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ABSTRACT

The development of infectious disease models remains important to provide sci-

entists with tools to better understand disease dynamics and develop more effective

control strategies. In this work we focus on the estimation of seasonally varying

transmission parameters in infectious disease models from real measles case data.

We formulate both discrete-time and continuous-time models and discussed the ben-

efits and shortcomings of both types of models. Additionally, this work demonstrates

the flexibility inherent in large-scale nonlinear programming techniques and the abil-

ity of these techniques to efficiently estimate transmission parameters even in very

large-scale problems. This computational efficiency and flexibility opens the door for

investigating many alternative model formulations and encourages use of these tech-

niques for estimation of larger, more complex models like those with age-dependent

dynamics, more complex compartment models, and spatially distributed data. How-

ever, the size of these problems can become excessively large even for these powerful

estimation techniques, and parallel estimation strategies must be explored. Two

parallel decomposition approaches are presented that exploited scenario based de-

composition and decomposition in time. These approaches show promise for certain

types of estimation problems.
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1. INTRODUCTION∗

Despite the many advances in medicine and public health, infectious diseases

remain a significant concern, especially in developing countries where inadequate re-

sources, social influences, and environmental factors may prevent effective, sustained

results from public health initiatives (Hethcote, 2000; Finkenstädt et al., 2002; An-

derson and May, 1991). One goal of public health programs is to control the spread

of infectious diseases and minimize the impact of disease on the population through

various control measures such as vaccination programs. However, there are several

social, environmental, and biological factors affecting the spread of infectious disease,

and the observed temporal dynamics are not always well understood.

The development of reliable, mechanistic models for the spread of infectious dis-

eases remains the subject of extensive research and is desirable from two perspectives.

First, from a public health perspective, it is clear that reliable models can greatly aid

∗Part of this section is reprinted with permission from “Exploiting Modern Computing Archi-
tectures for Efficient Large-Scale Nonlinear Programming” by Zhu, Y., Word, D., Siirola, J., and
Laird, C.D., 2009. In: R.M. de Brito Alves, C.A.O. do Nascimento and E.C. Biscaia, Jr., Eds.,
Computer Aided Chemical Engineering, Copyright 2010 by Elsevier.

Part of this section is reprinted with permission from “Estimation of seasonal transmission pa-
rameters in childhood infectious disease using a stochastic continuous time model” by Word, D.P.,
Young, J., Cummings, D., and Laird, C.D., 2010. In: S. Pierucci and G. Buzi Ferraris, Eds., Com-
puter Aided Chemical Engineering, Copyright 2010 by Elsevier.

Part of this section is reprinted with permission from “A Nonlinear Programming Approach for
Estimation of Transmission Parameters in Childhood Infectious Disease Using a Continuous Time
Model” by Word, D.P., Cummings, D.A.T., Burke, D.S., Iamsirithaworn, S., and Laird, C.D., 2012.
Journal of the Royal Society Interface, Copyright 2012 by The Royal Society.

Part of this section is reprinted with permission from “A Progressive Hedging Approach for Pa-
rameter Estimation of Stochastic Nonlinear Programs” by Word, D.P., Watson, J.P., Woodruff, D.,
and Laird, C.D., 2012. Proceedings of PSE2012, Singapore, Copyright 2012 by Elsevier B.V.

Part of this section is reprinted with permission from “Interior-Point Methods for Estimating
Seasonal Parameters in Discrete-Time Infectious Disease Models” by Word, D.P., Young, J.K.,
Cummings, D.A.T., Iamsirithaworn, S., and Laird, C.D., 2013. Submitted to PLOS One.

Part of this section is reprinted with permission from “Efficient Parallel Solution of Large-Scale
Nonlinear Dynamic Optimization Problems” by Word, D.P., Kang, J., Akesson, J., and Laird, C.D.,
2013. Submited to Computation Optimization and Applications.
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in the decision making process. For example, quantitative long-term dynamic models

could be used to determine optimal allocation of limited resources, predict outbreak

risk, and perform response planning. Reliable models can be used to quantify the

effectiveness of previous response tactics and predict the benefit of future planned

responses. Second, from a scientific perspective, the identification of a reliable mech-

anistic model can improve our understanding and identification of important factors

affecting infectious disease dynamics. The dynamics of infectious disease spread are

not only a function of the disease itself, but also a function of the social and environ-

mental landscape in which the infection spreads. Therefore, to ensure the reliability

of these models, they must be able to describe past system behavior, and reliable

estimation of disease model parameters and inputs from existing case data is essen-

tial. Ideally, these models will not only reliably describe past system behavior but

also be capable of effective extrapolation when given changes in the system inputs.

There are two primary goals of this research. The first is the development of

high quality infectious disease models and estimation of suitable model parameters

so that historic disease dynamics are reliably captured. This goal requires models

of appropriate size and complexity to describe disease transmission and the estima-

tion of suitable temporally varying model parameters. To meet this goal, problem

sizes often become very large and require efficient estimation approaches. The de-

velopment and demonstration of efficient estimation approaches is the second goal.

These estimation approaches enable the solution of much larger and more difficult

estimation problems than what would be possible with less powerful tools.

1.1 Estimation Problems in Epidemiology

Childhood infectious diseases, such as measles and chickenpox, remain a serious

public health concern, especially in developing countries, and are commonly used as

2



a test bed for developing disease models and estimation procedures due to the avail-

ability of long-term case count data. Probably the most highly studied dataset for

measles has been made available electronically by Grenfell (Bjornstad et al., 2002)†.

This data set contains yearly reported birth records in addition to biweekly reported

measles case counts and has several favorable properties, including a high report-

ing fraction and temporal resolution. Unfortunately, these favorable characteristics

are not typical among other datasets. In fact, for most long-term studies, the only

available data are disease case counts (incidence) aggregated over time periods that

are longer than the serial interval for the disease. The reporting of this case data

differs by origin, with locations reporting data at widely varying intervals such as

weekly, monthly, or quarterly. The number of cases that are reported can be signif-

icantly lower than the actual number of cases, and the level of this underreporting

can differ widely over long time horizons, even in the same location (Bobashev et al.,

2000). The incidence is almost always under-reported since the data is typically

collected passively, and infected individuals may seek medical attention from health

care providers that are not obligated to report. Furthermore, the extent of this

under-reporting may be difficult to quantify. Changes in public health policies and

administration, as well as changing geographic boundaries such as city expansion,

can also result in reporting inconsistencies over the full time horizon. Additionally,

little information is known about the number and dynamics of susceptibles within the

population, therefore this state variable must be estimated along with the unknown

parameters. While each of these difficulties may not be present in all epidemiological

datasets, they are representative of those encountered in many historical, passively-

reported datasets on the incidence of childhood diseases, and they result in significant

challenges for effective parameter estimation.

†URL: http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.htm

3



In addition to the difficulties inherent in the available data, estimation is further

complicated by the structure of the disease models themselves, and a number of

modeling and parameter estimation approaches have been proposed. There are two

fundamental classes of mechanistic models used for the spread of infectious disease.

Individual or agent-based modeling approaches have been used extensively and have

been proposed for control strategies (Ferguson et al., 2005), however, the large pa-

rameter space of these models often overwhelms the data available to specify those

parameters. Compartment-based disease models, such as the classic Susceptible-

Infected-Recovered (SIR) models, differ significantly from agent-based models.

Compartment-based disease models describe the dynamics of the disease within

the population. In these models the population is assumed to be well mixed with

individuals placed into various compartments based on their status with respect to

the disease. For example, individuals can be classified as being susceptible to the

disease (S), infected but not infectious (E), infected and infectious (I), or recovered

and immune (R). Additional compartments are included in many models to represent

other stages, such as young children who are temporarily immune to the disease

because of antibodies obtained from their mother may be represented by a maternal

immunity compartment (M). In general, the classification of the model is determined

by the flow of the population from one compartment to another. A few examples

include SIR, SEIR, MSEIR, SIRS, SEIRS, SI, and SIS (Hethcote, 2000). In this

research we focus on the study of measles dynamics using SIR based models.

In contrast to agent-based models, these models have fewer parameters and can

be described by sets of differential or discrete-time equations, allowing for efficient,

derivative-based estimation from historical case data. Within this framework, model

structures can vary dramatically depending upon the selection of incidence and recov-

ery functions and the discretization strategy selected. While the spread of measles

4



is a continuous process, discrete-time models have been formulated in addition to

continuous-time models. Considerations can also be made for age or spatial dynam-

ics. Furthermore, when performing parameter estimation, several measures of fit can

be proposed, and while measles spread is inherently stochastic, this characteristic is

included in some models and ignored in others.

An examination of measles data shows a strong seasonality in the reported cases

leading many models to contain a seasonally varying transmission parameter, but the

cause for the seasonality is often not entirely known. Identifying correlations between

potential system inputs and transmission dynamics is important for understanding

factors that affect disease dynamics. This is especially apparent in long-term models

where it is not uncommon for social structure and environmental factors to change

significantly over the time horizon studied. A better understanding of these factors

is important for improving public health policy and aiding public health officials in

establishing appropriate control strategies.

In this work we focus on the estimation of seasonally varying transmission pa-

rameters in infectious disease models from real measles case data. We formulate both

discrete-time and continuous-time models and discuss the benefits and shortcomings

of both types of models. Additionally, we investigate seasonality in multiple model

parameters, and show that nearly identical seasonality can be estimated from differ-

ent model parameters. Using data from multiple locations, the seasonality estimated

in these parameters shows strong correlation to school term holidays even across very

different social settings and holiday schedules. While this result may not explicitly

explain the cause of observed seasonality in measles incidence, it lends support to

the assertion that school holidays influence the dynamics.
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1.2 Efficient Estimation Approach

Due to the many difficulties inherent in estimation problems involving infectious

diseases, an ideal estimation procedure should be flexible enough to accommodate

the limitations in the available data and the challenges associated with complex

nonlinear models. In addition, one seeks methods that are computationally efficient

to enable significant exploration of different model structures along with the promise

of tackling larger systems.

Advanced nonlinear programming packages provide an excellent framework for ef-

ficient estimation of parameters in infectious disease models from long-term case data.

Modern mathematical programming languages (e.g., AMPL (Fourer et al., 1993),

GAMS (Rosenthal, 2012), Pyomo (Hart et al., 2012), Modelica (Association et al.,

2007)) offer convenient and powerful tools to formulate these estimation problems in

a flexible framework that allows for exploration of different model structures. Addi-

tionally, these tools provide efficient computation of derivative information through

automatic differentiation. This allows for their interfacing with powerful numerical

solvers that utilize the available derivative information to efficiently solve the formu-

lated problems. Modelers can therefore easily develop numerous models with varying

structure and compare estimation results using these models in a timely manner.

Recent advancements in nonlinear programming tools (Gould et al., 2004) allow

efficient solution of sparse problems with hundreds of thousands of variables and con-

straints using standard desktop computing power (Zavala and Biegler, 2006; Zavala

et al., 2008; Laird et al., 2005; van Bloemen Waanders et al., 2003), and large-scale

nonlinear programming (NLP) has proven to be an effective framework for opti-

mization of operations and profits within the chemical process industries (Scheu and

Marquardt, 2011; Diehl et al., 2002; Zavala et al., 2008; Zhu et al., 2010; Tanaka and
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Martins, 2011). In this work, we utilize primal-dual interior-point methods based

upon the popular open-source solver Ipopt (Wächter and Biegler, 2006) to solve

our estimation problems. This has proven to be a powerful tool for optimization of

many large systems, and herein we demonstrate its application to infectious disease

problems.

The success of these methods has led to the continued development and growth

of the mathematical systems describing the optimization problem to improve model

rigor and increase the scope of the optimization, and the scale of the NLP problems

of interest to both industry and academia can often outstrip the capacity of modern

workstations. While significant theoretical advancements have been made in general

NLP algorithms, the solution of very large-scale models remains challenging if not

impractical (Hartwich and Marquardt, 2010). Concurrently, the advances in comput-

ing clock rates and instruction throughput that we once took for granted have slowed

dramatically. Computer chip design companies have instead focused on development

of parallel computing architectures such as multi-core and hyper-threading devices

(Zhu et al., 2009). These new architectures require advanced algorithms to exploit

their parallelism, which means that the “free” performance improvements that we

have enjoyed as a result of advances in computing hardware will no longer be pos-

sible unless we develop algorithms that are capable of utilizing modern computing

architectures efficiently. Exacerbating this issue, modern computing architectures

are becoming more complex and the parallel computing community is seeing a shift

from the use of general purpose CPUs towards specialized processors and hetero-

geneous architectures. This reflects a significant paradigm shift in the design and

implementation of numerical optimization algorithms that can exploit emerging ar-

chitectures.

Very large problems also arise in infectious disease modeling, and powerful so-
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lution approaches are needed. Many techniques exist to estimate parameters for

temporal dynamics in single cities (Finkenstädt and Grenfell, 2000; Word et al.,

2012; Cauchemez and Ferguson, 2008; Hooker et al., 2011), but spatio-temporal dy-

namics across multiple cities is also important (Xia et al., 2004; Jandarov et al.,

2013). In England and Wales prior to vaccination, measles was endemic in large

cities, but in smaller cities disease fadeout occurred (Xia et al., 2004). Reappearance

of the disease would then occur only after a case was imported from a surrounding

city where measles was endemic. To capture spatio-temporal dynamics, multi-city

models must be developed, but these models can become very large requiring more

memory and processing power than a single computer can deliver. To solve these

problems efficiently, parallel solution approaches are necessary.

This research explores two approaches for efficient parallel optimization. The first

approach recognizes equivalences between traditional parameter estimation problems

and stochastic programming problems that allows for the formulation and solution

of parameter estimation problems using algorithms designed for stochastic programs.

Here, the progressive hedging algorithm is used to estimate seasonally varying trans-

mission parameters for 60 cities in England and Wales. This approach decomposes

the problem into multiple scenarios where each city contributes data for one scenario.

While not a true spatially distributed model, solving this large-scale problem is the

first step to development of a solution approach for a true spatio-temporal disease

model. The progressive hedging algorithm is easily implemented in parallel, and thus

offers a tool that can be used not only to solve large problems faster than with serial

approaches, but can also solve problems so large that they could not be stored in the

memory of a serial computer.

While there are many advantages to use progressive hedging, including the ease of

problem formulation and implementation, one shortcoming is that the convergence
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of this algorithm can be very slow in some cases since only an averaging scheme

is used to drive convergence. Parallel solution approaches making use of derivative

information that give guaranteed optimal convergence are also desirable and is the

topic of the second parallel optimization approach.

An alternative to the scenario-based decomposition used in progressive hedging

is to perform a decomposition based on time. A parallel Schur-complement decom-

position algorithm for nonlinear dynamic optimization problems formulated using

the simultaneous approach has been developed. This algorithm exploits structure

inherent in nonlinear dynamic problems discretized using orthogonal collocation pro-

cedures. This structure allows decomposition using a Schur-complement algorithm

for parallel solution of the linear systems resulting from an interior-point solution of

these optimization problems. When coupled with a parallel interior-point algorithm,

efficient solution of real, large-scale optimization problems is possible. While this

approach is efficient for problems with many more algebraic than state variables,

our research showed that it was not an effective method for our infectious disease

formulation. Therefore, this algorithm is demonstrated for the optimal start up of a

combined cycle power plant.

1.3 Dissertation Outline

Many years of epidemiology research has been dedicated to modeling and estima-

tion of infectious disease dynamics, and a review of this relevant work is presented

in Section 2. This section highlights papers from several decades of research, and

lays the foundation from which our modeling and estimation approaches grew. This

review explains the premise of compartment based modeling and details research in

discrete-time and continuous-time compartment based models where multiple com-

partments are included. Several estimation approaches are described that focus pri-
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marily on the estimation of seasonally varying transmission parameters. Efficiency

of these estimation approaches vary widely with some requiring only minutes and

others requiring many hours, and results from several of the studies referenced in

this section are compared against our results in future sections.

One of the primary goals of our research is the development and demonstration

of efficient and powerful approaches to estimate unknown parameters in infectious

disease models. The basis of our estimation approach lies in the use of primal-dual

interior-point methods for nonlinear programming. While these techniques were not

developed during this research, a basic understanding is important to explain how

our estimation formulations are suitable for this solution framework. Section 3 gives

an overview of the interior-point methods used for all of the estimations described

herein and highlights the components of these methods that can be implemented in

parallel to build an efficient parallel algorithm.

In Section 4, we show the flexibility inherent in large-scale nonlinear program-

ming techniques and the ability of these techniques to efficiently estimate transmis-

sion parameters in multiple disease models using measles case count data. We utilize

interior-point methods to efficiently estimate parameters in multiple discrete-time

disease models using measles case count data from three cities. These models in-

clude multiplicative measurement noise and have seasonality incorporated into mul-

tiple model parameters. Our results show that nearly identical seasonality can be

estimated from different model parameters, and that the seasonality estimated in

these parameters shows strong correlation to school term holidays even across very

different social settings and holiday schedules. In all cases, including for time-series

data sets of up to 20 years, we were able to perform the estimations in less than

6 seconds. This computational efficiency and flexibility opens the door for investi-

gating many alternative model formulations and encourages use of these techniques
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for estimation of larger, more complex time-discretized models like those with age-

dependent dynamics, more complex compartment models, and spatially distributed

data.

Section 5 presents a nonlinear programming approach for estimating unknown

states and the seasonal transmission parameter for measles transmission using a

continuous-time model with continuous differential equations and both measure-

ment and model noise. Continuous-time formulations offer several advantages over

discrete-time formulations for estimation of infectious disease models. Data can be

handled in its native form regardless of the reporting interval. This is demonstrated

by using biweekly reported data from London and monthly reported data from New

York City and Bangkok. Using data in its native form is a significant advantage

for diseases with short serial intervals where it would be unreasonable to have data

reported at the same interval. The problem is formulated using the simultaneous

approach where all state variables are discretized, and the discretized differential

equations are included as constraints, giving a large-scale algebraic nonlinear pro-

gramming problem that is solved using a nonlinear primal-dual interior-point solver.

The overall reliability, flexibility, and efficiency is demonstrated in a simulation study

and in estimations performed on real case data from three cities.

The discrete-time and continuous-time models outlined in Sections 4 and 5 both

fit the reported data well while demonstrating similar seasonality in the transmission

parameter. The quality of fit was nearly identical in both formulations despite the

presence of an additional parameter on the incidence in the discrete-time model that

was not present in the continuous-time model. This shows that the continuous-time

formulation is able to reproduce the data as well as the discrete-time formulations.

Since the continuous-time formulation can easily accommodate different reporting

intervals and recovery rates, it is preferable. The ability to use data with a reporting
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interval differing from the serial interval of disease is a significant advantage of the

continuous-time model especially for diseases with short serial intervals. Further-

more, it is a more natural description of the continuous process and provides a well

developed framework for studying alternative model formulations. Despite the differ-

ences, both discrete-time and continuous-time formulations show seasonality having

a strong correlation with school term holidays.

Our parameter estimation formulations have focused on temporal dynamics of

measles for single cities, however there is a strong need to also understand spatio-

temporal dynamics across multiple (often many) cities. While many techniques exist

for estimations involving single cities, the scale of spatio-temporal multi-city prob-

lems becomes prohibitively large for many solution approaches. This use-case is one

of many that motivate the development of parallel algorithms.

Traditional parameter estimation problem formulations and two-stage stochastic

programs are structurally equivalent, which allows parallel algorithms for solving

these stochastic programs to be used to solve parameter estimation problems. In

Section 6 we demonstrate the use of the progressive hedging algorithm to estimate

seasonal transmission parameters for a continuous-time measles model using data

from 20 years and 60 cities in England and Wales. This algorithm is easily paral-

lelizable and shows promise for solving very large-scale problems that are too large

to be formulated on a single computer.

Interior-point methods provide a framework for efficient solution of discretized

dynamic optimization problems. Section 7 presents a decomposition strategy appli-

cable to DAE constrained optimization problems. Direct transcription is applied to

these problems and the resulting nonlinear program is solved using a parallel interior-

point algorithm. In our method, we exploit structure in the system resulting from

the transcription method in order to preform linear algebra operations on multiple
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processors. This algorithm shows significant performance improvements over serial

approaches in our case studies.

Section 8 concludes this work. This section summarizes the research described in

this document and discusses future research directions.
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2. PARAMETER ESTIMATION IN EPIDEMIOLOGY∗

This section is composed of three parts. The first section contains the literature

review describing previous research in epidemiology from which our work formulat-

ing discrete-time models was developed. This includes a thorough description of

compartment based modeling and various models that have been formulated for the

study of measles. This covers many years of research and brief contributions from

each work are noted. Some of this literature review overlaps with that described in

the next section which focuses on previous research in epidemiology from which our

work in continuous-time models arose. Here, we highlight shortcomings inherent in

discrete-time formulations that encourage the development of continuous-time mod-

els. Many approaches have been used for estimation with continuous models, and we

mention a few here. Any redundancy between sections is only intended to elucidate

the contributions of past research to each portion of our work. Finally, we mention

our new estimation approach for these challenging problems.

2.1 Discrete-Time Models for Measles

The modeling of infectious disease spread has been an increasingly active area

of research for the last century. In 1906, Hamer used the mass action assumption,

that incidence is proportional to the product of the densities of susceptibles and

∗Part of this section is reprinted with permission from “Estimation of seasonal transmission
parameters in childhood infectious disease using a stochastic continuous time model” by Word,
D.P., Young, J., Cummings, D., and Laird, C.D., 2010. In: S. Pierucci and G. Buzi Ferraris, Eds.,
Computer Aided Chemical Engineering, Copyright 2010 by Elsevier.

Part of this section is reprinted with permission from “A Nonlinear Programming Approach for
Estimation of Transmission Parameters in Childhood Infectious Disease Using a Continuous Time
Model” by Word, D.P., Cummings, D.A.T., Burke, D.S., Iamsirithaworn, S., and Laird, C.D., 2012.
Journal of the Royal Society Interface, Copyright 2012 by The Royal Society.

Part of this section is reprinted with permission from “Interior-Point Methods for Estimating
Seasonal Parameters in Discrete-Time Infectious Disease Models” by Word, D.P., Young, J.K.,
Cummings, D.A.T., Iamsirithaworn, S., and Laird, C.D., 2013. Submitted to PLOS One.
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infectives, in a discrete-time model to better understand measles (Hamer, 1906). In

1911, Ross used a differential equation model to improve understanding of malaria

incidence and control (Ross, 1910). Many other deterministic epidemiology models

have been developed, and while many have been unable to predict outbreaks (Bailey

and Bailey, 1987; Lotka, 1922; Dietz, 1967, 1988), they were able to analyze important

characteristics of infection. For example, Kermack and McKendrick discovered in

the 1920s that a threshold density of susceptibles must be exceeded for an epidemic

outbreak to occur (Kermack and McKendrick, 1927; McKendrick, 1925). Throughout

the century, a host of publications incorporating various phenomena in different

formulations have presented various approaches to disease modeling (Hethcote, 2000,

1994).

Infectious disease spread is typically described by one of two fundamental classes

of mechanistic models. Agent-based or individual modeling approaches, which have

been used to propose control strategies (Ferguson et al., 2005), can suffer from a

model parameter space that is too large for the available data to successfully specify

parameters. Alternatively, compartment-based modeling can be used to describe the

population with respect to various stages of disease infection. Compartment-based

modeling is the approach used in this work.

In the compartmental framework the population is divided into various compart-

ments based on their status with respect to the disease (Anderson and May, 1991;

Hethcote, 2000; Daley and Gani, 1999; Diekmann and Heesterbeek, 2000). In the

basic SIR model, the population is assumed to be well-mixed, and individuals are

classified as being susceptible to the disease (S), infected with the disease (I), or

recovered from the disease and currently immune (R). Mathematical models based

on the compartmental framework can be formulated in both continuous-time (result-

ing in coupled differential equations) and discrete-time (giving rise to a large set of
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algebraic or transcendental equations). For a discrete-time model, St, It, and Rt are

the current number of susceptible, infected, and recovered individuals at each time

interval t. The infection process that defines the number of new cases in a given

time interval is described through the incidence function, which usually depends on

the present value of the state variables as well as model parameters Θ, which may

themselves depend on time. The recovery process is described by a recovery function

that is usually dependent on It and Θ only.

The classical incidence function for the number of new cases at interval t is

typically defined by βItSt/Nt. Here, β (known as the transmission parameter) is

proportional to the number of adequate contacts for the spread of infections, and

Nt is the total population at time t. In a structural sense, this is one of the most

basic models of infectious disease dynamics, and more complex compartment struc-

tures have been studied (Anderson and May, 1991; Hethcote, 2000, 1994). However,

significant flexibility in this basic model is still possible through various definitions

of the incidence and recovery functions. In particular, by allowing seasonal model

parameters, discrete-time models of this basic structure can have a tremendous ca-

pability to fit real world case data (Finkenstädt and Grenfell, 2000; Bjornstad et al.,

2002; Grenfell et al., 2002).

Based on work by Soper (Soper, 1929), Fine and Clarkson consider an incidence

function where the transmission parameter is allowed to vary with time (Fine and

Clarkson, 1982). They estimate values of this temporally varying transmission pa-

rameter using measles incidence data collected in England and Wales from 1950-1966.

Over this time period, the incidence follows a biennial pattern of alternating major

and minor epidemics. Remarkably, however, their estimate of the time-varying trans-

mission parameter has a similar pattern and magnitude in both minor and major

epidemic years. Furthermore, this pattern is loosely correlated with school holidays.

16



This strongly supports the assertion of a relatively consistent, underlying seasonal

transmission effect related to school terms. They conclude that the observed biennial

pattern is a result of the dynamics of susceptible individuals in the population as

driven by births and the infection process.

Semi-mechanistic approaches have also been used to describe the infection pro-

cess. Ellner et al. coupled the mechanistic compartment balances with a phenomeno-

logical model (empirically estimated) to describe the incidence function (Ellner et al.,

1998). Using the measles dataset from England and Wales, they estimate a general

form for the incidence relationship using both feed forward neural networks and

semi-nonparametric models. Probing the input-output behavior of their estimated

incidence relationship, they suggest the presence of an underlying seasonal effect and

that the incidence function should be nonlinear in It. Lui et al. conduct a thorough

analysis of the equilibrium behavior and stability properties of various continuous-

time compartment models with nonlinear incidence rates of the form βIp(t)Sq(t)

(Liu et al., 1987). They conclude that, while values of q 6= 1 have no “major ef-

fects”, altering the value of p from unity can have a significant effect on qualitative,

long-term behavior.

There is significant work being done to investigate the homogeneity, or lack

thereof, in mixing within populations. Cauchemez and Ferguson confirm that assum-

ing nonlinearity in It is necessary to not miss key features of epidemics (Cauchemez

and Ferguson, 2008). Keeling and Eames explore the implementation of various

techniques from network theory into epidemiology theory to provide a more accurate

estimation of mixing networks than the typical random-mixing assumption (Keeling

and Eames, 2005). In another paper, Keeling specifically examines using metapopu-

lation models to better understand mixing dynamics (Keeling, 1997). Lloyd analyzed

an SIR model using a gamma distributed infectious period rather than the normal
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exponential infectious period (Lloyd, 2001).

Concerning the spread of measles, the results of Fine and Clarkson and others

provide strong evidence of an underlying seasonal mechanism that is linked to school

terms (Fine and Clarkson, 1982), although Gomes et al. did not reach that conclusion

for Portugal (Gomes et al., 1999). However, the Fine and Clarkson model (Fine and

Clarkson, 1982) has been criticized (Mollison and Din, 1993), since its long term

behavior does not exhibit the observed two-year periodicity, but rather a periodicity

close to three years. It is with this backdrop that Finkenstädt and Grenfell introduce

the time-series SIR model that can adequately describe the periodicity of the data by

using a seasonally varying transmission parameter (Finkenstädt and Grenfell, 2000).

