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ABSTRACT 

 

Container vessel motions need to be small when loading and offloading cargo 

while moored to wharfs. Waves and their reflections from structures can induce ship 

motions. These motions are characterized by six degrees of freedom, including 

translations of surge, sway, and heave and rotations of pitch, roll, and yaw. Monitoring 

and quantifying these motions offer a reference for design and selection of the mooring 

system and wharf types. To measure the six degrees of freedom motions of a container 

ship moored to a dock, a 1:50 scale model is moored to two types of dock, solid wall 

dock and pile supported dock. Irregular waves of TMA spectrum with various periods, 

heights, and directions are generated in the wave basin to induce the motions of the 

model container ship. Optical motion capturing cameras are used to measure and 

quantify the six degree of freedom motions. Results of the effects of wave period, 

significant wave height, and wave direction on the motion characteristics of the model 

container ship moored at the solid dock and a pile supported dock are described in detail. 

A numerical simulation called aNySIM is applied to numerically predict the motion 

characteristics of the container ship moored to a solid wall dock only. The physical 

model experimental results of solid dock are also compared with the numerical 

simulation. These comparisons indicate that the motion characteristics of the model 

container ship represent similar trends for both rotations and translations. The 

experimental and numerical prediction values of motions of the ship moored to a solid 

wall dock display the same tendencies while differing in magnitude.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW∗ 

 

Introduction 

Ocean shipping accounts for more than two thirds of international trade and the 

container ship accounts for the majority of the non-bulk freight cargo transportation. For 

example, a Panamax vessel has a length, width and draft of 294.13m (965ft), 32.31m 

(106ft) and 12.04m (39.5ft), respectively and is able to load 5000 TEUs. TEU is defined 

as a twenty-foot equivalent unit container, representing the cargo capacity of a standard 

intermodal container with 6.1m (20ft) length and 2.44m (8ft) width and height. The 

shipping price per each TEU from Shanghai, China to Los Angles, California, USA, is 

around US $ 2100/TEU, which has become an optimal option for both low and high 

value products. Canals, such as Panama and Suez, link seas and oceans. Harbors of 

United States are essential terminals for both international and domestic trade and are 

now requiring expansion and renovation to accommodate larger container ships.  

Container ships require small motions to maintain a safe distance between the 

side of the ships and quays while loading or off-loading. Vertical-faced wharfs, 

including two types of docks i.e. quay wall (solid wall dock) and open quay (pile 

supported dock), are applicable for most seaports and river ports with fluctuating water 

levels less than 8m (26ft) and commonly used to moor container ships. The popularity of 

                                                           
∗ Part of the figures or tables reported in this chapter is reprinted with permission from “Comparison of 
Laboratory and Predicted Motions and Mooring Line Forces for a Container Ship Moored to a Dock” by 
Andres Luai and Yuanzhe Zhi, 2013. A conference report of the 18th Offshore Symposium Engineering 
the Future: The Arctic and Beyond. Houston Texas. Copyright [2013] by SNAME Texas Section. 
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this type of wharf is because of its simplified handling procedures, which decreases the 

terminal time and expenses and increases the handling efficiency. Correct selection of 

the types of dock terminals is based on the characteristics of these types of docks and the 

effects of waves and currents. The quay wall wharf or solid wall dock includes a gravity 

quay wall, a sheet-pile quay wall, and front sheet-pile platform and is defined as a dock 

of vertical solid wall resisting the earth pressure of the backfill behind it. Open quays are 

piers with a platform supported by piles, which allows waves and currents to pass 

through and penetrate underneath them and minimize the wave reflections. Waves are 

the major cause of ship motions, which has six degrees of freedom (Tupper, 1996), 

including surge, sway, and heave (translations) and roll, pitch and yaw (rotations), 

shown in Figure 1.  

 

Figure 1. Definitions of ship rotations and translations. 
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For this thesis, the container ship is moored to a solid wall dock using 7 fenders 

and 14 synthetic mooring lines with three bow lines (1a, 1b, and 1c), two forward breast 

lines (2a and 2b), two after breast lines (5a and 5b), two forward spring lines (3a and 

3b), two after spring lines (4a and 4b), and three stern lines (6a, 6b, and 6c), which are 

shown in Figure 2.  The incoming waves that cause motions of the ship in front of these 

two types of piers were characterized by employing both model test, with the optical 

motion tracking system and numerical simulation with aNySIM (Marin 2012).  

 

Figure 2. Model container ship moored to solid wall dock (top) and schematic of 
mooring line locations (bottom). 
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Figure 2. Continued. 

Objectives 

The first objective of this thesis is to describe the laboratory measurements of the 

translations (surge, sway, and heave) and rotations (roll, pitch, and yaw) motions of a 

model container ship that is moored to a solid wall dock and a pile supported dock and 

determine if one type of dock results in less motions than the other. For the second 

objective, a numerical simulation is used to compare the numerical model estimation of 

moored ship motions to the physical model test results of the model container ship 

moored to the solid dock.  

Literature review 

To capture and record the six degrees of freedom motions of floating structures, 

several efforts have been accomplished using either physical modeling or numerical 

modeling. Cobazas, Jagersand, and Sturm (2006) applied three dimensional sum-of-

squared differences to track with three dimensional planes of six degrees of freedom 

motion. In their experiment, full 3D positions are calculated by calculation of the 

position of three dimensional planes of the three dimensional objective, rather than the 
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corresponding points. The motions of these planes are captured by tracking and 

matching each pixel intensity.  

Clay (2011) applied the Qualisys optical motion tracking system, including four 

cameras, which are applied to detect the highly reflected markers placed on model, and 

Qualisys Track Manager Software, which records, transfers the 2D image to three 

dimensions, and calculates and exports the motion data of six degrees of freedom 

(6DOF), in the Haynes Laboratory to evaluate 6DOF motions of floating model barges. 

Two types of barges and a tower were tested and classified into three groups with 

different mooring methods and wave types, e.g. regular waves and irregular waves using 

JONSWAP spectrum. His report introduced the operation methods of Qualisys motion 

tracking system including hardware connection, calibration, rigid body definition, and 

motion tracking software. After exporting and format transformation, both translational 

and rotational response amplitude operators, which are defined as dividing 

displacements and rotations respectively by amplitude, were calculated and compared. 

These RAOs were compared with previous studies conducted by Pinkster (1980) and 

Domnisoru et al. (2008). 

Several studies have been completed that contribute to the representation of 

moored ship behaviors. Santos, Gomes, Pinto and Dias (2010) applied an optical motion 

tracking system to characterize the motions of an oil tanker in a rough wave environment 

and two kinds of mooring layouts for the Leixões Oil Terminal. During this project a 

1:100 scale model under two environmental conditions were tested. The first phase was 

a series of tests with a rough environmental model of uniform water depth. Four wave 
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gauges were used to record the water surface elevation, and these data were used for 

reflection analysis.  An optical motion capturing system with three cameras was applied 

to capture and record the six degrees of freedom motion of the oil tanker using a 

capturing frequency of 24 Hz. The second phase has a much more detailed berth model 

with uniform water depth. The tanker in both phases was under the action of long crested 

irregular waves.   Tschirky, Pinkster, Rolling’s, Smith, and Cornett (2010) describe the 

6-axis motions of moored ship behavior due to the influence of a passing ship by using 

two separate high-precision optical motion tracking systems.  

Wave reflection is an important factor in generating the motion of floating 

vessels.  Goda and Suzuki (1976) applied two measuring probes, named the Two-point 

Method, based on the assumption that the summation of two opposite directions while 

the same frequency sinusoids generate the wave elevation at each measuring probe, and 

they obtained the amplitude of the incident and reflected waves. Certain limitations, 

however, restrict the application of this Two-point Method. This method has a limited 

frequency range. That is to say, under the circumstance of large space between two 

probes, the ascending of frequency leads to descending of coherency factor and the 

reliability of reflection calculation. On contrary, when the space between two probes is 

short, a contrast loss exists in cross spectral analysis. Moreover, critical probe spacing is 

required. In addition, there is high sensitive error of wave measurement.  

For irregular waves, Mansard and Funke (1980) applied a least squares method to 

separate the incident and reflected spectra from co-existing spectra based on the 

simultaneously measured wave data of the three probes. By applying a least square 
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method, the solution of ZI and ZR, are solved in (1) and (2). Then spectral densities SI 

and SR are computed, namely: 

 
𝑍𝐼,𝑘 = 𝐶𝐼,𝑘 ∙ 𝑒𝑥𝑝 �𝑖 ∙

2𝜋 ∙ �𝑋1 + 𝑋1𝑝�
𝐿𝑘

+ 𝑖 ∙ 𝜃𝑘� (1) 
 

 
𝑍𝑅,𝑘 = 𝐶𝑅,𝑘 ∙ 𝑒𝑥𝑝 �𝑖 ∙

2𝜋 ∙ �𝑋1 + 2 ∙ 𝑋𝑅1 − 𝑋1𝑝�
𝐿𝑘

+ 𝑖 ∙ (𝜃𝑘 + 𝜙𝑘)� (2) 
 

 𝑆𝐼(𝑘 ∙ ∆𝑓) = |𝑍𝐼(𝑘 ∙ ∆𝑓)|2/(2 ∙ ∆𝑓) (3) 
 

 𝑆𝑅(𝑘 ∙ ∆𝑓) = |𝑍𝑅(𝑘 ∙ ∆𝑓)|2/(2 ∙ ∆𝑓) (4) 

Among these above equations, 𝐶𝐼,𝑘 and 𝐶𝑅,𝑘  represent incident and reflect wave 

respectively. 𝑋1, 𝑋1𝑝, and 𝑋𝑅1 are distances between wave generator and wave gauge1, 

length between wave gauge1 and the rest of the wave gauges, distance from gauge 1 to 

the reflected object. 𝐿𝑘 represent the wave length. ∆𝑓 is the frequency of wave. 𝜃𝑘 and 

𝜙𝑘 are arbitrary phase and phase change respectively. The reflection coefficient thus can 

be generated by dividing the incident and reflected spectral densities: 

 𝑅(𝑘 ∙ ∆𝑓) = |𝑍𝑅(𝑘 ∙ ∆𝑓)|/|𝑍𝐼(𝑘 ∙ ∆𝑓)| (5) 

Their report also discussed the effect of probe spacing. The refection coefficient 

calculation becomes indeterminate when X12 equals to half or multiples of half a wave 

length and X13 is equal to multiples of X12. The Mansard and Funke (1980) wave probe 

spacing suggestions are: 

 𝑋12 =
𝐿𝑝
10

 (6) 

 𝐿𝑝
6

< 𝑋13 <
𝐿𝑝
3

 (7) 
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 𝑋13 ≠
𝐿𝑝
5

 (8) 

 
𝑋13 ≠

3𝐿𝑝
10

 (9) 

where 𝐿𝑝is wave length. Compared with the two probes method, the three gauge method 

has a wider frequency range and reduces the noise deviation and critical probe spacing 

sensitivities. 
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CHAPTER II 

EXPERIMENT PLAN 

 

Plans for the experimental tests contain two cases of physical modeling, which 

are a model container ship moored to a solid dock and a piled dock. Only the model ship 

moored to the solid dock is simulated numerically by applying aNySIM. The 

experimental plan cases are illustrated in Table 1. The conversion of wave direction 

between the proto type and model are stated in Table 2. 

