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ABSTRACT

6d (2, 0) theory on M5 branes is investigated by considering its KK modes on a

2d space. Selecting KK modes on different 2d spaces amounts to choosing different

set of selfdual strings as the perturbative degrees of freedom thus will give the 6d

theories related to each other by U-duality. The 4d effective theory for the KK modes

is studied via the M5-D3 duality. Except for the (p, q) open strings, which is the KK

mode arising from the selfdual strings, the 3-string junction should also be added

since it is the bound state of the (p, q) open strings. The quantization of the 3-string

junctions gives the fields, which, when lifted to 6d, may account for the conformal

anomaly of the 6d (2, 0) theory. The interaction between the open strings and the

3-string junctions is also considered. The Lagrangian and the corresponding N=4

supersymmetry transformation is obtained up to some additional terms to be added.

Although the original 6d (2, 0) theory is not constructed directly, the 4d effective

theory for the KK modes gives an equivalent description, from which the 6d S-matrix

can be calculated.
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1. INTRODUCTION

String/M theory offers a natural framework to construct the various quantum

field theories. For example, the U (N) Super Yang-Mills could be realized as the

effective theory on N coincident D branes. The quantization of the open strings

ending on D branes gives the super Yang-Mills field, while the Chan-Paton factors

carried by open strings account for the U (N) gauge asymmetry. Aside from D branes

in string theory, there are also M2 branes and M5 branes in M-theory, from which, the

interesting quantum field theory may be obtained. The low energy effective theory

on multiple M2 branes has been well understood in recent years. However, the low

energy effective theory on multiple M5 branes is still an open problem. All we know

is it is a 6d conformal field theory with the (2, 0) supersymmetry and the AN−1

gauge symmetry. When reduced on one dimension, the 6d (2, 0) theory becomes

the ordinary 5d U (N) Super Yang-Mills. AdS/CFT also predicts that the theory

should have the N3 other than N2 degrees of freedom. The twisted reduction of the

6d (2, 0) theory on the 2d surfaces gives the fruitful N=2 gauge theories related to

each other by S-duality, which is the peculiar property of this theory. In chapter,

we will introduce the string/M theory embedding of the 6d (2, 0) theory. Section A

and section B gives the type IIB and the M theory realization of the 6d (2, 0) theory

respectively. Section C is about the little string theory, a close relative of the 6d

(2, 0) theory.

1.1 The type IIB realization of the 6d (2, 0) theory

In [1], Witten considered the type IIB string theory compactified on R6×K3 and

discovered a new superconformal six-dimensional string theory without the dynami-

cal gravity, invariant under the (2, 0) supersymmetry algebra, classified by the ADE
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group.

K3 space is a four-dimensional hyper-Kahler surface [2]. Let M represents the K3

manifold, then the relevant properties of the K3 geometry is the homology H2(M)

of two-cycles, which is also dual to the cohomology of 2-forms H2(M). When the

volume of the 2-cycles embedded in K3 shrink to zero, K3 reaches a singular point

in moduli space, in which, the gauge symmetry develops [1]. The singularities obey

an ADE classiffication, i.e. there are two infinite series, Ar, r = 1, 2 · · · and Dr,

r = 3, 4 · · · and three exceptional cases E6, E7 and E8. Suppose {ωa|ωa ∈ H2(M)}

is a basis of 2-forms, while {Ca
2} is the dual 2-cycles, then there is a one-to-one

correspondence between the node of each simply laced Dynkin diagram and Ca
2 .

Type IIA theory on R6 × K3 gives another 6d theory, which is invariant under

the (1, 1) supersymmetry, and is also classified by the ADE group [1]. The (2, 0) and

(1, 1) supersymmetries comes from type IIA and type IIB string theories respectively.

The particle states in the 6d (1, 1) theory arising from the K3 compactification of

type IIA has two sources. Uncharged fields come from the dimensional reduction of

the ten-dimensional type IIA supergravity. For example, the moduli parameterizing

the volume of Ca
2 becomes the scalars in 6d, while the RR 3-form A3 becomes 1-forms

via

A3 → Aa ∧ ωa. (1.1)

The charged states arise from D2-branes wrapped on the two-cycles Ca
2 . The D2-A3

coupling then becomes ∫
Ca2

d3σA3 →
∫
dτAa. (1.2)

The mass of the charged states is proportional to the volume of Ca
2 . When Ca

2

collapses to zero size, charged states are massless, and then the nonabelian gauge

symmetry is obtained. This is in agreement with the duality between the heterotic
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string on the space R6 × T4 and the Type IIA string on R6 ×K3.

For the 6d (2, 0) theory from the type IIB string theory compactified on R6×K3,

the particle states still has two sources. Chargeless fields come from the dimensional

reduction of the ten-dimensional Type IIB supergravity. Now the the RR 4-form A4

becomes 2-forms via

C4 → Ba
2 ∧ ωa, (1.3)

D3-branes wrapping on the two-cycle Ca
2 give the 1d charged strings in 6d. The

D3-C4 coupling in 10d reduces to the string-Ba
2 coupling, i.e.

∫
Ca2

d4σC4 →
∫
d2σBa

2 . (1.4)

The tension of teh string is still proportional to the volume of Ca
2 and will become

tensionless when the volume of Ca
2 approaches 0. Both C4 and D3 are selfdual, so in

6d, the tensor Ba
2 and the strings are also selfdual.

In summary, Type IIA supergravity compactified on K3 gives the 6d (1, 1) vector

multiplet, while the type IIB supergravity on K3 gives the 6d (2, 0) tensor multiplet.

For the charged states, D2 wrapping 2-cycles are 0d states in 6d, while D3 wrapping

2-cycles give the 1d states in 6d. The neutral 6d (1, 1) vector multiplets together with

the charged point states compose the 6d (1, 1) vector multiplet in the representation

of the ADE algebra. 6d (1, 1) theory is then a Super-Yang Mills theory. The same

conclusion does not hold for the 6d (2, 0) theory because the charged states are 1d

strings.

1.2 6d (2, 0) theory on M5 branes

The A-series of the 6d (2, 0) theory also has an interpretation in M-theory, which

is supposed to be the unification of all five different string theories. The theory is

3



still under the developing, but it is very clear that M theory should reduce to the

eleven dimensional supergravity in low energy limit and contains the two dimen-

sional branes and the five dimensional branes, both are 1/2 BPS states preserving

16 supersymmetries. With respect to the 3-form field in 11d supergravity, M2 brane

and the M5 brane are electric and the magnetic states respectively. The AN−1 type

6d (2, 0) theory are low energy effective theory on N coincident M5 banes [3]. The

type IIB picture and the M theory realization are equivalent, as is shown in [4, 5].

The five scalars are then the Goldstone bosons from the spontaneous symmetry

breaking of translational invariance induced by the five brane and parameters as the

relative transverse positions of the M5-branes in the eleven-dimensional space. Just

as open strings may end on D-branes, open M2 branes may end on M5 branes. From

the M5 branes’ point of view, these open M2 branes will appear as the strings. At the

origin of moduli space, the M5-branes coincide and the strings become tensionless,

in parallel with the Type IIB picture. Aside from the A-series, the D-series 6d (2,

0) theory can also be described in M theory. The parallel orientifold plane should

be added in this case. The exotic series E6, E7 and E8 have no known M-theory

realization.

The existence of the 6d SCFT is also predicted by AdS/CFT [6]. The near horizon

limit of the black M5 solutions is AdS7×S4. M theory on AdS7×S4 is suppose to be

dual to a 6d superconformal field theory. AdS/CFT duality offers some clues about

this unknown 6d SCFT. For example, the entropy of the 6d (2, 0) theory should have

a N3 scaling [7], in contrast to the N2 scaling entropy of the 4d super-yang mills

theory.
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1.3 Little string theory

M theory compactified on S1 gives the type IIA string theory. Correspondingly,

M5 brane with a transverse dimension compactified becomes the NS5 brane. Type

IIA little string theory [8, 9], which is the low energy theory on NS5, could be taken as

the 6d (2, 0) theory with a transverse dimension compactified. The compactification

of the transverse dimension will add more degrees of freedom, namely, the winding

mode. Especially, closed membrane wrapping S gives the closed fundamental string

on NS5 with the tension TF1 = 2πRTM2. 6d (2, 0) tensor multiplet then appears as

the lowest oscillation mode of these noncritical strings [10, 11, 12]. However, one thing

to notice is that these strings are all chargeless and is essentially the fundamental

string arising from the closed membrane other than the selfdual string from the open

membrane.

The low energy effective theory on type IIB NS5 branes is the type IIB little

string theory. Here, the string refers to the type IIB string. Under the S-duality

transformation, NS5 brane becomes the D5 brane, while the fundamental strings on

NS5 becomes the D string on D5. In type IIB the NS5-F1 and the D5-D1 bound

state both exist. The effective theory on N coincident D5 branes is the U(N) super-

yang-mills theory. Correspondingly, the type IIB little theory is just a 6d (1, 1)

U(N) super yang-mills theory.

Type IIA NS5 branes compactified on a circle of radius R is T-dual to type

IIB NS5 branes compactified on a circle of radius 1/M2
sR. In fact, in the type IIB

realization, type IIA string theory on R6 ×K3 × S1 is also T-dual to the type IIB

string on R6 ×K3× S1, since K3 is the self-mirror space.
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2. HOPF-WESS-ZUMINO TERM IN THE EFFECTIVE ACTION OF THE 6D

(2, 0) FIELD THEORY REVISITED∗

We discuss the Hopf-Wess-Zumino term in the effective action of the 6d (2, 0)

theory of the type AN−1 in a generic Coulomb branch. For such terms, the super-

gravity calculation could be trusted. We calculate the WZ term on supergravity

side and show that it could compensate the anomaly deficit, as is required by the

anomaly matching condition. In contrast with the SYM theory, in which each WZ

term involves one root ei − ej, here, the typical WZ term involves two roots ei − ej

and ek−ej. Such kind of triple interaction may come from the integration out of the

massive objects carrying three indices. A natural candidate is the recently proposed

1/4 BPS objects in the Coulomb phase of the 6d (2, 0) theories. The WZ term could

be derived from the field theory by a 1-loop calculation. Without the 6d (2, 0) theory

at hand, we take the supersymmetric equations for 3-Lie algebra-valued (2, 0) tensor

multiplet as the starting point to see how far we can go. Although the H3 ∧A3 part

of the WZ term may be produced under the suitable assumptions, the A3 ∧ F4 part

is far more difficult to obtain, indicating that some key ingredient is still missing.

Low energy effective action of the field theory in the Coulomb branch may contain

the Wess-Zumino term arising from the integration out of massive fermions getting

masses via the Yukawa coupling with the vacuum expectation value of the scalar fields

[13, 14]. The existence of the Wess-Zumino term is also required by the anomaly

matching condition [15]. At a generic point of the moduli space, the gauge symmetry

is broken, and then, the ’t Hooft anomaly produced by massless degrees of freedom is

∗Part of this section is reprinted with permission from “Hopf-Wess-Zumino term in the effective
action of the 6d, (2, 0) field theory revisited” by S. Hu and D. V. Nanopoulos, JHEP 1110, 054,
(2011), http://link.springer.com/article/10.1007/JHEP10(2011)054. Copyright 2011 by SISSA -
Trieste (Italy).
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different from the anomaly at the origin. On the other hand, the anomaly matching

condition states that the ’t Hooft anomaly should be the same everywhere on the

moduli space of vacua. As a result, away from the origin, the integrating out of the

massive degrees of freedom should generate the Wess-Zumino term in the low energy

effective action compensating the deficit so that the total anomaly remains the same

[15, 16].

The WZ term is a topological term that does not depend on the metric nor the

coupling, so it is protected without the need of invoking any supersymmetric non-

renormalization theorems. For such terms, we may expect that the 1-loop calculation

in field theory and the supergravity calculation would match. On supergravity side,

the Wess-Zumino term is associated with the magnetic-electric coupling. For Dp-

branes with p ≥ 3, it is given by
∫
Wp+2

F8−p(∧dA)p−3 = (−1)p
∫
Wp+1

F8−p∧A(∧dA)p−4

[17, 18], where F8−p is the magnetic field strength, while (∧dA)p−3 offers the electric

charge. When p = 3,
∫
Wp+2

F8−p(∧dA)p−3 →
∫
W5
F5, because the D3-brane carries

magnetic as well as the electric charge [18]. For M5 branes, the WZ term is composed

by
∫
W6
db2 ∧ A3 and

∫
W7
A3 ∧ F4, which are discussed in [19] and [16] respectively.∫

W6
db2 ∧ A3 does not contribute to the anomaly. It is

∫
W7
A3 ∧ F4 that accounts

for the anomaly deficit. [16] considered the situation when the gauge symmetry is

broken from SU(N + 1) to SU(N)×U(1) by the vacuum expectation value φa. The

corresponding WZ term takes the form of
∫
W7
σ3(φ̂) ∧ dσ3(φ̂), where dσ3(φ̂) is the

pullback of the 4-form field strength generated by a single M5 brane while σ3(φ̂) is the

corresponding 3-form potential. φ̂ = φ/|φ|. It was shown that with the coefficient

given by N(N + 1)/2, the WZ term could indeed reproduce the anomaly deficit

between SU(N + 1) and SU(N)× U(1). In this note, we will extend the discussion

to the generic Coulomb branch (φa1, · · · , φaN). We will show that the supergravity

calculation could give the right coefficient, while the WZ term, although takes the

7



form of
∫
W7
σ3(φ̂ij)∧ dσ3(φ̂kj) with φ̂ij = (φi− φj)/|φi− φj|, could produce the same

amount of anomaly as that of
∫
W7
σ3(φ̂) ∧ dσ3(φ̂). So the WZ term obtained from

the supergravity calculation indeed compensates the anomaly deficit.

