstar-PEG hydrogels was measured under 

accelerated (basic) conditions (Figure 3.7). Degradation was quantified in terms of the 

time to reach maximum swelling before loss of mechanical integrity as well as the time 

for complete dissolution [160]. For aliphatic polyesters, the rate of hydrolytic 

degradation increases with larger pore size and hence greater pore wall thickness [82] as 

well as film thickness [169] due to an autocatalytic effect of more slowly diffusing 

acidic degradation products. Under basic conditions, macroporous PEG-DA hydrogels 
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Figure 3.6. Storage modulus (G‟) of PDMSstar-PEG hydrogels fabricated with 3.4k g/mol (left) 
and 6k g/mol (right) from a DCM precursor solution (i.e. via SIPS) [solid lines] or from an 
aqueous precursor solution [dashed lines]. 
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formed via SIPS likewise degraded faster than the corresponding hydrogel fabricated 

from aqueous precursor solutions [93].  For PEG-DA-based hydrogels, hydrolysis of 

ester bonds releases poly(acrylic acid) (PAA) kinetic chains [171] capable of inducing 

autoacceleration if diffusion is limited. However, under basic conditions, the increased 

degradation rate may be largely attributed to the limited diffusion of hydroxide ions 

through thicker pore walls which proceed to catalyze bond cleavage. Likewise, the 

observed increased degradation rate of PDMSstar-PEG hydrogels fabricated via SIPS 

versus the corresponding hydrogel fabricated in water is attributed to the former‟s 

increased pore size and thicker pore walls. As expected, degradation rate increased for 

hydrogels prepared with 6k g/mol PEG-DA versus from 3.4k g/mol PEG-DA due to the 

former‟s lower crosslink density. The effect of Mn was similarly observed for PDMSstar-

PEG hydrogels fabricated from aqueous precursor solutions (Figure 3.8). Incorporation 

of PDMSstar-MA into hydrogels formed via SIPS led to an increased degradation time 

but did not necessarily coincide with PDMSstar-MA content. For these hydrogels, as 

PDMSstar-MA content increases, the degradation rate is influenced by both the increased 

hydrophobicity that reduces degradation [189] and the increased pore size that enhances 

degradation. Given the limited susceptibility to hydrolysis of PEG-DA-based hydrogels, 

their fabrication by SIPS to produce enhanced degradation rates as well as the ability to 

further increase degradation rates through the incorporation of PDMSstar-MA provide 

useful mechanisms to enhance the utility of PEG-DA hydrogels for tissue engineering. 
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Figure 3.7. Swelling ratio under basic conditions (0.05 M NaOH) of PDMSstar-MA:PEG-DA 
hydrogels fabricated via SIPS with 3.4k g/mol (left) and 6k g/mol (right) PEG-DA. [ ] = hours to 
complete dissolution and ( ) = hours to complete dissolution of analogous hydrogel (i.e. fabricated 
from aqueous precursor solutions). 
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3.4.6. Bioactivity - Hydroxyapatite Formation  

Bioactive materials chemically bond to bone via formation of a biological active 

hydroxyapatite (HAp) layer [190]. Calcium apatites such as HAp have also been shown 

to promote differentiation of mesenchymal stem cells (MSCs) to osteoblasts (i.e. are 

osteoinductive) [191]. Since inorganic, hydrophobic materials are associated with 

bioactivity,[105, 106, 173] it was anticipated that PDMSstar-PEG hydrogels prepared via 

SIPS would be bioactive. The degree of formation of HAp upon immersion into SBF is a 

qualitative indication of the level of scaffold bioactivity and has been correlated to the 

ability to bond to bone in vivo [192]. Thus, the extent of formation of HAp following 

SBF exposure was compared for a PDMSstar-PEG (3.4k g/mol) hydrogel (10:90 wt% 

ratio) versus the pure PEG-DA (3.4k g/mol) control (i.e. no PDMS) and PDMSstar-PEG 

(6k g/mol) hydrogel (20:80 wt% ratio) versus the pure PEG-DA (6k g/mol) control (i.e. 

no PDMS) (Figure 3.9). SEM images revealed a significant level of HAp on the 

PDMSstar-PEG hydrogel but its absence on the PEG-DA hydrogel. X-ray diffraction was 

performed on these hydrogel compositions to verify HAp formation and characteristic 

HAp peaks of 31.7, 45.5, and 56.5 were noted. These peaks indicate reflections from 

112, 222, 004 crystal planes respectively and correspond to Bragg reflections of HAp 

(Figure 3.10) [193]. In previous studies, PDMSstar-PEG hydrogels prepared from 

aqueous precursor solutions demonstrated increased stimulation of osteogenic 

differentiation of encapsulated MSCs [108].  On the basis of these studies, PDMSstar-

PEG hydrogels prepared via SIPS are bioactive and may increase the osteogenic 

potential of associated MSCs. 
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Figure 3.9. SEM images (following exposure to SBF for 2 weeks) of hydrogels fabricated with either 
3.4k (top) or 6k g/mol (bottom) PEG-DA from a DCM precursor solution (i.e. via SIPS) with (right 
column) and without PDMS (left column) (scale bars = 50 μm). 



 

57 

 

3.4.7. Nonspecific Protein Adhesion 

Because cell behavior is altered by adsorbed proteins (e.g. from serum),[89, 194] 

scaffolds useful to study materials-guided cell behavior must be significantly protein 

resistant. The adsorption of BSA onto PDMSstar-PEG hydrogels prepared via SIPS was 

compared to that of the corresponding PEG-DA hydrogels (Table 3.2). BSA adsorption 

on PEG-DA hydrogels has been shown to increase with reduced hydration [195]. As 

noted above, swelling was reduced with increased PDMSstar-MA content for PDMSstar-

PEG hydrogels prepared via SIPS. When based on 6k g/mol PEG-DA, PDMSstar-PEG 

hydrogels formed via SIPS exhibited somewhat similar BSA adsorption versus the pure 

PEG-DA control. BSA adsorption was somewhat higher for hydrogels based on 3.4k 

g/mol PEG-DA versus the PEG-DA control. This may be due to the lower hydration of 

hydrogels based on 3.4k g/mol versus 6k g/mol PEG-DA. However, for all PDMSstar-

MA:PEG-DA hydrogels, protein adsorption levels were within the range reported for 

PEG-DA hydrogels [195]. Furthermore, BSA adsorption was similar for PDMSstar-PEG 

hydrogels prepared by SIPS versus that of analogous hydrogels prepared in water, 

despite the former‟s reduced swelling. The increased pore size of PDMSstar-PEG 

hydrogels prepared by SIPS may enhance protein diffusion thereby reducing its 

adsorption.  

3.4.8. Controlled Introduction of Cell Adhesion and Spreading  

PEG-DA hydrogels‟ resistance to adsorption of bioactive serum proteins renders 

them “biological blank slates” as cells are subsequently unable to adhere and spread 
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[92]. Defined levels of cell adhesion may be introduced by covalent incorporation of 

acrylate-functionalized cell adhesive peptide RGDS into PEG hydrogels [88, 196, 197]. 

While minor changes in protein adsorption were observed, maintenance of the biological 

blank slate nature for PDMSstar-PEG hydrogels was assessed by evaluating cell adhesion 

onto hydrogels prepared with and without acrylate-RGDS (Figure 3.11). PDMSstarPEG 

hydrogels based on 3.4k g/mol PEG-DA were prepared via SIPS both with and without 1 

mol/mL of acrylate-derivatized RGDS. A PEG-DA hydrogel fabricated in water 

similarly prepared with and without RGDS served as a control (“PEG Control”). 

Incorporation of low levels of RGDS  has been observed to cause only a minute change 

in hydrogel swelling [198]. As with the PEG control, cells did not adhere and spread in 

the absence of RGDS. However, modification of all hydrogels with RGDS did cause cell 

adhesion and spreading. Thus, as for “water fabricated” PEG-DA hydrogels, PDMSstar-

PEG hydrogels prepared via SIPS permit the controlled introduction of cell adhesion and 

spreading which is critical for their utility to study cell-material interactions.   
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3.4.9. Cytocompatibility  

 Low cytotoxicity of PDMSstar-PEG hydrogels prepared via SIPS is essential for 

their utility as tissue engineering scaffolds. Cytocompatiblity was assessed by measuring 

LDH levels released by 10T½ cells 24 hr post-seeding onto RGDS-modified hydrogels 

based on 3.4k g/mol PEG-DA as a representative series (Figure 3.12). LDH is a soluble 

cytosolic enzyme that is released into the culture medium following membrane damage 

due to apoptosis or necrosis [199]. Thus, differences in the normalized levels of 

exogenous LDH across cell-laden hydrogels are indicative of the amount of cell death 

induced by the hydrogel composition. At all levels of PDMSstar-MA, the relative LDH 

activity associated with PDMSstar-PEG hydrogels prepared via SIPS were similar to pure 

PEG-DA hydrogels prepared via SIPS as well as PEG-DA hydrogels fabricated from 

aqueous precursor solutions.  Thus, at these levels of PDMSstar-MA, PDMSstar-PEG 

hydrogels maintain the low cytotoxicity of PEG-DA hydrogels. 