In Section 4 we extend the ideas of Finkenstädt and Grenfell (Finkenstädt and

Grenfell, 2000) and present a large-scale, nonlinear programming approach for effi-

cient estimation of time-series SIR models using existing case data. We make use of

the time-series SIR model because of its demonstrated ability to reliably represent

measles time-series data and the lack of an assumed functional relationship restrict-

ing the shape of the seasonal transmission profile. However, unlike in Finkenstädt

and Grenfell (2000), our approach is not one-step-ahead, and we do not require the

susceptible dynamics and the time-varying reporting fraction as inputs, but instead

estimate them simultaneously with the unknown model parameters. The simulta-

neous estimation of the reporting fraction has been performed previously with a

continuous-time SEIR model, where a generalized profiling estimation approach was

used that also estimated the susceptible dynamics and the reporting fraction along

with the model parameters (Hooker et al., 2011). Here, we use an interior-point

method to estimate seasonal parameters for discrete-time models and investigate

seasonality in multiple model parameters.

Our estimation problem described in Section 4 is formulated as a large-scale non-
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linear programming problem (NLP). The discrete-time model is written over the

entire time horizon of the selected data and included in the formulation as con-

straints. While this approach produces a very large-scale nonlinear programming

problem, it can be solved efficiently using modern NLP solvers. Advancements in

NLP algorithms, including the introduction of large-scale nonlinear interior-point

methods (Wächter and Biegler, 2006; Byrd et al., 2006, 1999; Waltz et al., 2006;

Gould et al., 2004) allow efficient solution of increasingly large problems like those

presented here. In addition, this approach is very flexible, allowing one to easily

formulate new model structures. For example, in this paper we present models with

multiplicative noise in the measurements and seasonality in three different model

parameters.

The effectiveness of this overall approach is demonstrated in Section 4 with data

from communities above the critical community size (where the disease is endemic).

Parameters are estimated using available pre-vaccination measles data from the UK

(Bjornstad et al., 2002) and New York City (Yorke and London, 1973) from 1944-

1963, as well as pre-vaccination measles data collected in Thailand from 1975-1986

(of Epidemiology, 1986). The school term schedule in Thailand differs significantly

from the schedule in the other two locations, making it an excellent complimentary

dataset for comparing the seasonality of model parameters with school patterns.

2.2 Continuous-Time Models for Measles

It is clear from measles case data that measles incidence follows strong seasonal

patterns. As early as 1929, Soper estimated transmission rates from monthly measles

case data and proposed that the seasonality was correlated with school terms (Soper,

1929). In 1982, Fine and Clarkson used measles data from the years 1950 to 1965

in England and Wales to estimate a time varying transmission profile (Fine and
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Clarkson, 1982). Over this time horizon the data shows a biennial pattern of al-

ternating large and small measles outbreaks, yet the estimated transmission profile

remained very similar from year to year. In addition, the estimated transmission

profile appeared to be correlated with school holidays.

Reliable estimation from available data can be challenging. Typically, the only

disease data available are the case counts (or incidence) of the disease. However,

the number of susceptible individuals in the population also has a significant affect

on the dynamics of disease spread, and little quantitative data is typically available

describing this population. In addition, due to passive collection, the number of

reported cases is often significantly lower than the actual number of cases. This can

lead to significant underreporting in the data with some data sets reporting fewer

than 5% of the actual number of cases. This has led researchers to consider two-stage

approaches where the susceptible dynamics and reporting factor are estimated first

(Bobashev et al., 2000) and are then treated as known inputs for estimating trans-

mission parameters (Finkenstädt and Grenfell, 2000). In this section, we estimate

the degree of underreporting in case counts and the susceptible dynamics themselves

simultaneously with the transmission parameters.

Finkenstädt and Grenfell developed a time-series SIR (TSIR) model as a discrete-

time model with 26 discretizations per year which is consistent with the serial in-

terval of measles (Finkenstädt and Grenfell, 2000). This model uses a time varying

transmission parameter β with yearly periodicity to give 26 unique values for β to

describe the time-profile. Although the transmission parameter is assumed to have

yearly periodicity, no strong assumption is made regarding the functional form of

the parameter. Instead, the parameter profile is treated as an unknown input to be

estimated using case count data by finding a one-step-ahead solution to the estima-

tion problem. The estimates from this model using data from England and Wales
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strengthened the claim that measles transmission is correlated to school holidays.

While discrete-time models like these have proven useful, they suffer from signif-

icant drawbacks. These models are discretized over the serial interval of the disease,

and the estimation approach requires that the reporting interval of the disease data

be an integer fraction of the serial interval. The England and Wales measles data is

reported weekly and the serial interval is two weeks making the approach suitable

for this data set, but most existing data sets have reporting intervals longer than the

serial interval of the disease. Furthermore, the TSIR model includes a parameter α as

an exponent on the incidence (Ii+1=βiI
α
i Si). This parameter is difficult to interpret

physically, and it has been conjectured that it simply serves to correct for the fact

that the model is discrete and not continuous (Xia et al., 2004; Glass et al., 2003).

Continuous models are not only a more natural framework for modeling the

continuous nature of disease dynamics, but they also overcome some of the challenges

inherent in many discrete-time models. Continuous-time models allow for varying

discretization strategies and allows the discretization to differ from the reporting

interval of data and the serial interval of the disease. This allows for data to be

used in its native form rather than requiring that the data fit a specific reporting

interval as is required in the TSIR approach of Finkenstädt and Grenfell (Finkenstädt

and Grenfell, 2000). In addition, for this work, no exponent α is included on the

incidence term reducing the number of parameters to be estimated by one. Despite

this reduction in parameters, these models have been shown to capture the observed

disease dynamics comparably (Cauchemez and Ferguson, 2008; Word et al., 2010).

Several continuous-time disease models have been developed. Greenhalgh and

Moneim examined the stability properties of different transmission forms and used

simulations to show that different periodic solutions are possible with different types

of seasonally varying transmission rates (Greenhalgh and Moneim, 2003). Schenzle
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developed an age and time dependent differential equation model and used sim-

ulations to demonstrate that an age-dependent transmission rate more accurately

reproduced actual measles data (Schenzle, 1984). Cauchemez and Ferguson devel-

oped a stochastic continuous-time SIR model and used it to estimate transmission

profiles from London measles data (Cauchemez and Ferguson, 2008). Cintrón-Arias

et al. studied parameter subset selection using a continuous-time SEIRS model with

a sinusoidally periodic transmission parameter (Cintrón-Arias et al., 2009). This

work explored parameter identifiability using synthetic data.

Another challenge of disease modeling is that the transmission of infectious dis-

ease is an inherently stochastic process. The use of deterministic models has proven

reasonable for use in large cities above a critical community size, but in smaller cities

fadeout is seen and deterministic models perform poorly. For measles, the critical

community size has been estimated to be around 300,000 people (Keeling, 1997;

Bartlett, 1957). When fadeout is observed, reappearance of the disease is caused by

an influx of an infected individual into the susceptible population. Finkenstädt et al.

(Finkenstädt et al., 2002) modified their TSIR model to allow for stochasticity, and

used Monte Carlo simulations to study the affect of the latent stochastic variability

of influx.

Other models have been developed to allow for stochasticity using various Monte

Carlo techniques. While useful, Monte Carlo techniques suffer from high cost of com-

putation making them unreasonable for large scale models. For example, Cauchemez

and Ferguson presented a stochastic continuous-time model using a statistical ap-

proach to analyze time-series epidemic data (Cauchemez and Ferguson, 2008). This

approach used a data augmentation method to overcome difficulties in inference

and presented a diffusion process that mimics the epidemic process. These sys-

tems contain stochasticity in the model along with unmeasured states. Therefore,
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Cauchemez and Ferguson construct the likelihood of the parameters conditional on

the data including an integration over the unknown state space. This approach pro-

vides guarantees against bias in the estimated parameters, however, the Metropolis-

Hastings MCMC sampling is very computationally expensive requiring 20 hours per

run (Cauchemez and Ferguson, 2008). Hooker et al. (Hooker et al., 2011) presented

an SEIR model to perform parameter estimation with measles data from Ontario

using generalized profiling (Ramsay et al., 2007). This approach estimates state

variable trajectories and model parameters using a sequential numerical optimiza-

tion approach that is much more efficient than MCMC techniques, but this approach

can still require about 2 hours per estimation (Hooker et al., 2011), although part of

this time was due to the iterative process of setting the smoothing parameter in the

problem formulation.

He et al. (He et al., 2010) demonstrated their plug-and-play method as a frame-

work for modeling and inference by performing estimates using weekly measles case

count data from the 10 largest cities and 10 small cities from England and Wales.

This work used an SEIR model with a seasonally varying transmission parameter.

The seasonality of the transmission parameters was fixed to correspond with school

term holidays, but the amplitude of the seasonality was estimated. Additionally, the

durations of the latent and infectious periods were estimated. This approach required

approximately 5 hours per estimation, but reductions in the time requirements could

be made by tailoring the procedure specifically for a given problem.

2.3 Summary

This literature is the basis upon which our estimation formulations are derived.

While similarities certainly exist between our measles model formulations and those

found in previous work, our estimation approach described in Section 3 has not
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been applied before to these epidemiology problems, and significant advantages are

available using our nonlinear programming approach. For example, the time required

for estimation using the procedures mentioned above was often several hours, while

we demonstrate the ability of our approach to solve similar problems in only a few

seconds.

Section 3 describes the estimation framework and tools employed in our work.

The specific estimation formulations and results for discrete-time and continuous-

time models using measles data are detailed in Sections 4 and 5.
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3. NLP FRAMEWORK FOR PARAMETER ESTIMATION∗

In this section we describe the nonlinear programming framework we employ to

formulate and solve parameter estimation problems. Several modeling tools and

languages have been used successfully in our research, and we briefly describe each

in Section 3.1.

Primal-dual interior-point methods are utilized for all of our numerical solutions,

and we describe the basis of interior-point algorithms in Section 3.2. The interior-

point algorithms used in our research have been described previously in the literature

and were not developed in our work. The highly successful Ipopt code was used for

solution of all measles applications included in this work.

Our research in infectious disease modeling includes discrete-time and continuous-

time models. The continuous-time models require discretization to formulate in a

nonlinear programming framework. Many discretization techniques can be used, and

we outline two strategies for collocation on finite elements in Section 3.3.

3.1 Modeling Tools

Modern modeling languages allow for rapid creation of complex optimization

problems and reduce the burden of model development, optimization problem for-

mulation, and interfacing with numerical solvers. Three modeling languages have

been used in the work presented here and are briefly described below.

∗Part of this section is reprinted with permission from “A Nonlinear Programming Approach for
Estimation of Transmission Parameters in Childhood Infectious Disease Using a Continuous Time
Model” by Word, D.P., Cummings, D.A.T., Burke, D.S., Iamsirithaworn, S., and Laird, C.D., 2012.
Journal of the Royal Society Interface, Copyright 2012 by The Royal Society.

Part of this section is reprinted with permission from “A Progressive Hedging Approach for
Parameter Estimation of Stochastic Nonlinear Programs” by Word, D.P., Watson, J.P., Woodruff,
D., and Laird, C.D., 2012. Proceedings of PSE2012, Singapore, Copyright 2012 by Elsevier B.V.

Part of this section is reprinted with permission from “Efficient Parallel Solution of Large-Scale
Nonlinear Dynamic Optimization Problems” by Word, D.P., Kang, J., Akesson, J., and Laird, C.D.,
2013. Submited to Computation Optimization and Applications.
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The modeling language used to formulate the estimation problems discussed in

Sections 4 and 5 is AMPL (Fourer et al., 1993). AMPL is an algebraic modeling

language for optimization problems that provides first and second order derivatives

using the AMPL Solver Library (ASL) for automatic differentiation. This package

was developed at Bell Laboratories and has been available for a number of years.

While the MPL language compiler is commercial, the ASL package is open-source.

The efficiency of ASL in calculating derivatives has made it a popular interfacing

tool for many numerical solvers.

The estimation problem described in Section 6 was formulated in the Python

Optimization Modeling Objects (Pyomo) software package (Hart et al., 2011, 2012).

Pyomo provides an optimization and modeling platform in a Python environment

(Foundation, 1990). Pyomo is part of the open-source Coopr (COmmon Optimiza-

tion Python Repository) software library released by Sandia National Laboratories

(COOPR, 2008). Pyomo allows users to formulate linear, nonlinear, mixed-integer

linear, and mixed-integer nonlinear models and interfaces with many commercial and

open-source solvers. Due to the scripting capabilities inherently available through

the use of a Python environment, many extensions have been packaged with Coopr

that provide additional features. For example tools have been developed to allow the

straightforward description of differential equations with automatic discretization

through collocation methods, and a disjunctive programming extension can auto-

matically convert disjuncts into Big-M and convex hull formulations. Additionally,

tools can be built into Coopr that utilize the Pyomo modeling framework. The

Python Stochastic Programming (PySP) package is one example that converts a Py-

omo model and data sets into stochastic programming problems (Watson et al., 2012;

Hart et al., 2012). Exact Hessian and Jacobian information is provided for Pyomo

through the ASL interface.
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In Section 7 we formulate optimization problems using the Modelica/Optimica

and Python-based modeling framework JModelica.org (Association et al., 2007; Åkesson

et al., 2010). This is a comprehensive modeling and optimization tool for large-scale

dynamic optimization problems that allows straightforward declaration of dynamic

equations and provides automatic discretization of these equations using direct collo-

cation methods. The platform employs compiler technology, symbolic manipulation,

and code generation to transform high-level Modelica/Optimica descriptions into

efficient executables suitable for linking with numerical solvers. Additionally, we in-

terface with the open-source symbolic framework for automatic differentiation and

optimal control, CasADi (Andersson et al., 2012), for efficient automatic differenti-

ation.

One attribute that all of these tools have in common is the ability to provide

efficient first and second order derivative information through automatic differenti-

ation. This capability makes it possible to use numerical solvers that require this

information without the difficult task of manually specifying derivatives.

3.2 Interior-point Algorithm Description

Ipopt was used directly to solve the estimation problems presented in Sections

4 and 5, and was used as the subproblem solver for the solution approach pre-

sented in Section 6. Ipopt also served as the basis for the parallel interior-point

algorithm developed in Section 7. Ipopt is an open source primal-dual log-barrier

interior-point algorithm for solving large-scale nonlinear (and non-convex) program-

ming problems with inequality constraints, and is available through the COIN-OR

foundation (Wächter and Biegler, 2006; Wächter, 2002).
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This algorithm considers problems of the form,

min
x∈<n

f(x)

s.t. c(x) = 0

dL ≤ d(x) ≤ dU

xL ≤ x ≤ xU

(3.1)

where f(x) and c(x) are assumed to be twice differentiable, dL and dU are lower and

upper bounds on a general function d, and xL and xU are lower and upper variable

bounds on x. For ease of notation, the algorithm is described for the following

problem formulation,

min
x∈<n

f(x)

s.t. c(x) = 0

x ≥ 0.

(3.2)

Note that general inequalities can be mapped to equality constraints and simple

variable bounds through the addition of slack variables.

A significant challenge in the solution of these problems is identifying the active

and inactive sets of variables (i.e. the set of variable bounds that are satisfied with

equality at the solution versus the variables that are inside their bounds at the

solution). With interior point methods, the inequality constraints are moved into

the objective function using a log-barrier term to form the barrier subproblem,

min
x∈<n

f(x)− µ
nx∑
i=1

ln(xi)

s.t. c(x) = 0.

(3.3)
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This barrier subproblem is solved (approximately) for a sequence of barrier param-

eters. It can be shown, under mild conditions, that the sequence of solutions of the

barrier subproblem converges to the solution of the original problem. From the first-

order optimality conditions for (3.3) the following equations can be derived (Wächter

and Biegler, 2006),

∇f(x)−∇c(x)λ− ν = 0

c(x) = 0

XV e− µe = 0

(3.4)

where ∇f(x) is the gradient of the objective function, ∇c(x) is the transpose of the

constraint Jacobian, λ and ν are the Lagrange multipliers for the equality constraints

and inequalities respectively, X is the diagonal matrix of xi’s, V is the diagonal

matrix of νi’s, and e is a vector of ones. A variant of Newton’s method is used to solve

equations (3.4) (with modifications to ensure the directions are descent directions).

Calculating the step [∆xT ∆λT ∆νT ] requires the solution of the following linear

system at each iteration.



H ∇c(x) −I

∇c(x)T 0 0

V 0 X





∆x

∆λ

∆ν


= −



∇f(x)−∇c(x)λ− ν

c(x)

XV e− µe


(3.5)

where H is the Hessian of the Lagrange function and I is the identity matrix.

This linear system is solved by first symmetrizing (3.5) and solving the so-called

augmented system. Exact Hessian and Jacobian information is typically available
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through modern modeling packages. A filter-based line-search strategy is utilized to

ensure global convergence. Further details concerning Ipopt can be found in the

literature (Wächter and Biegler, 2006). This approach has been used effectively on

numerous large-scale nonlinear optimization problems (Wächter and Biegler, 2006;

Zhu et al., 2010, 2011a,b).

The two most computationally expensive steps at each iteration of this algorithm

are the evaluation of the NLP residuals and gradients and solving the linear system

(3.5) for primal and dual variable steps. To reduce the time required for these steps,

the interior-point code could be implemented in parallel so that the NLP evaluations

could be performed in parallel, and some parallel method could be used to solve the

linear KKT system. These are the steps taken in Section 7 to develop a parallel

algorithm.

3.3 Collocation Approaches

For the discrete-time model formulations presented in Section 4, the model equa-

tions are included as equality constraints in the nonlinear programming problem. In

this approach, the values of the system states are converged simultaneously with the

model parameters. This technique has the potential to be very efficient since the

forward problem is converged only once along with the estimation problem. For the

continuous-time model formulations presented in Section 5, the process is a bit more

complex.

There are two general approaches for the solution of large-scale dynamic param-

eter estimation problems like that considered for our continuous-time model. The

sequential approach considers only the degrees of freedom as optimization variables.

This includes the initial conditions for state variables, as well as a discretized time

profile for the unknown parameters. A complete simulation of the forward prob-
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lem is performed at each iteration of the optimization. To make use of modern

gradient-based methods, derivative information must also be calculated along the

entire time-series simulation. These derivatives can be expensive to calculate, es-

pecially for problems with many degrees of freedom. Furthermore, these derivatives

can be noisy unless care is taken to ensure consistency of the integrator between runs

(Betts and Kolmanovsky, 2002). Noise in the evaluation of sensitivities through the

integrator can make these problems very challenging for the optimization solver. The

simultaneous approach can be used to overcome these difficulties. In the simultane-

ous approach, all variables, including the states and the parameters, are discretized

and treated as optimization variables. The entire discretized model is included as

algebraic constraints in the optimization problem. The optimization problem re-

sulting from the simultaneous approach can be larger than the sequential approach.

However, this approach can be significantly faster than the sequential approach since

the differential equation model is not converged at every iteration of the optimizer,

but rather it is converged simultaneously as constraints to the optimization. Fur-

thermore, accurate derivative information is easily obtained using modern automatic

differentiation tools coupled with existing modeling frameworks. Recent advance-

ments in nonlinear programming tools (Gould et al., 2004) allow efficient solution

of sparse problems with hundreds of thousands of variables and constraints using

standard desktop computing power (Zavala and Biegler, 2006; Zavala et al., 2008;

Laird et al., 2005; van Bloemen Waanders et al., 2003). In addition to potential

efficiency gains, this simultaneous approach allows intuitive specification of addi-

tional constraints on the parameters and the state variables, including restrictions

on the form of time-varying parameters. The flexibility of general nonlinear formu-

lations, coupled with the efficiency of large-scale algorithms make the simultaneous

discretization approach coupled with general nonlinear programming tools an appro-
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priate framework for efficient parameter estimation in nonlinear infectious disease

models.

In this work, we use the simultaneous approach. We use collocation on finite

elements to discretize the states into finite elements with fixed stepsize across the

entire time horizon (Zavala et al., 2008). This converts the continuous differential

equation model into an algebraic model that can be formulated as a nonlinear pro-

gramming problem. Two collocation techniques are used in this work to discretize

the dynamics within these finite elements which then allows the discretized equations

to be included as equality constraints in the optimization problem.

In Section 5 we used a fifth-degree Gauss-Lobatto collocation technique (Herman

and Conway, 1996). We illustrate this approach by showing the discretization of

dQ

dt
= f(t) (3.6)

within a single finite element i. Let ti,j be the time associated with finite element

i and collocation point j. With the 5th degree Gauss-Lobatto strategy, there are 5

collocation points for each finite element i (ti,0 through ti,4). The times ti,0 through ti,4

correspond to the locations of the collocation points within the finite element, where

ti,2 is the central collocation point located in the center of the finite element. The

time at ti,1 is equal to ti,2−
√

3/71
2
∆ti, and the time at t3 is equal to t2 +

√
3/71

2
∆ti,

where ∆ti is the length of finite element i. Letting Qi,j be the value of Q(ti,j) and

letting fi,j be the value of
dQ

dt
|ti,j (Equation 3.6), the collocation equations become,

Qi,1 =
1

686

{(
39
√

21 + 231
)
Qi,0 + 224Qi,2 +

(
−39
√

21 + 231
)
Qi,4

+ ∆ti

[(
3
√

21 + 21
)
fi,0 − 16

√
21fi,2 +

(
3
√

21− 21
)
fi,4

]} (3.7)
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Qi,3 =
1

686

{(
−39
√

21 + 231
)
Qi,0 + 224Qi,2 +

(
39
√

21 + 231
)
Qi,4

+ ∆ti

[(
−3
√

21 + 21
)
fi,0 + 16

√
21fi,2 +

(
−3
√

21− 21
)
fi,4

]} (3.8)

0 =
1

360

{(
32
√

21 + 180
)
Qi,0 − 64

√
21Qi,2 +

(
32
√

21− 180
)
Qi,4

+ ∆ti

[(
9 +
√

21
)
fi,0 + 98fi,1 + 64fi,2 +

(
9−
√

21
)
fi,4

]} (3.9)

0 =
1

360

{(
−32
√

21 + 180
)
Qi,0 + 64

√
21Qi,2 +

(
−32
√

21− 180
)
Qi,4

+ ∆ti

[(
9−
√

21
)
fi,0 + 98fi,3 + 64fi,2 +

(
9 +
√

21
)
fi,4

]} (3.10)

In our formulations in Section 5, we include model noise between these finite

elements so that, while inside a finite element Equations 3.7 - 3.10 are exact, between

finite elements there can be state discontinuities. With model noise between finite

elements, there is little benefit in the use of a higher order method. However, we

initialize our problem using the deterministic case where no model noise is present

(model noise terms are fixed to zero), and for this case this discretization is a high-

order method.

In Sections 6 and 7 we use a simultaneous transcription method based on finite

elements, with Radau collocation points. See Biegler (2010) for a recent monograph.

Lagrange polynomials are used to approximate the state, algebraic, and control input

profiles.

The optimization mesh for a differential algebraic equation (DAE) model of the

form

F (ẋ, x, y, u) = 0, x(t0) = x0 (3.11)
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is defined by ne finite elements, with normalized lengths hi, i=1, ..., ne, where
∑ne

i=1 hi=1.

The beginning of each finite element is then given by

ti = t0 + (tf − t0)
i−1∑
k=1

hk, i = 1, ..., ne, (3.12)

and the collocation point times are given by

ti,j = t0 + (tf − t0)

(
i−1∑
k=1

hk + τjhi

)
, i = 1, ..., ne, j = 1, ..., nc, (3.13)

where τj ∈ (0, 1], j=1, ..., nc are the Radau collocation points.

At each collocation point, the discretized variable vectors, ẋi,j, xi,j, yi,j, and ui,j

for i=1, ..., ne and j=1, ..., nc, are introduced. In addition, state variables at the

beginning of each finite element, xi,0 for i=1, ..., ne, are introduced. In each finite

element, the differentiated variables are approximated by

x(t) =
nc∑
k=0

xikL
nc+1
k

(
t− ti

hi(tf − t0)

)
, t ∈ [ti, ti+1] (3.14)

where Lnc+1
j (τ) are Lagrange polynomials of order nc which are computed based on

the points τ0, ..., τnc , with τ0=0. Accordingly, the expressions for the derivatives ẋi,j

are given by

ẋi,j =
1

hi(tf − t0)

nc∑
k=0

xi,kL̇
nc+1
k (τj), i = 1, ..., ne, j = 1, ..., nc. (3.15)

At each collocation point, ti,j, the DAE relation (3.11)

F (ẋi,j, xi,j, yi,j, ui,j) = 0, i = 1, ..., ne, j = 1, ..., nc (3.16)
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holds. In addition, continuity constraints for the state variable profiles are enforced

xi−1,nc = xi,0, i = 2, ..., ne (3.17)

as well as the initial conditions x1,0=x0. Notice that the relation (3.17) holds since

for Radau collocation points, τnc=1.

A significant difference between the Gauss-Lobatto and Radau collocation tech-

niques is the order of the approach. Radau collocation requires that the last col-

location point be placed at the end of the finite element. This reduces the order

of the collocation method by one since it removes one degree of freedom from the

method. Radau collocation has order 2n−1 where n is the number of collocation

points. Gauss-Lobatto collocation requires that the first and last collocation points

be placed at the beginning and end of the finite element respectively. This gives

Gauss-Lobatto collocation order 2n−2. While there are benefits and disadvantages

of both methods that will not be detailed here, it is important to emphasize that

both methods proved to be reasonable discretization approaches for our applications.

3.4 Summary

Optimization of process systems has proven to be an effective method for im-

proving operation and profits in the many industries (Scheu and Marquardt, 2011;

Diehl et al., 2002; Zavala et al., 2008; Zhu et al., 2010; Tanaka and Martins, 2011).

The success of these methods has led to the continued growth of these systems to

improve model rigor and increase the scope of the optimization problem, however the

solution of very large-scale models remains challenging (Hartwich and Marquardt,

2010). Furthermore, the successful use of advanced solution approaches requires that

these algorithms be interfaced with effective problem formulation tools. Modern

object-oriented modeling languages allow for rapid creation of complex optimiza-
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tion problems and reduce the burden of model development, optimization problem

formulation, and solver interfacing, and while this eases the construction of compli-

cated optimization problems, it also makes it easier to construct intractably large

problems. To continue seeing dramatic improvements in solution times and feasible

problem sizes, there is a need for the development of advanced parallel algorithms for

dynamic optimization that can utilize parallel computing architectures and interface

with modern modeling languages.

In the research presented here we demonstrate the application of interior-point

methods to solve infectious disease parameter estimation problems that have been

formulated as nonlinear programs. Because these problems can become very large

and require the use of parallel solution approaches for efficient solution, we have

also developed two parallel solution strategies for these problems and present those

approaches in Sections 6 and 7.
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4. ESTIMATING SEASONALITY WITH A DISCRETE-TIME INFECTIOUS

DISEASE MODEL ∗

Infectious diseases remain a significant health concern around the world. Mathe-

matical modeling of these diseases can be useful to better understand their dynamics

and also to develop more effective control strategies. In this section, we show the

capabilities of interior-point methods and nonlinear programming formulations to ef-

ficiently estimate parameters in multiple discrete-time disease models using measles

case count data from three cities. These models include multiplicative measurement

noise and have seasonality incorporated into multiple model parameters. Our re-

sults show that nearly identical seasonality can be estimated from different model

parameters, and that the seasonality estimated in these parameters shows strong cor-

relation to school term holidays even across very different social settings and holiday

schedules.

The time-series SIR model from (Finkenstädt and Grenfell, 2000) is used as a

basis for the model in our case studies because of its demonstrated ability to fit

measles time-series data and produce estimates of seasonal transmission. Finkenstädt

and Grenfell proposed a two-stage estimation approach which first estimated the

susceptible dynamics and reporting rate using a susceptible reconstruction procedure

(Finkenstädt and Grenfell, 2000). These estimates were then treated as known inputs

to the second stage, where the parameters in the incidence function were estimated

using a linearized model of transmission.

Instead of this two-stage approach, our nonlinear programming formulation es-

∗Part of this section is reprinted with permission from “Interior-Point Methods for Estimating
Seasonal Parameters in Discrete-Time Infectious Disease Models” by Word, D.P., Young, J.K.,
Cummings, D.A.T., Iamsirithaworn, S., and Laird, C.D., 2013. Submitted to PLOS One.
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timates all the unknown quantities simultaneously (with constraints on the form

of the reporting fraction). We consider the fully nonlinear model, not a linearized

approximation, and the approach is flexible enough to address different model struc-

tures in a straightforward manner. In addition, it is important to note that this is

not a one-step-ahead estimation, but instead, the entire time horizon is considered

simultaneously.