Table 1. Test plan for solid and pile docks. 

Test Model Proto Type 
Hsm (m) Tpm (s) Dirm (◦) Hsp(m) Tpp (s) Dirp (◦) 

1 0.012 1.13 0 0.6 7.99 143 
2 0.024 1.41 0 1.2 9.97 143 
3 0.037 1.7 0 1.85 12.02 143 
4 0.049 1.98 0 2.45 14.00 143 
5 0.037 1.7 0 1.85 12.02 143 
6 0.037 0.566 0 1.85 4.00 143 
7 0.037 0.85 0 1.85 6.01 143 
8 0.037 1.13 0 1.85 7.99 143 
9 0.037 1.41 0 1.85 9.97 143 
10 0.037 1.98 0 1.85 14.00 143 
11 0.037 2.26 0 1.85 15.98 143 
12 0.037 2.55 0 1.85 18.03 143 
13 0.037 2.83 0 1.85 20.01 143 
14 0.012 1.7 0 0.6 12.02 143 
15 0.024 1.7 0 1.2 12.02 143 
16 0.049 1.7 0 2.45 12.02 143 
17 0.037 1.7 -30 1.85 12.02 113 
18 0.037 1.7 -15 1.85 12.02 128 
19 0.037 1.7 15 1.85 12.02 158 
20 0.037 1.7 30 1.85 12.02 173 
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Table 1. Continued. 

Test Model Proto Type 
Hsm (m) Tpm (s) Dirm (◦) Hsp(m) Tpp (s) Dirp (◦) 

21 0.037 1.7 0 1.85 12.02 143 
22 0.037 1.7 0 1.85 12.02 143 
23 0.037 1.7 0 1.85 12.02 143 
24 0.037 1.7 0 1.85 12.02 143 
25 0.037 1.7 0 1.85 12.02 143 
26 0.037 1.7 0 1.85 12.02 143 
27 0.037 1.7 0 1.85 12.02 143 
28 0.037 1.7 0 1.85 12.02 143 
29 0.012 1.13 0 0.6 7.99 143 
30 0.024 1.41 0 1.2 9.97 143 
31 0.024 1.41 -15 1.2 9.97 128 
32 0.024 1.41 15 1.2 9.97 158 
33 0.024 1.41 0 1.2 9.97 143 
34 0.037 1.7 0 1.85 12.02 143 
35 0.037 1.7 -30 1.85 12.02 173 
36 0.037  1.7 0 1.85 12.02 143 
37 0.037  1.7 0 1.83 12.02 143 
38 0.037  1.7 0 1.83 12.02 143 
39 0.037 1.7 0 1.85 12.02 143 

Table 2. Direction equivalents for prototype, model and numerical model. 

Test Proto Type (◦) Model (◦) aNySIM (◦) 
17 113 -30 240 
18 128 -15 255 
19 158 15 285 
20 173 30 300 
31 128 -15 255 
32 158 15 285 
35 173 -30 240 
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Case 1, solid dock 39 tests 

For the solid wall dock, Case 1, the TMA spectra with four variations of 

significant wave heights of  0.6m (2ft), 1.2m (4ft), 1.85m (6ft), and 2.45m (8ft) for proto 

type and 0.012m (0.04ft), 0.024m (0.08ft), 0.037m (0.12ft), and 0.049m (0.16ft) for the 

model are tested. Nine different wave periods from 4s to 20s for the proto type and 0.57s 

to 2.83s for model are tested, and  5 wave directions, i.e. 30, 15, 0,-15, -30 degrees in the 

model and 113, 128, 143, 158, 173 degrees in the prototype are simulated.  

Case 2, pile dock 39 tests 

In Case 2, the same tests are repeated for the piled dock. 

Case 3, numerical simulation 39 tests 

The translations of sway, surge, and heave and the rotations of roll, yaw, and 

pitch for the container ship moored to a solid dock, which are the same 39 tests as in 

Case 1with typical draft of 8.53m (28ft), are numerically simulated by using the 

numerical software aNySIM.  
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CHAPTER III 

CONTAINER SHIP AND DOCK MODELS∗ 

 

The model system contains one model ship, one solid wall dock, and one piled 

dock.  Figure 3 and Figure 4 represent drawings of the plan and side views of the model 

solid wall dock, respectively. This dock is composed by many 30 degree sections of 

PVC cylindrical caissons to form the vertical solid wall (quay wall) with a supporting 

platform on top of it. Model fenders are mounted between the container ship and dock. 

The toe of the dock is protected by rock and gravel in proto type and model respectively. 

Figure 5 and Figure 6 illustrate the plan view and side view of pile supported dock 

respectively, in which the platform is supported by vertical and inclined piles with small 

rock simulating a rock beach slope. Fenders are attached and hung on the edge of the 

platform between the model container ship and the dock. The water depths in front of 

these two types of docks are 15.24m (50ft) and 0.30m (1ft) for proto type and model 

type respectively. 

                                                           
∗ Part of the figures or tables reported in this chapter is reprinted with permission from “Comparison of 
Laboratory and Predicted Motions and Mooring Line Forces for a Container Ship Moored to a Dock” by 
Andres Luai and Yuanzhe Zhi, 2013. A conference report of the 18th Offshore Symposium Engineering 
the Future: The Arctic and Beyond. Houston Texas. Copyright [2013] by SNAME Texas Section. 
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Figure 3. Plan view of the solid wall dock model. 

 

Figure 4. Side view of solid wall dock model. 

 

Figure 5. Plan view of pile supported dock model. 
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Figure 6. Side view of pile supported dock. 

Froude similarity 

The Froude similarity (Kundu & Cohen, 2008) is applied, which is defined as 

 𝐹𝑟 =
𝑉

�𝑔𝐿
 (10)  

where V is the velocity, g is gravitational acceleration, and L is the length. Accordingly 

the geometry scale, time scale, and speed scale are illustrated in equation (11), (12), and 

(13) respectively (Hughes, 1993).  

 𝜆𝑙 = 𝑙𝑝/𝑙𝑚  (11)  

 𝜆𝑡 = �𝜆𝑙  (12)  

 𝜆𝑣 = �𝜆𝑙   (13) 
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Container ship and dock scale 

Since the time scale is the square root of the geometric model scale, 50:1, then 

the time in the model is 7.07 times slower in the wave basin than in the prototype. 

Accordingly, the model ship has a length, width, and typical draft of 4.328 m (170.4 

inches), 0.477m (18.77 inches), and 0.171m (6.72 inches) respectively. The 

environmental conditions in the wave basin are a water depth of 0.305 m (12 inches) at 

mean low water and 0.366 m (14.4 inches) at mean high tide in the wave basin. A 

comparison between the prototype container ship, environmental conditions, and the 

scale model in US units are illustrated in Table 3 and Table 4 respectively, of which the 

SI units are illustrated in Table 5 and Table 6 respectively. 

Table 3. Model ship and dock for selected geometric scale and Froude scale (US). 

Ship 
Characteristics Prototype Prototyp

e Units Model  Ship Model 
Units 

Displacement 37474 tons (US) 599.58 lbs 
Length 710 ft 170.40 inches 
Beam 78.21 ft 18.77 inches 
Depth 51 ft 12.24 inches 
Draft (typical), 
(light) 28, 13 ft 6.72, 3.12 inches 
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Table 4. Wave basin condition for selected geometric scale and Froude scale (US). 

Environment 
Conditions Prototype Prototyp

e Units Model  Ship Model 
Units 

Water depth 50 ft 12.0 inches 
Water depth +high 
tide 

58.8 ft 14.4 inches 

Quayside distance 8 ft 1.92 inches 
Significant wave 
heights 

2,4,6,8,10 ft 0.48, 0.96, 1.44, 1.92, 2.40 inches 

Wave periods 4,6,8,10,12, 
14,16,18,20 

s 0.57,0.85, 1.13, 1.41, 1.70, 
1.98, 2.26,2.56,2.83 

s 

Table 5. Model ship and dock for selected geometric scale and Froude scale (SI). 

Ship 
Characteristics Prototype Prototyp

e Units Model  Ship Model 
Units 

Displacement 33996 tons (SI) 271.97 Kg 
Length 216.41 m 4328 mm 
Beam 23.84 m 477 mm 
Depth 15.54 m 311 mm 
Draft (typical), 
(light) 8.53, 3.96 m 171, 79 mm 

Table 6. Wave basin condition for selected geometric scale and Froude scale (SI). 