 

Figure 3.11. Cell spreading for PDMS-PEG hydrogels prepared without [top] and with [bottom] RGDS 
(cell-adhesive peptide). PEG Control = PEG-DA hydrogel (3.4k g/mol) prepared from an aqueous 
precursor solution. [Scale bars = 50 µm].  
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3.5. Conclusions 

Hydrogels which maintain the useful properties of PEG-DA hydrogels but extend 

their physical and chemical properties would be useful for controlled cell-material 

interaction studies. In this study, PDMSstar-PEG hydrogels were fabricated via SIPS to 

produce macroporous morphologies and a more even distribution of bioactive PDMS 

versus when fabricated from an aqueous precursor solution. Hydrogel properties were 

tuned by adjusting the wt% ratio of PDMSstar-MA:PEG-DA (0:100, 1:99, 10:90 an 

20:80) as well as PEG-DA Mn (3.4k or 6k g/mol). A pronounced increase in hydrogel 

stiffness (G‟) was observed for PDMSstar-PEG hydrogels fabricated via SIPS versus the 

corresponding hydrogel fabricated from an aqueous precursor solution and was shown to 

increase with PDMSstar-MA content. In addition, the degradation rate was enhanced for 
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Figure 3.12. Relative LDH activity (24 hr) of PDMSstar-PEG hydrogels fabricated with 3.4k g/mol PEG-DA 
from a DCM precursor solution (i.e. via SIPS) with varying wt% ratio PDMSstar-MA:PEG-DA. PEG Control 
= PEG-DA hydrogel (3.4k g/mol) prepared from an aqueous precursor solution. All formulations were 
statistically similar versus each other (ANOVA, p < 0.05). 
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hydrogels formed via SIPS. While PEG-DA hydrogels did not demonstrate bioactivity 

(i.e. formation of HAp upon submersion into SBF), PDMSstar-PEG hydrogels fabricated 

via SIPS were bioactive. This is attributed to the hydrophobic, inorganic nature of the 

PDMS. SIPS-produced PDMSstar-PEG hydrogels did substantially adsorb higher levels 

of BSA versus a PEG-DA hydrogel fabricated in water. As a result, cell adhesion and 

spreading onto PDMSstar-PEG hydrogels was observed only on hydrogels modified with 

the cell adhesive peptide RGDS. Thus, these PDMSstar-PEG hydrogels maintain the 

biological blank slate nature of “water fabricated” PEG-DA hydrogels.  Thus, these new 

PDMSstar-PEG hydrogels formed by SIPS are useful to use, along with pure PEG-DA 

and PDMSstar-PEG hydrogels formed from aqueous precursor solutions, to study 

materials-guided cell behavior and tissue regeneration.   
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CHAPTER IV  

CONTINUOUS GRADIENT SCAFFOLDS FOR RAPID SCREENING OF CELL-

MATERIAL INTERACTIONS AND INTERFACIAL TISSUE REGENERATION* 

4.1. Overview 

In tissue engineering, the physical and chemical properties of the scaffold 

mediates cell behavior including regeneration. Thus, a strategy that permits rapid 

screening of cell-scaffold interactions is critical. Herein, eight “hybrid” hydrogel 

scaffolds have been prepared in the form of continuous gradients such that a single 

scaffold contains spatially varied properties (Figure 4.1). These scaffolds are based on 

combining an inorganic macromer [methacrylated star polydimethylsiloxane, PDMSstar-

MA] and organic macromer [poly(ethylene glycol)diacrylate, PEG-DA] as well both 

aqueous and organic fabrication solvents.  

 

 

 

 

 

 

 

 
 
*Reprinted with permission from “Continuous gradient scaffolds for rapid screening of cell-material interactions and 
interfacial tissue regeneration” by Brennan M. Bailey, Lindsay N. Nail and Melissa A. Grunlan, 2013. Acta 
Biomaterialia, in press online, Copyright [2013] by Acta Materialia Inc. Published Elsevier Ltd. 
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Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a 

particularly powerful component to incorporate into instructive gradient scaffolds based 

on PEG-DA. The following parameters were varied to produce the different gradients or 

gradual transitions in: (1) the wt% ratio of PDMSstar-MA to PEG-DA macromers, (2) the 

total wt% macromer concentration, (3) the number average molecular weight (Mn) of 

PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four “zones” 

perpendicular to the gradient, it was found that spatial variation in morphology, 

bioactivity, swelling and modulus was demonstrated. Among these gradient scaffolds are 

those in which swelling and modulus are conveniently decoupled. In addition to rapid 

screening of cell-material interactions, these scaffolds are well-suited for regeneration of 

interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to 

another. 
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Figure 4.1. Gradient fabrication and compositions. The fabrication method (top) and eight resulting 
scaffolds possessing continuous gradients (bottom) based on a gradual transition in: (a) the wt% ratio of 
PDMSstar-MA to PEG-DA macromers, (b) the total wt% macromer concentration, (c) the Mn of PEG-DA 
and (d) the Mn of PDMSstar-MA. A constant wt% ratio of PDMSstar-MA to PEG-DA was maintained for b-
d. Each scaffold was fabricated in both DI-H2O and DCM to vary PDMSstar-MA distribution, scaffold 
porosity and modulus. Note, when fabricated from a DCM precursor solution, the resulting network was 
dried (i.e. DCM removal) and hydrated with water before testing. 
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4.2. Introduction 

As with the extracellular matrix (ECM) in natural tissues, properties of the tissue 

engineering scaffold direct cell behavior and thus tissue regeneration [131, 132].  These 

include both physical properties (e.g. morphology or porosity[77, 81, 136] and 

modulus[86, 87, 140]) and chemical properties (e.g. chemical functionality,[75, 76, 105] 

hydrophobicity,[102, 174] hydration[87, 128, 175] and bioactivity[105, 106]). 

Importantly, recent studies suggest that these scaffold properties (e.g. modulus) may be 

as potent as growth factors in terms of directing stem cell fate [85, 86, 200]. As a result, 

scaffolds with properties precisely tuned for optimal cell regeneration have the potential 

to form tissues with properties closely resembling those of native tissues [1, 201]. Yet, 

scaffold-guided cell behavior is difficult to elucidate given the labor-intensive practice of 

evaluating a large number of individual scaffolds whose compositions and hence 

properties are iteratively varied. Thus, the development of a strategy that permits 

systematic and rapid screening of cell–scaffold interactions, particularly for a scaffold 

system with a broad range of properties, is critical. Combinatorial strategies have mainly 

been limited to two-dimensional (2D) culture in which arrays of isolated, individual 

scaffolds are rapidly produced and cells cultured on the surfaces [202-204]. However, 

three-dimensional (3D) culture is preferred as it better resembles the native tissue 

environment [205-207]. In this study, hydrogel scaffolds suitable for 3D culture have 

been prepared in the form of continuous gradients such that a single scaffold contains 

spatially varied properties. Thus, cell-material interaction studies may be conducted and 

compared among different “zones” defined along the gradient. These continuous 
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gradient hydrogel scaffolds not only allow for rapid screening of cell-material 

interactions, but scaffolds prepared in this way would ultimately be useful for 

regeneration of interfacial tissues which require scaffolds possessing spatially organized 

material compositions [114, 115].  

