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ABSTRACT 

 

 Variation in terrestrial mammalian craniodental morphology and skull shape is 

known to constrain feeding performance, which in turn influences dietary habits and 

ultimately fitness.  Otters have evolved two feeding specializations: underwater raptorial 

capture of prey (mouth-oriented) and capture of prey by hand (hand-oriented), which 

likely correspond to craniodental morphology and bite performance.  However, feeding 

biomechanics and performance data for otters, aquatic mustelids that consume prey 

above water, are sparse.  The first goal of the study was to investigate the relationship 

between  feeding morphology and bite performance between two mouth-oriented 

piscivores (giant river otters and North American river otters) and two hand-oriented 

invertebrate specialists (sea otters and Asian small-clawed otters) using morphometric 

approaches.  The second goal was to investigate fluctuating asymmetry in the cranium of 

otters.  The third goal was to characterize feeding mechanisms (kinematics and jaw 

musculature) and role of bite performance in the trophic ecology of sea otters.  Mouth-

oriented piscivores possessed longer skulls and mandibles, with jaws designed for 

increased velocity at the expense of bite capability.  Hand-oriented possessed more blunt 

skulls and mandibles designed for increased bite capability. Sea otters displayed a 

greater degree of fluctuating asymmetry of the skull, which is likely linked to 

environmental stresses.  Bite performance and durophagous feeding behavior in sea 

otters was characterized in detail in the feeding kinematics.  Estimated bite forces of sea 

otters were large enough to crush all size classes of butter and littleneck clams tested in 
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the lab.  However, sea otters are size selective predators and generally choose bivalves 

of small to medium size.  Medium sized butter and littleneck clams required an 

intermediate breaking force, and are buried at a shallower depth than larger clams.  

Clams requiring an intermediate breaking force could decrease consumption time, thus 

overall handling time. 
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CHAPTER I  

 INTRODUCTION  

 

Evolution of Otters 

The masticatory apparatus and specialized bite capability of mustelids, 

particularly otters, is a result of a long history of mammalian evolution centered on the 

development of heterodonty, changes in jaw biomechanics, and mastication.  Early 

mammals demonstrated an extensive diversification and ecomorphological specialization 

(Luo, 2007).  Currently there are 5,416 extant mammal species and 1,229 genera 

(Wilson & Reeder, 2005; Luo, 2007).  Mammals are a monophyletic group of vertebrate 

tetrapods that originated from synapsids (Dilkes & Reisz, 1996; Oftedal, 2002).  Due to 

numerous new synapsid fossil-finds, our knowledge of these mammalian ancestors has 

broadened considerably, particularly the evolutionary transitions of therapsids to 

cynodonts to modern mammals (Luo, 2007).  Therapsids that survived the Permian-

Triassic extinction event displayed morphological trends that formed the basis of modern 

mammalian anatomical plan of the skull, such as a reduction of the temporal shield and 

an enlargement of the single temporal opening or fenestration (Rubidge & Sidor, 2001). 

This enlargement of this single temporal fenestration produced a sagittal crest and 

zygomatic arches, which became new attachment points for the lateral adductor muscles 

(temporalis and masseter muscles).  The upper canines became wider and longer.  An 

external auditory meatus (passageway from outer ear to tympanic membrane of middle 

ear) formed in the squamosal bone.  Cynodonts (derived therapsids and the sister group 
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to mammals) possessed additional derived characteristics, including a masseteric fossa 

of the dentary bone, laterally flared zygomatic arches, reduced angular bone on the lower 

jaw, and heterodont dentition (Rubidge & Sidor, 2001).  The development of this 

masseter muscle is an important functional refinement to the masticatory apparatus; true 

mastication is restricted to Mammalia.  The new masseter muscle provided more control 

of transverse jaw movements, increased bite force, and reduced the stress placed on the 

jaw joint.  Unlike the pelycosaurs (basal Synapsids) and therapsids, cynodonts developed 

two occipital condyles that articulated with the atlas (cervical vertebrae 1 or C1).  The 

maxillary and palatine bones also expanded caudally and toward the midline, forming a 

secondary hard palate; an important mammalian adaptation for nursing and breathing 

during feeding events (Vaughan et al., 2000).  By the late Triassic (250 mya) and early 

Jurassic (200 mya) true mammals emerged (Mammalia) and radiated into numerous 

groups (Vaughan et al., 2000).  Morganucodontidae, a multituburculate, represents the 

earliest known mammals and appeared in the fossil record in the late Triassic or early 

Jurassic (250-200mya) (Vaughan et al., 2000; Luo, 2007).  Heterdonty had arisen and 

premolars most likely had predecessors or deciduous teeth, an indication of diphydonty.  

Evidence suggests that these early mammals exhibited unilateral occlusion 

(anisognathy); chewing occurring on a single side at a time, as do many extant mammals 

do today (Vaughan et al., 2000).   

 The three modern mammalian clades, prototheria, metatheria, and eutheria, arose 

and underwent major diversification in the Mesozoic Era (250-65 mya) (Ji et al., 2002; 

Veron et al., 2008).  Metatherians (marsupials) and eutherians (placentals) diverged into 
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two different phylogenetic lineages in the middle Cretaceous (approximately 144 mya) 

(Cifelli & Davis, 2003; Luo, 2007).  Eutherians (placentals) and metatherians 

(marsupials) currently comprise up to 99% of all extant mammalian species and show 

great diversification in ecomorphological characteristics, including unique ecological 

specializations, such as predation and scavenging (e.g., moving away from generalized 

insectivorous diets)  (Smith, 1997; Luo et al., 2003; Luo, 2007).  The extinction of non-

avian dinosaurs at the K-T boundary opened up new niches for mammals.  Fossils reveal 

that the first mammals were small, shrew to marmot size (Godinot, 1994; Alroy, 1999; 

Catania, 2000).  The braincase was long and narrow.  Three molars were present and 

were typically tribosphenic, possessing a protocone on the upper molars which fit into 

the talonid basin and three cusps on the lower molars (Cifelli, 1999).  The molars of 

eutherians (and metatherians) are derived from this basal tribosphenic form in earlier 

mammals (Hiiemae & Crompton, 1985; Luo et al., 2001).  Symmetrodonts (mammal-

like synapsids) also developed a triposphenic tooth pattern (molars with three primary 

cusps arranged in an isosceles triangle), but there was no direct occlusion present 

because of the lack of a talonid posterior to the trigonid (Luo et al., 2001; Rougier et al., 

2003; Luo et al., 2007).  Pantotherians (a clade of Mesozoic mammals) also evolved a 

tribosphenic dentition with the addition of a talonid on the lower molars for direct 

occlusion between the upper and lower molars (Crompton & Jenkins, 1967).  It has been 

suggested that tribosphenic molars of eutherians and metatherians were derived from 

pantotheres (Crompton & Jenkins, 1967; Dashzeveg & Kielan-Jaworowska. 1984; 

Schmidt-Kittler, 2002).  Eutherians also possess this direct occlusion due to the presence 
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of the talonid.  An inspection of dentition morphology reveals that eutherians display a 

diverse feeding ecology and adaptations across numerous feeding categories such as: 

insectivory, carnivory, frugivory, and herbivory (Vaughan et al., 2000; Schmidt-Kittler, 

2002).  This dental diversity, in addition to mastication, allowed therian mammals to 

radiate into open niches and exploit new habitats and prey in a rapidly changing 

environment.   

 The Order Carnivora appeared approximately 60 million years ago during the 

Paleocene (Van Valkenburgh, 2007).  Miacids are thought to represent the basal stock 

from which all modern Order Carnivora evolved (Radinsky, 1982; Ewer, 1998; Van 

Valkenburgh, 1999; Wesly-Hunt & Flynn, 2005; Smith & Smith, 2010).  Miacids 

coexisted with other carnivorous mammals: Order Creodonta (which include the families 

Oxyaenidae and Hyaenodontidae) and Order Condylarthra (particularly the family 

Mesonychidae) (Radinsky, 1982).  However, while miacids underwent rapid 

evolutionary radiation by the end of the Eocene, oxyaenids, hyaenodontids, and 

mesonychids went extinct.  Miacids gave rise to the modern families of Order Carnivora 

that we see today.  The best evidence that demonstrates miacids as the first carnivoran 

representatives is the development of P4 and M1 as the carnassials (Van Valen, 1969).  

This functional complex has two advantages: carnassials can become functional prior to 

the shedding of the deciduous carnassials and it provides a greater potentiality for 

adaptive differentiation (Ewer, 1998).  The lower first molar is the only molar involved 

in both shearing and piercing as a carnassial tooth.  There are three major pathways for 

the evolution of this molar, producing either purely flesh consuming carnivores 
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(hypercarnivores), herbivores, or omnivores (Ewer, 1998).  In hypercarnivores (such as 

members of the Family Felidae), the posterior molars are reduced or lost and the 

carnassials are modified as shearing blades.  The jaws are shortened so that the 

maximum force operating on the jaw muscles is exerted at the level of the carnassials 

(Greaves, 1982; Greaves, 1985; Christiansen & Wroe, 2007; Van Valkenburgh, 2007).  

Omnivores, or mixed feeders, have modified molars designed for crushing and the 

shearing edges are reduced.  Herbivores represent departure from this mixed feeding 

morphology.  The carnassials secondarily lose their blade-like cusps and become more 

blunt and designed for grinding (Ewer, 1998).  Sea otters are exceptional in that the 

carnassials are broad and flat, designed for durophagy (e.g., crushing hard, benthic prey).  

Sea otters are the only members of Lutrinae that possess bunodont dentition for such a 

dietary specialization (Lewis, 2008).  Therefore, Miacids had dentition which held the 

potential for producing highly successful carnivorous predators, omnivores, or 

secondarily herbivores (Ewer, 1998).  With such wide variation in dentition miacids 

could exploit new resources in a changing environment (Ewer, 1998). 

 During the late Eocene, Order Carnivora radiated rapidly (Valkenburgh, 1999; 

Wesley-Hunt, 2005), and became ecologically diverse, spannnig a wide range of feeding 

spectrums.  This suggests significant differences in craniodental morphology (Sacco & 

Valkenburgh, 2004; Christiansen & Wroe, 2007).  The Order Carnivora is composed of 

two independent lineages or suborders: Caniformia (dog-like carnivores) and Feliformia 

(cat-like carnivores) (Van Valkenburgh, 1999; Delisle & Strobeck, 2005; Vaughn, et al., 

2011), which rapidly radiated in the late Eocene and early Oligocene (35 mya) (Van 
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Valkenburgh, 1999).  Caniformia is subdivided into two infraorders (Bininda-Emonds & 

Russell, 1996; Delisle & Strobeck, 2005) or superfamiles (Flynn et al., 1988): Canidae 

(dogs and foxes) and Arctoidea (bear-like carnivores).  Arctoidea is subdivided further 

into 8 families: Canidae (dogs), Felidae (cats), Ursidae (bears), Mustelidae (weasels), 

Procyonidae (raccoons), Herpestidae (mongoose), Hyaenidae (hyenas), Viverridae 

(civets) (Binida-Emonds et al., 1999; Christiansen & Wroe, 2007).   Carnivoran families 

are distinguished taxonomically from each other based on skull morphology (e.g., 

middle ear and basicranial anatomy; Radinsky, 1981a; Radinsky, 1981b; Radinsky, 

1982; Van Valkenburgh, 1999; Goswami, 2006; Wroe & Milne, 2007; Van 

Valkenburgh, 2007) and more recently using molecular data (e.g., Mauda & Yoshida, 

1994; Sato et al., 2004; Spaulding et al., 2009; Eizirik et al., 2010).  Although data on 

gene structure and function are numerous, there are few data regarding how phenotypes 

evolved (Schwenk, 2000b; Relyea, 2002).  Phenotype is what performs in the 

environment and is what natural selection acts on (Schwenk, 2000b; Schwenk & 

Wagner, 2001; Nussey et al., 2005).  However, phenotypes alone do not explain 

functional significances.  Therefore to examine feeding performance (e.g., prey capture), 

biomechanically relevant morphology (e.g., mechanical advantages, craniodental 

morphology, and jaw mechanics) and genetic data are used to provide information about 

dietary specializations (Radinsky, 1981a; Sacco & Van Valkenburgh, 2004, Van 

Valkenburgh, 2007).  Therefore a combination of morphological, molecular, and 

functional data are needed to provide a comprehensive understanding of organismal 

evolution (Schwenk, 2000b).       
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Otters and their allies are grouped within Family Mustelidae, which is composed 

of 22 genera and 59 species (Koepfli et al., 2008).  Mustelidae is a monophyletic group 

that appeared in the fossil record approximately 35 million years ago (Riley, 1985; 

Marmi et al., 2004).  It includes four to seven subfamilies (Dragoo & Honeycutt, 1997), 

with five being the most recognized: Mephitinae (skunks), Melinae (badgers), Lutrinae 

(otters), Mustelinae (rest of the mustelids), and Mellivorinae (honeybadgers) (Dragoo & 

Honeycutt, 1997).  Mustelidae is the most species- and diversity-rich in the order 

Carnivora, but also (Sato et al., 2003; Lee & Mill, 2004).  Morphological characteristics 

of extant mustelids include the loss of the carnassial notch on the P4, the loss of M2, and 

enlarged scent glands (Marmi et al., 2004).  However, there are a number of specialized 

feeders and exploiters of all types of habitats, making this an excellent family to study 

and understand the significance of mechanical diversity (Lee & Mill, 2004).  For 

example, geographic variation in craniodental morphology has been shown in species of 

Mustela (weasels) (Lee & Mill, 2004) and sexual dimorphism in cranial features has 

been described in North American weasels, badgers, and otters (Dayan et al., 1989; 

Lynch & O’Sullivan, 1993).     

Otters diverged from other mustelid lineages 20-25 mya during the Miocene 

(Koepfli & Wayne, 1998).  There are 7 genera and 13 species that range from Europe, 

Asia, Africa, North America, and South America (Koepfli & Wayne, 1998).  The genus 

Mionictus is the oldest known otter fossil dating back approximately 20 mya (Koepfli & 

Wayne, 1998).  Three monophyletic groups of otters have been distinguished (Figure 1-

1; Carss, 1995; Koepfli et al., 2008).  Clade 1 contains the Old World river otters and sea 
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otters and includes: cape clawless otters (Aonyx capensis), Asian small-clawed otters 

(Aonyx cinereus), smooth-coated otter (Lutrogale perspicillata), Eurasian otters (Lutra 

lutra), hairy-nosed otter (Lutra sumatrana), sea otters (Enhydra lutris), and spotted-

necked otters (Hydrictis maculicollis).  Although sea otters are difficult to place in 

Lutrinae due to their unique semi-aquatic lifestyle and geographic distributions, sea 

otters have been shown to be the earliest lineage to diverge within the Old World otters 

(Koepfli & Wayne, 1998).  Clade 2 contains the New World otters: North American 

river otters (Lontra canadensis), marine otters (Lontra felina), and Neotropical river 

otters (Lontra longicaudis).  Ancestors of North American river otters are thought to 

have crossed the Bering land bridge into North America by the Pliocene (Serfass et al., 

1998).  Once in North America, otters evolved and expanded their range to exploit a 

wide range of habitat (Serfass et al., 1998).  Due to the morphological differences 

observed in North American river otters compared to Old World otters, the generic name 

was changed from Lutra to Lontra (Serfass et al., 1998).  Clade 3 consists of the giant 

otter (Pteronura brasiliensis).   

 

Figure 1-1. Phylogenetic relationships of otters (Koepfli et al., 2008).   
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Three subspecies of sea otters are recognized based on geographic distribution 

(Cronin et al., 1996; Doroff & Burdin, 2011) and all three demonstrate variations in their 

skull morphology and diet (Wilson et al., 1991).  By the Miocene (20-5mya), the genus 

Enhydra diverged from the basal lutrinae species (Berta & Morgan, 1985).  According to 

molecular (Masuda & Yoshida, 1994) and morphological (Berta and Morgan, 1985) 

data, Lutra is the closest extant relative of sea otters.  According to a phylogenetic 

analysis by Berta and Morgan (1986), sea otters have two lineages.  One leads to the 

extinct Enhydriodon and the second lineage leads to the extinct Enhydritherium and 

extant Enhydra.  Enhydritherium appeared in the fossil record during the Miocene 

(Europe and North America).  This extinct species was exclusively found in or near the 

coastal marine environments.  Enhydritherium and Enhydra lineage originated within the 

Old World.  The most widely accepted hypothesis of how sea otters reached the new 

world was presented by Berta and Morgan (1985).  They predicted that Enhydritherium 

dispersed from Europe around the rim of the North Atlantic and into the Pacific Ocean 

through the Central American Seaway during the Miocene.  Enhydra diverged from 

basal Lutrinae in late Miocene or early Pliocene (7-5 mya).  Modern Enhydra arose in 

North Pacific during the Pleistocene (1-3 mya) and have been confined to this region. 

Before the international fur trade (early 1700s), the worldwide population of sea otters 

was estimated to be between 150,000 (Kenyon, 1969) and 200,000 (Johnson, 1982) 

individuals.  Worldwide, sea otter populations have declined to approximately 2,000 

individuals by the end of the commercial fur trade in 1911 (Kenyon, 1969; Ralls & 

Siniff, 1990; Larson et al., 2002).  Although populations have recovered in parts of 
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Russia (Bering Island, Kamchatka Peninsula, and Kuril Islands), Alaska (specifically 

along the Aleutian Islands, Alaska Peninsula, the Kodiak archipelago, and Prince 

William Sound), and central California, populations are now small and widely dispersed 

resulting in low genetic diversity (Ralls et al., 1983).  Russian sea otters (Enhydra lutris 

lutris) are distributed from the Kuril Islands to the Kamchatka Peninsula and the 

Commander Islands.  Alaskan sea otters (Enhydra lutris kenyoni) range from the 

Aleutian Islands to Prince William Sound and along the Pacific coast of Canada south 

into Washington and Oregon.  In Alaska, three stocks are recognized: southeast (Dixon 

Entrance to Cape Yakataga), south central (Prince William Sound, Kenai Peninsula, and 

Kachemak Bay), and southwestern (Alaska Peninsula, Aleutian Islands, Kodiak Islands, 

and Cook Inlet) (Doroff & Burdin, 2011).  California sea otters (Enhydra lutris nereis) 

have a small range in central California, from Point Conception near Santa Barbara to 

Año Nuevo in San Mateo County (Hanni et al., 2003; Doroff & Burdin, 2011).   

In addition to isolation and low genetic diversity, sea otters are exposed to 

several environmental stressors and threats, such as oil spills (Garrott et al., 1993; 

Monson et al., 2000), fisheries interactions (Wild & Aimes, 1974; Johnson, 1982; 

Garshelis et al., 1986), and disease (Miller et al., 2002; Kreuder et al., 2003).  After 

commercial hunting of sea otters was banned, the California sea otter population 

increased at a rate of 5% per year until the 1970’s when the population plateaued (Ralls 

& Siniff, 1990).  Due to the lack of increased population growth (likely due to 

anthropogenic factors and disease), California sea otters have been listed as a threatened 

species on the U.S. Endangered Species list (Ralls & Siniff, 1990; Doroff & Burdin, 
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2011).  Diseases, such as protozoal encephalitis caused by protozoan parasites 

(Toxoplasma gondii and Sacrocystis neurona) have been identified as a major 

contributor to sea otter mortality in California (Conrad et al., 2005; Johnson et al., 2009).  

In Alaska, sea otter populations in the Kodiak archipelago and lower Cook Inlet remain 

stable (Doroff & Burdin, 2011).  However, Alaskan sea otters in Southwest Alaska 

(Aleutian Islands) are listed as threatened due to the rapid population declines from the 

late 1980s through 2005 (Doroff et al., 2003, Estes et al., 2005, Burn et al., 2003).  The 

most likely cause of the decline in the Aleutian Islands is predation by killer whales 

(Orcinus orca) (Estes et al., 1998; Williams et al., 2004; Reisewitz et al., 2006).  In 

1989, sea otter populations in northern Prince William Sound (PWS) declined due to the 

Exxon Valdez oil spill, which killed thousands of sea otters (Garrott et al., 1993; 

Monson et al., 2000).  However, sea otters in Simpson Bay (northeastern PWS) were 

relatively unaffected by the oil spill (Lee et al., 2009).  The increase in sea otter 

population size in PWS after the fur trade has created conflict with the shellfish fisheries 

at a local scale (e.g., Cordova) (Garshelis et al., 1986).   

Sea otters in northeastern PWS are thought to be responsible for the decline of 

the Dungeness crab fishery (Garshelis et al., 1986; Lee et al., 2009).  Historically, the 

diet of sea otters changes rapidly when they reoccupy an area (Ostfeld, 1982; Kvitek et 

al., 1992; Estes & Duggins, 1995; Watt et al., 2000; Lee et al., 2009).  Sea otters are 

generalists and will first prey on the most calorically rich prey (e.g., clams, abalone, 

urchins), then diversify once the preferred prey declines (Estes et al., 1978; Estes et al., 

1981; Ostfeld, 1982; Kvitek et al., 1993; Kvitek et al., 1988; Estes & Duggins, 1995; 
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Laidre & Jameson, 2006).  Therefore, once the preferred prey (e.g., Dungeness crab) is 

depleted sea otters will switch to a less preferred prey.  The populations in Russia appear 

to be stable around Bering and Medney Islands, but have shown recent decline in the 

Commander and Kuril Islands (Doroff & Burdin, 2011).  The cause of the decline is 

unknown, but poaching is not out of the question (Doroff & Burdin, 2011).   

Craniodental morphology and bite performance of otters have not been 

investigated within a phylogenetic and biomechanical approach and can provide 

invaluable information regarding the adaptive radiation of mustelids and specifically 

Lutrinae.  Therefore, members of each Lutrinae clade were chosen to investigate this 

variation.  Two New World species (North American river otters and giant river otters) 

are primarily piscivores and two Old World species (sea otters and Asian small-clawed 

otters) primarily feed on benthic invertebrates, allowing for a comparison between 

craniodental morphology and dietary specializations within a phylogenetic context. 

 

Feeding Adaptations and Dietary Differences of Otters 

Otters have evolved two trophic specializations, mouth-oriented piscivory and 

hand-oriented invertebrate predation, both of which likely correspond to cranial 

morphology and bite performance (Carss, 1995; Medina-Vogel et al., 2004).  North 

American river otters (Lontra canadensis), Neotropical river otters (Lontra longicaudis), 

giant river otters (Pteronura brasilliensis), smooth coated otters (Lutrogale 

perspicillata), Eurasian river otters (Lutra lutra), and hairy-nosed otters (Lutra 

sumatrana) are considered mouth-oriented piscivores, and this mode of feeding is 
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considered to be pleisomorphic (Toweill, 1974; Berta & Morgan, 1986; Sivasothi and 

Nor, 1994; Pardini, 1998; Lariviere & Walton, 1998).  Sea otters (Enhydra lutris), Asian 

small-clawed (Aonyx cinerea), African clawless (Aonyx capensis) are hand-oriented 

species that primarily feed upon benthic invertebrate prey (Wade, 1975; Ostfeld, 1982; 

Sivasothi & Nor, 1994; Carss, 1995; Estes & Duggins, 1995; Tinker et al., 2007).    

Feeding behavior, dentition, and brain morphology related to sensory systems 

differ between the two feeding modes (Radinsky, 1968; Carss, 1995).  Mouth-oriented 

otters, which tend to specialize in piscivory, exhibit enlarged somatosensory region of 

the brain that corresponds to the lips, jaws, and muzzle (Carss, 1995).  In addition to 

brain morphology, it is predicted that skull morphology will differ between the two 

feeding modes, as demonstrated with the family Ursidae (Sacco & Van Valkenburgh, 

2004).  Ursidae is comprised of eight species with varying diets, including 

hypercarnivory, herbivory, and insectivory (Sacco & Van Valkenburgh, 2004; 

Christiansen, 2007; Figueirido et al., 2009).  As in ursids, it is predicted that otters with 

longer skulls and mandibles will exhibit a decreased biting capability, but increased jaw 

velocity.  Increased jaw velocity would be advantageous for capturing elusive prey, such 

as fish.  Such adaptations are present in the extreme in piscivore specialists such as 

gharials, river dolphins, and certain extinct marine reptiles.  Although extreme 

elongation of the skull and mandible does not occur in otters, the biomechanical tradeoff 

in favor of jaw velocity over bite force still applies.  In piscivorous otters, the carnassials 

(P4 and M1) are sharp and are presumed to function for shearing and tearing flesh of fish.   

This is in contrast to otters specializing on hard, benthic invertebrates.  These species are 
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hand-oriented predators and possess further modified (blunt) carnassials (Carss, 1995).  