In the generic Coulomb branch, the WZ term in SYM theory is (−1)p
∫
Wp+1

F8−p(φ̂ij) ∧ Aij[∧dAij]p−4,1 which is the typical pair-wise interaction arising from

the the integration out of massive fermions carrying index (i, j), or open strings

connecting the ith and the jth D-brane [17, 18]. The term
∫
W7
σ3(φ̂ij) ∧ dσ3(φ̂kj) for

M5 branes seems indicate some kind of triple interaction: three M5 branes could

interact simultaneously. One may naturally expect that such term comes from the

integration out of massive fermions with (i, j, k) index, or open M2 branes connecting

the ith, the jth, and the kth M5 branes. In [20] and more recently, [21], the 1/4 BPS

objects in the Coulomb phase of the ADE-type 6d (2, 0) superconformal theories are

considered. They are made of waves on selfdual strings and junctions of selfdual

strings. In [21], it was shown that the number of 1/4 BPS objects matches exactly

one third of the anomaly constant cG = dGhG for all ADE types, indicating that the

anomaly may be produced by these 1/4 BPS objects. Moreover, the tension of the

string junctions is characterized by (|φi−φj|, |φj −φk|, |φk−φi|), which is just what

is needed to produce the WZ term, since the selfdual string with tension |φi − φj| is

not enough to give the coupling like σ3(φ̂ij) ∧ dσ3(φ̂kj).

For SYM theories, the WZ term could be derived by a standard 1-loop calculation

[17, 18, 22]. It is natural to expect that the WZ term for 6d (2, 0) theories could also

be derived in a similar way [16]. However, the 6d (2, 0) theory is not constructed

yet. Moreover, since the theory is strongly-coupled, it is possible that the Lagrangian

formulation does not exist at all. Nevertheless, in [23], the supersymmetric equations

of motion for the 3-algebra valued (2, 0) tensor multiplet were found. The 3-algebra

1Aij = Ai −Aj . It is the relative flux that makes sense.
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may play an important role in M-theory, as is shown in the construction of the field

theory for multiple M2 branes [24, 25, 26]. For M5 branes, progress has been made in

the reconstruction of the single M5 brane from the BLG model and the ABJM theory

via the Nambu-Poisson algebra [27, 28, 29, 30]. If the fundamental degrees of freedom

for M5 branes carry three indices, the most natural algebra structure for them is the

3-algebra. A serious problem is that there is no finite dimensional Euclidean 3-algebra

satisfying the fundamental identity except for A4. In [23], the fundamental identity

is imposed for the closure of the supersymmetry. We will show that a weaker version

of the fundamental identity could also ensure the supersymmetry. The equations in

[23] could be naturally interpreted as the supersymmetric gauge field equations on

loop space, as is shown in [31]. We will give a slightly different set of gauge field

equations, in which the loop parameter R does not appear, while the auxiliary field

Cµ does not need to be factorized to the vector and the 3-algebra part. Even if

the fundamental identity is relaxed to a weaker version, it is still difficult to find a

definite representation of the 3-algrbra with N3 scaling generators. We will neglect

this problem and go ahead to discuss the WZ term based on equations in [23]. It

may be possible to get the H3 ∧ A3 part of the WZ term, but it’s more difficult to

obtain the A3∧F4 part. To relate the Hopf-Wess-Zumino term derived from the field

theory and that obtained from supergravity, we made special assumptions on both

sides. The final forms of the two could at most have the similar structure, but are

still different, so there must be some key ingredient missing. Besides, to get H3∧A3,

we need d = 5, which is consistent with [23], in which, the constraint reduces the

dynamics from 6d to 5d. However, for A3 ∧ F4, we still need d = 6.

This chapter is organized as follows: In section 2, we get the WZ term for 6d AN−1

(2, 0) theory in a generic Coulomb branch from the supergravity calculation. Part

of the details is given in appendix A. In section 3, we will show that the WZ terms

9



obtained from the supergravity calculation could indeed compensate the anomaly

deficit thus guarantee the anomaly matching condition. In section 4, we will discuss

the degrees of freedom in M5 branes producing the WZ term. In section 5, we

will review the equations of motion for the 3-algebra valued (2, 0) tensor multiplet

obtained in [23], and rewrite it as the supersymmetric gauge field equations. Based

on the equations in [23], we will derive the WZ term on the field theory side to see how

close it could approach the WZ term obtained from supergravity. In section 6, we

will discuss the possible representation of the 3-algebra with the relaxed fundamental

identity. The conclusion is in section 7.

2.1 The Hopf-Wess-Zumino term from the supergravity calculation

Consider the 6d (2, 0) field theory describing N M5 branes. On a generic Coulomb

branch (φa1, · · · , φaN) with a = 1 · · · 5 and φi 6= φj, for i 6= j, the gauge symmetry is

broken to U(1)N . On field theory side, N copies of (2, 0) tensor multiplets remain

massless, while the rest fields get mass. Integrating out these massive degrees of

freedom, one gets the effective action of the 6d, (2, 0) field theory on Coulomb branch.

On supergravity side, we have N M5 branes locating at (φ1, · · · , φN). At least for

WZ terms, the calculation on both sides should coincide. 6d (2, 0) field theory is

still mysterious to us, while the multi-centered supergravity solution of M5 branes

is more tractable, so we will try to get the WZ term in the effective action through

the supergravity calculation.

The action for the coupling of M5 branes with the 11d supergravity could be

written as2 [32, 33, 34]

S = Sg + SM5

2Just as the (6.15) in [34], ∗F4 could be added into the worldvolume of the M5 brane, but then
an equal term will appear in the bulk.
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=
1

2κ2

∫
M11

∗R− 1

2
∗ F̂4 ∧ F̂4 −

1

6
F4 ∧ F4 ∧ A3

− T5

∫
W6

d6ξ
√
− det(gµν + (iv1 ∗̃h3)µν) +

1

2
v1 ∧ h3 ∧ ∗̃(v1 ∧ ∗̃h3)

+
T5

2

∫
W6

db2 ∧ A3 +
T5

2

∫
W7

A3 ∧ F4 (2.1)

where F4 = dA3, W6 = ∂W7,

F̂4 = F4 + 2κ2T5 ∗G7, (2.2)

h3 = db2 − A3. (2.3)

d ∗ G7 = ∗J6. ∗J6 is the the M5-brane current. The last term in (2.1) is just the

Hopf-Wess-Zumino term proposed in [16]. The field equations for F̂4 are

dF̂4 = 2κ2T5 ∗ J6, (2.4)

d ∗ F̂4 +
1

2
F̂4 ∧ F̂4 = −2κ2T5 h3 ∧ ∗J6. (2.5)

∗G7, A3, and F4 have the dependence on gauge, while ∗J6, h3, and F̂4 are gauge

independent. (2.4) and (2.5) only contain gauge invariant quantities.

Suppose the vacuum expectation values of b2 are equal to zero, consider N M5

branes locating at (φ1, · · · , φN). One can choose the slowly varying configuration

(φ1, · · · , φN), for which, F̂4∧F̂4 = 0. Since db2 = 0, one can further assume A3∧∗J6 =

0, thus d ∗ F̂4 = 0. F̂4 then becomes the magnetic field generated by N M5 branes

in the configuration (φ1, · · · , φN).

F̂4 =
N∑
i=1

F̂4i, A3 =
N∑
i=1

A3i. (2.6)
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Note that M5 brane with h3 flux carries the magnetic as well as the electric charge,

and so h3∧F4 involves the electric-electric interaction as well as the electric-magnetic

interaction. Under the present assumption, h3∧F4 only contains the electric-magnetic

coupling, which is our expectation for the WZ term. To calculate the WZ term on

the jth M5 brane, we need the pullback of A3 and F4 on the corresponding W7. The

pullback of ∗G7 on W7 vanishes, so we simply have

∫
W7j

A3 ∧ F4 =
∫
W7j

A3 ∧ F̂4 = Q2
1

∫
W7j

N∑
i=1

σ3ij ∧
N∑
k=1

ω4kj, (2.7)

where dσ3ij = ω4ij. ω4ij is the pullback of ω4i on W7j. ω4i is the unite volume form

of S4 surrounding the ith brane. Altogether, we have

T5

2

N∑
j=1

∫
W7j

A3 ∧ F4 =
Q2

1T5

2

N∑
i=1

N∑
j=1

N∑
k=1

∫
W7j

σ3ij ∧ ω4kj (2.8)

Aside from the F4 ∧ F4 ∧A3 term in supergravity,
∫
A3 ∧ F4 is the other term which

has the N3 scaling.

However, (2.8) is still not exactly the WZ term in the effective action. First, when

i = j = k, we get a self-interaction term. There are totally N such terms. These self-

interaction terms will be produced only when the N massless tensor multiplets are

also integrated out. Since we only integrate massive degrees of freedom, these terms

will not appear in the effective action. Second, for the given brane configuration,

or equivalently, the Coulomb branch, the more accurate expression for the effective

action on supergravity side should be [35]

Seff = Sg + SM5, (2.9)

where Sg is the action of the supergravity fields generated by M5 branes, while SM5 is
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the action of M5 branes on the background generated by themselves. Seff is on-shell

with respect to supergravity as it should be. (2.8) comes from SM5. As is shown in

the appendix A, Sg contains a term which is −2/3 of (2.8), so altogether, we conclude

that

ΓWZ =
Q2

1T5

6
(
N∑
i=1

N∑
j=1

N∑
k=1

∫
W7j

σ3ij ∧ ω4kj −
N∑
i=1

∫
W7i

σ3ii ∧ ω4ii) (2.10)

or

2κ2ΓWZ =
Q3

1

6
(
N∑
i=1

N∑
j=1

N∑
k=1

∫
W7j

σ3ij ∧ ω4kj −
N∑
i=1

∫
W7i

σ3ii ∧ ω4ii), (2.11)

where Q1 = 2κ2T5.

2.2 The anomaly matching

At the origin of the moduli space, 6d, AN−1 (2, 0) field theory has the following

form of anomaly when coupled to a background SO(5)R gauge field 1-form A, and

in a general gravitational background [36, 37].

I8(N) = (N − 1)I8(1) +
1

24
(N3 −N)p2(F ). (2.12)

I8(1) is the anomaly polynomial for a single, free, (2, 0) tensor multiplet [38, 39]:

I8(1) =
1

48

[
p2(F )− p2(R) +

1

4
(p1(F )− p1(R))2

]
. (2.13)

p2(F ) is the second Pontryagin class for the background SO(5)R field strength F :

p2(F ) =
1

8
(
i

2π
)4
[
(trF 2) ∧ (trF 2)− 2trF 4

]
. (2.14)

At a generic point of the moduli space, the only massless degrees of freedom are N−1

copies of tensor multiplets giving rise to the anomaly of (N−1)I8(1). However, based
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on ’t Hooft anomaly matching condition, the integration out of the massive degrees

of freedom will produce the WZ term in the effective action, which will offer the

missing (N3−N)p2(F )/24 part so that the total anomaly is still the same as before

[16]. In the following, we will show that the WZ term in (2.11) could indeed give the

(N3 −N)p2(F )/24 part of the normal bundle anomaly.

Turn on the background SO(5)R gauge field A on W6. ∂W7 = W6, so A could

be smoothly extended to W7. On W7, we have gauge field Aabi = −Abai , with a, b =

1 · · · 5, i = 1 · · · 7. In presence of the background field A, the pullback of the S4 unite

volume form on W7 becomes

ω4(φ̂, A) =
1

2
e4(φ̂, A) =

1

64π2
εa1···a5 [(Di1φ̂)a1(Di2φ̂)a2(Di3φ̂)a3(Di4φ̂)a4

−2F a1a2
i1i2 (Di3φ̂)a3(Di4φ̂)a4 + F a1a2

i1i2 F
a3a4
i3i4 ]φ̂a5dxi1 ∧ · · · ∧ dxi4 ,(2.15)

(Diφ̂)a = ∂iφ̂
a−Aabi φ̂b, F ab

ij is the field strength. φ̂ is a unite vector in the transverse

space R5. If ω4(φ̂, A) represents the pullback of the 4-form field strength generated

by the ith M5 brane on W7j, φ̂ is determined by the relative position of W6i and W7j.

Especially, at the boundary of W7j, φ̂ is simply determined by the relative position

of W6i and W6j in the transverse space, i.e.

φ̂a =
φai − φaj
|φi − φj|

, (2.16)

where φai is the vacuum expectation value of scalar field for the ith M5 brane.

e4(φ̂, A) is the global angular form defined over the sphere bundle with fiber S4

and base space W7.

de4 = 0. (2.17)
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Under the SO(5) transformation,

φ̂a → φ̂a + Λabφ̂b

Aab → Aab + dΛab + [Λ, A]ab. (2.18)

Dφ̂a and F ab transform covariantly under (2.18), while e4(φ̂, A) is SO(5) invariant.

For the present problem, we have N2−N global angular forms e4(φ̂, A) with different

φ̂ but the same A. Since e4 is SO(5) invariant, they can also be equivalently repre-

sented by e4(φ̂, A) with the same φ̂ but different A. p2(F ) is the second Pontryagin

class of a rank 5 real vector bundle, nevertheless, we still have

p2(F ) = χ(F )2, (2.19)

where χ(F ) is the Euler class of a rank 4 subbundle with the orthogonal line bundle

trivial. One can always choose particular φ̂0 so that

e4(φ̂0, A) = χ(F ) (2.20)

Actually, for such φ̂0, Dφ̂0 = 0, so e4(φ̂0, A) reduces to the Euler class. We take this

φ̂0 as the standard and transform all of the angular forms into the form of e4(φ̂0, Ã),

where Ã are different connections defined on the same normal bundle. Just as the

invariant polynomials, if Ã and Ã′ are two different connections,

e4(φ̂0, Ã)− e4(φ̂0, Ã
′) = de3(φ̂0, Ã)− de3(φ̂0, Ã

′) = dR(φ̂0, Ã, Ã
′), (2.21)
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with e3 the corresponding Chern-Simons forms.