Three-dimensional continuous gradients have been reported [110-113]. Recently, 

Chatterjee and co-workers used a gradient maker to produce continuous gradient 

hydrogel scaffolds based an organic macromer [poly(ethylene glycol)-diacrylate, PEG-

DA] and an aqueous fabrication solvent [114]. In this study, this method has been 

applied to prepare “hybrid” continuous gradient hydrogel scaffolds based on combining 

an inorganic and organic macromer and using both aqueous and organic fabrication 

solvents. In previous work, introduction of inorganic, hydrophobic methacrylated star 

polydimethylsiloxane (PDMSstar-MA) to PEG-DA hydrogels prepared with aqueous 

solvent broadened both chemical and physical properties [101]. Later, it was 

demonstrated that both PEG-DA and PDMSstar-PEG hydrogels could be prepared via 

solvent-induced phase separation (SIPS) by employing dichloromethane as an organic 

fabrication solvent followed by sequential solvent removal and hydration after curing 

[100, 208]. SIPS produced hydrogels with low sol contents and low cytotoxicity as well 

as increased pore size, enhanced modulus and a more uniform distribution of PDMSstar-

MA versus analogous hydrogels fabricated from aqueous precursor solutions. In 

addition, PDMSstar-PEG hydrogels fabricated from aqueous precursor solutions were 

bioactive, forming hydroxyapatite when exposed to simulated body fluid (SBF)[100] and 

furthermore resulted in an increase in osteogenic differentiation of encapsulated 
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mesenchymal stem cells (MSCs) in proportion to PDMSstar-MA content [108]. Based on 

these properties, this hybrid PDMSstar-PEG hydrogel scaffold system is particularly of 

interest for bone and osteochondral tissue engineering. More broadly speaking, this 

approach represents a general method by which a dual-component polymer scaffold 

system may be prepared as continuous gradients for rapid screening. 

Herein, eight different continuous gradient hybrid scaffolds were prepared with 

spatially controlled chemical and physical properties (Figure 4.1). The following 

parameters were varied to produce the different “gradients” or gradual transitions in:  

(1) the wt% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt% macromer 

concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn 

of PDMSstar-MA. Each gradient scaffold was made with both aqueous (distilled water, 

DI-H2O) and organic (dichloromethane, DCM) fabrication solvents. These scaffolds 

were formed using a standard laboratory gradient maker (Figure 4.1). The stock and 

mixing chambers contained the designated precursor solutions (i.e. macromers, 

fabrication solvent and photocatalyst). A peristaltic pump and tubing were used to move 

the gradient maker output to a top-filling vertical mold (8 cm x 6 cm x 3 mm) consisting 

of two clamped rectangular glass slides separated by a U-shaped Teflon spacer. After 

filling, the mold was immediately exposed to UV light for 6 min (alternating sides after 

3 min) to effect crosslinking. In the case of scaffolds prepared from a DCM precursor 

solution, the formed scaffold was dried to remove DCM and then hydrated in water. 

Each scaffold was divided into four “zones” along the length of the scaffold 
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(perpendicular to the gradient) and the morphology, bioactivity, swelling and modulus of 

each zone assessed. 

4.3. Materials and Methods 

4.3.1. Materials 

 
Pt-divinyltetramethyldisiloxane complex (Karstedt‟s catalyst, 2 wt% in xylene), 

tetrakis(dimethylsiloxy)silane (tetra-SiH), and octamethylcyclotetrasiloxane (D4) were 

obtained from Gelest. Allyl methacrylate, acryloyl chloride, triflic acid, 2,2-dimethyl-2-

phenyl-acetophenone (DMPA), 1-vinyl-2-pyrrolidinone (NVP), triethylamine (Et3N), 

MgSO4, K2CO3, hexamethyldisilazane (HMDS), N3013 Nile Red (Nile Blue A 

Oxazone), NaOH, and solvents were obtained from Sigma Aldrich. HPLC grade toluene, 

CH2Cl2 (i.e. DCM) and NMR grade CDCl3 were dried over 4Å molecular sieves. 

Poly(ethylene glycol) (PEG) [PEG-6000; MW = 5000-7000 g/mol and PEG-3400; MW 

= 3000-3700 g/mol per manufacturer‟s specifications] were obtained from Sigma 

Aldrich. The Mn of PEG-3400 (3371 g/mol) and PEG-6000 (6072 g/mol) were back-

calculated from 1H NMR end-group analysis of the corresponding diacrylated products. 

Phosphate buffered solution (PBS, pH = 7.4, without calcium and magnesium) was 

obtained from Mediatech.  

4.3.2. PDMSstar-MA Synthesis 

PDMSstar-MA (1.8k, 7k and 14k g/mol) were prepared as previously reported 
[209, 210]. 
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4.3.3. PEG-DA (3.4k and 6k g/mol) Synthesis 

PEG-DA (3.4k and 6k g/mol) were prepared as previously reported [101]. By 1H 

NMR end-group analysis, Mn of PEG-DA, Mn of PEG-DA (3.4k g/mol) and PEG-DA 

(6k g/mol was determined to be 3382 g/mol (~3400 g/mol) and 5989 g/mol (∼6000 

g/mol), respectively. 

4.3.4. NMR 

1H NMR spectra were obtained on a Mercury 300 300 MHz spectrometer 

operating in the Fourier transform mode. Five percent (w/v) CDCl3 solutions were used 

to obtain spectra. Residual CHCl3 served as an internal standard.   

4.3.5. Continuous Gradient Hydrogel Scaffold Preparation  

Macromer(s) and photocatalyst solution were combined with DI-H2O or DCM 

and added to the stock and mixing chambers (the latter containing a stir bar) of a plastic 

gradient maker (Hoefer SG 15, Amersham Biosciences) or analogous glass gradient 

maker, respectively, atop a stir plate. The gradient maker output was pumped through 

PVC tubing (DI-H2O-based precursor solution) or PharMed® BPT (Ryan Herco Flow 

Solutions) (DCM-based precursor solution) tubing at ~1 mL/min via a peristaltic pump 

(C.B.S. Scientific) into a single entry top-filling vertical mold (8 cm x 6 cm x 3 mm) 

comprised of two clamped rectangular glass slides and a U-shaped Teflon spacer. The 

filled mold was immediately exposed to UV light (UV-Transilluminator, 6 mW/cm2, 365 

nm) for 3 min per side. The water-based hydrogel sheets were rinsed with DI-H2O and 
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soaked in a Petri dish containing DI-H2O (60 mL) for 2 days with daily water changes. 

The DCM-based sheets were rinsed with DCM, air dried for 30 min and placed in a Petri 

dish containing DI-H2O (60 mL). During the first hour of soaking, the water was 

changed every 15 min and thereafter daily for 2 days. All hydrogels were permitted to 

soak in DI-H2O for a total of 72 hr prior to testing. Approximately 2 mm was removed 

from the perimeter to avoid any edge irregularities. 

4.3.6. Confocal Laser Scanning Microscopy (CLSM)  

An intact zone was soaked in 60 mL of a Nile Red solution for 24 hr and then 60 

mL PBS for 3 days with daily water changes [211]. The Nile Red solution was prepared 

as follows: 75 μL of a Nile Red solution (20 mg per mL of methanol) was dissolved in 8 

mL of DI-H2O and combined with 120 mL of PBS. An 8 mm disc was punched from 

each zone along the strip, placed on a glass microscope slide and DI-H2O dropped onto 

the disk to maintain hydration. Images were captured with a Leica TCS SP5 confocal 

microscope (Leica Microsystems, Bannockburn, IL; excitation filter of 488 nm and 

emission filter 490-570 nm). Images were obtained from 3 mm sections in the z-

directions and assigned green for contrast. 

4.3.7. Scanning Electron Microscopy (SEM)  

Water-swollen hydrogels discs (8 mm diameter) were flash frozen in liquid 

nitrogen for 1 min and immediately lyophilized for 24 hr (Labconco Centri Vap Gel 

Dryer System). Specimens cross-sections were subjected to Pt-sputter coating and 
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viewed with a field emission scanning electron microscope (FEI Quanta 600 FE-SEM) 

at an accelerated electron energy of 10 keV.  

4.3.8. Swelling Ratio  

Five 8 mm discs from a given zone of five replicate hydrogel sheets were 

individually placed in a sealed vial containing 20 mL DI water and placed on a rocker 

table (250 rpm) for 48 hr at room temperature (RT).  Discs were then removed, blotted 

with filter paper, and weighed (Ws). Equilibrium swelling ratio (SR) is defined as: SR = 

(Ws - Wd)/Wd, where Ws is the weight of the water-swollen hydrogel and Wd is the 

weight of the vacuum dried hydrogel (30 in. Hg, 60 ºC, 24 hr). The average value was 

calculated from the value of three individual discs representing median values. 