The carnassials in this group of otters are broad and flattened, designed for crushing their 

prey (Riley, 1985; Carss, 1995; Popowics, 2003).  In addition to these modified 

carnassials, it is hypothesized that the skulls and mandibles of hand-oriented otters will 

be shorter and more blunt compared to piscivorous otters.   It is also hypothesized that 

these craniodental differences will increase the biting capability necessary for breaking 

open hard prey, at the expense of jaw velocity.       

 

Overall Research Objectives 

The first objective was to investigate the relationships between feeding 

morphology (i.e., craniodental morphometrics; Chapter II) and bite performance 

(estimated bite forces; Chapter III) of two mouth-oriented piscivore specialists (North 

American river otters and giant river otters) and two hand-oriented invertebrate 

specialists (Asian small-clawed otters and 3 subspecies of sea otter).  The second 

objective was to characterize feeding mechanisms (jaw musculature (Chapter III) and 

kinematics (Chapter IV)) and role of bite performance in the trophic ecology of sea 

otters to begin to elucidate foraging costs (dive time, consumption time, and overall 

handling time; Chapter V).    
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CHAPTER II 

CRANIAL MORPHOMETRICS 

 

Introduction 

The fossil record of the order Carnivora extends back 60 million years 

(Radinsky, 1981a; Van Valkenburgh, 2007) and Carnivora is the most ecologically 

diverse mammalian order (Christiansen & Wroe, 2007; Meiri et al., 2005; Van 

Valkenburgh, 2007).  Variation in cranial morphology and skull shape constrains feeding 

performance in many terrestrial mammals (Sacco & Van Valkenburgh, 2004; Lee & 

Mill, 2004; Goswami, 2006; Christiansen & Wroe, 2007; Van Valkenburgh, 2007; Wroe 

& Milne, 2007; Figueirido et al., 2009), which in turn influences dietary habits, survival, 

and ultimately fitness (Arnold, 1983).  The feeding apparatus is used to capture, subdue, 

and process prey, as well as to capture mates for reproduction and as a defense against 

predators (Anderson et al., 2008).  Mustelids (weasels, otters, badgers and skunks) are 

one of the most diverse families in the order Carnivora and are a good model system to 

explore the morphological and biomechanical diversity of their feeding adaptations (Lee 

& Mill, 2004).   

Although craniodental morphology and dietary adaptations have been examined 

to some extent in terrestrial mustelids (Riley, 1985; He et al., 2002; Popowics, 2003; Lee 

& Miller, 2004; Abramov & Puzachenko, 2005), few data exist for aquatic mustelids 

such as otters (Lutrinae).  Morphological and behavioral diversity among otters is 

reflected in their diet and foraging behaviors (Radinsky, 1981a; Radinsky, 1981b; Kruuk 
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et al., 1994; Hussain et al., 1997; Lee & Mill, 2004; Sacco & Van Valkenburgh, 2004; 

Meiri et al., 2005; Goswami, 2006; Wroe & Milne, 2007; Van Valkenburgh, 2007).  For 

example, in river otters, the digastric muscles are enlarged (compared to terrestrial 

carnivores), which enables the rapid jaw closure necessary for catching fast moving fish 

with their mouths underwater (Lee & Mill, 2004).  This is also reflected in their cranial 

morphology.  Concomitantly, river otters possess broad mastoid processes, which is 

necessary for attachment of the enlarged digastric muscles (Lee & Mill, 2004).  River 

otters also possess sharp carnassials necessary for piercing and shearing fish (Popowics, 

2003).  In contrast, sea otters possess short, blunt skulls with bunodont dentition, used 

for crushing hard, benthic prey (Popowics, 2003; Lewis, 2008).  However, there are no 

data on the functional feeding morphology of otters.  Otters have evolved one of two 

trophic specializations: mouth-oriented piscivory or hand-oriented invertebrate 

specialists (Carss, 1995; Medina-Vogal et al., 2004).  North American river otters 

(Lontra canadensis), Neotropical river otters (Lontra longicaudis), giant river otters 

(Pteronura brasiliensis), smooth coated otters (Lutrogale perspicillata), European river 

otters (Lutra lutra), and hairy-nosed otters (Lutra sumatrana) are mouth-oriented 

predators (Radinsky, 1968) and feed primarily on fish (Medina-Vogal et al., 2004), 

which is the basal feeding mode (Berta & Morgan, 1986; Carrs, 1995).  Based on diet, it 

is predicted that spotted-necked otters (Hydrictis maculicollis) are mouth-oriented 

predators, since they feed primarily on fish, frogs, and amphibians (Somers & Purves, 

1996).  Sea otters (Enhydra lutris), Asian small-clawed otters (Aonyx cinerea), and 

African clawless otters (Aonyx capensis) primarily feed on invertebrate prey (Medina-
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Vogal et al., 2004) and are hand-oriented predators (Radinsky, 1968; Sivasothi & Nor, 

1994; Jacques et al., 2009).  Although Asian small-clawed otters primarily feed on 

invertebrates, they will on occasion incorporate fish into their diets (Sivasothi and Nor, 

1994), as will some populations of sea otters (Riedman & Estes, 1988).  We predict that 

the underlying cranial morphology and biomechanics will explain the feeding 

performance of these two feeding specializations (mouth-oriented piscivore specialists 

vs. hand-oriented invertebrate specialists).  The first goal of this chapter was to compare 

craniodental morphology among two mouth-oriented, piscivore specialists (North 

American river otters and giant river otters) and two hand-oriented invertebrate 

specialists (Asian small-clawed otters and sea otters) through traditional and geometric 

morphometrics to determine the functional significance of their mechanical diversity 

(Lee & Miller, 2004) and dietary adaptations and specializations (Wilson et al., 1991).   

It was hypothesized that cranial morphology and biomechanics would differ between the 

two predatory behaviors (mouth-oriented vs. hand-oriented), and that mouth-oriented 

piscivore specialists would possess long and narrow skulls indicative of high velocity 

jaws.  In contrast, hand-oriented durophagous specialists are hypothesized to possess 

short, blunt skulls with a greater mechanical advantage (MA) of the jaw adducting 

muscles for biting, as the expense of jaw velocity.  Durophagous specialists are predicted 

to possess a greater occlusal surface area of the postcanine teeth for crushing hard, 

benthic prey.  

The second goal of this chapter was to investigate variation in cranial 

morphology among the three sea otter subspecies (Alaskan sea otters, Enhydra lutris 
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kenyoni; California sea otters, Enhydra lutris nereis; and Russian sea otters, Enhydra 

lutris lutris).  These subspecies are based on geographically isolated populations (Wilson 

et al., 1991) and are managed separately by United States Geological Survey (USGS) 

(Gorbic & Bodkin, 2001; Lance et al., 2004).  Although sea otters are generally 

durophagous predators that feed on hard, benthic prey, Alaskan (Aleutian Islands) and 

Russian sea otters incorporate fish into their diets (Riedman & Estes, 1988).  This is in 

contrast to California sea otters that specialize on hard benthic invertebrates such as 

clams, abalone, and sea urchins (Estes et al., 2003b; Tinker et al., 2007; Tinker et al., 

2008).  Therefore due to dietary differences and geographic isolation, how does cranial 

morphology differ among subspecies?  It was hypothesized that the magnitude of 

mandibular bluntness and mechanical advantage would vary among subspecies 

concomitant with their primary prey source (fish vs. hard invertebrates).  That is, 

California sea otters, which tend to specialize on hard benthic invertebrates, should 

possess shorter and blunter skull morphology and shapes with a higher MA.  Russian sea 

otters, which tend to have a greater proportion of fish in their diets, should demonstrate 

longer, narrower skull morphology and shapes with a lower MA, which would be 

consistent with increased jaw velocity.  

In addition to diet, environmental stresses (e.g., inbreeding, habitat destruction, 

prey sensitivity to pollutants) can affect developmental stability of individuals and thus 

increase phenotypic variation in populations (Parsons, 1990; Swaddle, 1994; Badyaev et 

al., 2000; Hoffmann & Hercus, 2000).  Individuals are affected differently, depending on 

their ability to buffer stress (Badyaev et al., 2000).  Groups of individuals and certain 
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traits may also have different sensitivity to stresses.  For example, if a species is sexually 

dimorphic, one sex may be under stronger directional selection to grow and develop 

faster and thus be more sensitive to environmental stresses (Badyaev et al., 2000).  

Fluctuating asymmetry (FA) has been used as an indicator of environmental stress 

(Clarke, 1993; Allenbach et al., 1999; Leung et al., 2000).  Fluctuating asymmetry refers 

to non-directional deviations from bilateral symmetry and has been demonstrated to 

impact fitness (Leung et al., 2000).  Although, most individuals within a population are 

not perfectly symmetrical in shape, large FA has been shown to increase with increasing 

environmental stress.  Organisms under stress require energy to compensate for stress, 

which should reduce energy for more important functions such as growth and 

reproduction, negatively impacting the population (Koehn & Bayne, 1989; Leung et al., 

2000).  Fluctuating asymmetry has received much attention in the last decade as a 

bioindicator of stress (Leung et al., 2000) because it is more cost-effective than 

monitoring environmental fauna and it is relatively easy to measure (Clarke, 1993; 

Leung et al., 2000).  Fluctuating asymmetry is also biologically relevant since it is 

related to the quality of the organism (Clarke, 1993; Leung et al., 2000), that is, a proxy 

for fitness.  Asymmetry of the crania can influence the size, shape, and weight of 

masticatory muscles, and therefore may affect, feeding biomechanics, bite force and 

kinematics (Roest, 1993; Berta & Sumich, 1999).  Although FA has been shown to 

affect the reproductive fitness of an individual, it is unknown what the consequences of 

asymmetrical skulls have on the feeding biomechanics.  It is predicted that FA has a 

negative impact on feeding performance and increases the costs of foraging through 
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increased handling time or processing prey.  Fluctuating asymmetry and feeding 

performance data are sparse for aquatic mammals. If sea otters are experiencing 

fluctuating asymmetry, it is predicted that California sea otters (Enhdyra lutris nereis) 

may be the most affected due to the small range and small population size, which would 

increase the probability of inbreeding and the risk of asymmetric features.   

 
 

Objectives and Hypotheses 

The main objectives of this chapter were to examine the interspecific 

morphological diversification of four species of otters: Asian small-clawed otters (Aonyx 

cinerea), North American river otters (Lontra canadensis), giant river otters (Pteronura 

brasiliensis), and three subspecies of sea otters (Enhydra lutris) with traditional and 

geometric morphometrics to examine craniodental adaptations to specialized diets and 

feeding behaviors (e.g., mouth-oriented vs. hand-oriented).  Unlike traditional 

morphometrics, which uses linear distances between pairs of landmarks to analyze shape 

variation, geometric morphometrics analyzes the geometry among locations of all 

landmarks simultaneously (Parsons et al., 2003).  Geometric morphometrics is a 

multivariate methodology based on homologous Cartesian landmark coordinates.  Once 

landmarks are scaled, rotated and a Procrustes superimposition of landmarks applied, 

only pure shape variables remain.  The resulting procrustes shape coordinates can be 

used for statistical analysis (Mitteroecker & Gunz, 2009).  Landmarks capture more 

shape information and thus have a higher statistical power than traditional 

morphometrics (Rohlf, 2003).  Geometric morphometrics also provides a visualization 
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of the variation within the shape of the skull and mandible (Lynch et al., 1996).  By 

using both traditional and geometric morphometrics to quantify shape variation, we can 

increase the power of our statistical analyses and can provide a more detailed description 

to the morphological variation.  It was hypothesized that (1) mouth-oriented otters would 

possess long, narrow skulls indicative of high velocity jaws and hand-oriented otters 

would possess short, blunt skulls with a greater occlusal surface area for increased bite 

force and crushing capability, (2) skull shape and craniodental morphology of sea otters 

would vary significantly among subspecies based on diet and geographical location, (3) 

sea otters would possess a higher mandibular bluntness index (MBI; Werth, 2006a) than 

river otters and Asian small-clawed otters, and (4) sea otters would possess a greater MA 

of the masseter than other otter species.  Fluctuating asymmetry was also measured for 

each species.  It was hypothesized that (1) sea otters would show the greatest deviation 

from cranial symmetry and (2) California sea otters would show the highest degree of 

fluctuating asymmetry among sea otter subspecies. 

  

Materials and Methods 

 
Taxonomic Sampling 

Four otter species (2 mouth-oriented and 2 hand-oriented) were selected.  North 

American river otters (Lontra canadensis, n=43) and giant river otter (Pteronura 

brasiliensis, n=17) represented mouth-oriented piscivore specialists.  Hand-oriented 

otters were represented by Asian small clawed otters (Aonyx cinerea, n=23), and all 3 

subspecies of sea otters (Alaskan, Enhydra lutris kenyoni, n=40; Russian, E. l. lutris, 
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n=8; California, E. l. nereis, n=20)).  Specimens were obtained through loans courtesy of 

the Burke Museum of Natural History at the University of Washington (Seattle, 

Washington), Smithsonian National Museum of Natural History (Washington, D.C.), 

and the American Museum of Natural History (New York, New York).   

 

Traditional Morphometrics and Biomechanical Measurements 

Twenty-three standard cranial measurements (Figs. 2-1 and 2-2; Table 1; 

following Roest, 1985; Lynch & O’Sullivan, 1993; Hattori et al., 2003; Sacco & Van 

Valkenburgh, 2004) were collected using digital calipers.  Occlusal surface area was 

measured by capturing scaled digital images using Image J (NIH, Bethesda, MD).  

 
 
  

 

Figure 2-1. Cranial morphometric variables (Giant river otter; Pteronura brasiliensis). 
 
 
 

 

Figure 2-2. Cranial morphometric variables for mandible. (Giant river otter; Pteronura 

brasiliensis). 
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Table 2-1. Definitions of standard cranial morphometric variables 

Total length (TL) Max length of skull 
from tip of rostrum to 
the nuchal crest 

Greatest squamosal 

width (GSW) 

Max width of zygomatic 
arches dorsal to glenoid 
fossa 

Braincase length 

(BCL) 

Apex of nuchal crest to 
postorbital constriction 

Zygomatic width 

(ZW) 

Max width or thickness 
of zygomatic arch at 
jugal-squamosal suture 

Braincase width 

(BCW) 

Greatest width across 
braincase posterior to 
zygomatic arches and 
dorsal to tympanic 
bullae 

Zygomatic length (ZL) Max length including 
squamosal and jugal 

Condylobasal length 

(CBL) 

Distance from posterior-
most projections of the 
occipital condyles to 
anterior edge of the 
premaxilliary bones 

Zygomatic height 

(ZH) 

Max height of 
zygomatic arch at jugal-
squamosal suture 

Facial length (FL) Fronto-nasal suture to 
anterior most tip of 
premaxilla 

Zygomatic fossa width 

(ZFW) 

Max width of zygomatic 
fossa from directly 
posterior to molar fossa 
near frontal bone across 
to zygomatic arch 

Interorbital distance 

(IOD) 

 

Least distance across 
orbits, anterior to post-
orbital process 

Zygomatic fossa 

length (ZFL) 

Max length of 
zygomatic fossa from 
posterior/lateral of molar 
fossa to anterior of 
glenoid fossa 

Palatal length (PL) From alveolus of first 
incisors to anteriormost 
point on posterior edge 
of palate 

Jaw width (JW) Distance from most 
posterior part of condyle 
to posterior part of 
condyle 

Palatal width (PW) Width across palate 
posterior to last upper 
molars 

Jaw length (JL) Distance from the 
anterior tip of the 
mandibular symphysis 
to the posterior edge of 
the mandibular condyle 

Rostral width at 

canine (RWC) 

Max width of rostrum at 
the canines; including 
the canines 

Max height of ramus 

(MRH) 

Max height of ramus 
from apex of coronoid 
process to deepest point 
of masseteric fossa 

Rostral width at 

molars (RMW) 

Max rostral width at last 
upper molars; including 
the molars 

Max width of ramus 

(MRW) 

Max width of ramus 
from interior condyle 
process to edge of 
coronoid process 

Mastoid width (MW) Width from mastoid to 
mastoid 

Moment of arm of 

massester (MAM) 

Distance from ventral 
border of angular 
process to dorsal tip of 
condyle process 

Occlusal surface area 

(OSA) 

Surface area of 
postcanine too row 

Moment of arm of 

temporalis (MAT) 

Distance from dorsal 
coronoid process to 
dorsal tip of condyle  
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Mandibular bluntness index (MBI) was calculated for each otter species and 

subspecies using scaled digital photographs and Image J following Werth (2006a; Figure 

2-2).  The MBI calculates a ratio of jaw width (JW) to jaw length (JL), which is more 

reliable than skull to length ratios (Werth, 2006a).  The distance between the two 

condylar edges (JW) and the distance from the anterior tip of the mandibular symphysis 

to the posterior edge of the mandibular condyle (JL) were measured.  This calculation 

provides a dimensionless value, which is useful for comparative studies.   

The mechanical advantages (MA) of the masseter and temporalis muscles were 

calculated for each specimen (following Radinsky, 1981a; Gittleman & Van 

Valkenburgh, 1997).  The in-lever arm length (moment arm of masseter, moment arm of 

temporalis) was measured as the distance from the jaw joint to the insertion points of 

each muscle (Radinsky, 1981a; Gittleman & Van Valkenburgh, 1997; Tanner et al., 

2010).  The out-lever was measured as the distance from the jaw joint to the bite point 

(posterior carnassials) on the mandible (Radinsky, 1981a).  More specifically, the 

moment arm of masseter (MAM) was measured as the distance between the dorsal 

surface of the mandibular condyle to the ventral border of the angular process (Figure 2-

2). Therefore, the mechanical advantage of the masseter (MAmasseter) was measured by 

dividing the MAM by the distance from the posterior-most condyle process edge to the 

posterior of the lower carnassial (LCC) as follows: 

MAmasseter = MAM / LCC 

 

The moment arm of temporalis (MAT) was measured as the distance between the dorsal 

surface of the mandibular condyle to the apical tip of the coronoid process (Figure 2-2).  
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The mechanical advantage of the temporalis (MAtemporalis) was measured by dividing the 

MAT by LCC as follows:  

MAtemporalis = MAT / LCC 

 

Statistical Analyses for Traditional Morphometrics 

Statistical analyses of traditional morphometric data were performed with JMP 

Version 9 software (SAS Institute Inc., Cary, NC) and Microsoft Excel 2003 (Microsoft 

Corporation) to determine skull variation among otter species using 17 of the 23 

variables (Figure 2-1).  Normality of data was tested using a Shapiro-Wilk test.  

Levene’s test was used to test the assumption of homogeneity of variances.  All data 

were log10 transformed to normalize variances. To analyze variations in cranial 

morphology corrected for the effect of size, a MANOVA was performed on transformed 

data.  Geometric mean (geomean size), the product of the 17 skull variables taken to the 

17th root for each individual, was used as the size variable.  Geometric mean provides a 

volume value which is highly correlated with body mass (personal dataset, 97% 

correlation).  Therefore, when body mass values are limited, one can use geometric 

mean to replace it as the size factor.  Traditional morphometric data were tested for 

effects due to species and geomean size.  Following a MANOVA, a discriminant 

function analysis on log10 transformed data, with species as the covariate, was performed 

to demonstrate craniodental morphometric differentiation of the skulls.  To test for 

variations in MBI among species, a MANOVA was performed, with mean MBI values 

as the dependent variable and species as the independent variable.  Student Newman-
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Keuls post-hoc tests were performed to test which group(s) were significantly different.  

To test for significant differences in mechanical advantage at the masseter and 

temporalis, the in-lever/out-lever ratios were arcsine transformed to control for size.  A 

MANOVA was then executed on the mechanical advantage of the temporalis and 

masseter to test for significant variation among species.  To test which group(s) was 

significantly different, Student Newman-Keuls post-hoc tests were performed.  To test 

for significant differences in occlusal surface areas (OSA), OSA was first regressed 

against condylobasal length to remove the effect of size.  Residuals were then saved and 

used to test for significant differences among species.  A MANOVA test was performed 

with the regressed OSA values as the dependent variable and species as the covariate.  

Post hoc (Student-Newman-Keuls) tests were performed to determine which species 

significantly differed from the others.   

 

Geometric Morphometrics 

 

Scaled digital images skulls from each species were taken from the left, lateral 

side (AK sea otters, N=28; CA sea otters, N=19; Russian sea otters, N=8; North 

American river otters, N=31; giant river otters, N=15; Asian small-clawed otters, N=22), 

the dorsal perspective (AK sea otters, N=45; CA sea otters, N=19; Russian sea otters, 

N=8; North American river otters, N=34; giant river otters, N=16; Asian small-clawed 

otters, N=23), ventral perspective (AK sea otters, N=40; CA sea otters, N=18; Russian 

sea otters, N=8; North American river otters, N=29; giant river otters, N=15; Asian 

small-clawed, N=22) using  a Nikon D200 SLR camera stationed on a copy stand 
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(Figure 2-3).  Scaled digital images of mandibles were taken of the left lateral side (AK 

sea otters, N=32; CA sea otters, N=10; Russian sea otters, N=7; North American river 

otters, N=49; giant river otters, N=16; Asian small-clawed otters, N=23) and in the 

dorsal perspective.  The same skulls were used for both traditional morphometrics and 

landmark-based geometric morphometrics.  Only skulls in which all landmarks could be 

observed were used in geometric morphometric analysis.  A total of 87 landmarks were 

point digitized using TpsDig2 (Rohlf, 2009).  Twenty-one landmarks were digitized on 

the dorsal side, 30 landmarks on the ventral side, 21 landmarks on the left lateral side, 

and 15 on the left lateral side of the mandible (Figure 2-3).  Shape variables were 

separated from overall size, position, and orientation of landmark configurations by 

translating, scaling, and rotating the coordinates (Zelditch et al., 2004) to obtain 

Procrustes shape coordinates, which were then used in the statistical analyses.  Each 

configuration of landmarks was centered at the origin by subtracting coordinates of its 

centroid from the corresponding x, y coordinates of each landmark (Zelditch et al., 

2004).  This translates each centroid to the origin.  Landmark configurations were scaled 

to unit centroid size by dividing each coordinate of each landmark by centroid size.  All 

configurations were then rotated to a referenced configuration to minimize Procrustes 

distance (e.g., summed squared distance between homologous landmarks) (Zelditch, 

2004).  
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Figure 2-3.  Homologous landmarks for geometric morphometrics (Sea otter, Enhydra 

lutris). 

 
 
 
Statistical Analysis for Geometric Morphometrics 

To analyze variation among groups, the Canonical Variates Analysis program 

within the software IMP (Integrate Morphometric Package; CVAGen7b; Sheets, 2004, 

http://www.canisius.edu/~sheets/morphsoft.html) was used (following Zelditch et al., 

2004) to compute partial warp scores and a MANOVA followed by a canonical variates 

analysis (CVA).  Canonical variates scores were also computed using Mahalanobis 

distances.       
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Fluctuating Asymmetry with Geometric Morphometrics 

Fluctuating asymmetry (FA) was measured using existing geometric 

morphometric data, a method based on the Procrustes technique (Klingenberg & 

McIntyre, 1998).  Geometric morphometrics is a powerful multivariate statistical 

procedure that uses patterns of covariance among landmarks to detect localized shape 

variation and, therefore, asymmetries (Klingenberg & McIntyre, 1998).  The same scaled 

digital images and landmarks used for geometric morphometrics analysis were used and 

uploaded to TpsDig2 (Rolf 2009) to test for asymmetry.  Landmarks were digitized on 

the left and right corresponding sides in the dorsal perspective (Alaskan sea otters n=32; 

California sea otters n=19; Russian sea otters n=8; North American river otters n=34; 

giant river otters n=16; Asian small-clawed otters n=19).  Landmark coordinates were 

then uploaded to Microsoft Excel 2007 (Microsoft Corporation, Redmond, WA) where 

they were scaled to their common centroid size, superimposed so that they have the same 

centroid, and rotated against each other around their common centroid so that only shape 

differences remained.  For each individual, x and y coordinates were centered by 

subtracting the grand mean (of each x and y separately) from the x and y coordinates and 

multiplied by its scale.  Covariance was then measured to show how much the two 

variables changed together.  This is also called the sum of squares and cross products 

(SSCP) matrix and was calculated by multiplying the centered, scaled data matrix by the 

centered, scaled matrix.  This gives a 2x2 SSCP matrix.  The centered, scaled 

configurations were then rotated using eigenvectors calculated from the covariance.  In 

excel, this was done by multiplying centered scaled data by eigenvectors and then 
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dividing it by centroid size.  Centroid size was calculated by taking the square root of 

SSCP matrix.  Superimposing and rotating coordinates aligns all the left and right 

landmarks simultaneously, which provides an overall consensus configuration 

(Klingenberg & McIntyre, 1998).  The consensus configuration is the mean coordinates 

of corresponding landmarks in aligned configurations, and makes up the new set of 

variables that contain all the shape information (Klingenberg & McIntyre, 1998).  