R(φ̂0, Ã, Ã
′) = − 1

32π2

∫ 1

0
dt εa1···a5 [(Dtφ̂0)a1(Dtφ̂0)a2 − F a1a2

t ]ηa3a4φ̂a5
0 , (2.22)

where

η = Ã− Ã′, At = Ã′ + tη, Ft = dAt − A2
t , Dt = (d− At). (2.23)

R(φ̂0, Ã, Ã
′) is SO(5) invariant.

e3(φ̂0, Ã)− e3(φ̂0, Ã
′) = R(φ̂0, Ã, Ã

′). (2.24)

For different connections, e3 only differ by a SO(5) invariant term.

Return to the original global angular form e4(φ̂, A), we will have

e4(φ̂, A) = χ(F ) + dα(φ̂, A), (2.25)

e4(φ̂, A) ∧ e4(φ̂′, A) = p2(F ) + dβ(φ̂, φ̂′, A), (2.26)

where both α and β are SO(5) invariant.

p2(F ) = d[e3(φ̂, A) ∧ e4(φ̂′, A)− β(φ̂, φ̂′, A)]. (2.27)

By descent equations,

δ[e3(φ̂, A) ∧ e4(φ̂′, A)] = δp0
2(A) = dp1

2(A). (2.28)
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Now, consider the SO(5) gauge transformation of (2.11). For each term,

δ[
1

6

∫
W7

σ3(φ̂, A) ∧ ω4(φ̂′, A)] = δ[
1

24

∫
W7

e3(φ̂, A) ∧ e4(φ̂′, A)]

=
1

24

∫
W7

dp1
2(A) =

1

24

∫
W6

p1
2(A). (2.29)

There are totally N3 − N such terms, so ΓWZ could indeed reproduce the (N3 −

N)p2(F )/24 part of the anomaly.

If the SU(N) group is broken to some subgroup like U(N1) × U(N2) × SU(N3)

with N1 + N2 + N3 = N , the deficit of the anomaly produced by massless degrees

of freedoms is (N3 − N3
1 − N3

2 − N3
3 )p2(F )/24. Corresponding, ΓWZ will contain

N3 −N3
1 −N3

2 −N3
3 terms exactly compensating the deficit.

2.3 The degrees of freedom in M5 branes producing the WZ term

The supergravity interaction between D-branes is pairwise. This is consistent

with the fact that the WZ term for N D-branes in a generic Coulomb branch could

be written as the sum of N(N − 1)/2 terms labeled by (ij) index [17, 18]. On the

other hand, the
∫
A3 ∧ F4 term in the action of M5 branes gives a triple interaction.

That is, three M5 branes could interact simultaneously. The supergravity interaction

for D-branes is produced by open strings connecting two D-branes. Similarly, one

may expect that the triple interaction
∫
A3 ∧ F4 could be produced by open M2

branes connecting three M5 branes.

Another example of N3 interaction is given by M theory compactified on a Calabi-

Yau threefold with M5-branes wrapping 4-cycles, giving rise toN = 1 5d supergravity

along with the chiral strings [40, 41]. In the bulk, we have Chern-Simons term

C1 ∧ dC1 ∧ dC1, while in the worldsheet of chiral strings,
∫
C1 ∧ dC1 may exist [16].

These N3 degrees of freedom in entropy are explained as states living at the triple-
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intersection of M5 branes [42, 43].

In [20] and more recently, [21], the 1/4 BPS objects in the Coulomb phase of the

ADE-type 6d (2, 0) superconformal theories are explored. They are made of waves on

selfdual strings and junctions of selfdual strings. Especially, in [21], it is shown that

the number of 1/4 BPS objects matches exactly one third of the anomaly constant

cG = dGhG for all ADE types, which strongly indicates that the anomaly may be

produced by these 1/4 BPS objects. In AN−1 case, there are N(N − 1)/2 1/2 BPS

selfdual strings with tension Tij ∝ |φi − φj|. On each selfdual string, there are left

and right 1/4 BPS waves. Turning on these BPS waves, we get N(N − 1) 1/4 BPS

objects. For every three M5 branes ijk, 1/4 BPS junction exists. The tension of

the string junctions is characterized by (|φi − φj|, |φj − φk|, |φk − φi|). The junction

forms a dual lattice to the triangle ∆ijk, if one indentify the SO(5) in W6 with the

SO(5) in the transverse space. For such configuration, the tension of selfdual strings

is balanced and the junction is 1/4 BPS. There are totally N(N − 1)(N − 2)/3 such

objects because of the junction and anti-junction. Altogether, the 1/4 BPS objects

on N M5 branes in a generic Coulomb branch is N(N2 − 1)/3.

Let us rewrite (2.11) in a more symmetric way.

2κ2ΓWZ =
∑

i 6=j,j 6=k,k 6=i
Ωijk +

∑
i 6=j

Ωij, (2.30)

where

Ωijk =
Q3

1

6
[
∫
W7i

(σ3ji ∧ ω4ki + σ3ki ∧ ω4ji) +
∫
W7j

(σ3ij ∧ ω4kj + σ3kj ∧ ω4ij)

+
∫
W7k

(σ3ik ∧ ω4jk + σ3jk ∧ ω4ik)]. (2.31)
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Ωij =
Q3

1

6
[
∫
W7i

(σ3ji∧ω4ii+σ3ii∧ω4ji+σ3ji∧ω4ji)+
∫
W7j

(σ3ij∧ω4jj+σ3jj∧ω4ij+σ3ij∧ω4ij)].

(2.32)

It seems that junction and anti-junction may produce the term Ωijk, while left and

right waves on selfdual strings could give Ωij. Recall that in D-brane case, the WZ

term arising from the integration out of massive fermions ψij is expressed in terms of

the vector φi−φj [17, 18]; here, the WZ term produced by string junctions (ijk) could

be calculated from the vectors (φi−φj, φj−φk, φk−φi). When i = k, the three string

junctions degenerate to one selfdual string with tension Tij ∝ |φi−φj| and the other

tensionless selfdual string perpendicularly ending on it. So, in some sense, selfdual

string with waves is a degeneration of the string junction. Ωij = 1
2
(Ωiji + Ωjij).

Except for
∫
W7
A3 ∧ F4, M5 brane action contains another term

∫
W6
db2 ∧ A3 =

−
∫
W6
b2 ∧ F4 =

∫
W6
H3 ∧ A3. Now suppose the vacuum expectation value of b2 on

the ith M5 brane is b2i,
∫
W6
H3 ∧ A3 part of the WZ term should also enter into the

low energy effective action, although it does not contribute to the anomaly since

dH3 = 0. In [19], based on the supergravity calculation, it is shown that

ΓH =
∫
W6

H3 ∧ A3 ∝ −
∑
i6=j

∫
W6

b2ij ∧ ω4ij =
∑
i 6=j

∫
W6

H3ij ∧ σ3ij, (2.33)

where b2ij = b2i − b2j, H3ij = db2ij = H3i − H3j. This is the typical pairwise

interaction. The reduction of
∫
W6
H3 ∧ A3 on S1 gives

∫
W5
F2 ∧ A3, the WZ term of

the 5d SYM theory. In 5d SYM theory,
∫
W5
F2 ∧ A3 is generated by the integration

out of massive fermions coming from the selfdual strings wrapping S1, so it is quite

possible that (2.33) is produced by 1/2 BPS selfdual strings.

The non-abelian part of the R-symmetry anomaly are all accounted for by 1/4

BPS objects. R-symmetry anomaly and Weyl anomaly are related by supersymme-

try. In [44], the conformal anomaly of 6d (2, 0) SCFT of AN−1 type is calculated
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as

A2,0(N) = (N − 1)Atens + (N3 −N)A, (2.34)

where Atens is the conformal anomaly of the free (2, 0) tensor multiplet. It is ex-

pected that the 1/4 BPS objects could produce (N3 − N)A, if they could give the

corresponding part in R-symmetry anomaly. Note that N − 1 1/2 BPS massless

particles and N(N − 1)(N − 2)/3 junctions of selfdual strings always contribute to

the anomaly and entropy. However, the N(N − 1)/2 selfdual strings have no con-

tribution to the anomaly nor entropy unless the BPS waves are turned on thus the

supersymmetry is reduced to 1/4. Once the selfdual strings become 1/4 BPS, the

anomaly polynomial of them is the same as that of the string junctions, since the

1/4 BPS selfdual strings could be taken as the degeneration of the string junctions.

Then the question is why the 1/2 BPS selfdual strings have no contribution to

the anomaly and the entropy. In N = 4 SYM theory, 1/4 BPS states arising from

string junctions ending on three D3 branes also exist [45], however, the anomaly and

entropy are both give by 1/2 BPS particles. The general form of the anomaly for a

6d (2, 0) SCFT of the ADE type G is

A2,0 = rGAtens + cGAX , (2.35)

where cG = dGhG = rGhG(hG + 1). rG, dG and hG are the rank, the dimension, and

the Coxeter number of the Lie algebra of type G. The theory contains rG 1/2 BPS

massless particles, rGhG 1/2 BPS selfdual strings, and cG/3 1/4 BPS objects. The

anomaly of the single M5 brane does not have the AX part, so rG 1/2 BPS massless

particles only contribute to Atens. Then AX should be generated by 1/2 BPS selfdual

strings or 1/4 BPS objects. If one wants to interpret it in terms of selfdual strings,
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each selfdual string should give the anomaly of (hG + 1)AX , which in SU(N) case,

is (N + 1)AX . It is difficult to explain this hG + 1 factor. Otherwise, since the total

number of the 1/2 BPS states is dG, they can account for the AX part if each one

contributes hGAX . This looks more reasonable, but the problem is that the rG 1/2

BPS massless particles will contribute to Atens as well as AX . The most natural

possibility is that AX is produced by 1/4 BPS objects, which are intrinsically three

selfdual string junctions.

Finally, notice that for N = 4 SYM theory, the anomaly takes the form A4 =

(N2 − 1)Avec, where Avec is the anomaly of a free vector multiplet. The anomaly is

not renormalized from weak to strong coupling, so we can calculate it from the free

field value. Besides, N2 − 1 elements in the Lie algebra give the same contribution

to the anomaly, indicating that they are allowed to transform into each other. On

the other hand, for 6d (2, 0) SCFT, the anomaly polynomial is of the form A2,0 =

(N − 1)Atens + (N3 − N)AX other than (N3 − 1)Atens, which seems indicate that

there are something special about the non-abelian part.

6d (2, 0) SCFT compactified on S1 gives 5d SYM theory. Selfdual strings wrap-

ping on S1 become 1/2 BPS particles. The unwrapped selfdual strings and 1/4 BPS

string junctions in 6d descend to the corresponding string-like objects in 5d [20, 21].

String junctions could also appear as point-like particles in the compactified theory.

Consider the 6d SCFT compactified on a Riemann surface Σg with g > 1 [46, 47, 48],

the T part of Σg is the natural place for string junctions to wrap. Σg is built from

2(g − 1) TN blocks and 3(g − 1) IN blocks. TN and IN are spheres with 3 and 2 full

punctures respectively. The dimension of the Coulomb branch for TN and IN are

dcTN =
(N − 1)(N − 2)

2
, dcIN = N − 1. (2.36)
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The effective number of vector multiplets for TN and IN are

nvTN =
2N3

3
− 3N2

2
− N

6
+ 1, nvIN = N2 − 1. (2.37)

Note that

2(g − 1)dcTN + 3(g − 1)dcIN = (g − 1)(N2 − 1) (2.38)

and

2(g − 1)nvTN + 3(g − 1)nvIN = (g − 1)(
4N3

3
− N

3
− 1) (2.39)

are the dimension of the Coulomb branch and the effective number of vector multi-

plets for the Σg theory. Especially, when g = 1, Σ1 is simply constructed from one

IN . The degrees of freedom arising from strings could be calculated as

nTN = nvTN − dcTN = 4C3
N , nIN = nvIN − dcIN = 2C2

N . (2.40)

nTN could be naturally accounted for by string junctions3, while nIN is associated

with the selfdual strings. In the generic point of the Coulomb branch of TN , the

Seiberg-Witten curve is a Riemann surface with (N − 1)(N − 2)/2 genus and 3N

simple punctures [47, 49]. In that case, nTN could also be explained as the number

of M2 branes with two boundaries. However, at the origin of the moduli space, the

only nontrivial configurations are M2 branes with three boundaries. The anomaly

polynomial I6(N) in 4d is obtained from I8(N) in 6d by the integration over Σg

[50, 51]. Both of them have a N3 scaling part.

3String junctions could give 2C3
N , but the extra factor 2 is a little difficult to explain.
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2.4 WZ term from the integration of massive fermions

The WZ term could be derived by a 1-loop calculation in field theory. For SU(N)

gauge theories, this has been done in [17, 18, 22]. In Coulomb branch, fermions get

mass due to the Yukawa coupling. The integration of the fermion loop gives WZ

terms in the low energy effective action. We don’t know the structure of the 6d (2, 0)

field theory. A recent calculation on scattering amplitudes [52] indicates that an

interacting 6d Lagrangian with classical OSp(8|4) symmetry cannot be constructed

using only (2, 0) tensor multiplets, even if the Lagrangian is non-local. A Lagrangian

description may exist, however, if one includes additional degrees of freedom, for

example, the selfdual strings. If the Lagrangian could be constructed, then it may

contain the fermionic degrees of freedom, and the corresponding Dirac operator and

Yukawa couplings. We may expect that the WZ term could be obtained by the

similar fermion-loop integration. Of course, if the Lagrangian does not exist at

all no matter what kinds of degrees of freedom are added, such calculation is not

valid. In the following, we will discuss the possible ingredients of this theory and the

relevance with the WZ term. It is just a speculation and the final answer is still far.