4.3.9. Dynamic Mechanical Analysis (DMA) 

Five 8 mm discs from a given zone of five replicate hydrogel sheets were 

collected. Their storage modulus (G‟) was measured in the compression mode with a 

dynamic mechanical analyzer (TA Instruments Q800) equipped with parallel-plate 

compression clamp with a diameter of 40 mm (bottom) and 15 mm (top). A water-

swollen disc (8 mm diameter) was blotted with a Kim Wipe, clamped between the plates 

and silicone oil placed around the exposed hydrogel edge to prevent dehydration. 

Following equilibration at 25 °C (5 min), the samples were tested in a multi-frequency-

strain mode (1 to 30 Hz). The average value was calculated from the value of three 

individual discs representing median values. 
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4.3.10. Bioactivity  

An 8 mm disc from each zone was placed in a sealed centrifuge tube containing 

20 mL of 1X SBF[186] for 14 days at 37 C. The disc was then removed, blotted with a 

Kim Wipe and allowed to air dry for at least 24 hr.  Next, the discs were flash frozen in 

liquid nitrogen (1 min) and immediately lyophilized (24 hr) (Labconco Centri Vap Gel 

Dryer System). To view HAp, specimen surfaces were subjected to Pt-sputter coating 

and viewed with a field emission scanning electron microscope (FEI Quanta 600 FE-

SEM) at an accelerated electron energy of 10 keV.   

4.3.11. X-ray Diffraction (XRD) Spectroscopy  

Powder X-ray diffraction data was collected on a Bruker D8 diffractometer fitted 

with LynxEYE detector (Cu Kα; 40 kV, 40 mA; Bragg-Brentano geometry; scan range: 5 

- 70; step size: 0.05; step time: 1 s). 

4.4. Results and Discussion 

4.4.1. PDMSstar:PEG Gradient 

For the “PDMSstar:PEG gradient”, the scaffolds were formed with a gradual 

transition from high (top) to low (bottom) amounts of inorganic, hydrophobic PDMSstar-

MA using both DI-H2O and DCM as the fabrication solvent (Figure 4.1.a, Figure 4.2). 

The total macromer concentration (10 wt%) and Mn of both PDMSstar-MA (7k g/mol) 

and PEG-DA (3.4k g/mol) were held constant. Two different precursor solutions were 

prepared with different wt% ratios of PDMSstar-MA to PEG-DA: 0:100 (mixing 
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solution) and 20:80 (stock solution). For every one mL of precursor solution was added 

10 L of photoinitiator solution (30 wt% solution of DMPA in NVP). The solutions 

were vortexed for 1 minute following addition of each component, poured into their 

respective chambers and the gradient hydrogel fabricated as stated above.  

CLSM images confirmed the transition in PDMSstar-MA concentration among 

the different zones of the gradient (Figure 2.a and 2.e). Consistent with that previously 

observed for single composition scaffolds (i.e. “non-gradients” not formed with a 

gradient maker), the PDMSstar-MA formed discrete microspheres or was uniformly 

distributed when prepared from an DI-H2O[127] or DCM[100] precursor solution, 

respectively. This was attributed to the improved solubility of PDMSstar-MA in DCM 

versus in DI-H2O. As also previously noted with non-gradient scaffolds,[100] gradient 

scaffolds formed with a DCM precursor solution exhibited enhanced pore size, 

particularly in zones containing high levels of PDMSstar-MA. The increased pore size is 

attributed to SIPS [100, 208].  During SIPS, phase separation between the growing 

polymer network and solvent during cure leads to pore formation [37,[94, 95].  A 

macroporous morphology is generally useful due to enhanced diffusion of cellular waste 

and nutrients as well as for varying cell-cell proximity [79, 83]. Macroporous 

morphologies also contribute to an enhanced rate of degradation [36, 37, [82, 84]. In 

fact, faster rates of degradation were observed for non-gradient macroporous PDMSstar-

PEG hydrogels (i.e. prepared from a DCM precursor solution) versus the analogous 

hydrogel prepared from an aqueous precursor solution [100]. It has also previously noted 

that non-gradient PDMSstar:PEG hydrogels exhibited both bioactivity[100] as well as 
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osteoinductivity [108]. Bioactive materials are attractive for bone regeneration as they 

chemically bond to adjacent native bone tissue via formation of a biologically active 

hydroxyapatite (HAp) layer [190]. Furthermore, the formation of HAp has also been 

shown to promote differentiation of mesenchymal stem cells (MSCs) to osteoblasts 

[191]. It was observed that non-gradient PDMSstar-PEG hydrogels increased stimulation 

of osteogenic differentiation of encapsulated MSCs in proportion to PDMSstar-MA 

content [108]. This behavior was attributed to the inorganic, hydrophobic nature of 

PDMSstar-MA, features commonly associated with other bioactive materials [105-107]. 

Thus, gradient scaffolds with a gradual change in bioactivity would be exceptionally 

useful, not only to screen cell-material interactions, but also for the ultimate regeneration 

of native-like osteochondral tissues which possess a gradual transition from osseous to 

cartilage tissue. The variation in bioactivity along the gradient scaffold was assessed via 

immersion in simulated body fluid (SBF, 1X) for two weeks followed by observing the 

amount of HAp formed via SEM. This protocol is considered to be a qualitative 

indication of the level of scaffold bioactivity and has also been correlated to the ability to 

bond to bone in vivo [192]. Indeed, it was found that the level of HAp gradually 

increased with the content of PDMSstar-MA along the gradient (Figure 4.2.b and 4.2.f). 

X-ray diffraction (XRD) was used to verify that the mineral deposits were HAp. Two 

zones exhibiting HAp with contrasting morphologies were examined (Figure 4.3). 

Characteristic HAp peaks of 31.7, 45.5, and 56.5 were noted. These peaks indicate 

reflections from 112, 222, 004 crystal planes respectively and correspond to Bragg 



 

75 

 

reflections of Hap [212]. The decreased amplitude of the peak at 31.7 for scaffold could 

be a result of the inhomogeneity of the HAp on the surface.  

Given the known impact of swelling (i.e. hydration)[67] and modulus (i.e. 

stiffness)[86, 87, 140] on cell behavior, these properties were also assessed among the 

different zones of the gradient scaffolds (Figure 4.2.c and 4.2.d). For the gradient 

scaffold fabricated via SIPS, swelling increased (~5.5 to 6.8) and modulus decreased 

(~400 to 325 kPa) as the level of hydrophobic PDMSstar-MA decreased. In contrast, 

since PDMSstar-MA formed discrete microspheres in an “unperturbed” PEG matrix when 

fabricated in DI-H2O,[101] resulting in swelling that remained very consistent (~8.6 to 

8.9) across the entire gradient while modulus decreased modestly (~110 to 80 kPa). In 

this way, swelling and modulus are uniquely decoupled such that the effect of each 

parameter on cell behavior may be studied independent of one another. Notably, 

modulus was substantially higher for the gradient scaffold fabricated in DCM versus in 

DI-H2O. As noted previously, the enhanced modulus may be due to the decreased 

hydration arising from a more homogeneous distribution of hydrophobic PDMSstar-MA 

as well as well as the increased pore size and hence pore wall thickness when fabricated 

via SIPS [213, 214]. For most zones, the SIPS gradient exhibits a substantial change in 

modulus (and hydration) within the range that has been shown to impact cell behavior 

[86, 215-217]. In contrast, the gradient fabricated in DI-H2O exhibited seemingly minor 

zone-to-zone changes in modulus and hydration. This may afford the opportunity to 

decouple the effect of swelling and modulus from, for instance, PDMS content on cell 

behavior.  