Deviations were measured for left and right corresponding sides by taking the square 

root of the sum of the centered, scaled, and rotated x and y configurations.  Asymmetry 

was then measured as the deviations between x and y pairs of corresponding left and 

right sides (Klingenberg & McIntyre, 1998).  The sum of the deviations is the calculated 

fluctuating asymmetry. 

 

Statistical Analysis for Fluctuating Asymmetry (FA) 

A MANOVA was performed on the measured FA values to statistically test for 

variations in fluctuating asymmetry among species in the dorsal perspective.  Student 

Newman-Keuls post-hoc tests were performed to test which group(s) were significantly 

different.  All statistical analyses were performed in JMP Version 9 software (SAS 

Institute Inc., Cary, NC).     
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Results 

Traditional Morphometrics and Biomechanics 

There were significant differences in skull morphology among species (Figure 2-

4; F=25.6; p<0.01).  In the discriminant data analysis, Canonical Axis 1 separated sea 

otters from Asian small-clawed otters, North American river otters, and giant river 

otters.  Sea otters and giant river otters were larger in size as indicated by the larger 

geomean (Figure 2-4).  In addition, sea otters possessed the greatest interorbital distance 

(IOD), greatest rostral width at the molar (RMW), greatest braincase width (BCW), 

greatest palate width (PW), greatest skull width (GSW), and greater zygomatic length 

(ZL) than all other otters investigated (Figure 2-4).  Canonical Axis 2 separated giant 

river otters from all other otter species (Figure 2-4) and was strongly influenced by total 

skull length (TL) and palate length (PL).  Asian small-clawed otters and North American 

river otters possessed greater facial lengths (FL) and zygomatic fossa lengths (ZFL) than 

the remaining otter species.  When size effect was eliminated, OSA was greater in sea 

otters (F=246.9; p<0.01) than any other otter species investigated (Figure 2-5).  

California sea otters possessed the greatest OSA compared to Alaskan or Russian sea 

otters (F=13.3; p=0.0004).  Alaskan and Russian sea otters possessed the next greatest 

OSA compared to other otter species investigated but were not significant different from 

each other (F=1.3; p=0.257).  Asian small-clawed otters possessed intermediate OSA 

(Figure 2-5) and North American river otters possessed the smallest OSA (F=177.8; 

p<0.01) (Figure 2-5).        
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Figure 2-4. Discriminant analysis with log10 transformed skull morphometric variables.  

Four groups separated out based on 17 biomechanically relevant skull morphometrics.  
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Figure 2-5. Discriminant function analysis with occlusal surface area (OSA) of 

postcanine dentition on upper left jaw and condylobasal length (CBL).    

 
 
 

Significant mandibular shape differences were observed among species (F=31.8; 

p<0.01) and geomean size (F=7.33; p<0.01) (Figure 2-6).  Canonical Axis 1 separated 

giant river otters from the rest of the otter species and was strongly influenced by 

mandibular length (Figure 2-6).  Giant river otters possessed the greatest mandible 

length (ML) of the otter species examined, regardless of size, whereas North American 

river otters and Asian small-clawed possessed greater coronoid process lengths (CPL).  
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Canonical Axis 2 separates sea otters from the remaining otter species and was strongly 

influenced by a greatest mandibular ramus height (MRH) (Figure 2-6).    

 

 

Figure 2-6. Discriminant analysis of otter mandible morphometrics.   
 
 
 

Among sea otters, a separate discriminant analysis on demonstrated significant 

skull morphometric variable among all 3 subspecies was conducted (Figure 2-7; F=3.1; 

p<0.01).  Canonical Axis 1 separated Russian sea otters from California sea otters and 

Alaskan sea otters and was strongly influenced by zygomatic fossa length (ZFL) and 

rostral width at molars (RMW) (Figure 2-7).  In addition, Russian sea otters possessed 

the greatest palate length (PL) and geomean size.  Alaskan sea otters possessed the 
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largest braincase width (BCW) and California sea otters possessed the greatest 

zygomatic length (ZL) and palate width (PW).  Canonical Axis 2 separated Alaskan sea 

otters from California sea otters, and was strongly influenced by zygomatic fossa width 

(ZFW) and mastoid width (MW) (Figure 2-7).  Alaskan sea otters possessed the greatest 

ZFW and California sea otters possessed the greatest ZL, MW, and PW.   

 
 
 

 

Figure 2-7. Discriminant analysis with log10 transformed skull morphometric variables.  

Three subspecies of sea otter separated out based on skull morphology. 
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Mandibular Bluntness Index and Mechanical Advantage 

 Significant differences in the mandibular bluntness index (MBI) was 

demonstrated among otter species (Figure 2-8; F=117.02; p<0.01).  Asian small-clawed 

otters, North American river otters, and giant river otters possessed a mandibular 

bluntness index less than 1.0, demonstrating that mandibles are longer than they are 

wide.  Asian small-clawed otters possessed greater MBIs than giant river otters and 

North American river otters (F=4.9; p<0.05), however no significant difference was 

shown between giant river otters and North American river otters (F=1.14; p=0.29).  In 

contrast, sea otters possessed MBIs greater than 1.0, demonstrating very blunt mandibles 

that were wider than they were long.  Sea otters possessed significantly larger MBIs than 

all the other otter species (F=433.0; p<0.0001).  Among sea otters, California sea otters 

possessed greater MBIs than Russian and Alaskan sea otters (F=5.81; p<0.05), but no 

difference was detected between Alaskan and Russian sea otters (F=0.028; p=0.87).     
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Figure 2-8. Mandibular bluntness index (MBI).  Same letters represent no significant 

difference and different letters represent significant differences. 

 

Significant differences were shown in the mechanical advantage of the masseter 

among species (Figure 2-9; F=41.6; p<0.01).  Giant river otters and Asian small-clawed 

otters possessed the lowest masserteric MA (F=152.0; p<0.01).  There were no 

differences in the masseteric MA between giant river otters and Asian small-clawed 

otters (F=1.3; p=0.26).  Alaskan sea otters possessed the greatest masseteric MA 

compared to all other otters (F=81.5; p<0.01).  Among sea otter subspecies, Alaskan sea 

otters possessed greater masseteric MA than both California and Russian sea otters 

(F=6.1; p=0.01).  However, no significant difference was observed between California 

and Russian sea otters (F=0.30; p=0.59).   
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Figure 2-9. Mechanical advantage of masseter (MAmasseter).   
 
 
 

Variation in the mechanical advantage of the temporalis was demonstrated 

among species (Figure 2-10; F=9.2; p<0.01).  North American river otters possessed the 

greatest temporalis MA (F=23.6; p<0.01) and giant river otters possessed the lowest MA 

(F=23.7; p<0.01). Asian small-clawed otters possessed an intermediate temporalis MA 

(Figure 2-10).  No significant differences were observed among sea otter subspecies 

(F=0.82; p=0.45) and no significant difference was found between Asian small-clawed 

otters and Alaska and California sea otters (F=1.0; p=0.32). 
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Figure 2-10. Mechanical advantage of temporalis muscle in all otters. 

 

Geometric Morphometrics 

Significant shape differences were demonstrated in both the skull and mandible 

among otter species (MANOVA and Mahalanobis D2 tests (p<0.01)) for each axis.  In 

the dorsal perspective, Canonical Axis 1 separated all three subspecies of sea otters from 

all other otters (Figure 2-11A).  Canonical Axis 2 separated North American river otters 

from the Asian small-clared and giant river otters (Figure 2-11A).  The greatest variation 

observed in the dorsal perspective was the interorbital distance (IOD) (Figure 2-11B).  

Sea otters possessed a wider skull anterior to the braincase than Asian small-clawed 

otters, giant river otters, and North American river otters.  Giant river otters had the most 

narrow IOD, followed by Asian small-clawed otters and North American river otters.   
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Figure 2-11. Dorsal perspective (n=145).  (A) Canonical variates analysis of 4 species of 

otters.  (B) Thin plate spline showing nonuniformity.   Enhydra lutris kenyoni , E. l. 

nereis; , E. l. lutris; Lontra canadensis; , Pteronura brasiliensis; , Aonyx cinerea. 

 
 
 
In the ventral perspective, Canonical Axis 1 separated sea otters from giant river 

otters, Asian small-clawed otters, and North American river otters (Figure 2-12A). 

Canonical Axis 2 separated North American river otters from the remaining otter species 

(Figure 2-12A).  The most variation in the ventral perspective was observed in the 

pterygoid hamulus and tip of the rostrum (Figure 2-12B).    The distance between the left 
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and right hamuli was greatest in sea otters than all other otters investigated.   Giant river 

otters possessed the longest rostra, followed by North American river otters, Asian 

small-clawed otters; sea otters had the shortest rostra. 

 

 

Figure 2-12. Ventral perspective (n=132).  (A) Canonical variates analysis of 4 species 

of otters.  (B) Thin plate spline showing nonuniformity.    Enhydra lutris kenyoni; , 

E. l. nereis; , E. l. lutris; Lontra canadensis; , Pteronura brasiliensis; , Aonyx 

cinerea. 

 
 
 



 

42 
 

 

Significant variation was observed in the lateral perspective among otters (Figure 

2-13).  Canonical Axis 1 separated sea otters from all other otter species (Figure 2-13A).  

Canonical Axis 2 separated Asian small-clawed otters and giant river otters from North 

American river otters and sea otters (Figure 2-13A). The most variation in the lateral 

perspective was observed in the pterygoid hamulus length and rostrum height (Figure 2-

13B).  North American river otters and giant river otters possessed longer and more 

gracile pterygoid hamuli than other otters investigated.  Sea otters possessed a robust and 

short pterygoid hamuli and greater rostrum height than the other otters investigated.   

 
 

 

Figure 2-13. Lateral perspective (n=123). (A) Canonical variates analysis of 4 species of 

otters.  (B) Thin plate spline showing nonuniformity.   Enhydra lutris kenyoni; , E. l. 

nereis; , E. l. lutris; Lontra canadensis; , Pteronura brasiliensis; , Aonyx cinerea. 
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The shape of the mandible differed significantly among species (Figure 2-14).  

Canonical Axis 1 separated sea otters from all other otters (Figure 2-14A).  Canonical 

Axis 2 separated North American river otters and giant river otters from Asian small-

clawed otters (Figure 2-14A). The most variation was observed in the coronoid process 

and depth of the masseteric fossa (Figure 2-14B).   

 
 
    

 

Figure 2-14. Mandible perspective (n=137). (A) Canonical variates analysis of 4 species 

of otters. (B) Thin plate spline showing nonuniformity.  Enhydra lutris kenyoni; , E. 

l. nereis; , E. l. lutris; Lontra canadensis; , Pteronura brasiliensis; , Aonyx 

cinerea. 
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The tip of the coronoid process was higher and projected more posteriorly in sea 

otters.  The masseteric fossa depth was greatest in the sea otters.  The length of the 

mandible was greatest in giant river otters, followed by Asian small-clawed otters, and 

North American river otters and sea otters.  

 

Fluctuating Asymmetry 

 Significant variation in dorsal cranial symmetry among species was demonstrated 

(F=9.4; p<0.01).  Among all otter species in the study, sea otters showed the highest 

degree of asymmetry (F=34.5; p<0.01; Figure 2-15).  Among sea otters, there were no 

significant differences in FA between Russian and Alaskan sea otters (F=0.0004; 

p=0.98).  However, Russian sea otters and Alaskan sea otters showed the greatest 

amount of asymmetry among the sea otter subspecies, followed by California sea otters.  

No significant differences were observed between giant river otters and North American 

river otters (F=0.044; p=0.83), Asian small clawed otters and North American river 

otters (F=0.87; p=0.35), or Asian small clawed otters and giant river otters (F=0.94; 

p=0.33).   
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Figure 2-15. Fluctuating asymmetry with dorsal images.  Greatest asymmetry was 

observed in all three subspecies of sea otters. Same letters represent no signficant 

differences and different letters represent significant differences.  

 
 
 

Discussion 

In addition to reduced dentition and variation in carnassial morphology (Wilson 

et al., 1991; Riley, 1985; Carss, 1995; Lariviere & Walton, 1998), analyses of 

craniodental morphology of several species of otters demonstrate many differences that 

support divergent feeding modes (mouth-oriented vs. hand-oriented) in relation to diet.  

Giant river otters possessed the greatest total skull length, palate length, rostrum length, 

and mandibular length compared to any other otter species investigated, regardless of 

geomean size.  Longer skulls are correlated with longer mandibles and a bite point 

positioned further away from the temporal-mandibular joint (TMJ).  This produces jaws 
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with greater velocity.  There is a mechanical tradeoff in any lever system (Westneat, 

1994; Westneat et al., 2005; Vogel, 2003; Herrel et al., 2008) that allows for jaws to 

either maximize force or velocity, but not both simultaneously (Westneat, 1994; 

Levinton & Allen, 2005; Herrel et al., 2008).  That is, high velocity jaws cannot 

maximize force, and forceful jaws sacrifice velocity.  Giant river otters feed primarily on 

fish (Carter & Rosas, 1997; Rosas et al., 1999) and are mouth-oriented predators 

(Radinsky, 1968).  This species possessed the smallest temporalis and masseteric MA, 

therefore reducing force output, but maximizing jaw velocity, which is advantageous for 

capturing fast and elusive fish (e.g., Characiformes, Perciformes, and Siluriformes) with 

the canines (Rosas et al., 1999).  In addition to increasing jaw velocity, smaller 

mechanical advantages of jaw adducting muscles that should maximize gape (Greaves, 

1982; Dumont & Herrel, 2003).  There is a tradeoff between MA and gape (Herring & 

Herring, 1974; Greaves, 1985; Dumont & Herrel, 2003 Slater & Van Valkenburgh, 

2009).  In general, mammals with a large gape angle require muscles that stretch, which 

impacts the geometry of the mechanical advantage (Dumont & Herrel, 2003; Slater and 

Van Valkenburgh, 2009).  However, there is an optimal range for sarcomere length.  

Human sarcomeres have a resting length of approximately 1.6-2.6µm (Martini, 1998).  

Within this optimal range, the maximum number of cross bridges can form during 

muscle contraction and the highest muscle tension is produced (Martini, 1998).  

However, when sarcomeres are completely shortened, the thick filaments are pressed 

against the Z-lines and the myosin heads cannot pivot or produce tension.  Alternatively, 

if sarcomere lengths are greater than the optimal range, tension is reduced by the 
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reduction of the size of the zone of overlap and the number of cross-bridge interactions 

between actin and myosin (Martini, 1998).  The latter situation occurs at larger gapes 

unless certain other adaptations are in place.  A simple solution to increase gape is to 

elongate the jaws. Longer jaws (Greaves, 1983; Binder & Van Valkenburgh, 2000) and 

larger body size (Greaves, 1983; Slater & Van Valkenburgh, 2009) correlate with larger 

gapes.  Giant river otters are the largest and longest otter species.  They possessed the 

greatest total skull and mandibular length compared to other otter species investigated in 

this study.  If an animal requires a large gape, it will either increase its body size, which 

also increases its mandibular length through scaling, or the architecture of the jaw 

adducting muscles may be modified allowing for greater stretch (Greaves, 1983).  The 

stretch factor is the ratio of L/l, where L is the length of the stretched muscle and l is the 

superficial masseter (Herring & Herring, 1974).  The stretch factor can be varied by 

changing the origin-insertion ratio (e.g., origin may migrate forward) and lengthening of 

individual fibers (by reducing pennation), which allows for greater gape (Herring & 

Herring, 1974).   

North American river otters primarily feed on fish, but also incorporate 

crustaceans (e.g., crayfish), amphibians, birds, and mollusks (Toweill, 1974), which 

places them in an intermediate position between piscivory and invertebrate specialists.  

Males form larger groups after the mating season concurrent with the availability of 

schooling fishes, such as salmon (Salmonidae), herring (Clupeidae), sandlance 

(Ammodytidae), and capelin (Osmeridae) (Blundell et al., 2002).  These fast schooling 

fishes are more calorically rich and more desirable.  Similar to giant river otters, North 
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American river otters possessed long mandibles (as demonstrated by MBI and geometric 

morphometric analyses), which should place the resulting force further away from the 

TMJ, providing the advantage of high velocity jaws to catch fast, schooling fishes, at the 

expense of force output.  North American river otters possessed the highest MA at the 

temporalis than any other otter species investigated, but had lower masseteric MA.  This 

correlated with a greater moment arm of the temporalis, which increases the force 

generated.  North American river otters also possessed the greatest coronoid length, 

which is an insertion of the temporalis muscle, increasing surface area for muscle 

attachment.  A greater coronoid length (and low condyle) also correlates to a larger 

moment arm of temporalis, or in-lever.  Functionally this allows for an increase in 

temporalis moment arm and explains the higher temporalis MA (Freeman, 1979; Sacco 

& Van Valkenburgh, 2004; Figueirido et al., 2009).  The increased temporalis MA 

provides increased force to the anterior mandible at the canines, and functions pull the 

jaw upwards and backwards (Herring, 1985).  These traits are advantageous for a mouth-

oriented predator catching fast, elusive prey.   

Asian small-clawed otters, unlike giant river otters and North American river 

otters, are hand-oriented predators (Sivasothi & Nor, 1994; Jacques et al., 2009) and 

should not require high velocity jaws to capture prey.  This correlation was supported by 

the traditional morphometric analysis as well as the blunter MBI values and skull shapes 

(geometric morphometric analyses).  Asian small-clawed otters (hand-oriented predator) 

and North American river otters (mouth-oriented predator) consume broader and more 

diverse spectrum of prey than sea otters and giant river otters, which may be why these 
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two species grouped together in the traditional morphometric analyses.  Within Asian 

small-clawed otters the temporalis MA was significantly greater than the masseteric 

MA.  Again this suggests increased force at the anterior jaws near the canines.  This 

species also possessed the greatest zygomatic fossa length.  The large zygomatic fossa 

length should allow for a larger temporalis muscle to attach to the coronoid process of 

the mandible.   

Sea otters are hand-oriented, durophagous predators that almost exclusively prey 

on benthic invertebrates, with the exception of Alaskan sea otters that range along the 

Aleutian Islands and Russian sea otters that prey on epibenthic fish (Riedman & Estes, 

1988).  Much of the morphological traits correlated with this durophagous appear related 

to the very blunt and wide mandible.  Wide mandibles are concomitant with wide skulls 

and a wide upper jaw.  This correlation explains the increase in greatest interorbital 

distance, increased rostral width at the molars, braincase width, palate width, and greater 

skull width.  The corresponding differences in jaw adductors likely explain increased 

zygomatic length.  Sea otters also differed in that their masserteric MA was much higher 

than any other otter species investigated.  Increased masserteric MA functions to 

increase force to the posterior jaw near the molars and should be considered an 

adaptation for durophagy.  The masseter muscle originates along the entire length of the 

zygomatic arch.  An enlarged arch should provide additional surface area for attachment 

of this major adducting muscle.  An enlargement of the zygomatic arch should decrease 

the length that muscle fibers are pulled, thus increasing the force that each fiber can 

produce, as well as increase mechanical advantage of the masseter (Herring & Herring, 
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1974).  Increasing the zygomatic length also increases the length of the masseter, which 

also increases mechanical advantage (Herring & Herring, 1974).  A greater moment arm 

of masseter generates more control over chewing behavior (Radinsky, 1985).  The 

masseter muscle inserts onto and into the masseteric fossa on the mandible.  Therefore 

the height of the mandibular ramus and depth of the mandibular fossa conveys important 

functional significance to jaw biomechanics.  The length and depth of the masseteric 

fossa was enlarged in sea otters, providing additional surface area for the masseter to 

insert as well as accommodating a masseter with a larger physiological cross-sectional 

area. I n addition, sea otters possessed a greater distance between the pterygoid hamuli 

than any otter species investigated.  A greater distance between the pterygoids correlates 

to an enlarged muscle mass of the lateral and medial pterygoids, which are a one of the 

three pairs of adductor muscles.  

 Traditional and geometric cranial morphometric analyses of sea otters 

demonstrated that they exhibited a larger and deeper posterior mandibular ramus, and 

shorter, blunter skull shapes, which is consistent with increased bite force at the 

carnassials of other mammals (Sacco & Van Valkenburgh, 2004; Figueirido et al., 

2009).  An increase in the vertical height of the mandibular ramus results in an increase 

in vertical orientation for the masseter (Crompton & Hiiemae, 1969).  This causes an 

increase in the moment arms of the masseter and medial pterygoids (Crompton & 

Hiiemae, 1969).  A greater mandibular ramus height and a more anterior position of the 

masseter results in smaller gapes, unless the muscle architecture is modified by 

increasing muscle fiber length (Hylander, 1972).  In addition to shorter facial lengths 
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(which positions the masseter muscle more anteriorly), sea otters had a tall and vertical 

ramus and a large zygomatic length for masseter attachment.  A large zygomatic length 

may allow muscles to attach more anteriorly, thus improving bite force while allowing a 

larger gape.  Longer fibers can increase maximum muscle excursion, or distance a 

muscle fiber can shorten (Taylor et al., 2009).  For jaw adducting muscles this likely 

translates to wider maximum gapes (Taylor et al., 2009).  Common marmosets 

(Callithrix jacchus) and pygmy marmosets (Cebuella pygmaea), both tree gouging 

primates, displayed longer fiber lengths of the masseter than non-gouging tree primates 

which was correlated with greater gape (Taylor et al., 2009).  Similar results were shown 

in pigs (Herring & Herring, 1974; Herring et al., 1979) and mice (Satoh & Iwaku, 2006).  

The object of these adaptations for force generation is the  large occlusal surface area 

(OSA) of the upper postcanine teeth of sea otters.  These broad flat molars provide a 

crushing surface upon which to crush prey.  The wide postcanine teeth  of sea otters is 

consistent with other mustelids that crush their prey (Popowics, 2003).  When the effect 

of size was eliminated, the OSA of sea otters was the largest of all otters investigated, 

even larger than giant river otters, a species much larger in absolute body size (Morrison 

et al., 1974; Carter & Rosas, 1997).  In more carnivorous otter species (e.g., giant river 

otters), the postcanine teeth are sharp and designed for slicing prey (Lewis, 2008).  

However, sea otters are the only extant otter that possesses bunodont dentition (Lewis, 

2008).  Unlike all other otter species that had long and narrower rostrums, sea otters also 

possessed a greater height of the rostrum (e.g., increasing area for muscle attachment) 

(Herrel et al., 2002) and shorter skull lengths providing a greater force (Nogueira et al., 
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2009).  Increased rostral height increases the strength of the skull and minimizes bending 

due to increased bite force (Preuschoft & Witzel, 2002; Tanner et al., 2010).  The more 

anteriorly positioned zygomatic arch and shortening of the rostrum are also characteristic 

of animals preying on hard prey (Nogueira et al., 2009).  Shorter, blunter jaws (MBI > 

1.0) place the resulting force closer to the TMJ, providing the advantage of increased 

MA and thus a greater bite force performance.  Shorter and wider skulls also bring the 

canines closer to the fulcrum, which incresed the MA even at the tip of the jaw, resulting 

in increased bite force at this position as well (Nogueira et al., 2009).  Therefore, skull 

(e.g., short, blunt skulls, wider than long jaws) and postcanine morphology of sea otters 

show numerous advantageous traits for a mouth-oriented predator specializing on hard, 

benthic prey.  All craniodental morphologies and jaw biomechanics demonstrate that sea 

otter skulls are built to maximize bite performance and crush prey. 

