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ABSTRACT 

Humans and horses weaved together wonderful stories of adventure and 

generosity. As a part of human history and civilization, Arabian horses ignite 

imagination throughout the world. Populations of this breed exist in many countries. 

Here I explored different populations of Arabians representing Middle Eastern and 

Western populations. The main two aims of this study were to provide the genetic 

diversity description of Arabians from different origins and to examine the traditional 

classification system of the breed. A third aim was to tackle the distribution pattern of 

the genetic variability within the genome to show whether there are differences in 

relative variability of different types of markers. 

First, I analyzed the genetic structure of 537Arabian horses from seven 

populations by using microsatellites. The results consistently showed higher levels of 

diversity within the Middle Eastern populations compared to the Western populations. 

All American-Arabians showed differentiation from Middle Eastern populations.  

Second, I sequenced the whole mtDNA D-loop of 251 Arabian horses. The 

whole D-loop sequence was more informative than using just the HVR1. Native 

populations from the Middle East, such as Syrian, represented a hot spot of genetic 

diversity. Most importantly, there was no evidence that the Arabian horse breed has clear 

subdivisions depending on the traditional maternal based strain classification system.  

Third, I tested the heterozygosity distribution pattern along the genome of 22 

Peruvian Paso horses using 232 microsatellites and Single Nucleotide Polymorphisms 

(SNPs). The pattern of genetic diversity was completely different between these two 
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markers where no correlation was found. Runs of homozygosity test of SNPs and 

associated microsatellites noticeably showed that all of associated microsatellites loci 

were homozygous in the matched case.  

The findings of this study will help in understanding the evolutionary history and 

developing breeding and conservation programs of horses. This study provided 

databases including parentage testing system and maternal lineages that will help to 

recover the Syrian Arabian population after the armed conflict started in Syria in 2011. 

The results here can be applied not only to horses, but also to other animal species with 

similar criteria. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Since more than 6000 years ago, humans and horses weaved together wonderful 

stories of adventure, bravery and generosity. Horses were part of human history and 

civilization and participated in key events in human activities throughout the historical 

times. Horses attained a prominent role in transportation, welfare and warfare in human 

life. The ancient horse paintings on cave walls and the fascinating description in legends 

and poetries from the early and modern history of humans has shown horses as the best 

partners of human civilization.         

1.2 The Arabian horse breed 

Al-Asseel (purebred), Al-Jwad (generous), the horse of the desert, the drinker of 

the wind, the runner, these are some of the descriptions of the Arabian horse. The 

Arabian horse breed is one of the oldest and most influential breed throughout the world 

(Głażewska, 2010). It has been involved in the foundation of many other breeds such as 

the Thoroughbred (Bowling and Ruvinsky, 2000) and the Lipizzan (Zechner, et al., 

2002). From the historical point of view, the traditional breeders (Bedouins) have 

maintained the purity of the Arabian by avoiding any cross-breeding not only between 

Arabians and non-Arabians, but also by maintaining strictly separated strains (Pruski, 

1983). This system of breed conservation has led to the formation of native populations 

which can be described as old populations at a candidate place of origin of the breed like 
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the desert of the Middle East and the Arabian Peninsula. Consequently, regions like 

Syria and Saudi Arabia may have exceptional diversity within the breed, and may 

represent the original status of Arabian horses. On the other hand, Western Arabian 

populations, like the Polish Arabian, Shagya Arabian and American Arabian, were 

created in Europe and the USA using stocks originally imported from Middle Eastern 

Arabian populations from sources such as Syria and the Arabian peninsula no longer 

than 200 years ago (Bowling, et al., 2000; Głażewska, 2010). 

1.2.1 The Arabian horse populations in Syria 

Officially, the Syrian horses are divided into two populations; the registered 

Syrian and the non-registered Syrian. The registered population consists of seven strains 

‘RASANs’ depending on their dam line: Hadbaa, Hamadania, Dahmaa, Kahlila, Abian, 

Saklawia, and Muanakii. These strains are considered as “pure” Arabian and expected to 

be completely separated from the non-registered horses and any other horse breeds. The 

non-registered horses, also are known as local horses, had not been considered as a pure 

Arabian. Neither of these populations have had in-depth efforts to discover their 

structure and diversity status. During the 1980s, the Ministry of Agriculture and 

Agrarian Reform in Syria started to determine the Syrian horse’s lineage, and in 1989 

they published the first studbook which contained 569 horses. After that, the Horses 

Office was created in order to register any new offspring. According to the data from the 

Horses Office in Syria in 2006, the total numbers of pure registered Arabian horses was 

2574. Table 1 shows the number of horses in each of Syrian strains according to the data 

from the Horses Office in Syria 2006.  
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There are other Arabian horse populations in the Middle East such as the Saudi 

Arabian and the Iranian Arabian populations. These populations also consist of different 

registered strains, and all are considered as “pure” Arabians. As all were born and bred 

at the Middle East, Arabian Peninsula and Iran, respectively, they represent the Middle 

Eastern Arabian horse populations. 

1.2.2 The Western-Arabian horse populations 

The Western Arabian horse populations are represented by the American 

Arabian, Shagya Arabian and Polish Arabian. The first studbook of the American 

Arabian was established in 1908 and primarily consisted of mares that were exported 

from the Middle East in the mid to late 19th century (Bowling, et al., 2000). The 

American Arabian includes horses originally from Egypt (USA-Egyptian) and horses 

originally from Saudi Arabia (USA-Saudi). These populations were mainly bred as 

separate breeds; there also was a cross-breed group (Egyptian-Saudi). In addition there is 

a group of horses known as the Davenport line that has been maintained as a closed 

population. The Shagya breed was originally developed in Hungary over 200 years ago, 

and its name came from the stallion Shagya which was probably imported from Syria 

1836. The Polish Arabian breed was established in Poland in 1778 (Pruski, 1983), but 

most of its important studs were nearly destroyed during the World Wars I and II 

(Głażewska and Jezierski, 2004). The Polish studs were reconstructed after each war. 

1.3 Genetic diversity and population structure 

Comprehensive information about genetic diversity and population structure is 

highly important to draw the essential outlines for any appropriate conservation and 
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sustainable management programs (Notter, 1999). Reducing the loss of genetic diversity 

is the main priority in management decisions (Weitzman, 1993). Concurrently, a high 

genetic diversity may indicate a genetic diversity hot spot which has been suggested as a 

tool for targeting conservation efforts of livestock spices (Bruford, et al., 2003; Freeman, 

et al., 2006). Also, genetic diversity and population structure studies are essential to 

understand the evolution, domestication and demographic history of populations as well 

as to support breeding programs and genome-wide association studies in plants and 

animals. Studying genetic diversity of any animal population will benefit not only these 

groups or species of animals, but  results can be generalized and applied to other species 

and also can be used to achieve genetic improvements and medical discoveries in 

animals and humans. Horses have been successfully used in genetics and biomedical 

studies as model animals for many purposes (McIlwraith, et al., 2010; Peffers, et al., 

2010).   

1.4 Molecular biology for genetic diversity and population structure  

Molecular markers have been used widely in genetics and biomedical studies and 

they have contributed very successfully in many discoveries and achievements in these 

fields (Vignal, et al., 2002). In population genetics and conservation studies, the choice 

of molecular markers can be argued from two points of view. Biologists need simple and 

low cost genotyping procedures to generate as much data as possible. On the other hand, 

statisticians concerned about important characteristics such as information content, 

independent markers, neutrality, and sampling procedures. The population geneticist 

should fully understand the history and the nature of populations of interest in order to 
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typing can be automated with the ability of running multiplex amplification of several 

markers in a single PCR. Therefore, these selectively neutral genetic markers that follow 

Mendelian inheritance are extremely useful for the analysis of population structure for 

different species (Bruno-de-Sousa, et al., 2011; Selkoe and Toonen, 2006), and can 

provide an indication of the levels of inter and intra-breed variability (Luís, et al., 2007). 

 Microsatellite markers have been widely used to investigate genetic structure, 

population diversity estimation, individual genetic identification and pedigree analyses 

of different horse breeds (Achmann, et al., 2004; Bigi and Perrotta, 2012; Koban, et al., 

2011; Luís, et al., 2007; Prystupa, et al., 2012b; Sereno, et al., 2008). Also they have 

been successfully used in the analysis of small populations of closely bred animals 

(Kang, et al., 2009). Many studies reported that microsatellite markers are useful in 

studying population structure and differentiation analysis better than allozymes (Barker, 

et al., 1997; Estoup, et al., 1998). Despite the fact that microsatellites are the most 

common markers for ecological and demographical applications with huge advantages, 

they have a few drawbacks. The main issues with microsatellite are: 1-Species-specific 

marker isolation: where specific primers are needed and a given primer often does not 

work across broad taxonomic groups, so primers design is usually required for each 

species (Glenn and Schable, 2005). 2- Problems with PCR amplification: that will cause 

the presence of null alleles (Paetkau and Strobeck, 1995). 3- Hidden allelic diversity: 

alleles of the identical size may have different evolutionary history, or in other words, 

the two alleles are identical in state but not in descent, a phenomenon known as 

microsatellite homoplasy. Homoplasy reduces the visible allelic diversity of populations 
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and may inflate estimates of gene flow when mutation rate is high (Epperson, 2005; 

Rousset, 1996). Many of these challenges can be avoided by careful literature mining for 

previously tested loci for the organism of interest. The Food and Agriculture 

Organization (FAO) of the United Nations has published with the International Society 

for Animal Genetics (ISAG) a list of recommended microsatellite markers for different 

farm animal species including horses (FAO, 2011). Also, understanding the steps needed 

to evaluate the quality of a genetic data set is very important (Selkoe and Toonen, 2006) 

such as the testing of  Hardy–Weinberg Equilibrium, Mendelian inheritance, linkage 

disequilibrium and the presence of null alleles. Then applying the suitable data analysis 

that may fit with the biological expectations and assumptions related to a study.  

1.4.2 Mitochondrial DNA (mtDNA) 

Since the mitochondrial genome discovery (Nass and Nass, 1963), its tiny 

fraction of organismal genome size has been one the most attractive subjects in animals 

and plants. Mitochondria are of major evolutionary and functional significance because 

they have their own small DNA genome (Chen and Butow, 2005) and accommodate 

some of the most critical functions of life (Chen, et al., 2005). Mitochondria provide 

most of the cell’s energy by oxidative phosphorylation that produces Adenosine 

Triphosphate ATP (Chen, et al., 2005).  
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Therefore, mitochondria play a central role in metabolism and disease (Brand, 

1997; Graeber and Muller, 1998). While the mitochondrial gene content is strongly 

conserved across animals (Boore, 1999; Gissi, et al., 2008), the D-loop region is highly 

variable because of the elevated mutation rate in this region (Galtier, et al., 2009). These 

unique structural characteristics combined with strictly maternal inheritance and lack of 

recombination, make mtDNA one of the most exploited markers in phylogenetic and 

genetic diversity studies (Moritz, et al., 1987).  

Horse was the 9th eutherian species after human, mouse, cow, rat, fin whale, 

harbor seal, blue whale and grey seal  with the complete mtDNA sequenced in  1994 (Xu 

and Arnason, 1994). It appeared that mtDNA in horses was similar to other eutherian 

mtDNA with a total length of 16660 bp containing 13 peptide-coding genes, two rRNAs 

of the mitochondrial ribosome, 22 tRNAs and the control region or displacement loop 

(D-loop) region which is a highly variable region. The D-loop in horses contains two 

highly variable segments (HVR1 and HVR2), four conserved blocks (CSB), and variable 

repeats of 8 bp motifs (Ishida, et al., 1994; Xu and Arnason, 1994). Figure 4 illustrates 

the basic structure of the D-loop region in horses using the description published in the 

literatures (Ishida, et al., 1994; Kavar and Dovc, 2008; Xu and Arnason, 1994). 
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use of the mtDNA in horses can be found in the field of the evolutionary history and 

genetic diversity.  

Thanks to the mtDNA control region, which represents a good model for 

studying the evolution of a non-coding region of mammalian DNA (Sbisa, et al., 1997), 

more individuals can be sequenced and compared in order to follow the domestication 

history. Important questions related to this composite process were answered and 

valuable understandings have been provided (Patterson, 2001; Vila, et al., 2001). Vila 

and co-authors (2001) evaluated the variation in the D-loop of the mtDNA from modern 

horse breeds and compared this with mtDNA from the remains of wild horses dating 

back 12,000–28,000 years. They used phylogenetic methods to make inferences about 

the evolutionary origins of modern breeds and reported that high mtDNA sequence 

diversity of horses suggests an unprecedented and widespread integration of matrilines 

and an extensive utilization and taming of wild horses (Vila, et al., 2001). A similar 

study by Jansen and co-authors (2002) followed showing that the extensive genetic 

diversity revealed that several distinct horse populations were involved in the 

domestication of the horse. Furthermore, Cieslak and co-authors (2010) reported that the 

large diversity of mtDNA lineages is not a product of animal breeding, but represents 

ancestral variability (Cieslak, et al., 2010). Recently, more haplogroups (group of similar 

haplotypes that share a common ancestor) that survived horse domestication have been 

defined by using the whole mtDNA sequence (Achilli, et al., 2012).     

Experimentally, mtDNA is relatively easy to extract, amplify and analyze. Add 

to that the specific characteristics of mtDNA that mentioned above. Therefore, this 
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marker has been widely used to study the genetic diversity of many horse breeds 

(Achilli, et al., 2012; Bowling, et al., 2000; Cieslak, et al., 2010; Cothran and Luis, 

2005; Głażewska, 2010; Jansen, et al., 2002; Kavar and Dovc, 2008; Lippold, et al., 

2011; Prystupa, et al., 2012a) and developing equine mtDNA profiling for forensic 

application (Gurney, et al., 2010).The outcomes of these genetic diversity studies were 

significantly important and each of them can be considered as the first step for the 

development of a conservation strategy for the breed tested. For example, the study by 

Prystupa et al. (2012a) provided the first real insight into the maternal gene flow and 

mitochondrial diversity within the native Canadian equine populations. In addition to the 

population studies above, the mtDNA insertions into the nuclear genome were also 

investigated in horses. Nergadze et al. (2010) reported that 82 percent of numts (nuclear 

sequences of mitochondrial origin) is represented in the nuclear genome.  

Despite all these advantages, we need to consider some challenges about using 

mtDNA data sets. First, the mtDNA is the most widely used molecular tool in 

domestication studies, but it does not detect male mediated gene flow. This pattern of 

gene flow may have high influence on the evolution of livestock species in modern times 

(Diamond, 2002; MacHugh, et al., 1997) where genetic variation can only be detected 

by Y chromosome markers (Wallner, et al., 2013). Second, the mtDNA-nDNA 

interaction was not addressed very well in horses. Nuclear mitochondrial DNA (Numts) 

may give false polymorphic sites. Third, the whole field of phylogenetic analysis of the 

mtDNA heavily relies on the assumption of maternal inheritance of mtDNA. However, 
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organisms (Hayes, et al., 2007; Lindblad-Toh, et al., 2005; Moen, et al., 2008; Van 

Tassell, et al., 2008; Wade, et al., 2009; Wong, et al., 2004a), a greater attention was 

given to this class of markers to address a broad range of evolutionary questions (Moen, 

et al., 2008; Morin, et al., 2004). SNP markers can help in understanding the recent 

evolutionary history of domestic animals (Goncalves, et al., 2010; Pariset, et al., 2009). 

Unlike microsatellite, SNPs have a lower mutation rate and very low false genotyping 

rate (Gärke, et al., 2012) which makes it possible to automate and standardize SNPs 

analysis in high throughput technologies (Fries and Durstewitz, 2001; Xing, et al., 

2005). Furthermore, the recent technological advances have led to a decrease in both 

discovering and genotyping costs (Shen, et al., 2005; Syvanen, 2005). Therefore, SNPs 

are likely to become the markers of choice for next generation population genetics data 

in the field of molecular ecology and conservation genetics (Pool, et al., 2010). They 

have the highest density in genomes compared to other molecular markers.  