First, let us consider the possible algebra structure. The SU(N) gauge theo-

ries are constructed through the 2-algebra. The Yukawa coupling is ΓI [X
I , ψ]. In

Coulomb branch, it becomes ΓI(φ
I
i − φIj )ψij, giving mass |φi− φj| to ψij. |φi− φj| is

the length of the string connecting the ith and the jth D-branes. On the other hand,

the Lagrangian of the M2 branes has the 3-algebra structure [24, 25, 26]. The ABJM

theory could also be written in the 3-algebra language and has a sextic potential

[53]. The Yukawa coupling takes the form ΓIΓJ [XI , XJ , ψ]. The fermion mass scales

as the area other than the length, reflecting the fact that M2 branes are connected

by M2 branes other than strings [54, 55]. M5 branes are also connected by M2
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branes, so we may expect that the interaction could also be constructed through the

3-algebra. However, there is a difference. The M2 branes connecting parallel M2

branes are totally located in the transverse space. The endpoint is simply a point.

As a result, we get ΓIΓJ [XI , XJ , ψ], where XI and XJ carry the transverse index.

Conversely, the M2 branes connecting parallel M5 branes have one dimension living

in the worldvolume of M5. The endpoint is a string. Correspondingly, we may have

ΓµΓI [C
µ, XI , ψ], where µ = 0 · · · 5, I = 6 · · · 10.

Actually, in [23], an attempt to find the 6d (2, 0) theory with the 3-algebra struc-

ture has already been made. It was shown that for the closure of the supersymmetry,

an additional vector Cµ must be introduced, while the 3-brackets appearing in the

equations of motion always take the form [Cµ, A,B]. Later, in [31, 56], the equations

of motion found in [23] get a natural interpretation as the supersymmetric gauge

field equations in loop space. Especially, in [31], it was shown that the BPS solu-

tions to these equations yield the non-abelian extension of the selfdual string solitons

proposed by [57], indicating that these equations may capture some aspects of the

dynamics of M5 branes. Cµ is associated with the vector tangential to the loop in

the worldvolume of M5 branes.

In the following, we will discuss the relevance of the equations in [23] with the

WZ term. With the equations of motion at hand, we may try to derive the WZ term

in a similar way as that in [17, 18].

The field content in [23] includes the tensor multiplet composed by XI with

I = 6 · · · 10, ψ, and Hµνλ with µ, ν, λ = 0 · · · 5, an auxiliary gauge field Aµ, and

a vector field Cµ. XI , ψ, Hµνλ, and Cµ take values in a vector space Λ with the

basis ta, i.e. XI = XI
at
a, etc. As a 3-algebra, Λ has an associated Lie algebra gΛ

spanned by the transformations [ta, tb, ∗], where ∗ stands for an arbitrary element of

Λ. Aµ takes values in gΛ. AµXI = Aµab[t
a, tb, XI ], etc. Aµ and Hµνλ are related by
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F µν
ab [ta, tb, ∗] = [Cλ, H

µνλ, ∗], with F µν
ab the field strength of Aµab. So, for the given Cλ,

F µν is actually a transgression of Hµνλ [31].

The dimension of Λ is denoted by d(Λ), which is not specified at present. ∀A,B ∈

Λ, there is an inner product 〈A|B〉 = 〈B|A〉∗. The fundamental identity is

[A,B, [X, Y, Z]] = [[A,B,X], Y, Z] + [X, [A,B, Y ], Z] + [X, Y, [A,B,Z]]. (2.41)

As is well known, the only nontrivial finite-dimensional 3-Lie algebra with positive

definite metric is A4, so we have to either accept a Euclidean 3-algebra with (2.41)

violated, or a Lorentzian 3-algebra satisfying (2.41). In [23], the supersymmetry

transformation is discussed, and the fundamental identity is imposed for the closure

of the supersymmetry. In appendix B, we will show that such restriction could be

relaxed in some degree. Actually, since all 3-bracket takes the form of [Cµ, A,B], the

fundamental identity only needs to hold for such kind of gauge transformations. More

concretely, we need a subspace Λ̄ ⊂ Λ, ∀ C1, C2 ∈ Λ̄, [C1, C2, ∗] = 0.4 ∀ X1, X2, Y ∈

Λ,

[C2, X2, [C1, X1, Y ]]− [C1, X1, [C2, X2, Y ]]

= [[C2, X2, C1], X1, Y ] + [C1, [C2, X2, X1], Y ]

= [C1, [C2, X2, X1], Y ]

= [C2, [C1, X2, X1], Y ]. (2.42)

The fundamental identity only needs to be satisfied for gauge transformations gen-

erated by [C,X, ∗]. [δ1, δ2] = δ3, where δ1∗ = [C1, X1, ∗], δ2∗ = [C2, X2, ∗], δ3∗ =

[C1, [C2, X2, X1], ∗] = [C2, [C1, X2, X1], ∗]. One can define a Lie-algebra g generated

4Obviously, ∀ A ∈ Λ, [A,A, ∗] = 0. In [31], Λ̄ is a one-dimensional space generated by C. Here,
we want to keep more possibilities, so Λ̄ may contain more than one generators.
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by [C,X, ∗], ∀ C ∈ Λ̄, ∀ X ∈ Λ, for which, the Jacobi identity is satisfied. The

theory only has the relevance with g. We even don’t need to know the definition of

[X, Y, Z] if none of them belong to Λ̄.

Similar with [31], we may try to describe selfdual strings by fields valued in g.

ψ̃µ = [Cµ, ψ, ∗], (2.43)

X̃I
µ = [Cµ, X

I , ∗], (2.44)

F̃ µν = [Cλ, H
µνλ, ∗]. (2.45)

The original tensor multiplet, when combined with Cµ, becomes fields associated

with selfdual strings. ψ, X and H are converted to the vector spinor, the 1-form and

the 2-form respectively. From ψ̃µ, One can also construct a spinor ψ̃ = Γµψ̃
µ.

The equations of motion for 3-algebra valued (2, 0) tensor multiplets found in

[23] are

[Cµ, Cν , ∗] = 0, (2.46)

∇νC
µ = 0, (2.47)

[Cρ,∇ρX
I , ∗] = 0, [Cρ,∇ρψ, ∗] = 0, [Cρ,∇ρHµνλ, ∗] = 0, (2.48)

F̃ µν − [Cλ, H
µνλ, ∗] = 0, (2.49)

Γµ∇µψ + [Cµ, XI ,ΓµΓIψ] = 0, (2.50)

∇2XI − i

2
[Cµ, ψ̄,ΓµΓIψ] + [Cµ, XJ , [Cµ, XJ , X

I ]] = 0, (2.51)

∇[µHνκλ] +
1

4
εµνκλστ [C

σ, XI ,∇τXI ] +
i

8
εµνκλστ [C

σ, ψ̄,Γτψ] = 0, (2.52)
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where ∇µ = ∂µ − iAµ, XI , ψ,Hµνλ ∈ Λ, Cµ ∈ Λ̄.

F̃ µν = ∂νAµ − ∂µAν + [Aν , Aµ]. (2.53)

For generic Aµ ∈ gΛ, F̃ µν ∈ gΛ. However, (2.49) shows that F̃ µν ∈ g, so we may also

require Aµ ∈ g, and then ∇νC
µ = ∂νC

µ = 0. The supersymmetry transformations

are [23]

δXI = iε̄ΓIψ,

δψ = ΓµΓI∇µXIε+
1

12
ΓµνλH

µνλε− 1

2
ΓIJΓλ[X

I , XJ , Cλ]ε,

δHµνλ = 3iε̄Γ[µν∇λ]ψ + iε̄ΓIΓµνλκ[X
I , ψ, Cκ],

δAµ = iε̄Γµλ[C
λ, ψ, ∗],

δCµ = 0. (2.54)

(2.46) and (2.49) are automatically satisfied by definition. From (2.46)-(2.52),

we can derive the equations of motion for ψ̃µ, X̃I
µ, and F̃ µν . For Ỹµ = [Cµ, Y, ∗], the

covariant derivative is defined as

∇ν Ỹµ = ∂ν Ỹµ − i[Aν , Ỹµ]

= [∂νCµ, Y, ∗] + [Cµ, ∂
νY, ∗]− i[Aνab[ta, tb, Cµ], Y, ∗]− i[Cµ, Aνab[ta, tb, Y ], ∗]

= [Cµ,∇νY, ∗]. (2.55)

The obtained equations are

Γν∇νψ̃µ − ΓIΓ
ν [X̃I

ν , ψ̃µ] = 0, (2.56)

∇2X̃I
µ +

i

2
[¯̃ψµ,Γ

Iψ̃] + [X̃ν
J , [X̃

J
ν , X̃

I
µ]] = 0, (2.57)
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∇[µF̃νκ] = 0, (2.58)

∇µF̃µν −
1

24
[X̃I

λ,∇νX̃
λ
I ] +

i

48
([ ¯̃ψν , ψ̃]− [ ¯̃ψ λ,Γνψ̃λ]) = 0, (2.59)

together with the constraints

∇ρψ̃ρ = ∇ρX̃I
ρ = ∇ρGµνλ, ρ = 0, (2.60)

where Gµνλ, ρ = [Cρ, Hµνλ, ∗], gρλGµνλ, ρ = F̃µν . From (2.56), we also have

Γµ∇µψ̃ − ΓIΓ
µ[X̃I

µ, ψ̃] = 0. (2.61)

The corresponding supersymmetry transformations read as

δX̃I
µ = iε̄ΓIψ̃µ,

δψ̃µ = ΓνΓIε∇νX̃I
µ +

1

12
ΓρνλεGρνλ, µ −

1

2
ΓIJΓλε[X̃I

µ, X̃
J
λ ],

δF̃µν = 3iε̄Γ[µν∇λ]ψ̃
λ + iε̄ΓIΓµνλκ[X̃

λ
I , ψ̃

κ],

δAµ = iε̄Γµλψ̃
λ. (2.62)

The constraints (2.48), or equivalently, (2.60), are quite crucial for equations (2.56)-

(2.59) to take a neat form.

We will derive (2.58) and (2.59) as an example. Since [Cλ,∇λHµνκ, ∗] = 0,

∇[µF̃νκ] = [Cλ,∇[µHνκλ], ∗]

= −1

4
εµνκλστ [C

λ, [Cσ, XI ,∇τXI ], ∗]−
i

8
εµνκλστ [C

λ, [Cσ, ψ̄,Γτψ], ∗]. (2.63)
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From (2.42), we have

[Cλ, [Cσ, XI ,∇τXI ], ∗] = [Cσ, [Cλ, XI ,∇τXI ], ∗], (2.64)

[Cλ, [Cσ, ψ̄,Γτψ], ∗] = [Cσ, [Cλ, ψ̄,Γτψ], ∗]. (2.65)

As a result, ∇[µF̃νκ] = 0. The Bianchi identity is satisfied, so F̃µν is indeed the field

strength of Aµ. Since H = ∗H, from (2.52),

∇µHµνλ+
1

24
([Cν , X

I ,∇λXI ]− [Cλ, X
I ,∇νXI ])+

i

48
([Cν , ψ̄,Γλψ]− [Cλ, ψ̄,Γνψ]) = 0.

(2.66)

So

∇µF̃µν = [Cλ,∇µHµνλ, ∗]

= − 1

24
[Cλ, [Cν , X

I ,∇λXI ]− [Cλ, X
I ,∇νXI ], ∗]

− i

48
[Cλ, [Cν , ψ̄,Γλψ]− [Cλ, ψ̄,Γνψ], ∗]

=
1

24
[X̃I

λ,∇νX̃
λ
I ]− i

48
([ ¯̃ψν , ψ̃]− [ ¯̃ψ λ,Γνψ̃λ]) = J̃ν , (2.67)

where we have used ∇λX̃
λ
I = 0.

(2.56)-(2.59) looks quite like the equations of motion of the SYM theory. Fields

ψ̃µ, X̃I
µ, and Aµ take values in a 2-Lie-algebra g, while the corresponding theory

becomes a gauge theory. The Bianchi identity and the field equation for F̃ could

be derived from the equation for H, if the selfdual condition is imposed. These

equations are extension of the supersymmetric gauge field equations in loop space

obtained in [31], for which, Cµ = Cẋµ(τ), |ẋ(τ)| = R.

The auxiliary field Cµ is now absorbed in ψ̃µ, X̃I
µ, and F̃µν . Note that when

Cµ = 0, the original (2.46)-(2.52) reduce to the equations of motion for free tensor
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multiplets, while the new-defined fields become zero. These new fields may represent

selfdual strings. The length of Cµ characterizes the length of strings. Especially,

when the strings shrink to points, which are described by tensor multiplets, the

interaction disappears. A particular Cµ corresponds to a particular set of selfdual

strings. We want to take Cµ as the new degrees of freedom added, so we will not

specify it. The path integral may cover all possible configurations of Cµ.

Now, consider the Coulomb branch of the theory. The supersymmetry transfor-

mation (2.54) for the original fields suggests that the vacuum configuration is given

by constant XI satisfying [Cµ, XI , XJ ] = 0, while the supersymmetry transforma-

tion (2.62) for the new fields shows that the vacuum is given by constant X̃I
µ with

[X̃I
µ, X̃

J
ν ] = 0. From (2.42) it is easy to see if [Cµ, XI , XJ ] = 0, [X̃I

µ, X̃
J
ν ] = 0.

Choose a maximal subspace Λ0, Λ0 ⊂ Λ, ∀A,B ∈ Λ0, ∀C ∈ Λ̄, [C,A,B] = 0.

Λ = Λ0 ⊕ Λ1, there is a special set of basis
{
t1 · · · tM

}
for Λ1, ∀C ∈ Λ̄, ∀A ∈ Λ0,

[C,A, tm] ∝ tm. Λ0 and
{
t1 · · · tM

}
could be taken as the Cartan subalgebra and

the roots respectively. Suppose the vacuum expectation value of XI is given by

X̄I , X̄I ∈ Λ0. [Cµ, X̄
I , tm] = φImµt

m. Let [Cµ, X̄
I , ∗] = ˜̄X I

µ, [Cν , t
m, ∗] = t̃mν , then

[ ˜̄X I
µ, t̃

m
ν ] = φImµt̃

m
ν . t̃mν is the corresponding root in g. Similarly, suppose the vacuum

expectation value of Hµνλ is H̄µνλ, H̄µνλ ∈ Λ0, then [Cλ, H̄
µνλ, tm] = fµνm tm. For

[Cλ, H̄
µνλ, ∗] = ˜̄F µν , [ ˜̄F µν , t̃mν ] = fµνm t̃mν .