Variation was also observed in the cranial morphology among sea otter 

subspecies.  Russian sea otters possessed greater palatal and zygomatic fossa lengths 

compared to the other two subspecies.  California and Alaskan sea otters possessed 

greater zygomatic lengths than Russian sea otters, which increases the surface area for 

masseter attachment.  As mentioned above, an increase in zygomatic length, decreases 

stretch of the masseter and increases its MA (Herring & Herring, 1974).  Alaskan sea 

otters displayed the greatest masseteric MA, followed by California and Russian sea 

otters.  Alaskan sea otters also exhibited greater braincase and zygomatic fossa width 

than California and Russian sea otters.  A larger zygomatic fossa width correlates to a 

larger temporalis muscle cross-sectional area and mass connecting to the coronoid 
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process.  This should function to increase the in-force component of the jaw lever and 

potential increase the temporalis MA (Gans & de Vree, 1987; Antón, 1999; Herrel et al., 

2008; Pfaller et al., 2011).  The greater mechanical advantages of both the masseter and 

temporalis adductors should correspond to greater estimated bite forces (see Chapter III) 

but also influence jaw velocity.   California sea otters and Alaskan sea otters consume a 

greater quantity of hard, benthic prey, (Kvitek et al., 1993; Green & Brueggeman, 1991; 

Ralls et al., 1995; Tinker et al., 2007; Estes et al., 2003b; Laidre & Jameson, 2006; 

Ostfeld, 1982; Garshelis et al., 1986; Estes & Duggins, 1995) which corresponds to a 

greater bite force.  The prey of Russian and Alaskan sea otters (inhabiting parts of 

Southwest Alaska including Alaska Peninsula, Aleutian Islands, and Amchitka Island) 

include epibenthic fish such as flatfish (Pleuronectids) in their diet (Riedman & Estes, 

1988; Green & Brueggeman, 1991; Watt et al., 2000).  However, populations in 

Southwest Alaska still incorporate more benthic invertebrates than fish into their diets 

(Green & Brueggeman, 1991, Watt et al., 2000).  Russian sea otters, on the other hand, 

incorporate a larger proportion of fish in their diets (Riedman & Estes, 1988), which 

may be congruent with smaller MA and estimated bite forces than California and 

Alaskan sea otters.   

Sea otters showed the greatest FA compared to all other otters investigated.  

Stressful conditions in pregnant females are thought to cause disturbances in the 

developmental stability of offspring, as demonstrated in rodents (e.g., noise, 

temperature, behavior; Siegel et al., 1975), Baltic grey seals (e.g., environmental 

pollution; Zakharov & Yablokov, 1990) and cheetahs (e.g., low population size; Wayne 
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et al., 1986).  Sea otters have low genetic variability (Larson et al., 2002), low 

reproductive rates, weak dispersal rates, and are exposed to various infectious diseases 

(Estes et al., 1982; Linsday et al., 2000; Miller et al., 2002; Jessup et al., 2004; Goldstein 

et al., 2009).  In addition, all sea otter subspecies are geographically isolated (Wilson et 

al., 1991; Cronin et al., 1996), making breeding among the three subspecies unlikely.  

The fur trade in the 18th and 19th centuries caused widespread reduction and extirpation 

of many sea otter populations (Garshelis & Garshelis, 1984; Larson et al., 2002).  This 

reduction in population and reduced genetic variation may have led to inbreeding 

depression (Wayne et al., 1986; Larson et al., 2002).  Historically, sea otters ranged from 

the Island of Hokkaido, Japan, through the Kuril Islands and the Kamchatka Peninsula of 

Russia, throughout the Aleutian Islands, and down along the North American west coast 

to Baja California (Larson et al., 2002).  Sea otter populations remained in decline until 

their protection in 1911 by the international treaty (Ralls et al., 1996; Larson et al., 

2002).  Although several sea otter populations recovered by the 1970s (Larson et al., 

2002) and translocation efforts were successful in Washington, Southeast Alaska, and 

British Columbia (Jameson et al., 1982; Larson et al., 2002), sea otter populations were 

still absent or remained in decline in much of their historic range (Larson et al., 2002).  

Recently, California sea otters and Alaskan sea otters populations in the Aleutian Islands 

have declined (Doroff et al., 2003; Hanni et al., 2003).  California sea otters are found in 

a limited range from Point Conception near Santa Barbara, California, to Año Nuevo in 

San Mateo County, California and have recovered more slowly from the fur trade (Hanni 

et al., 2003) than other populations.  California sea otters have been experiencing 
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elevated mortality, which is causing a decline in this threatened species (Estes et al., 

2003a).  California sea otters may be experiencing developmental instability due to low 

population size, limited habitat range, infectious disease such as toxoplasmosis (Miller et 

al., 2002), and immune suppression from exposure to organochlorines (Kannan et al., 

1998; Hanni et al., 2003).  Fishing may also be causing stress to the California sea otter 

populations.  The population decline observe from 1976 to 1984 was likely due to 

incidental mortality in fishing nets and the decline observed between 1995 and 1999 was 

likely due to a live-fish fishery (Estes et al., 2003a).  Such numerous sources of stress 

can manifest as cranial asymmetry. Therefore, deviations from bilateral cranial 

morphology may be showing that the California population is under great stress (low 

population size, infectious diseases, and fishing).  Alaskan and Russian sea otters 

possessed greater cranial asymmetry than California sea otters, which may likely be due 

to environmental stresses caused by increased predation (e.g., orca) (Estes et al., 1998), 

disease (Hanni et al., 2003), or greater bottlenecks from increased hunting historically.  

Since the 1980s, northern sea otters have been declining, along with other marine 

mammals (e.g., Northern fur seals, Steller’s sea lions, and harbor seals; Goldstein et al., 

2009).  Predation by orcas may be the leading cause of sea otter decline in western 

Alaska (Estes et al., 1998; Doroff et al., 2003).  However, certain portions of the Alaskan 

sea otter populations have been infected with phocine distemper virus (PDV) (Goldstein 

et al., 2009).  PDV has been introduced to the North Pacific from the Atlantic in 2000, 

possibly contributing to the decline of several marine mammal populations in the Pacific 

Northwest (Goldstein et al., 2009).  In 2006, a large number of sea otters in southcentral 
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Alaska (adjacent to the southwest stock which is listed as threatened) were found dead 

due to valvular endocarditis and septicemia, which are infections associated with 

Streptococcus infantarius subsp. coli (Goldstein et al., 2009).  Due to the lack of 

bacterial infection or heart valve defects, necropsy reports concluded that this disease 

was most likely caused by a primary immunosuppressive viral infection, PDV 

(Goldstein et al., 2009).  Alaskan sea otters (composed of three separate stocks: 

southeast, southcentral, and southwest) comprise up to 90% of the world’s sea otter 

population (Hanni et al., 2003).  A rapid decline in these stocks should be of main 

concern to management of this species, as signs of stress are apparent in the cranial 

morphology of their offspring.   

 In conclusion, the data demonstrated a divergent craniodental pattern in the two 

trophic specializations (mouth vs. hand-oriented) in otters that correlates with diet (fish, 

combination of fish, amphibians, crustaceans, or benthic invertebrates).  North American 

river otters and giant river otters are mouth-oriented predators that possess long 

mandibles, rostrums, and long and gracile pterygoids hamuli.  Longer, narrower skulls, 

and long mandibles position the resulting bite force further from the temporal-

mandibular joint, providing jaws with greater velocity at the expense of bite force 

capability.  High velocity jaws are an important adaptation for mouth-oriented species 

that catch fast moving prey, such as fish.  Sea otters and Asian small-clawed otters are 

hand-oriented predators with further modified dentition and shorter skull and mandibular 

lengths (in relation to size) than North American river otters and giant river otters.  

Shorter mandibles, position the resulting bite force closer to the TMJ, providing a more 
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forceful bite at the expense of velocity.  The remaining suite of traditional 

morphometrics, biomechanical measurements and cranial shape analyses (geometric 

morphometrics) support and the functional dichotomy of mouth vs. hand oriented otter 

predators.  Fluctuating asymmetry of the skull was most common in sea otters.  Low 

population size, disease, fishing techniques, and predation are the most likely causes of 

population declines in sea otter populations, possibly causing females (due to stress) to 

produce offspring with asymmetrical skulls.  This is a sign that sea otters are under great 

stress and should be monitored more closely.       
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CHAPTER III 

ESTIMATED BITE FORCE OF OTTERS AND THE PHYSIOLOGY OF JAW 

MUSCULATURE IN SEA OTTERS 

 

Introduction 

Bite Force 

The form and function of vertebrate skulls, mandibles, dentition, and jaw 

musculature have been widely investigated to examine their relationships with feeding 

performance and trophic ecology (e.g., Kiltie, 1982, 1984; Herring et al., 2001; Herrel et 

al., 2002; Dumont & Herrel, 2003; Huber & Motta, 2004; Christiansen & Adolfssen, 

2005; Huber et al., 2005; Erickson et al., 2003; Christiansen & Wroe, 2007; Anderson et 

al., 2008).  Among vertebrates increased bite performance and durophagy is an 

important adaptation that confers a trophic advantage (Wroe et al., 2005, Christiansen & 

Wroe, 2007) and is closely linked to the design and evolution of the cranial-mandibular 

system (Anderson et al., 2008; Herrel et al., 2009).  The entire cranial system is often 

optimized to withstand mechanical forces as well as be able to exploit food resources 

(Herring 1985; Herring et al., 2001; Huber & Motta, 2004).  The vertebrate cranium is 

complex and involves the integration of muscular and mechanical systems, which 

influences its morphology over evolutionary and ontogenetic time (Herring, 1980; Pérez-

Barbería & Gordon, 1999; Huber & Motta, 2004; Bloodworth & Marshall, 2007).  

Variation in the skull and mandible shape and morphology translates into variations in 

bite force and feeding performance (Herrel et al., 2002; Christiansen & Adolfssen, 2005; 
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Wroe et al., 2005; Christiansen & Wroe, 2007; Van Valkenburgh, 2007).  For example, 

in terrestrial durophagous vertebrates, the skull and mandible tends to be short and blunt, 

with wide jaws and zygomatic breadths, and enlarged jaw adducting muscles (Dumont, 

2003; Nogueira et al., 2005; Tanner et al., 2010).  This suite of characteristics functions 

to increase bite performance.  In canids that consume large prey, dentition surface area is 

generally reduced, the canines and incisors are large, the snouts tend to be broad, the 

mandibles are more rigid and the mechanical advantages of the temporalis is increased 

(Van Valkenburgh & Koepfli, 1993).  However, canids with an omnivorous diet, exhibit 

larger molar grinding areas, smaller incisors and canines less rigid mandibles, and more 

openly spaced premolars (Van Valkenburgh & Koepfli, 1993).  Carnivorous ursids 

possess reduced molar grinding surface areas with small carnassial blades and low 

mandibular rigidity, similar to omnivorous canids (Sacco & Van Valkenburgh, 2004).  In 

contrast, herbivores evolved forceful, large muscles to chew or grind food in the 

posterior of the jaws with strong transverse movements across the ridged teeth (Janis, 

1995).  The transverse pattern of mandibular movement requires large masseter muscles 

but also large lateral and medial pterygoid muscles, which is reflected in the large 

moment arm of the masseter, large angle of the mandible (e.g., to provide broad area of 

attachment for well-developed masseter and pterygoid muscles), high position of the jaw 

joint, large zygomatic arches for the origin of the masseter (Janis, 1995), and a large 

robust pterygoid hamulus.   Bite force is affected by many morphological aspects, such 

as body size and skull morphometrics (e.g., gape angle, skull length and width), skull 

shape, adductor muscle architecture  and physiology (i.e., muscle mass, muscle fiber 
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types, pennation, and insertion/origination points), and bite point location on the jaw 

(i.e., anterior or posterior point along the length of the jaw) (Herring & Herring, 1974; 

Herring et al., 1979; Dumont & Herrel, 2003; Anderson et al., 2008).  Bite force is also 

influenced by gape.  There is a tradeoff among muscle tension, mechanical advantage 

and gape (Herring & Herring, 1974; Martini, 1998; Dumont & Herrel, 2003).  Generally, 

mammals with large gape angles possess muscles that stretch, which lowers the 

mechanical advantage of the jaw adducting muscles (Dumont & Herrel, 2003).  

However, in specialized taxa (such as those found in the Order Chiroptera) changes in 

the insertion points of adducting muscles and their internal architecture have resulted in 

species that can produce a high bite forces with a high gape angle or species with a high 

bite force at a low gape angle (Dumont & Herrel, 2003).  Sea otters are interesting in that 

they possess extreme short, blunt, jaws that are wider than they are long, and postcanine 

tooth morphology that show advantageous traits for a durophagous predator.  Sea otters 

are known to increase gape widely to crush bivalves, but this has not been measured (but 

see Chapter IV).   Therefore it is likely that they may possess muscular adaptations (i.e., 

changes in size, attachments, architecture and fiber length) that function to increase bite 

force at large gapes..  Sea otters possess a greater mandibular ramus height and a more 

anteriorly positioned masseter, which usually decreases gape.  However, adductor 

muscle position and architecture can be modified by changing insertion points and 

increasing fiber length, which would increase gape.  A more anteriorly located digastric 

(jaw opening muscle) insertion may also be an adaptation to a shorter, blunter skull that 

helps to maintain a wide gape (Scapino, 1976).  For example, felids have short and blunt 
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jaws (for increased bite force) that may necessitate a more anteriorly located digastrics 

insertion in order to preserves a wide gape (Scapino, 1976).  Sea otters have been 

observed to feed on pismo clams (Tivela stultorum), a very large bivalves (Wade, 1975; 

Miller et al., 1975).  Riley (1985) showed that sea otters had an increased surface area of 

digastric muscle origin and insertion relative to North American river otters, an 

arrangement similar to that found in felids.  To place large clams posteriorly into the 

mouth over the carnassials (for maximum force), sea otters must exhibit a large 

maximum gape.  We predict that the long zygomatic arch ,wide jaws, long fiber length 

of the masseter serve to increase gape while maintaining a large bite force.  However, to 

date no comparative bite force data for sea otters exists and data regarding the anatomy 

and architecture of the jaw adductor system of otters are few (Riley, 1985).  Therefore, 

our questions are: (1) How much force is produced by the masseter, pterygoids, and 

temporalis? And (2) Do sea otters indeed maintain a high bite force at wide gapes?       

The mammalian jaw is a 3rd class lever system, in which the effort (in-force) is 

placed between the fulcrum and the load.  In the case of the mammalian jaw, the 

tympanomandibular joint (TMJ) is the fulcrum, the adductor muscles (temporalis, 

masseter, and/or pterygoid complex) are the effort, and the load (out-force) is the bite 

force which can vary in location from the incisors to the molars.   Simple lever mechanic 

principles dictate that bite force increases as the resulting force location (i.e., bite point) 

is positioned closer to the TMJ, or fulcrum (Greaves 1985; Greaves, 2000; Santana et al. 

2010).  Bite force is different at each resultant location along the jaw (e.g., canines vs. 

carnassials), and is at its maximum in many mammals when it is located in the posterior 



 

62 
 

 

1/3 of the jaw (Greaves 1982; Greaves, 1985; Greaves, 2000).  Not coincidentally, the 

carnassial teeth are also located in the posterior 1/3 of the jaw, where maximum force is 

generated (Greaves, 1985).  This arrangement allows for the maximum force to be 

applied to food items, while maintaining a reasonable gape (Greaves, 1983).  The 

distance between the jaw joint and the carnassials is thought to be highly constrained 

within the Order Carnivora, indicating that concentrating bite force at this location is of 

importance in the evolution of carnivores (Greaves, 1982; Christiansen & Adolfssen, 

2005; Christiansen & Wroe, 2007).  However, carnassials are subject to selection 

pressure and have been modified in at least two ways.  In specialized carnivorous species 

(such as hypercarnivores like felids), the carnassials are sharp and designed for shearing 

and slicing prey, whereas in omnivores, herbivores, or species specializing on hard prey, 

the carnassial morphology trend toward increasing bluntness and flatness (bunodont) for 

crushing and grinding (Christiansen & Adolfssen, 2005; Christiansen & Wroe, 2007).  

The overarching question is, “Does bite force differ between otters specializing on 

piscivorous, mouth-oriented otters vs. durophagous hand-oriented otters?  It is predicted 

that giant river otters and North American river otters have sharp carnassials for shearing 

fish and long mandibles for increased jaw velocity, but at the expense of reduced bite 

force.  It is also predicted that sea otters can generate a large bite force at a relatively 

larger gape. 

Bite force is a whole-organism performance measure that can be used to examine 

the relationship between morphology and feeding performance (Herrel et al., 2002; 

Anderson et al., 2008; Davis et al., 2010).  Variation among individual bite force may 
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also be linked to variation in individual fitness (Herrel et al., 1996; Anderson et al., 

2008) in addition to dietary differences (Herrel et al., 2002; Christiansen & Adolfssen, 

2005; Christiansen & Wroe, 2007; Figueirido et al., 2009).  By increasing bite force an 

organism can increase the proficiency of handling prey (decrease handling time), such as 

capturing, subduing, and crushing prey, and thus increase the net rate of energy intake 

while foraging (Huber & Motta, 2004; Mcbrayer, 2004; Anderson et al., 2008; Davis et 

al., 2010.  This is important for sea otters since they have a high metabolic rate and must 

consume up to 30% of their body weight per day for survival (Riedman & Estes, 1990; 

Lairde & Jameson, 2006).   

 The relationship between bite performance and craniodental biomechanics has 

been investigated in numerous terrestrial species (Kiltie, 1984; Mcbrayer, 2004; 

Christiansen & Adolfssen, 2005; Wroe et al., 2005; Lappin & Husak, 2005; Christiansen 

& Wroe, 2007; Ellis et al., 2008), but few data are available for secondarily aquatic 

tetrapods, such as otters.  Sea otters are durophagous predators (Kenyon, 1969; Garshelis 

et al., 1986; Kvitek et al., 1992, Kvitek et al., 1993; Ralls et al., 1995; Taylor, 2000; 

Estes et al., 2003b) that feed on a variety of hard, benthic invertebrates, including 

mollusks, crustaceans, and echinoderms (Kenyon, 1969; Calkins, 1978; Garshelis, 1983; 

Doroff & Bodkin, 1994; Garshelis et al., 1986; Estes et al., 2003b; Tinker et al., 2008; 

Wolt et al., 2012; see Chapter V).  Although many studies have documented diet and 

foraging behaviors of otters (Toweill, 1974; Freeman, 1979; Kruuk et al., 1994; 

Sivasothi & Nor, 1994; Carter & Rosas, 1997; Hussain & Choudhury, 1997; Rosas et al., 

1999; Blundell et al., 2002; Jacques et al., 2009), few data are available on the 
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biomechanical performance of the jaws (e.g., bite force) and jaw musculature (Riley, 

1985; Lynch & O’Sullivan, 1993; Christiansen & Wroe, 2007; Constantino et al., 2011).  

Investigating the ecomorphology of feeding in otters will provide new insights into the 

energetics of their foraging ecology.  

 

Jaw Adductor Musculature of Sea Otters (Enhydra lutris) 

Among mammalian jaws the resulting force is often placed further from the TMJ 

than the applied force by the jaw musculature (Crompton & Parker, 1978; Herring et al., 

2001).  Depending upon the jaw adductors and the length of the jaw this can negatively 

impact mechanical advantage.  However, there are many ways to increase mechanical 

advantage and bite performance (Greaves, 1983; Pfaller et al., 2011).  The animal can 

increase its bite force by either growing larger in size, by relative hypertrophy of the 

adductor muscles (via positive allometry), or by changing the architecture of the jaw 

adducting muscles (e.g., degree of pennation, change origination/insertion points) 

(Greaves, 1983).  The magnitude of tension produced by a muscle is a function of 

muscle mass and physiological cross-sectional area, fiber length, and the pennation angle 

(Herrel et al., 2008).  Pennation acts to increase the number of fibers in a given volume, 

at the cost of creating shorter fibers, and thus acts to increase the output force (Herring, 

1980).  An increase in the number of fibers packed next to each other increases the 

physiological cross-sectional area (PCSA) and therefore produces more force (but at the 

expense of velocity) than parallel fibers with longer fiber lengths (Taylor & Vinyard, 

2009).  
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The TMJ and position of the adductor muscles establishes the basic mechanical 

environment of the mammalian feeding apparatus.  Modifications of this basic system 

allows for the variation of mastication patterns simply by changing muscle location, 

proportions, and activation, as well as craniodental morphology, (Riley, 1985; Hiiemae 

& Crompton, 1985).  Jaw muscles are morphologically linked to anatomical structures 

and mechanical advantage can be modulated by changing muscle insertion points, 

angles, or by repositioning the bite force point in the jaw (Herring & Herring, 1974; 

Herring, 1980; German & Franks, 1991; Fukunaga et al., 1997; Greaves, 2000; Pfeller et 

al., 2011).  This connection would suggest a relationship in the timing of their 

movements (German & Franks, 1991).  The anatomy, architecture, and physiology of 

jaw adducting muscles has been investigated in many terrestrial species (Herring & 

Herring, 1974; Herring et al., 1979; Dumont & Herrel, 2003; Herrel et al., 2008; Herrel 

et al., 2009; Taylor & Eng, 2009; Taylor & Vinyard, 2009), and a few marine mammals 

(Werth, 2000; Werth, 2006b; Bloodworth & Marshall, 2007); little is known regarding 

adductor jaw muscle of sea otters.  This topic is central to understanding how sea otter 

jaws function, which in turn has ecological and energetic consequences.   

 

Objectives and Hypotheses 

The first objective of this chapter was to calculate an estimated bite force in giant 

river otters (Pteronura brasiliensis), North American river otters (Lontra canadensis), 

Asian small-clawed otters (Aonyx cinerea), California sea otters (Enhydra lutris nereis), 

Alaskan sea otters (E. l. kenyoni), and Russian sea otters (E. l. lutris).  It was 
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hypothesized that otters feeding on hard invertebrate prey (sea otters and Asian small-

clawed otters) would possess greater estimated bite forces than primarily piscivorous 

otters (North American river otters and giant river otters).  It is also predicted that 

increases in bite force would correspond with craniodental morphologies characterized 

in Chapter II.  The second objective was to characterize the jaw adductor anatomy, 

architecture and muscle fiber length, estimate physiological cross-sectional area (PCSA), 

maximum theoretical muscle tension (MTMT) and bite force in sea otters.  Due to time 

constraints and the lack of available specimens due to their remote distribution and 

protective status (e.g., giant river otters), only sea otters jaw musculature was 

characterized.  It was hypothesized that sea otters would exhibit a large PCSA and 

MTMT of the masseter, temporalis, and pterygoid complex that results in a large in-

force to mandibular lever system that approximates the estimated bite force from the dry 

skull method and exceeds the crushing force required to consume hard prey items 

(Chapter V). 

 

Materials and Methods 

Estimated Bite Force via Dry Skull Methodology 

Bite forces of California sea otters (n=20), Alaskan sea otters (n=37), Russian sea 

otters (n=7), North American river otters (n=43), giant river otters (n=15), and Asian 

small-clawed otters (n=23) were estimated using a dry skull method following 

Thomason (1991).  Scaled digital images of each skull were taken in dorsal, lateral, and 

ventral, perspectives.  Each mandible was photographed in left lateral view with a Nikon 
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D200 SLR camera stationed on a copy stand (Figure 3-1).  Image J (NIH, Bethesda, 

MD) was used to compute the cross-sectional areas of the zygomatic fossa where the 

masseter-medial pterygoid complex and temporalis muscles are located.  The cross-

sectional area of each adductor muscles (MT, masseter-pterygoid complex; TT, 

temporalis) was multiplied by the estimated isometric force value of 37 N/cm2 (370 

KPA; estimated value of mammalian muscle) (Christiansen and Wroe, 2007), which 

gave an estimated MTMT for each muscle group (Thomason, 1991).  The direction of 

the force vectors for masseter-pterygoid complex and temporalis acts perpendicular to 

the plane of the area and through the centroid (Thomason, 1991).  The in-lever of the 

masseter (ML) about the TMJ was computed from ventral images (Figure 3-1).  The in-

lever of the temporalis was measured with the centroid in the left lateral view (Figure 3-

1).  The out-levers for the temporalis and masseter-pterygoid complex were measured at 

the posterior of incisors, canines, and carnassials.     
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Figure 3-1. Illustration of morphometric variables used to calculate relative bite force 

estimates (following Thomason, 1991). TT, cross-sectional area of temporalis; MT, 

cross-sectional area of masseter; ML, lever arm of masseter and medial pterygoid; TL, 

lever arm of temporalis; Oinc, distance from condyle to incisors; Oc, distance from 

condyle to canines; Oca, distance from condyle to carnassials.  A Russian sea otter, 

Enhydra lutris lutris, is depicted. 

 

Bite force was estimated as follows:  

Bite Force at Canine = 2(MT x ML + TT x TL)FPA/Oc 

Bite Force at Carnassial = 2(MT x ML + TT x TL)FPA/Oca 

Bite Force at Incisors = 2(MT x ML + TT x TL)FPA/Oinc 
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where MT is the cross-sectional area of the masseter-pterygoid complex in ventral view, 

ML is the lever arm of the masseter and pterygoid complex about the TMJ, TT is the 

cross-sectional area of the temporalis muscle in dorsal view, and TL is the lever arm of 

the temporalis about the TMJ from its centroid to the line of action of the midpoint of the 

jaw joint, FPA is the estimated maximal isometric force per unit area of muscle tissue 

for  mammals (370 KPA or 37 N (Wroe et al., 2005), Oc is the distance from the condyle 

to the posterior surface of the canines, Oca is the distance from the condyle to the 

posterior surface of the carnassials, and Oinc is the distance from the condyle to the 

posterior surface of the incisors.  The in-lever is multiplied by 2 based on the assumption 

that both sides will contract maximally (Thomason, 1991).   