Environment 
Conditions Prototype Prototyp

e Units Model  Ship Model 
Units 

Water depth 15.24 m 305 mm 
Water depth +high 
tide 

17.92 m 366 mm 

Quayside distance 2.44 m 49 mm 
Significant wave 
heights 

0.61, 1.22, 
1.83, 2.44, 
3.05 

m 12, 24, 37, 49, 61 mm 

Wave periods 4,6,8,10,12, 
14,16,18,20 

s 0.57,0.85, 1.13, 1.41, 1.70, 
1.98, 2.26,2.56,2.83 

s 
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Wave basin and wave generator 

The wave basin in the Haynes Coastal Engineering Laboratory is illustrated in 

Figure 7. This figure illustrates the model container ship, moored in front of the solid 

dock, three wave gauges with specific distances according to three probe methods 

(Mansard and Funke 1980), and data acquisition carriage, including the wave data 

acquisition system and optical motion tracking system. Waves are generated by the 

laboratory multidirectional wave generator. The wave heights, periods, and water depth 

are measured with wave gauges and recorded by the data acquisition system. The 

shallow water basin is 36.6m (120ft), 21.9m (75ft), and 1.2m (4ft) in length, width, and 

depth respectively, which is shown in Table 7 along with the general characteristics of 

the wave generation system. 

Table 7. Shallow water (3-D) basin characteristics. 

Geometry 
size 

Length 36.6m 120ft 
Width 22.9m 75ft 
Depth 1.2m 4ft 

Wave 
generator 

Wave generator 
type 

Segmented piston type 
directional capabilities 

48 paddles 

Wave Periods 0.5  to 5 sec  
Irregular Wave 
heights 

Up to 0.36m in 1.0m water 
depth at 2.3s wave period 

Up to 1.20ft in 3.28ft 
water depth at 2.3s 
wave period 

Wave Types harmonic, irregular, or any type 
of wave spectra (linear and 
nonlinear); short-crested and 
broad-crested 
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Figure 7. Shallow water (3D) basin arrangement and dimensions. 
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Wave conditions in model and prototype 

The prototype project site is located in a coastal area with a water depth of 

15.24m (50ft). The dispersion relationship to generate the relationship between wave 

period and wavelength is 

 𝐿 =
𝑔

2𝜋
𝑇2 𝑡𝑎𝑛ℎ

2𝜋ℎ
𝐿

 (14)  

where L is wavelength, g is gravity, T is wave period, and h is water depth. A shallow 

water wave occurs when the water depth over the wavelength (h/L) is less than 0.05, and 

for deep water waves the h/L is larger than 0.5. Otherwise the waves are classified as 

intermediate water waves, and this is the case for the waves for this thesis, represented in 

Table 8. In this table, wavelengths are computed by iteration in Equation (14) and the 

water depth divided by wavelength is tabulated.     

Table 8. Wave length and classification. 

Hs 
(m) 

Ts 
(s) 

f 
(Hz) Spectra Peak Factor Dir 

(°) 
h 

(m) 
L 

(m) h/L 

0.012 1.13 0.885 3.3 0 0.36576 1.7316 0.2112 
0.024 1.41 0.709 3.3 0 0.36576 2.3402 0.1563 
0.037 1.7 0.588 3.3 0 0.36576 2.9456 0.1242 
0.049 1.98 0.505 3.3 0 0.36576 3.5149 0.1041 
0.037 1.7 0.588 3.3 0 0.36576 2.9456 0.1242 
0.037 0.566 1.767 3.3 0 0.36576 0.5001 0.7314 
0.037 0.85 1.178 3.3 0 0.36576 1.0947 0.3341 
0.037 1.13 0.885 3.3 0 0.36576 1.7316 0.2112 
0.037 1.41 0.709 3.3 0 0.36576 2.3402 0.1563 
0.037 1.98 0.505 3.3 0 0.36576 3.5149 0.1041 
0.037 2.26 0.442 3.3 0 0.36576 4.0746 0.0898 
0.037 2.55 0.392 3.3 0 0.36576 4.6475 0.0787 
0.037 2.83 0.353 3.3 0 0.36576 5.196 0.0704 
0.012 1.7 0.588 3.3 0 0.36576 2.9456 0.1242 
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Table 8. Continued. 

Hs 
(m) 

Ts 
(s) 

f 
(Hz) Spectra Peak Factor Dir 

(°) 
h 

(m) 
L 

(m) h/L 

0.024 1.7 0.588 3.3 0 0.36576 2.9456 0.1242 
0.049 1.7 0.588 3.3 0 0.36576 2.9456 0.1242 

The modeling concentrates on a short term storm wave analysis that means the 

waves occur within one storm that is approximately 1 hour for prototype and 8 min for 

model. The TMA spectrum is a modified Jonswap spectrum under the circumstance of 

shallow water the spectral density of Jonswap is multiplied byΦd, which is introduced 

by Bouws et al. in 1983, 1984 (Kamphuis, 2002). Φd is equivalent to 1 in deep water, 

because under condition of deep water, kh is large, and sinh 2kh of n from equation (19) 

is extremely large compared with 2kh  which derive that  n  equals to 0.5 under deep 

water. On the other hand, tanh 2πh
L

 is approximate to 1 (Dean & Dalrymple, 1991). For 

that matter the equation (16) equals to 1 for deep water conditions. The TMA spectral 

density function is stated as follows: 

 
 

𝑆𝑇𝑀𝐴(𝑓,𝑑) = 𝑆𝐽(𝑓)𝛷𝑑  (15)  

 𝛷𝑑 =
1

2𝑛
𝑡𝑎𝑛ℎ2

2𝜋ℎ
𝐿

 (16)  

where S𝐽 is Phillips function, h is water depth, and L is wave length. 

Since the Jonswap spectrum is 

 𝑆𝐽(𝑓) =
𝛼𝐻1 3⁄

2 𝛾𝑒𝑎

𝑇4𝑓5
𝑒
−54�

𝑓
𝑓𝑝
�
−4

 (17)  
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where 𝐻1/3 is significant wave height, T is wave period, f is frequency, and 𝑓𝑝 is peak 

frequency. Recall that the peak enhancement factor 

 𝛾 = 3.3 (18)  

 𝑛 =
1
2
�1 +

2𝑘ℎ
𝑠𝑖𝑛ℎ 2𝑘ℎ

� (19)  

 𝛼 ≈ 0.2044 (20)  

and peak frequency fp, are used to generate the density function of TMA spectrum, 

 𝑆𝑇𝑀𝐴(𝑓) = 0.2044
𝐻1 3⁄
2

𝑇4𝑓5
𝑒
−54�

𝑓
𝑓𝑝
�
−4

3.3
𝑒𝑥𝑝�

−�𝑓−𝑓𝑝�
2

2𝛿2𝑓𝑝2
� 1

�1 + 2𝑘ℎ
𝑠𝑖𝑛ℎ 2𝑘ℎ�

𝑡𝑎𝑛ℎ2
2𝜋ℎ
𝐿

 (21) 
  

This expression of density function is used for generating the wave file for the 

numerical simulation of aNySIM. However, the plot of the TMA spectrum is coincident 

to the Jonswap spectrum, and under the circumstance of intermediate water depth for 

numerical simulation using aNySIM, the Jonswap is applied. An example comparison of 

TMA spectrum (WAFO, WAFO. Description of tmaspec, 2005) and Jonswap (WAFO, 

WAFO. Description of jonswap, 2005) is generated by the MatLab tool WAFO for Test 

3 with significant wave height, period, peak frequency, and wave length which are 

shown in equation (22), (23), (24), and (25) respectively. This is illustrated in Figure 8., 

indicating that under the experimental wave conditions both TMA and Jonswap 

spectrum can be applied.  

 𝐻1/3 = 0.037𝑚 
(22)  

 𝑇 =  1.7𝑠 (23)  
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 𝑓𝑝 = 0.588𝐻𝑧 (24)  

 𝐿 = 2.9456𝑚 (25)  

 

Figure 8. TMA and Jonswap spectrum comparisons 
(Red solid lineTMA (red), by applying equation (21) 

  and blue solid line TMAspec & Jonswap, generated by WAFO) 
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CHAPTER IV 

INSTRUMENTATION, SETTINGS, AND CALIBRATIONS∗ 

 

Wave generator and acquisition system 

Waves for experiments are generated by the Rexroth multidirectional wave 

generator. The water elevations are acquired by wired wave gauges connected to the 

Labview data acquisition (DAQ), and controlled by the Labview based wave data 

acquisition software.  

Wave generator 

Waves are generated by the multidirectional wave generator, and 48 paddled are 

individually controlled at the operator station. The 48 paddles allow the wave generator 

to generate regular waves up to 0.61m (2ft) wave height for period of 2.3s and at a 

period range of 0.5 - 5s at the maximum water depth of 1m (3.3ft). Multiple directions of 

propagation waves, ranging from 0 to 30 degrees on either side of the basin centerline, 

can be generated for both regular and spectral waves.  To reduce the effect of reflections, 

active reflection absorption (ARA) system is available. In addition, a rock beach that has 

a slope of approximately 1V:6H absorbs the waves. The wave generator is shown in 

Figure 9. 

                                                           
∗ Part of the figures or tables reported in this chapter is reprinted with permission from “Comparison of 
Laboratory and Predicted Motions and Mooring Line Forces for a Container Ship Moored to a Dock” by 
Andres Luai and Yuanzhe Zhi, 2013. A conference report of the 18th Offshore Symposium Engineering 
the Future: The Arctic and Beyond. Houston Texas. Copyright [2013] by SNAME Texas Section. 
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Figure 9. Multidirectional wave generator with 48 individual paddles. 

Wave gauges 

Wave data including significant wave height, period and reflection coefficients 

are measured and recorded using the data acquisition system. This system contains three 

wave probes. In order to determine the reflection coefficient, the three wave gauges are 

arranged in a line perpendicular to the ship with the spacing suggested by Mansard and 

Funke (1980). Spacing among these three wave gauges is illustrated in Figure 10. The 

space between gauge 1 (p1) and gauge 2 (p2) is 0.52m (1.71ft), which is 1/10 of the 

maximum wave length  in test plan, and the space between gauge 1 (p1) and gauge 3 

(p3) is 1.30m (4.26ft), which is ¼ of the maximum wave length in test plan.  