 

76 

 

 
 
 

 

 

 

 

8.6 8.64 8.71 8.89

0

50

100

150

200

250

300

350

400

450

0

2

4

6

8

10

12

14

1 2 3 4

S
to

ra
g

e
 M

o
d

u
lu

s
 [
k
P

a
]

S
w

e
ll

in
g

 R
a
ti

o

Zone

H2O

5.53 5.78
6.45 6.76

0

50

100

150

200

250

300

350

400

450

0

2

4

6

8

10

12

14

1 2 3 4

S
to

ra
g

e
 M

o
d

u
lu

s
 [
k
P

a
]

S
w

e
ll

in
g

 R
a
ti

o

Zone

DCM 

Swelling Ratio
Storage…

(a)

Zone 

1

LOW PDMS

250 µm

H2O

20 µm

200 µm

20 µm

20 µm

(e)

LOW PDMS

250µm

100 µm

200 µm

50 µm

50 µm

DCM

(b) (c)

(d)

(f)

HIGH PDMS

Zone 

2

Zone 

3

Zone 

4

Zone 

2

Zone 

3

Zone 

4

Zone 

1

HIGH PDMS

Figure 4.2. Properties of PDMSstar:PEG gradient scaffolds. These scaffolds (depicted in Figure 4.1.a) were 
formed with a gradual transition from high (top) to low (bottom) amounts of PDMSstar-MA using both DI-
H2O and DCM as the fabrication solvent. The total macromer concentration (10 wt%) and Mn of both 
PDMSstar-MA (7k g/mol) and PEG-DA (3.4k g/mol) were held constant. For gradient scaffolds prepared from 
an aqueous and DCM precursor solution, respectively: (a, e) CLSM images of PDMSstar-MA distribution and 
scaffold porosity, (b, f) SEM images of HAp formation following exposure to SBF (i.e. “bioactivity”) and (c, 
d) swelling and modulus. 
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4.4.2. Total Wt% Macromer Concentration Gradient 

For the “total wt% macromer concentration gradient”, scaffolds were formed 

with a gradual transition in the total wt% of macromer from low (top) to high (bottom) 

with a constant 9:91 wt% ratio of PDMSstar-MA (7k g/mol) to PEG-DA (3.4k g/mol) 

(Figure 4.1.b, Figure 4.4). Two precursor solutions were prepared at two different 

concentrations: 20 wt% (mixing solution) and 5 wt% (stock solution). First, 20 wt% 

PEG-DA (mixing solution) and 5 wt% PEG-DA (stock solution) were each dissolved in 

DCM or DI-H2O and the appropriate amount of PDMSstar-MA was added to achieve a 

9:91 wt% ratio. This wt% ratio was selected as it represents an intermediate wt% ratio as 

was utilized the “PDMSstar:PEG gradients”. Formation of the gradient scaffolds 

proceeded as noted above. However, for gradients fabricated from a DCM precursor 

solution, the mold was exposed to UV light while it was filled. This was done after 

Figure 4.3. Right: SEM of HAp formation on (a) PDMSstar:PEG gradient (fabricated in DI-H2O); zone 
1 and (b) PEG-DA Mn gradient (fabricated in DI-H2O); zone 4. Left: XRD of “a” and “b” exhibit 
characteristic HAp peaks of 31.7, 45.5, and 56.5. 
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observing that scaffolds exposed to UV light only after the mold was filled did not 

maintain the wt% gradient, perhaps due to substantial interdiffusion of these particular 

solutions. After filling, the mold continued to be exposed to UV light for an additional 6 

min. 

CLSM imaging visually confirmed constant levels of PDMSstar-MA along the 

gradient but with the same distribution features based on precursor solution solvent as 

per the PDMSstar:PEG gradient scaffolds (Figures 4.4.a and 4.4.e). For the scaffold 

gradient made from a DCM precursor solution, pore size generally increased with wt% 

macromer concentration due to an enhanced SIPS process. The constant levels of 

PDMSstar-MA produced similar levels of HAp formation along the gradient (Figures 

4.4.b and 4.4.f).  

 For gradient scaffolds prepared in DI-H2O, the increase in total wt% of 

macromer led to an expected dramatic decrease in swelling ratio (~12 to 5.6) (Figure 

4.4.c).  This was the widest range of swelling ratio values observed for a given scaffold 

composition. The substantial decrease in swelling was accompanied by a considerable 

increase in modulus values (~90 to 280 kPa). In contrast, swelling ratios were very 

similar (~5.8) among zones of the gradient scaffold fabricated with DCM (Figure 4.4.d). 

This may be attributed to the larger pore size that accompanied the increased wt% 

macromer concentration. Modulus values were distributed over a narrow range (~290 to 

350 kPa). Thus, this latter gradient has utility for screening the impact of pore size 

uncoupled from both hydration and modulus. 
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4.4.3. PEG-DA Mn Gradient 

For the “PEG-DA Mn gradient”, scaffolds were formed with a gradual transition 

in the PEG-DA Mn from low (top) to high (bottom) with a constant 9:91 wt% ratio of 

PDMSstar-MA (7k g/mol) to PEG-DA (Figure 4.1.c, Figure 4.5). In this way, the 

crosslink density of the scaffold varies from high (top) to low (bottom). Two precursor 

solutions were prepared with two different Mn(s) of PEG-DA: 6k g/mol (mixing 
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Figure 4.4. Properties of total wt% macromer concentration gradient scaffolds. These scaffolds (depicted 
in Figure 4.1.b) were produced with a gradual transition from low (top) to high (bottom) total wt% 
macromer concentrations. A constant 9:91 wt% ratio of PDMSstar-MA (7k g/mol) to PEG-DA (3.4k g/mol) 
was maintained. For gradient scaffolds prepared from an aqueous and DCM precursor solution, 
respectively: (a, e) CLSM images of PDMSstar-MA distribution and scaffold porosity, (b, f) SEM images 
of HAp formation following exposure to SBF (i.e. “bioactivity”) and (c, d) swelling and modulus 
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solution) and 3.4k g/mol (stock solution). Both solutions were prepared at a constant 

concentration of 10 wt% PEG-DA in either DCM or DI-H2O and the appropriate amount 

of PDMSstar-MA added to achieve a 9:91 wt% ratio (PDMSstar-MA to PEG-DA). 

Formation of the gradient scaffolds proceeded as noted above.  

CLSM imaging visually confirmed constant levels of PDMSstar-MA along the 

gradient but with the same distribution features based on precursor solution solvent as 

noted above (Figures 4.5.a and 4.5.e). For the scaffold gradient made from a DCM 

precursor solution, higher PEG-DA Mn produced a somewhat higher concentration of 

pores and larger pore sizes. Similar levels of HAp formed along the gradient were 

observed due to the constant levels of PDMSstar-MA (Figures 4.5.b and 45.f).  

Because of the corresponding decrease in crosslink density, an increase in  

PEG-DA Mn resulted in an increase in swelling and a decrease in modulus (Figures 

4.5.c and 4.5.d). For gradient scaffolds prepared in DI-H2O, the swelling ratio varied 

moderately (~8.4 to 9.6) and produced a likewise moderate decrease in modulus (~105 

to 75 kPa).  Scaffolds fabricated in DCM produced a wider range of swelling ratios (~6.6 

to 8.3) as well as modulus values (~205 to 130 kPa).  
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4.4.4. PDMSstar-MA Mn Gradient 

For the “PDMSstar-MA Mn gradient”, scaffolds were formed with a gradual 

transition in PDMSstar-MA Mn from low (top) to high (bottom) with a constant 9:91 wt% 

ratio of PDMSstar-MA to PEG-DA (3.4k g/mol) (Figure 4.1.d, Figure 4.6). Two 

precursor solutions were prepared with two different Mn‟s of PDMSstar-MA: 14k g/mol 
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Figure 4.5. Properties of PEG-DA Mn gradient scaffolds. These scaffolds (depicted in Figure 4.1.c) were 
produced with a gradual transition from low (3.4k g/mol) (top) to high (6k g/mol) (bottom) PEG-DA Mn with 
a constant 9:91 wt% ratio of PDMSstar-MA (7k g/mol) to PEG-DA. For gradient scaffolds prepared from an 
aqueous and DCM precursor solution, respectively: (a, e) CLSM images of PDMSstar-MA distribution and 
scaffold porosity, (b, f) SEM images of HAp formation following exposure to SBF (i.e. “bioactivity”) and (c, 
d) swelling and modulus. 
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(mixing solution) and 1.8k g/mol (stock solution). Both solutions were prepared at a 

constant concentration of 10 wt% PEG-DA in either DCM or DI-H2O and the 

appropriate amount of PDMSstar-MA added to achieve a 9:91 wt% ratio (PDMSstar-MA 

to PEG-DA). Thus, in contrast to the “PEG-DA Mn gradient”, here, the Mn of the minor 

component (PDMSstar-MA) is varied. Formation of the gradient scaffolds proceeded as 

noted above.  