In this section, the base problem formulation is introduced, along with a de-

scription of the sparse interior-point method used to solve the large-scale nonlinear

problem. We describe three estimation formulations that incorporate seasonality

into different model parameters. The first formulation estimates a seasonally vary-

ing transmission parameter β (labeled SVTP). The second formulation estimates a

seasonally varying exponential parameter α (labeled SVEP). The third formulation

estimates seasonality in the introduction of susceptibles into the population (labeled

SVIS).

4.1 Estimation Problem Formulations

The deterministic skeleton of the TSIR model used in this analysis is given by,

It+1 =
βτ(t)I

α
t St

N?
t

∀ t ∈ T, (4.1)

St+1 = St +B?
t − It+1 ∀ t ∈ T, (4.2)

where t ∈ T refers to the set of discrete time periods, It is the number of new

cases in time period t, St is the current number of susceptible individuals, and B?
t

corresponds to the number of yearly births divided by the number of discrete-time

intervals per year. Equation 4.1 describes the infection process and Equation 4.2 is

the susceptible balance. Note that the discrete time interval is assumed to be the
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same as the generation time of disease and, as such, removes the distinction between

incidence and prevalence. Full recovery is assumed from one time interval to the next.

The transmission parameter βτ(t) is seasonal and restricted to be the same from year

to year (i.e. τ(t) is a mapping from the overall time interval t to an index from

the beginning of the current year only). The exponent α is a parameter that allows

a nonlinear dependence on It in the incidence function (Finkenstädt and Grenfell,

2000; Liu et al., 1987; Finkenstädt et al., 2002; Bjornstad et al., 2002; Grenfell et al.,

2002). In this model, population N?
t and births B?

t are known inputs.

The goal is to estimate the unknown parameters βτ(t) and α along with the

unobserved state St using reported incidence. However, the cases are almost always

under-reported. Therefore, the true incidence It is related to the reported incidence

C?
t by an unknown, potentially time-varying, reporting fraction γt,

C?
t = γtIt. (4.3)

In the absence of additional information or further restriction of the time-varying

reporting fraction, it is clear that unique estimation is not possible. Any value for

It can be matched exactly to the reported incidence C?
t by setting γt=It/C

?
t . In

our work, we will assume that the reporting fraction varies linearly over the entire

time horizon, although this framework supports general restrictions on its functional

form. Additionally, we assume multiplicative measurement noise in the reported

cases since the variance of the noise appears to increase with the number of reported

cases (Finkenstädt and Grenfell, 2000) (i.e., C?
t = γtItε

C
t where εCt is an unknown

error term).

To improve the scaling and convergence properties of the nonlinear estimation

formulation, an exact log transformation is performed on the incidence expression
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and the reporting fraction correction expression. This gives the formulation of our

discrete-time deterministic model with seasonally varying transmission parameter

(SVTP), β, shown in Problem 4.4.

min
∑
t

(ε̃Ct )2 (4.4a)

s.t.

St+1 = St +B?
t − It+1 ∀ t ∈ T− (4.4b)

Ĩt+1 = β̃τ(t) + αĨt + S̃t − Ñ?
t ∀ t ∈ T− (4.4c)

γt+1 = γt + γinc ∀ t ∈ T− (4.4d)

C̃?
t = γ̃t + Ĩt + ε̃Ct ∀ t ∈ T (4.4e)

It = exp(Ĩt) ∀ t ∈ T (4.4f)

St = exp(S̃t) ∀ t ∈ T (4.4g)

γt = exp(γ̃t) ∀ t ∈ T (4.4h)

βy = exp(β̃y) ∀ y ∈ Ty (4.4i)

0 ≤ γt ≤ 1 ∀ t ∈ T (4.4j)

0 ≤ It, St ≤ N?
t ∀ t ∈ T (4.4k)

Here, t ∈ T refers to the discrete time interval in the entire time horizon T , set T−

is identical to set T except that it is missing the last element of T , and Ty is the set

of time intervals within a single year. It is the number of new cases at time t, C?
t is

the number of reported cases at time t, St is the number of susceptible individuals at

time t, B?
t still corresponds to the number of yearly births divided by the number of

discrete-time intervals per year, and N?
t is the population at time t. The variable ε̃Ct

is the log transformation of the multiplicative error in the number of reported cases,
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α is an exponential parameter on the incidence, and γ is the incidence reporting

fraction that is assumed to vary linearly by some increment γinc between each time

interval. The seasonal transmission parameter βτ(t) is restricted to be the same from

year to year (i.e. τ(t) is a mapping from the overall time interval t to an index y from

the beginning of a single year only). The ∼ symbol denotes log-transforms such that

Ĩt, S̃t, γ̃t, β̃, and C̃?
t are the log-transformations of It, St, γt, β, and C?

t respectively.

Note that this model uses exact log transformations and not linear approximations.

This formulation has several advantages over previously existing approaches for

discrete-time models. This approach simultaneously estimates the susceptible dy-

namics and the reporting fraction along with the disease parameters, and provides

an estimate of the susceptible count profiles in time. In addition, this formulation

can easily account for missing data by removing terms from the objective function

for periods where no data is available, and given the flexible nature of the framework,

a variety of measures of fit could be used as the objective function.

The estimation formulation (SVTP) above assumed seasonality in the transmis-

sion parameter β, however, it is reasonable to postulate models with seasonality in

other model parameters. In an effort to better understand potential drivers of ob-

served infectious disease dynamics, this paper also presents estimation results for

formulations that include unknown seasonality in the exponential parameter α, and

in the birth rate. In particular, we wish to know if alternate models provide improved

fit to the data, and if the estimated seasonal patterns are the same for different pa-

rameters (e.g., are they still correlated with school holiday schedules). The first

alternative model formulation includes a time-invariant transmission parameter but

seasonal exponential parameter α. This formulation is identified as SVEP and is

identical to that shown in Equation 4.4 except that the incidence balance (4.4c) is
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now

Ĩt+1 = β̃ + ατ(t)Ĩt + S̃t − Ñt ∀ t ∈ T−. (4.5)

Here, β is no longer seasonal, but α is defined to be seasonal where τ(t) is a mapping

from the overall time interval t to an index from the beginning of the current year

only.

In the third formulation, we investigate estimation of seasonality in the birth

rate. Our available birth data includes the yearly number of births only, and in

previous formulations, we have assumed that births occur uniformly throughout the

year. However, births may contribute to susceptible dynamics in a non-uniform

way throughout the year due to the newborn children effectively entering the pool

of individuals at risk of infection at particular times of year (e.g. school entry).

Therefore, we developed a formulation that estimates unknown seasonality in the

birth data from case count data to see if seasonality observed in infection data can

be captured by seasonally varying births.

The model formulation assuming seasonality in births, identified as SVIS, incor-

porates several differences from the previous formulations. Rather than assuming

a uniform addition of births into the susceptible population throughout the year,

this formulation includes a weighting factor ντ that allows for seasonal variation in

births, keeping β and α time-invariant. This model formulation differs from that in

Equation 4.4 by replacing the susceptible balance (4.4b) with (4.6), the incidence

balance (4.4c) with (4.7), and adding one new constraint (4.8),

St+1 = St + ντ(t)B
?
t − It+1 ∀ t ∈ T− (4.6)

Ĩt+1 = β̃ + αĨt + S̃t − Ñt ∀ t ∈ T− (4.7)
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∑
i∈Ty

ντ(t) = |Ty|. (4.8)

Here, Ty refers to the set of discrete time within a single year, ντ(t) is a seasonally

varying weight on births, and B?
t correspond to the number of yearly births divided

by the number of discrete-time intervals per year. Equation 4.8 ensures that the

number of new susceptibles introduced into the population every year is equal to the

number of reported births for each year, and |Ty| is the cardinality of Ty (i.e., the

number of discrete time intervals per year). However, this constraint allows these

new susceptibles to be added in a seasonally varying manner.

In this section, we estimate parameters using the large-scale, full-space interior-

point method, Ipopt (Wächter and Biegler, 2006; Laird and Biegler, 2008). The

Ipopt algorithm implements a primal-dual log-barrier interior-point approach for

handling large-scale nonlinear (and non-convex) programming problems that may

have many variable bounds. The Ipopt algorithm makes use of full first and second

order derivative information for the constraints and the objective. In this research,

the modeling language AMPL (Fourer et al., 1993) was used to describe the problem

formulation. AMPL provides efficient numerical values of the analytical derivatives

through automatic differentiation. The original implementation of the algorithm was

developed in Fortran by Andreas Wächter and Lorenz T. Biegler, and for full details

of the algorithm please see the literature (Wächter, 2002; Wächter and Biegler, 2006).

4.2 Description of Data Used in Estimation

Four different data sets were considered in this work. Simulated data from an

SIR model was used to validate the estimation procedure. Case data from London

was used to compare our estimation results with existing literature values. The

London data set has been heavily studied and is used in this work to demonstrate
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the agreement of our approach with existing literature. Data from two cities, New

York City (NYC) and Bangkok, are investigated in this study using all 3 estimation

formulations. The NYC and Bangkok data sets are used due to their very different

school term holidays, allowing us to show the correlation between school terms and

seasonal transmission. NYC has a long summer school holiday lasting from the end

of June until mid September, while Bangkok has two long school holidays: one from

the beginning of March until the middle of May and one the entire month of October.

The data from London reports biweekly measles cases and yearly birth rate data

for the years 1944-1963 (Bjornstad et al., 2002). A constant population was assumed

for this data set. The data from New York City (NYC) contained yearly reported

population and birth rate data, and monthly reported measles case counts for the

years 1944-1963 (Yorke and London, 1973). The Bangkok data contained yearly re-

ported birth rate data (of Epidemiology, 1986), but the population was only reported

every decade. Linear interpolation was used to approximate the yearly populations

across the time horizon studied. The measles case counts were reported monthly

for the years 1975-1986. In all of these estimations, the population is assumed to

vary linearly throughout each year, and the birth rate is assumed to be uniform

throughout each year.

In our estimation approach, we assume that the under-reporting of incidence

varies linearly in time, and we estimate a reporting fraction along with other model

parameters. An additional challenge in the Bangkok data is the absence of case count

data for the year 1979. To account for this, the formulation is modified to exclude

these points from the objective function, while still including them in the simulated

dynamics.

To estimate the discrete-time model, data must be available on the same time

interval as the model discretization. The London data is available in a biweekly form
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that is consistent with the model discretization. However, the NYC and Bangkok

data were reported monthly, so the data must be converted into a biweekly form.

To resample the data, the monthly case counts are first converted to cumulative

case counts. This cumulative data is interpolated at biweeks with a piecewise cubic

Hermite interpolating polynomial (using the pchip method in MATLAB) to ensure

no overshoot. The number of new cases in the biweekly intervals was then estimated

by taking the difference between the biweekly interpolated data points.

4.3 Estimation Results

In this section, we present estimation results from the three different formulations.

All models assumed multiplicative noise in the measurements but differed in how

seasonality was included in the model. First, we validated our estimation procedure

on simulated data using a model incorporating the common assumption of seasonality

in the transmission parameter β. Additionally, we perform estimation on real measles

case count data from London and compare our results with other literature studies.

After validating our estimation procedure, we present estimates for seasonal profiles

using measles data from New York City and Bangkok. These two data sets are used

for estimates with all three model formulations.

Confidence intervals and regions were found using the log-likelihood method pre-

sented in Rooney and Biegler (Rooney and Biegler, 2004). Confidence intervals for

all estimated parameters were constructed by fixing one parameter and allowing op-

timization over the remaining parameters. Confidence regions were created by fixing

the 2 parameters being compared and optimizing all other variables. These con-

fidence regions show the relationship between the exponential parameter (α), the

mean of the transmission parameters (β̄), and the mean susceptible fraction (S̄/N).

Appendix G contains the AMPL code used to generate these confidence regions.
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4.3.1 Model and Procedure Validation

We first tested the SVTP (4.4) estimation formulation using known parameter

values. We performed 10,000 simulations with an SIR model using MATLAB. Our

simulations used a constant population of 10,002,000, a birth rate of 2.5% of the

population per year, and a reporting fraction of 0.5. To generate 20 years of case

data, the deterministic model was simulated for 100 years to achieve a cyclic steady

state, and the final values from this simulation were used as the initial values for

the 20 year simulation. The simulations were performed with the same model as

that used for the estimation. Multiplicative measurement noise was drawn from a

log-normal distribution with mean 1 and a standard deviation of 0.1 and applied to

the reported cases.

Figures 4.1 and 4.2 demonstrate that our estimation approach gives a good es-

timate for β using data from the SIR simulations. In Figure 4.1, the circles show

the true parameter values used for all 10,000 simulations. The solid line shows the

mean of the estimated values for the parameters and the dashed lines show the 2.5

and 97.5 quantiles for the parameters estimated from all 10,000 simulations (giving

95% confidence intervals for these estimates). Figure 4.2 shows the estimates for a

single simulated data set randomly selected from the pool of 10,000 simulations. The

solid line shows the estimated parameters while the true parameters are shown with

circles. The dashed lines show the 95% confidence intervals computed for this single

estimation. The true parameter values are included inside these confidence intervals.

To further validate this approach, we then performed estimations with the London

data that had been used in other studies and found our results to be consistent with

other literature estimates (Fine and Clarkson, 1982; Grenfell et al., 2002; Finkenstädt

et al., 2002; Cauchemez and Ferguson, 2008). Our estimate of seasonality in β for
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Figure 4.1: The true values of β used in the SIR simulation study (circles). The
mean of the estimates from the simulation study (solid line). The 2.5th and 97.5th
quantiles of the estimates from the simulation study (dashed lines).

London is similar to that obtained by Finkenstädt and Grenfell (Finkenstädt and

Grenfell, 2000) for England and Wales over the same time period. Figure 5.6 shows

a comparison of our estimated β with that estimated by Finkenstädt and Grenfell

(Finkenstädt and Grenfell, 2000). The seasonality observed shows a small drop in

the transmission parameter at the Easter break (biweek 8), and a large drop at the

summer break (biweeks 15-18). This observation is in agreement with the proposal

that transmission of measles is correlated with school holidays.

Our estimates are very similar to others in the literature, and our solution ap-

proach is also very fast. The run time for the London estimation was under 5 seconds

even though this estimation included 21 years of data and estimated the susceptible

population and reporting fraction simultaneously with the model parameters. The

computational time required for all estimates reported in this work using real case
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Figure 4.2: The estimated transmission profile β (solid line) for a single data set with
95% confidence intervals (– –) found using log-likelihoods as described in Rooney and
Biegler (2004). The true values of β used in the SIR simulation (circles).
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Figure 4.3: A comparison of seasonal transmission parameters estimated for Lon-
don. The values estimated in this work (– –) are overlaid with those reported by
Finkenstädt and Grenfell (2000) (—).

48



data is given in Table 4.1. Given our ability to accurately estimate known parameters

given simulated data, and the similarity between our estimates and other estimates

from the literature using London data, we are confident that our estimation pro-

cedure offers a fast, reliable method to estimate seasonal parameters in infectious

disease models.

City Model Variables Constraints CPU Time (sec)a

London βτ 3878 3847 4.5

βτ 3696 3665 2.3

NYC ατ 3671 3640 3.2

ντ 3671 3640 3.2

βτ 2240 2183 0.6

Bangkok ατ 2215 2158 5.6

ντ 2215 2158 0.6

Table 4.1: Problem size and solution times for the London, New York City (NYC),
and Bangkok estimation problems studied in this paper.

4.3.2 Estimates of Seasonality in Different Model Parameters

In this section, we show the estimation results for the three different problem

formulations SVTP, SVEP, and SVIS, addressing seasonality in the transmission pa-

rameter, the exponential parameter, and the introduction of susceptibles respectively.

Each of these three formulations is solved using measles data from both New York

City and Bangkok, two locations with significantly different school holiday schedules.

The first set of estimation results are shown for formulation SVTP using measles
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data from New York City. Our estimates using this data yield an estimated number

of reported measles incidence that fits reasonably with the actual reported incidence

data as shown in Figure 4.4. Recall that this is not a one-step-ahead estimation. The

mismatch shown at the beginning of the time horizon may be due to our assumption

that the reporting fraction varies linearly in time. The biennial periodicity seen in

the case counts and the estimated number of susceptibles (Figure 4.5) is consistent

with expectations for endemic measles in cities with a low birth rate. Our estimate

of β using NYC measles data is shown in Figure 4.6, and the observed seasonality

coincides strongly with the school term summer break which occurred over biweeks

11-17. While the confidence intervals shown in Figure 4.6 seem large, recall that we

determine these intervals by fixing the value of a single parameter and optimizing over

the remaining parameters (i.e., re-estimating the remaining parameters) to generate

profile likelihoods.
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Figure 4.4: New York City results: The estimated number of reported cases (– –)
with the actual number of reported cases (—) of measles.
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Figure 4.5: New York City results: The estimated number of individuals susceptible
to measles.

Figure 4.6: Estimated βτ for measles in New York City with 95% confidence intervals
(—).
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At the solution of the estimation problem, the optimization package Ipopt indi-

cates that the reduced-Hessian is positive definite, which implies that the estimated

parameters are locally unique. However, in addition to single variable confidence

intervals, we are also interested in confidence regions where parameter values can be

expected. Using the procedure outlined in Rooney and Beigler (Rooney and Biegler,

2004), we construct pairwise confidence regions for the mean of the transmission

parameter, the mean of the susceptible population, and the exponential parameter

α, based on the likelihood ratio test. Figure 4.7 shows the relationship between the

mean of the transmission parameters (β̄) and the mean susceptible fraction (S̄/N),

Figure 4.8 shows the relationship between the mean of the transmission parameters

(β̄) and the exponential parameter (α), and Figure 4.9 shows the relationship be-

tween the exponential parameter (α) and the mean susceptible fraction (S̄/N). In

all figures the plus sign indicates the optimal solution, and the bold line indicates

the extent of the 95% confidence region. All three regions have similar shapes and

show some correlation between the parameters. High values of β̄ correspond to lower

values of S̄ and α. This is reasonable since an increase in the infection term βIαS

caused by a higher β could be offset somewhat by a reduction in either α or S̄. An

increase in α corresponds to a higher value of S̄ which seems contrary to the previous

results, however, when constructing these intervals, we optimize over the remaining

variables and a lower value of α corresponds to a higher value of β̄. Furthermore,

the relative range of α in the confidence region is much smaller than that of β̄ and

S̄. While not shown here for brevity, confidence regions with similar characteristics

were found for the other data sets used in this section.

The Bangkok data allows us to perform estimates for a location with a very dif-

ferent social environment and school schedule than NYC. These case counts suffered

from a much lower reporting fraction and even missing data during one year (1979).
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Figure 4.7: New York City results: 95% confidence region for β̄ and S̄/N .
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Figure 4.8: New York City results: 95% confidence region for β̄ and α.
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Figure 4.9: New York City results: 95% confidence region for α and S̄/N .

Still, the estimated reported measles incidence gives a remarkably good fit to the

actual reported incidence data as shown in Figure 4.10.
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Figure 4.10: Bangkok results: The estimated number of reported cases (– –) with
the actual number of reported cases (—) of measles. Note: Case data is unavailable
for 1979.
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Our estimate of β for Bangkok is shown in Figure 4.11, and, as expected, the

estimated transmission profile is very different from those estimated for both London

and NYC. However, the observed seasonality again appears to be correlated with the

school term holidays that occur from the beginning of March through the middle of

May and the entirety of October (corresponding approximately to biweeks 5-9 and

20-21 respectively). This estimated seasonality does not appear to be as strong as

that seen in the NYC estimate, but this could be due to the high degree of under-

reporting in this data set. Our estimates show that only about 1% of cases are

reported at the beginning of the time horizon and that this fraction increases to

only about 5% of the cases being reported by the end of the time horizon. This

low reporting fraction allows for significant noise to be present in the available data

which could reduce our ability to estimate seasonality. The complete set of parameter

estimation results and confidence intervals for the SVTP estimates using NYC and

Bangkok data are given in Table 4.2.

In an effort to investigate seasonality in other model parameters, the SVEP model

formulation was used to estimate seasonal exponential parameters α using data from

both New York City and Bangkok. This formulation includes a time-invariant trans-

mission parameter and seasonal exponential parameters α (4.5). Similar to the es-

timated profiles using SVTP, these estimations show a seasonal profile for α that

appears strongly correlated with the school holiday schedule.

The seasonal α estimated using the New York City measles data is shown in Figure

4.12, and the seasonal α estimated using the Bangkok measles data is shown in Figure

4.13. After scaling, the estimated seasonality in α is almost identical to the profiles

estimated for the seasonal β’s. This demonstrates that while seasonality provides

a mechanism to capture the dynamics seen in the data, the actual implementation

of the seasonality into the model can vary. This also shows that α and β could be
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Figure 4.11: Estimated βτ for measles in Bangkok with 95% confidence intervals (–).

describing some combination of several physical phenomena, and care must be taken

when interpreting the underlying cause of the seasonality.

To compare these results numerically, Spearman correlation coefficients were com-

puted to compare our estimated seasonality with school holidays. For the school term

profile we construct a 0/1 sequence where a 1 indicates that school is in session for a

particular biweek and a 0 indicates that school is on holiday. Figure 4.14 shows the

Spearman correlation coefficient computed using reported holiday schedules and the

estimated seasonal β parameters for New York City. We also computed the Spear-

man correlation coefficient using a holiday schedule that is shifted forward by one

biweek, and this coefficient is even higher. This shift is not unreasonable given that

the data was reported monthly but was resampled into a biweekly form suitable for

our formulation. The histogram in this figure shows the distribution of correlations

that were computed between the reported holiday schedule and 1,000 randomly or-
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Figure 4.12: New York City estimates of seasonal mixing parameter ατ with 95%
confidence intervals.

dered vectors from our estimated β values. This histogram demonstrates that the

correlation between school holidays and random seasonality in the parameters is

normally distributed about zero, while the correlation between the holidays and our

estimated seasonality is very strong (above the 95% confidence level). Figure 4.15

displays the same calculations as Figure 4.14 except using Bangkok school holidays

and parameter estimates.

The same calculations were performed using the estimated seasonal α values with

almost identical results. The Spearman correlation coefficients for New York City and

Bangkok using the unshifted holidays and seasonal α’s was 0.62 and 0.61 respectively.

Using shifted holidays, these correlation coefficients were 0.76 and 0.72 for New York

City and Bangkok respectively. These results strongly support our belief that our

estimated seasonality is correlated with school holidays. Furthermore, the estimated

seasonality in α and β are strongly correlated with each other. The correlation

coefficient between the estimated seasonal α and seasonal β for New York City was
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Figure 4.13: Bangkok estimates of seasonal mixing parameter ατ with 95% confidence
intervals.

0.99, and the correlation coefficient between the estimated seasonal α and seasonal

β for Bangkok was 0.97.

For the time periods under consideration, we have only yearly birth data. For

the previous estimation results (SVTP and SVEP) we assumed that the birth rates

were constant throughout the year. Formulation SVIS estimates seasonality in the

introduction of susceptibles into the S compartment. The SVIS model formulation

was used for estimates using data from New York City and Bangkok. This formula-

tion contains time-invariant transmission and exponential parameters and considers

seasonality in births by including a weighting factor ντ that must be estimated.
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Figure 4.14: Spearman correlation coefficients computed for New York City are
shown. The coefficient calculated using reported holiday schedules and estimated
parameters are shown by the dashed line. The coefficient computed using a holiday
schedule shifted forward by one biweek is shown by the solid line. The histogram
shows the distribution of correlations that were computed between the reported
holiday schedule and 1,000 randomly ordered vectors of our parameter estimates.

The seasonal profile for ν estimated using the New York City measles data is

shown in Figure 4.16, and the seasonal profile for ν estimated using the Bangkok

measles data is shown in Figure 4.17. Just as with previous estimates, these results

show strong correlation between the seasonality observed in measles case data and

school term holidays. For New York City, ν is essentially zero except at the end of

September which is immediately following the start of the fall semester of school.

For Bangkok, ν is essentially zero except at the beginning of June. These results do

not show a seasonal variation that is consistent with estimated seasonal profiles for

the other two parameters, however, these profiles are very interesting in that they

are still highly correlated with the school schedules in both settings. The seasonal
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Figure 4.15: Spearman correlation coefficients computed for Bangkok are shown.
The coefficient calculated using reported holiday schedules and estimated parameters
are shown by the dashed line. The coefficient computed using a holiday schedule
shifted forward by one biweek is shown by the solid line. The histogram shows
the distribution of correlations that were computed between the reported holiday
schedule and 1,000 randomly ordered vectors of our parameter estimates.

profiles providing an optimal fit to the data show complete introduction of the new

susceptibles immediately following the major holiday at the start of the school year.

This is consistent with the idea that susceptible children impact the observed measles

dynamics when they enter the school population.

4.4 Discussion and Conclusions

The development of inference tools for infectious disease models remains an im-

portant challenge to better understand disease dynamics and develop more effective

control strategies. This work has demonstrated the flexibility inherent in large-scale

nonlinear programming techniques and the ability of these techniques to efficiently
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Figure 4.16: New York City estimates of seasonal weight on births, ντ .
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Figure 4.17: Bangkok estimates of seasonal weight on births, ντ .

estimate transmission parameters in multiple disease models using measles case count

data. We demonstrated this efficiency and flexibility using three model formulations

and four data sets. In all cases, including for time-series data sets of over 20 years,

we were able to perform the estimations in less than 6 seconds. This computational

efficiency and flexibility opens the door for investigating many alternative model
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formulations and encourages use of these techniques for estimation of larger, more

complex time-discretized models like those with age-dependent dynamics, more com-

plex compartment models, and spatially distributed data.

We validated our estimation approach by performing 10,000 estimations using

simulated case data, and to demonstrate the flexibility of our approach, we pre-

sented estimations using measles case data from 3 different models. The first model

we presented used a seasonally varying transmission parameter β. We first validated

our approach by estimating seasonal transmission parameters using both simulated

data and real measles data from London. We performed 10,000 estimations on simu-

lated data (with different noise realizations) and showed that the approach was able

to effectively recover the true seasonal transmission parameter. Furthermore, this

approach estimates seasonal transmission parameters for London that are consistent

with other estimates in the literature (He et al., 2010; Hooker et al., 2011).

Using real measles case data from both New York City and Bangkok, we estimated

using 3 formulations, SVTP, SVEP, and SVIS, considering seasonality in the trans-

mission parameter, the exponential parameter, and the introduction of new suscepti-

bles. In all cases, the estimated seasonality showed correlation with school schedules.

This is especially important given that the school schedules differ significantly for

these two locations. The profile estimated using seasonal α’s was practically identical

to that estimated using seasonal β’s. This result might not be too surprising, but

this does highlight that care must be taken when relating the estimated seasonality

to particular system phenomena (e.g., contact rate).