To calculate the WZ term, we need to plug the vacuum expectation values into

the Dirac equation for fermions. Let ψm denote fermions taking values in the root

tm. From (2.50),

Γµ∇µψm + φImµΓµΓIψ
m = 0. (2.68)

From (2.61),

Γµ∇µψ̃m + φImµΓµΓIψ̃
m = 0. (2.69)
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Besides,

[Cλ, H̄
µνλ,ΓµΓνψ

m] = fµνm ΓµΓνψ
m, [ ˜̄F µν ,ΓµΓνψ̃

m] = fµνm ΓµΓνψ̃
m. (2.70)

ψm and ψ̃m are the 6d anti-chiral and chiral fermions respectively. Written as the

11d Majorana spinors, Γ7ψ
m = −ψm, Γ7ψ̃

m = ψ̃m, where Γ7 = Γ012345. One can

either choose ψm or ψ̃m to do the calculation. Here, we use ψm. Just as that in

[17, 18], the WZ term could be written as

Γm = Tr

{
ln [iΓ0Γµ∂

µ + Γ0ΓµA
µ
m + iΓ0ΓµΓIφ

I
mµ]

1− Γ7

2

}
, (2.71)

δΓm
δφImµ(x)

= Sp[〈x| 1

iΓν∂ν + ΓνAνm + iΓνΓIφImν
|x〉 iΓµΓI(

1− Γ7

2
)], (2.72)

where Sp is the trace in spinor indices. WZ term comes from the imaginary part of

the effective action. Taking the difference of (2.72) with its complex conjugate,

δImΓm
δφImµ(x)

= −1

2
Sp[〈x| 1

iΓν∂ν + ΓνAνm + iΓνΓIφImν
|x〉ΓµΓIΓ7]

= −1

2
Sp[〈x| 1

/D
|x〉ΓµΓIΓ7]

= −1

2
Sp[〈x| /D

/D2
|x〉ΓµΓIΓ7]. (2.73)

(2.73) may be expanded as the sum of the terms proportional to 1 or Tr(ΓM1 · · ·ΓMk
),

where M1, . . . ,Mk are distinct indices. Note that Tr(ΓM1 · · ·ΓMk
) = 0 unless k =

11, so we need to extract the term proportional to Tr(Γ0 · · ·Γ10) ∝ ε0···10. In the

numerator, iΓνΓIφ
I
mν in /D will be kept, while in the denominator,

/D2 = −∂2 + φImµφ
µ
mI +

i

2
ΓµΓνf

µν
m − ΓµΓνΓI∂

µφImν + ΓµνΓIJφ
I
mµφ

J
mν + · · · , (2.74)
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where fµνm = ∂µAνm − ∂νAµm + [Aµm, A
ν
m],

1

/D2
= −

∞∑
n=0

[ i
2
ΓµΓνf

µν
m − ΓµΓνΓI∂

µφImν + ΓµνΓIJφ
I
mµφ

J
mν + · · ·]n

(∂2 − φImµφ
µ
mI)

n+1
. (2.75)

The integral that needs to be performed is

〈x| 1

(∂2 − φImµφ
µ
mI)

n+1
|x〉 = (−1)n+1

∫ ddp

(2π)d
1

(p2 + φImµφ
µ
mI)

n+1

=
iΓ(n+ 1− d

2
)

(2
√
π)dΓ(n+ 1)

1

(
√
φImµφ

µ
mI)

2n+2−d
. (2.76)

The constraint [Cµ,∇µψ
m, ∗] = 0 reduces the dynamics from 6d to 5d. If Cµ is taken

as the vector tangential to the selfdual string, the constraint means that the physical

momentum of the string is along the transverse direction. As a result, d = 5.

In analogy with the 5d SYM theory, we may let n = 4, and then 2n+ 2− d = 5.

δImΓm
δφImµ(x)

∝
Sp
{

[ i
2
ΓρΓνf

ρν
m − ΓρΓ

νΓJ∂
ρφJmν + ΓρνΓKJφ

K
mρφ

J
mν + · · ·]4φLmλΓλΓLΓµΓIΓ7

}
(
√
φImµφ

µ
mI)

5

(2.77)

The term containing one fρνm and three ∂ρφJmν is

δL1

δφImµ(x)
∝ −

fmρν∂ρ1φ
J1
mν1

∂ρ2φ
J2
mν2

∂ρ3φ
J3
mν3

φLmλ

(
√
φImµφ

µ
mI)

5

Sp[ΓρΓνΓρ1Γν1Γρ2Γν2Γρ3Γν3ΓλΓµΓ7ΓJ1ΓJ2ΓJ3ΓLΓI ] (2.78)

The counterpart of L1 in the low energy effective action is L′1 ∝
∫
W6
H3 ∧ A3,

δL′1
δφIm(x)

∝ ερνµρ1ρ2ρ3εJ1J2J3LIhmρνµ∂ρ1φ
J1
m∂ρ2φ

J2
m∂ρ3φ

J3
mφ

L
m

(
√
φImφmI)

5
, (2.79)

Here m denotes a particular root. If m ∼ (i, j), φIm = φIi − φIj = φIij, hmρνµ =
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hiρνµ − hjρνµ = hijρνµ. In general, one may expect that φIµ could be expanded as

φIµ =
∑
k ckµa

I
k, where ckµ and aIk are vectors along the longitudinal and transverse

directions respectively. The simplest situation is φJmν = cmνφ
J
m. ∂ρφ

J
mν = ∂ρcmνφ

J
m +

cmν∂ρφ
J
m = cmν∂ρφ

J
m. Therefore, ∂ρ3φ

J3
mν3

Γρ3Γν3ΓλφLmλ = |cm|2Γρ3∂ρ3φ
J3
mφ

L
m. Simi-

larly, ∂ρ1φ
J1
mν1

∂ρ2φ
J2
mν2

Γρ1Γν1Γρ2Γν2 ∼ −|cm|2∂ρ1φ
J1
m∂ρ2φ

J2
mΓρ1Γρ2 , where we have ne-

glected the term involving cνm∂νφ
J
m. (2.78) is simplified to

δL1

δφIm(x)
∝ fmρνcmµ∂ρ1φ

J1
m∂ρ2φ

J2
m∂ρ3φ

J3
mφ

L
m

|cm|(
√
φImφmI)

5

Sp[ΓρΓνΓρ1Γρ2Γρ3ΓµΓ7ΓJ1ΓJ2ΓJ3ΓLΓI ] (2.80)

To get the nonzero result, the first six Gamma matrices should multiply to 1, while

the last five Gamma matrices should cover Γ6 · · ·Γ10. The trace then becomes

Sp[Γ0 · · · Γ10] ∼ ε0···10. ρ1, ρ2 and ρ3 must be different, so {ρ, ν, µ} = {ρ1, ρ2, ρ3}. One

can similarly expand fmρν as fmρν = hmρνσc
σ
m. fmρνcmµ = hmρνσc

σ
mcmµ. As is men-

tioned before, cm is not fixed but should also be integrated in the path integral. The

orientation of the selfdual string in 6d spacetime is arbitrary. Summing over all pos-

sible directions,
∑
cσmcmµ = |cm|2gσµ, so

∑
fmρνcmµ = hmρνσ

∑
cσmcmµ = |cm|2hmρνµ.

(2.80) then becomes

δL1

δφIm(x)
∝ |cm|(∗hm)ρνµ∂ρ1φ

J1
m∂ρ2φ

J2
m∂ρ3φ

J3
mφ

L
m

(
√
φImφmI)

5
ερνµρ1ρ2ρ3εJ1J2J3LI . (2.81)

Compared with (2.79), (2.81) contains ∗ which is resulted from Γ7 inside the trace.

This is not quite satisfactory, but luckily, since ∗h = h, (2.79) and (2.81) still coincide

up to a |cm| factor.

Notice that to get L1 which is close to L′1, d = 5 is quite crucial. For an ordinary

6d theory without the constraint, the denominator is (
√
φImµφ

µ
mI)

2n−4, so one cannot
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get L′1 no matter which n is taken. In other words, to get the WZ term H3 ∧ A3,

the basic degrees of freedom should be the 1d object with 5d momentum other than

the 0d object with 6d momentum. For 1/2 BPS selfdual strings, the momentum is

along the transverse direction, since the momentum along the longitudinal direction

may reduce the selfdual string to a 1/4 BPS state [58]. So the constraint in [23] may

indicate that the selfdual strings involved in equations are 1/2 BPS states, while the

WZ term H3 ∧ A3 is generated by 1/2 BPS selfdual strings.

The next problem is to get the WZ term corresponding to A3 ∧ F4 ∼ σ3 ∧ ω4,

which is much more difficult. First, we need to find an explicit expression for σ3.

Consider the 5d transverse space with coordinate φai , ai = 6 · · · 10,

ω4 = εa1a2a3a4a5

1

|φ|5
φa1dφa2 ∧ dφa3 ∧ dφa4 ∧ dφa5 = ∗φ̂. (2.82)

σ3 could be constructed in analogy with the gauge field describing the magnetic

monopole in 3d space. Select an arbitrary vector v, v · φ = |v||φ| cos θ,

σ3 =
(cos3 θ − 3 cos θ + 2) ∗ (v ∧ φ)

3 sin4 θ|v||φ|

=
(v · φ)3 − 3(v · φ)|v|2|φ|2 + 2|v|3|φ|3

3 sin4 θ|v|4|φ|7

εa1a2a3a4a5v
a1φa2dφa3 ∧ dφa4 ∧ dφa5 . (2.83)

σ3 is singular on a ray OV starting from the origin and extending in −v direction.

In 11d spacetime, OV ×W6 = W7. W7 is the Dirac brane similar to the Dirac string

[32, 34]. Replace v by −v, we get another σ3. Take the average of these two σ3’s, the

last term in (2.83) could be dropped. Of course, in this case, the singularity exists
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in a straight line. The typical WZ term is σ3ji ∧ ω4ki. dσ3ji = ω4ji.

σ3ji =
(v · φji)3 − 3(v · φji)|v|2|φji|2

3 sin4 θ|v|4|φji|7
εa1a2a3a4a5v

a1φa2
ji dφ

a3
ji ∧ dφa4

ji ∧ dφa5
ji , (2.84)

σ3ji ∧ ω4ki =
(v · φji)3 − 3(v · φji)|v|2|φji|2

3 sin4 θ|v|4|φji|7|φki|5

εa1a2a3a4a5εb1b2b3b4b5

va1φa2
ji φ

b1
ki dφ

a3
ji ∧ dφa4

ji ∧ dφa5
ji ∧ dφb2ki ∧ dφ

b3
ki ∧ dφ

b4
ki ∧ dφ

b5
ki.

(2.85)

The field theory calculation gives δΓWZ/δφ
I , which is the counterpart of the

Lorentz force on supergravity side. Consider a M5 brane in a background field F̂4,

the action contains the term S = −
∫
W6
A6, dA6 = ∗F̂4 + A3 ∧ F̂4/2.

δS

δφI

= − 1

6!
ερ1ρ2ρ3ρ4ρ5ρ6∂ρ1Y

n1∂ρ2Y
n2∂ρ3Y

n3∂ρ4Y
n4∂ρ5Y

n5∂ρ6Y
n6(dA6)In1n2n3n4n5n6

= − 1

6!
ερ1ρ2ρ3ρ4ρ5ρ6∂ρ1Y

n1∂ρ2Y
n2∂ρ3Y

n3∂ρ4Y
n4∂ρ5Y

n5∂ρ6Y
n6

(∗F̂4 +
1

2
A3 ∧ F̂4)In1n2n3n4n5n6

= f6I + g6I . (2.86)

Y ni are embedding coordinates. ni = 0 · · · 10, Y I = φI . f6I and g6I are forces

related with the magnetic-magnetic interaction and the electric-magnetic interaction

respectively. g6I is the Lorentz force derived from the WZ term. If db2 is also taken
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into account,

g6I =
1

6!
ερ1ρ2ρ3ρ4ρ5ρ6∂ρ1Y

n1∂ρ2Y
n2∂ρ3Y

n3∂ρ4Y
n4∂ρ5Y

n5∂ρ6Y
n6(

1

2
h3 ∧ F̂4)In1n2n3n4n5n6 .

(2.87)

For the WZ term in (2.31),5

δ
∫
W7i

σ3ji ∧ ω4ki

δφIi (x)
= −

∫
W7i

[
δσ3ji

δφIji(x)
∧ ω4ki + σ3ji ∧

δω4ki

δφIki(x)
]

= (σ3ji ∧ F3kiI)(x)− (ω4ji ∧ F3kiI + ω4ki ∧ F3jiI)(x). (2.88)

∂W7i = W6i, x ∈ W6i.

F3kiI = α
εILJ1J2J3φ

L
kidφ

J1
ki ∧ dφ

J2
ki ∧ dφ

J3
ki

|φki|5
(2.89)

up to a total derivative. α is a constant. Except for the 6-form, (2.88) also contains

the 7-form because σ3 ∧ ω4 alone is not closed.