When DI-H2O was used as the fabrication solvent, CLSM images showed 

increased PDMSstar-MA Mn enhanced its insolubility in water and led to an increase in 

PDMS-microparticle number and size (Figures 4.6.a). When DCM was used as the 

fabrication solvent, the increase in PDMSstar-MA Mn enhanced the effects of SIPS, 

leading to the general increase in pore size (Figures 4.6.e).  For both gradient scaffolds, 

HAp was observed in all zones due to the constant level of PDMSstar-MA (Figures 4.6.b 

and 4.6.f).  

For both gradient scaffolds, swelling ratio was quite constant and modulus 

remained varied within a tight range across the different zones (Figures 4.6.c and 

4.6.d). Again, this is expected since it was the Mn of the minor component (PDMSstar-

MA) that was continuously varied. However, the fabrication solvent had a notable 

impact on these properties. When prepared from an aqueous precursor solution, swelling 

and modulus (~10 and ~65 to 40 kPa) were substantially higher and lower, respectively, 

versus the gradient scaffolds prepared from DCM precursor solution (~7 and ~205 to 

175 kPa). Thus, these scaffolds would permit the evaluation of subtle changes in scaffold 

modulus independent of hydration.  



 

83 

 

 

 
 

  

 4.5. Conclusions 

Herein, “hybrid” continuous gradient hydrogel scaffolds have been prepared 

based on combining an inorganic (PDMSstar-MA) and organic macromer (PEG-DA) and 

using both aqueous and organic fabrication solvents. The previously established 

bioactivity[100] and osteoinductivity[108] of PDMSstar-MA makes it a particularly 
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Figure 4.6. Properties of PDMSstar-MA Mn gradient scaffolds. These scaffolds (depicted in Figure 4.1.d) 
were produced with a gradual transition from low (top) to high (bottom) PDMSstar-MA Mn with a 
constant 9:91 wt% ratio of PDMSstar-MA to PEG-DA  (3.4k g/mol). For gradient scaffolds prepared from 
an aqueous and DCM precursor solution, respectively: (a, e) CLSM images of PDMSstar-MA distribution 
and scaffold porosity, (b, f) SEM images of HAp formation following exposure to SBF (i.e. 
“bioactivity”) and (c, d) swelling and modulus. 
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powerful component to incorporate into gradient scaffolds based on PEG-DA. These 

scaffolds were quickly produced and exhibited spatially varied chemical and physical 

properties. Specifically, the ability to spatially control PDMSstar-MA distribution, pore 

size, bioactivity, swelling and modulus within a single scaffold was demonstrated. The 

eight gradient scaffolds reported herein exhibited swelling values from ~5.5 to 12 and 

modulus values from ~40 to 405 kPa. Their rapid production and achievable range of 

properties not only allow for rapid screening of cell-material interactions, but would also 

prove useful towards the regeneration of interfacial tissues which require scaffolds 

comprised of spatially organized material compositions [114, 115]. Given the bioactivity 

and osteoinductivity of PDMSstar-MA, these hybrid scaffolds are particularly of interest 

for bone and osteochondral tissue engineering. In the case of hydrogel gradients 

produced via SIPS, direct photoencapsulation obviously is prohibited.  Thus, pore 

interconnectivity, essential for 3D penetration of seeded cells will require modification 

of fabrication with a poragen strategy (e.g. salt leaching). 
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CHAPTER V  

SYNTHESIS OF AMINATED AND PHOSPHONATED POLY(DIMETHYL 

SILOXANE) METHACRYLATE FOR ENHANCED BIOACTIVITY AND 

OSTEOINDUCTIVITY 

5.1. Introduction 

Similar to the extracellular matrix (ECM) in natural tissues, properties of the 

tissue engineering scaffold direct cell behavior and accordingly tissue regeneration [131, 

132].  These include both physical properties (e.g. morphology or porosity [77, 81, 136] 

and modulus [86, 87, 140]) as well as chemical properties (e.g. chemical functionality, 

[75, 76, 105] hydrophobicity, [102, 174] hydration [87, 128, 175] and bioactivity [105, 

106]). Thus, scaffolds with properties modified for optimal cell regeneration have the 

potential to form tissues with properties closely resembling those of native tissues [1, 

201].  

In previous work, physical and chemical properties of poly(ethylene glycol) 

diacrylate (PEG-DA)-based hydrogel scaffolds were altered via both incorporation of  

methacrylated star poly(dimethyl siloxane) (PDMSstar-MA) and fabrication with solvent-

induced phase separation (SIPS) [100, 208]. SIPS produced hydrogels with low sol 

contents and low cytotoxicity as well as increased pore size, enhanced modulus and a 

more uniform distribution of PDMSstar-MA versus analogous hydrogels fabricated from 

aqueous precursor solutions. In addition, PDMSstar-PEG hydrogels fabricated from 

aqueous precursor solutions were bioactive, forming hydroxyapatite when exposed to 
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simulated body fluid (SBF) [100] and furthermore resulted in an increase in osteogenic 

differentiation of encapsulated mesenchymal stem cells (MSCs) corresponding to 

PDMSstar-MA content [108]. This is ideal as bioactive, osteoinductive scaffolds improve 

regeneration of and integration into bone tissue [218].  

The focus of this study is further enhancement of the bioactivity and 

osteoinductivity of a PDMS macromer via functionalization with amine and 

phosphonate groups. Well-defined (2D) models have been used to study the effects of 

amine and phosphonate on cell behavior [116-119]. Keselowsky et al. demonstrated that 

surfaces grafted with amine groups up-regulated osteoblast-specific gene expression, 

alkaline phosphatase enzymatic activity, and matrix mineralization [117]. The positive 

charge on these functional groups at neutral pH may explain this phenomenon [117]. 

Increasing phosphonate content of graft copolymers on the surfaces of biomaterials 

increased osteoblast-like cell adhesion and proliferation [120]. Also, the 

functionalization of polymers with phosphorous-containing pendant groups has shown to 

result in more complete mineralization and at a faster rate [121]. Recent findings suggest 

phosphate-containing polymers possess an affinity for calcium ions necessary for the 

development of biomaterial-associated calcification [219, 220]. Thus, it was expected 

that amine and phosphonate functionalized PDMS would exhibit enhanced bioactivity 

and osteoinductivity.  

Phosphorous-based scaffolds are of particular interest for bone tissue 

regeneration given the ideal osteoinductive environment they are able to provide [123-

125]. Saltzman et al. found that the adhesion and growth of osteoblast-like cells within 
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acrylamide gels increased with increasing phosphonate content [123]. While, Anseth et 

al. incorporated pendant phosphate groups into PEG hydrogels and saw an increased rate 

and degree of mineralization within the hydrogel even in the absence of hMSCs [126]. 

Amines have not been incorporated into hydrogel scaffolds for cell behavior studies with 

regard to osteoinductivity and bioactivity, providing further motivation for the study 

herein. 

In this work, amine functionalized PDMS has been synthesized. Also, a protocol 

and rationale for further functionalization with phosphonate has been established 

(Figure 5.1). Based on the osteoinductivity and bioactivity of PDMS [99, 108] it is 

expected that amine and phosphonate groups would further enhance these properties. 

Future methacrylation and incorporation of these macromers into the previously 

described PEG-DA scaffold system is expected to provide a method of study regarding 

their effects on cell behavior in a 3D environment. These scaffolds are also anticipated to 

be valuable for osteochondral tissue regeneration. 
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5.2. Materials and Methods 

5.2.1. Materials 

Heptamethyl-cyclotetrasiloxane (D4
H1), 1,1,3,3,5,5,7,7,9,9-decamethylpenta-

siloxane, 95% (DMPS), and tetramethylammonium siloxanolate (TMAS) were obtained 

from Gelest. Activated carbon was obtained from Fisher Scientific. Platinum (IV) oxide 

(PtO2), allyl amine, and NMR grade CDCl3 were obtained from Sigma Aldrich. CDCl3 

was dried over 4Å molecular sieves.  

Figure 5.1.  Amine and phosphonate functionalized PDMS-MA described herein for subsequent 
incorporation into PEG-DA hydrogels towards enhanced bioactivity and osteoinductivity of tissue 
engineering scaffolds. 