Perhaps more interesting are the estimation results for the model with a seasonal

weighting of the births. Here, instead of assuming that new susceptibles always

entered the population uniformly throughout the year, the model was formulated

so that susceptibles could enter the population in any seasonal pattern. These es-
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timation results show that all new susceptibles were introduced to the population

immediately following long school holidays to best capture the dynamics observed

in reported measles cases. Since all births clearly do not actually occur at this time,

this result is consistent with the idea that the susceptible children impact observed

measles dynamics when they enter the school population.
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NYC Measles Bangkok Measles

Est Low High Est Low High

α 0.9468 0.9405 0.9530 1.0137 1.0056 1.1062

γ0 0.07363 0.06599 0.08188 0.01187 0.01013 0.01379

γinc 9.57E-5 6.30E-5 1.29E-4 1.00E-4 8.30E-5 1.17E-4

I0 11360 8750 14810 6810 5120 9080

S0 414800 393600 435900 352200 339500 362400

β1 34.28 25.74 45.60 12.80 8.86 18.40

β2 31.66 23.79 42.07 9.58 6.60 13.82

β3 33.14 24.95 43.94 10.41 7.16 15.05

β4 34.22 25.83 45.25 10.37 7.11 15.04

β5 34.59 26.17 45.63 10.22 6.99 14.86

β6 30.33 22.94 40.05 7.51 5.14 10.94

β7 32.29 24.41 42.68 7.94 5.44 11.55

β8 30.70 23.11 40.77 7.16 4.92 10.40

β9 32.79 24.52 43.89 7.01 4.83 10.17

β10 29.85 22.12 40.38 9.29 6.40 13.47

β11 30.61 22.48 41.88 9.82 6.77 14.23

β12 23.54 17.32 32.18 10.86 7.49 15.74

β13 17.42 12.90 23.62 11.91 8.21 17.26

β14 19.44 14.42 26.26 11.87 8.18 17.20

β15 13.96 10.40 18.77 12.95 8.93 18.78

β16 17.69 13.21 23.71 12.09 8.34 17.53

β17 16.88 12.62 22.59 10.37 7.16 15.01

β18 18.07 13.53 24.14 10.77 7.44 15.58

β19 28.07 21.04 37.46 12.36 8.54 17.88

β20 26.98 20.23 36.01 12.44 8.60 17.98

β21 29.77 22.32 39.72 9.37 6.49 13.52

β22 30.52 22.88 40.72 9.09 6.29 13.11

β23 32.22 24.15 42.99 9.48 6.56 13.67

β24 35.70 26.76 47.63 9.00 6.22 12.99

β25 33.84 25.36 45.14 10.74 7.42 15.50

β26 37.74 28.37 50.17 18.39 12.75 26.43

Table 4.2: Estimated parameters with 95% confidence intervals for measles in New
York City and Bangkok using a seasonal transmission parameter.
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5. ESTIMATING SEASONALITY WITH A CONTINUOUS-TIME

INFECTIOUS DISEASE MODEL∗

Mathematical models can enhance our understanding of childhood infectious dis-

ease dynamics, but these models depend on appropriate parameter values that are

often unknown and must be estimated from disease case data. In this section, we de-

velop a framework for efficient estimation of childhood infectious disease models with

seasonal transmission parameters using continuous differential equations containing

model and measurement noise. The problem is formulated using the simultaneous

approach where all state variables are discretized, and the discretized differential

equations are included as constraints, giving a large-scale algebraic nonlinear pro-

gramming problem that is solved using a nonlinear primal-dual interior-point solver.

The technique is demonstrated using measles case data from three different locations

having different school holiday schedules, and our estimates of the seasonality of the

transmission parameter show strong correlation to school term holidays. Our ap-

proach gives dramatic efficiency gains, showing a 40-400 fold reduction in solution

time over other published methods. While our approach has an increased suscepti-

bility to bias over techniques that integrate over the entire unknown state-space, a

detailed simulation study shows no evidence of bias. Furthermore, the computational

efficiency of our approach allows for investigation of a large model space compared

to more computationally intensive approaches.

In this section, we use an SIR compartment modeling framework to develop

a continuous-time model that includes both model and measurement noise. This

∗Part of this section is reprinted with permission from “A Nonlinear Programming Approach for
Estimation of Transmission Parameters in Childhood Infectious Disease Using a Continuous Time
Model” by Word, D.P., Cummings, D.A.T., Burke, D.S., Iamsirithaworn, S., and Laird, C.D., 2012.
Journal of the Royal Society Interface, Copyright 2012 by The Royal Society.
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is then used to estimate model parameters and seasonal transmission profiles from

measles case count data. It is assumed the individuals enter the susceptible compart-

ment S when born, move to the infected compartment I upon acquiring the infection,

and progress to the recovered compartment R upon recovery from the infection. Af-

ter recovery from measles, individuals are assumed to attain lifelong immunity from

the disease so there is no movement of individuals from the recovered compartment to

the susceptible compartment (Anderson and May, 1991). The infection transmission

assumes frequency dependence (Hethcote, 2000), and the transmission parameter is

assumed to be seasonal with a periodicity of one year. The assumption of frequency

dependent transmission is not reasonable for all diseases. While it may make in-

tuitive sense that in larger populations one would have more contacts in a day, for

childhood diseases like measles this is often not the case. Given that most children

are in school systems with similar school structures, we assume they have a consis-

tent number of contacts per day regardless of city size. This assumption is consistent

with recent findings for measles in the UK (Bjornstad et al., 2002).

5.1 Problem Formulation

The differential equations describing the continuous-time seasonal SIR model are,

dS

dt
=
−β(y(t))S(t)I(t)

N(t)
· εM(t) +B(t) (5.1)

dI

dt
=
β(y(t))S(t)I(t)

N(t)
· εM(t)− γI(t) (5.2)

where S is the number of susceptibles, I is the number of infectives, N is the total

population, and β(t) is the time-varying transmission parameter. The function y(t)

maps the overall horizon time into the elapsed time within the current year making

β(y(t)) a seasonal transmission parameter with periodicity of one year. Births into
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the population, B, and the population, N , are known time-varying system inputs,

and the recovery rate (γ = 1
14 day

) is a known scalar input. The variable εM represents

multiplicative model noise which is assumed to be log-normally distributed with

a mean of 1. Additive noise was investigated, but in those cases, the estimated

values for the model noise showed an obvious temporal correlation with the data,

indicating an unlikely model structure. However, the technique that we use can

easily be modified to support different assumptions on the stochastic noise. Note

that while this distribution can be an acceptable approximation for large data sets

where the number of cases never nears zero, for small data sets this distribution

becomes invalid since it does not allow for zero cases. In addition, since the reported

number of cases must always be non-negative, the assumption of normally distributed

measurement noise is only a reasonable approximation when the reported number

of cases is not near zero. Given the size of the cities examined in this work and the

number of reported cases over the given time horizons in the data sets, we find these

assumptions acceptable here.

It is important to distinguish between incidence and prevalence in this problem

formulation. The case count data available is the incidence, or the number of new

cases reported over a given time interval. The model contains a state variable I(t)

that is the prevalence of the disease, or the number of cases present at a given point

in time. In a given reporting interval, integrating over the number of new cases gives

the incidence,

Incidence =

∫ ti

ti−1

β(y(λ))S(λ)I(λ)

N(λ)
· εM(λ) dλ. (5.3)

To account for the difference in incidence and prevalence, a new state variable is
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introduced into the system through the following differential equation,

dQ

dt
=
β(y(t))S(t)I(t)

N(t)
· εM(t). (5.4)

Here, Q(t) represents the cumulative incidence at time t and provides a state variable

that can be used to evaluate the incidence over a particular interval.

Not every individual that becomes infected is reported which leads to case counts

being under-reported. While there are various methods to estimate the reporting

fraction η(t), in this work we use a straightforward approach to estimate a linearly

varying reporting fraction that is similar to the susceptible reconstruction approach

described in Finkenstädt and Grenfell (Finkenstädt and Grenfell, 2000). At the start

of the estimation horizon we assume that the number of cumulative cases, C0, and

cumulative births, Y0, are unknown. Prior to widespread vaccination almost every

individual eventually contracted the disease. Therefore, on average the cumulative

number of new cases should equal the cumulative number of new births. For a

constant reporting fraction the cumulative cases and births are given by,

Yt =
t∑
i=1

Bi + Y0 (5.5)

Ct =
t∑
i=1

Ri

η
+ C0 (5.6)

where Bi is the reported number of births at time i, Yt is the cumulative number of

births at time t, Ri is the reported number of cases at time i, and Ct is the cumulative

number of cases at time t. We then minimize the sum squared error between Yt and

Ct to estimate the reporting fraction η. For the case of our estimations with data

from London and Bangkok, we extend this basic formulation to estimate a reporting

fraction that varies linearly in time.
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In our problem formulation, the estimated reporting fraction is treated as a known

input for the estimation of the disease model parameters. To obtain a fit, the es-

timation formulation requires that we minimize some measure of the model and/or

measurement noise subject to the infectious disease model described by the differen-

tial equations given in Equations (5.1), (5.2), and (5.4).

As described in Section 3, we use the simultaneous approach for the solution of

this dynamic parameter estimation problem. Here, we use collocation on finite ele-

ments to discretize the states into finite elements with fixed stepsize across the entire

time horizon (Zavala et al., 2008). This converts the continuous differential equation

model into an algebraic model that can be formulated as a nonlinear programming

problem. A fifth-degree Gauss-Lobatto collocation technique is used to discretize

the dynamics within these finite elements (Herman and Conway, 1996), and the dis-

cretized equations are included as equality constraints in the optimization problem.

The effect of the instantaneous model noise, εM(t), on the system is approximated

by introducing an unknown noise term between each of the finite elements.

In our formulation, we include model noise between these finite elements so that,

while inside a finite element Equations 3.7 - 3.10 are exact, between finite elements

there can be state discontinuities. With model noise between finite elements, there is

little benefit in the use of a higher order method. However, we initialize our problem

using the deterministic case where no model noise is present (model noise terms are

fixed to zero), and for this case this discretization is a high-order method.
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Our estimation formulation becomes,

min ωM
∑
i∈F

(ln(εMi
))2 + ωQ

∑
k∈T

(εQk
)2

s.t.

dS

dt
=
−β(y(t))S(t)I(t)

N(t)
· εM(t) +B(t)

dI

dt
=
β(y(t))S(t)I(t)

N(t)
· εM(t)− γI(t)

dQ

dt
=
β(y(t))S(t)I(t)

N(t)
· εM(t)

R?
k = ηk(Qi,k −Qi,k−1) + εQk

S̄ =

∑
i∈F Si

len(F)

β̄ =

∑
i∈τ βi

len(τ)

0 ≤ I(t), S(t) ≤ N(t)

0 ≤ β(y(t)), Q(t)

(5.7)

where the differential equations are discretized using equations (3.7-3.10) and are

shown here in their differential form for simplicity. The index k is a time point

within the set of reporting times, T , while F is the set of all finite elements used

in the discretization. The reporting fraction ηk accounts for under-reporting over

a given time interval spanning k−1 to k, R?
k is the actual reported incidence over

a given time interval, εQk
is the measurement noise, and ωM and ωQ are weights

for the noise terms. Based on the assumption of normality in εQk
and ln(εMi

),

the ratio of these weights should be equal to the inverse ratio of the variance in

the estimated noise terms. Since the variances are not known a priori, a simple

bisection approach is used to solve for the ratio of weights until ωM

ωQ
=

σ2
Q

σ2
M

where σ2
Q

is the calculated variance of the estimated noise terms εQk
, and σ2

M is the calculated
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variance of the estimated noise terms ln(εMi
) (using standard mean squares). The

estimation formulation is solved completely for each iteration of the bisection method.

These weights determine the tradeoff between model and measurement noise in the

objective function. This straightforward approach was used since sensitivity studies

(presented later in the paper) show that the estimates are relatively insensitive to

the selection of these weights. However, other techniques have been proposed for

determining these weights and could also be used (Varziri et al., 2008; Hooker et al.,

2011). Two additional variables are added to the problem formulation for use in

calculating confidence regions. Here, S̄ is the average population of susceptibles over

the time horizon and β̄ is the average value of β across the yearly set of discretizations

τ .

It is important to point out that the objective function used in this formulation

is the extended log-likelihood and only an approximation of the true log-likelihood

for the parameters. The use of this likelihood for estimating parameters can cause

considerable bias in both the parameters and their uncertainty (Lee et al., 2006). In

practice bias may not always be observed, but care should be taken when evaluating

results from this approach. The simulation study discussed in Section 5.2.1 shows

no significant bias. However, if bias is a concern then this efficient formulation and

approach can still be used to initialize an unbiased approach.

This research focuses on the estimation of the seasonal transmission profile β(y(t)).

While the case data shows strong seasonality, the functional form of the transmis-

sion profile is unknown so it is undesirable to force β to take the form of a particular

periodic function (e.g. a sine function). Therefore, we discretize the transmission

profile along finite element boundaries, assuming a constant value through the finite

element. In previous work, β(y(t)) was further restricted using total variation regu-

larization (Word et al., 2010). However, in this work it was found that regularization
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was unnecessary when the discretization of β matched the reporting interval of the

case data. Some form of regularization or restriction of β would be necessary if β is

discretized more finely than the reporting interval.

5.2 Estimation Results

To demonstrate the effectiveness of our approach, we first estimate parameters

using simulated data from an SIR model. We then perform estimation using three

real data sets from different settings. In our estimations we use existing measles case

count data for London (Bjornstad et al., 2002), New York City (Yorke and London,

1973), and Bangkok, which has been made available to us by the Thailand Ministry of

Public Health (of Epidemiology, 1986). These data are shown in Figures 5.1, 5.2, and

5.3 respectively. These data sets also include yearly birth records and populations.

The London data set was chosen since it has been widely studied and provides a

comparison of our model results with literature results. The New York City and

Bangkok data sets are from cities with very different social settings and entirely

different school holiday schedules. This allows us to compare estimated transmission

profiles on locations with different school term schedules. The New York City data

contain monthly reported case counts. The Bangkok data include monthly case

counts and annual age distributions. There is regular active surveillance coupled to

the passive surveillance in order to assess the performance of the passive surveillance

system. The data is fully anonymized and laboratory confirmation is reported when

available. The populations are assumed to vary linearly throughout the year, and

the birth rates are assumed to be uniform throughout the year.

To perform these estimations, we first format the data as required by the AMPL

input data file format. We formulated the model shown in Equation 5.7 with dis-

cretized differential equations using the algebraic modeling language AMPL (Fourer
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Figure 5.1: The reported number of cases for London.

Figure 5.2: The reported number of cases for New York City.
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Figure 5.3: The reported number of cases for Bangkok.

et al., 1993). Any modeling language coupled with a reliable large-scale nonlinear

optimization solver could be used. We solve the problem using the open-source

nonlinear solver Ipopt (Wächter and Biegler, 2006). The weights for the objective

function are found using the iterative process discussed previously. These weights

are then fixed to find the confidence intervals and confidence regions.

Effective initialization is important for successful solution of general non-convex

nonlinear programming problems. Here, all problems were initialized simply by set-

ting all Si,j = 1 ·105, Ii,j = 1 ·102, and Qi,j = 0 ∀ i ∈ F and j collocation points, and

βi = 1 ∀ i ∈ τ . Here, F is the set of finite elements and B is the set of discretizations

of β. While this is a very crude initialization, the formulation is robust, and we first

solve the deterministic problem, fixing the model noise terms to zero, before solving

the formulation with model noise terms included.

Our estimates showed a strong correlation between S̄ and β̄, and the quality of
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our fit to the data differs dramatically outside of a narrow range of values. Confidence

regions, derived from the likelihood ratio test (Seber and Wild, 1989; Gallant, 1987),

are constructed as described in Rooney and Biegler (2004) to show the region in

which these values could be expected to lie. The regions are constructed over pairs

of parameters by fixing the two parameters and reoptimizing over the remaining

variables. In addition, likelihood ratios are used to construct confidence intervals

for β by fixing each βi independently and allowing optimization over all other βi’s.

These confidence regions and intervals were done using the extended likelihood which

is only an approximation of the true likelihood. The simulation study performed in

Section 5.2.1 indicates that this approximation still provides reasonable confidence

intervals. In the simulation study, the estimated confidence intervals are slightly

more conservative than what the simulations would suggest as necessary. Appendix

G contains the AMPL code used to generate these confidence regions.

5.2.1 Simulation

In order to test the estimation procedure using known parameter values, we per-

form stochastic simulations with an SIR model. The simulations were performed

using MATLAB. Our simulations used a constant population of 10,002,000, a recov-

ery rate of 1
14 day

, a birth rate of 2.95% of the population per year, and a reporting

fraction of 1. To generate 20 years of case data, the deterministic model was in-

tegrated for 100 years to achieve a cyclic steady state. The final values from this

simulation were used as the initial values for the stochastic simulation. The simu-

lations were performed with the same model as that used for the estimation except

that the timestep used within the Matlab integration routine was a half day. Model

noise was drawn from a log-normal distribution with mean 1 and σ = 0.05. Mea-

surement noise was applied to the reported cases and was drawn from a normal
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distribution with mean 0 and a standard deviation of 1,000. While the assumption

of normally distributed noise is not valid for data sets with a low number of reported

cases, we assume it to be a reasonable distribution for our simulations since in 10,000

simulations the reported number of cases never fell below 2,000.

The simulation was run 10,000 times with a reporting fraction of 1 to generate

simulated case data, and estimations were run on each of these simulations using 12

finite elements per year. Figure 5.4 demonstrates that our estimation approach gives

an extremely good estimate for β using data from the SIR simulations. The solid

(red) line shows the true parameter values used for all 10,000 simulations. The (blue)

circles show the mean of the estimated values for the parameters as well as the 2.5 and

97.5 quantiles for the parameters estimated from all the simulations (giving the 95%

confidence intervals for these estimates). The (black) triangles show the estimated

parameters from an estimation on a single randomly selected simulated data set, and

the dashed (black) lines show the 95% confidence intervals generated for this single

estimation using the likelihood ratio test. The true parameter values are included

well inside these confidence intervals. The confidence intervals calculated from the

likelihood ratio test give more conservative intervals than what the 10,000 simulations

would suggest are necessary and actually cover over 97% of the values estimated from

all 10,000 simulations. This is not unexpected given that the likelihood ratio test

confidence intervals are profile likelihoods, determined by fixing only one parameter

at a time, allowing the other parameters to be optimized.

Furthermore, the mean values of the estimated parameters over all 10,000 simu-

lations agree with the true values used in the simulation. There is no significant bias

observed in the estimate of the seasonal transmission parameters for the simulated

data used in this study.
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Figure 5.4: The estimated transmission profile β (black triangles) for a single data
set with 95% confidence intervals (– –) found using likelihoods. The true values of
β used in the stochastic SIR simulation (solid red line). The 2.5th, 50th, and 97.5th
quantiles of the estimates from the simulation (blue circles).

5.2.2 London

The time horizon studied for London was 1948-1964. The reporting fraction esti-

mated using our approach varies linearly from 50.65% to 42.55% over the time horizon

studied. This data set originally had case counts reported weekly, however the data

set used here has combined the data so that case counts are given biweekly. This ag-

gregated data was also used by Finkenstädt and Grenfell (2000). The estimation for

London was performed using 26 finite elements per year, and the transmission profile

was discretized so that each βi contained 1 finite element, giving 26 discretizations

in β. The normalized estimated seasonal transmission profile for London is shown in

Figure 5.5. This figure also compares this result with the findings from Finkenstädt

and Grenfell (2000) and Cauchemez and Ferguson (2008). The time horizon used

in this work and by Cauchemez and Ferguson was the years 1948-1964 (Cauchemez
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and Ferguson, 2008), but the time horizon used by Finkenstädt and Grenfell was the

years 1944-1964 (Finkenstädt and Grenfell, 2000). Despite the differing time hori-

zons, it is clear that the seasonal pattern estimated from our approach is similar to

these other results. The estimated profile appears to be correlated with school term

holidays with the transmission profile decreasing during the school breaks that occur

during the Easter holiday around biweek 8 and the summer holiday over biweeks

15-18. The Christmas holiday occurs at biweek 25, but there is no immediate effect

captured in our estimates. The lack of any immediate effect could be due to delays

in reporting over the Christmas holidays (Fine and Clarkson, 1982).

Figure 5.5: The transmission profile estimated for London by Finkenstädt and Gren-
fell (2000) (– –), Cauchemez and Ferguson (2008) (· · · ), and this work (—).

Figure 5.6 shows the non-normalized pattern for the estimated seasonal trans-

mission profile. The estimated seasonal transmission parameter β(t) is on a per day

basis, and the mean estimated value is β̄ = 0.95. It does appear that our estimates

may be shifted by one biweek relative to the school holidays, but this could be due

to a slight delay in reporting.
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Figure 5.6: The estimated transmission profile β with confidence intervals. School
term holidays are shaded.

In Figure 5.7, we show nonlinear confidence regions for the mean transmission

parameter value β̄/γ against the mean susceptible fraction over the mean popula-

tion, S̄/Population, where the means were taken over the entire time horizon. As

expected, this shows a dependence between the estimated values for β̄ and S̄. The

shape of these confidence regions provide some insight into why it may be difficult

to accurately estimate the absolute magnitude of the transmission parameter. An

increase in β̄ can be offset by a decrease in S̄ with little change in the objective func-

tion value. However, even though there is a difference in the absolute magnitude of

the transmission parameter, we see little difference in the seasonal pattern estimated

for the points within the indicated confidence region.

5.2.3 New York City

The estimation for New York City was performed using monthly reported data

from 1944-1963. The reporting fraction estimated using our approach was almost

constant around 11% throughout the time horizon studied, and the reporting fraction

was assumed constant in our estimates. The discretization strategy used 12 finite

elements per year, and β is again assumed to be constant within each finite element.
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Figure 5.7: A contour plot from estimations using London data showing the contours
of the left hand side of the χ2 test coming from the likelihood ratios (– –) and
the 95% confidence region (—) for β̄ and S̄ divided by the population. Regions
represent profile likelihood contours where likelihood ratios are calculated based on
a re-optimization of all other parameters. The “+” indicates the optimal estimated
value.

This gave 12 discretizations for the seasonal transmission profile β. The estimated

seasonal transmission profile for New York City is shown in Figure 5.10. This profile

also shows strong correlation with the summer school term holiday that the New York

City Board of Education reported occurring from mid-June through mid-September,

or over the finite elements of approximately 6.5-9.5. There are school holidays around

the end of the year, however, these holidays are much shorter than the reporting

interval of the data.

Figure 5.8 shows the 95% confidence region for β̄ and S̄. The optimal estimated

S̄ was 11.1% of the mean population, and the optimal estimated β̄ was 0.65. Our

approach successfully estimates a seasonal transmission pattern that shows strong
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Figure 5.8: A contour plot from estimations using New York City data showing the
contours of the left hand side of the χ2 test coming from the likelihood ratios (– –)
and the 95% confidence region (—) for β̄ and S̄ divided by the population. Regions
represent profile likelihood contours where likelihood ratios are calculated based on
a re-optimization of all other parameters. The “+” indicates the optimal estimated
value.

correlation to school terms.

5.2.4 Bangkok

In addition to data obtained from locations with a single large summer break,

we also performed estimates using measles data for Bangkok, Thailand. Thailand

has two school term holidays – one in the spring and one in the fall. The estimation

for Bangkok was performed using monthly reported case count data from the years

1975-1984. This data set contains significant underreporting with the estimated

reporting fraction varying linearly from 1.1% at the start of the time-series to 4.5%

at the end of the time series. In addition, case counts are missing for the year 1979.
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Figure 5.9: A contour plot from estimations using Bangkok data showing the contours
of the left hand side of the χ2 test coming from the likelihood ratios (– –) and
the 95% confidence region (—) for β̄ and S̄ divided by the population. Regions
represent profile likelihood contours where likelihood ratios are calculated based on
a re-optimization of all other parameters. The “+” indicates the optimal estimated
value.

Figure 5.10: The estimated transmission profile β for New York City with shaded
school term holidays.
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The discretization strategy used 12 finite elements per year with β discretized by

finite elements, giving 12 discretizations for β. Since no data is available for the year

1979, these points were excluded in the objective function so that they would not

affect the estimation while still allowing the model to simulate the states through

this year. The estimated seasonal transmission profile β for Bangkok is shown in

Figure 5.11. This profile shows correlation with the two school term holidays that

occur from the beginning of March until mid-May and the entirety of October, or

over the finite elements of approximately 3-5 and 10-11. There is an obvious lag

between our estimated drop in β and the start of the school holidays. This lag is

likely due to a lag in the reporting of case data. There are consistently extra cases

reported in January resulting from a backlog of reports that are not processed at the

end of the year due to worker holidays. This suggests that cases are being reported as

occurring when reports are processed rather than when the cases actually occurred

which would cause a lag in the estimates.

Figure 5.11: The estimated transmission profile β for Bangkok with shaded school
term holidays.
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Figure 5.9 shows the 95% confidence region for β̄ and S̄. The optimal estimated

S̄ was 5.5% of the mean population, and the optimal estimated β̄ was 1.28.

5.2.5 Input Sensitivity Analysis

Our estimates are dependent upon the inputs we use in our model. We use

recorded data for birth inputs and for population inputs, but no data is available for

the reporting fraction and recovery rate, and we would like to know how sensitive

our estimates are to the values used for these inputs. In addition, we use an iterative

approach to set the weights in the objective function, and we would like to know how

changing these weights will affect our estimates.

We first examined the effect of varying the reporting fraction on our estimates of

β. To investigate this, we varied the value of the reporting fraction over a wide range

about our estimated value. Using each new reporting fraction, we solved the same

problem as before. Figure 5.12 shows the estimated average value of β for New York

and the optimal objective function value as the reporting fraction changes. This plot

shows that even for small changes in the reporting fraction away from the estimated

value there is significant decrease in the average value of β. The objective function

values show that the best data fit occurs when the reporting fraction is where we

also get the highest β̄, and this reporting fraction is the same as that estimated using

the approach described in Section 5.1.

In Bangkok, there is a significant difference in the reporting fraction at the be-

ginning and end of the time horizon studied and a time varying reporting fraction is

needed. We use a linearly varying reporting fraction throughout the time horizon,

and for our sensitivity study we keep the same slope as we estimated before. Figure

5.13 shows the estimated β̄ and optimal objective function values as the initial value

of the reporting fraction is varied. Since the reporting fraction estimated previously
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Figure 5.12: The β̄ estimated for New York City is shown as a function of the
reporting fraction (—). The objective function value is also shown as a function of
the reporting fraction (· · · ).

is so low at the beginning of the time horizon and must be positive, we are unable to

lower the initial value more than about half of a percent. Where we see the minimum

in the optimal objective function value is also where we find the actual value of the

reporting fraction that we estimated previously.

Figure 5.13: The β̄ estimated for Bangkok is shown as a function of the initial value of
the reporting fraction (—). The objective function value is also shown as a function
of the reporting fraction (· · · ).

The recovery rate can also affect the dynamics of the system, and different sources

use different values (typically 1
13

or 1
14

). Figure 5.14 shows the change in the estimated

β̄’s for New York City and Bangkok as the recovery rates are varied. For both cities,
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the changes in β̄ are not dramatic at any point, but simply change slowly throughout

the range examined. This indicates that for reasonable values for the recovery rate

our estimates are not dramatically affected.

Figure 5.14: The β̄’s estimated for Bangkok (· · · ) and New York City (—) are shown
as functions of the recovery rate.

Finally, we also show the estimation results as a function of the ratio of the

weights in the objective function. Here, we vary this ratio two orders of magnitude

on either side of the value found using our iterative procedure. Figure 5.15 shows the

value of β̄ for both New York City and Bangkok as the weights are varied. The mean

value of the transmission parameter changes little over a range of values near the

estimated weights. Furthermore, the pattern exhibited by the estimated transmission

parameter is nearly identical over this entire range.

5.3 Discussion and Conclusions

Successful estimation of parameters in dynamic models for childhood infectious

diseases from time-series data presents several challenges. Typically, reported cases

(the incidence) are the only available data, while there is little information about

the susceptible population. Therefore, approaches must simultaneously estimate the
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Figure 5.15: The β̄’s estimated for Bangkok (· · · ) and New York City (—) are shown
as functions of the log of the ratio of the weights on the noise terms in the objective
function.

prevalence and the unknown susceptible states. Furthermore, the case data is often

significantly under-reported, the reporting interval is often longer than the serial

interval of the disease, and the models are highly nonlinear. This paper presented a

nonlinear programming approach for estimating the unknown states and the seasonal

transmission parameter using a continuous-time model with both measurement and

model noise.

Continuous-time formulations offer several advantages over discrete-time formu-

lations for estimation of infectious disease models. Data can be handled in its native

form regardless of the reporting interval. This was demonstrated by using biweekly

reported data from London and monthly reported data from New York City and

Bangkok. Using data in its native form is a significant advantage for diseases with

short serial intervals where it would be unreasonable to have data reported at the

same interval.