δ
∫
W7i

(σ3ji ∧ ω4ki + σ3ki ∧ ω4ji)

δφIi (x)
= (σ3ji ∧ F3kiI + σ3ki ∧ F3jiI)(x)

−2(ω4ji ∧ F3kiI + ω4ki ∧ F3jiI)(x), (2.90)

δ
∫
W7

Ωijk

δφIi (x)

∝ (σ3ji ∧ F3kiI + σ3ki ∧ F3jiI − σ3kj ∧ F3ijI − σ3jk ∧ F3ikI)(x)

−2(ω4ji ∧ F3kiI + ω4ki ∧ F3jiI − ω4kj ∧ F3ijI − ω4jk ∧ F3ikI)(x). (2.91)

We need to get the 6-form of (2.91) from the field theory calculation. Unfortu-

5Here, for simplicity, the last line in (2.88) is denoted as the differential form, but it should be
more accurately written in the form like that in (2.86) and (2.87).
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nately, there are several problems. The only input on field theory side is the vacuum

expectation value (φ1, · · · , φN) on W6. As a result, we have to construct the 6-form

from (φij, φjk, φki). σ3ji may differ from (2.84) by an exact 3-form. However, (2.84)

contains a constant vector v, which has no relevance with the vacuum expectation

value. Nevertheless, to preserve the supersymmetry, the vacuum expectation value

should be constant, so we may take (φ1, · · · , φN) as constant and replace the v in

(2.85) by φ̄ki = φk − φi. φ̄ki should be distinguished from φki. The former is only

defined at the boundary W6, while the latter is defined in the entire W7. For forms

living on W6, φ̄ji = φji, so one may write σ3ji ∧ F3kiI as

σ3ji ∧ F3kiI = α
(φki · φji)3 − 3(φki · φji)|φki|2|φji|2

3 sin4 θ|φki|9|φji|9
εIb1b2b3b4εLa1a2a3a4|φji|2φLkiφ

a1
ji

φb1ki dφ
a2
ji ∧ dφa3

ji ∧ dφa4
ji ∧ dφb2ki ∧ dφ

b3
ki ∧ dφ

b4
ki. (2.92)

φki · φji = |φki||φji| cos θ. Of course, in this case, the pullback of σ3ji ∧ F3kiI on W6

actually vanishes.

Now, return to the field theory calculation. To get a 6-form like (2.92), we may

let n = 7.

δImΓm
δφImµ(x)

∝
Sp
{

[ i
2
ΓρΓνf

ρν
m − ΓρΓ

νΓJ∂
ρφJmν + ΓρνΓKJφ

K
mρφ

J
mν + · · ·]7φLmλΓλΓLΓµΓIΓ7

}
(
√
φImµφ

µ
mI)

16−d

(2.93)

The term containing six ∂ρφJmν is

δL2

δφImµ(x)
∝ −

∂ρ1φ
J1
mν1

∂ρ2φ
J2
mν2

∂ρ3φ
J3
mν3

∂ρ4φ
J4
mν4

∂ρ5φ
J5
mν5

∂ρ6φ
J6
mν6

φKmρφ
J
mνφ

L
mλ

(
√
φImµφ

µ
mI)

16−d
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Sp[Γρ1Γν1Γρ2Γν2Γρ3Γν3Γρ4Γν4Γρ5Γν5Γρ6Γν6ΓρνΓλΓµ

Γ7ΓJ1ΓJ2ΓJ3ΓJ4ΓJ5ΓJ6ΓKJΓLΓI ]

(2.94)

Except for δφ on the left-hand side, there are nine φ in the numerator, so to get

a scale-invariant result, we must have d = 6. The result is in contrast with the

previous discussion on H3 ∧A3, for which, the scale invariant result needs d = 5. So

it seems that for N3 degrees of freedom, the 6d dynamics is still necessary. Note that

the near-extremal entropy of the M5 branes scales as the entropy of the 6d massless

ideal gas [59].

To related (2.94) with (2.92), we need to make a further assumption on φImµ.

Consider the 6d (2, 0) theory of the AN−1 type. m ∼ (i, j) is not enough to produce

(2.92), so one may let m ∼ (i, j, k). It is natural to expand φImµ as

φImµ = ciµφ
I
jk+cjµφ

I
ki+ckµφ

I
ij = cijµφ

I
jk−cjkµφIij = ckiµφ

I
ij−cijµφIki = cjkµφ

I
ki−ckiµφIjk,

(2.95)

where cijµ = ciµ − cjµ.

δφImµ = ckjµδφ
I
i + cikµδφ

I
j + cjiµδφ

I
k. (2.96)

In analogy with the previous calculation,

Γρ1Γν1Γρ2Γν2∂ρ1φ
J1
mν1

∂ρ2φ
J2
mν2

∼ Γρ1Γρ2 [−|cki|2∂ρ1φ
J1
ji ∂ρ2φ

J2
ji + (cki · cji)∂ρ1φ

J1
ki∂ρ2φ

J2
ji

+(cji · cki)∂ρ1φ
J1
ji ∂ρ2φ

J2
ki − |cji|2∂ρ1φ

J1
ki∂ρ2φ

J2
ki

+
1

2
Γν1ν2(cjiν1ckiν2 − cjiν2ckiν1)∂ρ1φ

J1
ki∂ρ2φ

J2
ji
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−1

2
Γν1ν2(cjiν1ckiν2 − cjiν2ckiν1)∂ρ1φ

J1
ji ∂ρ2φ

J2
ki ] + · · · (2.97)

To get an expression which has the similar structure as (2.92), we have to assume

|cji|2 = |φji|2, cki ·cji = φki ·φji. This could be realized if one defines an inner product

preserving linear mapping g from the 5d transverse space to the 6d longitudinal

spacetime. For example, g(xn) = xn−5, n = 6 · · · 10. ci = g(φi). Each g gives an

identification of the internal SO(5) group and the spatial SO(5) rotational group.

Recall that in [20, 21], the locking of the internal SO(5) R-symmetry and the spatial

SO(5) rotational symmetry is quite crucial for the construction of 1/4 BPS string

junctions, while the junction composed by three half selfdual strings should form a

lattice dual to the triangle (φij, φjk, φki). Obviously, (cij, cjk, cki) is just a lattice dual

to (φij, φjk, φki), so it seems that the orientation of the three half selfdual strings

could be characterized by (cij, cjk, cki).

√
φImµφ

µ
mI = [|cki|2|φij|2 + |cij|2|φki|2 − 2(cki · cij)(φki · φij)]

1
2

= 2
1
2 [|φki|2|φij|2 − (φki · φij)2]

1
2 = 2

1
2 |φki||φij| sin θ = 2

3
2 sijk, (2.98)

where sijk is the area of the triangle ∆ijk. Replace δL2/δφ
I
mµ(x) by δL2/δφ

I
i (x), due

to (2.96), there will be an extra ckjµ entering into the numerator of (2.94).

ΓλΓµckjµφ
L
mλ =

1

2
Γλµ(cjiλckiµ−cjiµckiλ)φLkj−|cki|2φLji+(cji·cki)φLki+(cki·cji)φLji−|cji|2φLki

(2.99)

ΓρνΓKJφ
K
mρφ

J
mν =

1

2
ΓρνΓKJ(cjiρckiν − cjiνckiρ)(φKjiφJki − φJjiφKki) (2.100)

so

ΓρνΓλΓµΓKJckjµφ
K
mρφ

J
mνφ

L
mλ = 2ΓKJ sin2 θ|cji|2|cki|2φLkj(φJjiφKki − φKjiφJki) + · · ·
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= 2ΓKJ sin2 θ|φji|2|φki|2φLkj(φJjiφKki − φKjiφJki) + · · · (2.101)

Plug (2.97), (2.99) and (2.100) into (2.94), the rest Gamma matrices carrying

longitudinal indices are Γρ1Γρ2Γρ3Γρ4Γρ5Γρ6 , which should multiply to 1, so there will

be at most three matrices with different indices. Aside from the trace, each term also

contains a factor ∂ρ1φ∂ρ2φ∂ρ3φ∂ρ4φ∂ρ5φ ∂ρ6φ, where φ can be φji or φki. Notice that ∂

acting on the same φ must carry different indices, otherwise, the anti-symmetrization

of the transverse indices of φ may give zero. As a result, there must be three φji

and three φki. Altogether, there are 16 terms with the coefficient (φji · φki)3 and

28 terms with the coefficient (φji · φki)|φji|2|φki|2. The result is still far from (2.92).

Just as the previous discussion for H3 ∧ A3, due to the Γ7, an extra ∗ exists. Of

course, the selfdual condition should also be imposed on h3 = db2 − A3, which may

solve the problem. However, at present stage, σ3 6= ∗σ3. Moreover, there are ten

Gamma matrices inside the trace carrying the transverse indices, so the final result

is zero. This is not quite unacceptable. Under the present assumption, the Lorentz

force will vanish. If we neglect this problem and simply assume the trace in (2.94)

gives ερ1ρ2ρ3ρ4ρ5ρ6(εJKJ1J2J3εILJ4J5J6 − εJKJ4J5J6εILJ1J2J3),

δL2

δφIi (x)
∝ β(φji · φki)3 + γ(φji · φki)|φji|2|φki|2

sin8 θ|φki|8|φji|8
φJjiφ

K
ki(φ

L
ki − φLji)

ερ1ρ2ρ3ρ4ρ5ρ6(εJKJ1J2J3εILJ4J5J6 − εJKJ4J5J6εILJ1J2J3)

∂ρ1φ
J1
ji ∂ρ2φ

J2
ji ∂ρ3φ

J3
ji ∂ρ4φ

J4
ki∂ρ5φ

J5
ki∂ρ6φ

J6
ki . (2.102)

β and γ are two integers that cannot be determined because of the ambiguities of

the trace. In the above calculation, φImµ = ckiµφ
I
ij − cijµφ

I
ki is used. One can also

plug φImµ = cijµφ
I
jk − cjkµφIij or φImµ = cjkµφ

I
ki − ckiµφIjk into (2.94) and the results

should be equal. However, from (2.94) to (2.102), several terms are neglected, so we
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still need to add the terms from the other two expressions and then take the average.

The final result is

δL2

δφIi (x)
∝ ερ1ρ2ρ3ρ4ρ5ρ6(εJKJ1J2J3εILJ4J5J6 − εJKJ4J5J6εILJ1J2J3)

[
β(φji · φki)3 + γ(φji · φki)|φji|2|φki|2

3 sin8 θ|φki|8|φji|8
φJjiφ

K
ki(φ

L
ki − φLji)

∂ρ1φ
J1
ji ∂ρ2φ

J2
ji ∂ρ3φ

J3
ji ∂ρ4φ

J4
ki∂ρ5φ

J5
ki∂ρ6φ

J6
ki

+
β(φij · φkj)3 + γ(φij · φkj)|φij|2|φkj|2

3 sin8 ρ|φkj|8|φij|8
φJkjφ

K
ijφ

L
kj

∂ρ1φ
J1
kj∂ρ2φ

J2
kj∂ρ3φ

J3
kj∂ρ4φ

J4
ij ∂ρ5φ

J5
ij ∂ρ6φ

J6
ij

+
β(φjk · φik)3 + γ(φjk · φik)|φjk|2|φik|2

3 sin8 σ|φik|8|φjk|8
φJikφ

K
jkφ

L
kj

∂ρ1φ
J1
ik ∂ρ2φ

J2
ik ∂ρ3φ

J3
ik ∂ρ4φ

J4
jk∂ρ5φ

J5
jk∂ρ6φ

J6
jk ], (2.103)

where (φij ·φkj) = |φij||φkj| cos ρ, (φjk ·φik) = |φjk||φik| cosσ, sin θ|φji||φki| = sin ρ|φij|

|φkj| = sinσ|φik||φjk| = 2sijk. Obviously, (2.103) is not the expected 6-form in (2.91),

the most serious problem is the appearance of sin8 other than sin4 in the denominator.

Recall that to derive H3 ∧A3, m ∼ (i, j), while to get A3 ∧F4, m ∼ (i, j, k). It is

better if the two could be obtained in a unified way. If one replaces the σ3ji in (2.31)

and (2.32) by h3ij = h3i − h3j,

Ω′ijk = −Q
3
1

6

∫
W6

b2ji ∧ ω4ki + b2ki ∧ ω4ji + b2ij ∧ ω4kj

+b2kj ∧ ω4ij + b2ik ∧ ω4jk + b2jk ∧ ω4ik

= −Q
3
1

6

∫
W6

b2ki ∧ ω4ki + b2ij ∧ ω4ij + b2jk ∧ ω4jk

= −Q
3
1

6

∫
W7

h3ki ∧ ω4ki + h3ij ∧ ω4ij + h3jk ∧ ω4jk. (2.104)

Ω′ij = −Q
3
1

3

∫
W7

h3ij ∧ ω4ij. (2.105)
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If h3i = H3i/N ,

∑
i 6=j,j 6=k,k 6=i

Ω′ijk +
∑
i 6=j

Ω′ij = −Q
3
1

6

∑
i 6=j

∫
W7

H3ij ∧ ω4ij, (2.106)

where H3ij = H3i − H3j is the 3-form appearing in the low energy effective action.

Correspondingly,

δ
∫
W7

Ω′ijk
δφIi (x)

∝ (h3ik ∧ F3ikI + h3ij ∧ F3ijI)(x) (2.107)

If we expand fµνm in a similar way as that in (2.95),

fµνm = ciλh
µνλ
jk + cjλh

µνλ
ki + ckλh

µνλ
ij = cijλh

µνλ
jk − cjkλh

µνλ
ij

= cjkλh
µνλ
ki − ckiλh

µνλ
jk = ckiλh

µνλ
ij − cijλh

µνλ
ki . (2.108)

Plug fµνm = ckiλh
µνλ
ij − cijλh

µνλ
ki and φImµ = ckiµφ

I
ij − cijµφIki into (2.78), one may get

the undesired terms involving both φIij and φIki. Even if we neglect these terms, the

extra sin5 θ in the denominator is still a serious problem.