Very recently, the significant SNPs discovery done by the National Human 

Genome Research project has produced the EquCab2.0 assembly that provided sufficient 

markers to construct a whole genome SNP panel for use in the domestic horse (McCue, 

et al., 2012; Wade, et al., 2009). Lately, some studies have been done using this SNPs 

array in horse genetics such as genetic diversity, association mapping, phylogeny study 

and inbreeding investigation (Binns, et al., 2011; McCue, et al., 2012; Petersen, et al., 

2013).   
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CHAPTER II 

JUSTIFICATION AND OBJECTIVES OF THE STUDY 

 

2.1 Justification and contributions of the study 

There have been quite a few studies about the genetic diversity in the Arabian 

horse breed; all of which were about Western Arabian populations. Furthermore, all the 

previous mtDNA studies in horses were done using only a small part of the D-loop. In 

this study, I investigated the genetic structure of samples representing Middle Eastern 

and Western populations using microsatellite markers and whole mtDNA D-loop 

sequencing. I did a comparative analysis of the Arabian populations from different 

origins and provided an integrative description of the current status of genetic diversity 

using both nuclear and maternal inheritance approaches. This study will facilitate 

developing and implementing conservation programs for this important breed. The data 

from this study also provided new information for exploring the evolutionary history of 

domestication and breed origins which will contribute to international biodiversity 

programs. This work will contribute to both the scientific and economic aspects of horse 

breeding, and will guide the breeding process and support the population management of 

such important animals by integration of biotechnology methods (such as using 

molecular markers in parentage verification and genetic conservation in the Middle 

East). Also this study will provide a detailed comparison between the Arabian 

populations in the USA with other Arabian horse populations which will help breeders to 

maintain and improve the American-Arabian horses. A very unique importance of the 
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current study is that it was done just before the Syrian revolution, that developed into an 

armed conflict, started in Syria two years ago. The outcomes of this study will help to 

recover the Syrian horse populations affected during the war. also the maternal 

inheritance results will help to track any horses that might be illegally taken out of the 

country during the war time. The results from this study could be applied not only in 

other horse populations but also in other animal species. The second part of this work is 

related to a whole genome scan analysis. This part is not related to the Arabian breed, 

but it used data from another breed (Peruvian Paso breed) to compare the variability and 

distribution of SNPs and microsatellites throughout the horse genome. This kind of 

comparison has not been done before in any horse breed.  

2.2 Goals and objectives 

My study aimed to: 

1. Genetically survey Arabian horse populations and provide the genetic diversity and 

genetic structure database of samples representing Middle Eastern and Western 

populations to get an in depth description of the current status of the Arabian populations 

from different origins. 

2. Determine genetic diversity and relationships between the Syrian Arabian horse 

populations and to optimize a suitable procedure for parentage testing for them.  

3. Study the maternal diversity and phylogenetic relationships of Arabian populations 

and to examine the traditional classification system of the Arabian breed (RASANs 

system) that depends upon maternal family lines. 
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4. Provide data sets that may help in the recovery of the Syrian populations after the 

armed conflict happing in Syria.  

5. Investigate the distribution pattern of the variability along different regions of the 

genome based upon microsatellite and SNPs markers to show whether there are 

differences in relative variability of the two types of markers within the same genomic 

region.   
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CHAPTER III 

MICROSATELLITE ANALYSIS OF GENETIC DIVERSITY AND POPULATION 

STRUCTURE OF ARABIAN HORSE POPULATIONS1 

 

3.1 Introduction 

There have been quite a few studies of the nuclear genetic diversity in the 

Arabian horse breed (Bowling, et al., 2000; Cervantes, et al., 2008; Głażewska, 2010; 

Monies, et al., 2011); all of them analyzed Western (USA and Europe) populations. In 

the present study, we investigated the genetic structure of samples representing Middle 

Eastern and Western populations to get an in depth description of the current status of 

the genetic diversity of Arabian populations from different origins.  

3.2 Materials and methods 

3.2.1 Population description  

A total of (537) Arabian horses representing diverse set of Middle Eastern 

populations and Western were examined as shown in Table 2. The Middle Eastern 

Arabians are: Syrian Arabian (registered and non-registered), Saudi Arabian and Iranian 

Arabian. The Western Arabians are: Shagya Arabian, Polish Arabian and American 

Arabian (Davenport, Egyptian-Saudi mix, USA-Egyptian and USA-Saudi). In addition 

to the Arabian populations, also (128) non-Arabian horses were tested including Akhal 

Teke, Turkoman, and Caspian horses. The Przewalski horse was used as an out-group.  

                                                 

1 Reprinted with permission from Khanshour A., Conant E., Juras R., Cothran G. (2013) Microsatellite 
analysis of genetic diversity and population structure of Arabian horse populations. Journal of Heredity. 
104 (3): 386-398. Copyright 2013 The American Genetic Association. 
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Table 2: The description of the populations used in this study. The tested populations and their 
abbreviations (Pop., abb.), the population groups (Gr.), sample sizes (N) and sampling 
information. 
Gr. Pop., abb. N Sampling information 

M
iddle E

astern A
rabian 

Saudi, SU2 33 
Samples came from pure desert Arabians from Saudi Arabia. Samples 
were provided by breeders. 

Syrian 
registered,  SY1 

138 
Samples were collected randomly from different places from Syria as 
following: South Syria (38), Middle Syria (60), North Syria (25), North 
east Syria (34), West Syria and the coastal mountains (23), National Center 
for horses breeding (72). All Syrian strains were represented in my 
samples collection. Breeders volunteered to give their horse samples. 
Samples from the governmental breeding station were collected under the 
permission from the Ministry of Agriculture and Agrarian Reform in Syria. 

Syrian non-
registered, SY2 

114 

Iranian 
Arabian, KA 

40 
Samples came from Persian Arab Asils from Khuzestan in Iran. Samples 
were provided by breeders. 

W
estern A

rabian 

Davenport, DV 23 
Samples came from the Davenport registry in the USA. Samples came to 
the Animal Genetic lab at Texas A&M University for parentage testing. 

Egyptian-Saudi,  
mix SE 

28 
Samples came from the American Arabian Studbook registry. These 
horses were descended from a mixture of Saudi and Egyptian horses. 
Samples were provided by breeders. 

USA-Egyptian, 
EG 

47 
Samples came from the American Arabian Studbook registry. These 
horses were originally descended from Egyptian horses. Samples were 
provided by breeders. 

USA-Saudi, 
SU1 

57 
Samples came from the American Arabian Studbook registry. These 
horses were descended from Saudi horses. Samples were provided by 
breeders. 

Shagya 
Arabian,  SA 

21 
Samples came from Performance Shagya Arabian Registry. Samples came 
to the Animal Genetic lab at Texas A&M University for parentage testing. 

Polish Arabian, 
PA 

36 
Samples came from the Polish Arabian horse breed in Poland. Samples 
were provided by Dr.  G. Cholewinski from Agricultural University of 
Poznan. 

N
on-A

rabian 

Akhal Teke, 
AT 

28 
Samples came from the Akhal Teke horse breeders in the USA. Samples 
came to the Animal Genetic lab at Texas A&M University for parentage 
testing. 

Caspian, CS 35 
Samples came from the Caspian Horse Society in the USA. Samples came 
to the Animal Genetic lab at Texas A&M University for parentage testing. 

Turkoman, TU 65 
Samples came from the Turkoman Horse breeders in the USA. Samples 
came to the Animal Genetic lab at Texas A&M University for parentage 
testing. 

Przewaslski, PZ 17 Samples were provided by Wilds and Animal Genetic Lab  
 
 
 
3.2.2 DNA extraction and microsatellite analysis 

Total DNA was extracted from hair follicles using PUREGENE® DNA 

purification kit following the manufacturer’s protocol. 
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A total of 15 microsatellite markers (ASB17, ASB2, AHT4, AHT5, HMS2, 

HMS7, HMS3, HMS6, ASB23, HTG10, HTG7, HTG4, HTG6, LEX33, and VHL20) 

specific to Equus caballus were used in this study. All these markers are included in the 

panel recommended by the International Society for Animal Genetics for diversity 

studies and parentage verification. Table 3 shows these markers and the chromosome 

number for each locus. 

 
 
Table 3: The fifteen markers used in the study with the chromosome number of each locus. 
Locus Chromosome Reference Locus Chromosome Reference 
ASB17 2 (Breen, et al., 1997) 

 
ASB23 3 (Irvin, et al., 1998) 

ASB2 15 HTG10 21 
(Marklund, et al., 1994) 

AHT4 24 
(Binns, et al., 1995) 

HTG7 4 
AHT5 8 HTG4 9 

(Ellegren, et al., 1992) 
HMS2 10 

(Guerin, et al., 1994) 

HTG6 15 
HMS7 1 LEX33 4 (Coogle, et al., 1996) 
HMS3 9 VHL20 30 (Van Haeringen, et al., 1994) 
HMS6 4  
  
 
 

The 15 microsatellites are amplified in three multiplex reactions using the 

method described by Juras et al. (2003). Fragment sizes of microsatellite alleles were 

determined using the STRand computer software (Locke, et al., 2000). Alphabetical 

nomenclature was used for allele size designation in accordance with the International 

Society for Animal Genetics.  
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3.2.3 Statistical analysis 

3.2.3.1 Molecular markers 

Identification of possible genotyping errors due to null alleles, short allele 

dominance, typographic errors and the scoring of stutter peaks were detected and 

adjusted using Micro-checker software (Van Oosterhout, et al., 2004) according to 

Brookfield’s approach (Brookfield, 1996). Linkage disequilibrium (LD) between all 

pairs of loci was tested in the non-adjusted data by GENEPOP 3.4 (Raymond and 

Rousset, 2001) based on the exact test using the default parameters specified by the 

software. Hardy-Weinberg equilibrium (HWE) analyses by population and locus were 

carried out on the adjusted data using GENEPOP 3.4 based on the exact test. The exact 

p-values were obtained using MCMC simulation of 10,000 dememorization steps, 500 

batches and 5,000 iterations. For the total markers together in each population, the 

Fisher’s method implemented in GENEPOP 3.4 was used after Bonferroni correction to 

detect significant deviations of a population from HWE. 

3.2.3.2 Gene diversity within and among populations 

Gene diversity indices for each population were calculated from adjusted data 

using GENEALEX 6 (Paetkau, et al., 1997). These included the average number of 

alleles per locus (Na), the effective number of alleles per locus (Ne), observed (HO) and 

unbiased expected (HE) heterozygosity or gene diversity. In addition, we calculated the 

number of rare alleles (Nr) (Allendorf, 1986). Allelic richness (AR), which could be 

considered as an alternative criterion to measure genetic diversity (Rodrigáñez, et al., 

2008), was used to estimate the diversity of the populations tested in this study. AR is 
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standardized for variation in sample size and was calculated using FSTAT 2.9.3 

(Goudet, 1995; Goudet, 2002) based on the minimal sample size of 12 diploid 

individuals. Wright’s F statistics according to Weir and Cockerham (1984) were 

calculated using GENETIX 4.05 (Belkhir, et al., 1996-2004) for the FIS, and FSTAT 

2.9.3 was used to calculate FST. Analysis of the Molecular Variance (AMOVA) was 

done for different partitions of the 13 populations (not including the out-group 

population) using GENEALEX 6 where the variation among populations was 

determined by ΦPT using 999 permutations. 

3.2.3.3 Relationships and genetic differentiation among populations 

In order to study the relationships and genetic differentiation among tested 

populations, pairwise FST and RST, factorial correspondence analysis (FCA) and genetic 

distances were applied. Pairwise FST values were calculated using FSTAT 2.9.3.2, and P 

values were obtained after 10,000 permutations. The pairwise RST was done using 

MSAT software (http://genetics.stanford.edu/hpgl/projects/microsat/) using the 

standardized RST (Goodman, 1997). Representation of the genetic relationships among 

tested populations was done using the factorial correspondence analysis (Lebart, et al., 

1984) as implemented by GENETIX 4.05. Three different models for genetic distances 

were used. The first approach was to test the genetic relatedness among all individual 

horses depending on the simple matching dissimilarity indices of Jaccard’s coefficient 

method (Perrier, et al., 2003) using DARwin-5.0 (Perrier and Jacquemoud-Collet, 2006); 

the second approach, which included the Reynolds distance DR (Reynolds, et al., 1983), 

Nei distance D (Nei, 1972) and Cavalli-Sforza Chord distance DC (Cavalli-Sforza and 
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Edwards, 1967) was estimated from 10,000 bootstrapped allele frequency datasets using 

PHYLIP package (Felsenstein, 1989-2006). For the third approach, genetic distances 

were calculated depending on the standardized RST method (Goodman, 1997) using 

MSAT software and PHYLIP package with 10,000 bootstraps. The dendrograms of 

phylogenetic trees were built from different distance matrices and were visualized by 

DARwin-5.0 and MEGA4 (Tamura, et al., 2007) using the neighbour-joining method 

(Saitou and Nei, 1987). 

3.2.3.4 Population structure and individuals assignment  

We used the STRUCTURE 2.3.3 software (Pritchard, et al., 2000) to study the 

relationships among the Arabian populations, and to assign samples into clusters using 

the Bayesian method under an admixture model. Different values of the length of the 

burn-in period (20,000 to 50,000) and MCMC repetitions (100,000 to 150,000). 

Different K values between K = 2 to K = 13, where K is the number of tested clusters, 

were applied. Runs for each K were repeated ten times. The software CLUMP 

(Jakobsson and Rosenberg, 2007) was used to align multiple replicates for each K in 

order to facilitate the interpretation of clustering results. The DISTRUCT application 

(Rosenberg, 2004) was used to graphically display the results. The best number of 

clusters was determined depending on ΔK value (Evanno, et al., 2005) which was 

calculated and plotted using Structure Harvester application (Earl and vonHoldt, 2011). 
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3.3 Results 

3.3.1 Microsatellite markers 

All 15 loci tested in this study were found to be polymorphic in all populations 

except HTG6 and HTG7 which were not variable in the DV population. A total of 143 

alleles were detected in 682 individuals of the 14 tested populations. The 15 loci in all 

tested populations showed no evidence of scoring errors due to stuttering or for large 

allele dropout. Furthermore, there was no evidence for null allele presence in any 

populations except for HTG7 in the non-registered Syrian population at 0.05 level.  

The statistical significance of two-locus LD among 15 microsatellite loci was tested by 

the exact test; the LD P-values were obtained for 105 pairs of combinations in each 

population. At the level of p<0.05, there were 23 out of 105 pairs in linkage equilibrium 

(LE) in all tested populations. However, no pair was in constant LD in all populations. In 

addition, no population shows complete LE of all non-syntenic loci, while nine 

populations were in LE for three syntenic loci (HTG7, LEX33, and HMS6). Figure 6 

shows all pairs of comparison among 15 markers with the number of populations out of 

14 showing significant LD at p<0.05. 
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3.3.2 Genetic diversity within and among populations  

The genetic diversity measures for each population are shown in Table 4. 

  
 

Table 4: The genetic diversity measures for each population. Average number of alleles per 
locus per population (Na), average number of effective alleles per locus per population (Ne), 
observed heterozygosity (HO), average number of rare alleles with frequency less than 0.1 per 
locus per population (Nr), unbiased expected heterozygosity (HE), and allelic richness (AR). All 
means are combined with its standard error (SE), and FIS values are combined with the 
significant status. Population abbreviations could be seen in Table 2. *Values different from 0 at 
p <0.05. 
Populations Na (SE) Ne (SE) Nr (SE) HO (SE) HE (SE) FIS AR (SE) 
SU2 5.13 (0.31) 3.30 (0.26) 1.87 (0.31) 0.68 (0.03) 0.68 (0.03) 0.008 4.51 (0.26) 
SY1 6.47 (0.38) 3.51 (0.24) 2.87 (0.36) 0.70 (0.03) 0.69 (0.03) -0.007 4.69 (0.22) 
 SY2 8.47 (0.59) 4.23 (0.27) 4.53 (0.45) 0.72 (0.02) 0.75 (0.02) 0.037* 5.62 (0.28) 
KA 5.93 (0.37) 3.61 (0.24) 2.27 (0.29) 0.70 (0.02) 0.71 (0.02) 0.017 5.06 (0.27) 
DV 3.00 (0.31) 2.12 (0.94) 0.40 (0.16) 0.40 (0.06) 0.46 (0.06) 0.132* 2.74 (0.24) 
SE 3.53 (0.19) 2.35 (0.17) 0.60 (0.18) 0.58 (0.05) 0.55 (0.04) -0.066* 3.20 (0.15) 
EG 4.00 (0.26) 2.43 (0.17) 1.33 (0.28) 0.53 (0.04) 0.56 (0.04) 0.047 3.46 (0.20) 
SU1 4.40 (0.31) 3.02 (0.22) 1.00 (0.28) 0.66 (0.02) 0.65 (0.03) -0.015 3.78 (0.22) 
SA 4.93 (0.30) 3.26 (0.21) 1.47 (0.35) 0.68 (0.03) 0.69 (0.03) 0.005 4.66 (0.24) 
PA 5.67 (0.40) 3.41 (0.30) 2.67 (0.38) 0.69 (0.04) 0.68 (0.04) -0.015 4.83 (0.32) 
AT 5.27 (0.34) 3.31 (0.35) 1.93 (0.24) 0.72 (0.06) 0.65 (0.05) -0.114* 4.60 (0.31) 
CS 6.87 (0.48) 4.18 (0.36) 2.87 (0.35) 0.75 (0.03) 0.74 (0.03) -0.009 5.70 (0.34) 
TU 7.93 (0.65) 4.70 (0.41) 3.87 (0.62) 0.75 (0.02) 0.77 (0.02) 0.022 6.20 (0.41) 
PZ 3.87 (0.22) 2.48 (0.19) 1.13 (0.21) 0.64 (0.04) 0.58 (0.03) -0.094* 3.64 (0.19) 

  
 
 

Na ranged from 3 in DV to 8.47 in SY2, and Ne ranged from 2.12 in DV to 4.7 in 

TU. Nr followed the Na pattern, and varied from 0.4 in the DV to 4.53 in SY2. HO 

ranged between 0.4 in DV and 0.75 in TU, whereas HE ranged between 0.46 in DV to 

0.77 in TU. AR varied in the similar pattern of the other within-breed diversity measures 

and ranged from 2.74 in the DV to 6.20 in the TU.  FIS varied between -0.114 in the AT 

to 0.132 in the DV. While FIS in DV and SY2 was significantly positive, it was 

significantly negative in AT, SE, and PZ. 
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AMOVA was done for seven different combinations of the 13 populations which 

were partitioned according to prior knowledge about population origin as shown in 

Table 5. 