Methacrylated Poly(D4
NH2)

Methacrylated Poly(D4
P)
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5.2.2. Aminotrimethyleneheptamethylcyclo-tetrasiloxane (D4
NH2

) Synthesis (Figure 

5.2.a) 

D4
NH2 was prepared as previously reported [221]. Briefly, D4

H1 (5.1 g, 18 mmol), 

allyl amine (1.55 g, 27 mmol) and a small amount of PtO2 were added in a pressure 

vessel under nitrogen. The vessel was sealed and heated at 85°C for 24 h. The product 

was then removed, allowed to cool, and analyzed with NMR. In the case of incomplete 

reaction, additional allyl amine and PtO2 was added, the reaction purged with nitrogen, 

and allowed to proceed at 85°C for 4 h. After cooling to room temperature, the crude 

product was combined with two identical reactions to improve yield, and activated 

carbon added. The reaction was then purified by vacuum distillation and vacuum dried at 

60 ºC overnight to afford product D4
NH2 (11g, yield 56%, bp: 78°C/0.8 mm Hg). 1H-

NMR (δ ppm): 2.65–2.61 (m, 2H, NH2–CH2–CH2–CH2), 1.49–1.39 (m, 2H, NH2–CH2–

CH2–CH2), 0.51–0.46 (m, 2H, NH2– CH2–CH2–CH2), 0.04 (s, 21H, Si–CH3). 

5.2.3. Amine Functionalized Poly(dimethyl siloxane) (Poly (D4
NH2

)) Synthesis (Figure 

5.2.b) 

D4
NH2 (2.75 g, 8.1 mmol), DMPS 0.23 g (0.63 mmol) and TMAS (0.1 wt %) were 

combined in a round bottom flask equipped with a magnetic stir bar and rubber septum. 

The air in the flask was exchanged with nitrogen and the reaction temperature increased 

to 90°C. After 10 h, the reaction was heated at 140 ºC for 3 h while bubbling nitrogen 

through to decompose the catalyst. The reaction mixture was then heated at 125 ºC under 

vacuum for 5 h to remove cyclics [222]. Colorless oil was given (1.7 g, yield 57%). 
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1HNMR (δ ppm): 2.66–2.61 (m, 32H, NH2–CH2–CH2– CH2), 1.49–1.39 (m, 32H, NH2–

CH2–CH2–CH2), 0.52– 0.46 (m, 32H, NH2–CH2–CH2–CH2), 0.05 (s, 431H, Si–CH3); Mn 

(g/mol): 5700. 

 

 

 

 

 

 

 

 

 

 

 

5.2.4. NMR 

 
1H NMR spectra were obtained on a Mercury 300 300 MHz spectrometer 

operating in the Fourier transform mode. Five percent (w/v) CDCl3 solutions were used 

to obtain spectra. Residual CHCl3 served as an internal standard.  

Figure 5.2.  (a) Platinum catalyzed hydrosilylation of D4
H1 with allyl amine to yield 

D4
NH2 and (b) base catalyzed ring opening polymerization of D4

NH2 to yield silane 
terminated, amine functionalized PDMS (Poly(D4

NH2)). 

+
PtO2

85 C, 24hrs

TMAS,90 C,10hrs

D4
NH2

DMPS

Poly(D4
NH2)

D4
H1

Allyl

Amine

a

b
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5.3. Results and Discussion  

Materials which promote mineralization can be incorporated into tissue 

engineering scaffolds for improved regeneration of bone tissue [218]. The bioactivity of  

PDMS, [100, 109] phosphonates, [116, 125] and amines [117, 118] has been established. 

Thus, it was expected that PDMS functionalized with amine and phosphonate would 

result in significantly enhanced bioactivity and osteoinductivity. Therefore, a 

straightforward synthesis for the functionalization of PDMS with either amine (Figures 

5.2 and 6.2) or phosphonate (Figures 5.2 and 6.3) has been described herein. A linear 

PDMS polymer has been synthesized as a more complex synthesis is required compared 

to previous studies involving PDMSstar-MA. Linear PDMS will provide a more 

simplistic approach for analysis of these novel polymers.  

5.3.1. Amine Functionalized Poly(dimethyl siloxane) (Poly (D4
NH2

)) Synthesis  

Functionalization of PDMS with amine (Poly (D4
NH2)) is a two-step synthesis 

(Figure 5.2). First, a siloxane ring possessing one functional silane underwent 

hydrosilylation with the vinyl of allyl amine (Figure 5.2.a). The product was black due 

to the use of a platinum catalyst. The catalyst was subsequently removed by distilling 

with activated carbon, yielding a clear product. Thorough removal of the catalyst is 

expected to be important for subsequent synthesis.  

Next, the siloxane ring was opened using a base catalyzed ring opening 

polymerization with a short silane terminated dimethylsiloxane as an end capping agent 

(Figure 5.2.b). This resulted in a silane terminated, amine functionalized PDMS 
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polymer. The polymer is such that every third siloxane repeat unit possesses a functional 

amine (assuming complete reaction). The molecular weight of the polymer synthesized 

herein was determined to be 5700 g/mol by end-group analysis This gives an “x” value 

of 16 (Figure 5.2.b). Molecular weight may be increased or decreased with longer and 

shorter reaction times, respectively. The silane groups on each end of the PDMS will 

allow for the subsequent hydrosilylation with allyl methacrylate thereby permitting 

subsequent photo-crosslinking with PEG-DA (Figures 6.1 and 6.2).  NMR spectroscopy 

was used to confirm each synthetic step as well as determine molecular weight of the 

polymer.  

 

5.3.2. Phosphonate Functionalized Poly(dimethyl siloxane)  (Poly(D4
P
)) Proposed 

Synthesis  

The synthesis of phosphonate functionalized PDMS (Poly(D4
P)) began in the 

same way as that of Poly(D4
NH2) (Figure 5.2). However, an additional subsequent step is 

required to attach the phosphonate. This can be done by reacting the vinyl group of 

DEVP with the functional amine on Poly(D4
NH2) via an aza-Michael Addition (Figure 

6.3.a). Similar to the synthesis of Poly(D4
NH2), the silane side groups can then be reacted 

with allyl methacrylate to introduce photo-crosslinking capabilities (Figure 6.3.b).  

5.4. Conclusions 

Herein, the synthesis of amine functionalized poly(dimethyl siloxane) was 

reported (Figure 5.2). In addition, a protocol for phosphonate functionalized PDMS was 
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established (Figures 5.2 and 6.3.a). Based on the previously established bioactivity of 

PDMS, [100, 109] phosphonates, [116, 125] and amines [117, 118] it is  expected that 

these hybrid materials will exhibit significant bioactivity and osteoinductivity.  

Future addition of methacrylate end groups will allow incorporation into 

hydrogel scaffolds. This is expected to deliver a tissue engineering scaffold capable of 

regenerating more native-like bone tissue. It is expected that these novel macromers 

combined with previously described fabrication processes (i.e. SIPS and continuous 

gradients) will provide a platform for the rapid assessment of a broad range of 

properties. These studies are anticipated to result in the establishment of an ideal 

environment for bone, cartilage, and bone – cartilage interfacial tissue regeneration.  
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CHAPTER VI  

CONCLUSIONS AND FUTURE DIRECTIONS 

6.1. Conclusions 

Herein, “hybrid” continuous gradient hydrogel scaffolds have been prepared 

based on combining an inorganic and organic macromer and using both aqueous and 

organic fabrication solvents. This research resulted in the establishment of a “library” of 

3D scaffolds useful for both the study of cell-material interactions as well as interfacial 

tissue regeneration.  

In Chapter II, the ability to greatly enhance and alter the physical properties of 

PEG-DA hydrogels based solely on varying fabrication solvent was demonstrated [93]. 

The SIPS fabrication process produced hydrogels with macroporous morphologies and 

increased modulus values versus analogous PEG-DA hydrogels fabricated from an 

aqueous precursor solution. Particularly, certain properties were uncoupled, such as 

morphology and hydration or modulus and hydration such that their impact on cell 

behavior may be isolated.  In addition, PEG-DA hydrogels prepared via SIPS exhibited 

enhanced degradation rates.  In total, these SIPS PEG-DA hydrogel scaffolds possess 

properties beneficial for tissue engineering applications and cell-material interaction 

studies.  

In Chapter III, modification of hydrogel chemistry and bioactivity of the scaffold 

was explored via incorporation of inorganic, hydrophobic PDMSstar-MA into PEG-DA 

hydrogels [100]. When fabricated via SIPS (rather than with an aqueous precursor 
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solution), the enhanced solubility of PDMSstar-MA resulted in a more homogenous 

distribution. In addition, modulus and pore size were increased. Bioactivity was 

confirmed with in vitro assessment of HAp formation on the scaffolds in the presence of 

SBF. Thus, it was expected that these scaffolds would specifically enhance outcomes for 

bone tissue regeneration. Also, the unique combination of properties presented by 

PDMSstar-PEG hydrogels formed by SIPS renders them useful to study both physical and 

chemical properties-guided cell behavior.  