 

Statistical Analyses 

To remove the effects of size, bite force measurements were regressed against 

total skull length.  A MANOVA was performed with bite force estimates as the 

dependent variables and total skull length as the independent variables.  Residuals were 

then saved.  MANOVA tests were performed from linear regressions, with residual bite 

force as the dependent variable and species as the covariate, to test for significant 

differences among otter species.  Post hoc (Student-Newman-Keuls) tests were 

performed to determine which species significantly differed from the others.  Statistical 

tests were performed using JMP Pro 9.0 (SAS Institute, Cary, NC, USA). 

 

 



 

70 
 

 

Jaw Musculature of Sea Otters 

Gross Morphology 

Alaskan sea otter salvage material (N=18; Enhydra lutris kenyoni) were obtained 

by the Alaskan Fish and Wildlife Service (Permit Number MA041309-3).  Dissections 

of the head and jaw apparatus were conducted at Texas A&M University’s Necropsy 

Laboratory. Sea otters heads were stored in a freezer at -20oF until ready for analysis, 

then they were thawed in a refrigerator overnight prior to a dissection.  Heads were 

dissected to characterize the origin and insertion of each jaw adducting muscle 

(temporalis muscle, masseter muscle and the lateral and medial pterygoid complex in 

total).  Since these samples were recovered from stranded individuals, not all of the 

adductor muscles were in good condition in each individual.  Five individuals were used 

to dissect all three adductor muscles, 8 individuals were used to analyze masseters and 

pterygoid complex only, 2 individuals were used to analyze temporalis and pterygoids 

only, 1 individual was used to analyze masseter and temporalis only, and 2 were used to 

analyze the pterygoid complex.  The width, length, thickness, and mass of these muscles 

on both the left and right side of the jaw were measured.  Width of muscles and 

maximum thickness were measured at the center for both the left and right sides.   

 

Nitric Acid Dissections 

 Masseter (n=14), temporalis (n=8), and pterygoid muscle complexes (n=17) were 

removed from sea otters skulls.  Fiber lengths were measured following nitric acid 

dissection (following Loeb & Gans, 1986).  First, each muscle was fixed in 10% 
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formalin overnight before being placed in a glass dish containing 30% nitric acid in 

physiological buffered saline.  Muscles were kept in this solution until connective tissues 

were digested and the muscle fascicles and fibers began to separate.  This process took 3 

days for masseters and pterygoids and 1 week for temporalis muscles.  Once the fibers 

began to separate, the nitric acid-saline solution was decanted and replaced with a 50% 

glycerin/nitric acid mixture, followed by a 50% glycerin (in water) solution.  These two 

solutions slowed and finally stopped the breakdown of the muscle tissue, respectively.  

Muscle fascicles were placed under a stereoscope in glycerin (Nikon 150, SMZ 1500, 

Nikon Instruments, Inc), and individual fibers were teased apart using glass probes.  The 

length of 4 individual fibers were measured from 4 individuals (n=16 fiber lengths) for 

each muscle using a calibrated eye reticle.  To calibrate the reticle, a scale was placed in 

the field of view at a specified magnification and the distance between the reticles was 

measured (1 mm).    

 

Physiological Cross-Sectional Area (PCSA) and Maximum Theoretical Muscle 

Tension (MTMT) 

Salvage material was dissected to remove skin and connective tissue so that 

origin and insertion points for each adductor could be visualized and photographed.  

After the origin and insertion of each adductor was characterized, each muscle was 

extracted and weighed with a digital scale.  To calculate the maximum theoretical 

muscle tension (MTMT) for the temporalis, masseter, and lateral-medial pterygoid 

complex, physiological cross-sectional areas (PCSA) were obtained for each muscle 
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(following Spector et al. 1980; Powell et al. 1984; Bloodworth & Marshall 2007).  The 

following equation was used to estimate PSCAs: 

PCSA = (muscle mass) x (cos θ) / (FL) x (muscle density) 

where cos θ is mean fascicle angle relative to the muscle’s line of action, FL is the mean 

fiber length (cm) and muscle density is the estimated density of muscle is assumed to be 

1.056g/cm3 (Mendez & Key, 1960; Murphy & Beardsley, 1974).   

 The MTMT was estimated following Spector et al. (1980), Powell et al. (1984), 

and Bloodworth & Marshall (2007): 

MTMT = (PCSA) x (specific tension) 

where specific tension is the assumed to be 22.5 N/cm2 (Powell et al., 1984).   

  To calculate the amount of force produced by each adducting muscle, MTMT 

was multiplied by the cos vector angle (angle of muscle and fascicles relative to palatal 

plane).  The sum of forces calculated for the temporalis, masseter, and pterygoid 

complex was then compared to the mean estimated bite force at the incisors of Alaskan 

sea otters.  

 

Statistical Analysis 

 To test for normality, a MANOVA was run with side (left vs. right) as the 

covariate.  This was performed for vector angle (angle to palatal plane), length, and mass 

separately for temporalis, masseter, and the pterygoid complex.   The residuals were 

saved and a distribution test was run with residuals.  A normal continuous fit and 

Goodness of Fit (Shapiro-Wilk W test) were performed.  All data were normally 
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distributed.  A one-way analysis of variances (ANCOVAs) was used to test for 

differences in muscle morphometric data (angle, length, and mass) between left and right 

sides.  Temporalis, masseter and pterygoid complex data were performed separately. 

 

Results  

Estimated Bite Force  

When the effect of size was removed by regressing estimated bite forces against 

total skull length, there were significant differences observed at the incisors (F=10.9; 

p<0.01), canines (F=9.1; p<0.01), and carnassials (F=10.0; p<0.01) among all species 

(Figure 3-2).  All 3 subspecies of sea otters had significantly different estimated bite 

forces compared to all other otter species investigated (F=6.3; p<0.05).  California sea 

otters possessed the greatest estimated bite force at the incisors (F=29.7; p<0.01) and 

canines (F=20.1; p<0.01) relative to the other otter species investigated.  Russian sea 

otters possessed the lowest bite force at the incisors (19.6; p<0.01), canines (F=17.4; 

p<0.01), and carnassials (F=18.6; p<0.01) compared to other otter species investigated 

(Figure 3-2).  There was no significant difference between Alaskan sea otters and North 

American river otters at the canines (F=0.19; p=0.66) or carnassials (F=2.7; p=0.10).  

Overall, there were no significant differences in estimated bite force at the incisors and 

canines (ANOVA, F=3.13; p>0.05).  Estimated bite force for all species was greater at 

the carnassials than the incisors and canines (ANOVA, F=425.9; p<0.01).  Asian small-

clawed otters had high estimated bite forces, right below the values of California sea 
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otters and giant river otters.  Asian small-clawed otters had slightly greater estimated 

bite forces above North American river otters, however not significant.   

 

 
   
Figure 3-2. Residual bite forces for each species, with size effect removed. 

 

There were differences in the relative bite forces at all three bite point locations 

among the 3 subspecies of sea otter (F=6.08; p<0.01).  California sea otters possessed 

the greatest estimated bite forces at the incisors (F=37.9; p<0.01), canines (F=35.7; 

p<0.0001), and carnassials (F=34.7; p<0.01).  Russian sea otters possessed the lowest 

estimated bite force at the incisors (21.7; p<0.01), canines (F=17.4; p<0.01), and 

carnassials (F=15.1; p<0.01).   
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Jaw Musculature of Sea Otters 

Gross Anatomy 

The temporalis (n=8), masseter (n=14), and pterygoid complex (n=17) muscles 

from 18 Alaskan sea otters were dissected and their morphological and physiological 

properties were characterized (Figure 3-3).  The masseter originated on the zygomatic 

arch, where deep fibers overlapped with fibers of the temporalis.  The masseter inserted 

on the masseteric fossa, ventrolateral surface of the mandibular ramus, and angular 

process.  The pterygoid muscle complex originated within the pterygopalatine fossa and 

pterygoid hamulus and inserted on the medial surface and caudal margin of the 

mandibular ramus just ventral to the condyle.  The temporalis muscle originated within 

the temporal fossa and inserted onto the coronoid process of the mandible.  The 

temporalis and masseter muscles fused between the zygomatic arch and coronoid 

process.  The temporalis was thinnest anteriorly and in the center, then thickened 

posteriorly near the jaw joint (posterior to zygomatic arch) (Table 3-1). 
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Figure 3-3. Left lateral view of (A) temporalis, (B) masseter (superficial layer), and (C) 

lateral-medial pterygoid complex in sea otters (Enhydra lutris kenyoni). 

 
 
 
Physiological Cross-Sectional Area (PCSA) and Maximum Theoretical Muscle 

Tension (MTMT) 

  As expected, the temporalis muscle had the greatest mean width, length, and 

mass than the masseter and pterygoid complex muscles (Table 3-1).  The vector angle 

(angle between the fiber line of action and the mandible) was greatest in the temporalis 

muscle, followed by the masseter and pterygoid complex muscles.  The masseter muscle 

had the greatest thickness (center), followed by the pterygoid complex (center) and 

temporalis muscle (posterior).  There were no significant differences in the vector angle 

(angle relative to palatal plane), length, or mass of the contralateral masseter (F=0.04, 

p=0.85; F=0.06, p=0.81; F=0.002, p=0.967), pterygoid complex (F=0.14, p=0.71; 
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F=1.02, p=0.32; F=0.79, p=0.38), or temporalis muscles (F=0.40, p=0.54; F=0.10, 

p=0.75; F=0.0001, p=0.9920).  Therefore, PCSA and MTMT for each muscle were 

calculated for the left sides only.   

 

Table 3-1. Mean widths (center), lengths, thickness (center), and angles of left and right 

adductor muscles in Alaskan sea otters (Enhydra lutris kenyoni). 

 Left 

Width 

(cm) 

Right 

Width 

(cm) 

Left 

Length 

(cm) 

Right 

Length 

(cm) 

Left 

Thickness 

(cm) 

Right 

Thickness 

(cm) 

Left 

Vector 

Angle 

Right 

Vector 

Angle 

Masseter 

(n=14) 

2.8+0.5 3.0+0.4 3.9+0.5 4.0+0.4 1.3+0.2 1.2+0.3 40.4+4.4 40.5+3.3 

Pterygoid 

(n=17) 

1.1+0.2 1.1+0.3 2.7+0.5 2.9+0.4 0.7+0.1 0.7+0.2 22.9+4.7 23.1+4.5 

Temporalis 

(n=8) 

6.3+0.8 6.1+0.6 9.1+1.1 9.3+0.7 0.5+0.3 0.5+0.4 131.4+7.2 133.6+0.7 

 

 

The temporalis muscle had the greatest muscle mass followed by the masseter 

and lateral-medial pterygoid complex.  The masseter muscle, which had a greater vector 

angle, mass, and fiber length than the lateral-medial pterygoid complex, produced a 

greater MTMT than the pterygoid complex (Table 3-2). The temporalis muscle 

possessed the greatest physiological cross sectional area (PCSA) and maximum 

theoretical muscle tension (MTMT) followed by the masseter muscle and the pterygoid 

complex (Table 3-2). 
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Table 3-2. Mean left angles, lengths (cm), mass (g), PCSA (cm2), MTMT (N), and 

amount of force (N) produced for masseter, pterygoid, and temporalis of Alaskan sea 

otters (Enhydra lutris kenyoni).  Fiber lengths were based on the mean fiber length from 

four individuals (N=4 per individual per muscle) and muscle density was 1.056 g/cm2.   

 Vector 

Angle 

Muscle 

Length 

(cm) 

Fiber 

Length 

(cm) 

Mass (g) PCSA 

(cm
2
) 

MTMT (N) Force 

produced 

(N) 

Masseter 

(n=14) 

40.4+4.4 3.9+0.5 1.68 7.9+2.7 2.6+1.6 86.4+38.4 59.4+35.9 

Pterygoid 

(n=17) 

22.9+4.7 2.7+0.47 1.17 2.1+0.6 1.0+0.6 36.3+14.7 19.5+11.4 

Temporalis 

(n=8) 

131.4+7.2 9.1+1.1 2.30 53.6+24.1 13.2+8.7 496.2+233.3 313.0+192.6 

 
 
 
 The temporalis muscle is estimated to generate the greatest amount of force (313 

N; Table 3-3) followed by the masseter muscle which is estimated to produced ~ 59 N 

and the lateral-medial pterygoid complex at ~ 20 N (Table 3-2).  In Alaskan sea otters, 

the estimated bite force at the incisors (via dry skull method) was 376 N.  The sum of the 

forces produces by each adducting muscle was 392 N (Table 3-2), which is a comparable 

value.   

   

Discussion 

Estimated Bite Force via the Dry Skull Method 

Bite forces were positively correlated with increasing body size, which is 

common among vertebrates (Aguirre et al., 2002; Pfaller et al., 2011; Marshall et al., 

2012).  Estimated bite forces in all otter species investigated in this study changed in 
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relation to length of the out-lever (bite point on the lower jaw) and was greatest at the 

carnassials, as anticipated.  The mammalian jaw is a third-class lever system, and bite 

force increases as the resulting force (e.g., bite point) is positioned closer to the jaw 

joint, or fulcrum (Greaves 1985; Greaves, 2000; Herring et al., 2001; Dumont & Herrel, 

2003; Santana et al. 2010, Pfaller et al., 2011), and is maximum when located in the 

posterior 1/3 of the jaw (Greaves 1982; Greaves, 1985; Greaves, 2000).  Carnassials are 

also located in the posterior 1/3 of the jaw, where maximum force is generated (Greaves, 

1985, Greaves, 2000).  Therefore as shown in other mammals, the maximum bite force 

of otters is demonstrated to be highest at the carnassials.  The distance between the jaw 

joint and the carnassials is thought to be highly constrained within the Order Carnivora, 

thus indicating the bite force at this location is of importance in the evolution of 

carnivores (Greaves, 1982; Christiansen & Adolfssen, 2005; Christiansen & Wroe, 

2007).  This distance was not significantly different at the incisors or canines because the 

out-lever distance was not significantly different, and therefore did not produce different 

bite forces.   

 Significant differences were demonstrated in bite force across otter species.  

Giant river otters had a high estimated bite force (compared to other otter species).   

Giant river otters feed primarily on fish (Carter & Rosas, 1997; Rosas et al., 1999) and 

are mouth-oriented predators (Radinsky, 1968).  In the previous chapter, data showed 

that giant river otters possessed the greatest skull length, palate length, and mandible 

length.  Longer skulls correlate with longer mandibles and position the resulting bite 

point further from the jaw joint, producing jaws with greater velocity (Westneat et al., 
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2005).  There is a biomechanical tradeoff between force and velocity in the musculo-

skeletal system (Westneat, 1994, Herrel et al., 2002, Herrel et al., 2009).  Therefore 

animals can specialize for either force or velocity, but not both.  Small mechanical 

advantages at masseter and temporalis muscles and long cranial morphometrics (see 

Chapter II) suggest that this mouth-oriented predator is more dependent on fast closing 

jaws than increased bite force.  Although giant river otters possessed low mechanical 

advantages at the masseter and temporalis muscles (higher at temporalis), they still 

possessed a slightly higher bite force than other otters.  The greater bite force could be 

explained by a greater muscle mass of the temporalis muscle, rather than mechanical 

advantage.  In lever mechanics, the force input (adductor muscles in this case) can be 

just as important as MA in generating the force output (bite force in this case). 

Therefore, it would appear that the jaw apparatus of giant river otters compensates for 

low MA (which provides a higher jaw tip velocity) by increasing the MTMT of the 

temporalis muscle.  The fact that this is accomplished by larger temporalis muscle rather 

than the masseter muscles is biomechanically important, since it is known that 

functionally the temporalis muscle provides power to the anterior jaws (Hylander & 

Johnson, 1985; Ross & Hylander, 2000). 

 North American river otters had an intermediate estimated bite force.  This 

species possessed the largest mechanical advantage of the temporalis muscle compared 

to other otter species investigated, but an intermediate mechanical advantage at the 

masseter muscle (see Chapter II).  This would suggest that the temporalis muscle 

provides the greatest amount of force, at the anterior of the jaws, when closing the mouth 
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and could be the result of an increased moment arm of the temporalis muscle.  North 

American river otters primarily feed on fish, but also incorporate crustaceans (e.g., 

crayfish), amphibians, birds, and mollusks (Toweill, 1974).  Similar to the giant river 

otter, North American river otters possess longer and narrower cranial morphology (see 

Chapter II), which likely places the resulting bite force points further from the jaw joint.  

This provides the advantage of jaws with a greater velocity.  North American river otters 

also possessed the greatest coronoid length, upon which the temporalis muscle inserts 

and allows for an increase in leverage (e.g., increase in moment arm for temporalis) and 

jaw muscle area and volume (Freeman, 1979; Sacco & Van Valkenburgh, 2004; 

Figueirido et al., 2009).  Therefore, the data suggests that the temporalis muscle provides 

the majority of the output force, at the anterior of the jaws, during the biting behavior.  

This is an advantageous trait for mouth-oriented predators.   

Asian small-clawed otters possessed a high estimated bite force, similar to giant 

river otters.  Asian small-clawed otters, unlike giant river otters and North American 

river otters, are hand-oriented predators (Sivasothi & Nor, 1994; Jacques et al., 2009) 

and are predicted to be more dependent on bite force in consuming prey.  Asian small-

clawed otters primarily feed on crabs (P. smithianus) and mollusks, but also incorporate 

giant scorpions (Heterometrus longimanus), millipedes (Julidea sp.), and fish into their 

diet (Sivasothi & Nor, 1994).  Although the mechanical advantage of the masseter 

muscle as the smallest compared to all species investigated, this species possessed the 

second largest mechanical advantage at the temporalis muscle (see Chapter II), which 

would explain the greater estimated bite force.  The moment arm of the temporalis was 



 

82 
 

 

large, thus increasing the amount of force generated.  The large zygomatic fossa length 

(see Chapter II) also provides a large space for the temporalis to attach to the coronoid 

process.  Therefore, as shown in the giant river otters, Asian small-clawed otters rely 

heavily on the temporalis for jaw adducting forces.  

Sea otters had a high estimated bite force.  Among the sea otter subspecies, 

California sea otters possessed the greatest bite at each bite location, followed by 

Alaskan and Russian sea otters, which had the lowest estimated bite force at each bite 

location.  Sea otters had the greatest masseteric mechanical advantage than all other otter 

species investigated when size effect was removed (see Chapter II).  This suggests that 

the masseter muscle plays a greater role in bite performance and durophagy among the 

jaw adductor muscles, and compared to all other otter species.  Sea otters are hand-

oriented, durophagous predators that almost exclusively prey on benthic invertebrates, 

with the exception of Alaskan sea otters around the Aleutian Islands and Russian sea 

otters which prey on epibenthic fish (Riedman & Estes, 1988).  Compared to other otter 

species investigated, sea otters had the greatest interorbital distance, rostral width at the 

molars, braincase width, palate width, and zygomatic arch length (see Chapter II).  The 

zygomatic arch is an origination point for the masseter muscle.  An enlarged zygomatic 

arch provides increased surface area for attachment of this major adducting muscle.  Sea 

otters not only possessed the greatest mandibular ramus height, providing greater surface 

area for this jaw adducting muscle to attach, but also the greatest depth, which increases 

the physiological cross-sectional area of the masseter and the tension that this muscle 

can produce.   
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Estimated Maximum Theoretical Muscle Tension in Sea Otter Adductors 

Not surpringly, the temporalis muscle in sea otters had a greater muscle surface 

area at its origin (temporal fossa) than the masseter muscle (zygomatic arch) or 

pterygoid complex (pterygo-palatine fossa), which also increases the muscle force 

generated in conjunction with an enlarged muscle mass (Herring & Herring, 1974). In 

sea otters, the temporalis muscle had the greatest PCSA of the three adductor muscle 

groups, thus it exhibited a greater maximum theoretical muscle tension (MTMT) than 

the masseter or pterygoids.  The estimated bite force (via dry skull method) of Alaskan 

sea otters was 376.1+68.9 N.   The temporalis is estimated to provide 313+192.6 N of that 

force.  Fiber length in the temporalis muscle was greater than masseter.  This is not too 

surprising since the masseter has some pennation to its architecture and the temporalis 

has no pennation.  Shorter fiber lengths are associated with pennation and this 

organization increased MTMT (Askew & Marsh, 1998; Fukunaga et al., 1997).  The 

longer fiber length in the temporalis muscle should increase contraction velocities, at the 

expense of force generation (Gans & de Vree, 1987; Taylor & Vinyard, 2009).  This 

means that although the temporalis muscle can produce more force overall, the masseter 

can produce more force per unit area than the temporalis muscle.   

The only significant differences demonstrated between sea otters and North 

American river otters (e.g., mouth-oriented predator) are that the superficial masseter 

muscle fascicles are at a greater angle relative to the palatal plane and the distinction 

between the superficial and deep masseter muscle is not as obvious in sea otters (Riley, 

1985).  This is likely an important feature in sea otters.  While the alignment of the 
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muscle fascicles of the superficial and deep masseter muscle may slightly limit variation 

of motion, it also functions to increase MTMT, thus increasing bite force at the 

carnassials where they are needed.  The crushing behavior of sea otters is likely 

somewhat stereotypical, and other masticatory muscles likely allow for enough variation 

in the range of movement to compensate.  Therefore the alignment of these two parts of 

the masseter should be considered an adaptation for durophagy. The masseter is 

estimated to provide 59.4+35.9 N to the overall estimated bite force (376.1+68.9 N).  The 

masseter had a smaller mass than the temporalis, but had shorter fiber lengths and some 

degree of pennation, which provides a large PCSA relative to its size.  The mechanical 

advantage of the masseter in sea otters was large compared to other otters investigated in 

this study (see Chapter II).  This provides biomechanical evidence that the masseter 

plays a major role in increasing bite performance of this durophagous predator.  In 

addition to an increase in the origin and insertion areas of the digastrics (Riley, 1985), 

sea otters show a more rostrally positioned masseter, similar to the North American river 

otters (Riley, 1985) and this may correlate to the ability to maintain a wide gape at a 

high bite force (Scapino, 1976).  The pterygoid complex possessed the smallest PCSA 

and MTMT and is predicted to provide 19.5+11.4 N of the overall estimated bite force 

In conclusion, bite force was greatest at the carnassials and there was no 

significant difference between incisors and canines.  Although giant river otters 

possessed the smallest mechanical advantage at the temporalis and masseter muscles, 

they still possessed the greatest estimated bite for all otter species investigated.  The 

greater estimated bite force could be explained by a greater body size and muscle mass 
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of the temporalis muscle, rather than mechanical advantage.  North American river otters 

had the largest mechanical advantage of the temporalis muscle and an intermediate bite 

force compared to other otters.  As with giant river otters, North American river otters 

possessed longer skulls and mandibles, which would provide the advantage of faster 

moving jaws (e.g., greater velocity).  Asian small-clawed otters possessed a high 

estimated bite force similar to giant river otters.  Although the mechanical advantage of 

the masseter muscle was small, this species possessed the second largest mechanical 

advantage at the temporalis.  This could explain the high estimated bite force.  Overall, 

sea otters had a high estimated bite force.  California sea otters possessed the greatest 

bite force at all bite locations, followed by Alaskan sea otters and then Russian sea 

otters.  Sea otters possessed the greatest mechanical advantage at the masseter muscle 

compared to other otters, which support the premise that the masseter plays an important 

role in durophagy.  
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CHAPTER IV 

FEEDING KINEMATICS 

 

Introduction 

The skull and feeding apparatus of vertebrates underwent many morphological 

and functional changes during the transition from water-to-land (Reilly & Lauder, 1990; 

Summers et al., 1998; Ahlberg & Clark, 2006).  Feeding mechanisms differ between 

aquatic and terrestrial environments (Shaffer & Lauder, 1988; Reilly & Lauder, 1990; 

Liem, 1990; Summers et al., 1998; Lemell et al., 2002).   Among aquatic vertebrates, 

such as bony and cartilaginous fishes, and secondarily aquatic tetrapods such as marine 

mammals, prey capture is achieved by biting (pierce biting), ram feeding, suction 

(inertial suction), or filtration (Schwenk, 2000a; Motta et al., 2002; Mehta & 

Wainwright, 2007; Wilga et al., 2007; Marshall et al., 2008; Kane & Marshall, 2009), all 

of which are not mutually exclusive.  Although many chondrichthyans use feeding 

modes that incorporate biting, the primary feeding mode of most aquatic vertebrates 

(with notable exceptions) is suction (Lauder, 1985; Summers et al., 1998; Grubich, 

2001) and has been a major focus of study in aquatic vertebrates (e.g., Muller et al., 

1982; Muller & Osse, 1984; Alfaro & Westneat, 1999; Alfaro et al., 2001; Alfaro & 

Herrel, 2001; Carroll et al., 2004).  There are two types of suction.  Inertial suction 

feeding produces enough negative pressure within the intraoral cavity draw both water 

and prey into the mouth (Lauder, 1985; Norton & Brainerd, 1993; Summers et al., 1998).  