 
 

Table 5: AMOVA table. Among (ΦPT) and within populations variation (WPV) under different 
combinations. ΦPT values were calculated at p = 0.001. Population abbreviations could be seen 
in Table 2. 
no Combinations No. of  populations WPV (ΦPT) 

1 
Arabian and non-Arabian (EG, SU1, SE, PA, KA, SA, DV, SY1, 
SY2, SU2,  AT,  CS, TU) 

13 0.810 0.190 

2 Arabian (EG, SU1, SE, PA, KA, SA, DV, SY1, SY2, SU2) 10 0.817 0.183 
3 Middle Eastern Arabian (SY1, SY2, SU2, KA) 4 0.946 0.054 
4 Western Arabian (EG, SU1, SE, PA, SA, DV) 6 0.670 0.330 

5 
Middle Eastern Arabian and non-Arabian (SY1, SY2, SU2, KA, 
AT,  CS, TU) 

7 0.903 0.097 

6 Western Arabian and non-Arabian (EG, SU1, SE, PA, SA, DV) 9 0.751 0.250 
7 Non-Arabian (AT,  CS, TU) 3 0.861 0.139 

 
 
 

Analyzing the Western and Middle Eastern Arabian in two separate structures 

(combination 3 and 4) showed a dramatic change in the genetic variation compared with 

analyzing all Arabian populations together (combination 2). Furthermore, excluding the 

Western Arabian (combination 5) from all populations (combination 1) caused a 

noticeable decrease in the ΦPT value. Such a big decrease of the ΦPT value was not 

observed by excluding the non-Arabian populations (combination 2). In contrast, 

excluding the Middle Eastern Arabians (combination 6) caused a great increase in the 

ΦPT value. This indicates the Western Arabian populations are the primary source of 

variation among populations in our study.  

3.3.3 Genetic differentiation and relationships among populations 

Pairwise FST and standardized RST are shown in Table 6.
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Table 6: Analysis of pairwise population differentiation using FST (above diagonal) and standardized RST (below the diagonal). Patterns of 
Middle Eastern and Western population comparison for FST were represented by three colors (Middle Eastern Arabian vs. Western 
Arabian highlighted in yellow, Middle Eastern Arabian vs. Middle Eastern Arabian highlighted in green, Western Arabian vs. Western 
Arabian highlighted in pink, non-Arabian were not highlighted). Population abbreviations could be seen in Table 2. 

Populations PZ EG SU1 SE SY1 SY2 DV PA AT KA CS SA TU SU2 
PZ 0.356 0.335 0.395 0.259 0.234 0.416 0.299 0.285 0.272 0.248 0.280 0.219 0.309 
EG 0.599 0.176 0.161 0.113 0.107 0.319 0.152 0.238 0.077 0.170 0.141 0.136 0.118 
SU1 0.578 0.174 0.151 0.094 0.066 0.243 0.092 0.171 0.075 0.133 0.096 0.088 0.042 
SE 0.564 0.156 0.132 0.164 0.132 0.357 0.185 0.244 0.125 0.195 0.195 0.164 0.134 
SY1 0.654 0.153 0.136 0.276 0.016 0.164 0.063 0.108 0.051 0.107 0.060 0.055 0.050 
SY2 0.618 0.13 0.067 0.177 0.016 0.154 0.038 0.081 0.025 0.066 0.037 0.024 0.022 
DV 0.637 0.334 0.210 0.314 0.156 0.150 0.228 0.271 0.208 0.267 0.214 0.179 0.199 
PA 0.499 0.137 0.106 0.165 0.089 0.059 0.244 0.128 0.041 0.098 0.073 0.054 0.055 
AT 0.488 0.286 0.159 0.24 0.277 0.182 0.303 0.129 0.102 0.126 0.104 0.074 0.122 
KA 0.474 0.114 0.092 0.147 0.066 0.028 0.193 0.025 0.122 0.077 0.043 0.040 0.027 
CS 0.456 0.196 0.101 0.148 0.151 0.103 0.273 0.102 0.131 0.093 0.097 0.050 0.108 
SA 0.447 0.139 0.079 0.143 0.127 0.069 0.132 0.07 0.176 0.059 0.139 0.058 0.046 
TU 0.495 0.172 0.07 0.164 0.058 0.023 0.207 0.067 0.077 0.047 0.041 0.124 0.054 
SU2 0.536 0.167 0.042 0.141 0.13 0.059 0.147 0.101 0.195 0.068 0.124 0.026 0.102 
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All of these values were significant at p< 0.05 after Bonferroni correction. The 

PZ, the out-group, showed very high FST values with all tested populations that ranged 

between 0.416 to 0.219 with the DV and TU, respectively. The lowest FST value, 0.016, 

was recorded between the two Syrian populations SY1 and SY2 as well as between the 

SY2 and SU2. Three of the Western Arabians populations PA, SA and SU1 were less 

differentiated from the Middle Eastern Arabian populations than the other two Western 

populations EG and SE which have relatively high FST with the SY1, SY2, and SU2. In 

addition, the six possible comparisons among the four Middle Eastern Arabian 

populations SY1, SY2, SU2 and KA showed low FST values. In most cases, the 

standardized RST showed the same pattern as FST. But RST only was greater than FST 

value in the comparisons of the out group PZ with all populations.   

Figure 8 shows the result of the FCA among all populations except the PZ. Each 

population was represented by its center of gravity point. Figure 9 shows the result of the 

FCA using nine Arabian populations (EG, SU1, SE, SY1, SY2, PA, KA, SA and SU2) 

where each individual was plotted into the 3D plot. 
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  This dendogram shows that the majority of horses within each population were 

closely assembled in discrete branches, but there were some exceptions. Each of the non-

Arabian populations (CS, AT and the PZ) and the Western Arabian populations (DV, 

PA, SA, SE, EG, SU1) were segregated clearly into a single branch. In contrast, all the 

Middle Eastern Arabian populations (SY1, SY2, SU2 and KA) did not show clear 

segregation in a single branch, with samples from each population distributed in more 

than one clade. Horses from the SY2 population were segregated into almost all 

branches including those branches of the non-Arabians. Similarly for the TU, horses 

were segregated into three distinct branches. Two of these branches were parts of the 

Arabian clade. Furthermore, the individual-animal based dendogram showed that the 

majority of the SY1 horses were not differentiated from the SY2 horses. Likewise, the 

SU2 shared some individuals with the SU1 and some with the KA, and the SE and the 

EG were very close to each other.  

The estimates of genetic distances D, DC and DR revealed similar topologies for 

all populations tested here. While low bootstrap values were observed using D, the 

bootstrap values in both DC and DR were similar to each other and relatively high. 

Figure 11 shows the DR neighbor-joining dendogram including the PZ as the out-group. 
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Table 7 shows the proportion of individuals assigned into each of the five 

clusters depending on the Q value that resulted from the STRUCTURE analysis.  

 
 

Table 7: The individuals’ assignment into five clusters at K = 5. The highest value in each for 
each population is in bold. Population abbreviations could be seen in Table 2. 
Populations clusters 

1 2 3 4 5 
SU2 0.003 0.066 0.521 0.304 0.106 
SY1 0.005 0.772 0.038 0.128 0.058 
SY2 0.014 0.341 0.053 0.554 0.038 
KA 0.007 0.061 0.072 0.671 0.189 
SE 0.002 0.008 0.079 0.010 0.901 
EG 0.004 0.017 0.012 0.029 0.939 
SU1 0.002 0.011 0.964 0.009 0.015 
SA 0.016 0.158 0.090 0.703 0.033 
PA 0.004 0.084 0.050 0.831 0.030 
PZ 0.984 0.007 0.002 0.005 0.002 
  
 
 

The first cluster mainly consisted of the PZ where 98.4% of the PZ individuals 

were assigned into this cluster. The second cluster consisted of 77.2% of SY1 and 34.1% 

of SY2 in addition to 15.8% of the SA population. The third cluster contained 96.4% of 

SU1 and 52.1% of the SU2. Four different populations, 83.1% of the PA, 70.3% of the 

SA, 67.1% of the KA and 55.4% of the SY2, formed the fourth cluster which was the 

most admixed one. The fifth cluster mainly was formed by 93.9% of the EG and 90.1% 

of the SE.  

As shown in Figure 14A, no clear separation of distinct Arabian populations was 

noticed at K = 2, but all the out-group individuals formed a separate cluster. At K = 3, 

three populations (SE, EG, SU1) plus most of the SU2 individuals were completely 

separated from the rest and the out-group can be recognized and completely separated. 

At K = 4, the SE and EG populations can be easily distinguished from all other 
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populations but they still show some intermixture with the SU1. At K =5, which was the 

best value of the number of clusters that represent the structure of the data, the SE 

together with EG formed a distinct cluster with a very few individuals from KA and SY1 

assigned into this cluster. Also, the SU1 plus most of SU2 individuals formed a second 

cluster. The SY2, KA, SA and PA together formed an admixed cluster with a few 

individuals from the SY1 population. The later and SY2 shared some other individuals.  

According to the results at K = 5, further analysis were done to determine if individuals 

of SE and EG (the fifth cluster) could be distinguished from each other. The PZ was 

used as an out-group. The highest ΔK was found at K =3 where the SE formed an 

independent cluster as did the EG, Figure 14B. Another subset of data was used to 

determine if the admixed cluster (the fourth cluster) which contains the SY2, KA, SA 

and PA could be separated into different substructures. The highest ΔK was found at K = 

3. While only the PA formed a separate cluster, clear evidence of admixture was 

detected among SY2, KA and SA, Figure 14C.  
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homogeneously across all homozygote classes in 13 out of 14 tested populations. 

However, this pattern was not stable only in the non-registered Syrian population for 

HTG7 locus. Such as finding indicates the possibility of the presence of null alleles for 

this locus in very few genotypes of the non-registered Syrian horses, and also confirms 

the genotyping accuracy in all other data we obtained. Therefore, to overcome these 

genotyping errors we used Brookfield’s approach (Brookfield, 1996) to adjust the allele 

frequencies in a few genotypes of the non-registered Syrians. The adjusted allele 

frequencies can be used subsequently for further population genetic analysis (Van 

Oosterhout, et al., 2004). Thus, in our study we used the adjusted allele frequencies in all 

following analyses except for the LD analysis. 

The LD analysis did not give constant results for any pair of loci along all tested 

populations. Hence, none of these loci were excluded from further genetics analysis in 

our study. On the other hand, there was a big difference between populations in the 

number of pairs with significant LD. Relatively high numbers of pairs showing high LD 

were noticed in the Syrian registered, Davenport, and the Iranian Arabian populations, 

but fewer were seen for the Caspian population. It was well established from classical 

population genetics theory that genetic drift, migration, mutation and selection may 

generate LD (Bulmer, 1971; Ohta and Kimura, 1969; Stephens, et al., 1994). Thus, it 

was not surprising to see such high LD in the DV population which is known to be small 

inbreed population with a founder effect. Also, the admixture and possible selection in 

the Syrian registered population may maintain and increase LD at least for some loci.  
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The exact test is considered as the most appropriate tool to check the deviation from 

HWE (Mukesh, et al., 2009). It is the desirable test when there are multiple alleles and 

also when the number of some genotype categories are small (Hedrick, 2005). This test 

was done on the adjusted data to eliminate the possible effect of the null alleles which 

may cause significant deviation of the HWE. The overall Fisher’s test in each population 

with Bonferroni correction showed that only the Syrian registered and the DV 

populations were not in HWE at a significance level of ά = 0.0033 (ά = 0.05/15 = 

0.0033). Generally, deviation from the HWE can be a result of one or more of the 

following factors: selection against or favoring heterozygotes, inbreeding, gene flow, 

nonrandom mating, and Wahlund effect (Hedrick, 2005). While Wahlund effect and/or 

possible selection may cause this deviation in the Syrian registered, founder effect might 

be the reason of the HWD noticed in the DV population. Some populations (SU1, ES, 

SA, TU, EG, SY1, SY2, DV and AT) showed HWD in three or less loci. Deviation from 

HWE in some tested loci was already reported in many different horse breeds; in some 

European native horse breeds HWD were recorded for the HMS3 and HTG6 (Solis, et 

al., 2005). VHL20 was not in HWE in two Portuguese breeds (Luís, et al., 2002) unlike 

our result where the same locus was in HWE in all tested populations. Six loci at least 

were in HWD in some Pantaneiro horse breeds (Giacomoni, et al., 2008) and five 

different Indian horse breeds were in HWD at many loci (Behl, et al., 2007). 

Furthermore, the Brazilian Criollo breed showed significant HWD for HMS7, HMS6, 

AHT5, HMS3, HTG4, HTG10, AHT4 and VHL20 (Costa, et al., 2010). A recent study 

by (van de Goor, et al., 2011), using the same markers that we used, reported that five 
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loci were deviated from the HWE in the Arabian horse breed in France and the HTG10 

was the most frequent deviated locus a cross eight out of 35 different breeds. 

3.4.2 Genetic diversity within and among populations 

Within the Middle Eastern Arabian populations group, all four populations 

(Saudi, Syrian registered, Syrian non-registered and Iranian Arabian) had high 

heterozygosity values (0.68, 0.69, 0.75 and 0.71, respectively) but the Syrian non-

registered was the highest. This value is among the highest heterozygosity values 

reported for other horse populations using the same or similar loci, (Leroy, et al., 2009; 

Luís, et al., 2007). Furthermore, the Syrian non-registered value of heterozygosity, 

according to our best knowledge, is the highest reported to date in the Arabian breed 

(Aberle, et al., 2004; Conant, et al., 2012; Glowatzki-Mullis, et al., 2006; Iwanczyk, et 

al., 2006; Ouragh, 2005; Plante, et al., 2007; Solis, et al., 2005; van de Goor, et al., 

2011). The high genetic diversity that was found in the Syrian non-registered likely 

reflects the wide and diverse base of this population, supported by the high Ne and may 

include introgression from non-Arabian horses. The later consideration is supported by a 

very high number of rare alleles in this population (Table 4) as compared other 

populations of this study. In addition, because the Syrian non-registered horses are not 

considered as pure Arabian in Syria, there is no liability to the Syrian breeders in 

outcrossing with any other horses, however, this outcrossing is limited and most 

breeders maintain and control their horse breeding. In contrast, outbreeding is prohibited 

in Syrian registered and Saudi and this maybe one of the reasons that Syrian registered 

and Saudi have lower values for heterozygosity, Na and Nr than Syrian non-registered.  
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The Western Arabian populations show lower values of variation compared to 

the Middle Eastern populations. The decrease of genetic diversity in populations being 

moved away from their possible center of origin was reported in different species 

including horses. Tozaki et al. (2003) reported that Japanese horses originated from 

Mongolian horses and the former had a lower genetic diversity than the later. Also 

Warmuth et al. (2012) mentioned the correlation between the loss diversity and east-to-

west migrations of non-breed horses. Furthermore, it was also reported that the genetic 

diversity in human populations decreases with distance from Africa (Tishkoff, et al., 

2009) and that was consistent with the proposed serial founder effects resulting from the 

migration of modern humans out of Africa and across the globe (Jakobsson, et al., 

2008). 

While the Davenport, Egyptian-Saudi mix, and USA-Egyptian have very low 

diversity, the Shagya Arabian and Polish Arabian have higher values. A very low 

heterozygosity in the Davenport is likely due to the founder effect, genetic drift and/or 

inbreeding. The records for this population indicated that only a few stallions and mares 

imported from the Middle East were used to start the line, and it has existed as a small, 

closed population since. The Shagya Arabian and Polish Arabian had the highest 

variability of the Western Arabian populations. For the Shagya Arabian, this population 

is known to be a mixture of Arabian and native Hungarian horses (Hendricks, 1995). In 

addition, new stallions from the Middle East were introduced into this population at a 

later time. For the Polish Arabian, the high heterozygosity seen here did not match that 

reported by Głażewska and Gralak (2006) where a very low diversity was found using 
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protein markers. Also, another study, (Głażewska and Jezierski, 2004) reported a 

reduction in genetic diversity in the Polish Arabian due to inbreeding and founder effect. 