 

Figure 10. Spacing and position of wave gauges. 
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Calibration of wave gauges 

Wave gauges transfer the wave elevations or water surface to voltages. These 

voltages are amplified before connected to the data acquisition computer via National 

Instrument DAQ. Accordingly, calibrations are needed to define the specific water levels 

to the relative voltages for each wave gauge. For calibration of each wave gauge, five 

points with equal distance between each other are selected and are individually placed at 

the water surface. Then, the voltages are recorded for each point. After that, slope and 

intercept are calculated represented in voltage vs. distance format.  The relationship of 

voltage and distance should be linear, which can be plotted and represented in Figure 11 

below, which contains distance for X axle and voltage for Y axle. The accuracy of the 

wave gauge is ±2mm. 

 

Figure 11. Wave gauge calibration. 
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Motion capturing and acquisition system 

The six degree of freedom motions of the model container ship are captured 

using the optical motion tracking system, which consists of 4 cameras, shown in Figure 

12, a calibration kit, and highly reflected markers adhered to the model container ship.  

A data acquisition computer installed with Qualisys Track Manager (QTM) is also used 

for recording and analyzing the motion data. This software allows the user to realize 2D 

and 3D motion capture that provides both real time 2D, 3D, and 6D data while motion 

capturing, and the data are output in several formats acceptable for Excel and MatLab.  

 

 

 

Figure 12.  Instrument carriage with four cameras for motion tracking system 
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Settings and calibration 

Highly reflected markers, shown in Figure 13, are adhered to the model container 

ship to be captured and define the model. To avoid covering each other, these markers 

are at different heights. Since the model is regarded as a rigid body, the connection 

between each marker and container should be fixed, in order to guarantee that the 

relative distances between each marker are constant during the calibration and testing.  

 

Figure 13. Location of reflective makers on model ship used by the motion tracking 
system. 

The global coordinate system and the size of the capture volume are determined 

by calibration.  The motion tracking system is calibrated using an L-shaped frame with 
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four passive reflective markers that are placed on the dock as illustrated in Figure 14.  

The L-shaped frame has its long axis parallel to the model ship centerline axis and the 

short axis perpendicular to the model ship. The origin of global coordinate system is 

located at the intersection of the X and Y axes that are parallel to the long and short axes 

of the L-frame, respectively.  The wand device has two reflective markers on each end of 

a rod and the markers are located at a known distance of 748.3 mm. The wand is 

employed to measure the size of the capturing volume. This wand is connected to a long 

extension rod in order to reach the measurement area.  A person rotates the wand in the 

area of the L-shaped frame and the area of the model ship to calibrate the four cameras 

in the motion tracking system. Once the calibration is completed, the L-shaped frame 

and wand are removed, and the calibration file is used by the software for capturing the 

motion data. 

  

Figure 14.  L-shaped bar and wand on the model dock with moored ship prior to 
calibration  

L-SHAPED FRAME 

T-SHAPED WAND 
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The accuracy of instrument is needed, which attributed to these different results 

between numerical simulation and physical models. According to the operation methods 

applied on motion capture settings, the gap tolerances are set as 3 to 5mm. This setting 

defines the upper restriction of tiny vibrations of highly reflected markers, which defines 

the rigid body to be captured. The larger the gap tolerance define the lower accuracy are 

represented from the results. The accuracy of the motion tracking system is ± 2mm and ± 

0.04°. 
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CHAPTER V 

PROCEDURES 

 

In order to achieve the purpose of the experiment, test preparations, physical 

modeling test, numerical simulation, and data analysis are conducted.  

Phase 1, test preparation 

During the test preparation, the necessary equipment and instrumentation is set-

up and connected. The solid wall dock is built and installed in the wave basin. The basin 

is filled with water to a depth of 0.305m (1ft). Accordingly, prospective input wave files 

listed previously in Table 1 and Table 4 are loaded into the wave generator computer.  

After that, the model ship is moored to the dock, and the five reflective markers are 

adhered to solid wooden dowels at bow, stern, port side, starboard side and center of the 

model ship at various heights to define the rigid body of the model container ship.  

Phase 2, physical model 

For the physical model there are two processes to be accomplished, i.e. the solid 

dock and the piled dock. The model container ship motions are simulated under the 

effect of different significant wave heights, wave periods, and wave directions. 

Calibration of wave gauges and the motion tracking system is under taken at the 

beginning of each day. Data analysis occurs right after the test. After the completion of 

solid dock test, the dock is removed to make room for pile dock construction. Each test 

lasts 8 min and another 3-5 min is needed for the water surface to calm down between 

tests. 
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Before motion capturing of model container ship, roll damping tests are under 

taken, by pushing the model container on port side and applying the optical motion 

capturing system to record the rolling motion of the model container ship. After that, the 

time and motion data are applied to plot the roll vs. time, shown in Figure 15, and to 

calculate the natural frequency of roll. The calculation results indicate that the natural 

frequency of roll is around 1.5s for the model.  

 

Figure 15. Roll damping test result 

Static tests were also conducted with the model container ship moored in front of 

pile support dock to test the mooring system. The reason for choosing the pile support 

dock is due to the fact that the reflected waves generated by the ship motion are expected 
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to pass through the piles under wharf and cause relatively less wave reflections from the 

piled dock than the solid wall dock. Results indicate that, as shown in  

Figure 16 and Figure 17, the mooring system can reduce and calm down the 

motion efficiently within one minute for model type. 

 

Figure 16. Translation result of static test of six degrees of freedom motion 
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Figure 17. Rotation result of static test of six degrees of freedom motion 

These statistic tests are represented as the same format as that of test results, of 

which the elevation of motions of six degrees of freedom vs. time are demonstrated and 

compared with PIANC limitations of upper and lower 100% and 50% efficiencies, 

which are denoted as red dashed lines and dot lines respectively. The definition and 



34 
 

values of PIANC limitations will be demonstrated in later Phase 4, data acquisition and 

initial analysis, section Motion data for experiments and Appendix.  

Phase 3, numerical simulations 

The numerical model aNySIM is applied for numerical simulation of the model 

container ship motions while moored to the solid dock. The aNySIM software is time 

domain software (Marin, 2012), predicting the motions of moored floating bodies. The 

motions contain both stochastic and deterministic components in the open sea area. 

Rather than applying traditional simple mass-damper-spring analysis, the fluid reactive 

forces are characterized by impulse response theory. To describe the 6 degrees of 

freedom motions of a floating structure with fluid reactive forces characterized by 

potential theory under time varying external loads is stated in equation (26) 

��𝑀𝑘𝑗 + 𝑚𝑘𝑗�
6

𝑗=1

�̈�𝑘 + �𝑅𝑘𝑗(𝑡 − 𝜏)�̇�(𝜏)
𝑡

−∞

𝑑𝜏 + 𝐶𝑘𝑗𝑥𝑘 = 𝐹𝑘(𝑡)          𝑘 = 1,2, … 6 (26) 

where 𝑀𝑘𝑗  is inertial matrix, 𝑚𝑘𝑗is added inertial matrix, 𝑅𝑘𝑗  is matrix of retardation 

functions, 𝐶𝑘𝑗  is matrix of hydrostatic functions, 𝑥𝑘  is motion in j-direction, 𝐹𝑘(𝑡)  is 

time varying arbitrarily external force in the k-model of motion, and 𝑘, 𝑗 are models of 

motion. 

To simulate the motion of the container ship moored in front of solid dock, both 

input and output settings need to be generated. Input data, which is realized by 

generating a txt. format file, consists of general information including test durations, 

number of rigid bodies to be tested, total line and fender number, etc. Body information 

contains the type of body, body center of gravity and center of global coordinate system, 
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length between perpendiculars, beam, draft, depth, mass vector, 6×6 linear damping 

matrix, and displacement. Wave information consists of wave type, either regular or 

irregular, significant wave height, wave period, wave speed, and direction. Line and 

fender information define the mooring and fender locations and pretensions. Output 

settings restrict the format of the column number in the output file, type of output results, 

and units of the output data. 

Phase 4, data acquisition and initial analysis 

Wave data and reflection analysis 

Wave and motion data were collected using the data acquisition and motion 

capturing systems. Wave elevation data were acquired from three wave gauges, 

distributed according to the three wave gauge method, especially dealing with the 

irregular wave and splitting the incident and reflection wave as described by Mansard 

and Funke (1980). After collecting wave data for each test, the spectrum of both the 

incident and the reflected wave are plotted and compared with theoretical spectrum 

curve, illustrated in Figure 18, using the GEDAP software (Miles & Funk, 1989). The 

reflection coefficients are also generated, and varying of reflection coefficient vs. time is 

also plotted as shown in Figure 19, to correlate with the motion fluctuations.  
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Figure 18. Spectrum comparison between reflect (Upper) and incident (Lower) 
waves 

 

 

Figure 19. Reflection (Upper) and translation (Lower) coefficients vs. time 

Figure 18 demonstrates the density spectrum comparison of incident and 

reflection wave to theoretical spectrum. The spectrum of the incident and reflected 
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waves are represented as the blue solid line, and the red dash line illustrates the 

theoretical spectrum. Figure 19 represents the varying of reflection coefficient vs. time. 

There are only three wave probes used in front of the model container ship and dock and 

no wave gauges behind the model thus there are only coefficients of reflection for this 

experiment. Since it is dry land behind the dock in real case, for that matter, there is no 

need to place any wave gauge behind the dock for computing the transmission 

coefficients. 

Motion data for experiments 

Motion data for translations and rotations are represented separately and 

compared between solid and pile supported dock under the format of motion elevation 

vs. time, represented in Figure 20. Motion elevations are also compared with the PIANC 

limitations, and numbers of elevation surpassing the limitation are also calculated as 

illustrated in Table 9. 