During inertial suction, most aquatic vertebrates depress the floor of the buccal cavity; 
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this often is accomplished by depression of the hyoid.  The rapid increase in intraoral 

volume results in a drop in intraoral pressure thus generating suction (Lauder, 1980; 

Bemis & Lauder, 1986; Lauder & Reilly, 1988; Werth, 1989; Motta et al., 1997; 

Summers et al., 1998; Kane & Marshall, 2009).  If an animal does not generate enough 

suction, the prey may be pushed away from the mouth from the bow wave as the 

predator approaches (Summers et al., 1998).  Therefore, suction may only be sufficient 

enough to counter the motion of the predator as it approaches prey and allow it to grasp 

the prey in its jaws (Summers et al., 1998).  This second type of suction is termed 

compensatory suction, and is often associated with ram feeding (Summers et al., 1998).  

Biting is a major prey acquisition mechanism in many groups of vertebrates, including 

fishes (e.g., sharks, rays, gars, cichlids) and marine mammals (Alfaro & Westneat, 1999; 

Kane & Marshall, 2009).  Biting in both fishes and marine mammals can be defined as 

forceful contact of the jaws onto prey and can occur after fast approach towards prey 

(Alfaro & Herrel, 2001; Alfaro et al., 2001; Motta et al., 2002).  Herbivory, carnivory, 

and molluscivory in fishes all use forceful biting with the oral jaws (Alfaro & Westneat, 

1999).  Since air is less dense than water, suction is not usually possible on land (Liem, 

1990; Marrero & Winemiller, 1993) and biting is the primary feeding mode (Markey & 

Marshall, 2007).   

In teleost fishes, the buccal cavity is often modeled as a truncated cone that 

expands to create negative pressures inside the oral cavity, drawing in prey and water 

(Liem, 1990).  The versatility of this cone mode, however, is not restricted to prey 

capture.  There are differences in pressure within different areas of the oral cavity, which 
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are predicted to be generated by modulating muscle actions that change the shape of the 

cone, thus food can be moved or turned (Liem, 1990).  However due to density 

differences between water and air, terrestrial vertebrates rely heavily on tongue 

movements to manipulate prey within the oral cavity (Reilly & Lauder, 1990).  The jaw 

musculature and the hyoid apparatus must be coordinated for prey to be transported and 

manipulated in the jaws of terrestrial vertebrates (Herring, 1985; Reilly & Lauder, 1990; 

Liem, 1990; Alfaro & Herrel, 2001; Motta et al., 2002).  In aquatic vertebrates such as 

fishes, the versatile feeding apparatus (i.e., cone shaped buccal cavity) allows for 

extensive dietary switching and reduced resource partitioning depending on resources 

(Liem, 1990; Case et al., 2008).  However, in terrestrial vertebrates, the feeding 

apparatus (i.e., jaws) is operated by a relatively constant muscle output and results in an 

increase in resource partitioning and decrease in the degree of prey switching (Liem, 

1990).  Therefore, the terrestrial feeding apparatus is often more specifically matched to 

its biological role (Liem, 1990).  Sea otters represent an interest situation in the 

evolution of mammalian feeding.  Although sea otters are marine mammals, they feed at 

the surface and should exhibit a more terrestrial feeding behavior.  

Performance studies provide a link between morphology and ecology; this is the 

basis of ecological morphology (Wainwright, 1994).  Ecomorphology, the study of 

covariation of morphology of the organism and its environment, can be used to provide 

information about the feeding mode and performance (e.g., prey capture) (Bock, 1994; 

Schwenk, 2000a). Performance measures associated with the vertebrate feeding 

apparatus can provide novel insights into the animal’s trophic ecology and evolution 
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(Anderson et al., 2008).  Due to the lack of kinematic and physiological data for aquatic 

mammals, cranial morphology can provide valuable evidence regarding of the primary 

feeding mode of aquatic mammals as shown in Chapters II and III.  Cranial morphology 

can be used to provide evidence of the primary feeding mode, because an individual’s 

phenotype determines the limits of its performance (e.g., prey capture and food 

processing) (Wainwright, 1994).  Although there is variation between form and function, 

the vertebrate feeding system represents modifications from the same basic model 

(Schwenk, 2000a).  Biters are hypothesized to maximize force production rather than 

velocity, which also influences head shape (Barel, 1983; Westneat, 1994; Alfaro et al., 

2001).  Biters also possess robust oral jaws and adductor muscles (Bellwood & Choat, 

1990; Turingan & Wainwright, 1993).  However, odontocetes that use biting or ram 

feeding as the primary feeding mode possess long and narrow skulls (Bloodworth & 

Marshall, 2005; Kane & Marshall, 2009) as an adaptation for piscivory.  In contrast to 

odontocete ram feeders, the skulls of marine mammals that use suction as a primary 

feeding mode are short, blunt and with fewer teeth (Werth, 2006a; Werth, 2006b; Kane 

& Marshall, 2009).  Much of this dichotomy among odontocetes can be explained by the 

need for long fast jaws for piscivory, and the occlusion of lateral gape that a blunt and 

wide jaw and skull can provide for suction feeding (Bloodworth and Marshall, 2005; 

Marshall et al, 2006; Kane and Marshall, 2009). 

There are several studies on the feeding apparatus in both marine and terrestrial 

vertebrates, such as ram and suction feeding in cetaceans (Bloodworth & Marshall, 

2005; Werth, 2006a; Werth, 2006b; Marshall et al., 2008; Kane & Marshall, 2009), 
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lingual feeding in lizards (Schwenk & Throckmorton, 1989; Meyers et al., 2002), and 

mastication in terrestrial mammals (e.g., Herring, 1985; Herring, 1993).  However, there 

are currently no experimental studies on feeding performance of sea otters.  Performance 

studies are a successful method to study feeding in marine mammals, and can be used to 

begin to elucidate the cost of foraging.  Although sea otters forage underwater, they 

conveniently feed at the surface, making them an ideal model system to study feeding 

performance in marine mammals.  

 

Objectives and Hypotheses 

The main objective of this chapter was to characterize the kinematic profile of 

feeding events and biting in sea otters.  Kinematic profiles were measured in both wild 

and captive sea otters.  Kinematics of captive sea otters provided the opportunity to 

ground-truth our work with sea otters in the wild and to demonstrate that kinematic 

profiles in wild populations could be accurately measured.  It was hypothesized that 

otters forcefully bite and crush hard benthic prey at large gapes, and that biting 

kinematics would be congruent with the biting kinematics reported for other marine 

mammals, thus suggesting that the biting feeding mode is a conserved behavior. 

 

Material and Methods 

Feeding Kinematics of Sea Otters  

Footage of feeding events of wild and captive sea otters were collected for frame-

by-frame motion analysis and characterization of a kinematic profile.  Feeding events of 
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wild sea otters were recorded in Simpson Bay, AK (ca. 60.4° N, 145.5° W), located in 

northeastern Prince William Sound, Alaska, in June 2009 and July 2010.  Footage of 

feeding events from captive sea otters were collected during controlled feeding trials at 

the Audubon Aquarium of the Americas in New Orleans, LA.  During the time of the 

feeding trials, captive subject 1 (male) weighed 28.2 kg, and was 128 cm in length.  

Captive subject 2 (female) weighed 23.8 kg, and measured 120.2 cm in length. 

Feeding events of wild Alaskan sea otters were documented by videotaping each 

event using a Sony TRV950 video camera (Sony Corp., New York, NY, USA) at 60 Hz, 

from a small 6 meter aluminum skiff or 5 m fiberglass skiff.  During a feeding event, the 

distance between the observer and sea otter was recorded using a laser range finder with 

inclinometer (LaserAce®300, Measurement Devices Ltd.).  Footage of wild otter 

feeding was later calibrated by recording additional footage of a 20 cm x 20 cm 

calibration square of at each observed distance of feeding sea otters in the field.  Footage 

of the calibration square at each specific distance, for each feeding event, obtained in the 

wild was used for projective scaling calibration within the Peak Motus motion analysis 

system (v. 9; Vicon, Denver, CO, USA).  Kinematic profiles of sea otters were measured 

when feeding on clams, mussels, shrimp, sea stars, sea urchins, and crabs.  

Feeding events of the captive sea otters were filmed during feeding sessions that 

involved a single presentation of each food.  Each presentation of a food item defined a 

feeding trial.  Feeding trials (n=10 for subject 1 and n=18 for subject 2) were also 

recorded using a Sony TRV950 video camera at 60 Hz.  Feeding trials were recorded in 

a lateral or frontal view.  A 20 cm x 20 cm calibration square was placed in the same 
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plane as the individual immediately following the feeding trial for projective scaling and 

calibration of the measurements.  Kinematic profiles of captive sea otters were measured 

from feeding trials involving shrimp, crab legs, and ice treats with clam and shrimp, 

which elicited large gapes and strong biting behavior to crush the ice. 

Video clips were imported into Peak Motus and cropped to one frame prior to 

jaw opening and one frame following jaw closing.  That is, each feeding trials consisted 

of single gape cycle.   To characterize the movement of the jaws, four lateral and five 

frontal homologous anatomical landmarks (Figure 4-1) were digitized throughout the 

entire gape cycle for each feeding trial across all subjects, both wild and captive.  This 

allowed for nine lateral and five frontal kinematic variables (Table 4-1) to be calculated.  

Kinematic variables calculated included: (1) maximum gape, (2) time to maximum gape, 

(3) maximum gape angle, (4) time to maximum gape angle, (5) maximum opening gape 

angle velocity, (6) time from lower jaw opening to maximum gape angle velocity, (7) 

maximum closing gape velocity, (8) time to the maximum closing gape angle velocity, 

(9) total gape cycle duration (following Marshall et al. 2008).  All variables were 

measured in the frontal view, with the exception of maximum gape angle and time to 

maximum gape angle (Table 4-1).  All variables measured were filtered using a cubic 

spline filter.   
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Figure 4-1. Anatomical landmarks for kinematic analysis. Lateral landmarks include the 

nose, tip of upper jaw, tip of lower jaw, corner of mouth.  Frontal landmarks include 

center of nose, center of upper jaw, center of mandible, corner of left side of mouth, and 

corner of right side of mouth.  Images courtesy of Dr. Randy Davis. 

 

 

 

 

 

 

 

 

 

 

 

 



 

94 
 

 

Table 4-1. Kinematic variables for captive and wild performance kinematics.  *Frontal 

kinematic variables. 

   

Kinematic Variable Abbreviation Description 
maximum gape GAPE distance from the upper jaw tip to the lower 

jaw tip 
   
time to maximum gape tGAPE time from when the lower jaw began to open 

until the maximum gape 
maximum gape angle GANG  maximum angle from the maxillary tip to the 

corner of the mouth the mandibular tip 
time to maximum gape 
angle 

tGANG time from lower jaw opening to maximum 
gape angle 

maximum gape angle 
opening velocity 

GAOV 
(GLOV*) 

greatest angular (or linear for frontal) rate of 
lower jaw opening 

   
time to maximum gape 
angle opening velocity 

tGOAV  
(tGLOV*) 

time elapsed from gape opening to maximum 
gape opening 

   
maximum gape angle 
closing velocity 

GACV 
(GLCV*) 

greatest angular velocity (or linear velocity for 
frontal)  during lower jaw closure 

   
Time to maximum gape 
angle closing velocity 

tGACV 
(tGLCV*) 

time from when the lower jaw began to close 
until the maximum gape angle (or linear for 
frontal) velocity 

total duration tDUR* elapsed time from the onset of gape opening to 
the last frame of gape closing 

 
 
 
Statistical Analyses 

  Normality of data was tested using a Shipiro-Wilks’ test.  Kinematic variables 

were log10 transformed and used in multivariate analysis of variances (MANOVAs).  A 

MANOVA was used to determine if kinematic variables differed among individuals 

using kinematic variables as the dependent factors and individuals as the independent 

factors.  A MANOVA was used to determine if kinematic variables differed across prey 

types (captive: shrimp, crab legs, and ice treats with clam and shrimp; wild: clams, 
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mussels, shrimp, sea stars, sea urchins, and crabs), using kinematic variables as the 

dependent factors and prey types as the independent factors.  Captive and wild sea otters 

were tested separately.  Lateral and frontal kinematic variables were analyzed separately.  

A MANOVA was then used to test for significant differences in kinematic variables 

between captive and wild sea otters, using kinematic variables as the dependent factors 

and captive vs. wild as the independent factors. All statistical tests were performed using 

JMP 9.0 (SAS Institute, Cary, NC, USA). 

 

Results 

Biting was the prominent feeding mode in both wild and captive sea otters.  

Biting was characterized by the large gape and presentation of teeth.  Once sea otters had 

acquired prey (whether brought up to the surface on their own or handed to them by a 

trainer , they would either place the prey in the anterior of the jaws, or as far posterior 

into the mouth to place the food over the molars.  Position of the prey in the jaws was 

dependent on the prey type (hard vs. soft) and size.  Large, hard prey (e.g., clams or ice 

treats) were placed in the posterior of the jaws, which required an increased gape and a 

bite force great enough to crack the food item open (Figure 4-2).  Once prey was cracked 

open by the molars (i.e., carnassials), flesh was removed with incisors or canines (see 

Chapter VI).  Smaller, softer prey (e.g., shrimp, fat innkeeper worms) were positioned 

more anterior of the jaws where incisors or canines were used in conjunction with hands 

to tear flesh (Figure 4-3).  Wild sea otters were observed feeding on 15 different prey 

types (160 feeding events).      
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Figure 4-2. Wild sea otter (Enhydra lutris kenyoni) placing a butter clam posteriorly in 

the mouth over the carnassials. (Simpson Bay, Alaska; Image courtesy of Dr. Randy 

Davis).  

 
 
 

 

Figure 4-3. Wild sea otters (Enhydra lutris kenyoni) feeding on (A) sea cucumber and 

(B) giant Pacific octopus in Simpson Bay, Alaska.  Both are soft bodied prey that did not 

require high consumption times or handling time at the surface.  Images courtesy of Dr. 

Randy Davis (A) and Ryan Wolt (B). 
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Feeding kinematics among wild sea otters was conserved and crushing appeared 

stereotypical, as predicted by the merging of the superficial and deep masseter muscles 

(see Chapter III).  Lateral feeding kinematic variables did not significantly differ among 

individuals (F=0.98, p>0.05, MANOVA) or prey types (clams, crabs, mussels, sea stars, 

sea urchins, shrimp) (F=1.40; p>0.05, MANOVA), nor did the frontal feeding kinematic 

variables among these subjects differ significantly (F=2.11; p>0.05, MANOVA) or 

among prey type (clams, mussels, sea stars, shrimp) (F=0.64, p>0.05, MANOVA).  

Feeding kinematic variables in captive sea otters were also conserved.  Lateral kinematic 

variables did not differ significantly between the two subjects (F= 5.81; p>0.05, 

MANOVA) or among food items (ice treats, crab legs, shrimp) (F=2.67; p>0.05, 

MANOVA), nor did frontal feeding kinematics between these subjects differ 

significantly (F=1.82; p>0.05, MANOVA) or prey (ice treats, crab legs, shrimp) 

(F=1.71; p>0.05, MANOVA).  Furthermore, a comparison of all kinematics of all wild 

vs. captive prey feeding on various types of prey and food items demonstrated no 

significant differences among kinematic variables (F= 2.16; p>0.05, MANOVA) with 

the exception of three frontal kinematic variables.  These significant differences in 

frontal kinematic variables between wild and captive sea otters included slower 

maximum opening gape velocity (GLOV) (Table 4-2), a slower maximum gape opening 

velocity (tGOLV), and a slower maximum closing gape velocity (GLCV) in captive sea 

otters.  These differences were not considered surprising since captive animals do not 

have a need to consume as much as their free-ranging counterparts.    
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The feeding kinematic profile for both wild and captive sea otters is as follows: 

the mean feeding cycle duration (tDUR) in wild sea otters was 0.29+0.07 s and in 

captive sea otters was 0.33+0.06 s respectively (Table 4-2).  The jaws reached maximum 

gape angle opening velocity (GAOV) and maximum gape linear opening velocity 

(GLOV) rapidly in wild (519.2+226.7 deg. s-1) and captive (416.9+186.9 deg. s-1) sea 

otters, respectively (Table 4-2).  Maximum gape (GAPE) and maximum gape angle 

(GANG) occurred almost simultaneously in wild sea otters (5.4+1.5 cm; 66.5+16.3 deg) 

(Table 4-2; Figure 4-4).  The jaws then closed slowly (GACV or GLCV) (wild, 

387.6+197.6 s; captive, 267.2+106.0 cm s-1; Table 4-2).  The results demonstrate that if 

video footage is carefully collected, feeding kinematics of sea otters can be accurately 

measured in the wild, which opens up new research opportunities.   

 
 

Table 4-2. Summary of mean kinematic variables for captive and wild sea otters.  

 Captive sea otters  Wild sea otters 
Lateral (n=2) (n=31) 
GAOV (deg. s-1) 416.9+186.9 519.2+226.7 
tGAOV (s) 0.10+0.04 0.06+0.03 
GAPE (cm) 5.8+1.3 5.4+1.5 
tGAPE(s) 0.20+0.05 0.15+0.056 
GANG (deg) 61.4+21.4 66.50+16.30 
tGANG(s) 0.17+0.04 0.15+0.06 
GACV (cm s-1) 
tGACV (s)              

267.2+106.0 
0.06+0.010 

387.6+197.6 
0.07+0.05 

tDUR (s) 0.33+0.06 0.29+0.07 
 

Frontal 

 
(n=2) 

 
(n=21) 

GLOV (deg. s-1) 
tGLOV (s) 
GLCV (cm s-1) 
tGLCV (s) 
tDUR (s) 
 

35.6+11.3 
0.07+0.03 
19.4+12.7 
0.05+0.02 
0.32+0.11 

52.4+25.9 
0.06+0.02 
47.1+23.4 
0.08+0.05 
0.28+0.09 
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Figure 4-4. Kinematic profile (lateral perspective) from a wild sea otter (Enhydra lutris 

kenyoni).  GAPE, maximum gape; GANG, maximum gape angle; GAV, gape angle 

velocity (opening and closing). 

 
 
 

  Discussion 

The primary feeding mode of sea otters is biting, which was characterized by 

large gape, large gape angle, and fast gape angle velocity.  This is similar to biting 
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kinematic profiles observed in other marine mammals (Bloodworth & Marshall, 2005; 

Kane and Marshall, 2009; Marshall et al., 2008).  Sea otters are marine mammals that 

forage on the seafloor but consume prey at the surface (Estes et al., 1982; Estes et al., 

2003b; Bodkin et al., 2004; Tinker et al., 2008).  Our data show that sea otters are 

consistent with a typical mammalian feeding kinematic profile of biters.  The basic 

terrestrial feeding cycle begins with slow opening of the jaws with movement of the 

hyolingual apparatus to fit the prey, followed by fast opening of the jaw with the skull 

and mandible moving in opposite directions (Hiiemae & Crompton, 1985; Liem, 1990).  

The final stage involves a slow closing of the jaws in which prey is chewed or crushed.  

The jaw closing velocity is slower than jaw opening because prey was already positioned 

between the upper and lower jaws and therefore had a shorter distance to close.  In both 

wild and captive sea otters, the jaws opened rapidly, and once maximum gape and gape 

angles were reached, the jaws slowly closed and prey was chewed (soft prey) or crushed 

(hard prey).  Both captive and wild sea otters positioned the prey in precise locations of 

the jaw depending on the prey type (see Chapter VI).  When consuming soft prey, such 

as Pacific giant octopus (Enteroctopus dofleini), sea cucumbers, or fat innkeeper worms 

(Urechis caupo), flesh was removed with the incisors or canines and the forelimbs.  

Hard prey (clams, crabs, urchins) were positioned further back in the jaws where prey 

was crushed with the blunt molars, which increased maximum gape and gape angle.  In 

fact, the widest gape angle observed was 82.8 degrees.  This is an extremely wide gape 

angle among mammals. The gape angle of most carnivorans range from ~55-65 deg 

(Christiansen & Adolfssen, 2005).  Forceful biting is occurring at this gape angle since 
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hard prey items were observed to be crushed.  This value is larger than several other 

mammal that are considered to bite a large gape angles such as Eqyptian fruit bats 

(Rousettus aegyptiacus, 47.1 deg), Pallas’ long tongued bat (Glossophaga soricina, 46.5 

degrees) (Dumont and Herrel, 2003) and dingos (Canis lupus dingo, 35 degrees) 

(Bourke et al., 2008).  The maximum gape of sea otters approximates that of the 

domestic cats (Felis catus), which have gapes up to 80 deg (Türker & Mackenna, 1978), 

and approaches the gape of clouded leopards (Neofelis nebulosa) which are reported to 

have gapes up to 90 degrees (Christiansen & Adolfssen, 2005).  As a reference the 

maximum gape reported for any mammal when biting is the extinct sabretooth cat 

(Smilodon sp.) at a remarkable 95 degrees due to its divergent dentition (Emerson & 

Radinsky, 1980; Christiansen, 2006; Christiansen & Adolfssen, 2007; Christiansen, 

2011).  Interestingly, muscle tension in domestic cat appears to be greatest at maximum 

gape (Mackenna & Türker, 1978); the same may be true of sea otters.   Once shells (e.g., 

clams or crabs) were crushed by sea otters the flesh was removed with incisors or 

canines (see Chapter VI).  Wide gape is not always associated with biting.  

Balaenopterids are lunge feeders that use a wide gape angle (80 deg) to draw in a greater 

volume of water and prey (Goldbogen et al., 2011).   

Even though there was no significant difference in total gape cycle duration 

between captive and wild sea otters, wild sea otters tended to demonstrate a slightly 

shorter cycle duration.  The timing of the jaw opening occurred earlier in the profile for 

wild sea otters than for captive otters and the jaw closing velocity was more rapid in 

wild otters than in captive otters.  The time to reach maximum gape for wild sea otters 
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also occurred earlier than in captive sea otters.  It is predicted that these differences are 

due to the fact that wild sea otters must consume 30% of their body weight per day due 

to a high metabolic rate (Riedman & Estes, 1990; Lairde & Jameson, 2006) and are 

exposed to intraspecific competition (Estes et al., 2003b), whereas captive sea otters face 

none of these challenges.  In general, most sea otter populations consume large, high 

caloric prey first, then as preferred prey decline, the diet diversifies to include smaller, 

less caloric rich prey (Garshelis et al., 1986; Kvitek et al., 1988; Ralls & Siniff, 1990; 

Kvitek et al., 1993; Estes & Duggins, 1995; Laidre & Jameson, 2006).  Therefore, wild 

sea otters must spend more time foraging to obtain the same amount of energy (Ralls & 

Siniff, 1990).  In contrast, captive sea otters had a regular feeding routine and did not 

have to forage or compete for food.  However, there were no statistical differences in 

lateral kinematic profiles and minor differences in frontal profiles.  Therefore, feeding 

kinematics of sea otters can still be accurately measured in the wild.    

 Sea otters are durophagous (Taylor, 2000) marine mammals that feed on a 

variety of hard, benthic invertebrates including mollusks, crustaceans, and echinoderms 

(Calkins, 1978; Garshelis, 1983; Doroff & Bodkin, 1994; Garshelis et al., 1986; Wolt et 

al., 2012; also see Chapter VI) and the underlying feeding morphology and 

biomechanics supports this crushing capability (Chapter II).  The ability to perform 

behaviors is limited by the phenotype (Wainwright, 1994).  As reported in Chapter II, 

skull of sea otter diverges from other otter species most likely as consequence of 

extreme mandibular bluntness.  Sea otters possess a mandibular bluntness index greater 

than 1.0, demonstrating that the mandible is wider than long (Chapter II).  This is 
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considered to be the extreme among species for which bluntness data are available.  