However, the two previous studies did not use microsatellites which have much higher 

variability and this may be the reason behind the dissimilar results. The high variation in 

the Polish Arabian is probably due to the reconstruction of the Polish Arab stock 

between 1918- 1946 (after each of the World Wars) using horses from the Near East and 

various European countries; most of these later imported European horses were of Polish 

origin or were the descendants of ancestors already present in the pedigree of horses in 

Polish studs (Głażewska and Jezierski, 2004). All non-Arabian breeds (Akhal Teke, 

Caspian and Turkoman) had high values of heterozygosity similar to what has been 

reported in different studies (Conant, et al., 2012; van de Goor, et al., 2011).  

One of the powerful tools to support decisions that depend on heterozygosity in 

different populations is Na (Allendorf, 1986). It has been reported as the most relevant 

parameter in conservation programs (Barker, 2001; Petit, et al., 1998). The preference of 

this parameter over heterozygosity is because in some cases heterozygosity provides an 

overly optimistic view when there are many alleles at a locus or when the population 

goes through a small or recent bottleneck (Allendorf, 1986; Luikart, et al., 1998). Na 

ranged from 3 in the Davenport to 8.47 in the Syrian non-registered and showed low 

values in the most Western populations (Davenport, Egyptian-Saudi mix, USA-

Egyptian, USA-Saudi and Shagya Arabian) which may indicate a recent bottleneck or 

founder effect in those populations. A drawback of the Na measure is that it is strongly 

influenced by sample size (Hedrick, 2005), for that reason, we also measured allelic 
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richness (AR). AR showed the same pattern among all tested populations as Na which 

means that sample sizes for those populations had no noticeable effect on Na. A similar 

result was reported by Marletta et al. (2006). 

FIS, which reveals the degree of departure from random mating, varied between – 

0.114 in the Akhal Teke to 0.132 in the Davenport. The negative significant FIS seen in 

the Akhal Teke represent an excess of heterozygosity which may be a result of 

outbreeding. Similar FIS values have been reported in Akhal Teke (Conant, et al., 2012). 

The excess of heterozygosity in the Egyptian-Saudi mix may be due to the mixing of 

some Egyptian and Saudi horses during the establishment this population based upon the 

pedigree record of this population. However, all samples tested here were North 

American (not directly from Egypt) and may not reflect an accurate picture of this 

population. The positive significant FIS seen in the Davenport combined with low Na and 

Ne indicate a deficit of heterozygosity likely due to a high level of inbreeding in this 

small closed population. The significant positive FIS found in the Syrian non-registered 

is most likely a result of the Wahlund effect considering the high Na and Ne found and 

that these samples represent a population that came from different geographic regions in 

Syria.  

3.4.3 Relationships and genetic differentiation among populations 

The AMOVA, which was done for seven different combinations of 13 

populations, suggested that the Western Arabian populations were the main source of the 

among populations genetic variation found. This result likely was due to the low level of 

diversity within the Western Arabian populations caused by genetic drift and bottleneck 
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effects in these populations. Also the non-Arabian breeds used here are genetically very 

close to the Arabian (Conant, et al., 2012).  

All pairwise comparisons of FST were significant. FST values are typically 

significant so it is not surprising to find such differences, and they may not necessarily 

be biologically meaningful (Hedrick, 1999; Waples, 1989). Regardless of the P-values, it 

has been suggested that a FST value lying in the range 0–0.05 indicates low genetic 

differentiation; a value between 0.05 and 0.15 indicates moderate differentiation; a value 

between 0.15 and 0.25 indicates great differentiation; and values above 0.25 indicates 

very great genetic differentiation (Hartl and Clark, 1997; Wright, 1978). For Syrian 

registered and Syrian non-registered, FST = 0.016 indicates low differentiation likely due 

to some admixture between these two populations. As well, in some cases registered 

stallions fathered offspring of the non-registered mares. The FST for each pair Syrian 

registered-Polish Arabian, Syrian non-registered-Polish Arabian and Saudi-Polish 

Arabian were relatively low which may reflect recent introduction of new horses into the 

Polish Arabian population from the Middle East. The low differentiation among the 

Syrian registered, Syrian non-registered, Iranian Arabian, Saudi Arabian and Turkoman 

may be due to a common ancestor for those populations. The Davenport showed high 

FST values which is due to the differentiation based upon loss of variation in this small 

population (Balloux and Lugon-Moulin, 2002). Finally, it was relevant to estimate and 

compare both FST and RST in our study, particularly, because we have Middle Eastern 

and Western population comparisons where important differences in levels of 

differentiation are expected (Balloux and Lugon-Moulin, 2002). Comparing FST and RST 
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values can provide insights into the main causes of population differentiation (Hardy, et 

al., 2003). In most cases in our study, the RST showed the same pattern of differentiation 

as FST. RST values were greater than FST only in the comparisons of the out-group 

(Przewaslski) with all tested populations which is not unexpected. In all other 

comparisons RST values were close to FST values suggesting a common evolutionary 

pattern for these populations under domestication (Hardy, et al., 2003), and reflect a 

short divergence time between those populations.  

The out-group was not included in the first FCA, shown in Figure 8, in order to 

get better resolution of the relationship among tested populations. The general outcomes 

from the FCA matched the results explained by both the genetic relatedness among all 

individuals and the traditional genetic distances among populations tested here. The 

FCA using 13 populations (Akhal Teke, Caspian, Turkoman, Syrian registered, Syrian 

non-registered, Polish Arabian, Iranian Arabian, Shagya Arabian, USA-Saudi, Saudi, 

Egyptian-Saudi  mix, Davenport, and USA-Egyptian), as well the traditional phylogenic 

trees, separated the Arabian populations (Syrian registered, Syrian non-registered, Polish 

Arabian, Iranian Arabian, Shagya Arabian, USA-Saudi, Saudi, Egyptian-Saudi  mix, 

Davenport and USA-Egyptian) from the non-Arabians (Akhal Teke, Caspian, and 

Turkoman). This may indicate reproductive isolation in the last 100 or more years. 

Similar result for Arabian and some Italian populations using FCA was reported by Di 

Stasio, et al. (2008) based upon a similar set of microsatellite markers. Although the 

Turkoman population was separated from the Arabians, as shown in Figure 11 and 

Figures 8, it was closer to the Arabian than the Akhal Teke and Caspian as some 
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Turkoman individuals can be seen closely neighboring some Arabians Figure 10. This 

agrees with the report of Firouz (1998) about the origins of the Arabian and Turkoman 

horses. Also, the Davenport was isolated from the rest of the Arabians showing some 

differentiation likely because its low variability Figure 8, therefore, it was excluded from 

the second FCA shown in Figure 9. The FCA and the individual-animal-based 

dendogram showed close relationships among the Syrian populations Syrian registered 

and Syrian non-registered, where individuals hardly can be distinguished from each 

other. This is consistent with the common origin of these two populations, but with the 

additional diversity due to genetic introgression from non-Arabian horses into Syrian 

non-registered.  

The outcomes from the FCA matched both the results of different phylogenic 

trees in our study, and the outcomes of the AMOVA, where it showed some separation 

between the Western and the Middle Eastern Arabian populations which was less 

evident in the phylogenic trees. The FCA showed a clear relationship between the 

Syrians horses and the Polish Arabian which had founders from the Middle East.  

3.4.4 Population structure and individuals assignment  

We did not include the non-Arabian populations in the STRUCTURE analysis 

because STRUCTURE works best with a small number of discrete populations 

(Pritchard, et al., 2000). The STRUCTURE clustering using all Arabian populations did 

not give a clear mode for ΔK, Figure 12. Davenport population was excluded from the 

analysis because STRUCTURE algorithm assumes Hardy-Weinberg equilibrium within 

populations (Pritchard, et al., 2000) and the use of a population with very low genetic 
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variability like the Davenport may affect the STRUCTURE analysis and give no clear 

mode for ΔK (Vangestel, et al., 2012). Thus, only nine Arabian populations (Syrian 

registered, Syrian non-registered, Polish Arabian, Iranian Arabian, Shagya Arabian, 

USA-Saudi, Saudi, Egyptian-Saudi  mix, and USA-Egyptian) plus the out group were 

reported in our STRUCTURE analysis discussion.  

The Bayesian clustering analysis at the optimal value of K confirmed the close 

relationship and the admixed structure in the Polish Arabian, Shagya Arabian, Iranian 

Arabian and Syrian non-registered that was suggested by both the FCA and pairwise FST 

test. A further STRUCTURE analysis, using only those four populations, showed 

isolation of the Polish Arabian from the rest Figure 14C, with a result of two different 

clusters; one formed by only the Polish Arabian horses and the second contained the 

Syrian non-registered, Shagya Arabian and Iranian Arabian. This suggests that those 

four populations have high levels of gene flow or share the same origin and have a 

recent divergence. Therefore, the Polish Arabian population is more differentiated from 

the Syrian non-registered than both the Shagya Arabian and Iranian Arabian populations. 

This outcome was not clear from the FCA or from other differentiation tests that were 

done; possibly because the clustering approach implemented in STRUCTRE can 

correctly infer the number of subpopulations in a dataset when genetic differentiation 

among groups is low (Latch, et al., 2006).    

The Bayesian clustering at K = 5 supported the result of the pairwise FST test, 

FCA, the individual-animal-based dendogram about the relationship between Syrian 

registered and Syrian non-registered, Figure 14A. This again confirms the similar origin 
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and recent divergence of these two populations, as well as the high level of 

unidirectional gene flow (Syrian registered to Syrian non-registered) as a result of using 

some registered stallions in the reproduction of some non-registered animals.  

The STRUCTURE analysis identified the American Western populations 

(Egyptian-Saudi mix, USA-Egyptian and USA-Saudi) as the most uniform. USA-Saudi 

was extremely homogeneous, probably due to the conservative breeding in this 

population which was descended from a limited number of founders. The STRUCTURE 

analysis showed similarity between USA-Saudi and most individuals from Saudi 

population. That confirmed the relationships between these two populations where both 

share a similar origin. Although Egyptian-Saudi mix together with USA-Egyptian 

formed another homogenous cluster at K = 5, further analysis using only Egyptian-Saudi 

mix and USA-Egyptian Figure 14B was able to discriminate between these two 

populations. The Egyptian-Saudi mix and USA-Egyptian share a similar pedigree 

background. 

3.5 Conclusion 

Overall, this work with the Middle Eastern and Western populations reveals a 

genetic structure of the Arabian horse breed not previously recognized and gives a 

comparative analysis of the Arabian populations from different origins. Genetic diversity 

was very high in Middle Eastern populations from Syria, Saudi Arabia and Iran. Some 

Western populations like the Polish-Arabian and Shaya-Arabian also have a high genetic 

diversity. In contrast, the Western American-Arabian showed less variability. Genetic 

differentiation was not strong among all Middle Eastern populations and the Polish-
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Arabian and Shagya-Arabian populations, but the Western American-Arabians showed 

greater differentiation from these other groups and can be considered as uniform 

populations. The registered and non-registered Syrian populations were very close to 

each other but the later showed more diversity.     

These results can facilitate conservation programs for this important breed, and 

enhance the effort to improve the management of Arabians to preserve the diversity 

found in the Middle Eastern Arabian populations. Furthermore, this study may 

encourage the Western Arabian horse breeders to expand the variability base of their 

lines, which has clearly been reduced, by introducing some new blood from the Middle 

Eastern populations. In addition to that, approaches used in this study can be applied to 

other domestic animals to discover their genetic diversity and population structure.
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CHAPTER IV 

MATERNAL PHYLOGENETIC RELATIONSHIPS AND GENETIC VARIATION 

AMONG ARABIAN HORSE POPULATIONS USING WHOLE MITOCHONDRIAL 

DNA D-LOOP SEQUENCING 

 

4.1 Introduction 

The traditional pattern of breeding Arabian horses affords special opportunities 

to evaluate variation in matrilineal markers, such as mitochondrial DNA. From a glance 

of historical records, the Arabian horse breed, in the desert, consists of five strains 

(RASANs) based upon dam lines: Kahlila, Saklawia, Abiah, Shweemat, and Muanakii 

(Hendricks, 1995) (some breeders and historians refer to an additional three RASANs 

which are Hamadania, Dahmaa and Hadbaa). The traditional breeders in the Middle 

East desert (Bedouins) have preserved the purity of the Arabian by avoiding any cross-

breeding between the Arabians and non-Arabians and maintaining strictly separated 

RASANs (Pruski, 1983). Consequently, all individuals within a RASAN are expected to 

share the same maternal family line, and they should have similar mtDNA haplotype. 

While many studies have been done in horses using mtDNA, only a few have 

included Arabians (Achilli, et al., 2012; Bowling, et al., 2000; Głażewska, 2010; 

Glazewska, et al., 2007). Also, the Arabians used were mainly collected from Western 

populations. Most of the previous studies related to Arabian population genetics used 

only about 400 bp out of 1200 bp of the mtDNA D-loop. In the present study, we 

sequenced the whole mtDNA D-loop of Arabian horses collected from the Middle East 
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as well as from Western populations. Our study was designed to investigate the maternal 

diversity and phylogenetic relationships of Arabian populations and to examine the 

traditional classification system of the Arabian breed (RASANs system) that depends 

upon maternal family lines. 

4.2 Materials and methods 

4.2.1 Sampling and DNA extraction 

Hair samples were collected from 271 horses representing Middle Eastern 

Arabian, Western Arabian and non-Arabian populations. Tables 8 shows the number of 

animals used from each population. 

 
 

Table 8: The tested populations and their abbreviations, the population groups and sample sizes. 
Groups Populations* (abbreviation) Sample size 
Middle Eastern Arabian Syrian (SY) 114 

Saudi (SU2) 22 
Iranian (KA) 10 

Western Arabian USA-Egyptian (EG) 24 
USA- mix of Egyptian & Saudi (SE) 10 
USA-Saudi  (SU1) 31 
Shagya Arabian (SA) 9 
Polish Arabian (PA) 13 
Davenport  (DV) 19 

non-Arabian Mongolian (MON) 5 
Caspian (CS) 14 

*descriptions about populations can be found in Table 2.  

 
 
 

All tested horses were unrelated from the mothers’ side for at least 3 generations 

at least based upon their pedigree records. Total genomic DNA was extracted from hair 

follicles using the PUREGENE® DNA purification kit following the manufacturer’s 

instructions.   
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4.2.2 Whole D-loop sequencing and data analysis 

We designed two pairs of primers based upon the horse mtDNA sequence 

reference X79547 (Xu and Arnason, 1994). We also considered the outcomes reported 

by Nergadze et al. (2010) to minimize the possible amplification of NUMTs that may 

overlap with D-loop. The designed primers were used to amplify the upstream part 

between sites 15440 and 16108 (Forward: 5′-AGCTCCACCATCAACACCCAAA-3′. 

Reverse 5’-CCATG GACTGAATAACACCTTATGGTTG-3′) and the downstream part 

between sites 16377 and 16642 (Forward 5′-ACCTACCCGCGCAGTAAGCAA-3′. 

Reverse 5′-AC GGGGGAAGAAGGGTTGACA-3′). Polymerase chain reactions were 

done for each part separately using the protocol described by Cothran, et al. (2005). A 

total of four sequencing reactions for each sample, including both strands in each part, 

were carried out using the BigDye® Terminator v1.1 Cycle Sequencing Kit (Applied 

Biosystems, USA). Sequencing products were purified with the BigDye® 

XTerminator™ Purification Kit (Applied Biosystems, USA). DNA sequences were 

determined using the ABI 3130 xl Genetic Analyzer (Applied Biosystems, USA). 

Editing and aligning all sequences were carried out by MEGA 4 (Tamura, et al., 2007) 

using the horse mtDNA sequence X79547 as a reference. Haplotype sequences included 

in this study were entered into the National Center for Biotechnology Information 

(NCBI) GenBank database available at http://www.ncbi.nlm.nih.gov/ with the accession 

numbers [NCBI: KC840701-KC840797]. The statistical quantities for the DNA 

sequences, including number of haplotypes and haplotype diversity and nucleotide 

diversity, were carried out using DnaSP 5.10.1 (Librado and Rozas, 2009). The 
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statistical analysis was done for each population, as well as for each strain, using two 

sources of data HVR1, (450 sites) and whole D-loop sequences (951 sites). 

Phylogenetic analysis of the haplotypes using a whole D-loop sequence was 

carried out with the PHYLIP software package (Felsenstein, 1989-2006) based upon the 

Kimura 2-parameter model to calculate genetic distances on the assumption of an equal 

substitution rate per site (Kimura, 1980). A consensus tree was also constructed with 

PHYLIP using the Neighbor-joining method (Saitou and Nei, 1987) with 1000 bootstrap 

repetitions. The donkey (Equus asinus) mtDNA sequence [NCBI: nc_001788] (Xu, et 

al., 1996) was used as an out-group (Achilli, et al., 2012; Vila, et al., 2001). 