In Chapter IV, continuous gradient scaffolds were prepared to spatially control 

PDMSstar-MA distribution, pore size, bioactivity, swelling and modulus within a single 

PEG-DA hydrogel scaffold [109]. The rapid production and broad range of properties 

would permit prompt screening of cell-material interactions. Furthermore, with 

controlled distribution of bioactive PDMSstar-MA, these hybrid scaffolds are of 

particular interest for bone and osteochondral tissue engineering [114, 115].  

Chapter V is focused on enhancing the bioactivity and osteoinductivity of 

PDMS-MA by incorporating amine and phosphonate functional groups. Both of these 

functional groups have shown the ability to promote mineralization and osteoblast 

differentiation [116, 117]. Thus, PDMS polymer was functionalized with an amine (Poly 

(D4
NH2)). Also, motivation for and a synthetic approach towards further functionality of 

Poly(D4
NH2) with phosphonate was given. The subsequent attachment of cross-linkable 

side groups will allow for the incorporation of these polymers into a hydrogel scaffold. 

Such macromers can be used in systems like those of Chapters III and IV to further 

modify and enhance PEG-DA scaffold properties.  
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6.2. Future Directions 

6.2.1. Poly(D4
NH2

) and Poly(D4
P
) – PEG-DA Hydrogel Scaffolds  

Future studies will combine the synthetic and fabrication techniques described in 

the preceding chapters to create a library of scaffolds based on the incorporation of 

Poly(D4
NH2) and Poly(D4

P) into PEG-DA hydrogel scaffolds. Similarly to the methods 

described in Chapter IV, these functionalized polymers can be incorporated into PEG-

DA scaffolds along a continuous gradient (Figure 6.1). This will allow for the rapid 

screening of cell-material interactions. It is also expected that this will provide an 

improved scaffold for the regeneration of osteochondral tissue due to the additional 

bioactivity of the amine and phosphonate moieties on bioactive, osteoinductive PDMS.  

The use of both DCM and DI-H2O is expected to further alter the properties (e.g. 

porosity, stiffness, and hydration) based on the combination of phosphonate and amine 

with hydrophobic PDMS.  
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6.2.1.1. Methacryalted Poly(D4
NH2

) and Methacryalted Poly(D4
P
)  Synthesis 

The synthesis from Chapter V will be completed in future studies yielding two 

bioactive polymers capable of crosslinking within a hydrogel scaffold (Figure 6.1). 

First, the completion of the synthesis of Poly(D4
NH2) requires the attachment of photo-

crosslinkable end groups. The silane side groups can be reacted with the vinyl group of 

allyl methacrylate via a “Pt” catalyzed hydrosilylation reaction (Figure 6.2). When 

Figure 6.1. Methacrylated Poly(D4
NH2) and Poly(D4

P) can be subsequently incorporated into the “gradient 
platform technology” established in Chapter IV allowing for rapid screening and potentially the 
fabrication of more native-like osteochondral interface. Amine and phosphonate moieties on PDMS are 
expected to enhance properties of PEG-DA hydrogel scaffolds, including bioactivity. 

Methacrylated Poly(D4
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combined with a photo-catalyst, this provides a means for photo-crosslinking this 

polymer into a PEG-DA hydrogel (Figure 6.1.).   

 

 

 

 

 

 

 

 

 

The synthesis of Poly(D4
P) requires an additional step in which the phosphonate 

is attached to the amine moiety. This can be done by reacting the vinyl group of DEVP 

with the functional amine on Poly(D4
NH2) via an aza Michael Addition (Figure 6.3.a). 

Similar to the synthesis of Poly(D4
NH2), the silane terminated polymer can then be 

reacted with allyl methacrylate to introduce a mechanism for photo-crosslinking the 

polymer into a hydrogel (Figure 6.3.b). 

Figure 6.2. Hydrosilylation of D4
NH2 with allyl methacrylate to yield an amine functionalized 

polymer capable of photo-crosslinking into a PEG-DA hydrogel scaffold. 

Methacrylated Poly(D4
NH2)

Poly(D4
NH2)

Allyl Methacrylate
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 6.2.1.2. Spatially Controlled Incorporation of Poly(D4
NH2

) and Poly(D4
P
)  into 

PEG-  DA Hydrogels  

 Based on previous studies, altered scaffold properties are expected as a result of 

varied dissolution and distribution of these materials dependent on solvent polarity 

[100]. The use of solvent is also expected to alter physical properties (i.e. increased pore 

size and modulus) [93]. Utilizing the recently established gradient fabrication platform 

[109] will allow for rapid assessment of cell – material interactions. The combination 

and spatial control of properties such as bioactivity (e.g. mineral deposition), modulus, 

porosity, and hydrophilicity is expected provide an ideal environment for osteochondral 

interface tissue regeneration. 
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DEVP

Poly(D4
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Allyl

Methacrylate

Methacrylated Poly(D4
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Poly(D4
NH2)
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b

Figure 6.3.  (a) Platinum catalyzed hydrosilylation of Poly(D4
NH2) with DEVP to yield a 

phosphonate functionalized polymer and (b) platinum catalyzed hydrosilylation of Poly(D4
P) to yield 

a phosphonate functionalized polymer capable of photo-crosslinking within a PEG-DA hydrogel. 
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6.2.2. Enhanced Osteoconductivity and Biodegradability  

 In the case of hydrogel scaffolds produced via SIPS, direct photoencapsulation is 

obviously prohibited. Thus, to permit cell seeding resulting in full thickness delivery, the 

requisite pore interconnectivity can be achieved by incorporation of a poragen (e.g. salt 

leaching).  Grunlan et al. recently fabricated inorganic–organic shape memory polymer 

foams with tunable pore size and high interconnectivity. This was done via a refined 

solvent-casting/particulate-leaching (SCPL) method [223]. Briefly, salt particles were 

fused by the addition of water. A solution of acrylated polymer in DCM was then photo-

cured around the fused salt matrix and the salt matrix removed via leaching resulting in 

interconnected pores.  

In addition, biodegradation of the scaffolds could be further enhanced and altered 

as the scaffold‟s degradation rate should parallel that of the regeneration of tissue. This 

can be done via substitution of PDMS with poly(silyl ether) (PSE). Due to its more 

hydrophilic nature and the hydrolytic instability of silyl ether bonds, faster degradation is 

expected. Thus, degradation rate can be altered based on the choice of macromere (i.e. 

PDMS or PSE) incorporated into the SIPS fabricated PEG-DA hydrogel.  
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6.0 5.5 5.0 4.5 4.0 3.5 PPM

1H-NMR of PEG-DA (3.4k g/mol) [From Chapters II and III] 

1H-NMR of PEG-DA (6k g/mol) [From Chapters II and III] 
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4 3 2 1 0 PPM
1H-NMR of PDMSstar-SiH (7k g/mol) [From Chapter III] 

6 5 4 3 2 1 0 PPM
1H-NMR of PDMSstar-MA (7k g/mol) [From Chapter III] 
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6.0 5.5 5.0 4.5 4.0 3.5 PPM
1H-NMR of PEG-DA (3.4k g/mol) [From Chapter IV] 

6.5 6.0 5.5 5.0 4.5 4.0 3.5 PPM

1H-NMR of PEG-DA (6k g/mol) [From Chapter IV] 
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5 4 3 2 1 0 PPM

1H-NMR of PDMSstar-SiH (1.8k g/mol) [From Chapter IV] 

1H-NMR of PDMSstar-MA (1.8k g/mol) [From Chapter IV] 
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4 3 2 1 0 PPM1H-NMR of PDMSstar-SiH (7k g/mol) [From Chapter IV] 

7 6 5 4 3 2 1 0 PPM

1H-NMR of PDMSstar-MA (7k g/mol) [From Chapter IV] 
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4 3 2 1 PPM
1H-NMR of PDMSstar-SiH (14k g/mol) [From Chapter IV] 

6 5 4 3 2 1 0 PPM

1H-NMR of PDMSstar-SiH (14k g/mol) [From Chapter IV] 
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1H-NMR of D4
NH2 [From Chapter V] 
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4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 PPM

1H-NMR of P-D4
NH2 [From Chapter V] 