Significant differences in morphometrics of sea otters (i.e., a large interorbital distance, 

rostral width at the molars, braincase width, palate width, skull width, and zygomatic 

length) are likely a functional consequence of this extreme blunt mandible.  Further 

evidence of functional consequences of a blunt mandible is the significantly large 

masseteric mechanical advantage (see Chapter II) and a large bite force capability for its 

small size (see Chapter III).   With their short, robust skull and mandible, increased 

masseteric MA, increased surface area of the carnassials, and increased bite force 

capability at extreme gape angles sea otters are well designed for durophagy.  The 

kinematic data from live animals reinforce and support the functional hypotheses 

generated by traditional and geometric morphometrics, as well as biomechanical 

measures.  The combined dataset (i.e., morphological, shape, biomechanical, and 

kinematic) are consistent with other durophagous carnivores.  For example, in 

durophagous bats, the skulls are taller, with wider palates and lower coronoid and 

condyles (designed for robust muscle attachment points) than bats feeding on softer 

fruits (Dumont, 2003).  Spotted hyenas specializing on bone cracking possess robust 

dentition, larger jaw adductor muscles, larger sagittal crest, vaulted forehead, and wider 

zygomatic breadths (skull width) than hyenas not specializing on bone cracking (Tanner 

et al., 2010).  All durophagous species exhibit short, blunt skull shapes, with large jaw 

adducting muscles, increase MA, and dental adaptations for crushing.   

 In conclusion, sea otters are durophagous marine mammals that consume hard, 

benthic prey.  However, when feeding on land, vertebrates display little to no hyoid 
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depression (Summers et al., 1998; Marshall et al., 2008) an increase in gape, gape angle, 

and lack of lateral gape occlusion.  Feeding sea otters also employed extremely large 

gapes, gape angles, and did not occlude lateral gape consistent with a biting feeding 

mode.  Shorter, blunter skulls and mandibles in sea otters, along with increased 

mechanical advantages at the masseter (see Chapter II), and increased bite force 

capability (see Chapter III) also correlate to the biting mode of sea otters.  
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CHAPTER V 

BREAKING FORCE OF BIVALVES AND OVERALL HANDLING TIME OF PREY 

IN ALASKAN SEA OTTERS (ENHYDRA LUTRIS KENYONI) IN SIMPSON BAY 

 

Introduction 

   

Foraging behaviors of sea otters greatly impact the benthic community in both 

rocky and soft-sediment environments and are of particular interest to ecologists and 

conservationists alike (Ostfeld, 1982; Kvitek et al., 1988; Estes & Palmisano, 1974; 

Ebeling & Laur, 1988; Estes and Harrold, 1988; Estes & Duggins, 1995; Laidre & 

Jameson, 2006; Lee et al., 2009).  Sea otters are apex predators in coastal communities 

(Estes and Duggins, 1995).  Sea otters increase metabolic rate as a thermoregulatory 

adaptation and must consume up to 30% of their body weight per day (Riedman & Estes, 

1990; Lairde & Jameson, 2006).  This need is met with increased foraging activity, 

which has drastic impacts to the benthic community (Laidre & Jameson, 2006).  For 

example, in areas of reoccupation, sea otters have been shown to reduce abundance of 

large sea urchins, thus reducing grazing behaviors of urchins and keeping the kelp 

communities in check (Estes et al., 1978; Duggins, 1980; Ebeling and Laur, 1988; Estes 

& Duggins, 1995).  In the absence of sea otters, sea urchin population increases, causing 

a drastic decline in macroalgae (Estes & Duggins, 1995) and substantially change the 

habitat and ecosystem.  Therefore, sea otters and are considered keystone predators.   
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Foraging patterns of sea otters are consistent with optimal foraging theory 

(Stephen & Krebs, 1986; Kvitek et al., 1993; Estes et al., 2003; Tinker et al., 2008).  Sea 

otters in soft sediment environments optimize their foraging efficiency by feeding in 

patches containing smaller (but more abundant), less calorically rich prey that are buried 

at shallower depths (Kvitek et al., 1988; Kvitek et al., 1993).  In soft-sediment habitat, 

sea otters will also forage over a greater geographical area than otters foraging in rocky 

substrate (Laidre & Jameson, 2006).  When sea otters have the option, they will 

primarily choose prey with the highest caloric value (e.g., crabs, abalones, and sea 

urchins), then broaden their diet to less desirable prey (e.g., mussels, sea stars) when 

preferred prey are limited (Estes et al., 1978; Duggins, 1980; Ostfeld, 1982; Estes et al., 

1981; Estes et al., 2003b; Laidre & Jameson, 2006).  Sea otter males are also territorial 

and demonstrate optimal foraging patterns (Kvitek et al., 1988).  Males set up territories 

in prey-rich areas and select the largest, most caloric prey first.  Once desirable prey is 

depleted, they switch to less preferred prey within their territory (Ostfeld, 1982; Estes et 

al., 1982; Garshelis et al., 1986; Kvitek & Oliver, 1988; Kvitek et al., 1988; Estes et al., 

2003).  Sea otters are size selective predators and therefore generally choose prey (e.g., 

clams) within specific size classes (Kvitek et al., 1992; Tinker et al., 2008). For example, 

sea otters often select smaller, more abundant prey buried at shallower depths (Estes et 

al., 1978; Simenstad et al., 1978; Ostfeld, 1982; Kvitek & Oliver, 1988; VanBlaricom, 

1988; Kvitek et al., 1992; Estes & Duggins, 1995; Dean et al., 2002; Tinker et al., 2008).  

In California it has been shown that sea otters forage for clams between 60 and 100 mm 

in length more frequently (Tinker et al., 2008).  However, sea otters around the Kodiak 
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archipelago were documented to consume bivalves greater than 30 mm (Kvitek et al., 

1992).  Larger prey may be more difficult to obtain because of the depth at which they 

are buried (30-50 cm), which increases dive time and excavation effort (e.g., foraging 

time) (Kvitek et al., 1992).          

Biomechanical design of the shell of bivalves influences the cost of prey 

handling and therefore selection of prey (Blundon & Kennedy, 1982).  The ability of 

prey to resist applied forces depends on the size, shape (Biewener, 1992) and for 

bivalves the material properties.  In general, larger objects should resist greater forces 

and undergo greater deformations before breaking (Biewener, 1992).  Larger clams may 

therefore not only increase excavation time for sea otters underwater, but may also 

require a greater breaking force to consume at the surface.  Smaller, more easily 

accessible clams may require less force to break and thus decrease the otter’s 

consumption time at the surface.  However, if the object cannot absorb enough strain 

energy, regardless of a large size, shape, thickness, and material properties, it can still 

fail and fracture.  Therefore, size selectivity of bivalves by sea otters are likely correlated 

with the force required to break open the prey and the time to crush prey.  These traits in 

turn affect the consumption time and overall handling time of sea otters.  By decreasing 

overall handling time (which is defined as dive and consumption time in this study), sea 

otters can consume more prey, which is required by the high metabolic rates (Riedman 

& Estes, 1990; Lairde & Jameson, 2006).   

To understand the role of prey morphology on predator trophic ecology, the 

relationship between changing morphology and resultant diet should be investigated 
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(Hernandez & Motta, 1997).  Morphological constraints (predator or prey) on feeding 

performance are the first determinants of ecological niche (Hernandez & Motta, 1997; 

Mara et al., 2010).  Varying extrinsic ecological factors, such as competition and 

predation, can exclude an organism from its potential niche; however, morphological 

constraints limit the organism’s prey choice (Wainwright, 1988; Hernandez & Motta, 

1997).  Increased bite capability allows organisms to exploit prey that is often 

unavailable to other species (Hernandez & Motta, 1997; Berumen & Pratchett, 2008; 

Marshall et al., 2012). While increased bite force capability allows for access to a wider 

range of prey, it is also associated with dietary specialization (Mara et al., 2010).  

Estimated bite force can be used to predict prey types consumed and determine diet, 

however few studies correlate bite force to characteristics (e.g., breaking force and size) 

of prey (Herrel et al., 2001; Aguirre et al.., 2003; Mara et al., 2010; Marshall et al., 

2012).  Shell strength, in the context of sea otter foraging ecology, can be measured by 

measuring the maximum force required to break the shell (e.g., Vasconcelos et al., 

2011).  Several studies have investigated the relationship between prey preference (size, 

breaking force) and durophagous predators (West et al., 1991; LaBarbera & Merz, 1992; 

Yamada & Boulding, 1998; Cotton et al., 2004; Korff & Wainwright, 2004; Fisher et al., 

2011; Marshall et al., 2012).  For example, predation by cownose rays (Rhinoptera 

bonasus) on shellfish is limited by shell size, gape and bite force capability of rays 

(Fisher et al., 2011).  Loggerhead sea turtles (Caretta caretta) transition from an oceanic 

habitat to a neritic habitat and from soft prey to harder prey only when their feeding 

apparatus can generate forces great enough of break the smallest size classes of their 
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hard prey (Marshall et al., 2012).  Over time, increasing bite performance of loggerhead 

sea turtles decreases the amount of competition as bite capability increases as larger and 

harder prey are consumed.  Sea otters are durophagous predators that generally forage 

for small, more abundant prey buried at shallower depths, which not only correlates to 

shorter dive time, but a predicted shorter consumption time at the surface.  Therefore it is 

of interest to investigate the breaking force of bivalves consumed by sea otters at 

different size classes.   In the current study, the breaking force of both butter and 

littleneck clams was measured and compared to the estimated bite force of otters 

(Chapter III), to determine the size range in which sea otters were capable of crushing.  

In general sea otters tend to forage on clams within a certain size range (between 60 and 

100 mm) in length more frequently (Tinker et al., 2008).  This is thought to decrease the 

amount of time foraging, and allow the otters to obtain more calories in a shorter amount 

of time.  However, is the only advantage to choosing smaller, more abundant prey 

decreasing foraging time?  It is hypothesized that by choosing smaller bivalves, otters 

may also be choosing prey with an intermediate or low breaking force, which would 

decrease the consumption time at the surface (see also Chapter VI).  This would decrease 

the overall handling time of prey and be advantageous for a predator with such a high 

metabolic rate.      

Time budgets of sea otters are correlated with prey availability and are thought to 

be a useful tool in monitoring sea otter populations (Shimek & Monk, 1977; Garshelis et 

al., 1986; Ralls & Siniff, 1990).  The diversity of prey consumed is at its highest when 

sea otter populations are at high levels and primary prey are limited (Estes et al., 2003b).  



 

110 
 

 

Sea otters in a population that has reached its carrying capacity spend more time 

foraging for prey than in growing populations (Garshelis et al., 1986).  This suggests that 

prey availability of sea otters in a region decrease with prolonged occupation of that 

region by otters, thus forcing the otters to spend more time foraging and less time resting 

or traveling (Estes et al., 1982; Garshelis et al., 1986).  Prey is an important limiting 

resource to population size and prey availability varies with location (Ralls and Siniff, 

1990).   

 

Objectives and Hypotheses 

The first objective of this chapter was to measure the breaking force (shell 

failure) of two sea otter bivalve prey at three size classes.  Breaking forces of butter 

clams (Saxidomus giganteus) and littleneck clams (Protothaca staminea) at three size 

classes were measured and the resulting data was compared to the estimated bite force of 

sea otters and overall handling time in the wild.  It was hypothesized that (1) large clams 

would require a greater breaking force than smaller clams and (2) breaking forces would 

correlate with theoretical bite force estimates of sea otters.  An alternative hypothesis 

was that smaller bivalves require greater force to break due to the material properties, 

organization of the composite materials, and the geometry of the shell.  The second 

objective was to quantify time budgets of foraging and feeding sea otters, identify their 

prey choice, and to record dive times, consumption times, and overall handling time per 

prey species of sea otters in Simpson Bay, Alaska.  It was hypothesized that (1) sea 

otters not only choose intermediate sizes of bivalves due to the ease of foraging since 
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they occur in shallower sediment but also due to the ease of breaking them at the surface 

(decrease surface/consumption time), and (2) the breaking force of prey types would 

incur additional costs of foraging, and would be positively correlated with high bite 

forces that sea otters are suspected to be able to generate (see Chapters II & III).   

  

Material and Methods 

Field Collection 

Live littleneck clams (Protothaca staminea, n= 23) and butter clams (Saxidomus 

gigantean, n=59) from three size classes (small, medium, large) were collected from the 

south beach of the Alice cove base camp, Simpson Bay, Alaska, (Prince William Sound) 

in the littoral zone during low tides.  Simpson Bay is composed of two arms (northwest 

and southeast) and is approximately 7.5 km in area and has an average depth of 30 m 

(Noll et al., 2008; Wolt et al., 2012).  The benthos is primarily soft sediment with some 

rocky reefs (Noll et al., 2008).  Feeding bouts of wild Alaskan sea otters were also 

recorded in Simpson Bay (ca. 60.4° N, 145.5° W).  

 

Shell Morphometrics 

Length (cm) and width (cm) were measured for each individual clam and species 

due to the prediction that shell strength is size-dependent (Vasconcels et al., 2011).  

Measurements were made with digital calipers (precision 0.01 mm). Since length is the 

best measure of size for bivalves (Weymouth et al., 1931), clam length was measured as 

the distance between the anterior and posterior margin (Figure 5-1).  Clam width was 
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measured as the distance between the umbo and opposing side (Figure 5-1).  Size classes 

were established with a histogram of collected specimens and based on length of the 

shell.  For butter clams, the small size category ranged from 42-54 mm, the medium size 

category ranged from 56-67 mm, and the large size category ranged from 67-75 mm.  

The size range for littleneck clams was much less than for butter clams.  For littleneck 

clams, the small size category ranged from 38-40.9 mm, the medium size category 

ranged from 41-42.8 mm, and the large size category ranged from 42.9-48 mm. Mass 

was measured using a digital balance (±0.01 g). Mass varies widely among individuals 

since the mantle cavity and sinuses of the foot hold a variable amount of water as well as  

seasonal fluctuations in the size of the gonads, which compose 10-30% of the total mass 

(Weymouth et al., 1931).   

 

Figure 5-1. Morphometrics of clam. W, width; L, length. 
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Breaking Force of Clams 

To test the maximum breaking force, all clams (small, medium, and large) were 

placed in the loading frame, between two flat steel platens, so that the force was applied 

at the highest point of the shell.  These are the sites that sea otters have been observed to 

place between the occlusal surfaces of their molars (Chapter IV).  Also, in previous 

studies, no significant differences were found between using flat steel platens and plates 

with teeth-like structures to test the breaking force required to crush hard prey 

(Wainwright, 1987; Kiltie, 1982; Hernandez, 1997).  Bivalves were tested in 

compression until failure at a loading speed of 5 mm/s.  The failure criteria was set to 

>25% drop in the force-extension curve. 

 

Foraging Time Budgets 

Feeding events were documented using a Sony TRV950 video camera (Sony 

Corp., New York, NY, USA) at 60 Hz from a small 6 meter aluminum skiff or 5 m 

fiberglass skiff.  Feeding bouts began with the onset of a foraging dive and ended with 

the final consumption of prey at the surface.  Foraging dive times and consumption times 

at the surface were recorded with a stopwatch for each feeding event (n=160).  The type 

of prey and number of individual prey items was identified for each feeding event.  The 

dive time plus the consumption time was calculated as the overall handling time for each 

event.   
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Results 

Shell Morphometrics 

  

 A total of 57 butter clams and 23 littleneck clams were measured (Table 5-1).  

The mean width, length, and mass of large butter clams was 54.81+1.73 mm, 71.20+2.08 

mm, and 72.74+7.43 mm (Table 5-1).  The mean width, length, and mass of small butter 

clams was 36.38+3.22 mm, 48.80+3.67 mm, and 23.24+5.24  mm (Table 5-1).   The 

mean width, length, and mass of large littleneck clams was 36.79+1.66 mm, 45.30+1.87 

mm, and 19.89+2.33 (Table 5-1).  For littleneck clams, the mean width, length, and mass 

for small clams were 33.82+1.15 mm, 39.83+0.81 mm, and 15.82+2.03 mm.   

 

Table 5-1. Shell morphometrics for butter clams and littleneck clams.  Mean mass 

includes the shell. 

 Mean 

Width (mm) 

Mean 

Length(mm) 

Mean Mass (g) 

Butter Clams    

Large (n=18) 54.81+1.73 71.20+2.08 72.74+7.43 
Medium (n=22) 47.17+3.29 60.7+3.70 45.88+9.72 
Small (n=17) 36.38+3.22 48.80+3.67 23.24+5.24 
Littleneck Clams    

Large (n=10) 36.79+1.66 45.31+1.87 19.89+2.33 
Medium (n=7) 34.20+0.97 42.16+0.50 17.12+1.34 
Small (n=6) 33.82+1.15 39.83+0.81 15.82+2.03 
 

 

 

Breaking Pattern 

Typically clams tested in compression exhibited catastrophic failure.  That is, the 

maximum breaking force was always followed by a significant drop in force that clearly 
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indicated one or more major breaks in the shell.  Initial breaks were formed at the 

highest point of the clam, followed by a fracture of the shell directly to the umbo, or 

hinge, where breaking point is predicted to be the weakest point of the clam (Currey, 

1977; Bourdeau and O’Connor, 2003).  The breaking patterns observed during testing 

(Figure 5-2) were consistent with the breaking patterns of clams found on the beach in 

Simpson Bay, AK that were consumed by sea otters and with observations of free-

ranging otters consuming bivalves (Figure 5-2). 

 

 

Figure 5-2. (A) Breaking pattern of small, medium, and large butter clams broken with 

the MTS (left-to-right).  The breaking pattern was consistent with the pattern found on 

(B) butter clams in Simpson Bay, AK (image courtesy of Ryan Wolt), where sea otters 

commonly prey on bivalves. 
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Breaking Force 

 

 

Overall, for each size class, butter clams were larger in width, length, and weight 

than littleneck clams (Table 5-1).  The breaking force of butter clams increased with 

increasing size, whereas the breaking force of littleneck clams decreased with increasing 

size (Figure 5-3).   

 

 

Figure 5-3. Maximum breaking force of (A) butter clams and (B) littleneck clams at 

varying lengths.  

 
 
 

Large butter clams had the greatest mean breaking force of 356.4+108.8 N 

(Table 5-2), and breaking forces ranged from 208.2 N-553.9 N.  Medium sized butter 

clams had a mean breaking for of 288.0+100.8 N, with a range of 112.9 N-495.9 N.  

Small butter clams had a mean breaking force of 209.8+59.8 N, with a range of 134.3-

349.2 N (Table 5-2).  



 

117 
 

 

For littleneck clams, the greatest mean breaking force was observed in smaller 

clams (254.2+77.6 N) (Table 5-2).  The range for small littleneck clams was 149.9-344.5 

N.  The mean breaking force for medium sized littleneck clams was 193.5+101.6 N, with 

a range of 94.2-363.1 N.  The mean breaking force for large littleneck clams was 

183.9+85.6 N, with a range of 64.8-332.7 N. 

 

Table 5-2. Breaking force (N) of butter clams and littleneck clams. 
 

 Length (mm) Breaking Force (N) 

 Range Mean Range Mean 

Butter Clams     

Large (n=18) 67.6-74.3 71.20+2.08 208.2-553.9 356.4+108.8 
Medium 
(n=22) 

56.1-66.1 60.7+3.70 112.9-495.9 288.0+100.8 

Small (n=17) 42.8-53.4 48.80+3.67 134.3-349.2 209.8+59.8 
Littleneck 

Clams 

    

Large (n=10) 42.9-47.8 45.31+1.87 64.8-332.7 183.9+85.6 
Medium 
(n=7) 

41.5-42.8 42.16+0.50 94.2-363.1 193.5+101.6 

Small (n=6) 38.5-40.6 39.83+0.78 149.9-344.5 254.2+77.6 
 

 

Mean estimated bite forces at the carnassials of Alaskan sea otters (836.8+140.8 

N), California sea otters (966.2+204.3 N), and Russian sea otters (920.5+122.8 N) were 

greater than the maximum breaking force of butter clams (553.9 N) and littleneck clams 

(344.5 N) (Table 5-2 and 5-3).  These data show that sea otters are capable of crushing 

all size classes of bivalves investigated at the carnassials.  
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Table 5-3. Estimated bite forces (N) at the incisors, canines, and carnassials for sea 

otters.  Measurements were obtained by the dry skull method (See Chapter III).  

Species Mean BF (N) at 

Incisors 

Mean BF (N) at 

Canines 

Mean BF (N) at 

Carnassials 

Alaska Sea Otters  376.1+68.9 423.6+72.9 836.8+140.8 
California Sea 

Otters 

440.6+89.7 487.2+106.4 966.2+204.3 

Russian Sea Otters 404.9+62.7 456.4+71.7 920.5+122.8 
 

 

Frequency of Prey 

Data were collected from 58 individuals (20 in June 2009 and 38 in July 2010) 

with a total of 160 feeding events (63 in June 2009 and 97 in July 2010).  Alaskan sea 

otters were observed feeding on a wide spectrum of prey (N=15; Table 5-4).  The main 

prey consumed in Simpson Bay were butter clams and littleneck clams (55%), mussels 

(21%), crabs (7.5%), and sea stars (5%) (Figure 5-4).  In several feeding bouts, mussels 

were attached to the kelp, and the sea otters would feed on both kelp and mussels 

simultaneously.  However, due to the low nutritional value, it was suspected that sea 

otters were consuming the kelp because of the mussels attached (Tinker et al., 2006).  

During the early month of June, sea otters were regularly observed feeding on herring 

roe and kelp.  Herring roe was always consumed in the same general location, near the 

transition point between the left and right arm of Simpson Bay, where the water was 

shallow (10 m or less).  This was consistent with observations from Lee et al., (2009).  

To identify the species of fish eggs, samples were collected at this location, hatched at 

the research field camp, and identified under a microscope.  Again, because kelp has 
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little or no nutritional value (Kenyon, 1969; Estes et al., 1982), it was predicted that 

otters were eating the kelp and roe, specifically for the high protein roe.  On two 

occassions, a female was observed feeding on a giant octopus with her pup.  Both of 

these feeding events lasted more than one hour, with several foraging dives until the 

octopus was killed and brought to the surface for consumption.   

 

Table 5-4. Prey of Alaskan sea otters (Enhydra lutris kenyoni) in Simpson Bay, Alaska 

in June 2009 and July 2010 (N=15). 

Common Name Scientific Name 

Dungeness crab Cancer magister 

Butter clam Saxidomus gigantean 

Littleneck clam Protothaca staminea 

Mussels Mytilus spp. 

Sea cucumber Unknown species 

Tanner crab Chionoecetes bairdi 

Sea star Unknown species 

Kelp Laminaria saccharina 

Herring eggs Clupea pallasii 

Scallops Unknown species 

Skate egg case Unknown species 

Fat innkeeper worm Urechis caupo 

Sea urchin Unknown species 

Shrimp Unknown species 

Giant Pacific Octopus Enteroctopus dofleini 
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Figure 5-4. Frequency of prey choice per feeding event in Simpson Bay, Alaska (total 

feeding events=160) for June 2009 and July 2010.   

 

Foraging and Feeding Behaviors 

Sea otters handled each prey type (e.g., hard vs. soft, or 1 vs. multiple prey items) 

at the surface differently, which ultimately affected the consumption time.  When 

feeding on hard prey, sea otters would open the jaws wide to place larger items (such as 

large bivalves) in the back of the jaws.  Both small and large clams were placed in the 

back of the jaws; however, larger clams required a greater gape angle (see Chapter IV).  

Once clams were broken by the molars, the flesh was removed by using the incisors or 

canines.  Although smaller clams did not require multiple bites to break the shell, larger 

clams often did, which increased handling time at the surface.  While consuming crabs, 

sea otters brought the entire, live crabs to the surface at which time each was 
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dismembered and consumed.  Legs were consumed first by biting down on the leg and 

crushing it, then the carapace was cracked with the molars and incisors were used to 

scrape out the contents.  While feeding on soft-bodied prey (e.g., octopus, sea 

cucumbers), sea otters did not need to open the jaws very wide to consume (see Chapter 

IV).  When foraging for a giant Pacific octopus (soft-bodied prey), the females 

conducted several short dives and surfaced with only pieces of flesh.  These pieces of 

flesh were consumed rapidly at the surface with minimal chewing.  However, once the 

octopus was dead (underwater dispatching of prey), the otters brought the octopus to the 

surface and draped it over their body.  Once at the surface, the consumption time 

increased dramatically as the otter picked pieces of flesh off with their incisors and 

canines.  Total consumption time was more than 1 hour for the entire octopus.  When 

other soft-bodied prey was brought to the surface, such as innkeeper worms and sea 

cucumbers, sea otters would place the in the posterior part of the jaws and quickly 

dismember it.  When foraging for shrimp, sea otters would bring several to the surface at 

one time.  Multiple shrimp were placed on the belly and individual shrimp were 

consumed separately.  Shrimp were individually placed in the back of the jaws (over the 

molars) and pieces were chewed off; shrimp were not consumed whole.  