Another approach for phylogenetic analysis was carried out by drawing the 

median-joining network (MJ network) (Bandelt, et al., 1995) in accordance with the 

haplotype sequences of the whole D-loop using the NETWORK 4.6.1 software 

(available at http://fluxus-engineering.com). Default settings were applied (r = 2, ε = 0) 

(Jansen, et al., 2002), and preliminary trials were done in order to determine the 

mutational hotspots. Four mutational hot spots were excluded and an additional four 

were down-weighted into 0.5 (Cieslak, et al., 2010; Jansen, et al., 2002). Each haplotype 

in the MJ network was shown by color codes representing the proportions of different 

strains (or populations) depending on the individual frequencies in each haplotype. 

Furthermore, the haplotype sequences were compared to the NCBI database using the 

BLAST search as implemented in MEGA 4, and haplogroups were named as defined by 

Achilli, et al. (2012). 
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To represent the genetic structure and differentiation of tested populations, 

principal coordinate analysis (PCoA), analysis of molecular variance (AMOVA) and 

pair-wise FST were applied. PCoA of the dissimilarity matrix according to Kimura 

(1980) based upon 951 bp of the 98 haplotypes sequences was carried out using 

DARwin 5.0 (Perrier, et al., 2003; Perrier and Jacquemoud-Collet, 2006). AMOVA and 

pair-wise FST were done using the Kimura 2-parameter model (Kimura, 1980) with 1000 

permutations and were carried out with Arlequin 3 (Excoffier, et al., 2005). For the Pair-

wise FST results, we followed the suggestion that refers that a value between 0–0.05 

indicates little genetic differentiation; a value between 0.05 and 0.15, moderate 

differentiation; a value between 0.15 and 0.25, great differentiation; and values above 

0.25, very great genetic differentiation (Hartl and Clark, 1997; Wright, 1978).    

4.3 Results  

Table 9 shows the diversity measures for populations including number of 

haplotypes (NHap), haplotype diversity (HapD), average number of nucleotide 

differences (k), the number of polymorphic sites (NPS) and nucleotide diversity (π) for 

each population. The results were shown for the HVR1 and the whole D-Loop 

separately.   
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Table 9: Diversity measures for populations tested in the study. N: number of individuals in each population. NHap: the number of 
haplotypes resulted in each population. HapD: haplotype diversity with its standard deviation.  NPS: the number of polymorphic sites. π: 
nucleotide diversity with its standard deviation.  k: average number of nucleotide differences. HVR1: part of the upstream D-loop (450 
sites). W: the whole D-loop (951 sites). 

Populations N 
NHap HapD (SD) NPS π (SD) 

k 
HVR1 W HVR1 W HVR1 W HVR1 W 

SY 114 43 50 0.96(0.007) 0.97 (0.007) 44 69 0.0196(0.0006) 0.0142(0.0004) 8.6 
SU2 22 10 10 0.84(0.06) 0.84 (0.06) 36 50 0.0192(0.0023) 0.0129(0.0015) 8.5 
KA 10 8 8 0.96(0.06) 0.96 (0.06) 29 42 0.023(0.0019) 0.0153(0.0013) 10.2 
EG 24 9 9 0.83(0.06) 0.83 (0.06) 26 38 0.019(0.0018) 0.0128(0.0012) 8.5 
SE 10 4 5 0.79(0.09) 0.84 (0.08) 19 26 0.0199(0.0027) 0.0126(0.0015) 8.8 

SU1 31 7 7 0.8(0.042) 0.8 (0.042) 34 51 0.0223(0.0016) 0.015(0.001) 9.9 
SA 9 8 8 0.97(0.06) 0.97 (0.06) 30 41 0.0234(0.002) 0.0153(0.0018) 10.3 
PA 13 6 6 0.82(0.08) 0.82 (0.08) 25 42 0.0213(0.002) 0.0163(0.0017) 9.4 
DV 19 6 6 0.74(0.083) 0.74 (0.083) 26 36 0.020(0.0023) 0.01281(0.0016) 8.9 

MON 5 5 5 1(0.12) 1 (0.12) 19 28 0.0195(0.0038) 0.013(0.0027) 8.6 
CS 14 9 9 0.93(0.045) 0.93 (0.045) 35 54 0.023(0.0022) 0.017(0.0013 10.2 
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A total of 74 haplotypes from 60 polymorphic sites were found in 271 horses 

from 11 populations by using the HVR1. NHap increased to 97 using the whole D-loop 

sequences. Although π decreased from 0.022 to 0.015, NPS increased from 60 to 99 and 

k increased from 9.7 to 14.5 comparing to of the HVR1 to the whole D-loop, 

respectively Table 9. The highest HapD values among all tested Arabian populations 

were in SY, SA and KA (0.97, 0.97, 0.96), respectively. The non-Arabian populations 

also showed high values of HapD (1.0 in MON and 0.93 in CS). All American-Arabian 

populations (SU1, EG, SE and DV) showed relatively low HapD ranging between 0.74 

and 0.83.   

The tested samples were then grouped into strains according to pedigree records 

and regardless of their populations. We could assign 191 out of 271 samples into seven 

strains (RASANs). As shown in Table 10, a total of 44 haplotypes from 52 polymorphic 

sites were found in these 191 horses of the seven strains using the HVR1 part of the D-

loop. The NHap increased to 55 using the whole D-loop sequences. Only the Shweemat 

strain had all individuals with a single haplotype. Hadbaa and Dahmaa also had low 

NHap (3 and 2, respectively). Kahlila was the most variable strain showing 26 

haplotypes. The total NHap calculated from all individuals together (NHap = 55) was 

less than the sum of NHap calculated from each strain separately due to some shared 

haplotypes among strains. 
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Table 10: Diversity measures for strains (RASANs) tested in the study. N: number of individuals in each strain. NHap: the number of 
haplotypes resulted in each strain. HD: haplotype diversity with its standard deviation.  NPS: the number of polymorphic sites. π: 
nucleotide diversity with its standard deviation. k: average number of nucleotide differences.  HVR1: part of the upstream D-loop (450 
sites). W: the whole D-loop (951 sites). 

Strain 
(abbreviation) 

N NHap HapD (SD) NPS π (SD) π (SD) k 
HVR1 W HVR1 W HVR1 W HVR1 W 

Kahlila (K) 44 22 26 0.94 (0.022) 0.95 (0.022) 41 61 0.023(0.0006) 0.0149(0.0005) 9.9 14.2 
Hamadania (H) 61 12 14 0.87 (0.019) 0.88 (0.02) 32 52 0.019(0.0009) 0.0148(0.0006) 8.4 14.1 
Hadbaa (HD) 7 3 3 0.76 (0.115) 0.76 (0.115) 17 24 0.019(0.003) 0.0125(0.002) 8.5 12.0 
Dahmaa (D) 7 2 2 0.57 (0.119) 0.57 (0.119) 11 19 0.014 (.0029) 0.0113(0.0023) 6.3 10.8 
Saklawia (S) 43 14 15 0.92 (0.019) 0.92 (0.02) 33 48 0.019(0.001) 0.0127(0.0006) 8.4 12.1 
Abiah (A) 24 10 10 0.85 (0.053) 0.85 (0.053) 28 39 0.019(0.0015) 0.012(0.001) 8.7 11.7 
Shweemat (SH) 5 1 1 0 0 0 0 0 0 0 0 
all 191 44 55 0.96 (0.004) 0.97 (0.004) 52 81 0.0218(0.0006) 0.0151(0.0004) 9.9 14.4 
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A consensus Neighbor-joining tree of the 97 haplotypes found from all tested 

populations is presented in Figure 15. No single population was found only in one 

cluster and different populations shared haplotypes. Fifteen haplotypes (24, 15, 29, 30, 

44, 26, 11, 22, 33, 14, 23, 55, 16, 4, 28) were found in at least two Arabian populations; 

for example, haplotype 24 was found in two populations (SU1and EG); haplotype 14 

appeared in five populations (SU1, SY, EG, SE and PA). In addition, haplotype 4 was 

found in Arabian and non-Arabian populations (SY and KA with CS). The dendrogram 

gave seven main clades plus the out-group. SY population was the most variable among 

all populations with individuals found in all clades. Figure 16 shows the consensus 

Neighbor-joining tree of the 55 haplotypes found in the individuals who were assigned 

to their strains. None of the tested strains, except SH, was represented by a single 

haplotype or phylogenetically close haplotypes. Each of the thirteen haplotypes (16, 23, 

22, 12, 27, 14, 29, 15, 18, 75, 11, 74 and 17) was found in at least two strains. For 

example, haplotype 16 was present in two strains (H and D) and haplotype 23 in three 

strains (A, K and H). The most frequent mixing was noticed between S and K strains. 

The K strain was the most variable among all strains and its individuals were distributed 

among all clades.  
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While in Figure 17 each haplotype is shown by the proportion of the different 

populations included in this haplotype, in Figure 18 each haplotype is shown by the 

proportion of different strains. The MJ networks showed 14 haplogroups (A, B, C, D, E, 

G, I, J, L, M, N, P, Q and R) as defined by Achilli, et al. (2012). 

As shown in Figure 17, each of the 13 haplogroups (A, B, C, D, E, G, I, L, M, N, 

P, Q and R) contained identical or very close haplotypes from at least two populations. 

The highest number of populations was found in the haplogroup L. The Arabian 

populations were represented in all haplogroups except J. The non-Arabian samples 

were placed in the haplogroups (A, E, I, L, M, N, Q and R) and (A, B, C, J, and P) for 

the CS and the MON populations, respectively. SY population was the most variable 

with individuals distributed across all haplogroups except J and R. Individuals from SY 

had identical or very close haplotypes to individuals from all other Arabian and non-

Arabian populations. The DV was the least variable Arabian population with only three 

haplogroups (I, L and P). 

Figure 18 showed that individuals from different strains shared a single 

haplotype. Identical matching between two or more individuals from different strains 

was seen in 13 cases. Also, matching was found between known strains and other 

Arabian groups (PA, SA and KA) and non-Arabian populations (CS and MON). In 

addition, individuals from a single strain were found in distinctive haplogroups (for 

example: strain H in haplogroups P, C and R). The K strain was the most variable with 

individuals distributed across all haplogroups except J and R. All of the unknown-strain 

samples were identical or very close to samples of known strains. Although the SH strain 
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The PCoA plot grouped the 98 haplotypes into five clusters (Figure 19). Cluster I 

included a combination of three haplogroups (M, N and R). Cluster II consisted of two 

haplogroups (P and Q). Cluster III included seven haplogroups (A, B, C, E, G, I, and J). 

Cluster IV had only haplogroup D, and Cluster V included only haplogroup L. The 

clustering by PCoA did not show any differentiation among haplotypes that came from 

different populations (or different strains) but it showed that each cluster contained a 

mixture of individuals that represented different populations (or strains).  

AMOVA showed that the proportion of the variation among populations was 

8.25 % and the frequency of the variation within populations was 91.75 %. The fixation 

index was equal to 0.083.  

The pairwise FST values are shown in Table 11.  

 
 

Table 11: Pairwise FST values among populations.  Negative values equate to zero. 
Populations CS DV EG SE SU2 SU1 SA PA MON KA 
DV 0.066          
EG 0.092 0.210         
SE 0.025 0.123 0.024        
SU2 0.076 0.243 0.058 0.033       
SU1 0.057 0.215 0.171 0.125 0.111      
SA -0.015 0.069 0.066 -0.003 0.051 0.109     
PA -0.004 0.155 0.092 0.007 0.072 0.104 0.032    
MON 0.027 0.209 0.014 -0.041 -0.040 0.093 -0.017 -0.011   
KA -0.016 0.045 0.055 -0.029 0.092 0.113 -0.021 0.039 0.029  
SY 0.011 0.149 0.050 -0.001 0.050 0.125 0.015 0.034 -0.009 0.008 
 
 
 

Out of 55 pairwise FST values 28 comparisons had FST values between 0 and 0.05 

showing little genetic differentiation while 21 comparisons had Fst values between 0.05 

and 0.15 showing moderate genetic differentiation, six comparisons had FST values 
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between 0.15 and 0.25 showing great genetic differentiation. Negative FST values were 

recorded in some comparisons and these equate to zero FST values. While most of the 

lowest FST values were seen between SY and eight other populations (CS, EG, SE, SU2, 

SA, PA, MON and KA), the highest FST values were between the DV and five other 

populations (EG, SU2, SU1, PA and MON). None of the comparisons showed values 

corresponding to very great genetic differentiation. 

4.4 Discussion 

This study presents the first description of maternal genetic diversity based upon 

the whole mtDNA D-loop of native Arabian horses sampled from Syria, Iran and Saudi 

Arabia, as well as of Western Arabian populations. One of the unique aspects of this 

study is the inclusion of the traditional classification system (RASANs or strains system) 

of native Arabians. 

4.4.1 HVR1 and the whole mtDNA D-loop comparison 

Most previous maternal diversity studies of horses are based upon sequencing of 

the HVR1 (Bowling, et al., 2000; Cieslak, et al., 2010; Cothran, et al., 2005; Cozzi, et 

al., 2004; Georgescu, et al., 2011; Glazewska, et al., 2007; Guastella, et al., 2011; 

Ivankovic, et al., 2009; Jansen, et al., 2002; Prystupa, et al., 2012a). Our results of the 

comparison between HVR1 and the entire mtDNA D-loop showed that the variability in 

the upstream region of the D-loop revealed differences among 22 additional haplotypes 

which had identical sequences in the HVR1. This agrees with Kavar, et al. (1999) where 

such a pattern of variability had been found in the D-loop of the Lipizzan horse breed. 

Higher haplotype diversity (HapD = 0.98) and average number of nucleotide differences 
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(k = 14.5) were found by using the whole mtDNA D-loop compared with the HVR1 

(HapD = 0.98 and k = 9.5) (Table 9). Thus, using the whole mtDNA D-loop is more 

robust and powerful than using the HVR1 alone for analysis of genetic diversity of the 

mtDNA in horses. Similar results have been reported in goats (Kang, et al., 2011).  

4.4.2 Population genetic diversity 

Maternal genetic diversity of the Arabian populations described in this study was 

similar to that reported in some other breeds (Cai, et al., 2009; Guastella, et al., 2011). 

Although SY, SA and KA populations had equally high HapD values (Table 9), the SY 

population was the most variable based on the consensus Neighbor-joining tree (Figure 

15) where the SY individuals were found in eight clades compared to the KA and SA 

individuals found only in five and three clades, respectively. This result was also 

supported by the MJ-network (Figure 17) where the SY population was represented in 

12 haplogroups compared to KA and SA with six and five haplogroups, respectively. 

According to Achilli, et al. (2012) there is a total of 18 major haplogroups of horses 

throughout Asia, Middle East, Europe and America; our results showed that SY 

population covers 12 of the 18 haplogroups showing extensive maternal genetic 

diversity. In our opinion, which is supported by results of (Cieslak, et al., 2010), the 

huge diversity of SY population is not a consequence of recent animal breeding or 

outcrossing but instead a feature that was already present in this very old population. In 

addition, the huge diversity in the Arabian populations is consistent with the multiple 

origins in the maternal lineages of domestic horse breeds reported by other studies 

(Aberle, et al., 2007; Cieslak, et al., 2010; Georgescu, et al., 2011; Jansen, et al., 2002).  
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Some of the SY individuals were represented in haplogroup D (Figure 17), haplogroup E 

according to Jansen, et al. (2002), that was reported as a very rare and old haplogroup 

which may date back as far as Bronze age (Cieslak, et al., 2010; Kakoi, et al., 2007; 

Prystupa, et al., 2012a).  

The American-Arabian populations showed relatively low HapD values and were 

represented in a limited number of haplogroups. DV was the least variable with only 

three haplogroups (I, L and P). The low maternal diversity found in the American-

Arabian populations is probably due to the founder effect. This result is supported by our 

previous work done by using microsatellite markers where American-Arabian 

populations showed less genetic variability compared with Middle Eastern populations 

(Khanshour, et al., 2013). Also, PA did not show a very high genetic diversity with only 

6 haplotypes distributed in four haplogroups. This result did not match with Glazewska, 

et al. (2007) where 14 distinct haplotypes were reported. This could be due to sample 

size or because the horses we used came from close maternal lines. 

4.4.3 Population relationships and genetic structure    

The low bootstrap values of the Neighbor-joining trees in Figure 15 and Figure 

16 are primarily due to the overall high degree of relationship among horses (Cothran 

and Luis, 2005).  Low bootstrap values have been reported in many mtDNA studies in 

horses (Cozzi, et al., 2004; Georgescu, et al., 2011; Kim, et al., 1999; Lippold, et al., 

2011; Vila, et al., 2001).  Although bootstrap values were low, the populations 

consistently fell into the same groupings in the trees. The consensus Neighbor-joining 

tree (Figure 15) and the MJ-network (Figure 17) show that individuals from different 
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populations share identical haplotypes. This indicates possible gene flow among those 

populations or common ancestry. Identical maternal lines were found between SY and 

PA populations revealing that Syrian mares were probably part of Polish Arabian 

founders, or some horses were recently introduced to this population. The identical 

maternal lines that were found between the American Arabian populations (SU1, SE, 

EG) and populations from the Middle East (SY, SU2 and KA) confirms that the current 

registered Arabian horses in America have been primarily founded by mares exported 

from the Middle East (Bowling, et al., 2000). While SA population is thought to be 

descended from a Syrian stallion (Hendricks, 1995), our results show some shared 

maternal lines between SA and SY suggesting a maternal contribution of Syrian horses 

in SA population, or possibly recent gene flow between these two populations. 