The estimation approach outlined in this paper is highly efficient. The esti-

mation formulation using continuous SIR models is a nonlinear optimization prob-

lem subject to differential equations as constraints. The use of the simultaneous or

full-discretization approach produces a large-scale algebraic nonlinear programming
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Variables Constraints CPU Time (sec)

London 16459 15963 190

NYC 8929 8663 300

BKK 4477 4331 76

Table 5.1: Problem sizes and solution times of the London, New York City (NYC),
and Bangkok (BKK) estimation problems studied in this paper. All problems were
solved on a 3.0 GHz Intel Xeon processor and times are reported in seconds.

problem. Nevertheless, efficient solutions are possible since the simulation is not

converged at each iteration. The solution times for all estimations are shown in Ta-

ble 5.1. These are the full solution times, including the times required to initialize

the problems and find the weights to be used in the objective functions. Significant

reductions could be made by initializing the problem well and by giving good initial

guesses for the objective function weights. Recent work by Hooker et al. solves

a similar problem formulation in approximately 2 hours (Hooker et al., 2011), the

MCMC estimation performed by Cauchemez and Ferguson required approximately

20 hours per run (Cauchemez and Ferguson, 2008), and the plug-and-play method of

He et al. (He et al., 2010) requires approximately 5 hours. None of our estimations

take longer than 5 minutes. The efficiency of this fully simultaneous approach opens

the door to explore many more model structures efficiently and provides a framework

that is scalable to large spatially distributed estimations.

Figures 5.7, 5.8, and 5.9 show a strong inverse correlation between the estimated

β̄ and S̄ as seen by the narrow, elongated confidence regions. This result is not

unexpected when compared with the approximate expression relating β to S̄ given

by 1/S̄ = β̄/γ (Anderson and May, 1991). This relation gives a curve lying approxi-

mately through the middle of the 95% confidence region in Figures 5.7, 5.8, and 5.9.
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These elongated regions indicate that the estimation is sensitive along this line and

that care should be taken when interpreting absolute values for β or S. It should

also be noted that the estimations produced nearly identical patterns in β(t) within

these confidence regions.

More importantly, several recent publications have reported estimated values of

the seasonal transmission parameter, and corresponding R0 values, that are higher

than estimates provided in Anderson and May (1991). For example, the reported

estimates of He et al. (2010) for London give an R0 of 57 with 95% confidence

intervals of 37 and 60. There is significant complexity in finding R0 values while

considering seasonal transmission rates, and it is difficult to compare results arising

from different model structures. Using the approximate relationship R0=β̄(t)/γ, we

estimate R0=13.3 in London with 95% confidence intervals of 12.1 and 14.3. Our

estimates for New York City (R0=9.1) and Bangkok (R0=17.9) also give values for

R0 that appear consistent with values reported for measles in Anderson and May

for other cities (Anderson and May, 1991) and with values approximated using the

average age of infection.

The estimated transmission profiles from all three cities show strong correlation

with school holidays despite the very different holiday schedules seen between Lon-

don, New York City, and Bangkok. For Bangkok and NYC there was a lag observed

in the estimated transmission profiles that showed the drop in transmission as occur-

ring after the holiday had begun. This is probably due to a lag in reporting causing

cases to be reported well after their occurrence and the incubation period of measles

causing cases to be observed after the start of the holiday even though the infection

occurred before the holiday.

This overall approach for estimating continuous-time infectious disease models is

reliable, flexible, and efficient. Although the use of extended-likelihood may not be
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guaranteed to provide unbiased estimates, the simulation results showed no evidence

of bias. Solutions to the nonlinear programming problem were possible with a general

initialization strategy, and effective parameter estimates are possible, even in the face

of challenging sets of data that contain missing years, severe under-reporting, and

significant noise. It is straightforward to switch between diseases with different serial

intervals or data sets with different reporting intervals. The approach is independent

of model specifics. For example, it would be straightforward to add additional com-

partments to the model, such as adding an E compartment to make an SEIR model

that would account for individuals that have been exposed to a disease but cannot

yet infect susceptibles. One could also add a compartment to account for portions of

the population that were vaccinated against a disease. Furthermore, the approach is

highly efficient, making it appropriate for much larger problem formulations, or for

rapid exploration and comparison of multiple model structures.
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6. PARALLEL PROGRESSIVE HEDGING FOR PARAMETER ESTIMATION∗

While the focus of Sections 4 and 5 was on estimating transmission parameters for

individual cities with large populations, a more interesting problem for public health

officials is looking at a spatial model of disease spread. For accurate estimation of

disease dynamics in small cities where fadeout is observed, models must consider

the transmission of disease from large cities where the disease is endemic to small

cities. Such spatial-temporal models can become prohibitively large for many solution

approaches. To address problems of this scale parallel estimation algorithms must

be developed.

In this section we present the progressive hedging algorithm for parallel estimation

of transmission parameters in a very large-scale measles model that includes data

from many cities. This approach decomposes the problem into multiple scenarios

where each city contributes data for one scenario. We demonstrate the capability of

this algorithm to efficiently compute parameter values using real-world observations.

6.1 Parameter Estimation and Stochastic Programming

Parameter estimation remains an essential component in the development of accu-

rate, reliable models of dynamic systems. Nonlinear programming (NLP) has proven

to be a powerful tool for parameter estimation, and many algorithms have been uti-

lized with success (Betts, 2010; Aster et al., 2012; Zavala et al., 2008; Leibman et al.,

1992; Tjoa and Biegler, 1991; Biegler and Zavala, 2009; Zavala and Biegler, 2006).

However, problem size and complexity continues to increase, driving the demand for

more powerful solvers. For many years, computer processing unit clock speeds in-

∗Part of this section is reprinted with permission from “A Progressive Hedging Approach for
Parameter Estimation of Stochastic Nonlinear Programs” by Word, D.P., Watson, J.P., Woodruff,
D., and Laird, C.D., 2012. Proceedings of PSE2012, Singapore, Copyright 2012 by Elsevier B.V.
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creased dramatically, improving the performance of existing algorithms without any

additional effort, but physical hardware limitations are now forcing computer chip

manufactures to develop parallel architectures to increase computing power. Hyper-

threading and multi-core architectures have become commonplace and can provide

significant performance improvements (Schenk et al., 2009), but algorithms must be

specifically designed for parallel operation to utilize the hardware’s full potential.

This algorithm development is essential to continue seeing significant increases in

the size and complexity of tractable estimation problems.

Two approaches are commonly used to estimate parameters in dynamic systems.

The sequential approach only considers the degrees of freedom as optimization vari-

ables. A complete simulation of the problem is performed at each iteration of the

optimization algorithm. Calculating the derivative information that is necessary at

each time step can be computationally expensive, especially for problems with many

degrees of freedom (Hartwich et al., 2011). These calculations are often the dom-

inant computational expense of this approach, and while parallel approaches have

been employed to reduce the time required for this step (Diehl et al., 2002; Scheu

and Marquardt, 2011; Hartwich and Marquardt, 2010), these techniques can still be

inefficient for large-scale problems (Zavala et al., 2008). Alternatively, simultaneous

approaches discretize all problem variables and include the discretized problem as

constraints in the optimization. This dramatically increases the problem size, but the

simulation problem is solved simultaneously with the optimization problem allowing

for efficient solution of very large-scale parameter estimation problems (Zavala et al.,

2008; Zavala and Biegler, 2006).

Various parallel strategies are being developed to solve nonlinear programs in par-

allel using the simultaneous approach. Biros and Ghattas (2005) propose a method

for optimization of steady-state PDE-constrained problems. This approach uses a
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reduced space quasi-Netwon method to precondition the full space Karush-Kuhn-

Tucker (KKT) system and Krylov iterations to solve the KKT system. This method

is fully parallelizable and shows excellent speedup over popular reduced space meth-

ods. Zavala et al. (2008) develop a parallel algorithm for large-scale parameter esti-

mation problems. They use an interior-point framework where the dominant com-

putational expense lies in solving the linear KKT system at each iteration of the

optimization. They exploit the block bordered diagonal structure inherent in the

KKT system of their parameter estimation problems to decompose the problem in

parallel using a Schur-complement approach. The Schur-complement is formed and

solved in parallel, which dramatically decreases the time required to solve the KKT

system. Zhu et al. (2011b) use a similar algorithm for optimal operation under uncer-

tainty. Here, multi-scenario problem formulations are used to capture uncertainty in

demand and contractual obligations. The multi-scenario formulation creates a block

structure where each scenario is a separate block. A Schur-complement decomposi-

tion then exploits this block structure to allow efficient solution in parallel.

In these solution approaches the size of the Schur-complement is related to the

number of variables that are common across each block. These variables couple the

blocks together, and as the number of these variables grows large, the size of the

Schur-complement also becomes large, and the time required to form and solve the

Schur-complement can become prohibitive. To counter this, Kang et al. (2013) use

a quasi-Newton preconditioned conjugate gradient method that avoids the explicit

formation and factorization of the Schur-complement. This allows for significantly

better solution times and parallel scalability, especially for problems with significant

coupling.

These algorithms show significant promise, but rely upon problems possessing

specific structure. If problems do not possess the necessary block structure, these
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algorithms are not applicable. Additionally, the development of new algorithms is

expensive and often outside the expertise of those formulating new problems, so

instead of developing new algorithms, it would be preferable to be able to utilize

existing solvers. While the use of parallel algorithms is relatively new in the param-

eter estimation communities, other fields of optimization have been utilizing parallel

algorithms for many years (Mulvey et al., 1997).

Stochastic programming is often used for optimization of very large, multi-scenario

problems, and many decomposition strategies for solving these problems in parallel

have been developed (Mulvey et al., 1997; Rockafellar and Wets, 1991; Ruszczyński,

1993; Petra and Anitescu, 2012). To our knowledge, stochastic programming has

not been used for parameter estimation, however, the structure of classical param-

eter estimation problems is equivalent to that of two-stage stochastic programming

problems. This equivalence suggests that stochastic programming techniques can

be used for parameter estimation. In this paper, we use the Progressive Hedging

algorithm to solve a large-scale dynamic parameter estimation problem.

A typical form of a parameter estimation problem using data from multiple ob-

servations can be written as

min
∑
s∈S

Psf(ws, εs)

s.t. g(xs, ys, ws, θ) = 0 ∀ s ∈ S

h(ys, y
∗
s , εs) = 0 ∀ s ∈ S.

(6.1)

Here, S denotes the set of all observations, Ps, where
∑

s∈S Ps=1, is a weight for

each observation, and f(ws, εs) is a function of goodness-of-fit given the estimated

model noise ws and measurement noise εs. The vector of constraints g describes the

system model that is a function of unmeasured state variables xs, model outputs ys
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(measured variables), unknown model noise ws, and model parameters θ. The model

parameters are estimated by fitting the model outputs ys to known measurements

y?s . The measurement errors are defined through the vector function h.

A general formulation for the extensive form or deterministic equivalent of a

two-stage stochastic programming problem is given as

min
∑
s∈S

Psf(vs, us)

s.t. g(vs, us) = 0 ∀ s ∈ S

us = ū ∀ s ∈ S.

(6.2)

Here, optimal values for first-stage variables ū are determined while considering un-

certainty across a number of possible realizations S. The system model g is a function

of first-stage variables us and second-stage or recourse variables vs. While each re-

alization can have its own first-stage variables us, they are constrained to be equal

at the solution. The objective function usually computes an expected value across

all possible realizations or scenarios, where Ps is the probability associated with a

particular scenario, and the total probability must equal 1.

The parameter estimation problem in Equation (6.1) is structurally equivalent to

the two-stage stochastic programming problem given in Equation (6.2), where the

parameters θ are equivalent to first-stage variables ū, and the remaining variables

(xs, ys, ws, εs) can be considered second-stage variables (vs). Parameter estimation

strives to determine parameter values that are common across all observations, and

the measurement and model errors can be considered recourse variables that provide

a mechanism for matching the measurements from each individual observation.

The equivalence of these problems is important because a number of stochas-

tic programming decomposition techniques have been developed to handle multi-
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scenario problems with a very large number of scenarios and decision variables. Pro-

gressive Hedging (PH) is one such algorithm that decomposes a stochastic program

by scenarios (Rockafellar and Wets, 1991). PH is also particularly amenable to par-

allelization, and tools exist for automating parallel solution (Watson et al., 2012).

In this section, we demonstrate the potential of PH for the efficient solution of

large-scale nonlinear parameter estimation problems. Specifically, we estimate trans-

mission parameters in an infectious disease model using pre-vaccination measles data

from 60 cities in England and Wales, made available by Grenfell (2012). Section 6.2

provides a brief overview of SIR infectious disease modeling, develops the disease

model formulations solved using NLP algorithms and the PH algorithm, and high-

lights the equivalence between these formulations. The data used for these estimates

is also described here. Section 6.3 outlines the PH algorithm in detail and describes

the specific tuning of algorithm parameters performed for this work. Ipopt was used

as the PH subproblem solver. Our estimation results are given in Section 6.4 along

with some conclusions about these solution approaches and ideas for future work.

6.2 Case Study and Model Formulation

Infectious diseases remain a significant health concern throughout the world, and

reliable, mechanistic disease models are desirable to both better understand disease

dynamics and plan better response strategies. However, these models require ap-

propriate model parameter values to accurately capture the dynamics observed in

reported case data.

Many techniques exist to estimate parameters for temporal dynamics in single

cities (Finkenstädt and Grenfell, 2000; Word et al., 2012; Cauchemez and Ferguson,

2008; Hooker et al., 2011), but spatio-temporal dynamics across multiple cities is also

important (Xia et al., 2004; Jandarov et al., 2013). In England and Wales prior to
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vaccination measles was endemic in large cities, but in smaller cities disease fadeout

occurred (Xia et al., 2004). Reappearance of the disease would then occur only

after a case was imported from a surrounding city where measles was endemic. To

capture spatio-temporal dynamics, multi-city models must be developed, but these

models can become very large requiring more memory and processing power than

a single computer can deliver. To solve these problems efficiently, parallel solution

approaches such as PH must be utilized.

Before tackling an estimation problem considering spatial dynamics, we first need

a solution approach for solving very large problems. In this work, we demonstrate the

use of the progressive hedging algorithm to estimate seasonal transmission parame-

ters for measles using 20 years of reported case counts from 60 cities in England and

Wales. While we wish to use PH to estimate parameters in spatially coupled models,

here we extend the formulation of Word et al. (2012) to simultaneously estimate

transmission parameters for 60 cities without consideration of spatial dynamics.

Word et al. (2012) develop a dynamic, continuous-time SIR compartment-based

model that assumes disease progression from the susceptible stage (S) to the infected

stage (I) to the recovered and immune stage (R). They then present a simultane-

ous approach for efficient estimation of seasonally varying transmission parameters.

While the formulation presented in Word et al. (2012) was for a single city, we extend

this to form a multi-scenario problem where each scenario represents a different city,

and all scenarios must have the same parameter values. We make use of the PySP

application (Watson et al., 2012), which only requires the explicit formulation of a

single-city (or single scenario) model to formulate our problem.

The single-city SIR model used in this work is shown below in Equation (6.3). The

corresponding dynamic optimization problem is converted to a large-scale nonlinear

programming problem (through the simultaneous discretization approach) using a
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three-point Radau collocation on finite elements (Zavala, 2008).

min wM

∫ tf

t0

(εM(τ))2 dτ +
∑
i∈T

(
wQ(ε2Qi)

)
s.t.

dQ

dt
=
β(y(t))S(t)I(t))

N
+ εM(t)

dS

dt
= −

(
β(y(t))S(t)I(t))

N
+ εM(t)

)
+B(t)

dI

dt
=

(
β(y(t))S(t)I(t))

N
+ εM(t)

)
− γI(t)

R?
i = µi

(∫ i

i−1

(
β(y(τ))S(τ)I(τ))

N
+ εM(τ)

)
dτ

)
+ εQi ∀ i ∈ T

βy = βmag · βpatt
y ∀ y ∈ τ

1.0 =

∑
y∈τ β

patt

|τ |

0.75 ≤ βmag ≤ 1.5

0 ≤ I(t), S(t) ≤ N

0 ≤ Q(t).

(6.3)

Here, S denotes the number of susceptibles (people with no immunity to the disease),

I denotes the number of infectives (people who possess the disease and are infectious),

N denotes the total population, and β(t) denotes the time-varying transmission

parameter. The function y(t) maps the overall time horizon into the elapsed time

within the year, making β(y(t)) a seasonal transmission parameter with periodicity of

one year. The parameter B denotes the number of reported births, and the recovery

rate (γ = 1/14) is given as a known scalar input. The variable εM represents the

dynamic model noise, which is assumed to be normally distributed. The index i

denotes a point in time within the set of data reporting intervals T , µ denotes a

reporting factor accounting for under-reporting over the time interval spanning i−1

to i, and R?
i denotes the actual reported incidence over a given time interval. The
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εQi term represents the measurement noise, and wM and wQ represent weights for

the model and measurement noise terms, respectively. These weights are set to be

proportional to the inverse of the assumed variance of the error terms. The scalar

βmag specifies the magnitude of the transmission parameter and is constrained to

be within values considered reasonable R0 values for measles (Anderson and May,

1991). The yearly pattern of β is specified by βpatt and must have a mean of 1.0.

The yearly set of discretizations τ has the cardinality |τ |.

The data used in this work is from 60 cities in England and Wales and contains

biweekly reported measles case counts by city for the years 1944 through 1963. The

number of births are reported per year by city, and we assume the births to be

uniform throughout the year. The population is assumed to be constant for all

cities. Since not every measles infection is reported, case counts are under-reported.

We use a straightforward approach that is described elsewhere (Word et al., 2012)

to estimate a linearly varying reporting fraction for London. This same reporting

fraction is then used for all cities. Ideally, a reporting fraction would be estimated

for each city, but this is infeasible due to the low number of cases reported in many

smaller cities.

The differential equations from (6.3) are discretized using a three-point Radau

collocation on finite elements as described in Section 3.3. Two discretizations were

used for our work. The low-discretization case used the same number of finite el-

ements as there were reporting intervals in the data, which for this data results in

26 finite elements per year. The high-discretization case used 4 times the number of

finite elements as there were reporting intervals, or 104 finite element per year.
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6.3 Estimation Approach

The single-city problem shown in Equation (6.3) was formulated in the algebraic

modeling language Pyomo (Hart et al., 2011, 2012). This model is for a single city and

a single data set. We then specify a scenario tree in PySP (Python-based Stochastic

Programming) (Watson et al., 2012), a python based modeling and solver library for

stochastic programming, and PySP automatically converts the single-city problem

into the multi-city problem. PySP and Pyomo are both part of the open-source

Coopr software package released by Sandia National Laboratories. More details of

this software can be found in Section 3.1. PySP uses a single scenario model that is

formulated in Pyomo, a scenario tree, and multiple data files to construct a multi-

scenario problem. The problem can then be solved using two approaches.

The first and preferred approach considers the extensive form of the multi-scenario
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problem. The extensive form of the multi-scenario extension of (6.3) is

min
∑
c∈C

Pc

(
wM

∫ tf

t0

(εM(τ))2 dτ +
∑
i∈T

(
wQ(ε2Qi)

))

s.t.
dQc

dt
=
βc(y(t))Sc(t)Ic(t))

N c
+ εcM(t) ∀ c ∈ C

dSc

dt
= −

(
βc(y(t))Sc(t)Ic(t))

N c
+ εcM(t)

)
+Bc(t) ∀ c ∈ C

dIc

dt
=

(
βc(y(t))Sc(t)Ic(t))

N c
+ εcM(t)

)
− γIc(t) ∀ c ∈ C

Rc?
i = µi

(∫ i

i−1

(
βc(y(τ))Sc(τ)Ic(τ))

N c
+ εcM(τ)

)
dτ

)
+ εcQi ∀ i ∈ T, ∀ c ∈ C

βcy = β
cmag · βcpatt

y ∀ y ∈ τ ∀ c ∈ C

1.0 =

∑
y∈τ β

cpatt

|τ |
∀ c ∈ C

0.75 ≤ β
cmag ≤ 1.5 ∀ c ∈ C

0 ≤ Ic(t), Sc(t) ≤ N c ∀ c ∈ C

0 ≤ Qc(t) ∀ c ∈ C

β = βc ∀ c ∈ C.

(6.4)

Here, all variables are defined as in (6.3) except that variables are now defined for

each city c from the set of all cities C. The objective term Pc allows for individual

cities to be weighted differently, but in our work all Pc’s are equal. The last constraint

forces the first-stage variables βc to all converge to the same solution β. In this work

we use the interior-point algorithm Ipopt to solve this problem. For more details

about this algorithm please see Section 3.2 and the literature (Wächter and Biegler,

2006).

While the extensive form of the problem should be solved if possible, for many
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scenarios and very large problems, this approach can not only require an excessive

amount of time to converge but also exceed the memory capacity of a single com-

puter. These limitations require the use of alternative approaches. In addition to

formulating the extensive form of problems, PySP also allows for solution utilizing

the Progressive Hedging (PH) algorithm of Rockafellar and Wets (Rockafellar and

Wets, 1991). Here, we use Ipopt as the PH subproblem solver.

The PH algorithm is outlined below. Weights Pc are placed on each observation,

C is the set of all observations, wkc is an algorithm parameter that is updated at

each iteration k, and ρ is an algorithm tuning parameter. The weighted average of

the estimated parameters from each observation is β̄. Using the single-city problem

formulation (6.3):

1. Initialize the iterate k ← 0 and let wkc = 0

2. For all scenarios c ∈ C, solve (6.3) for the model parameters βc:

β0
c ← argminfc(ε)

3. Update the iterate, k ← k + 1, and update β̄:

β̄k−1 ←
∑

c∈C Pcβ
k−1
c where

∑
c∈C Pc = 1

4. For all scenarios c ∈ C, update w:

wkc ← wk−1c + ρc(β
k−1
c − β̄k−1c )

5. Modify the original problem by augmenting the objective function fc(ε)

from (6.3) to:

fc(ε) + wkcβc + ρc
2
‖βc − β̄k−1‖2

6. For all scenarios c ∈ C, solve the modified problem for the model parame-

ters βc:
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βkc ← argmin fc(ε) + wkcβc + ρc
2
‖βc − β̄k−1‖2

7. If termination criterion not met, go back to step 3.

Steps 2 and 6 are computationally expensive, but these steps can be performed in

parallel, which allows for significant performance improvements.

Strategies exist for setting the values for ρc, and choosing reasonable values for

these parameters can significantly effect run-times (Watson and Woodruff, 2011).

Watson and Woodruff (2011) suggest ρ should be proportional to, or at least corre-

lated with, the rate of change in the objective function with changes in the first-stage

variables. For objective variables with no interaction (second-stage variables), this

is given by the cost coefficient (the objective function given in Equation (6.3)). PH

is trying to converge the model parameters βc from each observation to the same

solution.

In this work, ρc is set to be the same for every observation. To balance the ob-

jective function contributions from first-stage and second-stage variables, we choose

a value that is on the same order of magnitude as the cost coefficient. Setting these

parameter values too high can lead to convergence to suboptimal solutions, while

setting these values too low can lead to excessively long convergence times.

The subproblem solver Ipopt also has algorithm parameters that can be set to

decrease run times. When a good initialization is available, setting the initial value

of the barrier parameter (µ in Equation 3.3) to be lower than the default value can

reduce the number of iterations necessary to converge the problem and thus reduce

run times. However, if a good initialization is not available, lowering this initial value

can significantly increase run times. In this work, the default initial value is used for

the zeroth iteration of PH. For the second PH iteration, µ0 is set to 1×10−3, and for

all subsequent PH iterations µ0 = 1×10−6.
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The seasonal transmission parameter estimated using both the extensive form and

PH approaches are shown in Figures 6.1 and 6.2. The problem sizes and solution

times for both approaches are shown in Tables 6.1 and 6.2.

6.4 Results and Conclusions

The estimated values of the seasonal transmission parameters for the low and

high discretization problems are shown in Figures 6.1 and 6.2. The extensive form

and the PH approach yield nearly identical solutions. This solution is also consistent

with published values Finkenstädt and Grenfell (2000). PH was terminated once the

sum of differences between the first stage variables and their average reached a value

less than 1×10−4, indicating logical convergence.

All timing results were obtained using the Red Mesa supercomputing cluster at

Sandia National Lab. This cluster is made up of computing nodes, each with two,

2.93 GHz quad-core, Nehalem X5570-processors, giving 8 computing cores per node.

Each node has 12 GB of DDR3 RAM. Results for the low discretization problem

given in Table 6.1 show that the extensive form solution requires a total of 4.2GB

of RAM. We wish to solve problems with hundreds of observations, and problems of

this size will not only require very long solution times but also more memory than

would be available on a single computing node. Using Progressive Hedging in serial

requires more time than solving the extensive form of the problem, but less memory

is required. The parallel solution of this problem using PH shows acceptable speed-

up, and memory requirements remain low for each compute node, making it possible

to tackle much larger problems.

Table 6.2 shows statistics for the high-discretization problem. The extensive form

of the problem could not be solved due to the problem size exceeding the memory

capacity of the computing node, and the solution time using progressive hedging in
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Extensive Form PH (serial) PH (60 processors)

Jacobian Nonzeros 2600702 42248 42248

Variables 627568 10457 10457

Constraints 596341 9910 9910

Solver Time (min) 5.2 14.8 -

PySP Time (min) 3.8 24.2 -

Total Time (min) 9.0 39 1.9

Solver RAM (GB) 1.9 <0.05 <0.05

PySP RAM (GB) 2.3 1.8 <0.6

Total RAM (GB) 4.2 1.9 <0.7

Table 6.1: Timing and Memory Results For the Low-Discretization Case

serial exceeded our 2 hour time limit. However, using progressive hedging in parallel

allowed us to find a solution in less than 8 minutes while never exceeding 2GB of

memory usage on any single computing node.

Extensive Form PH (serial) PH (60 processors)

Jacobian Nonzeros 9995102 166529 166529

Variables 2405968 40098 40098

Constraints 2281141 37992 37992

Total Time (min) - - 7.5

Total RAM (GB) >12 >7 <2

Table 6.2: Timing and Memory Results For the High-Discretization Case
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Eqs. 6.1 and 6.2 demonstrate that two-stage stochastic programming problems

are structurally equivalent to nonlinear programming parameter estimation prob-

lems. This similarity allows large-scale nonlinear parameter estimation problems

to be solved using stochastic programming decomposition techniques. Our results

demonstrate that Progressive Hedging can be used to solve very large parameter esti-

mation problems in parallel with significant reductions in solution times and memory

requirements.

Further improvements will allow even greater speed-up for parallel PH. Currently,

if even one scenario requires significantly longer to converge than the rest of the

scenarios, a considerable number of computing nodes remain idle for extended periods

of time. Asynchronous approaches being studied will reduce the number of idle

processors by allowing the majority of computing nodes to continue with the next

iteration of the algorithm using an altered update formula. Improved strategies for

the selection of the algorithm parameter ρ could also further reduce solution times.
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Figure 6.1: The seasonal transmission profile β estimated for the low-discretization
problem using the extensive form approach (diamonds) and progressive hedging ap-
proach (squares).
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Figure 6.2: The seasonal transmission profile β estimated for the high-discretization
problem using the progressive hedging approach.
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7. PARALLEL DYNAMIC OPTIMIZATION ∗

In Section 6 we presented a scenario-based decomposition approach for infectious

disease models. This strategy essentially separated a large, multi-city estimation

problem into subproblems of fewer (or even individual) cities. Another strategy is

to decompose the problem in time. Our estimation problems are dynamic, and the

structure of the problem in time is conducive to certain decompositions.

This section presents a decomposition strategy applicable to DAE constrained

optimization problems. A common solution method for such problems is to apply

a direct transcription method and solve the resulting nonlinear program using an

interior-point algorithm. For this approach, the time to solve the linearized KKT

system at each iteration typically dominates the total solution time. In our pro-

posed method, we exploit the structure of the KKT system resulting from a direct

collocation scheme for approximating the DAE constraints in order to compute the

necessary linear algebra operations on multiple processors. This approach is applied

to find the optimal control profile of a combined cycle power plant with promising

results on both distributed memory and shared memory computing architectures

with speedups of over 50 times possible.