Limitations of PIANC are the criteria of ship motions in front of the dock while 

installation, which cannot be surpassed to increase the efficiency of handling. The 100% 

and 50% efficient represent the loading and unloading efficiency under specific values 

of motion criteria (PIANC, 1995). For proto type scale, the PIANC of upper and lower 

100% efficient are ±1.00m (±3.28ft), ±0.60m (±1.97ft), and ±0.80m (±2.62ft) for surge, 

sway, and heave respectively, and ±3°, ±1°, and ±1° for roll, pitch, and yaw respectively; 

the PIANC of upper and lower 50% efficient are ±2.00m (±6.56ft), ±1.20m (±3.94ft), 

and ±1.20m (±3.94ft) for surge, sway, and heave respectively, and ±6°, ±2°, and ±1.5° 

for roll, pitch, and yaw respectively.  
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Figure 20. Comparison of six degrees of motion for container ship moored in front 
of solid (Left) and pile (Right) docks 
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Table 9. Motion elevation information of test 13 

 

Figure 20 employs two columns of data, for each of which, motions of six 

degrees of freedom of test 13 for both solid wall dock (left) and pile dock (right) are 

listed. This figure illustrates directly the comparison of range of motions between solid 

and pile docks. It is also a straightforward method to indicate the number of motions 

surpass the PIANC limitations. Motion characteristics, including maximum, minimum, 

and significant motion values, total number of motion elevation for each degree of 

freedom, number of motion limitation surpass the upper and lower limitation of PIANC 

restriction, then are quantitatively represented in Table 9. 

The results of experiments, from Test 1 to Test 39 under the same format as Test 

13, mentioned above, are stated later in the Appendix 

Motion data for numerical simulations 

For numerical simulations, data of both motions of the container ship moored in 

front of solid dock for both experiments and numerical simulations are plotted and 

compared. The motion elevation data, take test 13 with significant wave height (Hs), 

wave period (Tp), and direction of 1.85m (6ft), 20s, and 143° respectively as an 

example, is also superposed with experimental data to qualitatively compare with the 

experiment results, which is shown in Figure 21for translations and Figure 22 for 

rotations. 

Test13 X-Surge Y-Sway Z-Heave Roll Pitch Yaw Test13p X-Surge Y-Sway Z-Heave Roll Pitch Yaw
Maximum 6.47 16.48 7.89 12.23 0.65 1.27 Maximum 5.02 27.23 4.91 15.98 0.61 2.22
Minimum -7.34 -2.42 -7.88 -3.87 -0.39 -0.46 Minimum -2.85 -3.59 -4.73 -6.64 -0.31 -0.84
Significant 4.09 6.75 7.05 5.11 0.44 0.94 Significant 2.79 7.51 3.75 5.78 0.29 1.01
Total Num 219 563 425 625 417 357 Total Num 692 922 633 823 765 837
Upper % 0.00% 20.07% 7.46% 4.79% 0.00% 0.00% Upper% 0.00% 21.37% 0.43% 5.83% 0.00% 2.27%
Lower% 45.66% 0.00% 10.12% 0.00% 0.00% 0.00% Lower% 0.00% 0.00% 0.65% 0.12% 0.00% 0.00%
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Figure 21. Translation elevation comparisons between experiment (Blue) and 
numerical simulation (Red) 
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Figure 22. Rotation elevation comparisons between experiment (Blue) and 
numerical simulation (Red) 

The red and blue line in these six plots above represent the motion data of the 

container ship moored in front of solid dock for numerical simulation and experiment of 



42 
 

test 13 respectively. These plots represent the differences and correlations relationship of 

both translations and rotations between the experimental and predicted values. 

Accordingly, experimental and predicted data are generally correlated with each other, 

especially reflected on surge and heave for translation and pitch for roll. Even though, 

the lower range of sway from aNySIM is approximately 0.5m lower than that of physical 

model; the lower range of roll from aNySIM is approximately 2.0° lower than that of 

physical model; both upper and lower range of yaw is approximately 1.0° higher and 

lower respectively than that of physical model. These plots also reflects that, for 

translations, the waves affect more on sway and heave than that of surge, because the 

value of sway and heave is larger than that of surge. Moreover, for rotations, that the 

value of roll is larger than that of pitch and yaw represents that wave effect affects more 

significantly on roll than pitch and yaw. Most of the comparison between numerical 

simulations and physical model tests represent the similar quantitative relationships, 

which are displayed and discussed later in the next chapter, Discussion and Analysis of 

Results. These correlations verify that numerical simulations are able to characterize the 

motions of the container ship in physical model experiments.  
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CHAPTER VI 

DISCUSSIONS AND ANALYSIS OF RESULTS∗ 

 

Comparisons of moored ship motion, including translations (surge, sway, and 

heave) and rotations (roll, pitch, and yaw), as a result of different wave periods, 

significant heights, and wave directions for the vessel moored in front of solid wall dock 

and open piled dock are discussed to illustrate the effect of wave height, wave period, 

and wave direction on the moored ship motions due to these two kinds of docks. There 

are comparisons with the same wave height but different wave periods, same wave 

period with various heights, and the same wave height and period for different wave 

directions. Moreover, experimental results for the solid wall dock were simulated 

numerically. The motion data comparisons of both experiment and numerical simulation 

under the different wave conditions discussed previously for experiment results are also 

illustrated. In addition, tests under the condition of the same wave period, significant 

height, and wave direction are discussed to verify validation of data for both numerical 

simulation and experiment.  

Comparisons between solid wall and pile supported dock 

Motions of the ship model moored to the solid wall dock and open piled dock 

under circumstances of different wave environments are discussed and compared to 

demonstrate the effect of wave height, wave period and wave direction, respectively.  

                                                           
∗ Part of the data reported in this chapter is reprinted with permission from “Comparison of Laboratory 
and Predicted Motions and Mooring Line Forces for a Container Ship Moored to a Dock” by Andres Luai 
and Yuanzhe Zhi, 2013. A conference report of the 18th Offshore Symposium Engineering the Future: 
The Arctic and Beyond. Houston Texas. Copyright [2013] by SNAME Texas Section. 
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Effect of wave height 

The effect of wave height on the motions of a ship moored to solid dock and a 

piled dock were measured in test 14, 15, 16, and 21, and the results are shown in Figure 

23. These tests have the same prototype wave period and direction of 12s and 143° (1.7s 

and 0° for model) respectively, while the significant prototype wave heights are 0.6m 

(2ft), 1.2m (4ft), 2.45m (8ft), and 1.85m (6ft) for each of these four tests respectively 

The experimental results displayed below are scaled up and represented in proto scale.  

 

Figure 23. Comparison of motions results under effect of wave height of container 
moored in front of solid wall and open pile dock 

The amount of both translations and rotations of the moored container ship in 

front of both the solid dock and pile supported dock are proportional to the significant 

wave height. Though, heave, pitch, and yaw for test 16s and, surge sway and roll for test 
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16p, illustrate reverse trends, where the lowercase s and p represent the solid wall dock 

pile dock respectively. According to Table 10 below, the mean value of surge, sway, 

heave, roll, pitch, and yaw for solid dock are 0.84, 1.51, 0.81, 1.22, 1.00, and 1.4 times 

of that of pile respectively, which indicate that the amount of differences between 

motions for solid and pile docks are slight. Table 10 also illustrates that significant wave 

heights affect the sway and heave more than that of surge for translations. Roll is 

likewise influenced more by the wave height than that of pitch and yaw. For translations, 

the mean values of sway and heave are 10 and 7 times more than that of surge for ship in 

front of quay wall wharf; 6 and 7 times more than that of surge for container in front of 

pile supported dock. Among rotations, mean values of roll are 14 and 5 times larger than 

that of pitch and yaw respectively for the vessel in front of solid dock; 12 and 6 times 

than that of pitch and yaw respectively when the container is moored in front of piled 

dock. 

Accordingly, both translations and rotations generally increase proportionally to 

the increase of wave height. Wave height affects more on sway, heave, and roll than 

surge, pitch, and yaw for both solid and pile docks. Differences of each motion values 

between solid and pile docks are slight. 

Table 10. Mean value comparison of motions results under effect of wave height of 
container ship moored in front of quay wall and open quay wharf 

 Surge (m) Sway (m) Heave (m) Roll (°) Pitch (°) Yaw (°) 
Solid 0.52 5.39 3.74 4.59 0.32 0.91 
Pile 0.62 3.58 4.60 3.76 0.32 0.65 
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Effect of wave period 

The effects of wave period on motions of the ship moored in front of solid wall 

and pile supported docks, which are illustrated in Figure 24, are characterized by test 

numbers from 6 to 13 with various wave periods of 4s, 6s, 8s, 10s, 14s, 16s, 18s, and 20s 

respectively, same significant wave height of 1.85m (6ft), and same wave direction of 

143° (0° for model). 

Accordingly, from test 6 to test 10, for both solid wall and pile support docks, 

translations increase proportionally with increasing wave period, and decrease with the 

increasing periods from test 11 to test 13. In addition, increasing period shows more of 

an effect on sway and heave than on surge. That is to say, sway and heave increase 

rapidly with the increasing periods while the increase in surge is relatively moderate. It 

is also observed that the increase of period has more of an effect on roll than on pitch 

and yaw. Roll shows a rapid climb with the increasing wave period, while the increase of 

pitch and yaw tend to level off. 
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Figure 24. Comparison of motions results under effect of wave period of container 
moored in front of solid wall pile support docks 

Table 11  shows the mean values of the motions for both solid wall and pile 

docks. Accordingly, for the solid dock, the mean values of sway and heave are 5.5 and 

3.5 times more than that of surge respectively; the mean value of roll is 13.2 and 6.9 

times than that of pitch and yaw respectively. For the pile supported dock, mean values 
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of sway and heave are 4.8 and 3.4 times than that of surge respectively; mean value of 

roll is 17.4 and 7.6 times than that of pitch. The Table 11 below also indicates that the 

mean value of translations and rotations of solid dock are similar to that of pile support 

dock.  