Furthermore, the phylogenetic analysis revealed that different populations, including 

Arabian and non-Arabian, often had very close haplotypes, and none of these 

populations formed a distinct clade. These results together reveal the mixed origin and/or 

a likely common ancestor of these populations. The genetic clustering analysis using 

both phylogenic (Figure 15 and 17) and PCoA (Figure 19) did not show any clear pattern 

of differentiation among all populations. Haplotypes within a population were found in 

separate haplogroups. Similar results have been reported in other studies of horse 

mtDNA (Cothran, et al., 2005; Jansen, et al., 2002; Vila, et al., 2001).  FST analysis 

supports this unclear pattern of differentiation showing high rates of mtDNA sharing 

between populations. Negative FST values sometimes are produced by software which 

uses algorithms that include sampling error corrections, such as Arlequin, when the true 
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Fst values are close to zero (Musick, 2005), and usually appear when there are great 

differences between two random individuals from same population rather than between 

two random individuals from different populations (Arnason and Palsson, 1996). These 

negative values represent program idiosyncrasies and are effectively zero (Humphries 

and Winker, 2011) indicating no differentiation among the compared populations in the 

present study. AMOVA results also support within group variation with 91.75% of 

variability as within population variation.   

4.4.4 Strain relationships and classification system 

In the Middle East, strain breeding is still an important factor in the Arabian 

horse breed (Hendricks, 1995). According to Bedouin breeding traditions, Arabian 

horses were subdivided into strains depending on the maternal lineage. The phylogenetic 

and principle coordinate analyses in our study using 191 samples, of known strains, 

showed no evidence that the Arabian breed has clear divisions based upon traditional 

strain classification. There are four points that support this finding. First, 13 cases 

revealed that individuals from different strains shared a single haplotype. For example, 

haplotype 23 was found in individuals that came from three different strains (Abiah, 

Kahlila and Hamadania); haplotype 29 was in individuals from three strains (Abiah, 

Kahlila and Saklawia) (Figure 16). Second, individuals from different strains were found 

in a single haplogroup. For example, haplogroup P was seen in five strains (Kahlila, 

Saklawia, Abiah, Hadbaa, and Hamadania) (Figure 18). Third, each of the strains 

(Kahlila, Saklawia, Abiah, Dahmaa, Hadbaa and Hamadania) was represented in 

clearly separated haplogroups. For example, Kahlila was found in 12 haplogroups 
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(Figure 18). Finally, PCoA did not show any pattern of clustering that fits strains 

subdivision (Figure 19). Our results agree with the conclusion reported by Bowling et al. 

(2000) about American Arabian horses.   

It is possible to have some minor mistakes in the pedigree records of any breed 

(Hill, et al., 2002), but with our results we can confirm that these mistakes, if they 

existed in the records that we used, cannot be the reason behind having the huge 

admixture among tested strains. We do not suspect admixture into the Arabian horse 

breed, but it is clear that the pedigree records of the Arabian breed were not built using 

robust genetic tools that can recognize distinct maternal lines in the establishment of the 

pedigree.  

Another important factor in the Bedouin breeding traditions is the sub-strain 

subdivisions (MARBATT) that subdivides each Arabian strain into related groups 

depending on the tribe’s or owner’s name (Hendricks, 1995).  Although we did not test 

the sub-strain subdivisions of Arabians in our study because of a lack of information, we 

can say that the sub-strain system might be able to partially explain the third point 

mentioned above (related to the differences among individuals from same strain), but it 

does not answer the other questions.   

5.5 Conclusion  

The maternal phylogenetic analysis of native Arabian horses in our study 

revealed 1- That the analysis based upon the whole mtDNA D-loop sequence was more 

powerful to study the genetic diversity in Arabian horses than using just the HVR1. 2-

That the maternal genetic diversity was wide in the Arabian horse populations especially 
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in the Syrian population. 3- That there was no clear pattern of differentiation among all 

tested populations. 4-That the Syrian mares probably had maternal contributions to the 

Polish Arabian and Shagya Arabian populations. 5-That the current registered Arabian 

horses in America have been primarily founded by mares exported from the Middle 

East. 6. Most importantly, that there was no evidence, using mtDNA D-Lopp, that the 

Arabian breed has clear subdivisions depending on the traditional strain classification 

system. 
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CHAPTER V 

MICROSATELLITE ANALYSIS FOR PARENTAGE TESTING OF THE ARABIAN 

HORSE BREED FROM SYRIA2 

 

5.1 Introduction 

In horses, parentage testing has been of particular importance for breed 

registration processes, studbook creation and validation. In general, parentage testing in 

animals is important for checking the genetic accuracy of progeny testing, in selection 

for traits (Jamieson and Taylor, 1997), while accurate pedigree information is important 

for a successful animal breeding program (Ozkan, et al., 2009) and for conservation of 

animal populations (Sereno, et al., 2008).   

The Arabian breed might be expected to have a high level of homozygosity, 

because of the way in the (Bedouins) have conserved this breed by inbreeding and 

avoiding crossing to other breeds or horses of uncertain origins (Upton and Amirsadeghi, 

1998). This manner of breeding becomes problematic in small populations, especially 

when the effects of natural selection are negated by inbreeding far away from the desert 

conditions under which the Arabian horses developed.  In such as circumstances, the use 

of a set of highly polymorphic markers is required for reliable parentage testing. 

                                                 

2 Reprinted from Khanshour A., Conant E., Juras R., Cothran G. (2013). Microsatellite analysis 
for parentage testing of the Arabian horse breed from Syria. Turkish Journal of Veterinary and 
Animal Sciences. 37: 9-14 
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Blood group and protein polymorphism tests were used for nearly three decades 

for horse pedigree records and successfully resolved queries of parentage in most cases 

(Bowling, et al., 1997).  

Recently DNA-based methodologies for genetic marker-testing using polymerase 

chain reaction (PCR) technology provided a more powerful alternative to blood typing, 

particularly the analysis of short tandem repeat loci (STRs or microsatellites) (Bowling, 

et al., 1993). The purpose of this study was to determine if a panel of 16 STR markers 

was sufficient to validate parentage for Arabian horses collected directly from local 

breeders from Syria. This is the first in depth study of the Arabian horse breed 

originating from the Arabian Desert which may more closely reflect the original status of 

the genetic structure of the Arabian horse breed. I conducted this part of the study before 

the microsatellites and the maternal diversity studies of the Arabian populations 

mentioned in chapter III and IV. So when I did this part there was no information about 

the genetic diversity of the Syrian horses. 

5.2 Materials and methods 

5.2.1 Sampling and DNA extraction 

Ninety-four hair samples were collected from different regions of Syria, 

including the government breeding center of the Arabian horses. Forty-nine samples 

were from non-registered horses, while the remaining 45 consisted of horses from all the 

registered groups of the Arabian horses in Syria. The animals from different RASANs 

were pooled for this analysis. Total DNA was extracted from the hair follicles using 

PUREGENE® DNA purification kit following the manufacturer’s instructions. 
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5.2.2 Microsatellite analysis 

Fifteen microsatellite markers (Table 3), specific to Equus caballus, were used in 

this study. All are recommended by the International Society for Animal Genetics, and 

one X chromosome marker, LEX3, was also typed. The 16 microsatellites were 

amplified in three multiplex reactions as follows: (8plex: AHT4, HT5, ASB17, ASB23, 

HMS6, HMS7, HTG4 and VHL20. 5plex: LEX3, HMS3, ASB2, HTG10 and LEX3.  

3plex: HMS2, HTG6 and HTG7). Each reaction had a final volume of 12 µl, containing  

50 ng of genomic DNA, from 0.07 to 0.8 pmol of primers, 1xPCR buffer, 2.5 mM 

MgCl2, 0.2 mM dNTPs, and 1 U AmpliTaq for the 8plex, while for the 3 and 5plex 1 U 

ChoiceTaq was used. For microsatellite amplification a hot start procedure was used, in 

which the genomic DNA and primers were combined and heated at 95 °C for 5 min. The 

temperature was then lowered and held at 85 °C for 10 min for the addition of the 

remaining reagents. Thirty five cycles were as follows:  95 °C for 1 minute, either 56 °C 

(5plex) or 60 °C (for 8plex) for 30 second and 72 °C for I minute annealing. The cycling 

was completed with a final extension at 72 °C for 15 minutes. The PCR products were 

separated by electrophoresis on a 6% polyacrylamide gel using the ABI PRISM 377 

DNA Sequencer (Applied Biosystems, Foster City, CA, USA). Fragment sizes of 

microsatellite alleles were determined using the STRand computer software (Locke, et 

al., 2000). Alphanumerical nomenclature was used for allele size designation in 

accordance with the International Society for Animal Genetics. All the tests were 

repeated at least three times, and both positive and negative controls were used in each 

reaction. 
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5.2.3 Statistical analyses 

Standard diversity indices were calculated using Cervus 3.0 (Marshall, et al., 

1998).  These include: the number of alleles (Na), number of effective alleles (Ne= 1/(1-

He) ), observed (Ho) and expected (He) heterozygosity  (calculated from allele 

frequencies assuming Hardy-Weinberg equilibrium), polymorphic information content 

(PIC) which is a measure of informativeness related to expected heterozygosity 

(Botstein, et al., 1980), frequency of the most common allele (FNA), probability of 

exclusion (PE) and combined probabilities of exclusion (CPE) (Jamieson and Taylor, 

1997). 

5.3 Results 

  PCR amplicons ranged between 93 base pair (bp) and 211 bp in size. Table 12 

shows the standard diversity indices. The total number of alleles was 91 in the registered 

group, with a mean of 5.7 per locus, and 123 alleles in non- registered with a mean of 

7.7.  The number of alleles per locus ranged between 3 for HTG6 and HTG7 to 8 for 

ASB2 for the registered and in the non-registered group Na ranged between 4 for HTG7 

to 14 for ASB17. Number of effective alleles (Ne) varied between 1.86 for HTG7 to 

5.464 for ASB17 in the registered group, and between 2.141 for HTG7 to 5.988 for 

ASB17 in the non-registered. The mean Ne was 3.747 in the registered group and 4.476 

in non-registered. Observed heterozygosity per locus in the registered group varied from 

0.36 for HTG7 to 0.91 for LEX33 and from 0.47 for HTG7 to 0.88 for ASB17 for the 

non-registered with means of 0.69 and 0.71, respectively. The lowest value of PIC for 

both groups was for HTG7 (0.358 in the registered group and 0.469 in non-registered), 
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while the highest value was for ASB17 (0.781 in the registered group and 0.803 in non-

registered). The mean PIC was 0.657 in the registered group and 0.715 in non-registered. 

The individual probability of exclusion ranged from 32% in HTG7 locus to 80% in 

ASB17 for registered and 41% in HTG7 locus to 84% in ASB17 for the non-registered. 

The combined probability of exclusion (CPE) for all loci was more than 99.99% in each 

group.  Figure 20 shows the CPE values for both groups as a function of the number of 

microsatellite loci. 

 
 
Table 12: The standard diversity indices of tested loci. Number of alleles (Na), number of 
effective alleles (Ne), observed (Ho) and expected (He) heterozygosity, polymorphic information 
content (PIC) probability of exclusion (PE) and Combined probabilities of exclusion (CPE) for 
Registered (Reg) and Non-registered (Non-reg) Arabian horses. 

Group Registered Non-registered 
locus Na Ne Ho He PIC PE Na Ne Ho He PIC PE 
ASB17 7 5.4 0.87 0.817 0.781 0.800 14 5.9 0.88 0.833 0.803 0.839 
HMS2 7 5.2 0.87 0.809 0.771 0.789 9 5.8 0.47 0.830 0.799 0.831 
LEX3 7 4.7 0.43 0.790 0.748 0.755 9 5.7 0.84 0.825 0.791 0.814 
ASB23 6 4.2 0.70 0.767 0.723 0.731 8 5.0 0.73 0.803 0.766 0.785 
ASB2 8 4.0 0.77 0.754 0.707 0.713 9 5.0 0.84 0.800 0.763 0.784 
HMS7 6 4.2 0.79 0.766 0.717 0.709 8 5.1 0.67 0.805 0.766 0.781 
HMS3 6 4.0 0.81 0.751 0.701 0.697 7 5.0 0.71 0.803 0.762 0.769 
HTG10 5 3.9 0.77 0.749 0.698 0.689 8 4.5 0.69 0.782 0.743 0.762 
LEX33 5 3.8 0.91 0.742 0.690 0.675 9 4.5 0.8 0.780 0.737 0.747 
VHL20 5 3.4 0.74 0.709 0.657 0.650 8 4.4 0.71 0.774 0.732 0.742 
HMS6 5 3.2 0.70 0.696 0.639 0.626 6 4.2 0.78 0.765 0.720 0.726 
AHT4 6 3.3 0.59 0.698 0.634 0.604 6 4.1 0.73 0.760 0.712 0.711 
AHT5 6 3.0 0.66 0.675 0.610 0.594 7 3.5 0.67 0.720 0.666 0.657 
HTG4 6 2.5 0.55 0.607 0.560 0.559 5 2.8 0.63 0.648 0.595 0.581 
HTG6 3 2.4 0.57 0.594 0.499 0.434 6 3.2 0.65 0.690 0.621 0.587 
HTG7 3 1.8 0.36 0.463 0.385 0.329 4 2.1 0.55 0.533 0.454 0.408 

mean 5.7 3.7 0.69 0.712 0.657 CPE 
>0.999

7.7 4.4 0.71 0.759 0.715 CPE 
>0.999
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microsatellite markers (ASB17, HMS2, LEX3, ASB23, ASB2, HMS7, HMS3) had high 

PIC values (>0.7). A very high level of CPE (>0.99999) can be reached using only six of 

16 loci (Figure 20), which makes these markers highly valuable for use in a parentage 

testing for these Arabian horses. (Keeping in mind that HMS2 and ASB23 are not 

included in the nine loci that make up the minimum standard of ISAG). Ellegren, et al. 

(1992) suggested that at least ten microsatellite loci should be used to achieve maximum 

exclusion in horses, but our results show that fewer can give a relatively high power, 

similar to results found by Sereno et al. (2008). Two markers, HTG6 and HTG7, were 

found to have PIC value less than 0.5 for registered group. As they are considered 

uninformative (Botstein, et al., 1980), and they are in the less efficient 3-plex, these two 

loci plus HMS2 can easily be excluded from routine parentage testing for the Arabian 

horses.  

In contrast, the non-registered group has PIC mean of 0.715 which was 

significantly higher than the PIC mean in the registered group (p <0.0001).  This value 

reflects a higher level of variation in the non-registered group compared to the registered 

horses. The difference of variation between the registered and non-registered horses may 

be due to the restricted mating in the registered group, where registered horses must be 

mated within the same RASAN, while the non- registered horses can be crossed with 

any horse. Heterozygosity in both groups was within the range of heterozygosity in 

different horse breeds (Reis, et al., 2008; Sereno, et al., 2008).  The heterozygosity 

levels are consistent with the high number of alleles per locus seen in the Arabian horses 

tested here, and indicate no serious loss of variability due to the breeding method 
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employed by the local breeders in Syria, which is different than that practiced by most 

horse breeders. The International Stud Book Committee (ISBC) has required that the 

CPE value for parentage verification and an individual identification in horse be higher 

than 0.9995 (Tozaki, et al., 2001). Here we showed that CPE using 12 autosomal loci 

was greater than the value required by the ISBC. Based on these results, we confirmed 

that loci of the 8 plex and 5 plex PCR can be used in parentage testing with high 

efficiency for the Arabian horses from Syria. The data presented here will help solve the 

problems related to registration issues and will provide the breeders with an effective 

tool for breeding. The unexpected results here about the high level of genetic diversity 

noticed in 94 Arabian Syrian horses opened the door to test more Syrian samples and to 

compare them to other Arabians.  
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 CHAPTER VI 

PATTERNS OF SINGLE NUCLEOTIDE POLYMORPHISMS AND 

MICROSATELLITE GENETIC HETEROZYGOSITY IN THE HORSE GENOME 

 

6.1 Introduction 

The description of the amount and distribution of genetic heterozygosity within a 

genome is essential to understand the history of species and the evolutionary forces such 

as selection, mutation, and recombination. Also it is important for the investigation of 

relatedness among individuals, genetic determinants of phenotypic variation and 

population demography including historical migration routes, population expansions and 

declines. (Payseur, et al., 2011). Therefore, studying genetic diversity has important 

implications for organism evolution, forensics, and distribution of genetic diseases 

(Jorde, et al., 2000). Genome wide effects of evolutionary forces, especially selection, 

are represented in different patterns of polymorphism distributions resulting from 

selective sweeps (Pool, et al., 2010). Such genetic diversity patterns range from a deficit 

of variation around selected sites (Fu, 1997; Hudson and Kaplan, 1988) to an excess of 

high-frequency derived alleles in flanking regions (Fay and Wu, 2000). For example, 

negative selection reduces variation by elimination of some mutations, holding others in 

low frequency and also causing the loss of variants linked to deleterious alleles 

(Charlesworth, et al., 1993). Positive selection leads to local reduction in genetic 

diversity through genetic hitchhiking effect (Smith and Haigh, 2007) where genes or 

group of sites will harbor fewer or more polymorphism than expected (Payseur, et al., 
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2002). Genetic diversity is a complex function of different evolutionary and 

demographic factors not only selection. Thus, the signature of adaptation is expected to 

be smaller in the high recombination regions (Spencer, et al., 2006). Demographic 

events such as founder effects, migration and consanguineous mating (mating between 

close relatives) may cause a reduction in genetic diversity (Khanshour, et al., 2013; 

Kirin, et al., 2010) and are highly common in horses. It is important to measure the 

amount of genetic diversity and its distribution throughout a genome to detect inbreeding 

and recognize any runs of homozygosity (ROH) or any  loss of heterozygosity (LOH) 

which is the most common molecular genetic alteration observed in diseases such as 

cancers (Lindblad-Toh, et al., 2000).  