7.1 Parallel Optimization of Dynamic Systems

Optimization of dynamic systems has proven to be an effective method for im-

proving operation and profits in the chemical process industry (Scheu and Marquardt,

2011; Diehl et al., 2002; Zavala et al., 2008; Zhu et al., 2010; Tanaka and Martins,

2011). The success of these methods has led to the continued growth of these sys-

∗Part of this section is reprinted with permission from “Efficient Parallel Solution of Large-Scale
Nonlinear Dynamic Optimization Problems” by Word, D.P., Kang, J., Akesson, J., and Laird, C.D.,
2013. Submited to Computation Optimization and Applications.
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tems to improve model rigor and increase the scope of the optimization problem,

however the solution of very large-scale models remains challenging (Hartwich and

Marquardt, 2010). Concurrently, the advances in computing clock rates that we

once took for granted have slowed dramatically. Computer chip design companies

have instead focused on development of parallel computing architectures (Zhu et al.,

2009). These new architectures require advanced algorithms to exploit their par-

allelism. Furthermore, the successful use of advanced solution approaches within

industrial settings requires that these algorithms be interfaced with effective prob-

lem formulation tools. Modern object-oriented modeling languages allow for rapid

creation of complex dynamic optimization problems and reduce the burden of model

development, optimization problem formulation, and solver interfacing. These also

ease the construction of complicated optimization problems, while making it easier

to construct intractably large problems for serial algorithms. There is a need for the

development of advanced parallel algorithms for dynamic optimization that can in-

terface with modern modeling languages and utilize parallel computing architectures

to efficiently solve these large-scale problems. This section presents a decomposition

approach for efficient, parallel solution of nonlinear dynamic optimization problems

formulated using the Modelica-based JModelica.org platform (Åkesson et al., 2010)

and the optimization package CasADi (Andersson et al., 2012).

There are three common approaches for solution of dynamic optimization prob-

lems. With sequential techniques (also called control vector parameterization), the

control variables are discretized, and the optimizer only sees these discretized degrees

of freedom. An integrator then converges the model at each iteration with calculation

of derivative information performed through various techniques including integrating

sensitivity or adjoint equations. The integration of the model and calculation of the

derivative information is often the dominant computational expense of this technique
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(Hartwich et al., 2011), and multiple approaches are being explored to improve so-

lution times through parallelization of these computations (Scheu and Marquardt,

2011; Hartwich and Marquardt, 2010; Diehl et al., 2002; Leineweber et al., 2003).

Multiple shooting techniques combine aspects of both sequential and simultaneous

approaches. These techniques discretize time into multiple stages and the control

variables are parameterized using a finite set of control parameters in each stage.

The system is then solved on each stage, where each stage is an initial value prob-

lem. Equality constraints are added to enforce continuity between the stages (Biegler

and Grossmann, 2004).

In contrast to sequential approaches, simultaneous approaches discretize all prob-

lem variables, not just control variables, and include the discretized model as con-

straints in a large-scale optimization problem (Biegler and Grossmann, 2004). Collocation-

based methods discretize the entire problem to form a large-scale NLP, where the

profiles are approximated using polynomials on finite elements. While the size of

the optimization problem is significantly larger in this case, there is potential for

improved performance since the simulation problem (represented by the discretized

equality constraints) is solved simultaneously with the optimization problem. Even

though such problems are very large, they are sparse and inherently structured as a

result of the discretization. In this section, we consider efficient solution of simulta-

neous collocation-based discretization approaches.

One hurdle in using simultaneous approaches in the past has been the burden

on the modeler associated with the manual discretization of the model – a process

that is typically tedious and error-prone. However, packages are available in modern

modeling languages such as the Modelica-based JModelica.org platform (Association

et al., 2007; Åkesson et al., 2010), Pyomo (Hart et al., 2012), ACADO (Houska et al.,

2011), and DynoPC (Lang and Biegler, 2007) that allow straightforward declaration
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of dynamic equations and provide automatic discretization of these equations using

direct collocation methods. This significantly reduces the burden on the modeler

when using simultaneous solution approaches.

Nonlinear interior-point methods provide an excellent framework for specialized

solution of these discretized dynamic optimization problems. These methods have

proven to be effective tools to solve many very large-scale optimization problems

(Zavala and Biegler, 2006; Zhu et al., 2010; Laird et al., 2005; Word et al., 2012).

The dominant computational expense in these methods usually lie in the solution

of the augmented system, or KKT system, a linear system that results from the

application of Newton’s method to the primal-dual form of the KKT conditions of

the barrier subproblem. The KKT system retains consistent structure from iteration

to iteration, and various approaches can be utilized to reduce the time required to

solve this system.

Amestoy et al. (2000) developed a parallel distributed memory multifrontal ap-

proach for the solution of sparse linear equations that includes an asynchronous

parallel algorithm for efficient numerical pivoting. This algorithm showed speedup

of more than 7 on test problems, but algorithm performance was not evaluated using

a large number of processors because suitable test problems were unavailable.

Scott (2003) presented parallel general-purpose multi-frontal codes to solve large

sparse systems of linear equations. These codes include the serial solution of a

so-called interface problem, and the size and subsequent time for solution of this

problem heavily influences the overall performance. This serial component limits the

scalability of the approach to a relatively small number of processors, but the results

still show a 5 times speedup on 8 processors compared with serial direct solvers.

Schenk and Gärtner (2004) address issues to improve scalability and robustness

of sparse direct factorization on shared memory multiprocessor architectures. To
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balance trade-off between performance and robustness, they employ block supernode

diagonal pivoting. While this approach is not guaranteed to always be efficient,

timing results are promising for some problems. Scale-up of this approach is limited

by the fact that it is designed for shared memory architectures.

Kocak and Akay (2001) explore a decomposition approach for solution of general

linear systems using a Schur-complement. They investigate the use of an analysis

step to determine problem structure that can be exploited using this decomposition

and highlight that when exploiting problem structure for the Schur-complement de-

composition, the amount of coupling between blocks makes a significant impact on

algorithm performance. For problems lacking clear structure, determining how to

effectively decompose the problem is vital to maintain algorithm efficiency but can

be computationally expensive. On the other hand, certain problem classes contain

well-defined coupling by definition and offer an intuitive path for block structure

decompositions.

An alternative to using parallel direct solvers that handle general problem struc-

tures is to focus on problem classes with a particular structure and develop algorithms

that specifically exploit that structure. By requiring specific structure in problem

formulations, the structure is predetermined so the cost of structural analysis can be

avoided. This knowledge can then be exploited for problem level decomposition and

parallel solution of these decomposed systems. Schur-complement methods have been

used for many years to decompose and solve large-scale, structured, linear systems,

and efficient parallel algorithms have been developed (Kocak and Akay, 2001).

DeMiguel and Nogales (2008) have established a theoretical relationship be-

tween bilevel decomposition algorithms and Schur-complement interior-point meth-

ods. This helps bridge the gap between the local convergence theory of bilevel decom-

position algorithms and Schur interior-point methods. Additionally, this work shows
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how Schur-complement interior-point methods can be modified to allow solution of

problems where the Schur-complement is not generally invertible (DeMiguel and No-

gales, 2008). Goulart et al. (2008) have applied robust optimization techniques to

reparameterize linear discrete-time optimal state feedback problems as convex pro-

grams. A primal-dual interior-point solver is then used to solve this convex program.

They highlight that it is straightforward to parallelize their algorithm if a Schur-

complement decomposition is used to solve the linear KKT system at each iteration

of the interior-point algorithm. This solution approach is shown to be efficient even

though they do not implement their algorithm in parallel. Zavala et al. (2008)

adapted the interior-point solver Ipopt to use a Schur-complement decomposition

approach to solve the linear KKT system in parallel by exploiting block structure in

multi-scenario parameter estimation problems. This approach has proven effective

for solving several large-scale case studies (Laird and Biegler, 2008; Zavala et al.,

2008). Zhu and Laird (2008) present a similar algorithm for optimal control under

uncertainty. In Zhu et al. (2011b) this algorithm is used to determine optimal control

of a cryogenic air separation where demand and contractual obligation uncertainties

are captured using a multi-scenario formulation. For these multi-scenario problems,

individual scenarios can be decomposed into separate blocks where only variables

that are common across multiple scenarios prevent the blocks from being fully in-

dependent. These coupling variables are permuted into the Schur-complement and

dictate its size. The Schur-complement is solved in serial, and as the number of

coupling variables and the size of the Schur-complement grows, this computational

cost can become significant. However, for problems with a low number of coupling

variables this approach shows significant performance improvements over full-space

solution approaches (Zhu et al., 2011b).

In this section we make use of the Modelica-based open source software JMod-
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elica.org (Åkesson et al., 2010) and CasADi (Andersson et al., 2012), to transform

high-level descriptions of nonlinear dynamic optimization problems into algebraic

nonlinear programming problems through a direct collocation approach. This cre-

ates a block-banded structure in the KKT system where each finite element forms a

block, and the system can be decoupled at finite element boundaries. The literature

details a number of strategies exploiting this finite element block structure in serial

(Cervantes and Biegler, 2000; Cervantes et al., 2000; Biegler et al., 2002; Rao et al.,

1998). When applying a nonlinear interior-point method to solve the optimization

problem, the dominant computational expense is the solution of the KKT system

that must be solved at each iteration to produce the steps in the primal and dual vari-

ables. The block-banded structure is decomposed by forming a Schur-complement

with respect to the state continuity equations. The size of the Schur-complement

depends on the number of state variables and the number of processors used in the

decomposition, making this approach most favorable for problems with significantly

fewer state variables than algebraic variables.

Building on results in Laird et al. (2011), we develop an interior-point algorithm

for the solution of large-scale nonlinear dynamic optimization problems. We use a

Schur-complement decomposition approach that exploits the block-structure inherent

in the discretized optimization problem to allow solution of the problem in parallel.

The performance of our decomposition algorithm is demonstrated on an optimal

control problem for the start-up of a combined cycle power plant, where we achieve

a speedup of over 50 times.

In Section 7.2 we describe the interior-point algorithm used to solve our optimiza-

tion problems, and in Section 7.3 we describe the discretization strategy employed

to transform dynamic problems into nonlinear programming problems. Section 7.4

shows how we decouple individual finite element blocks and use a Schur-complement
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decomposition to solve for the primal and dual variable steps in the interior-point

algorithm. We describe our software implementation in Section 7.5 and outline the

formulation of test problems in Section 7.6. We display the performance of our algo-

rithm on these problems in Section 7.7. Conclusions and future work are summarized

in Section 7.8.

7.2 Interior-Point Algorithm

The following discussion of the interior-point algorithm used in this section re-

peats much of the discussion presented in Section 3. It is repeated here do to its

immediate relevance in understanding the decomposition algorithm presented here.

This algorithm considers nonlinear problems of the form

min f(x) (7.1)

s.t. c(x) = 0 (7.2)

x ≤ x ≤ x, (7.3)

with n variables and m equality constraints, where x ∈ Rn and f : Rn→R and

c : Rn→Rm are assumed to have continuous first and second derivatives. The vectors

x and x are the set of lower and upper variable bounds for x respectively. This

problem is solved using an interior-point method with a filter-based line-search based

on that described in Wächter and Biegler (2006). A detailed description of the

algorithm and its derivation can be found there, and here we only describe the

steps necessary to explain our parallel decomposition approach. As an interior-point

method, variable bounds are removed from the constraints by adding a log penalty
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to the objective and forming the barrier subproblem,

min f(x)− µ
n∑
i=1

ln(x(i) − x(i))− µ
n∑
i=1

ln(x(i) − x(i))

s.t. c(x) = 0,

(7.4)

where µ is the barrier parameter for a single barrier iteration, and (i) denotes the ith

element of the vectors of length n.

The Lagrangian of the barrier subproblem (7.4) can then be written as,

L = f(x)− µ
n∑
i=1

ln(x(i) − x(i))− µ
n∑
j=1

ln(x(j) − x(j)) + λT c(x), (7.5)

where λ is the vector of equality constraint multipliers. The first order optimality

conditions are then,

∇xL = ∇xf(x) + µ(X)
−1
e− µ(X)−1e+∇xc(x)λ = 0

c(x) = 0,

(7.6)

with X=diag(x−x) and X=diag(x−x). We form the primal-dual formulation by in-

troducing the variables d=µ[X]−1e and d=µ[X]−1e. The algorithm enforces (x−x)≥0

and (x−x)≥0, which makes the new variables d, d ≥ 0. Including these new variables

gives the following system of equations:

∇xL = ∇xf(x) + d− d+∇xc(x)λ = 0

c(x) = 0

Xd− µe = 0

Xd− µe = 0.

(7.7)
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These equations are solved for a particular value of µ using a modified Newton’s

method. For each iteration k of the Newton’s method, the following linear system

must be solved:

∇2
xxL(xk) ∇xc(x

k) −I I

[∇xc(x
k)]T 0 0 0

Dk 0 Xk 0

−Dk
0 0 X

k





∆xk

∆λk

∆dk

∆d
k



= −



∇xf
k + d

k − dk +∇xc(x
k)λ

c(xk)

Xkdk − µe

X
k
d
k − µe



.

(7.8)

Here, ∆xk, ∆λk, ∆dk, and ∆d
k

are the full steps for each of the respective variables,

Dk=diag(dk), and D
k
=diag(d

k
).

The augmented form, a symmetric system, is obtained by multiplying the third

block row by (Xk)−1, the fourth block row by (−Xk
)−1, and adding these rows to

the first block row. This gives


Hk ∇xc(x

k)

[∇xc(x
k)]T 0




∆xk

∆λk

 = −


r̃kx

c(xk)

 , (7.9)

where,

Hk = ∇2
xxL(xk) + (Xk)−1Dk + (X

k
)−1D

k
(7.10)
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and

r̃kx = ∇xf
k +∇xc(x

k)λ− (Xk)−1µe+ (X
k
)−1µe. (7.11)

This interior-point algorithm employs a filter-based line-search strategy that re-

quires the generated step to be a descent direction. This is ensured if the following

inertia condition is satisfied (Forsgren et al., 2002),

Inertia(K) = (n,m, 0). (7.12)

The inertia is the number of positive, negative, and zero eigenvalues of the matrix

K, n is the number of variables, m is the number of equality constraints, and

K =


Hk ∇xc(x

k)

[∇xc(x
k)]T 0

 . (7.13)

We wish to use this algorithm to solve general non-convex NLPs. To ensure de-

scent directions for these problems, we may need to modify the linear system (7.13)

utilizing inertia correction. The modified linear system is


Hk + δHI ∇xc(x

k)

[∇xc(x
k)]T −δcI




∆xk

∆λk

 = −


r̃kx

c(xk)

 . (7.14)

Here, δH and δc are set to zero except when their values must be increased to satisfy

the inertia condition. This system is solved for each interior-point iteration to calcu-
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late the full steps in x and λ. The necessary algebra is then performed to calculate

the steps in ∆d and ∆d, and a line-search is used to ensure that the steps taken in

each of these variables are suitable.

In this algorithm, the most computationally expensive steps are solving the linear

system (7.14) and calculating the residuals (|c(xk)|), gradients (∇xf
k and ∇xc(x

k)),

and Hessian Hk. For the dynamic problems addressed in this section, inherent struc-

ture exists that allows for decomposition and efficient parallel solution of this linear

system and parallel evaluation of these functions. In the next section, we describe

the transcription approach we use for dynamic problems that induces the structure

of these problems.

7.3 Model Transcription

The dynamic optimization problems considered in this section are based on dif-

ferential algebraic equation (DAE) models of the form

min
u

∫ tf

t0

L(x, u, y) dt (7.15)

s.t.

F (ẋ, x, u, y) = 0, (7.16)

x(t0) = x0 (7.17)

z ≤ z ≤ z (7.18)

where ẋ ∈ Rnx are the state derivative variables, x ∈ Rnx are the state variables,

u ∈ Rnu are the control input variables, and y ∈ Rny are the algebraic variables.

The vector z contains all problem variables (ẋ, x, u, and y), and z and z are the

lower and upper bounds respectively on z. It is assumed that the DAE is of index 1,

and index reduction techniques can be used to meet this assumption (Mattsson and
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Söderlind, 1993).

The optimization problem is discretized using a simultaneous transcription method

based on finite elements, with Radau collocation points. See, e.g. (Biegler, 2010)

for a recent monograph. Lagrange polynomials are used to approximate the state,

algebraic and control input profiles.

The optimization mesh is defined by ne finite elements, with normalized lengths

hi, i=1, ..., ne, where
∑ne

i=1 hi = 1. The starting point of each finite element is then

given by

ti = t0 + (tf − t0)
i−1∑
k=1

hk ∀ i = 1, ..., ne, (7.19)

and the collocation points are given by

ti,j = t0 + (tf − t0)

(
i−1∑
k=1

hk + τjhi

)
∀ i = 1, ..., ne, j = 1, ..., nc, (7.20)

where τj ∈ (0, 1], j=1, ..., nc are the Radau collocation points.

At each collocation point, the discretized variable vectors, ẋi,j, xi,j, ui,j, and yi,j

for i=1, ..., ne and j=1, ..., nc, are introduced. In addition, state variables at the

beginning of each finite element, xi,0 for i=1, ..., ne, are introduced. In each finite

element, the differentiated variables are approximated by

x(t) =
nc∑
k=0

xikL
nc+1
k

(
t− ti

(tf − t0)hi

)
, t ∈ [ti, ti+1] (7.21)

where Lnc+1
j (τ) are Lagrange polynomials of order nc which are computed based on

the points τ0, ..., τnc , with τ0=0. Accordingly, the expressions for the derivatives ẋi,j
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are given by

ẋi,j =
1

(tf − t0)hi

nc∑
k=0

xi,kL̇
nc+1
k (τj), i = 1, ..., ne, j = 1, ..., nc. (7.22)

At each collocation point, ti,j, the DAE relation (7.16)

F (ẋi,j, xi,j, ui,j, yi,j) = 0, i = 1, ..., ne, j = 1, ..., nc (7.23)

holds. In addition, continuity constraints for the state variable profiles are enforced

xi−1,nc = xi,0, i = 2, ..., ne (7.24)

as well as the initial conditions x1,0=x0. Notice that the relation (7.24) holds since

for Radau collocation points, τnc=1.

We denote the equations (7.22) and (7.23) in residual form for each finite element

i by Ri=R(zi)=0, where zTi =[xTi,0ẋ
T
i,1, x

T
i,1, ui,1, y

T
i,1, . . . , ẋ

T
i,nc
, xTi,nc

, ui,nc , y
T
i,nc

].

The cost function (7.15) is discretized using a quadrature formula

ne∑
i=1

nc∑
j=1

wjL(xi,j, ui,j, yi,j) = f(z) (7.25)

where wj are the Radau quadrature weights.

The discretized optimal control problem can now be written in the form

min
z

f(z) (7.26a)

s.t. c(z) = 0 (7.26b)

z ≤ z ≤ z (7.26c)
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where

z =



z1

...

zne


, zi =



xi,0

ẋi,1

xi,1

ui,1

yi,1

...

ẋi,nc

xi,nc

ui,nc

yi,nc



∀ i = 1, ..., ne, and c(z) =



Gz1 − x0

R(z1)

Gz1 +Gz2

...

Gzne−1 +Gzne

R(zne)



.

(7.27)

Here, z and z are respectively the lower and upper bounds on z, nc is the number of

collocation points, ne is the number of finite elements, and element coupling matrices
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(arising from the continuity equations) are given by

G =


I 0 . . . 0

 , G =


0 . . . 0 −I 0 0

 . (7.28)

The coupling constraints Gzi−1 + Gzi=0 link individual finite elements in time. It

is important to note that only the state variables are temporally coupled between

elements, not the algebraic variables. In other words, the −I block in G corresponds

only to xi,nc . Therefore, the dimension of these constraints, (i.e., the number of rows

in G and G) is dependent on the number of state variables only. It is this property

that will be exploited to decompose the problem and develop an efficient parallel

solution approach.

7.4 Parallel Solution of the Dynamic Optimization Problem

Introducing decoupling variables, qi=xi,nc , i=1..ne−1, we may rewrite the NLP

resulting from collocation as

min
z

f(z) (7.29a)

s.t. c(z, q) = 0 (7.29b)

z ≤ z ≤ z (7.29c)
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where z and z are respectively the lower and upper bounds on z, zT= [zT1 , . . . , z
T
ne

],

qT= [qT1 , . . . , qne−1], and

c(z, q) =



Gz1 − x0

R(z1)

Gz1 + q1

Gz2 − q1

R(z2)

Gz2 + q2

...

Gzne − qne−1

R(zne)



. (7.30)

Solution of this large-scale nonlinear programming problem is possible with a number

of potential algorithms. The dominant cost of an interior-point algorithm is the

solution of the linear KKT system at each iteration to find the full step in the

primal and dual variables. This linear system can be solved with direct factorization

methods appropriate for symmetric indefinite systems, however, the structure of the

optimal control problem induces structure in the KKT system that can be exploited
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with a parallel decomposition algorithm. This linear system can be decomposed by

selecting break-points in time and performing a Schur-complement decomposition

with respect to the coupling constraints (or corresponding multipliers) and variables.

Here, we describe our decomposition algorithm assuming that decoupling vari-

ables q and coupling constraints are added between each finite element. This gives

a system where each finite element represents one decomposed block. However, our

actual implementation is able to decompose the problem with multiple finite ele-

ments per block, where decoupling variables and coupling constraints are not added

between every finite element. For example, a problem with 128 finite elements can

be separated into two blocks of 64 finite elements each, 4 blocks of 32 finite ele-

ments each, and so forth. The number of blocks formed should be determined by

the number of available processors.

The linear KKT system solved at each iteration of the interior-point optimization

algorithm (specified in (7.14)) can be written in the following block-bordered struc-

ture. Again, for simplicity of notation, the structure is written with a decoupling

variables introduced between every finite element.



K1 AT1

K2 AT2

. . .
...

Kne ATne

A1 A2 . . . Ane Q





∆v1

∆v2

...

∆vne

∆vs



=



r1

r2

...

rne

rs



(7.31)
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where

Ki =



Hi+δHI G
T ∇ziR(zi)

G −δcI

∇ziR(zi)
T −δcI


∀ i = 1, ..., ne, (7.32)

∆vi =



∆zi

∆λG,i

∆λR,i


, ri =



−r̃zi

−Gzi + qi−1

−Ri


∀ i = 1, ..., ne, (7.33)

A1 =



0 0 0

G 0 0

0 0 0

...



(7.34)
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Ai =



0 0 0

...

0 −I 0

0 0 0

0 0 0

G 0

0 0 0

...



∀ i = 2, ..., ne − 1 (7.35)

Ane =



0 0 0

...

0 0 0

0 −I 0

0 0 0



, (7.36)
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Q =



δHI I

I −δcI

δHI I

I −δcI

. . .

δHI I

I −δcI



, (7.37)

∆vs =



∆q1

∆λG,1

...

∆qne−1

∆λG,ne−1



, and rs =



−∇qr̃1

−Gz1 − q1

...

−∇qr̃ne−1

−Gzne−1 − qne−1



. (7.38)

Here, Hi is the modified Hessian described in (7.10), and δH and δc may be zero

or positive depending on the need of the algorithm to handle non-convexity and/or

singlularity in the Jacobian. The ∆νi vectors include the primal and dual variables
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for element i, and ∆νs contains the dual variables for the coupling constraints. In

this permutation, the coupling constraints, (i.e., the Jacobian matrices G and G),

and their corresponding dual variables have been permuted to the borders of the

KKT system.

The step in the variables vs can be decoupled from the remaining variables by

eliminating the Ai matrices, resulting in the following Schur-complement decompo-

sition,

[
Q−

∑
i

AiK
−1
i ATi

]
∆νs = rs −

∑
i

AiK
−1
i ri. (7.39)

This decomposition allows solution of the KKT system using the following algorithm.
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Algorithm: Schur-Complement Solve of KKT System

1: for each i in 1, ..., ne

1.1: factor Ki (using MA27 from Harwell Subroutine Library)

2: Initialize S by letting S = Q (shown in (7.37))

3: let rsc = rs

4: for each i in 1, ..., ne

4.1: for each nonzero column j in ATi

4.1.1: solve the system Kis
<j>
i = [ATi ]<j> for s<j>i

4.1.2: let S<j> = S<j> − Ais<j>i

4.2: solve the system Kipi = ri for pi

4.3: let rsc = rsc − Aipi

5: solve S∆νs = rsc for ∆νs

6: for each i in 1, ..., ne

6.1: solve Ki∆νi = ri − ATi ∆νs for ∆νi

There are several levels of parallelism that can be exploited in this algorithm.

If there is one processor available for each element, then Steps 1, 4, and 6 can

all be parallelized by utilizing one processor for each i in ne. Furthermore, if more

processors are available, individual column backsolves in Step 4.1 can be parallelized.

In the traditional Schur-complement decomposition approach, the number of columns

in ATi is typically dependent on the overall number of coupling or first-stage variables.

However, with this problem structure, the number of nonzero columns in ATi is

dependent on the number of state variables only. Therefore, when solving the system

in parallel, the size of the Schur-complement grows with the number of processors,

but the number of backsolves required for Step 4.1 does not.
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In previous work we have shown excellent parallel scalability using this strat-

egy for problems with complicating variables (Zavala et al., 2008; Zhu et al., 2010)

where the size of the Schur-complement is determined by the number of complicat-

ing variables only. In the approach described here, the size of the Schur-complement

increases with the number of states and the number of processors used. As the size

of the Schur-complement grows, the increased cost of solving the Schur-complement

system (Step 5) will erode parallel speedup. In general, the Schur-complement is

dense and the cost of solution with a dense linear solver would increase cubically

with the size of the Schur-complement. However, due to the block structure induced

on the Ak blocks by the collocation and decomposition, the Schur-complement here

can be quite sparse. Figure 7.1 shows the block structure of the Schur-complement

formed using our approach. While the dimension of the Schur-complement grows

quadratically with the number of Ak blocks and is equal to (2N−2)2, where N is the

number of blocks, the number of nonzero blocks in the Schur-complement only grows

linearly and is equal to 4+6(N−2). Note that N must be greater or equal to 2 for

this decomposition to be utilized. The Schur-complement can be quite sparse when

a large number of processors is used, and using efficient sparse linear solvers can dra-

matically reduce the computational time required to solve the Schur-complement,

improving parallel scalability. In this work we use the sparse linear solver MA27

(HSL (2011)).

7.5 Implementation

In this section we make use of the JModelica.org (Åkesson et al., 2010) modeling

framework that is based on Modelica, Optimica, and Python, to transform high-level

descriptions of dynamic optimization problems into algebraic nonlinear programming

problems through a direct collocation approach. JModelica.org is a comprehensive
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Figure 7.1: The Schur-complement sparsity pattern. The dark boxes represent blocks
that can be dense and contain nonzeros, and the light boxes represent blocks that
can only contain zeros.

modeling and optimization tool for large-scale dynamic optimization problems. The

platform employs compiler technology, symbolic manipulation, and code generation

to transform high-level Modelica and Optimica descriptions into efficient executables

suitable for linking with numerical solvers. In addition, XML files containing DAE-

constrained optimization problems can be generated from Modelica and Optimica
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descriptions. We interface with the open-source symbolic framework for automatic

differentiation and optimal control, CasADi (Andersson et al., 2012), for efficient

automatic differentiation. CasADi supports import of model XML files compliant

with the format used by JModelica.org, which enables a seamless integration between

the tools, (Andersson et al., 2011).

The interior-point algorithm is implemented in C++ using an object-oriented

design where the core interior-point algorithm is independent of the specific prob-

lem representation and linear algebra routines. This design eases the development

of custom decomposition approaches to exploit specific problem structure since the

fundamental algorithm does not require change. This design also allows for straight-

forward parallelization since only the interfaces to the linear algebra routines are

exposed to the fundamental algorithm, and the underlying operations function iden-

tically whether executed in serial or parallel. The algorithm requires several vector,

vector-vector, and matrix-vector linear algebra operations (e.g. dot product, norms,

matrix-vector multiplication), and in the parallel implementation these operations

are parallelized using MPI routines.