Motions for both solid and pile docks represent the same trend with the 

increasing wave period. Like the effect of wave heights, these wave periods affect more 

on sway, heave and roll, than surge, pitch, and yaw for both solid and pile docks. Each 

motion between solid and pile dock indicates minor difference. 

Table 11. Mean value comparison of motions results under effect of wave period of 
the container ship moored in front of solid wall and pile supported docks  

 Surge (m) Sway (m) Heave (m) Roll (°) Pitch (°) Yaw (°) 
Solid 1.26 6.93 4.42 5.28 0.40 0.77 
Pile 1.19 5.77 4.01 5.23 0.30 0.69 

Effect of wave direction 

 Test numbers 17, 18, 19, and 52 have the same wave height and period of 1.83m 

(6ft) and 12 s respectively, while the wave directions are 113°, 128°, 158°, and 173° (-

30°, -15°, 15°, and 30° for model) respectively. For convenience of discussion, directions 

for model, that is to say directions for model -30°, -15°, 15°, and 30° are applied to 

represent directions for that of prototypes 113°, 128°, 158°, and 173°. According to 

Figure 25, the translations of the vessel in front of solid dock show that sway is larger 

than that of surge and heave, but when container ship is moored in front of pile dock 
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heave is larger than that of surge and sway. For rotations, under conditions of both in 

front of solid and pile docks, the amount of roll is larger than that of pitch and yaw. 

Generally, the wave effects are larger for the direction of -15° than any other direction. 

Table 12 illustrates that the mean value of each degree of freedom motion is 

approximately the same value between conditions of the container moored in front of 

solid and pile docks, under the effects of the varying wave directions. Both Figure 23and 

Table 12 illustrate that the wave direction affects sway, heave, and roll more than surge, 

pitch, and yaw. 

 

Figure 25. Comparison of motions results under effect of wave direction of 
container ship moored in front of solid wall and pile supported docks. 

Table 12. Mean value comparison of motions results under effect of wave direction 
of container moored in front of solid wall and pile supported docks 

 Surge (m) Sway (m) Heave (m) Roll (°) Pitch (°) Yaw (°) 
Solid 1.40 3.54 3.10 3.90 0.95 0.76 
Pile 1.92 2.93 3.50 3.21 1.17 0.68 
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The effects of wave directions indicate that translations and rotations represents 

the same trend and motion amount for each degree of freedom for both solid and pile 

docks. For both of these two types of dock, wave directions affect more on sway, heave, 

and roll than that of surge, pitch, and yaw.  

Repeatability 

The surge, sway, heave, roll, pitch, and yaw for three repeated tests 3, 21, and 36 

with the same significant wave height of 1.86m (Hs=6ft) and period of 12 s are 

displayed in Figure 26 under conditions when the vessel was moored in front of the solid 

wall dock and a pile supported dock to illustrate the repeatability. The deviations of 

translations and rotations are shown to further verify the repeatability of the tests. 

According to Figure 26, the fluctuation of both translations and rotations are stable, and 

the standard deviations are all under 1, shown in Table 13. That is to say both the solid 

and pile docks show good repeatability.  The amount of sway and heave are 16.8 and 

12.1 times the amount of surge. For rotations, the magnitude of roll is 13.0 and 5.1 larger 

than that of pitch and yaw respectively, which further proves that waves effect sway, 

heave, and roll more than surge, pitch, and yaw. 
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Figure 26. Comparison of motions results repeatability of container ship moored in 
front of solid wall and pile supported docks 

Table 13. Standard deviation comparison of motions results repeatability of 
container ship moored in front of solid wall and pile supported docks 

 
Surge Sway Heave Roll Pitch Yaw 

Solid 0.27 1.00 0.06 0.31 0.01 0.14 
Pile 0.09 0.43 0.31 0.43 0.02 0.17 

Comparisons between experiment and numerical simulation 

Translations and rotations of the container ship for both experiment and 

numerical simulation under condition when the vessel is moored in front of solid wall 

dock are discussed and compared. Both numerical simulation and experiment are under 

prototype scale. Comparisons are represented under conditions of various wave heights 

while at the same wave period and direction to demonstrate the effect of wave heights. 

Moreover, for the case of different wave periods but same wave height and wave 

direction are used to illustrate the effect of wave period. In addition, effects of wave 

direction are illustrated by comparing motion characters under varying wave directions 

while fixed in wave height and period. The comparisons of motions of 6 degrees of 

freedom under the condition of same significant wave height, wave period, wave 
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direction, and mooring conditions are also illustrated to demonstrate the repeatability. 

For each test number displayed on either figures or tables, the lowercase s represent the 

container ship moored in front of solid dock, while the symbol aNy represent the results 

from the software aNySIM, which is the software applied for numerical simulation.  

Effect of wave height 

Test 14, 15, 16 and 21 are tests with various wave heights of 0.6m (2ft), 1.2m 

(4ft), 2.45m (8ft), and 1.85m (6ft), while the uniformed wave period of 12s and direction 

of 143° (0° for proto type), which demonstrate the effect of wave height on the moored 

ship in front of solid wall dock for both experiments and numerical simulations. 

Comparison results are shown in Figure 27.  

 

Figure 27. Comparison of numerical and experimental results on the effect of wave 
height on moored ship motions. 
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The translations and rotations are generally proportional to the significant wave 

height, though heave, pitch, and yaw of test 16 for experiment represent a slightly 

different trend. Moreover, sway and heave of the experiment are larger than that of the 

physical model, while the amount of surge is approximately equivalent to surge of 

numerical prediction. According to Table 14, mean values of sway and heave of 

experiment is 1.73 and 1.78 times that that of numerical simulations respectively. For 

rotations the prediction of the roll, pitch, and yaw are 2.79, 1.28, and 1.78 times larger 

than that of physical model test, indicating that wave height has a greater effect on the 

rotational motions predicted with the numerical simulation than that measured in the 

physical model experiments.  

Accordingly, Figure 27 indicates that the translations and rotations represent the 

same trend with the increasing wave height for both experimental and predicted results. 

This figure also illustrates that, for experiments and numerical simulations, the changing 

wave heights affect sway, heave and roll more, which is also reflected among the mean 

values in Table 14. However, the table indicates that the value of each motion of degree 

of freedom between experiments and prediction represent differently. The rotations of 

predicted data are larger than that of experiment. The translations, besides surge, one the 

other hand, represent reversely. These differences are significant on rotations while 

slight on translations. 
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Table 14. Mean value comparison of numerical and experimental results on the 
effect of wave height on moored ship motions. 

 Surge (m) Sway (m) Heave (m) Roll (°) Pitch (°) Yaw (°) 
Experiment 0.52 5.39 3.74 4.59 0.32 0.91 

aNySIM 0.80 3.11 2.10 12.82 0.41 1.62 

Effect of wave period 

In order to represent the motion comparisons of experiments and numerical 

model predictions of the moored container in front of solid dock, the magnitude of the 

translations and rotations were obtained for the same significant wave height of 1.85m 

(6ft) and wave direction of 143° (0° for proto type) at different significant periods of 4s, 

6s, 8s, 10s, 14s, 16s, 18s, and 20 s.  

According to Figure 28, translations generally increase with the increasing wave 

period. Though, for experiments, sway of test 11 and 13, heave of test 12, and roll of test 

12 illustrate a reverse trend; for numerical simulations, surge of test 10 and 13, sway of 

test 11 and 12, and heave of test 13 are negatively correlated to the increasing wave 

period. These reversed trends, compared with the generally increasing tendency, are very 

small. On the other hand, for rotations the amount of pitch and yaw do not illustrate a 

regular pattern with the increase of period. However for most rotations, the magnitude of 

the rotations is generally larger than that under relatively larger periods than those under 

smaller periods. For example, the value of roll for the experiment increase with period 

up to 10 s and then decrease, yaw angles increase gradually, while the pitch angles are 

nearly constant with increasing period.  
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 Translations and rotation under effect of period represent almost the same 

tendency for numerical simulation as that of experiment, but the magnitude of pitch 

angle fluctuates with the increase of periods. According to Table 15, the length of wave 

period exerts more of an effect on translations for the experiment than that of the 

numerically predicted values. That is to say, surge, sway, and heave for the physical 

model is 1.24, 2.48, and 1.96 times larger than that of numerical simulations, 

respectively. However, rotations illustrate an opposite trend, and the numerical 

predictions of roll, pitch, and yaw angles are 1.93, 1.2, and 2.55 times larger than that 

measured in the experiments. Moreover, among rotations for both experiment and 

numerical simulation of roll tends to be more sensitive to the effect of wave period than 

pitch and yaw. 
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Figure 28. Comparison of the effect of wave period on moored ship motions. 

Table 15. Mean value comparison of numerical and experimental results on the 
effect of wave period on moored ship motions. 

 Surge (m) Sway (m) Heave (m) Roll (°) Pitch (°) Yaw (°) 
Experiment 1.26 6.93 4.42 5.28 0.40 0.77 

aNySIM 1.02 2.79 2.26 10.17 0.48 1.96 
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According to both Figure 28 and Table 15, translations and rotations represent 

the same tendency under the effects of wave periods between both experiments and 

predictions. The varying wave periods effects more on sway, heave, and roll while less 

on surge, pitch, and yaw for both experimental and predicted values.  Mean values listed 

in Table 15 also reveal that the rotation values predicted by aNySIM are larger than that 

of experiments. Translations, however, represent the opposite tendency. 

Effect of wave direction 

The effect of wave directions on motions of containers in front of solid wall dock 

is represented by comparing both physical model and numerical simulation, including 

test numbers 17, 18, 19, and 20 with the same wave height and period of 1.86m (6 ft) 

and 12s respectively, but their wave directions are 113°, 128°, 158°, and 173°, which are 

-30°, -15°, 15°, and 30° for model respectively.  
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Figure 29. Comparison of the numerical and experimental results of the effect of 
wave direction on moored ship motions. 