 

Handling Time 

Differences in overall handling time were also observed between hard prey 

species.  Both butter and littleneck clams required intermediate dive times (82 s) and 

consumption times (46 s) (Figure 5-5).  For most feeding bouts, sea otters brought only 
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one or two clams to the surface for consumption at one time.  Dive or foraging time was 

greater than consumption time at the surface.  Overall handling time was intermediate 

(149 s) when compared to other prey (Figure 5-7).    While foraging for crabs, the 

average dive time was 138.5 s (Figure 5-5) and the consumption time was 107 s (Figure 

5-6).  The increased dive/foraging time and consumption time increased the overall 

handling time (261 s) (Figure 5-7).   

 

 

Figure 5-5. Mean dive times (s) for each prey type in Simpson Bay, Alaska for June 

2009 and July 2010. 

 

Dive time was short when foraging for giant Pacific octopus (Figure 5-5).  The 

two feeding bouts occurred close to shore where water depth was minimal.  However, 
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when considering the entire feeding event, both above and below water, giant Pacific 

octopus had the longest consumption and overall handling time.  The entire feeding 

event, on both occasions, was over an hour long.  However, before the entire octopus 

was brought to the surface, consumption time was short; only lasting 27 s on average 

(Figure 5-6).  This is because the sea otter was still killing the octopus below water and 

only bringing up pieces of flesh to consume at the surface.  Pieces of flesh were small 

and consumed rapidly.  During both feeding bouts, the sea otter was a female with a pup.  

Once the octopus was brought to the surface, pieces of flesh were taken off and given to 

the pup for consumption. 

 
 

 
 

Figure 5-6. Mean consumption times (s) for each prey type in Simpson Bay, Alaska for 

June 2009 and July 2010.    
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Overall handling time differed between observed soft prey.  When foraging for 

fat innkeeper worms, sea otters had a much greater dive and foraging time (156 s) than 

when feeding on sea cucumbers (88 s) (Figure 5-5).  Consumption time at the surface 

was also greater when consuming fat innkeeper worms (61 s) than sea cucumbers (29 s) 

(Figure 5-6).  Thus overall handling time of fat innkeeper worms (217 s) was much 

greater than sea cucumbers (117 s) (Figure 5-7).     

 
   

 

Figure 5-7. Mean overall handling time (s) for each prey type in Simpson Bay, Alaska 

for June 2009 and July 2010.  Overall handling time includes dive time and consumption 

time at the surface.   

 

 



 

125 
 

 

While foraging for herring roe on kelp, dive time was very minimal, only 60 s on 

average (Figure 5-5).  Water depth was shallow in the foraging area (<10 m) and kelp 

was easily accessible.  Consumption time (81 s) was much longer than dive time (Figure 

5-6).  Once kelp was brought to the surface, sea otters would both scoop herring roe off 

the kelp with incisors and canines as well as eat pieces of kelp with the roe attached.  

Large pieces of kelp were also brought to the surface at one time, increasing the 

consumption time and thus overall handling time (Figure 5-7). 

Dive time, consumption time, and overall handling time was greatest when 

foraging for shrimp.  On average, dive time was 169.8 s (Figure 5-5), consumption time 

was 124 s (Figure 5-6), and overall handling time was 289 s (Figure 6-4).  Sea otters 

brought multiple shrimp to the surface at one time, which increased dive and foraging 

time.  Once at the surface, shrimp were not consumed whole.  Shrimp were individually 

placed in the back of the jaws and pieces were chewed off using the molars.  The large 

quantity they brought to the surface at one time and the fact that they did not consume 

the prey whole (or multiples at one time) greatly increased the overall handling time.     

 

Discussion 

Sea otters have morphological, biomechanical, physiological and kinematic 

adaptations to durophagy (see Chapters II-IV).  Breaking force of prey is an important 

and interesting part of the energetics of foraging that has not received much attention 

previously.  By comparing breaking force of bivalves and bite force of sea otters, it is 

evident that sea otter crushing capability is more than adequate to consume the bivalves 
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tested at all size ranges.  However, it appears that the integration of durophagy and prey 

choice combine for optimal foraging by sea otters.   Sea otters in Simpson Bay, Alaska, 

were observed feeding on a wide variety of prey (N=15) that included both hard and 

soft-bodied prey (e.g., clams, mussels, scallops, sea stars crabs, fat innkeeper worms, sea 

stars, shrimp).  This was consistent with other reports from Simpson Bay over several 

decades (Calkins, 1978; Garshelis, 1983; Doroff & Bodkin, 1994; Garshelis et al., 1986; 

Wolt et al., 2012).  The results are also consistent with many otter populations across 

Alaska, Washington, and Oregon, in that the majority of the diet consisting of clams 

(Garshelis et al., 1986; Green & Brueggeman, 1991; Kvitek et al., 1993; Estes & Bodkin 

2002; Lairde & Jameson, 2006; Wolt et al., 2012).  No specialization of prey, other than 

clams, was observed in Simpson Bay, which is consistent with a more comprehensive 

study of sea otter foraging in soft sediments (Wolt et al., 2012).  In contrast, individual 

specialization has been documented in California populations, where a greater number of 

prey species was observed in contrast to Prince William Sound (Tinker et al., 2007).  

According to optimal foraging theory, sea otters should consume the largest, more 

caloric rich prey first, and then generalize to less preferred prey once desired prey 

becomes depleted (Pyke, 1984; Ostfeld, 1982; Kvitek et al., 1988).  Dungeness crabs 

should be the highest caloric prey in Simpson Bay (Ensminger et al., 1994; Wolt et al., 

2012), however after sea otters moved into the area in 1977, large Dungeness crabs were 

depleted (Wolt et al., 2012).  Therefore, the majority of crabs in the diet of sea otters 

now consist of smaller (<100 g) species (Wolt et al., 2012).  Although crabs are more 

calorically rich prey than clams (Cortez, unpublished data), clams are the most 
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frequently preyed upon in the area.  Simpson Bay is primarily composed of soft or 

mixed sediment (some rocky reefs) where bivalves are dominant (Garshelis et al., 1986; 

Estes & Bodkin, 2002; Finerty et al., 2009; Wolt et al., 2012).  There are no large bodied 

kelp canopies (e.g., Macrocystis sp.), but rather smaller marine algae such as sugar kelp 

(Laminaria saccharina), a brown alga that covers the shallow bottoms of the bay in 

many areas (Finerty et al., 2009). The diversity of prey consumed is at its highest when 

sea otter populations are at high levels and primary prey are limited (Estes et al., 2003b).  

However, recently otters have been observed feeding on Pacific herring eggs (Clupea 

pallasi) and kelp, which are energy-poor sources of food (Lee et al., 2009).  This 

suggests a dietary shift towards less calorically rich prey in this area ( Lee et al., 2009).  

Although sea otters feeding on kelp and herring roe are not uncommon in Prince 

William Sound (Garshelis et al., 1984) it does appear that an increase in the number of 

otters feeding on herring roe may be increasing (Garshelis, 1983; Lee, 2009).  It is 

possible that nutritional stress is affecting prey selection in this population and thus 

causing a dietary shift that includes energy-poor prey (Ostfeld, 1982).  Sea otters are 

experiencing developmental instability as shown in the increase of fluctuating 

asymmetry within the skull (see Chapter II).  The decrease in abundance of energy rich 

prey (e.g., Dungeness crabs and large clams) in Simpson Bay, may be the cause for this 

dietary shift (Garshelis, 1983; Lee, 2009) and may be showing in the development of sea 

otters. 

In wild Alaskan sea otters, placement of medium sized clams were positioned 

further back in the jaws towards the location of the carnassials (see Chapter VI).  This is 
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likely due to prevent damage to the anterior teeth and to use the broad and flat surface of 

the carnassial teeth to crush a hard surface. The breaking pattern of bivalves was 

consistent with not only shells crushed in the lab but also with shells cast up on the 

shores of  Simpson Bay, presumably consumed by sea otters, with observations of 

feeding in wild sea otter populations, and with the pattern observed in the fossil record 

involving predation by sea otters (Walker & Brett, 2002).  Within the fossil record, 

fractures were observed on the dorsal, middle section of fossil clams that were predicted 

to be preyed upon by sea otters (Walker & Brett, 2002).  The data presented here on 

clam break patterns support the paleoecological evidence. 

In general, larger clams are usually more difficult to break and are buried at a 

greater depth (Vasconcelos et al., 2011).  In Simpson Bay, sea otters were observed 

feeding on small to medium sized butter clams more frequently than large clams 

(personal observation; see Chapter VI).  Large clams would presumably require a lot of 

energy to excavate from their deep burrows.  Small-to-medium size clams are much 

more accessible due to shallower location.  In addition, it is thought that small-to-

medium sized butter clams should require less force to break than larger clams (Kvitek 

et al., 1992; Tinker et al., 2008 time (e.g., foraging for clams at shallower depths) and 

decreased handling time at the surface (less effort to break clam).   However, littleneck 

clams demonstrated an inverse relationship between breaking force and size; smaller 

littleneck clams required more force to break than larger clams.  Upon inspection of 

clam morphology it was concluded that the increased breaking force was likely related to 

distribution of material and geometry of this species.  Unlike butter clams, which possess 
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a smooth surface, littleneck clams have a striated pattern across the shell.  Littleneck 

clams were also more concave in the middle of the shell, increasing the height and 

thickness of the shells. Although more detailed studies need to be conducted it appears 

that the increased height or concavity as well as the striations across the shell functions 

as buttresses that distribute the force over a larger surface area and allow the smaller size 

classes to absorb additional strain energy, therefore requiring a greater force to break the 

shell. 

These data demonstrate that generalizing breaking force-size relationships, while 

intuitive, may not hold for all species of prey.  In situations where the bivalves are 

exposed to dynamic loading (high rate loading), the ability of the material to store strain 

energy determines its ability to resist breaking (Biewener, 1992).  A bivalve will break, 

or have a high failure stress rate, if it cannot absorb enough strain energy, even if the 

shell is large and strong (Biewener, 1992).  These factors depend highly on the shape 

and design of the shell. Although shell strength is usually correlated with size, shell 

thickness can be a better predictor of shell strength (Zuschin & Stanton, 2001; Zuschin et 

al., 2003; Vasconcelos et al., 2011).  Increased thickness may be a defense mechanism 

against predation (Zuschin & Stanton, 2001; Zuschin et al., 2003; Vasconcelos et al., 

2011).  The breaking force data supports both the original and the alternative hypotheses.  

Breaking force of bivalves is likely to be species specific with numerous variables that 

influence the strength.  Although the breaking force was greater for smaller littleneck 

clams, sea otters in Simpson Bay were more commonly observed feeding on medium to 

small littleneck clams.  It is most likely that sea otters consumed larger littleneck clams 
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first when they reoccupied Simpson Bay.  Although sea otters optimize their foraging by 

excavating shallower buried prey, the maximum breaking force of littleneck clams was 

much less than the maximum breaking force of large butter clams.    

The size class of prey consumed by sea otters in Simpson Bay is supported by 

similar data in other sea otter populations (e.g., California and Kodiak archipelago).  In 

these populations sea otters were observed to be size selective in prey choice (60-100 

mm; > 30 mm) (Tinker et al., 2008; Kvitek et al., 1992).  Medium sized butter clams in 

this study had a mean length of 60.7+3.70 mm, which overlapped the size classes more 

frequently preyed on by sea otters in other populations (60-100 mm, Tinker et al., 2008; 

Kvitek et al., 1992).  By selecting medium to small butter clams sea otters are likely 

reducing their energetic costs through decreasing dive and consumption times, thus 

overall handling time. 

Dive time (a proxy for foraging time) varied with prey choice and location within 

the bay (i.e., close to shore and shallow vs. middle of the bay and deeper water) and is 

linked to the number of individual prey brought to the surface, bivalve size class, and the 

breaking force of the prey.  Dive time was longest when foraging for crabs and shrimp.  

This is most likely due to the amount of shrimp the otter was observed to bring up on a 

single dive, thus capturing multiple individuals mitigates this increased dive time.  Sea 

otters were also observed feeding on mussels on reefs at both low and high tide.  At low 

tide, sea otters didn’t have to dive for mussels and therefore consumed many mussels at 

the surface with presumably lower energy expenditure on diving and foraging.  Although 
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mussels are hard shelled bivalves, the breaking force of their shells is very low; even 

humans can easily crush their shells (pers. observation). 

Consumption time also varied depending on the breaking force of prey.  In 

general, harder prey required more surface time.  Crabs had to be dismembered on the 

surface in order to consume the meat which increased the surface time.  Crabs are also 

mobile, which may require more foraging time underwater.  There were differences in 

dive and consumption times between soft bodied prey as well.  Dive and consumption 

times were greater when foraging for fat innkeeper worms than sea cucumbers.  Greater 

dive time could be explained by the depth within the sediment at which fat innkeeper 

worms are found.  Fat innkeeper worms get their name by the U-shaped burrows it forms 

in sand, which can reach an interstitual depth of 50 cm (Anker et al., 2005).   However, 

sea cucumbers tend to spend half of the day buried (partially or fully) and the other half 

on the surface of the sea floor (Hamel et al., 2001), readily accessible for sea otter 

predation.       

Overall handling time of prey depended on dive time and consumption time, 

which are influenced by the number of prey and size of prey brought to the surface.  

Shrimp and crabs accounted for the greatest overall handling costs, but provide a greater 

caloric content (Ensminger et al., 1994).  Dive time and consumption times were high 

when searching for and consuming shrimp and crabs (more caloric rich prey) than for 

mussels (less caloric rich prey) (Garshelis et al., 1986).  Otters were also found to 

consume multiple mussels at a time when reefs were exposed at low tide.  Mussels 

require little to no dive time and short consumption times, since they would often ingest 
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the entire mussel.  Clams did not require a large amount of foraging time or consumption 

time at the surface and were the most commonly consumed prey.  Clam density is 

assumed to be much greater than other prey consumed by sea otters in the area due to the 

large amount of empty shells observed in the littoral zone (consumed by sea otters) and 

by the large frequency of feeding bout in which clams were observed to be consumed 

within this study.  Consumption time also varied depending upon clam size and species.  

Larger clams required a larger gape angle, which could result in a decrease in muscle 

tension produced.  However, sea otters may possess a high bite force, while maintaining 

a relatively wide gape (see Chapter III), as demonstrated in felids (Türker & Mackenna, 

1978).  Certain clam species may require additional force compared to other bivalve 

species of the same size.  Observations of sea otters feeding on larger size classes of 

clams were observed to make numerous attempts to break the prey before consumption 

could occur.  Species capable of generating a greater bite force to consume harder prey 

can benefit from reduced competition (Anderson et al., 2008; Kolmann & Huber, 2009; 

Marshall et al., 2012).  For example, it has been suggested that otters select different 

macro- and micro-habitats and select different prey choices in order to minimize 

interspecific competition (Kruuk et al., 1994).  Sea otters in Simpson Bay share a habitat 

with North American river otters (Lontra canadensis).  However, due to variations in 

cranial morphology (see Chapter II) and bite force capability (see Chapter III), sea otters 

are able to exploit a new niche with hard, benthic prey unsuitable for North American 

river otters (piscivores).  It is predicted that sea otters will optimize their foraging 

success by feeding in patches containing smaller, more abundant prey (e.g., clams) 
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buried at shallower depths as shown in other otter populations (Kvitek et al., 1988; 

Kvitek et al., 1993).  However, when the opportunity to consume more energy efficient 

prey (e.g., calorically rich octopi or crabs) was present, otters appeared to invest in the 

longer foraging and/or consumption times for the greater benefit of more caloric rich 

prey.      

In conclusion, cranial morphometrics of sea otters correlate to a durophagous 

diet.  A modification of the feeding apparatus to allow for a durophagous behavior (e.g., 

increased bite force) opens up new trophic niches for this marine mammal (McCormick, 

1998; Verwaijen et al., 2002; Nogueira et al., 2005) and reduces interspecific 

competition with other otter species.  An increase in bite force and the ability to reduce 

consumption time allows durophagous predators to increase their overall energy intake 

while foraging (MacArthur & Pianka,, 1966; Pfaller et al., 2011).  Adaptations for a high 

bite force and an extreme large gape angle (see Chapter III) also provide the advantage 

for sea otters to consume larger clams when available.  Therefore, in addition to foraging 

for specific size classes of clams at specific depths, sea otters may be choosing species 

with minimal to intermediate breaking forces.  Thus less energy is required to break the 

prey, reducing surface handling time and overall foraging cost.    

 

 

 
 

 

 



 

134 
 

 

CHAPTER VI 

CONCLUSION 

 

Overall Discussion 

Otters display a vast diversity of feeding behaviors that have been predicted to 

correlate with craniodental morphology and bite performance (Wilson et al., 1991; 

Pardini, 1998; Villegas et al., 2007; Sepulveda et al., 2007).  This study provides further 

data that supports the two feeding specializations documented in otter evolution: mouth-

oriented piscivory vs. hand-oriented invertebrate feeding.  The North American river 

otter (Lontra canadensis), Neotropical river otter (Lontra longicaudis), giant river otter 

(Pteronura brasilliensis), smooth coated otters (Lutrogale perspicillata), Eurasian river 

otters (Lutra lutra), and hairy-nosed otters (Lutra sumatrana) are piscivores, which is 

considered to be the basal mode of feeding (Toweill, 1974; Berta & Morgan, 1986; 

Sivasothi and Nor, 1994; Pardini, 1998; Lariviere & Walton, 1998) and are mouth-

oriented predators.  Sea otters (Enhydra lutris), Asian small-clawed (Aonyx cinerea), 

African clawless (Aonyx capensis) primarily feed on benthic invertebrate prey (Wade, 

1975; Ostfeld, 1982; Sivasothi & Nor, 1994; Carss, 1995; Estes & Duggins, 1995; 

Somers, 2000; Tinker et al., 2007) and are hand-oriented predators.   

There is a basic cranial pattern observed in the two trophic specializations 

(mouth vs. hand-oriented) in otters that correlates with diet (fish, combination of fish, 

amphibians, crustaceans, or benthic invertebrates).  Although both groups are biters, 

otters specialization on fish possess high velocity jaws and otters specializing on hard 
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prey possess a more powerful bite for crushing prey.  Giant river otters and North 

American river otters are mouth-oriented predators that possess long mandibles, 

rostrums, and long gracil pterygoid hamuli.  Longer, narrower skulls, and long 

mandibles position the resulting bite force further from the temporal-mandibular joint 

(TMJ), providing jaws with greater velocity at the expense of bite force capability.  High 

velocity jaws are an important adaptation for mouth-oriented species that catch fast 

moving prey, such as fish.  In giant river otters, larger temporal mechanical advantage 

contributes to the mouth-oriented strategy, which is more dependent on fast closing jaws 

than increased bite force.  Although giant river otters possessed low mechanical 

advantages, they still possessed a slightly higher bite force than other otters.  The greater 

bite force could be explained by body size, a greater muscle mass of the temporalis (i.e. 

greater in-force contribution to the lever system), rather than mechanical advantage.  

Giant river otters also lack crushing bunodont molars/carnassials.  Therefore, the skulls 

of the giant river otters appear to be designed for increased velocity and increased force 

at the anterior of the jaws, since the temporalis provides power to the anterior jaws. 

Feeding performance studies of giant river otters are likely to support these statements.   

North American river otters possessed the largest temporalis mechanical 

advantage compared to other otter species investigated, but an intermediate masseteric 

mechanical advantage and an intermediate estimated bite force.  This would suggest that 

the temporalis provides the greatest amount of force at the anterior of the jaws, during 

jaw closure and is likely the result of an increased moment arm of the temporalis.  North 

American river otters primarily feed on fish, but also incorporate crustaceans (e.g., 



 

136 
 

 

crayfish), amphibians, birds, and mollusks (Toweill, 1974).  Similar to the giant river 

otter, North American river otters possess longer and narrower cranial morphology, 

which places resulting bite force points further from the jaw joint.  This provides the 

advantage of high velocity jaws.  North American river otters also possessed the greatest 

coronoid length, which is an insertion of the temporalis muscle and allows for an 

increase in leverage (e.g., increase in moment arm for temporalis) and jaw muscle area 

and volume (Freeman, 1979; Sacco & Van Valkenburgh, 2004; Figueirido et al., 2009).  

Therefore, as in the giant river otter, the temporalis muscle of North American river 

otters appears to most important, during the biting behavior.  This is an advantageous 

trait for a mouth-oriented predator.   

Sea otters and Asian small-clawed otters are hand-oriented predators with further 

modified dentition and shorter skull and mandibles (relative to size) compared to giant 

river otters and North American river otters.  Shorter mandibles position the resulting 

bite force closer to the TMJ, providing a more forceful bite at the expense of velocity.  

This suite of morphological and biomechanical traits is an important adaptation for 

crushing hard, benthic prey at the posterior of the jaws.  Asian small-clawed otters 

primarily prey upon invertebrates; however, they will occasionally incorporate fish into 

their diet.  Therefore, the postcanine teeth are not as broad and flat as observed in sea 

otters, reflecting dietary differences of these hand-oriented predators.  Asian small-

clawed otters also possess a more narrow interorbital distance compared to sea otters.  

Asian small-clawed otters had one of the highest mechanical advantage at the temporalis 

muscle.   
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Unlike piscivore specialists (mouth-oriented predators), sea otters possessed 

greater mechanical advantages at the masseter, providing more force at the posterior of 

the jaw for crushing.  Sea otters also had a suite of morphological traits that were likely 

related to their extremely blunt mandible; these traits include: well-developed zygomatic 

arches, deep masseteric fossa, large mandibular ramus height, and tall rostrum, all of 

which are indicative of a biting feeding mode.  Sea otters demonstrated high fluctuating 

asymmetry of the skull, compared to other otters investigated.  Low population size, 

disease, fishing techniques, and predation are the most likely causes of population 

declines in sea otter populations, possibly causing females (due to stress) to produce 

offspring with asymmetrical skulls.  This is a sign that sea otters are under great stress 

and should be monitored more closely. 

  Further evidence for durophagous or biting behavior in sea otters was observed 

in the feeding kinematics. Sea otters employed large gape angles and gapes, consistent 

with a biting feeding mode.  Shorter, blunter skulls and mandibles in sea otters, along 

with increased mechanical advantages at the masseter muscles, and increased bite force 

capability also correlate to the biting mode of sea otters. 

In general, breaking force of bivalves is thought to be size dependent, and larger 

clams are usually more difficult to break.  This is true of butter clams; however, the 

breaking force of littleneck clams was inversely related with size.  That is smaller sized 

clams required more force to break, likely due to a greater shell thickness shell striations 

that resist cracking.  Estimated bite forces of sea otters were large enough to crush all 

size classes of butter and littleneck clams; however, sea otters are size selective 
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predators and generally choose bivalves of small to medium size.  Medium sized butter 

and littleneck clams required an intermediate breaking force, and are buried at a 

shallower depth than larger clams.  By reducing dive time (choosing smaller, but more 

abundant clams buried less deep) and consumption time at the surface (intermediate 

breaking force), sea otters may be decreasing their overall handling time, allowing them 

to consume a greater quantity of prey in a shorter amount of time.   

Overall handling time of prey depended on dive time and consumption time, 

which are influenced by the number of prey and size of prey brought to the surface.  

Shrimp and crabs accounted for the greatest overall handling costs, but provide a greater 

caloric content (Ensminger et al., 1994).  Dive time and consumption times were high 

when searching for and consuming shrimp and crabs (more caloric rich prey) than for 

mussels (less caloric rich prey) (Garshelis et al., 1986).  While foraging for shrimp, sea 

otters would bring multiple shrimp to the surface, which would account for an increase 

in dive time and consumption time.  Clams did not require a large amount of foraging 

time or consumption time at the surface and were the most commonly consumed prey.  

Clam density is assumed to be much greater than other prey consumed by sea otters in 

the area due to the large amount of empty shells observed in the littoral zone (consumed 

by sea otters) and by the large frequency of feeding bouts involving clam consumption 

observed within this study.  The study area is mostly soft sediment, and it is predicted 

that sea otters will optimize their foraging success by feeding in patches containing 

smaller, more abundant prey, such as clams, buried at shallower depths as shown in 

other otter populations (Kvitek et al., 1988; Kvitek et al., 1993). 
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