2.5 The representation of the 3-algebra

Until now, a definite representation of the 3-algebra Λ is still not given. Consider

Λ associated with the 6d (2, 0) theory of the type AN−1. The dimension of Λ is

denoted by d(N). Based on the counting of the degrees of freedom, one may expect

d(N) − N = (N3 − N)/3. A natural candidate is the cubic matrices introduced in

[60], which is the extension of the Hermitian matrix. The elements are Tijk satisfying

Tijk = Tjki = Tkij = T ∗jik = T ∗kji = T ∗ikj (2.109)
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i, j, k = 1 · · ·N . The 3-product is defined as (ABC)ijk = AijlBilkCljk. The 3-bracket

is given by

[A,B,C] = ABC +BCA+ CAB −BAC − CBA− ACB. (2.110)

The gauge transformation is realized as δX = iαab[ta, tb, X]. There is a natural

metric in Λ:

〈A|B〉 = AijkB
∗
ijk = AijkBjik, (2.111)

which is invariant under the gauge transformation, i.e. 〈δA|B〉 + 〈A|δB〉 = 0. The

Cartan subalgebra is Λ0,

Λ0 = {X|Xijk = δijcjk + δjkcki + δkicij} . (2.112)

Λ̄ is given by Λ̄ = {C|C ∈ Λ0, Cijj = cj}. The fundamental identity does not hold in

general. It is hoped that it will be satisfied for gauge transformations in the form of

[C,X, ∗], ∀ C ∈ Λ̄, ∀ X ∈ Λ, but unfortunately, this is not the case.

Another natural 3-algebra is the Nambu-Poisson algebra [61], the elements of

which generate the volume-preserving diffeomorphism transformations of the 3d man-

ifold M . The Nambu bracket is defined as

[f, g, h] = εijk∂if∂jg∂kh, i, j, k = 1, 2, 3. (2.113)

For M = T 3, the basis of functions could be selected as
{
χ~n = e2πinaxa

}
, where xa

are the Cartesian coordinates on T 3 with the equivalence relations xa ∼ xa + ka,

ka ∈ Z.

[χ
~l, χ~m, χ~n] = (2πi)3εabclambncχ

~l+~m+~n. (2.114)
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Obviously, if ~l = α~m, [χ
~l, χ~m, ∗] = 0. χα~m generate a subspace Λ̄, Λ̄ = {f(max

a)}.

f is only the function of max
a.

[f(max
a), g, h] = f ′[m1(∂2g∂3h−∂3g∂2h)+m2(∂3g∂1h−∂1g∂3h)+m3(∂1g∂2h−∂2g∂1h)].

(2.115)

In special case like m = (1, 0, 0), the Nambu bracket reduces to the Poisson bracket,

which has the finite dimensional matrix realization with the gauge group effectively

taken as U(N)×U(N)×· · ·×U(N), the direct product of N U(N) groups. However,

the problem is that the three indices (i, j, k) are not in equal footing, which is not

reasonable. One can also let m = (1, 1, 1), but in that case, it is difficult to get a

finite realization.

It seems that even if the fundamental identity is relaxed to a weaker version, it

is still hard to find a satisfactory finite dimensional Euclidian 3-algebra. Another

problem deserving discussion is the Cartan subalgebra which is directly related with

the Coulomb branch. For cubic matrices, ∀ A,B,C ∈ Λ0, [A,B,C] = 0. For Nambu

algebra, ∀ ~l,

Λ~l =
{
χ|χ =

∑
anχ

~kn ,~l · ~kn = 0
}
, (2.116)

∀ f, g, h ∈ Λ~l, [f, g, h] = 0. Obviously, both dimΛ0 and dimΛ~l have the N2 scaling.

It is likely that for 3-algebra Λ with dimΛ ∼ N3, the Cartan subalgebra will have

the N2 scaling dimension. On the other hand, the vacuum configurations of the N

M5 branes are only characterized by N vectors in transverse space, so the dimension

of the Coulomb branch can only be N −1. Nevertheless, to get the Coulomb branch,

we also need to mod out the gauge equivalent configurations. For Nambu algebra,

∀ χ ∈ Λ~l,
~l · ∇χ = 0, so χ is the collection of the functions invariant under the

translation along the ~l direction. Select an arbitrary vector ~m, ~l · ~m = 0. ∀ χ ∈ Λ~l,
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one can always make a suitable volume-preserving diffeomorphism transformation,

under which, χ→ χ(max
a). The gauge inequivalent configurations are then param-

eterized by 1d functions χ(max
a) with the N scaling dimension. Actually, under the

appropriate gauge transformation, any function f(x1, x2, x3) in Λ could be converted

into the form of f(x1), because f is a scalar function. The gauge inequivalent class is

characterized by {f(x1)}. This is quite like the Hermitian matrices. One can always

diagonalize a Hermitian matrix by a unitary transformation, so the gauge inequiv-

alent class is parameterized by eigenvalues, which, in continuous limit, becomes the

1d function. We have seen that the dimension of the Coulomb branch has the N

scaling, but there is still a problem. In Coulomb branch, fermions taking values in

elements of the Cartan subalgebra will remain massless, so the massive fermions will

have the N3 − N2 other than N3 − N scaling. In (2.95), if i = j, φImµ = 0, but

(φIij, φ
I
jk, φ

I
ki) −→ (0, φIik, φ

I
ki). φImµ is something related with the area, while it is

(φIij, φ
I
jk, φ

I
ki) that is directly related with the string tension. For elements in Cartan

algebra, the triangle is degenerate, but the distances do not vanish unless i = j = k.

It is better if the fermion mass is directly related with (φIij, φ
I
jk, φ

I
ki) other than φImµ.

Finally, notice that for cubic matrices, if Cµ ∈ Λ̄, Cµ
ijj = cµj , X̄I ∈ Λ0, X̄I

ijj = φIi ,

then [Cµ, X̄I , Y ]ijk = (φIjkc
µ
i + φIkic

µ
j + φIijc

µ
k)Yijk, ∀ Y ∈ Λ. This is just the equation

proposed in (2.95). Besides, in the previous discussion, Cµ is given by N vectors

{cµ1 · · · c
µ
N}, which is consistent with the cubic matrices and the Nambu algebra, for

both of which, dimΛ̄ ∼ N .
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3. MOMENTUM MODES OF M5-BRANES IN A 2D SPACE∗

We study M5 branes by considering the selfdual strings with the orientation

covering a plane. With the internal oscillation frozen, each selfdual string gives a

5d SYM field. All selfdual strings together give a 6d field with 5 scalars, 3 gauge

degrees of freedom and 8 fermionic degrees of freedom in adjoint representation of

U(N). Selfdual strings with the same orientation have the SYM-type interaction.

For selfdual strings with the different orientations, which could also be taken as the

unparallel momentum modes of the 6d field on that plane or the (p, q) (r, s) strings on

D3 with (p, q) 6= (r, s), the [i, j] + [j, k]→ [i, k] relation is not valid, so the coupling

cannot be written in terms of the standard N × N matrix multiplication. 3-string

junction, which is the bound state of the unparallel [i, j] [j, k] selfdual strings, may

play a role here.

The effective theory on M5 branes is special in that the basic excitations, the

selfdual strings, are 1d objects other than the 0d objects, like those on D branes

or M2 branes [1, 3]. If the selfdual strings can be closed and can shrink to point

like the fundamental strings, then we will still have a theory with the semi-point-

like excitations. For selfdual strings without the charge, this is indeed the case. In

abelian theory, the quantization of the point-like M2 confined to M5 brane gives

the (2, 0) tensor multiplet [12, 10, 11]. Moreover, the basic excitations on (2, 0) little

string theory [62] living on N coincident type IIA NS5 branes are closed fundamental

strings, which are also the closed selfdual strings coming from M2 wrapping the M

theory circle intersecting NS5 along a closed curve. There is no evidence showing

∗Part of this section is reprinted with permission from “Momentum modes of M5-
branes in a 2d space” by S. Hu and D. V. Nanopoulos, JHEP 1206, 139 (2012),
http://link.springer.com/article/10.1007/JHEP06(2012)139. Copyright 2012 by SISSA - Trieste
(Italy).
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that for selfdual strings carrying charge, the situation is the same. On D4 branes,

the [i, j] monopole string can carry the D0 charge. The closed [i, j] monopole string

with the vanishing length carrying D0 will appear as the point-like instanton with

charge [i, j]. However, the classical instanton solution with charge [i, j] is associated

with the [i, j] monopole string extending along a straight line, while the point-like1

1/2 BPS instanton solutions are always chargeless. The closed monopole string with

no D0 charge is the selfdual string with the winding number and the momentum

both zero along x5, which will give a 5d massless SYM field in adjoint representation

of U(N), in addition to the original 5d SYM field coming from the selfdual strings

winding x5 once. The SYM field like this is always massless even if the D4 branes

are separated from each other, so it will dominate at the Coulomb branch. However,

on D4, no such field exists. We do not get the clue for the existence of the closed

charged selfdual strings. Actually, when the charged selfdual string becomes curved,

different parts of it may exert force to each other, so it cannot vibrate freely and

cannot be closed as the chargeless strings do.

Then we have to incorporate the 1d object in a 6d field theory. In this note, we will

take the [i, j] tensionless selfdual string extending along, for example, the x5 direction,

as the point-like 6d excitation, which is in the position eigenstate in 1234 space but

in the P5 = 0 momentum eigenstate in x5. If so, selfdual strings extending along the

same direction cannot give the complete Hilbert space for the 6d particle. To get the

full Hilbert space, we need to consider selfdual strings with the orientations covering

all directions in a plane. The superposition of the selfdual strings with orientations

covering a plane can give the 6d point-like excitations localized in 12345 space, but

it seems that somehow, the position representation is not the suitable one, since it

is the [i, j] selfdual strings other than the [i, j] point-like excitations that naturally

1By point-like, we mean the instanton solution is localized in R4, centered around a point.
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exist. One plane is already enough to define a 6d field theory, so different planes

may give the dual versions for the same 6d theory. This is quite similar with the

N = 4 SYM theory, for which one (p, q) string defines a 4d theory, while the rest

(p, q) strings give the dual 4d theories.

Theories with the line-like excitations are intrinsically different from those with

the point-like excitations. If the excitations are line-like, a reduction on x5 will give

the selfdual strings extending along x5, while a further reduction on x4 will make

P4 = 0. The first reduction selects a particular selfdual string; the second one is

just the normal reduction in local field theories. With 4 and 5 switched, we will get

the selfdual strings extending along x4 with P5 = 0, which is S-dual to the selfdual

strings extending along x5 with P4 = 0. On the other hand, if the excitations are

point-like, both sequences will give the point-like selfdual strings with P4 = P5 = 0.

In [63, 64], Witten has shown that due to the conformal symmetry, the 45 and 54

reductions for the 6d (2, 0) theory will give two S-dual 4d SYM theories other than

one 4d theory, which strongly indicates that the basic excitations on M5 cannot be

point-like.

Recall that in [23], the equations of motion for the 3-algebra valued (2, 0) tensor

multiplet contain a constant vector field Cµ. A given Cµ will reduce the dynamics

from 6d to 5d. However, if Cµ covers all directions in a plane, we will get a set of

θ-parameterized 5d SYM theories2, which is equivalent to a 6d theory with 5 scalars,

3 gauge degrees of freedom and 8 fermionic degrees of freedom. Each 5d SYM

theory has the 5d vector multiplet in adjoint representation of U(N), arising from

the quantization of the open [i, j] M2 intersecting M5 along the Cµ(θ) direction.

The oscillation along Cµ(θ) is frozen, so the spectrum is the same as that from

2Here and in the following, by 5d SYM theory, we only mean the 6d Cµ(θ)-translation invariant
fields have the SYM-type coupling. It’s not the genuine 5d SYM theory. A single 5d SYM theory
already contains the complete KK modes as the nonpertubative states [65, 58].
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the quantization of the open string. For the given 6d (2, 0) tensor multiplet field

configuration, each 5d SYM field comes from the reduction of the 6d field along Cµ(θ).

This is actually a special kind of KK compactification, using the polar coordinate

other than the rectangular coordinate.

Suppose the selfdual string orientations are restricted in 45 plane, then the com-

mon eigenstates of [X̂1, X̂2, X̂3, P̂4, P̂5] can be selected as the bases to generate the

Hilbert space. In this respect, it is convenient to consider the KK mode of the 6d

(2, 0) theory with x4 and x5 compactified to circles with the radii R4 and R5. M5

branes with the longitudinal x4 and x5 compactified is dual to the D3 branes with

the transverse x′45 compactified. The vacuum expectation values of the 2-form field

on x4 × x5 is converted to the transverse positions of the D3 branes on x′45. The

duality differs from the T-duality in that two longitudinal dimensions are converted

to one transverse dimension so that the total dimensions are reduced from 11 to

10. The (n/R4,m/R5) momentum mode of the 6d theory is dual to the (p, q) string

winding x′45 k times, with n = kp, m = −kq, p and q are co-prime. The [i, j] (p, q)

strings form the adjoint representation of U(N). Correspondingly, the momentum

modes as well as the original 6d field are also in the U(N) adjoint representation.

The (n/R4,m/R5) momentum modes are in 4d vector multiplet V4, which, when

combine together, give the 6d tensor multiplet T6 in U(N) adjoint representation. Al-

though the 6d tensor multiplet is in the adjoint representation, the coupling involving

more than two fields cannot be realized as the standard matrix multiplication, as the

SYM-type couplings do. SYM coupling is obtained by studying the scattering am-

plitude of the open strings ending on D branes. [i, j] + [j, k]→ [i, k], so the LijM
j
kN

k
i

type coupling is possible. On the other hand, for M5, we need to consider the scat-

tering of the selfdual strings parallel to a given plane. Selfdual strings with the same

orientation still have the SYM-coupling, while for selfdual strings with different ori-
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entations, the [i, j] + [j, k] → [i, k] relation is not valid, so the [i, j] (n/R4,m/R5)

mode, the [j, k] (k/R4, l/R5) mode, and the [k, i] (−(n+ k)/R4,−(m+ l)/R5) mode

of the 6d field cannot couple unless nl = mk, in which case all of them belong to the

same 5d SYM theory with tan θ = − nR5

mR4
. The difference between the SYM theory

and the effective theory on M5’s is rooted in the fact that the boundary of the open

string is the point, while the boundary of the open M2 is the straight line.