Figure 29 shows experimental results the test 18, which is for the wave direction 

is -15°. Both rotations and translations reach their peak, with the exception for yaw 

where the peak is located at 15°  for test 19. For numerical simulations, translations 

generally increase with the varying wave directions. Predicted rotations reach their peak 

in test 19 with the direction of 15° for both roll and yaw, and test 17 with direction of 

30° for pitch. According to Table 16, the wave direction change results in larger roll and 

yaw for numerical over that measured in the physical experiments. For example, the roll 

and yaw for numerical simulation test 18aNy are 3.09 times and 2.46 times larger than 

that of experiment. On the contrary, the numerical model prediction illustrates the 

translations, including surge, sway and heave are 69%, 76%, and 65% larger than that 

measured in the physical model. The mean value of pitch for the numerical simulation is 

61% of that of the experiment. For both numerical simulation and experiment, varying of 
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wave direction effects roll more significantly than the rest of the rotations, which for 

numerical simulation the mean value of roll for these four tests is 20.76 and 6.44 times 

of pitch and yaw respectively. For the experiment the mean value of roll is 4.11 and 5.13 

times of pitch and yaw respectively. However, among the translations of experiment and 

numerical simulation, sway and heave are approximate 100% larger than that of surge. 

Table 16. Mean value comparison of numerical and experimental results on the 
effect of wave direction on moored ship motions. 

 Surge (m) Sway (m) Heave (m) Roll (°) Pitch (°) Yaw (°) 
Experiment 1.40 3.54 3.10 3.90 0.95 0.76 

aNySIM 0.97 2.68 2.00 12.04 0.58 1.87 

Repeatability 

Repeatability of ship motions of surge, sway, heave, roll, pitch, and yaw are 

illustrated in Figure 30 for experiment and numerical simulation, by illustrating repeated 

test 3, 21, and 36 with the same significant wave height of 1.86m (6ft), period of 12s, 

and direction of 143° (0° for model). Repeatability is reflected among translations and 

rotations for both experiment and numerical simulation. According to Table 17, none of 

the standard deviations of motions for both predicted value and experiment results are 

larger than one. Moreover, the wave effect is larger for translations than for experiment, 

and the effect on sway and heave is more significant than surge. Table 18 indicates that 

the surge, sway, and heave of experiment are 1.28, 2.79, and 2.07 times of that of 

predictions. The magnitude relation is reversed, that is to say, the prediction of roll is 
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2.57 times of that of experiment. In addition, for both numerical simulation and 

experiment, the wave effect is more on roll than the rest of the rotations. 

 

Figure 30. Comparison of numerical and experimental results for six degrees of 
freedom. 

Table 17. Standard deviation comparison of numerical and experimental results 
repeatability on moored ship motions. 

 
Surge Sway Heave Roll Pitch Yaw 

Experiment 0.27 1.00 0.06 0.31 0.01 0.14 
aNySIM 0.00 0.00 0.00 0.03 0.01 0.03 

Table 18. Mean value comparison of numerical and experimental results 
repeatability on moored ship motions. 

 Surge (m) Sway (m) Heave (m) Roll (°) Pitch (°) Yaw (°) 
Experiment 0.63 7.59 5.46 5.57 0.43 1.10 

aNySIM 0.49 2.72 2.64 14.34 0.37 1.44 

Effect of high frequency oscillations, accuracy, and data analysis on motion data 

Number of motion data points of test 06, 17, 38, and 39 are relatively larger than 

others. However, compared with the majority number of tests, these tests are only 

minority exceptions. This phenomenon occurs because of high frequency oscillations, 
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accuracy of instrument, and the methods of data analysis. High frequency oscillations, 

generated by either high frequency waves or oscillations of mooring system, might be 

attributed to these large data points. Accuracy of instrument is based on the definition of 

rigid body. A rigid body is defined by markers positioned on the object to be captured 

and slight changes of position or occasional blockage of those markers leads to missing 

data, which is defined as a gap. Increasing the gap tolerance of model in program will 

decrease the sensitivity of motion capture device on position change of a marker and 

lower the number of gaps. The method of data analysis is another reason leading to 

relatively larger number of data points. Outputs of these gaps are represented as zeros, 

which lead to the appearance of several spikes when the motion vs. time is plotted. To 

fill the gaps, rather than being connected linearly, initial data, or first non-zero data, is 

inserted to replace those zero positions. This method creates more crests and toughs. 

After zero crossing, by subtraction of mean value from each original data point, those 

crests and toughs, which originally suspend above or below zero, will cross the zero and 

contribute to the calculation of number of motion data points.  

Discussion of differences between the experimental and numerical motion results 

 Ship motions are characterized by six degrees of freedom, including translations, 

i.e. surge, sway, and heave, defining as the position in Cartesian Coordinates; rotations, 

i.e. roll, pitch, and yaw, illustrated as rigid body or mass point rotating around the axes 

of Cartesian Coordinates. The rotations are computed by moment of inertia, which is 

determined by both mass distribution and shape. Geometry shape of a vessel can be 

relatively accurately scale down, so do the draft of vessel by ballasting. While, due to the 
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material applied for constructing the model, the mass distributions cannot be easily 

scaled down. Moreover, some of the components on proto type ship are too small to 

simulate. In addition, the budget issue lowering the accurate of a ship, for example the 

container ship used in these experiments doesn’t have superstructure and no containers, 

while in the real case of typical draft, defining fully loaded, to the container ship would 

have a superstructure and containers above the deck. The numerical simulation dealing 

with the containers moored in front of quays, of which the setting of moment of inertia 

for calculating the damping matrix is based on the numerical model of ship. This 

numerical model can simulate both the geometry scale and mass distributions. 
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CHAPTER VII 

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS 

 

The container ship moored in front of solid wall and pile supported docks shows 

approximately the same trend and magnitude of translations and rotations under the 

actions of wave period and significant wave height. The translations (surge, sway, and 

heave) and rotations (roll, pitch, and yaw) of a ship moored to a dock are proportional to 

significant wave height. Translations are generally proportional to wave period, but 

rotations increase first and then decrease. For waves perpendicular to the beam of a 

container ship moored to a dock, the wave periods and significant heights have relatively 

more effects on sway, heave, and roll and less effect on surge, pitch and yaw. These 

tendencies are also reflected on the repeatability for both the solid wall and pile 

supported dock, namely that wave effect is greater for sway and heave than that of surge, 

and the wave effects are larger for roll than that for pitch and yaw. Changing the wave 

direction between +/- 15º and +/- 30º show that the moored container ship motions are 

greater for the +/-15 degree direction.  

Numerical simulations generally illustrate the same trend as that of the 

experiments. That is to say, the translations and rotations increase proportionally with 

the increase of significant wave heights. Motions reflect a variable tendency under the 

effect of wave periods. Sway, heave, and roll are affected more than that of surge, pitch, 

and yaw by the effects of significant wave height and periods. Motions also show the 

same trend, which reacts more between +/- 15º than other directions, under effect of 
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varying wave direction. The amount of motion under wave effects between results of 

experiments and numerical prediction are different. That is to say, under the effect of 

significant wave period, the sway and heave in the experimental measurements are larger 

than that of numerical predictions. The numerical prediction of roll simulation is larger 

than that of physical model measurements. 

It is recommended that mass properties of model container ship and those used in 

the numerical model be further investigated to determine if any of the mass property 

differences can be attributed to the differences in the measured and numerical results. 
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APPENDIX 
 

This section listed all of the motion data from test 01 to 39. Motion data for both 

solid and open pile docks, captured by qualisys motion tracking system, are represented  

as a format of motion elevation data vs. time. There are two columns, the left one 

represents the data for the solid dock and the right one illustrates the data for pile 

supported dock. For each column, there are six rows, representing each motion degree of 

freedom, i.e. surge, sway, heave, roll, pitch, and yaw. These data are also compared with 

PIANC 100% efficiency and 50% efficiency, denoted by maroon dash and dot lines 

respectively. The upper and lower limitation, which are denoted by + and – respectively, 

are ±1m (±3.28ft), ±0.6m (±1.97ft), ±0.8m (±2.62ft),  ±3̊, ±1̊, and ±1̊ for surge, sway, 

heave, roll, pitch, and yaw respectively for PIANC 100% efficiency;  ±2m (±6.56ft), 

±1.2m (±3.94ft), ±1.2m (±3.94ft),  ±6̊, ±2̊, and ±1.5̊ for surge, sway, heave, roll, pitch, 

and yaw respectively for PIANC 50% efficiency.  

Maximum, minimum, significant, and total numbers of motion data for each 

degree of freedom are also listed. The maximum and the minimum represents the 

positive maximum and negtive minimum data of motion respectively. The method to 

derive the significant value and total number for motions is the same as wave data 

analysis. Data is initially zero crossed by substraction between each degree of freedom 

and its mean value. Then, upper corssing points are found and total numbers of space 

between each neibor zero crossing point are regared as total number of motions. After 

that, by substraction of maximum and minimum value between each neibor zero 

crossing point, amount of motions are derived. These motion amounts are sorted from 
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large to small and the first one thirds largest amounts are averaged, namely the 

significant. 