Different molecular markers have been used to measure genetic diversity. SNPs 

are the most common form of DNA sequence variation in a genome and were 

hypothesized to become the markers of the choice in ecological, evolutionary, 

conservation and medical studies (Sachidanandam, et al., 2001; Seddon, et al., 2005; 

Zheng, et al., 2005). Also, STRs have been the markers of choice for different genomic 

studies such as genome-wide linkage studies, allelic imbalance studies, population 

genetic and evolution studies in many organisms over the past 20 years (Bruno-de-

Sousa, et al., 2011; Gulcher, 2012; Selkoe and Toonen, 2006). The key advantages of 

SNPs compared to STRs are a very low false genotyping rate, presence in coding and 

non-coding regions, a low mutation rate, the abundance in a genome and the most 

widespread form of DNA variation in a genome with a uniform distribution (Fries and 

Durstewitz, 2001; Gärke, et al., 2012; Xing, et al., 2005). On the other hand, the fact that 
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SNPs are biallelic and less informative than STRs is a disadvantage (Schaid, et al., 

2004). However, SNPs have replaced STRs in the recent years as the markers of choice 

for most large scale genomic studies in many organisms (Miller, et al., 2005; Sabeti, et 

al., 2007). In summary, both SNPs and STRs have advantages and disadvantages and 

different molecular backgrounds. SNPs have recently been successfully used in genome 

studies, and STRs have been widely used markers for genomic studies and remain so 

(Gulcher, 2012). Therefore, studying the interaction between SNP and STR distributions 

as two biological markers having different biological and molecular background, 

especially different mutation rates, might be an important tool to understand and explain 

the way in which genetic diversity is formed in a genome. Many such comparisons have 

been done in several organisms to study population genetics and genomic diversity (Ball, 

et al., 2010; Coates, et al., 2009; Forstmeier, et al., 2012; Gärke, et al., 2012; Glover, et 

al., 2010; Hauser, et al., 2011; Haynes and Latch, 2012; Morin, et al., 2009; Narum, et 

al., 2008; Rengmark, et al., 2006; Smith, et al., 2007; Thalamuthu, et al., 2005; Varela 

and Amos, 2010) and genome linkages studies of diseases (Hoque, et al., 2003; Schaid, 

et al., 2004).None of these studies has been done in horses.      

The aim of this study is to examine the pattern of genetic diversity provided by 

two different types of molecular markers, STRs and SNPs, at different levels of horse 

genome organization. 
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6.2 Materials and Methods 

6.2.1 Samples 

Horses have been successfully used in genetics and biomedical studies as model 

animals for many purposes. Therefore, we used 22 samples of the Peruvian Paso breed 

from the USA in this study.  

6.2.2 Microsatellite STRs data collection 

Microsatellite data came from the study done by Diane Strong in 2006 “The use 

of a whole genome scan to find a genetic marker for Degenerative Suspensory Ligament 

Desmitis in the Peruvian Paso horse” (MS thesis, University of Kentucky, under the 

direction of Dr. Cothran). All microsatellite markers used were from published sources 

where primer sequences and variability information was given. This thesis is available 

online including the STR genotypes (http://uknowledge.uky.edu/gradschool_theses/419). 

I assigned the 232 STRs markers to their chromosomal locations based upon the 

information from the horse genome project website at the NCBI 

(http://www.ncbi.nlm.nih.gov). For chromosomes 1 to 13, STRs were assigned onto the 

two arms (short arm p and long arm q). Linkage disequilibrium (LD) between all pairs of 

loci was tested for STRs data by GENEPOP 3.4 (Raymond and Rousset, 2001) based on 

the exact test using the default parameters specified by the software. Pairs of loci 

showing significant LD at the level of 0.05 were excluded.  Table 13 shows 232 STRs 

markers on each autosomal chromosome arm with their positions in the genome.  
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Table 13: STR markers on each chromosome (Ch) with their positions in the genome. Shadowed areas refer to the short arm. 

Ch STR s position Chr STRs position Chr STRs position Chr STRs position Chr STRs position 

1 ASB41 18,265,689 4 ASB22 59,506,355 9 LEX019 75,595,151 16 AHT037 3,919,328 22 COR016 31,733,320 

1 LEX020 20,590,361 4 COR089 59,843,221 10 COR020 9,995,159 16 TKY279 6,632,322 22 HMS47 39,952,965 

1 COR100 50,781,058 4 HTG07 64,169,187 10 COR048 12,137,892 16 HTG03 8,149,566 22 HTG21 49,944,830 

1 COR059 56,585,301 4 HTG22 98,452,420 10 ASB06 14,458,849 16 HMS20 27,660,000 23 COR055 3,251,291 

1 TKY007 59,942,316 4 SGCV23 102,735,854 10 NVHEQ018 15,382,260 16 AHT038 30,274,261 23 LEX063 29,671,975 

1 UCDEQ487 66,489,862 5 LEX004 7,818,164 10 NVHEQ007 36,378,123 16 L15-2 58,998,000 23 COR084 40,400,735 

1 AHT021 89,894,655 5 AHT24 12,165,190 10 HMS002 52,713,200 16 LEX056 70,125,109 23 SGCV004 51,900,473 

1 ASB08 99,984,303 5 VHL66 28,069,647 10 AHT86 76,695,520 16 I-18 74,985,165 24 LEX042 18,555,887 

1 LEX058 102,644,095 5 HMS05 57,359,725 10 ASB09 54,960,72 16 AHT60 81,441,900 24 AHT32 20,909,877 

1 TKY002 108,068,964 5 LEX069 63,737,858 10 COR085 73,487,975  16 AHT91 84,054,300 24 AHT4 23,415,673 

1 1CA43 110,280,065 5 LEX034 76,173,038 11 UCDEQ439 8,460,189 17 COR007 6,608,667 24 COR061 33,238,445 

1 1CA25 117,758,709 6 HTG31 4,340,328 11 SGCV24 19,537,692 17 LEX076 8,812,013 24 LEX074 34,015,752 

1 TKY106 118,802,990 6 COR010 14,720,900 11 ASB35 25,599,244 17 NVHEQ79 20,690,900 24 COR024 41,000,139 

1 UCDEQ493 119,389,495 6 NV82 15,512,496  11 SGCV13 26,147,201 17 COR032 41,428,036 25 COR080 8,780,724 

1 HTG12 124,267,100 6 LEX065 20,784,689 11 TKY033 36,817,461 17 HMS25 61,873,600 25 COR018 15,686,913 

1 UM004 129,608,032 6 UM015 34,558,289 11 NVHEQ90 37,311,816 18 TKY19 539,058 25 TKY018 18,489,234 

1 UCDEQ440 130,126,191 6 TKY111 45,045,977 11 TKY648 38,782,434 18 LEX054 16,952,947 25 AHT007 28,114,731 

1 HMS15 136,853,559 6 NVHEQ81 59,226,930 11 TKY010 39,679,362 18 UMNE50 23,060,120 25 AHT051 30,939,703 

1 COR063 181,374,365 6 UCDEQ465 61,228,738 12 SGCV10 9,547,876 18 HMS46 25,125,738 25 NVHEQ043 31,051,894 

2 COR065 1,737,180 6 COR070 65,850,909 12 SGCV08 21,559,085 18 SGCV07 26,364,970 26 COR071 19,052,877 

2 ASB18 5,257,678 6 TKY412 70,589,233 12 COR030 24,880,227 18 TKY909 26,794,020 26 EB2E8 27,157,252 

2 COR037 21,605,481 6 TKY284 73,768,431 12 COR058 27,946,790 18 TKY692 36,964,437 26 NVHEQ070 30,252,733 

2 TKY024 23,738,085 7 TKY35 22,461,800 12 UCDEQ497 32,574,331 18 COR096 37,306,808 27 COR040 17,151,726 

2 ASB17 30,600,996 7 TKY34 22,488,330 13 COR069 6,098,825 18 HTG28 38,640,668 27 HMS45 20,079,170 

2 HMS051 32,978,100 7 TKY283 43,551,219 13 UM030 10,713,060 18 TKY017 66,813,831 27 COR017 35,275,682 
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Table 13 Continued  

Chr STR s position Chr STRs position Chr STRs position Chr STRs position Chr STRs position 

2 UCDEQ380 36,574,029 7 TKY005 43,597,947 13 ASB37 15,051,228 18 UCDEQ387 75,253,209 28 NVHEQ54 5,062,828 

2 COR049 55,120,827 7 TKY272 51,294,156 13 VHL47 16,894,755 18 HLM3 74,489,252 28 UM003 10,560,340 

2 COR094 70,292,709 7 COR004 51,416,907 13 AHT30 22,064,810 19 HTG23 9,108,342 28 HTG30 10,876,313 

2 A-14 74,473,683 7 COR095 54,216,182 13 ASB01 31,743,456 19 LEX036 17,854,559 28 TKY319 25,543,673 

2 ASB13 75,644,358 7 SGCV28 71,099,574 14 HTG29 12,821,063 19 LEX073 24,403,545 28 TKY515 30,492,665 

2 UMNe076 87,061,070 7 AHT019 85,688,021 14 LEX043 16,144,786 19 COR092 45,782,951 28 UCDEQ425 43,085,558 

2 TKY335 90,635,840 8 AHT005 740,641 14 UM010 25,466,225 19 AHT041 59,892,096 29 LEX018 3,007,558 

2 TKY798 93,955,060 8 AHT025 2,570,692 14 VHL209 32,966,942 20 HTG5 10,511,401 29 COR082 4,277,206 

2 TKY497 104,824,212 8 UM034 18,876,355 14 LEX047 34,561,952 20 LEX052 13,654,145 29 COR027 22,227,341 

2 COR026 117,183,370 8 LEX023 25,944,092 14 TKY310 45,639,500 20 UM011 33,510,120 29 COR021 33,632,759 

2 COR043 117,548,315 8 ASB14 41,189,276 14 TKY491 81,175,596 20 LEX071 61,179,336 30 LEX025 2,041,967 

2 COR035 118,389,437 8 COR003 64,251,046 14 AHT83 81,754,500 20 HMS42 63,743,901 30 HTG27 7,292,962 

2 TKY842 118,406,209 8 COR056 84,105,135 14 TKY749 86,872,839 21 SGCV16 3,013,600 30 HMS18 11,408,766 

3 AHT036 2,948,130 8 SGCV32 57,499,947  14 LEX078 87,482,717 21 TKY021 448,857 30 VHL20 18,793,901 

3 COR028 11,070,092 9 HTG4 1,497,890 14 COR002 90,003,124 21 SGCV14 1,604,070 31 AHT33 602,132 

3 COR033 13,467,228 9 HMS03 16,895,898 14 TKY438 90,117,274 21 HTG10 17,139,092 31 COR038 632,737 

3 AHT022 20,876,315 9 COR008 18,912,052 14 TKY636 91,846,301 21 COR073 20,250,418 31 TKY274 11,455,554 

3 UCDEQ437 31,285,262 9 TKY627 20,348,236 15 B-8 21,787,962 21 CORO68 22,008,345 31 VIASH21 13,649,168 

3 AHT097 99,036,446 9 COR013 23,219,062 15 LEX046 39,365,857 21 HTG32 32,476,035 31 AHT34 21,679,544 

4 AHT043 2,915,350 9 HTG08 30,021,222 15 ASB02 55,316,355 21 LEX037 47,817,039 

4 HMS6 7,229,400 9 UM037 42,508,042 15 HTG06 73,962,712 22 TKY285 10,984,309 

4 LEX033 59,500,055 9 AHT53 51,322,320 15 COR014 86,778,890 22 COR022 22,898,531 



 

89 

6.2.3 SNPs genotyping and quality control 

The same 22 Peruvian Paso horses that we recently genotyped for microsatellites 

were used for SNPs genotyping. Genomic DNA was extracted from hair samples using 

PUREGENE® DNA purification kit following the manufacturer’s instructions. SNPs 

were genotyped on Illumina EquineSNP50 BeadChip by Geneseek® and all genotype 

calls were extracted from the raw intensity data using GenomeStudio Genotyping 

Module with the minimum score cutoff of 0.15. 

Data cleaning and filtering were performed using Plink (Purcell, et al., 2007). 

Only autosomal SNPs were included in this study. The basic data cleaning were carried 

out according to (Petersen, et al., 2013) where the missing rate per individual and per 

SNP were set to 0.1 (individuals with more than 10% missing genotypes have been 

excluded and only SNPs with a 90% call rate have been included, respectively). Hardy-

Weinberg Equilibrium (HWE) exact test (Wigginton, et al., 2005) filter was applied to 

exclude SNPs that deviated from HWE at P <0.001 (Purcell, et al., 2007). Further filters 

were applied by using three values of minor allele frequency MAF (0.01, 0.05 and 0.1) 

and four combinations of Linkage Disequilibrium (LD) pruning filter using pair-wise 

genotypic correlation in 50 and 100 SNPs, windows sliding by 5 and 25 SNPs along the 

genome with SNPs pruning at r2>0.5 and r2>0.2. Figure 21 shows the cleaning and 

filtering combinations tested in the SNPs data set, and the number of remaining SNPs in 

each data subset.  
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6.2.4.2 The general pattern of genetic diversity

General pattern of STRHe was analyzed with Each Pair Student’s test using JMP 

software (SAS Institute). The comparisons were done among 31 chromosomes, and 

among arms in the bi-arms chromosomes 1 to13. Chromosomes 14 to 31 are acrocentric 

with a single arm. Each Pair Student’s test was also applied for SNPHe,. The 

comparisons were done among 31 chromosomes (for all subsets GD0 to GD6), and 

among segments in each chromosome (only GD1 and GD2). Chromosomes 1 to 13 have 

three segments (short arm, long arm and the centromeric region). Chromosomes 14 to 31 

have only long arms and centromeric regions.  

6.2.4.3 Comparisons between the genetic diversity of STRs and SNPs 

To investigate the concordance between STRHe and SNPHe, three levels of 

comparisons were done using JMP software. Level 1: overall heterozygosity (all 31 

chromosomes together); level 2: chromosomal heterozygosity (by each of the 31 

chromosomes); level 3: segmental heterozygosity (by each arm in each of chromosomes 

1 to 13). In each level, two Each Pair tests were conducted: Student's Test and 

Nonparametric Test using the Wilcoxon method. 

Correlation between STRHe and SNPHe was also studied at the three levels 

mentioned above. Two different approaches were applied: Pairwise correlation (R) and 

Nonparametric correlations of Spearman’s method (ρ). All correlation tests were done 

by JMP.   

In addition to that, I looked for candidate segments for positive selection 

provided by SNPs data and associated STRs. I did the Runs Of Homozygosity test 

(ROH) along the genome using SNPs data by PLINK.  The criteria applied in this test 
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were as following: The sliding window 5000, segment length 500 kb, number of SNPs 

50, the minimum of SNPs density  50 kb/SNP and the largest gap 1000 kb (Petersen, et 

al., 2013). Then, STRs markers were assigned to the resulting homozygous segments 

based upon marker positions provided by Illumina EquineSNP50 BeadChip platform for 

SNPs and the information from the horse genome project website at the NCBI 

(http://www.ncbi.nlm.nih.gov) for STRs. Limited comparisons were available between 

the homozygosity provided by SNPs and Homozygosity status in the STRs marker in a 

same segment.   