7.6 Benchmark Problem

To demonstrate the performance characteristics of our algorithm we solve a prob-

lem to find the optimal control profile for the start-up of a combined cycle power

plant. The power plant model is encoded in the object-oriented modeling language

Modelica, and is based on a library consisting of model classes representing the model

components. The model object diagram is shown in Figure 7.2. The key limiting

factor with regards to start-up speed is the thermal stress in the steam turbine. The

stress in the turbine axis is proportional to the temperature gradient, which in turn

results when hot steam is exposed to the cold axis surface. Apart from the heat
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Figure 7.2: Object diagram of the combined cycle power plant.

transfer in the steam turbine axis, the main model elements are the boiler, an econ-

omizer and a super heater. The control input of the model is the load of the gas

turbine. The model has ten states, 127 algebraic variables and one control input.

The optimal control problem seeks to determine a trajectory for the gas turbine

load which drives the pressure in the boiler to a target value, corresponding to full

production, while respecting a bound on the thermal stress in the steam turbine axis.

In addition, there is a rate limit on the control input. For details on the models and

the optimal control formulation, we refer to Casella et al. (2011).

134



7.7 Performance Results

The computational cost of the approach described in Section 7.4 is a function

of the number of state variables, (i.e. the dimension of the coupling constraints),

and the number of processors used in the decomposition. As we increase the num-

ber of processors, we have the potential for greater parallelization, however, the size

of the Schur-complement (and hence the cost of Step 5) also increases. Increased

parallelization also adds computational time required for inter-processor communi-

cation. Depending upon problem size, this additional communication burden can be

significant.

We test the speedup of our algorithm on 3 test problems of different sizes with

64, 128, and 256 finite elements. Figure 7.3 shows the speedup of our parallel decom-

position code when compared with the same decomposition performed in serial. In

this example, a speedup of over 50 times was possible for the largest problem. Figure

7.4 shows the speedup for our parallel decomposition when compared with the se-

rial full-space approach where the entire KKT system is solved directly with MA27.

Here, we see that our parallel decomposition is still capable of appreciable speedup

(over 50 times faster for the largest problem). Note that the speedups comparing

the decomposition and full-space algorithms are per iteration of the interior-point

algorithm rather than for the overall runtime. Recall that our approach introduces

additional copuling variables to decompose the problem. To provide a fair compari-

son, we do not introduce these additional variables hwen solving with the full-space

approach. Speedup per iteration is shown because the full-space and decomposition

algorithms are solving different systems and may therefore take slightly different

steps, which may require a different but comparable number of steps (and therefore

interior-point iterations). In our experience neither algorithm consistently requires
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fewer iterations.
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Figure 7.3: Speedups comparing the parallel Schur-complement linear solver with
the serial Schur-complement linear solver for problems with 64, 128, and 256 finite
elements.

While significant speedup is observed, as expected, the speedup of our parallel al-

gorithm deteriorates when we increase to larger numbers of processors. This is due to

two aspects. First, as the number of processors is increased, the computational time

required by each processor decreases, while the communication overhead increases.

For larger problems, where the computational burden per processor is higher, this

effect is reduced. For this reason, we expect that our algorithm would demonstrate

better speedup on larger problems (for the same number of state variables). Second,

the time required to solve the Schur-complement (Step 5) increases with the number

of blocks, and, while this time remains small, it makes an increasingly significant

contribution to the solution time.
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Figure 7.4: Speedups comparing the parallel Schur-complement linear solver with
the full-space linear solver MA27 for problems with 64, 128, and 256 finite elements.

Table 7.1 details the times per iteration required in the computationally expen-

sive steps of the linear solve. Both the serial and parallel times are shown for our test

problem with varying numbers of finite elements and blocks. Increasing the num-

ber of blocks makes each individual block smaller, and factorizing and performing

backsolves with these smaller blocks can be significantly faster. This is why as the

number of blocks increases the times required for Steps 1 and 6 can actually decrease

even when performing these calculations in serial. However, while the number of

operations in Step 4 stays the same for each block, increasing the number of blocks

increases the total number of operations, so even though individual backsolves may

be faster, the time required for the serial algorithm increases. For the parallel algo-

rithm, each block is distributed on separate processors so the time required for Step

4 does not increase until the inter-processor communication overhead becomes sig-

nificant. This table also shows the increase in computational time required to solve

the Schur-complement. For example, for the 256 finite element case Step 5 requires
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less than 0.005% of the linear solver time when using 2 blocks but more than 33% of

the linear solver time when using 256 blocks.

Table 7.1: The table shows in seconds the average time per iteration required in the
steps of the Schur-complement algorithm for the example problem as the number of
finite elements and blocks is changed. Both serial and parallel times are shown.

All timing results were obtained using the Red Mesa supercomputing cluster at

Sandia National Lab. This cluster is made up of computing nodes, each with two,

2.93 GHz quad-core, Nehalem X5570-processors, giving 8 computing cores per node.

Each node has 12 GB of DDR3 RAM. For the results shown in Figures 7.3 and 7.4

only one computing core was used per computing node. However, computing clus-

ters with distributed memory are typically much more expensive and less common

than the shared memory architectures of the standard desktop computer. Computer

manufactures are increasing the number of computing cores available on the stan-
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dard desktop computer, and it is important to understand the performance that

can be expected on these common computer architectures. Figure 7.5 compares the

speedups achieved using distributed memory and shared memory architectures. The

shared memory speedups come from solving the combined cycle powerplant start-up

problem with 256 finite elements using an increasing number of computing cores on a

single computing node. Note that as the number of processors increases, the speedup

does not suffer.
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Figure 7.5: Speedups comparing shared-memory and distributed-memory architec-
tures. These speedups compare our solution approach using the parallel Schur-
complement algorithm over the serial Schur-complement algorithm on shared-
memory and distributed-memory architectures.

7.8 Summary

This section presents a decomposition approach that is applicable for nonlin-

ear dynamic optimization problems formulated using the simultaneous approach.

139



A Schur-complement algorithm is used for parallel solution of the linear systems

resulting from an interior-point solution of these optimization problems. The dom-

inant costs of the Schur-complement algorithm are Step 1 (factoring the K blocks),

Step 4 (forming the Schur-complement), and Step 5 (solving the Schur-complement),

however, Steps 1 and 4 can be efficiently parallelized, and for our test problem the

computational cost of Step 5 remained small.

We interfaced our solution approach with the JModelica.org modeling frame-

work that transforms high-level descriptions of dynamic optimization problems into

algebraic nonlinear programming problems through a direct collocation approach

(Åkesson et al., 2010). This modeling framework is integrated with CasADi (An-

dersson et al., 2012) to provide efficient automatic differentiation (Andersson et al.,

2011).

For problems with few states and many algebraics, this solution approach has

the potential for significant speedup. As the size of the Schur-complement increases

(more states or processors), parallel speedup is eroded, and with an increasing num-

ber of processors the cost of inter-processor communication can become significant.

This is especially true with relatively small problems that solve quickly, since the

time required for communication can easily become a significant cost of the algo-

rithm. Nevertheless, this approach can still be highly efficient. For blocks Ak of

arbitrary structure, the Schur-complement may indeed be dense, but for dynamic

optimization problems studied here, the structure of the Ak blocks is such that the

resulting Schur-complement is both block structured and relatively sparse making it

ideally suited for solution using sparse linear solvers. In this work, the efficient, serial

sparse linear solver MA27 was used to solve the Schur-complement with promising

results, but it could be possible to see further algorithm improvements if an efficient,

parallel sparse linear solver was utilized.
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The combined cycle power plant problem shows that this parallel decomposition

approach can be coupled with a parallel interior-point algorithm for efficient solution

of real optimal control problems. The case study displayed the potential for speedups

of more than 50 over full-space approaches using distributed memory computing

architectures. Additional results compared the speedup of our algorithm using shared

memory and distributed memory computing architectures, and for the computing

hardware used in our tests no differences were observed.

The nature of this algorithm lends itself to problems with a high number of al-

gebraic variables compared to state variables. The infectious disease models that we

have investigated thus far have a relatively low number of algebraic variables com-

pared to state variables. Because of this, it is not likely that our Schur-complement

decomposition algorithm would perform well for measles models, and therefore we

have not investigated the use of this algorithm for this problem type.
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8. SUMMARY, CONCLUSIONS, AND FUTURE WORK∗

The development of infectious disease models remains important to provide sci-

entists with tools to better understand disease dynamics and develop more effective

control strategies. In this work we focused on the estimation of seasonally varying

transmission parameters in infectious disease models from real measles case data.

In Section 1 we presented the motivation behind our research in parameter es-

timation for infectious disease models. The advancements in public health that

are possible through the application of mathematical modeling and estimation tech-

niques to infectious diseases can improve the lives of millions of people worldwide.

Due to the availability of measles data, our research has focused on the estimation of

transmission parameters for measles models using real measles data. Additionally,

we investigated two parallel solution techniques that can be applied to very large

problems that would be intractable using serial approaches.

∗Part of this section is reprinted with permission from “‘Exploiting Modern Computing Archi-
tectures for Efficient Large-Scale Nonlinear Programming” by Zhu, Y., Word, D., Siirola, J., and
Laird, C.D., 2009. In: R.M. de Brito Alves, C.A.O. do Nascimento and E.C. Biscaia, Jr., Eds.,
Computer Aided Chemical Engineering, Copyright 2010 by Elsevier.

Part of this section is reprinted with permission from “Estimation of seasonal transmission pa-
rameters in childhood infectious disease using a stochastic continuous time model” by Word, D.P.,
Young, J., Cummings, D., and Laird, C.D., 2010. In: S. Pierucci and G. Buzi Ferraris, Eds., Com-
puter Aided Chemical Engineering, Copyright 2010 by Elsevier.

Part of this section is reprinted with permission from “A Nonlinear Programming Approach for
Estimation of Transmission Parameters in Childhood Infectious Disease Using a Continuous Time
Model” by Word, D.P., Cummings, D.A.T., Burke, D.S., Iamsirithaworn, S., and Laird, C.D., 2012.
Journal of the Royal Society Interface, Copyright 2012 by The Royal Society.

Part of this section is reprinted with permission from “A Progressive Hedging Approach for Pa-
rameter Estimation of Stochastic Nonlinear Programs” by Word, D.P., Watson, J.P., Woodruff, D.,
and Laird, C.D., 2012. Proceedings of PSE2012, Singapore, Copyright 2012 by Elsevier B.V.

Part of this section is reprinted with permission from “Interior-Point Methods for Estimating
Seasonal Parameters in Discrete-Time Infectious Disease Models” by Word, D.P., Young, J.K.,
Cummings, D.A.T., Iamsirithaworn, S., and Laird, C.D., 2013. Submitted to PLOS One.

Part of this section is reprinted with permission from “Efficient Parallel Solution of Large-Scale
Nonlinear Dynamic Optimization Problems” by Word, D.P., Kang, J., Akesson, J., and Laird, C.D.,
2013. Submited to Computation Optimization and Applications.
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A significant amount of work has been conducted in the epidemiology community

on the modeling and estimation of infectious disease dynamics. Section 2 presents a

review of several decades of research in this field and lays the foundation from which

our modeling and estimation approaches grew. This review explains the premise

of compartment-based modeling and details research in several discrete-time and

continuous-time compartment based models that include a number of different com-

partments. Several estimation approaches are described that focus primarily on the

estimation of seasonally varying transmission parameters. Efficiency of these tech-

niques vary widely with some requiring only minutes and others requiring many

hours, and results from several of the studies referenced in this section are compared

against our results.

Section 3 describes the basic approach of the primal-dual interior-point methods

for nonlinear programming that are used throughout this research. This topic is

presented here since a basic understanding of these methods is important in the

development of our solution approaches. These techniques have proven to be highly

effective and efficient for solving many very large-scale and complex problems across

many industries. Furthermore, these techniques can be easily extended to allow for

parallel solution techniques.

Multiple discrete-time models were presented in Section 4 to demonstrate the

flexibility inherent in large-scale nonlinear programming techniques and the ability

of these techniques to efficiently estimate transmission parameters in multiple disease

models using measles case count data. We demonstrated this efficiency and flexibility

using three model formulations and performing estimation using three real data sets.

In all cases, including for time-series data sets of up to 20 years, we were able to

perform the estimations in less than 6 seconds.

We validated our estimation approach using simulated case data where param-
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eters were known. We also compared our estimates using case data from London

with estimates found in the literature, and found our results to be consistent with

prior findings (He et al., 2010; Hooker et al., 2011). While our estimates were consis-

tent with the literature, they are significantly higher than the published estimates of

R0 (Anderson and May, 1991). This deviation may be due to dependency between

model parameters (as shown in the confidence regions in Figures 4.7-4.9), or because

of the discrete-time approximation. Estimation results presented in Section 5 and

appearing in Word et al. (2012) which are based on a continuous-time model do not

show this deviation from estimates of R0.

Using real measles case data from both New York City and Bangkok, we per-

formed estimates using 3 discrete-time formulations that considered seasonality in

the transmission parameter, the exponential parameter, and the introduction of new

susceptibles. In all cases, the estimated seasonality showed correlation with school

schedules. This is especially important given that the school schedules differ sig-

nificantly for these two locations. The profile estimated using seasonal exponential

parameters was practically identical to that estimated using a seasonal transmission

parameter. This result might not be too surprising, but this does highlight that

care must be taken when relating the estimated seasonality to particular system

phenomena (e.g., contact rate).

The estimation results for the model with a seasonal weighting of the births also

showed correlation to school holidays. Here, instead of assuming that new suscep-

tibles always entered the population uniformly throughout the year, the model was

formulated so that susceptibles could enter the population in any seasonal pattern.

These estimation results show that all new susceptibles were introduced to the pop-

ulation immediately following long school holidays to best capture the dynamics

observed in reported measles cases. Since all births clearly do not actually occur at
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this time, this result is consistent with the idea that the susceptible children impact

observed measles dynamics when they enter the school population.

Successful estimation of parameters in dynamic models for childhood infectious

diseases from time-series data presents several challenges. Typically, reported cases

(the incidence) are the only available data, while there is little information about

the susceptible population. Therefore, approaches must simultaneously estimate the

prevalence and the unknown susceptible states. Furthermore, the case data is often

significantly under-reported, the reporting interval is often longer than the serial

interval of the disease, and the models are highly nonlinear. Section 5 presented a

nonlinear programming approach for estimating the unknown states and the seasonal

transmission parameter using a continuous-time model with both measurement and

model noise.

Continuous time formulations offer several advantages over discrete-time formu-

lations for estimation of infectious disease models. Data can be handled in its native

form regardless of the reporting interval. This was demonstrated by using biweekly

reported data from London and monthly reported data from New York City and

Bangkok. Using data in its native form is a significant advantage for diseases with

short serial intervals where it would be unreasonable to have data reported at the

same interval.

The estimated transmission profiles from all three cities show strong correlation

with school holidays despite the very different holiday schedules seen between Lon-

don, New York City, and Bangkok. For Bangkok and NYC there was a lag observed

in the estimated transmission profiles that showed the drop in transmission as occur-

ring after the holiday had begun. This is probably due to a lag in reporting causing

cases to be reported well after their occurrence and the incubation period of measles

causing cases to be observed after the start of the holiday even though the infection
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occurred before the holiday.

The estimation approach presented here is highly efficient. Recent work by

Hooker et al. (2011) solves a similar problem formulation in approximately 2 hours,

the MCMC estimation performed by Cauchemez and Ferguson (2008) required ap-

proximately 20 hours per run, and the plug-and-play method of He et al. (2010)

requires approximately 5 hours. None of our estimations take longer than 5 minutes.

The efficiency of this fully simultaneous approach opens the door to explore many

more model structures efficiently and provides a framework that is scalable to large

spatially distributed estimations.

Several recent publications have reported estimated values of the seasonal trans-

mission parameter, and corresponding R0 values, that are higher than estimates

provided in Anderson and May (1991). For example, the reported estimates of He

et al. (2010) for London give an R0 of 57 with 95% confidence intervals of 37 and

60. There is significant complexity in finding R0 values while considering seasonal

transmission rates, and it is difficult to compare results arising from different model

structures. Using the approximate relationship R0=β̄(t)/γ, we estimate R0=13.3 in

London with 95% confidence intervals of 12.1 and 14.3. Our estimates for New York

City (R0=9.1) and Bangkok (R0=17.9) also give values for R0 that appear consistent

with values reported for measles in Anderson and May for other cities (Anderson and

May, 1991) and with values approximated using the average age of infection.

The nonlinear programming approach for estimating infections disease models

that was used in Sections 4 and 5 for estimating continuous-time infectious disease

models is reliable, flexible, and efficient. Solutions to the nonlinear programming

problems were possible with a general initialization strategy, and effective parameter

estimates are possible, even in the face of challenging sets of data that contain missing

years, severe under-reporting, and significant noise. It is straightforward to switch
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between diseases with different serial intervals or data sets with different reporting

intervals. The approach is independent of model specifics. For example, it would be

straightforward to add additional compartments to the model, such as adding an E

compartment to make an SEIR model that would account for individuals that have

been exposed to a disease but cannot yet infect susceptibles. One could also add a

compartment to account for portions of the population that were vaccinated against a

disease. Furthermore, the approach is highly efficient, making it appropriate for much

larger problem formulations, or for rapid exploration and comparison of multiple

model structures.

Using this flexible framework, we propose to address two important advances in

future work. First, standard assumptions with the SIR model give exponential dis-

tributions in age-dependence of cases. This is contrary to the age-distributed case

data we have for these locations. We propose to develop an age and time discretized

model to estimate seasonal age-dependent transmission parameters using this ap-

proach. Second, while this work focused on estimating transmission parameters for

individual large cities, another interesting problem for health officials is looking at a

spatial model of disease spread. For accurate estimation of disease dynamics in small

cities where fadeout is observed, information is needed regarding the transmission

of the disease from a large city where the disease is endemic to the small city. The

approach described in this paper is appropriate for estimation of large-scale, spatially

distributed, nonlinear differential equations models and will be a subject of future

research.

However, despite the high efficiency of these solution approaches, the future prob-

lems that we wish to address are very large and it is still straightforward to formulate

estimation problems that are intractably large for serial solution approaches. With

the focus of computer manufacturers on development of parallel computing archi-
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tectures, it is imperative to develop solution algorithms that can exploit the unique

capabilities of parallel computing so that larger problems can be tackled than what

is currently possible.

In Section 6 we presented an equivalence between nonlinear programming pa-

rameter estimation problems and stochastic programming problems that allows us

to use stochastic programming algorithms to estimate parameters. Specifically, this

section demonstrates the use of the Progressive Hedging (PH) algorithm of Rock-

afellar and Wets (1991) to estimate transmission parameters for a continuous-time

measles model using measles case data from 60 cities in England and Wales.

The estimated values of the seasonal transmission parameter found using the ex-

tensive form and the PH approach yield nearly identical solutions. This solution

is also consistent with published values (Finkenstädt and Grenfell, 2000). What

is equally important is that the PH algorithm can be easily implemented in paral-

lel which can yield significant performance improvements. Not only can a solution

be found much faster when using PH in parallel, but because the problem is dis-

tributed across multiple computers, memory requirements are much lower allowing

much larger problems to be solved.

Further improvements will allow even greater speed-up for parallel PH. Currently,

if even one scenario requires significantly longer to converge than the rest of the

scenarios, a considerable number of computing nodes remain idle for extended periods

of time. Asynchronous approaches being studied will reduce the number of idle

processors by allowing the majority of computing nodes to continue with the next

iteration of the algorithm using an altered update formula. Improved strategies for

the selection of the algorithm parameter ρ could also further reduce solution times.

The PH algorithm decomposes problems by scenarios. This approach is suitable

for problems that can be formulated as separate scenarios such as those with multi-

148



ple data sets like the disease problems we have investigated. Another decomposition

strategy is to decompose problems in time, and since our disease models are dynamic

it is possible to decompose these problems in this way. In Section 7 we present a

decomposition approach that is applicable to nonlinear dynamic optimization prob-

lems formulated using the simultaneous approach. A Schur-complement algorithm

is used for parallel solution of the linear systems resulting from an interior-point so-

lution of these optimization problems. While certain steps of the Schur-complement

algorithm can be computationally expensive, some of these steps can be efficiently

performed in parallel. The dominant serial cost of this algorithm is directly related

to the number of states in the problem and the number of processors used to solve

the problem.

For problems with few states and many algebraics, this solution approach has

the potential for significant speedup, however, as the size of the Schur-complement

increases (more states or processors), parallel speedup is eroded. Nevertheless, this

approach can still be highly efficient. Because of structure induced in the prob-

lem through the collocation based discretization strategy used in the simultaneous

approach, the resulting Schur-complement is both block structured and relatively

sparse. The use of an efficient sparse linear solver dramatically decreases the time

to solve the large Schur-complement and allows for significantly improved speedup

compared to a dense linear solver. In this section, the efficient, serial sparse linear

solver MA27 was used to solve the Schur-complement, but it could be possible to

see further algorithm improvements if an efficient, parallel sparse linear solver was

utilized.

A test problem shows that this parallel decomposition approach can be coupled

with a parallel interior-point algorithm for efficient solution of real optimal control

problems where the problem possesses a high ratio of algebraic to state variables. The
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case study displayed the same trade-off between increasing the number of processors

and increased time for solving the Schur-complement as was observed in Laird et al.

(2011), but the use of an efficient sparse linear solver keeps these times relatively

small for our test problem. Additional results compared the speedup of our algorithm

using shared memory and distributed memory computing architectures, but for the

computing hardware used in our tests no differences were observed.

While this parallel algorithm showed significant performance improvements for

the problems tested, it does not perform well for problems with a low ratio of algebraic

to state variables. The infectious disease models that we have formulated have a low

ratio of algebraic to state variables so we did not test this algorithm on the disease

problems we have formulated.

Continued efforts will pursue the development of a true spatio-temporal model

of infectious disease dynamics that includes unknown parameters describing trans-

mission of disease between cities. This model will lead to a very large estimation

problem that will require a parallel solution approach for efficient solution. The Pro-

gressive Hedging algorithm is one promising approach to solve this problem. This

approach would allow the problem to be decomposed by cities so that each processor

could look at a problem only as big as the estimation problem for a single city - a

problem of tractable size.

Additionally, parallel solution approaches exploiting temporal decomposition are

promising. Further research of this strategy could lead to an algorithm suitable even

for problems with a low ratio of algebraic to state variables like our disease problems.

It could also be promising to pursue algorithms that include scenario-based and time-

based decomposition approaches to allow even further decomposition and utilization

of parallel computing.
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APPENDIX A

DISCRETE-TIME FORMULATION IN AMPL

This is an AMPL model for the deterministic, discrete-time formulation described

in Section 4. Note that additional parameters are defined in the run file described

in Appendix F.

set S_SI ordered;

set S_SI_PER_YEAR ordered;

param P_POP{S_SI};

param P_BIRTHS{S_SI};

param P_REP_CASES{S_SI}, default 1.0;

param P_DATA_WTS{S_SI}, default 1.0;

param P_YEARS{S_SI};

param P_NSIPY = card(S_SI_PER_YEAR);

param P_OBJWT_lnC > 0;

param P_BETA_INIT > 0;

param P_SUSC_INIT_PERC > 0;

param P_YEAR_DATA_START > 0;

param P_YEAR_DATA_END > 0;

param P_YEAR_START >= P_YEAR_DATA_START;

param P_YEAR_END > P_YEAR_START, <= P_YEAR_DATA_END;

set S_SI_L ordered =

( ((P_YEAR_START - P_YEAR_DATA_START)*card(S_SI_PER_YEAR) + 1)..

((P_YEAR_END - P_YEAR_DATA_START + 1)*card(S_SI_PER_YEAR)) by 1);

param P_GLOBAL_GAMMA > 0, <= 1.1;
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var I{S_SI_L} >= 0, <= P_POP[ first(S_SI_L) ];

var S{S_SI_L} >= 0, <= P_POP[ first(S_SI_L) ];

var ln_I{S_SI_L} <= log(P_POP[ first(S_SI_L) ]);

var ln_S{S_SI_L} <= log(P_POP[ first(S_SI_L) ]);

var S_bar >= 0, <= P_POP[ first(S_SI_L) ],

:= P_SUSC_INIT_PERC*P_POP[ first(S_SI_L) ];

var ln_beta{S_SI_PER_YEAR} := log(P_BETA_INIT), >= log(0.5), <= log(70);

var beta{S_SI_PER_YEAR} := P_BETA_INIT, >= 0.5, <= 70;

var beta_bar := P_BETA_INIT, >= 0.5, <= 70;

var alpha := 1, >= 0.75, <= 1.7;

var gamma{S_SI_L} := P_GLOBAL_GAMMA, >=0, <= 1.1;

var gamma_inc := 0;

var ln_gamma{S_SI_L} := log(P_GLOBAL_GAMMA), <= log(1);

var eps_ln_C{S_SI_L} := 0;

minimize obj: 1/2*sum{i in S_SI_L}( P_OBJWT_lnC * eps_ln_C[i]^2 );

s.t.

DisDynamics{i in S_SI_L diff { first(S_SI_L) } }:

ln_I[i] = (ln_beta[(((i-1)-1) mod P_NSIPY) + 1]) - log(P_POP[i-1])

+ alpha*ln_I[i-1] + ln_S[i-1];

SusDynamics{i in S_SI_L diff { first(S_SI_L) } }:

S[i] = S[i-1] + P_BIRTHS[i-1] - I[i];

ln_Meas{i in S_SI_L: P_DATA_WTS[i] > 0}:

log( max(P_REP_CASES[i],1e-2)) = ln_gamma[i] + ln_I[i] + eps_ln_C[i];
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I_exp{i in S_SI_L}:

I[i] = exp(ln_I[i]);

S_exp{i in S_SI_L}:

S[i] = exp(ln_S[i]);

Gamma_Form{i in S_SI_L diff { first(S_SI_L) } }:

gamma[i] = gamma[i-1]+gamma_inc;

Gamma_exp{i in S_SI_L}:

gamma[i] = exp(ln_gamma[i]);

beta_exp{i in S_SI_PER_YEAR}:

beta[i] = exp(ln_beta[i]);

beta_bar_con:

beta_bar = sum{i in S_SI_PER_YEAR}(beta[i])/card(S_SI_PER_YEAR);

S_bar_con:

S_bar = sum{i in S_SI_L}(S[i])/card(S_SI_L);
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APPENDIX B

CONTINUOUS-TIME FORMULATION IN AMPL

This is an AMPL model for the continuous-time formulation using Gauss-Lobatto

collocation that is described in Section 5.

param a1 := (1/686);

param a2 := (39*sqrt(21)+231);

param a3 := (224);

param a4 := (-39*sqrt(21)+231);

param a5 := (3*sqrt(21)+21);

param a6 := (-16*sqrt(21));

param a7 := (3*sqrt(21)-21);

param a8 := (-3*sqrt(21)+21);

param a9 := (16*sqrt(21));

param a10 := (-3*sqrt(21)-21);

param c1 := (1/360);

param c2 := (32*sqrt(21)+180);

param c3 := (-64*sqrt(21));

param c4 := (32*sqrt(21)-180);

param c5 := (9+sqrt(21));

param c6 := (98);

param c7 := (64);

param c8 := (9-sqrt(21));

param c9 := (-32*sqrt(21)+180);

param c10 := (64*sqrt(21));
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param c11 := (-32*sqrt(21)-180);

param P_STEP > 0;

param P_RIPY >= 1;

param P_TRI >= 1;

param P_FEPR >= 1;

param P_FEPY >= 1;

param P_TFE >= 1;

param P_RHO > 0;

param P_GAMMA > 0;

param P_Sbar_init > 0;

param P_I_init > 0;

param P_YEAR_START > 0;

param P_YEAR_END > P_YEAR_START;

param P_LIFE_EXP > 0;

param P_YEARS >= 1;

param P_NUM_BETA >= 1;

param P_CP >= 1;

set S_RIPY ordered := 1..P_RIPY;

set S_FEPR ordered := 1..P_FEPR;

set S_TRI ordered := 1..P_TRI;

set S_TFE circular := 1..P_TRI*P_FEPR;

set S_FEPY ordered := 1..P_RIPY*P_FEPR;

set S_BETA ordered := 1..P_NUM_BETA;

set S_CP ordered := 1..P_CP;
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param P_PHI_OBJ_WT >= 0;

param P_SUS_OBJ_WT >= 0;

param P_INF_OBJ_WT >= 0;

param P_Sbar_INIT_OBJ_WT >= 0;

param P_I_INIT_OBJ_WT >= 0;

param P_DATA_WTS{S_TRI} >= 0;

param P_REP{S_TRI} <= 1.2, >= 0;

param P_PHI{S_TRI} >= 0;

param P_POP{S_TFE} >= 0;

param P_BIRTHS{S_TFE} >= 0;

param P_BETA{S_TFE union {P_TRI*P_FEPR+1}} >= 0;

param P_REP_CASES{S_TRI};

var phi{S_TFE, S_CP} >= 0;

var S{S_TFE, S_CP} <= P_POP[first(S_TFE)], >= 0;

var I{S_TFE, S_CP} <= P_POP[first(S_TFE)], >= 0;

var beta{S_BETA} <= 70 >= 0.05;

var dbeta{S_BETA};

var betapos{S_BETA} >= 0;

var betaneg{S_BETA} >= 0;

var eps_phi{S_TRI};

var eps_I{S_TFE} >= 1e-8 ;

var S_bar := 1e5 >= 0;

var beta_bar := 10 >= 0;

var psi{S_TFE, S_CP} := 1 >=0;

var Idot{i in S_TFE, j in S_CP};
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var Sdot{i in S_TFE, j in S_CP};

var phidot{i in S_TFE, j in S_CP};

minimize obj: 1/2*(

+ P_PHI_OBJ_WT*sum{i in S_TRI}( ( P_DATA_WTS[i]*eps_phi[i]^2 ) )

+ P_INF_OBJ_WT*sum{i in S_TFE}(( ( log(eps_I[i])^2 ) ) ) );

s.t.