The number of positive and negetive motion, which surpass PIANC 100% and 

50%, denoted as upper % and lower % respectively, are also calculated respectively. 
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Appendix Figure 1. Motion comparison of test 01 Hs=0.6m, Tp=7.99s, Dir=143˚ 
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Appendix Figure 2. Motion comparison of test 02 Hs=1.2m, Tp=9.97s, Dir=143˚ 
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Appendix Figure 3. Motion comparison of test 03 Hs=1.85m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 4. Motion comparison of test 04 Hs=2.45m, Tp=14s, Dir=143˚ 
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Appendix Figure 5. Motion comparison of test 05 Hs=1.85m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 6. Motion comparison of test 06 Hs=1.85m, Tp=4s, Dir=143˚ 
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Appendix Figure 7. Motion comparison of test 07 Hs=1.85m, Tp=6.01s, Dir=143˚ 
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Appendix Figure 8. Motion comparison of test 08 Hs=1.13m, Tp=7.99s, Dir=143˚ 
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Appendix Figure 9. Motion comparison of test 09 Hs=1.85m, Tp=9.97s, Dir=143˚ 
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Appendix Figure 10. Motion comparison of test 10 Hs=1.85m, Tp=14s, Dir=143˚ 
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Appendix Figure 11. Motion comparison of test 11 Hs=1.85m, Tp=15.98s, Dir=143˚ 
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Appendix Figure 12. Motion comparison of test 12 Hs=1.85m, Tp=18.03s, Dir=143˚ 
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Appendix Figure 13. Motion comparison of test 13 Hs=1.85m, Tp=20.01s, Dir=143˚ 

Test13 X-Surge Y-Sway Z-Heave Roll Pitch Yaw Test13p X-Surge Y-Sway Z-Heave Roll Pitch Yaw
Maximum 6.47 16.48 7.89 12.23 0.65 1.27 Maximum 5.02 27.23 4.91 15.98 0.61 2.22
Minimum -7.34 -2.42 -7.88 -3.87 -0.39 -0.46 Minimum -2.85 -3.59 -4.73 -6.64 -0.31 -0.84
Significant 4.09 6.75 7.05 5.11 0.44 0.94 Significant 2.79 7.51 3.75 5.78 0.29 1.01
Total Num 219 563 425 625 417 357 Total Num 692 922 633 823 765 837
Upper % 0.00% 20.07% 7.46% 4.79% 0.00% 0.00% Upper% 0.00% 21.37% 0.43% 5.83% 0.00% 2.27%
Lower% 45.66% 0.00% 10.12% 0.00% 0.00% 0.00% Lower% 0.00% 0.00% 0.65% 0.12% 0.00% 0.00%
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Appendix Figure 14. Motion comparison of test 14 Hs=0.6m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 15. Motion comparison of test 15 Hs=1.2m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 16. Motion comparison of test 16 Hs=2.45m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 17. Motion comparison of test 17 Hs=1.85m, Tp=12.02s, Dir=113˚ 
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Appendix Figure 18. Motion comparison of test 18 Hs=1.85m, Tp=12.02s, Dir=128˚ 
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Appendix Figure 19. Motion comparison of test 19 Hs=1.85m, Tp=12.02s, Dir=158˚ 

Test19 X-Surge Y-Sway Z-Heave Roll Pitch Yaw Test19p X-Surge Y-Sway Z-Heave Roll Pitch Yaw
Maximum 2.16 12.77 3.80 7.62 1.35 2.14 Maximum 4.40 9.90 4.52 7.59 1.45 1.10
Minimum -2.29 -1.71 -6.59 -3.09 -1.43 -1.46 Minimum -5.11 -1.37 -4.84 -2.51 -1.17 -0.74
Significant 1.32 3.71 4.28 3.29 1.18 1.31 Significant 2.95 3.57 4.91 3.39 1.48 0.90
Total Num 676 779 613 884 440 782 Total Num 573 604 452 632 473 554
Upper % 0.00% 8.60% 0.00% 0.57% 0.00% 1.02% Upper% 0.00% 7.45% 0.99% 0.32% 0.00% 0.00%
Lower% 0.00% 0.00% 1.93% 0.00% 0.00% 0.00% Lower% 0.00% 0.00% 1.16% 0.00% 0.00% 0.00%
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Appendix Figure 20. Motion comparison of test 20 Hs=1.85m, Tp=12.02s, Dir=173˚ 
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Appendix Figure 21. Motion comparison of test 21 Hs=1.85m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 22. Motion comparison of test 22 Hs=1.85m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 23. Motion comparison of test 23 Hs=1.85m, Tp=12.02s, Dir=143˚ 
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Test 24 
No ship present, no motion data. 
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Appendix Figure 24. Motion comparison of test 25 Hs=1.85m, Tp=12.02s, Dir=143˚ 

Test25 X-Surge Y-Sway Z-Heave Roll Pitch Yaw Test25p X-Surge Y-Sway Z-Heave Roll Pitch Yaw
Maximum 1.89 17.73 4.67 13.78 0.62 1.64 Maximum 1.73 14.33 6.39 11.19 0.42 0.85
Minimum -0.60 -2.59 -6.41 -5.48 -0.53 -0.76 Minimum -1.92 -1.91 -6.47 -5.70 -0.33 -0.62
Significant 0.82 6.86 4.91 5.97 0.44 1.29 Significant 1.42 7.54 6.79 7.57 0.40 0.76
Total Num 1091 1727 1514 1744 2186 1925 Total Num 1055 1198 1080 1086 1236 1133
Upper % 0.00% 25.30% 0.58% 6.36% 0.00% 0.31% Upper% 0.00% 35.39% 7.60% 8.93% 0.00% 0.00%
Lower% 0.00% 0.00% 2.90% 0.00% 0.00% 0.00% Lower% 0.00% 0.00% 5.68% 0.00% 0.00% 0.00%
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Appendix Figure 25. Motion comparison of test 26 Hs=1.85m, Tp=12.02s, Dir=143˚  
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Appendix Figure 26. Motion comparison of test 27 Hs=1.85m, Tp=12.02s, Dir=143˚ 

Test27 X-Surge Y-Sway Z-Heave Roll Pitch Yaw Test27p X-Surge Y-Sway Z-Heave Roll Pitch Yaw
Maximum 1.56 15.00 5.21 11.38 0.45 1.59 Maximum 2.05 16.31 6.77 12.32 0.55 1.06
Minimum -1.00 -2.35 -5.98 -5.05 -0.58 -0.83 Minimum -1.91 -3.26 -6.86 -6.18 -0.52 -0.69
Significant 0.66 3.38 3.66 3.06 0.36 1.20 Significant 1.19 7.67 7.13 8.09 0.48 1.15
Total Num 525 1267 878 1295 963 708 Total Num 524 491 410 394 495 379
Upper % 0.00% 10.58% 0.32% 2.47% 0.00% 0.42% Upper% 0.00% 28.51% 9.37% 10.15% 0.00% 0.00%
Lower% 0.00% 0.00% 1.34% 0.00% 0.00% 0.00% Lower% 0.00% 0.00% 8.35% 0.25% 0.00% 0.00%
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Appendix Figure 27. Motion comparison of test 28 Hs=1.85m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 28. Motion comparison of test 29 Hs=0.6m, Tp=7.99s, Dir=143˚ 

Test29 X-Surge Y-Sway Z-Heave Roll Pitch Yaw Test29p X-Surge Y-Sway Z-Heave Roll Pitch Yaw
Maximum 0.49 2.44 1.22 2.18 0.16 0.18 Maximum 0.44 2.40 1.01 2.30 0.15 0.19
Minimum -0.94 -0.91 -1.58 -0.97 -0.16 -0.13 Minimum -0.52 -0.68 -1.18 -0.88 -0.18 -0.16
Significant 0.36 0.80 0.96 0.60 0.14 0.18 Significant 0.25 0.72 0.87 0.89 0.14 0.17
Total Num 274 879 578 978 619 756 Total Num 1136 749 626 533 693 740
Upper % 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Upper% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Lower% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Lower% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Appendix Figure 29. Motion comparison of test 30 Hs=1.2m, Tp=9.97s, Dir=143˚ 
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Appendix Figure 30. Motion comparison of test 31 Hs=1.2m, Tp=9.97s, Dir=128˚ 
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Appendix Figure 31. Motion comparison of test 32 Hs=1.2m, Tp=9.97s, Dir=158˚ 

Test32 X-Surge Y-Sway Z-Heave Roll Pitch Yaw Test32p X-Surge Y-Sway Z-Heave Roll Pitch Yaw
Maximum 1.54 4.32 1.90 4.35 0.54 0.50 Maximum 0.77 0.68 1.12 0.83 0.73 0.12
Minimum -1.96 -1.31 -2.78 -1.32 -0.61 -0.43 Minimum -0.97 -0.44 -1.11 -0.78 -0.68 -0.17
Significant 1.24 1.88 2.23 1.87 0.55 0.49 Significant 0.97 0.43 1.19 0.67 0.83 0.15
Total Num 575 642 504 798 738 514 Total Num 488 919 468 661 433 590
Upper % 0.00% 0.12% 0.00% 0.00% 0.00% 0.00% Upper% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Lower% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Lower% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
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Appendix Figure 32. Motion comparison of test 33 Hs=1.2m, Tp=9.97s, Dir=143˚ 
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Test 34 

No motion data 
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Test 35 

No motion data  
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Appendix Figure 33. Motion comparison of test 36 Hs=1.85m, Tp=12.02s, Dir=173˚ 
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Appendix Figure 34. Motion comparison of test 37 Hs=1.85m, Tp=12.02s, Dir=143˚ 

Test37 X-Surge Y-Sway Z-Heave Roll Pitch Yaw Test37p X-Surge Y-Sway Z-Heave Roll Pitch Yaw
Maximum 0.99 17.64 4.99 12.81 0.54 1.48 Maximum 1.44 13.88 6.38 11.15 0.38 0.74
Minimum -0.63 -2.03 -5.99 -3.66 -0.46 -0.61 Minimum -1.38 -1.46 -6.57 -4.76 -0.33 -0.47
Significant 0.71 7.65 5.31 5.50 0.47 1.00 Significant 0.99 6.06 6.21 4.77 0.38 0.48
Total Num 392 471 376 502 536 446 Total Num 487 525 463 690 609 785
Upper % 0.00% 36.09% 0.85% 4.18% 0.00% 0.00% Upper% 0.00% 24.57% 4.95% 2.61% 0.00% 0.00%
Lower% 0.00% 0.00% 3.18% 0.00% 0.00% 0.00% Lower% 0.00% 0.00% 4.57% 0.00% 0.00% 0.00%
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Appendix Figure 35. Motion comparison of test 38 Hs=1.85m, Tp=12.02s, Dir=143˚ 
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Appendix Figure 36. Motion comparison of test 39 Hs=1.85m, Tp=12.02s, Dir=143˚ 
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