6.3 Results 

6.3.1 SNPs quality control and filtering 

As shown in Figure 21, the pre-analysis done on the different subsets from GD0 

to GD6 showed that GD1 and GD2 were the best filter combinations that serve the aim 

of my study. GD1 was the subset resulting from the usual recommended filters used by 

other studies such as (Petersen, et al., 2013). GD2 is the subset resulting from using the 

usual filters in addition to the LD filter which might be interesting to be compared with 

GD1 to see a possible effect of those SNPs having LD relationships on the 

heterozygosity distribution. GD0 is the subset that resulted from very basic filters that 

are not recommended in some studies such as studies of heterozygosity. GD3 and GD6 

gave very low number of SNPs where more than 92% of total SNPs were excluded 

because of the high impact of the used filters. Also, GD5 had low number of SNPs 

simply because the MAF value (0.1) used here was high. Figure 22 shows SNPHe for all 

subsets (GD0 to GD6). Only GD1 and GD2 were included in the further analysis. 
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Table 14: Correlations of chromosomal heterozygosity between SNPHe and STRHe. Green: P<0.01. Blue: P<0.05. 
chromosome  GD1 He by GD2 He correlations GD1 He by STRHe correlations GD2 He by STRHe correlations 

Pairwise Spearman Pairwise Spearman Pairwise Spearman 
R P ρ P R P ρ P R P ρ P 

1 -0.1 no -0.1 no 0.126 no 0.099 no 0.495 no 0.499 * 
2 0.516 * 0.516 * -0.04 no 0 no 0.123 no 0.129 no 
3 0.525 * 0.525 * 0.011 no 0.0734 no 0.226 no 0.276 no 
4 0.63 ** 0.63 ** -0.52 * -0.513 ** -0.59 ** -0.554 ** 
5 0.335 no 0.335 no 0.328 no 0.243 no -0.077 no -0.043 no 
6 0.418  no 0.418 no 0.241 no 0.224 no 0.368 no 0.35 no 
7 0.549 ** 0.549 ** 0.123 no 0.114 no 0.09 no 0.08 no 
8 0.243 no 0.243 no 0.317 no 0.313 no 0.315 no 0.33 no 
9 0.57 ** 0.57 ** -0.221 no -0.144 no 0.203 no 0.278 no 
10 -0.402 no -0.402 no -0.095 no -0.085 no 0.447 * 0.361 no 
11 0.524 * 0.524 * -0.17 no -0.19 no -0.289 no -0.304 no 
12 0.45 * 0.45 * -0.096 no -0.094 no -0.258 no -0.246 no 
13 0.47 * 0.47 * -0.08 no -0.112 no -0.053 no -0.11 no 
14 0.5817 ** 0.5817 ** -0.259 no -0.25 no -0.048 no -0.015 no 
15 0.16 no 0.16 no 0.167 no -0.23 no -0.01 no 0.086 no 
16 0.089 no 0.089 no -0.087 no -0.049 no 0.298 no 0.156 no 
17 0.3 no 0.3 no -0.197 no -0.21 no -0.193 no -0.21 no 
18 0 no 0 no 0 no 0 no 0.04 no 0.05 no 
19 0.489 * 0.489 * -0.128 no -0.127 no -0.019 no -0.06 no 
20 0.239 no 0.239 no 0.27 no 0.212 no 0.486 * 0.35 no 
21 0.545 ** 0.408 no -0.353 no -0.36 no -0.366 no -0.295 no 
22 0.505 * 0.505 * 0.02 no 0.131 no 0.042 no 0.081 no 
23 0.165 no 0.136 no 0.176 no 0.082 no -0.02 no 0.015 no 
24 0.455 * 0.382 no 0.19 no 0.19 no -0.04 no -0.078 no 
25 -0.149 no -0.149 no 0.26 no 0.22 no -0.16 no -0.14 no 
26 0.058 no 0.058 no 0.07 no 0.007 no -0.06 no 0 no 
27 0.593 ** 0.593 ** 0.013 no -0.007 no -0.18 no -0.151 no 
28 0.498 * 0.498 * -0.01 no 0.03 no 0.31 no 0.26 no 
29 0.587 ** 0.62 ** -0.14 no -0.15 no 0.25 no 0.13 no 
30  0.421  no  0.42 no 0.19 no 0.16 no 0.127 no 0.12 no

31  0.72  **  0.72 ** ‐0.156 no ‐0.06 no ‐0.175 no ‐0.149 no
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As shown in Table 15, all parametric correlations of the segmental 

heterozygosity between STRHe and SNPHe were not significant (P<0.01) except for 

chromosome 10 where significant correlation (P<0.05) between STRHe and SNPHe 

based on GD2 in the short arm. Spearman’s method revealed similar results.  

All results were similar for level3 comparisons and correlations between STRHe 

and SNPHe by using either GD1 or GD2 to calculate SNPHe. GD1 and GD2 showed 

significant correlations for all chromosomes except short arm of chromosome 10.  

6.3.3.2 Runs of homozygosity test ROH 

The ROH test using SNPs data of GD1 subset gave 36 cases of homozygous 

segments distributed in 15 chromosomes. Five STRs markers (TKY007, NVHEQ81, 

COR070, UCDEQ465, and LEX023) were found in only four segments. The other 

segments did not have any overlapping microsatellites in the tested data. When ROH test 

was applied to GD2 subset, no homozygous segments were found using the same criteria 

as with GD1. 
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Table 15: Correlations of the segmental heterozygosity between SNPHe and STRHe. Green: P<0.01. Blue: P<0.05. 
segments GD1 He by GD2 He correlations GD1 He by STRs He correlations GD2 He by STRs He correlations 

Pairwise Non-parametric Pairwise Non-parametric Pairwise Non-parametric 
R P ρ P R P ρ P R P ρ P 

1p 0.806 ** 0.71 ** 0.215 no 0.24 no 0.11 no 0.077 no 
2p 0.875 ** 0.915 ** 0.009 no -0.007 no -0.27 no -0.08 no 
3p 0.53 * 0.50 * -0.13 no -0.151 no 0.15 no 0.13 no 
4p 0.76 ** 0.635 ** 0.04 no -0.002 no 0.157 no 0.18 no 
5p 0.608 ** 0.55 ** -0.26 no -0.269 no 0.037 no 0.057 no 
6p 0.594 ** 0.566 ** -0.357 no -0.328 no -0.158 no -0.161 no 
7p 0.891 ** 0.745 ** 0.256 no 0.231 no 0.204 no 0.136 no 
8p 0.812 ** 0.85 ** -0.124 no -0.215 no -0.088 no -0.188 no 
9p 0.721 ** 0.57 ** -0.054 no -0.111 no 0.15 no 0.097 no 
10p 0.116 no 0.397 no -0.28 no -0.463 * -0.436 * -0.26 no 
11p 0.878 ** 0.827 ** -0.279 no -0.226 no -0.20 no -0.135 no 
12p 0.755 ** 0.61 ** 0 no 0 no 0 no 0 no 
13p 0.76 ** 0.675 ** 0.148 no 0.07 no -0.07 no -0.231 no 
1q 0.691 ** 0.699 ** -0.186 no -0.31 no -0.002 no -0.08 no 
2q 0.642 ** 0.59 ** 0.046 no 0.065 no -0.31 no -0.342 no 
3q 0.719 ** 0.817 ** -0.401 no -0.419 no -0.316 no -0.359 no 
4q 0.703 ** 0.715 ** -0.02 no 0.06 no 0.01 no 0.16 no 
5q 0.439 * 0.43 * -0.127 no 0.087 no -0.234 no -0.21 no 
6q 0.597 ** 0.574 ** 0.392 no 0.341 no 0.141 no 0.305 no 
7q 0.843 ** 0.836 ** -0.143 no -0.203 no -0.223 no -0.281 no 
8q 0.757 ** 0.773 ** -0.086 no -0.077 no -0.004 no 0.059 no 
9q 0.806 ** 0.831 ** -0.011 no 0.062 no -0.021 no 0.112 no 
10q 0.58 ** 0.634 ** -0.246 no -0.27 no -0.288 no -0.247 no 
11q 0.805 ** 0.60 ** 0.009 no -0.05 no 0.019 no -0.03 no 
12q 0.815 ** 0.61 ** 0.176 no 0.22 no 0.172 no 0.05 no 
13q 0.693 ** 0.446 * 0.155 no 0.36 no -0.11 no 0.176 no 
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6.4 Discussion 

6.4.1 The general pattern of genetic diversity using STRs and SNPs 

Heterogeneity within a chromosome (different regions of the same chromosome 

could be compositionally different) and uniformity between chromosomes have been 

reported in eukaryote DNA sequences including plants, animals and yeasts (Bernardi, 

1989; Li, et al., 1998a; Tenaillon, et al., 2001). In the present study, STRs markers did 

show uniformity among chromosomes, but could not reveal a clear pattern of 

heterogeneity between short and long arms along the genome. However, microsatellites 

are known to have high level of variation due to the multi-allelic polymorphism (Varela 

and Amos, 2010). Therefore, the unequal variance within a chromosome coming from 

the large range between the highest and the lowest STRHe values for a chromosome 

might mask any possible differences among chromosomes in a genome. For example, in 

chromosome 5 the multi locus expected heterozygosity calculated from six polymorphic 

markers showed a range of 100%, and this chromosome does not show significant 

differences with most of the other chromosomes (Figure 23.A). The results here 

perfectly agree with Payseur, et al. (2011) “Statements about average microsatellite 

polymorphism mask remarkable heterogeneity in the levels of variation among loci”. 

The patterns of microsatellite polymorphism are intimately tied to the mutational process 

(Payseur, et al., 2011). The STRs mutational process depends mainly on the mutation 

rate that is dependent on different complex factors such as recombination, GC rich and 

poor regions and the length and the number of tandem repeats (Brinkmann, et al., 1998; 

Chakraborty, et al., 1997; Ellegren, 2004; Molla, et al., 2009; Payseur, et al., 2011). 
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Therefore, another segmentation comparisons method considering those factors will be 

more accurate for the study of microsatellite heterozygosity pattern. Consequently, in 

order to make such different comparison a large number of STRs markers are needed 

and of course additional cost and time will be needed. In this case, SNPs might be a 

better tool providing higher density of markers than microsatellite along different 

regions of a chromosome.  

SNP markers in the current study did discriminate heterogeneity between 

chromosomes as well as within a chromosome. Such finding agrees with Clark and 

colleagues 2007 where nonrandom distributions were found within and between all 

chromosomes in Arabidopsis thaliana (Clark, et al., 2007). Also a similar finding was 

reported in human (Nekrutenko and Li, 2000). In contrast, uniformity among 

chromosomes has been reported in eukaryotic organisms (Li, et al., 1998b) with an 

argument that inter-chromosomal uniformity might have happened through repeated 

polyploidization that occurred in many plant and animal genomes (Holland and 

GarciaFernandez, 1996; Spring, 1997). However, a recent study (Frenkel, et al., 2012) 

using whole-genome sequences analyzed the heterogeneity of many vertebrate genomes 

and reported that genomes of higher eukaryotes are a mosaic of segments with various 

functions and evolutionary properties. Frenkel, et al. (2012) found wide variation among 

chromosomes in several taxonomic groups, including horses, where non-proportional 

distribution of variations was found among chromosomes. The pattern of SNP variation 

among chromosomes in the current study might be explained by variation of 

chromosomal features such as different GC content, repeated elements and gene density 
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in each chromosome. Differences between chromosomes in human have been reported 

as results of GC and gene rich areas (Dunham, et al., 1999; Grimwood, et al., 2004; 

Hillier, et al., 2005), mutation rate (Malcom, et al., 2003) and repeated elements 

variation (Grimwood, et al., 2004; Hillier, et al., 2005; Zody, et al., 2006).  

The comparison within each chromosome showed that SNPHe was significantly 

different between arms and centromeric regions.  In 14 out of 31 chromosomes SNPHe 

was higher in the centromeric regions than in the arms. Centromeric regions usually 

have reduced recombination rates and are expected to have low genetic variation, 

whereas arms exhibit more genetic diversity (Stephan and Langley, 1998). The reasons 

that some centromeric regions showed higher diversity than other arms probably is due 

to: first, there is no clear border between the centromeric region and chromosome arms. 

Second, the low number of SNPs represented from the centromeric regions in the used 

platform. Third, it is possible that some of these SNPs are not located in the correct 

physical position on a centromere or might be incorrectly assembled because of the 

centromere repositioning phenomena in horse (Carbone, et al., 2006). Furthermore, the 

complex and repetitive structure of the centromeric regions makes studying this region 

highly difficult (Alkan, et al., 2011; Neumann, et al., 2012).  

6.4.2 Comparisons between the genetic diversity of STRs and SNPs 

From a statistical point of view, the heterozygosity values calculated from SNP 

data (SNPHe) in the current study looked conserved and tended to be more normally 

distributed with a lower level of variance than STRHe as shown in Figures 6.10. The 

STR-based heterozygosity was significantly (P<0.0) higher than SNPs-based 
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heterozygosity (usually by 2-folds) at all levels of comparison. Many studies have  

compared the heterozygosity between microsatellite and SNPs (Coates, et al., 2009; 

Forstmeier, et al., 2012; Varela and Amos, 2010; Wong, et al., 2004b), and all reported 

that microsatellites have higher heterozygosity than SNP markers. This is likely because 

SNPs are bi-allelic and they have lower mutation rate compared with STRs. Also, 

microsatellite-based heterozygosity tends to be dominated by small number of markers 

that are usually used because of their high variability. Very few exceptions have been 

found where heterozygosity values calculated from both markers type were similar such 

as for chromosomes 7, 27, 8p and 11p in this study.  For chromosomes 27, 8p, and 11p, 

STRs and SNPs comparison results should be taken with caution because a limited 

number of microsatellites were tested. In the case of chromosome 7, nine STR loci have 

been tested. However, five of these loci were reported as low variability microsatellites 

with only two alleles in horses (Hirota, et al., 2001; Tozaki, et al., 2000). 

Our results also showed no correlation between STRs and SNPs based 

heterozygosity using both parametric and nonparametric statistical methods at all tested 

genomic levels. This result supports the description of the heterozygosity shown above 

where STRHe and SNPHe patterns were completely different. However, runs of 

homozygosity test of SNPs and associated STRs noticeably showed that all associated 

loci (TKY007, NVHEQ81, COR070, UCDEQ465, and LEX023) were homozygous in 

the matched case even though these markers were polymorphic in the other individuals. 

Association between SNPs and microsatellite markers within ROH through the human 

genome has been reported (Wong, et al., 2004b).     
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6.5 Conclusion 

The present study describes the distribution of heterozygosity in the horse 

genome using two types of polymorphic molecular markers: STRs and SNPs. The 

pattern of genetic diversity was completely different between these two markers and 

there was no correlation between these two patterns. Although limited number of tested 

STR loci associated with SNPs within runs of homozygosity segments were 

homozygous, the results are still interesting and need to be augmented by genotyping 

more loci within ROH segments.  Finally, using molecular markers that have different 

mutation rate such as STRs and SNPs is useful to discover the complexity of a genome 

to understand the evolutionary history in organisms. More interestingly, having the 

whole genome sequencing of an organism gives the ability to perform unlimited 

comparisons by extraction of different markers along a genome using different 

segmentations and bioinformatics models where better view can be illustrated. 
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CHAPTER VII 

CONCLUSION 

 

There have been quite a few studies about the genetic diversity in the Arabian 

horse breed throughout the world. In this study I investigated the genetic structure of 

samples representing Middle Eastern and Western populations using microsatellite 

markers and whole mtDNA D-loop sequencing. The unique aspect of this study was that 

it is the first to look at different geographic populations of a single type of horse. Two 

important findings were that the populations from the Middle East were more genetically 

variable than those from Europe or North America.  This result supports the idea that the 

Middle East is the place of origin of the important horse breed. The second finding was 

that North American Arabian horse populations have quite low variability and that some 

of these populations might be in danger of suffering the effects of inbreeding.  

Another part of the research was an examination of the maternally based 

breeding system used by Arabian horse breeders, which is almost unique in domestic 

animal breeding. This analysis was based upon testing of the maternally inherited 

mitochondrial DNA. The research showed that there was no evidence that the Arabian 

breed has clear subdivisions depending on the traditional strain classification system.  

This study will facilitate developing and implementing conservation programs 

for this important breed throughout the world. The data from this study also provided 

new information for exploring the evolution history of domestication and breed origins 

which will contribute to international biodiversity programs. This work will contribute to 
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both the scientific and economic aspects of horse breeding, and will guide breeding 

process and support the population management of such important animals. The current 

study was done just before the Syrian armed conflict started in Syria two years ago. It is 

very well known that Syria is a candidate place of origin of many species including 

horses. The outcomes of this study will help to recover the Syrian horse populations 

affected during the war. As well as the maternal inheritance results will help to track any 

horses that might be illegally transformed out of the country during the war time. That is 

very important to preserve genetic diversity in hot spots areas of genetic diversity such 

as Syria.  

There was one more part of this research that was separate from the Arabian 

horse work. This concerned a whole genome comparison of two different types of 

genetic variants with different mutations rates. A study of this type has never been done 

using the horse as a model. The results showed completely different patterns of variation 

between the variant types. However, there was a suggestion that regions of the genome 

that show high levels of homozygosity for single nucleotide variants also have 

homozygosity for microsatellite type variants.  This could reflect strong selection for 

these areas of the genome.  

Finally, the results from this study could be applied not only in horse populations 

but also in other animal species. 
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