I_interiorpoint_1{i in S_TFE}:

I[i,2] = a1*( a2*I[i,1] + a3*I[i,3] + a4*I[i,5]

+ P_STEP*( a5*Idot[i,1] + a6*Idot[i,3] +a7*Idot[i,5] ) );

I_interiorpoint_2{i in S_TFE}:

I[i,4] = a1*( a4*I[i,1] + a3*I[i,3] + a2*I[i,5]

+ P_STEP*( a8*Idot[i,1] + a9*Idot[i,3] + a10*Idot[i,5] ) );

I_bound{i in S_TFE diff{last(S_TFE)} }:

I[i,5] = I[i+1,1];

I_sys_const_1{i in S_TFE}:

0 = c1*( c2*I[i,1] + c3*I[i,3] + c4*I[i,5]

+ P_STEP*( c5*Idot[i,1] + c6*Idot[i,2]

+ c7*Idot[i,3] + c8*Idot[i,5] ) );

I_sys_const_2{i in S_TFE}:

0 = c1*( c9*I[i,1] + c10*I[i,3] + c11*I[i,5]

+ P_STEP*( c8*Idot[i,1] + c6*Idot[i,4]

+ c7*Idot[i,3] + c5*Idot[i,5] ) );

S_interiorpoint_1{i in S_TFE}:
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S[i,2] = a1*( a2*S[i,1] + a3*S[i,3] + a4*S[i,5]

+ P_STEP*( a5*Sdot[i,1] + a6*Sdot[i,3] +a7*Sdot[i,5] ) );

S_interiorpoint_2{i in S_TFE}:

S[i,4] = a1*( a4*S[i,1] + a3*S[i,3] + a2*S[i,5]

+ P_STEP*( a8*Sdot[i,1] + a9*Sdot[i,3] + a10*Sdot[i,5] ) );

S_bound{i in S_TFE diff{last(S_TFE)} }:

S[i,5] = S[i+1,1];

S_sys_const_1{i in S_TFE}:

0 = c1*( c2*S[i,1] + c3*S[i,3] + c4*S[i,5]

+ P_STEP*( c5*Sdot[i,1] + c6*Sdot[i,2]

+ c7*Sdot[i,3] + c8*Sdot[i,5] ) );

S_sys_const_2{i in S_TFE}:

0 = c1*( c9*S[i,1] + c10*S[i,3] + c11*S[i,5]

+ P_STEP*( c8*Sdot[i,1] + c6*Sdot[i,4]

+ c7*Sdot[i,3] + c5*Sdot[i,5] ) );

phi_interiorpoint_1{i in S_TFE}:

phi[i,2] = a1*( a2*phi[i,1] + a3*phi[i,3] + a4*phi[i,5]

+ P_STEP*( a5*phidot[i,1] + a6*phidot[i,3] +a7*phidot[i,5] ) );

phi_interiorpoint_2{i in S_TFE}:

phi[i,4] = a1*( a4*phi[i,1] + a3*phi[i,3] + a2*phi[i,5]

+ P_STEP*( a8*phidot[i,1] + a9*phidot[i,3] + a10*phidot[i,5] ) );

phi_bound{i in S_TFE diff{first(S_TFE)} }:

phi[i-1,5] = phi[i,1];

phi_initial:
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phi[first(S_TFE),first(S_CP)] = 0;

phi_sys_const_1{i in S_TFE}:

0 = c1*( c2*phi[i,1] + c3*phi[i,3] + c4*phi[i,5]

+ P_STEP*( c5*phidot[i,1] + c6*phidot[i,2]

+ c7*phidot[i,3] + c8*phidot[i,5] ) );

phi_sys_const_2{i in S_TFE}:

0 = c1*( c9*phi[i,1] + c10*phi[i,3] + c11*phi[i,5]

+ P_STEP*( c8*phidot[i,1] + c6*phidot[i,4]

+ c7*phidot[i,3] + c5*phidot[i,5] ) );

rep_cases{i in S_TRI diff{first(S_TRI)}: P_DATA_WTS[i] > 0}:

P_REP_CASES[i] = P_REP[i]*(phi[(i)*P_FEPR, last(S_CP)]

- phi[(i-1)*P_FEPR, last(S_CP)]) + eps_phi[i];

rep_cases_first{if P_DATA_WTS[first(S_TFE)] > 0 }:

P_REP_CASES[first(S_TRI)] = P_REP[first(S_TRI)]*

(phi[(first(S_TRI))*P_FEPR, last(S_CP)]

- phi[(first(S_TRI)), first(S_CP)]) + eps_phi[first(S_TRI)];

sbar_const:

S_bar = (sum{i in S_TFE}( sum{j in S_CP}( S[i,j] ) ))

/(card(S_TFE)*card(S_CP));

beta_bar_const:
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beta_bar = ( sum{i in S_BETA}(beta[i]) )/card(S_BETA);

Idot_diff_eq{i in S_TFE, j in S_CP}:

Idot[i,j] = psi[i,j] - P_GAMMA*I[i,j];

Sdot_diff_eq{i in S_TFE, j in S_CP}:

Sdot[i,j] = -psi[i,j] + P_BIRTHS[i];

phidot_diff_eq{i in S_TFE, j in S_CP}:

phidot[i,j] = psi[i,j];

log_psi_const{i in S_TFE, j in S_CP}:

psi[i,j] = beta[ P_BETA[i] ]*I[i,j]*S[i,j]/P_POP[i]*eps_I[i];
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APPENDIX C

PROGRESSIVE HEDGING MODEL FORMULATION

This is a Pyomo model for the continuous-time formulation using Radau collo-

cation that is used in conjunction with PySP for multi-city estimations as described

in Section 6.

from coopr.pyomo import *

years = 20

beta_py = 26

fepr = 1

fepy = beta_py*fepr

fe = fepy * years

step = 365.0/fepy

model = AbstractModel()

model.P_GAMMA = Param(default=1.0/14.0)

model.P_NUM_BETA = Param(default=beta_py)

model.P_FEPY = Param(default=fepy)

model.P_FE = Param(default=fe)

model.P_CP = Param(default=3)

model.P_STEP = Param(default=step)

model.P_TRI = Param(default=beta_py*years)

model.P_FEPR = Param(default=fepr)
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model.S_BETA = RangeSet(1,value(model.P_NUM_BETA))

model.S_FE = RangeSet(1,value(model.P_FE))

model.S_CP = RangeSet(1,value(model.P_CP))

model.S_TRI = RangeSet(1,value(model.P_TRI))

model.P_BETA_NDX = Param(model.S_FE)

model.P_POP = Param(model.S_FE, default=1.0e6)

model.P_REP_FRAC = Param(model.S_TRI, default=0.4)

model.P_REP_CASES = Param(model.S_TRI, default=10.0)

model.P_BIRTHS = Param(model.S_FE, default=100.0)

model.P_DATA_WTS = Param(model.S_TRI, default=1.0)

model.a = Param(model.S_CP, model.S_CP)

model.P_ALL_CASES = Param(model.S_TRI, default = 10.0)

def _initialize_weights(model):

return ((3249440.0/value(model.P_POP[1]))**2)

model.I_OBJ_WT = Param(initialize=_initialize_weights)

model.PHI_OBJ_WT = Param(default=1.0)

model.init_S_bar = Param(default=1.0e5)

model.init_beta_bar = Param(default=1.0)

model.init_I_init = Param(default=10.0)

model.init_S_init = Param(default=1000.0)

model.init_beta = Param(model.S_BETA, default=1.0)

model.init_beta_pos = Param(model.S_BETA, default=0.0)

model.init_beta_neg = Param(model.S_BETA, default=0.0)
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model.init_eps_I = Param(model.S_FE, default=0.0)

model.init_eps_phi = Param(model.S_TRI, default=0.0)

model.init_S = Param(model.S_FE, model.S_CP, default=100.0)

model.init_I = Param(model.S_FE, model.S_CP, default=10.0)

model.init_phi = Param(model.S_FE, model.S_CP, default=0.0)

model.init_Sdot = Param(model.S_FE, model.S_CP, default=1.0)

model.init_Idot = Param(model.S_FE, model.S_CP, default=1.0)

model.init_phidot = Param(model.S_FE, model.S_CP, default=1.0)

model.init_beta_patt = Param(model.S_BETA, default = 0.0)

model.init_beta_int = Param(default = 1.0)

def _init_S_bar(model):

return value(model.init_S_bar)

def _init_beta_bar(model):

return value(model.init_beta_bar)

def _init_I_init(model):

return value(model.init_I_init)

def _init_S_init(model):

return value(model.init_S_init)

def _init_beta(model,i):

return value(model.init_beta[i])

def _init_beta_pos(model,i):

return value(model.init_beta_pos[i])

def _init_beta_neg(model,i):

return value(model.init_beta_neg[i])

def _init_eps_I(model,i):

return value(model.init_eps_I[i])
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def _init_eps_phi(model,i):

return value(model.init_eps_phi[i])

def _init_S(model,i,j):

return value(model.init_S[i,j])

def _init_I(model,i,j):

return value(model.init_I[i,j])

def _init_phi(model,i,j):

return value(model.init_phi[i,j])

def _init_Sdot(model,i,j):

return value(model.init_Sdot[i,j])

def _init_Idot(model,i,j):

return value(model.init_Idot[i,j])

def _init_phidot(model,i,j):

return value(model.init_phidot[i,j])

def _init_beta_patt(model,i):

return value(model.init_beta_patt[i])

def _init_beta_int(model):

return value(model.init_beta_int)

def _people_bounds(model,i,j):

return (0.0, value(model.P_POP[1]))

def _init_people_bounds(model):

return (0.0, value(model.P_POP[1]))

model.S_bar = Var(initialize=_init_S_bar, bounds=(0,None))

model.beta_bar = Var(initialize=_init_beta_bar, bounds=(0.05,5))

model.I_init = Var(initialize=_init_I_init, bounds=_init_people_bounds)
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model.S_init = Var(initialize=_init_S_init, bounds=_init_people_bounds)

model.phi_init = Param(default=0.0)

model.beta_c = Var(initialize = 1.0)

model.beta = Var(model.S_BETA, initialize=_init_beta, bounds=(0.01,5))

model.beta_pos = Var(model.S_BETA, \

initialize=_init_beta_pos, bounds=(0,None))

model.beta_neg = Var(model.S_BETA, \

initialize=_init_beta_neg, bounds=(0,None))

model.beta_patt = Var(model.S_BETA, \

initialize=_init_beta_patt, bounds=(-5,5))

model.beta_int = Var(initialize = _init_beta_int, bounds=(0.01,5.0))

model.alpha = Var(initialize = 0.05, bounds=(-1.0,1.0))

model.eps_I = Var(model.S_FE, initialize=_init_eps_I)

model.eps_phi = Var(model.S_TRI, initialize=_init_eps_phi)

model.S = Var(model.S_FE, model.S_CP, \

initialize=_init_S, bounds=_people_bounds)

model.I = Var(model.S_FE, model.S_CP, \

initialize=_init_I, bounds=_people_bounds)

model.phi = Var(model.S_FE, model.S_CP, \

initialize=_init_phi, bounds=(0,None))

model.Sdot = Var(model.S_FE, model.S_CP, initialize=_init_Sdot)

model.Idot = Var(model.S_FE, model.S_CP, initialize=_init_Idot)

model.phidot = Var(model.S_FE, model.S_CP, \

initialize=_init_phidot, bounds=(-10,None))

model.FirstStageObj = Var(bounds=(0.0,0.0))

model.SecondStageObj = Var()
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def second_stage_obj_rule(model):

return (model.SecondStageObj, value(model.I_OBJ_WT) \

*sum(model.eps_I[i]**2 for i in model.S_FE) \

+ value(model.PHI_OBJ_WT)*sum(value(model.P_DATA_WTS[i]) \

*model.eps_phi[i]**2 for i in model.S_TRI))

model.compute_second_stage_obj = Constraint(rule=second_stage_obj_rule)

def _obj_rule(model):

return (value(model.I_OBJ_WT)*sum(model.eps_I[i]**2 \

for i in model.S_FE) + value(model.PHI_OBJ_WT) \

*sum(value(model.P_DATA_WTS[i])*model.eps_phi[i]**2 \

for i in model.S_TRI))

model.obj = Objective(rule=_obj_rule)

def _reported_cases(model,i):

if i == 1:

if value(model.P_DATA_WTS[i]) > 0.1:

return (value(model.P_REP_CASES[i]), \

value(model.P_REP_FRAC[i]) \

*( model.phi[i*value(model.P_FEPR),3] - model.phi_init ) \

+ model.eps_phi[i])

else:

return Constraint.Skip

else:

if value(model.P_DATA_WTS[i]) > 0.1:
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return (value(model.P_REP_CASES[i]), \

value(model.P_REP_FRAC[i]) \

*( model.phi[i*value(model.P_FEPR),3] \

- model.phi[(i-1)*value(model.P_FEPR),3] ) \

+ model.eps_phi[i])

else:

return Constraint.Skip

model.con_reported_cases = Constraint(model.S_TRI, rule=_reported_cases)

def _beta_bar(model):

return (model.beta_bar, sum(model.beta[i] for i in model.S_BETA) \

/len(model.S_BETA))

model.con_beta_bar = Constraint(rule=_beta_bar)

def _S_bar(model):

return (model.S_bar, sum(model.S[i,j] for i in model.S_FE \

for j in model.S_CP)/(len(model.S_FE)*len(model.S_CP)))

model.con_S_bar = Constraint(rule=_S_bar)

def _phidot(model,i,j):

return (model.phidot[i,j], model.eps_I[i] \

+model.beta[value(model.P_BETA_NDX[i])] \

*model.I[i,j]*model.S[i,j]/value(model.P_POP[i]))

model.con_psi = Constraint(model.S_FE, model.S_CP, rule=_phidot)

def _Idot(model,i,j):
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return (model.Idot[i,j], model.phidot[i,j] \

- model.P_GAMMA*model.I[i,j])

model.con_Idot = Constraint(model.S_FE, model.S_CP, rule=_Idot)

def _Sdot(model,i,j):

return (model.Sdot[i,j], -model.phidot[i,j] + model.P_BIRTHS[i])

model.con_Sdot = Constraint(model.S_FE, model.S_CP, rule=_Sdot)

def _I_colloc(model, i, j):

if i > 1:

return (model.I[i,j], model.I[i-1,value(model.P_CP)] \

+ value(model.P_STEP) \

*sum(value(model.a[k,j])*model.Idot[i,k] for k in model.S_CP))

else:

return (model.I[i,j], model.I_init + value(model.P_STEP) \

*sum(value(model.a[k,j])*model.Idot[i,k] for k in model.S_CP))

model.con_I_colloc = Constraint(model.S_FE, model.S_CP, rule=_I_colloc)

def _S_colloc(model, i, j):

if i > 1:

return (model.S[i,j], model.S[i-1,value(model.P_CP)] \

+ value(model.P_STEP) \

*sum(value(model.a[k,j])*model.Sdot[i,k] for k in model.S_CP))

else:

return (model.S[i,j], model.S_init + value(model.P_STEP) \

*sum(value(model.a[k,j])*model.Sdot[i,k] for k in model.S_CP))
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model.con_S_colloc = Constraint(model.S_FE, model.S_CP, rule=_S_colloc)

def _phi_colloc(model, i, j):

if i == 1:

return (model.phi[i,j], value(model.phi_init) \

+ value(model.P_STEP) \

*sum(value(model.a[k,j])*model.phidot[i,k] for k in model.S_CP))

else:

return (model.phi[i,j], model.phi[i-1,value(model.P_CP)] \

+ value(model.P_STEP) \

*sum(value(model.a[k,j])*model.phidot[i,k] for k in model.S_CP))

model.con_phi_colloc = \

Constraint(model.S_FE, model.S_CP, rule=_phi_colloc)

def _scaled_beta(model, i):

return (model.beta[i], model.beta_c * model.beta_patt[i])

model.con_city_varying_beta = Constraint(model.S_BETA, rule=_scaled_beta)

def _mean_patt(model):

return (1.0, summation(model.beta_patt)/len(model.S_BETA))

model.con_mean_patt = Constraint(rule=_mean_patt)

def _beta_c(model):

return (0.75, model.beta_c, 1.5)

model.con_beta_c = Constraint(rule=_beta_c)

184



APPENDIX D

PROGRESSIVE HEDGING SCENARIO TREE

This is a portion of the scenario tree used by PySP to define the multi-city

estimation problem described in Section 6. This scenario tree is used with the Pyomo

model described in Appendix C. The complete scenario tree is not given to conserve

space.

set Stages := FirstStage SecondStage;

set Nodes := RootNode

BathNode

BirkenheadNode

BirminghamNode

BlackburnNode

BlackpoolNode

...

WalsallNode

WarringtonNode

WiganNode

WolverhamptonNode

YorkNode;

param NodeStage := RootNode FirstStage

BathNode SecondStage
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BirkenheadNode SecondStage

BirminghamNode SecondStage

BlackburnNode SecondStage

BlackpoolNode SecondStage

...

WalsallNode SecondStage

WarringtonNode SecondStage

WiganNode SecondStage

WolverhamptonNode SecondStage

YorkNode SecondStage;

set Children[RootNode] :=

BathNode

BirkenheadNode

BirminghamNode

BlackburnNode

BlackpoolNode

...

WalsallNode

WarringtonNode

WiganNode

WolverhamptonNode

YorkNode;
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param ConditionalProbability := RootNode 1.0

BathNode 0.016666666

BirkenheadNode 0.016666666

BirminghamNode 0.016666666

BlackburnNode 0.016666666

BlackpoolNode 0.016666666

...

WalsallNode 0.016666666

WarringtonNode 0.016666666

WiganNode 0.016666666

WolverhamptonNode 0.016666666

YorkNode 0.016666666;

set Scenarios :=

Bath

Birkenhead

Birmingham

Blackburn

Blackpool

...

Walsall

Warrington

Wigan

Wolverhampton
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York;

param ScenarioLeafNode :=

Bath BathNode

Birkenhead BirkenheadNode

Birmingham BirminghamNode

Blackburn BlackburnNode

Blackpool BlackpoolNode

...

Walsall WalsallNode

Warrington WarringtonNode

Wigan WiganNode

Wolverhampton WolverhamptonNode

York YorkNode;

set StageVariables[FirstStage] := beta[*] ;

param StageCostVariable :=

FirstStage FirstStageObj

SecondStage SecondStageObj;

param ScenarioBasedData := True;
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APPENDIX E

NEW YORK CITY DATA FILE

This is a portion of the New York City data used in the discrete-time estimations.

The complete data was not included due to space.

set S_SI = 1 2 3 4 5 ... 1140 1141 1142 1143 1144 ;

param P_POP :=

1 6.71164e+06

2 6.71655e+06

3 6.72147e+06

4 6.72639e+06

5 6.7313e+06

...

1140 7.74345e+06

1141 7.74029e+06

1142 7.73712e+06

1143 7.73395e+06

1144 7.73078e+06;

set S_SI_PER_YEAR = 1 2 3 4 5 ... 22 23 24 25 26 ;

param P_YEARS :=

1 1928.038462
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2 1928.076923

3 1928.115385

4 1928.153846

5 1928.192308

...

1140 1971.846154

1141 1971.884615

1142 1971.923077

1143 1971.961538

1144 1972.000000;

param P_REP_CASES :=

1 190.574987

2 352.064651

3 481.877080

4 765.584558

5 1404.929095

...

1140 7.952320

1141 5.059851

1142 5.986192

1143 8.833161

1144 10.951421;
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param P_DATA_WTS :=

1 1.000000

2 1.000000

3 1.000000

4 1.000000

5 1.000000

...

1140 1.000000

1141 1.000000

1142 1.000000

1143 1.000000

1144 1.000000;

param P_BIRTHS :=

1 4860.461538

2 4860.461538

3 4860.461538

4 4860.461538

5 4860.461538

...

1140 5070.384615

1141 5070.384615

1142 5070.384615

1143 5070.384615

1144 5070.384615;
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APPENDIX F

AMPL RUN FILE FOR DISCRETE-TIME ESTIMATION

This is an AMPL run file to run the deterministic, discrete-time estimation de-

scribed in Section 4. Note that the model included is described in Appendix A, and

the data included is shown in Appendix E.

param data_name symbolic, = ’nyc_measles_1928_1972_26si’;

param output_name symbolic, = ’nyc_measles_det’;

model ../../ampl_models/seasonal_beta_stoch.mod;

let P_OBJWT_lnC := 1.0;

let P_BETA_INIT := 15;

let P_SUSC_INIT_PERC := 0.06;

let P_YEAR_DATA_START := 1928;

let P_YEAR_DATA_END := 1971;

let P_YEAR_START := 1944;

let P_YEAR_END := 1963;

let P_GLOBAL_GAMMA := 1/(sum{j in S_SI_L}(P_BIRTHS[j])

/sum{k in S_SI_L}(P_REP_CASES[k]));

display sum{j in S_SI_L}(P_BIRTHS[j]);

display sum{j in S_SI_L}(P_REP_CASES[j]);

display P_GLOBAL_GAMMA;

param mean_rep_i := sum{i in S_SI_L}(P_REP_CASES[i])/card(S_SI_L);

param prep;

for {i in S_SI_L}

{
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let P_REP_CASES[i] := max(P_REP_CASES[i],1e-2);

let prep := P_REP_CASES[i];

if (P_DATA_WTS[i] == 0) then

{

let prep := mean_rep_i;

}

let I[i] := prep/gamma[i];

let S[i] := P_SUSC_INIT_PERC*P_POP[i];

let ln_I[i] := log(I[i]);

let ln_S[i] := log(S[i]);

}

option ipopt_options "halt_on_ampl_error=yes";

option solver ipopt;

solve;

# Set the grid starting points for generating confidence regions

param Siter := 100;

param Biter := 50;

param mean_population := sum{i in S_TFE}(P_POP[i])/(card(S_TFE));

param start_S_bar_perc := 0.1; #percentage of total population

param end_S_bar_perc := 0.125; #percentage of total population

param start_beta_bar := 0.55;

param end_beta_bar := 0.75;

param start_S_bar := start_S_bar_perc*mean_population;
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# Set how far the grid spans

param S_bar_change := (end_S_bar_perc - start_S_bar_perc)*

mean_population/Siter;

param beta_change := (end_beta_bar - start_beta_bar)/Biter;
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APPENDIX G

LOG-LIKELIHOOD CONFIDENCE REGION CODE

This is the AMPL code used to generate the log-likelihood confidence regions

used in Sections 4 and 5. Parameters not defined herein are defined in the run file.

param mean_reg_eps_phi;

param std_dev_reg_eps_phi;

param mean_reg_eps_I;

param std_dev_reg_eps_I;

param lstar_reg;

param l1_reg;

let mean_reg_eps_phi := 1/(card(S_TRI))*sum{i in S_TRI}( (eps_phi[i]) );

let std_dev_reg_eps_phi := ( 1/( card(S_TRI) )*

sum{i in S_TRI}(( (eps_phi[i])^2 )) )^(0.5);

let mean_reg_eps_I := 1/(card(S_TFE)*card(S_CP))*

sum{i in S_TFE}( sum{j in S_CP}( log(eps_I[i,j]) ));

let std_dev_reg_eps_I := ( 1/( card(S_TFE)*card(S_CP) )*

sum{i in S_TFE}(sum{j in S_CP}( (log(eps_I[i,j]))^2 )) )^(0.5);

let lstar_reg := 1/(2*std_dev_reg_eps_phi^2)*

sum{i in S_TRI}(( (eps_phi[i])^2 ) ) + 1/(2*std_dev_reg_eps_I^2)*

sum{i in S_TFE}(sum{j in S_CP}( (log(eps_I[i,j]))^2 ) );

param P_OPT_OBJ_FUNC;

let P_OPT_OBJ_FUNC := obj;
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param obj_func{1..Biter,1..Siter};

param l1_reg_beta_bar_S_bar{1..Biter,1..Siter};

param log_like_reg_beta_bar_S_bar{1..Biter,1..Siter};

param beta_range_bb_sb{1..Biter};

param S_range_bb_sb{1..Siter};

param opt_beta_bar;

param opt_S_bar;

let opt_beta_bar := beta_bar;

let opt_S_bar := S_bar;

let beta_bar := start_beta_bar;

let S_bar := start_S_bar;

fix S_bar;

fix beta_bar;

for{i in 1..Biter by 2}

{

for{j in 1..Siter}

{

solve;

let l1_reg_beta_bar_S_bar[i,j] := 1/(2*std_dev_reg_eps_phi^2)*

sum{k in S_TRI}(( (eps_phi[k])^2 ) )

+ 1/(2*std_dev_reg_eps_I^2)*

sum{k in S_TFE}(sum{l in S_CP}( (log(eps_I[k,l]))^2 ) );

let log_like_reg_beta_bar_S_bar[i,j] :=
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2*(l1_reg_beta_bar_S_bar[i,j]-lstar_reg);

let S_range_bb_sb[j] := S_bar;

let S_bar := S_bar + S_bar_change;

let obj_func[i,j] := obj;

}

let S_bar := S_bar - S_bar_change;

let beta_range_bb_sb[i] := beta_bar;

let beta_bar := beta_bar + beta_change;

for{j in 1..Siter}

{

solve;

let l1_reg_beta_bar_S_bar[i+1,Siter+1-j] := 1/2*

(std_dev_reg_eps_phi^2)*sum{k in S_TRI}(((eps_phi[k])^2))+

1/(2*std_dev_reg_eps_I^2)*

sum{k in S_TFE}(sum{l in S_CP}( (log(eps_I[k,l]))^2 ) );

let log_like_reg_beta_bar_S_bar[i+1,Siter+1-j] :=

2*(l1_reg_beta_bar_S_bar[i+1,Siter+1-j]-lstar_reg);

let S_range_bb_sb[Siter+1-j] := S_bar;

let S_bar := S_bar - S_bar_change;

let obj_func[i+1,Siter+1-j] := obj;

}

let beta_range_bb_sb[i+1] := beta_bar;

let beta_bar := beta_bar + beta_change;

let S_bar := start_S_bar;
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}

let S_bar := opt_S_bar;

let beta_bar := opt_beta_bar;

unfix beta_bar;

unfix S_bar;

solve;
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