The (n/R4,m/R5) momentum mode of the 6d SYM theory on D5 is dual to

the open F1 ending on D3 with the winding number (n,m) around x′4 × x′5. From

the scattering amplitude of the massive winding open strings and the massless open

strings on D3, one can reconstruct the original 6d SYM theory. Similarly, for M5, we

need to consider the interaction of the open (p, q) strings ending on D3 winding x′45 k

times for all co-prime (p, q) and all nonnegative k, or in other words, the interaction

for all of the monopoles and dyons in N = 4 SYM theory. When the scalar fields on

M5 branes get the vacuum expectation value, D3 branes will be separated in the rest

5d transverse space, and then the 3-string junctions [45, 66], which are also the bound

states of the [i, j] [j, k] selfdual strings each carrying the transverse momentum in 45

plane, can be formed. The 3-string junction is characterized by three vectors (r4, r5),

(s4, s5) and (t4, t5) in 45 plane, which may couple with the (n/R4,m/R5) momentum

modes as long as (n,m) ∝ (r4,−r5), or (n,m) ∝ (s4,−s5) or (n,m) ∝ (t4,−t5).

The quantization of the 3-string junction with the lowest spin content gives the 1/4

BPS multiplet V4 ⊗ ([1/2] ⊕ [0] ⊕ [0]) with 26 states [67], which, when lifted to 6d,

becomes the (2, 1) multiplet with 27 states, among which, half are tri-fundamental

and half are tri-anti-fundamental representation of U(N). [i, l] + [l, j, k] → [i, j, k],

[j,m] + [i,m, k] → [i, j, k], [k, n] + [i, j, n] → [i, j, k], so we may have couplings like

V i
l TijkT

ljk or V i
l TijkT

ljnV k
n . 3

3In [68], the scattering amplitude involving two charged 5d KK modes and one 5d zero mode
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However, with the given scalar vacuum expectation value ~vi on M5, the bound

states of the [i, j] ~vij (n/R4,m/R5) momentum mode and the [j, k] ~vjk (k/R4, l/R5)

momentum mode exist only under the certain condition h(~vij, ~vjk, n/R4,m/R5, k/R4,

l/R5) > 0 with h = 0 specifying the marginal stability curve [69]. Especially, when

~vij = 0, ∀ i, j, except for n = m = 0 or k = l = 0, which is at the curve of the

marginal stability, the rest bound states do not exist. The bound state of the [i, j]

(0, 0) momentum mode and the [j, k] (n/R4,m/R5) momentum mode could be taken

as the tensionless selfdual string carrying the longitudinal momentum. It is unclear

whether it is the bound state or just two separate states.

When compactified on x5, the [i, j] selfdual string extending along x5 becomes the

[i, j] F1 localized in 1234 space. For the rest selfdual strings, to get the definite P5

momentum, they must carry the definite transverse momentum thus are projected

to the bound states of the [i, j] F1 and the [i, j] monopole string, each carrying

the suitable P4 and P5 transverse momentum, localized in 123 space. The 1/2 BPS

solutions for the BPS equations in 5d SYM theory match well with the above states,

except for instantons, which is also localized in 1234 space. Similarly, the 3-string

junctions in 6d, when projected to 5d, become the bound states of the [i, j] F1 and

the [j, k] monopole string with P4 and P5 transverse momentum, localized in 123

space. Except for the dyonic instantons, the generic 1/4 BPS solutions in 5d SYM

theory involving no more than three D4’s have a one-to-one correspondence with

these states.

The rest of this chapter is organised as follows: In section 2, we discuss the

longitudinal momentum mode on branes with special emphasis on the point-like

for M5 branes compactified on S1 is considered. The charged KK mode is the 1/4 BPS dyonic
instanton in 5d massive (2, 1) multiplet, while the zero mode is in 5d massless vector multiplet.
The incorporation of the spin-3/2 particles of the (2, 1) multiplet into the theory requires a novel
fermionic symmetry.
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charged 1/2 BPS instantons on D4 branes. In section 3, we consider the selfdual

strings on M5 branes with the orientation covering the 45 plane, or equivalently,

the KK momentum mode of the 6d theory upon the compactification on x4× x5. In

section 4, we study the interaction of the 6d (2, 0) theory by considering its KK mode

on x4 × x5. In section 5, we consider various momentum-carrying BPS states in 5d

SYM theory, especially, the monopole string carrying the longitudinal momentum

and the string carrying D0 charge. In section 6, we discuss the states living at the

triple intersection of M5 branes. The discussion is in section 7.

3.1 The longitudinal momentum mode on branes

For a Dp brane with the transverse dimension xp+1 compactified to a circle S1,

the brane may locate at a particular point in S1 or have the definite momentum

along S1. In the former situation, after the T-duality transformation along xp+1, Dp

becomes Dp+1 with the gauge field Ap+1 getting the vacuum expectation value. In

the latter case, the T-duality transformation converts Dp into Dp+1 with the definite

electric flux F0(p+1). Dp+1 cannot have the definite Ap+1 and F0(p+1) simultaneously,

just as Dp cannot have the definite xp+1 and Pp+1 at the same time. In M theory,

if x5 is compactified to S1, M2 transverse to x5 may either locate at a particular

point in S1 or have the definite P5 momentum. M2 with zero P5 momentum is D2 in

type IIA string theory. M2 with nonzero P5 momentum is the D2-D0 bound state.

The transverse velocity should be the same everywhere on D2 so the D0 charges

are uniformly distributed over D2. If the masses of the D2 and D0 are m2 and m0

respectively, the energy of the D2-D0 bound state is
√
m2

2 +m2
0, in contrast to the

energy of the D4-D0 bound state, which is m4 +m0.

For Dp brane with the longitudinal dimension xp compactified to a circle S1, Dp

may carry momentum along xp. Under the T-duality transformation in p direction,
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we get the Dp−1-F1 bound state with F1 ending on Dp−1 winding the transverse

circle x′p. If the ith and the jth Dp−1 branes are separated along another transverse

dimension x′p+1, the closed F1 becomes open, which, under the T-duality transfor-

mation along x′p, gives the open [i, j] string ending on Dp branes carrying the Pp

momentum. So, more precisely, the Pp longitudinal momentum of the Dp brane is

the Pp transverse momentum of the open strings living on them. Consider the ith and

the jth Dp branes with the [i, j] string orthogonally connecting them carrying mo-

mentum Pp, the total energy is mp +
√
T 2
F1|~vi − ~vj|2 + P 2

p , where mp and TF1|~vi−~vj|

are masses of Dp and [i, j] string respectively. When ~vi = ~vj, the energy reduces to

mp + |Pp|, corresponding to the Dp branes carrying the [i, j] Pp longitudinal momen-

tum. The low energy effective action on N coincident Dp branes is the U(N) SYM

theory. When compactified on xp, one may get an infinite tower of KK modes still

in the adjoint representation of U(N). We have seen that the Pp momentum carries

charge, thus is indeed in the adjoint representation.

For M2 branes, two M2 branes orthogonally intersecting at a point may form the

threshold bound state, so the transverse momentum of one M2 gives the longitudinal

momentum of the other, as long as the two can keep intersecting at one point.

Similarly, it is natural to expect that for M5 branes, the Pk longitudinal momentum

may actually be the Pk transverse momentum of the selfdual strings living in them.

Especially, for 5d SYM theory, the P5 momentum may just come from the monopole

strings living in D4. However, P5 like this is distributed in a straight line other than

localized at a point. Localized instantons do exist, which are D0 branes resolved

in D4. The line-like P5 momentum carried by selfdual strings has the [i, j] charge,

while the point-like P5 momentum corresponding to D0 branes is chargeless. It is

interesting to see the relation between these two kinds of momentum modes on M5,

and especially, whether it is possible to obtain the point-like 1/2 BPS momentum
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mode carrying charge.

One may want to consider the closed selfdual strings, which, with the length

shrinking to zero, may carry the point-like momentum. However, the selfdual strings

carrying charge must extend along a straight line. We cannot get the closed charged

selfdual strings unless the worldvolume of the M5 branes has the nontrivial 1-cycle.

Consider the [i, j] selfdual string segment extending along ABC, where A B C are

three points in the worldvolume of M5. Suppose AB⊥BC, then the AB, BC strings

are actually the same as the [i, j] F1 and the [i, j] D1. The configuration like this is

not BPS, so F1 and D1 may exert force to each other. The [i, j] F1-D1 bound state

is not at the threshold and has the mass |~vij|
√
|AB|2 + |BC|2 due to the binding

energy. So we are actually talking about the [i, j] selfdual string segment extending

along AC. The [i, j] selfdual string cannot vibrate freely, because different parts may

exert force to each other.

On the other hand, the chargeless selfdual strings do not have this problem.

They can be closed and may carry the point-like momentum. One such example is

the [i, i] selfdual string. On the ith M5 brane, we have the zero length [i, i] closed

selfdual string, or in other words, the collapsed M2 brane, the quantization of which

gives the expected U(1) (2, 0) tensor multiplet [12, 10, 11]. When compactified

on x5, the point-like D2 with P5 momentum becomes the D0 confined to the ith

D4. Another example is the little string theory [10, 11, 14, 8, 9]. Consider N

coincident type IIA NS5 branes with the longitudinal dimension x5 compactified

to a circle with the radius R5. The 11th dimension is x10 which is compactified

with the radius R10. There are closed fundamental strings with tension 2πR10TM2

living in NS5, which are closed M2’s wrapping x10 intersecting M5 along a closed

curve. After a series of duality transformations, the momentum mode (carried by

the type IIA string) along x5 is converted to the D0 branes living in D4 branes
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with the compactified transverse dimension x′5. If the original type IIA closed string

has the finite length, we will get a closed D2 wrapping x′5 intersecting D4 along a

closed curve and carrying the uniformly distributed D0 charge. The D0 branes are

obtained when the size of the D2 brane carrying them shrinks to zero. Actually, the

type IIA NS5 brane picture and the D4 brane picture are S-dual to each other with

5 and 10 switched. On type IIA NS5 branes, the P5 momentum is carried by the

closed string. When the string shrinks to a point, we simply take it as a momentum

mode without the string involved. Similarly, on D4 branes, we may have closed D2

carrying P5 momentum. With the closed D2 shrinking to a point, we are left with

the D0 brane/P5 momentum.

On a single NS5 brane, purely P5 momentum is carried by strings that do not

wind x5, or alternatively, M2’s that do not wrap x5. Correspondingly, on a single

D4 brane, the purely P5 momentum mode should be carried by the closed D2 branes

other than strings. The complete KK modes on NS5 branes upon the compactifi-

cation on x5 are characterized by (m,n), where m and n are the winding number

and the momentum mode of the string along x5 respectively. The (m,n) mode has

the mass 2πmTF1R5 + n/R5. (m, 0) mode, (0, n) mode and (m,n) mode are in the

5d (1, 1), (2, 0) and (2, 1) multiplets preserving 1/2, 1/2, and 1/4 supersymmetries

respectively [70]. For the dyonic strings in [58], with x6 compactified to a circle, the

bound state of the [1, 2] and [2, 1] dyonic strings carrying n instanton number is just

be the (1, n) mode here. The generic (m,n) mode is obtained by the quantization of

the type IIA strings. Especially, with NL = 0, the level-matching condition requires

NR = mn, so the oscillation mode along the string must be turned on [70, 71]. This

is easy to understand. For type IIA string wrapping x5, P5 can only come from the

internal oscillation since there is no transverse momentum along x5. On the other

hand, if the [i, j] selfdual strings wrapping x5 cannot oscillate, the P5 momentum
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carried by it can only come from selfdual strings extending in 1234 space. The (m,n)

mode in this case is actually the threshold bound state of the (m, 0) mode and the

(0, n) mode. The former is associated with the selfdual string extending along x5,

while the latter is given by the tensionless selfdual strings extending along 1234 space

carrying the P5 momentum. It is possible for the [i, j] (m, 0) mode and the [j, k] (0, n)

mode to form the threshold bound state with ijk indices, which we will discuss later.

Now, let us consider the relation between the point-like charged P5 momentum

mode and the line-like charged P5 momentum mode. For N coincident D4 branes

with the longitudinal dimension x4 compactified, the T-duality transformation along

x4 converts the D4-D0 bound state into the D3-D1 bound state with D1 winding

x′4. More precisely, D1 carrying the definite electric flux, or equivalently, D1-F1

bound state, corresponds to D0 carrying the definite P4 momentum, while D1 with

the definite A4 field corresponds to D0 with the exact x4 position. We may take

the (n, 1) strings in D3 as the bases, the superposition of which gives D1 with the

definite A4, which is also the D0 located at a definite point in D4. Moreover, since

D1 ending on D3’s can also carry charge, the [i, j] D1 wrapping x′4 is dual to the

[i, j] D2 wrapping x4 with the D0 charge spreading over ~vij × x4. When ~vij = 0, we

are left with the tensionless [i, j] monopole string winding x4 carrying the uniformly

distributed D0 charge, which could also be taken as the [i, j] D0 with the zero

momentum along x4. Similarly, the [i, j] (n, 1) string is dual to the tensionless [i, j]

monopole string winding x4 carrying the uniformly distributed D0 charge and the

massless [i, j] string carrying P4 momentum, which could be simply taken as the [i, j]

D0 carrying P4. Still, the superposition of the [i, j] (n, 1) strings gives the [i, j] D0

located at a definite point in D4. The instanton solutions describing the [i, j] D0

with the definite P4 momentum have the translation invariance along x4, involving

both magnetic and the electric fields. These states compose the complete spectrum
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for the charged D0 living in D4, while the localized charged D0 is the superposition

of them.

The above discussion can be directly extended toM5 branes. ConsiderM5 branes

with x4 and x5 compactified with the radii R4 and R5, B45 = k
2πR4R5

. Tensionless

selfdual string winding x4 and x5 m and n times will carry the transverse momentum,

which can be described by the wave function

1

4π2R4R5

exp
{
ik(−nx4

R4

+
mx5

R5

)
}
δ(x1 −X1)δ(x2 −X2)δ(x3 −X3). (3.1)

When k = 1, the P5 momentum localized in x4 has the wave function

1

2πR5

exp
{
imx5

R5

}
δ(x1 −X1)δ(x2 −X2)δ(x3 −X3)δ(x4 −X4), (3.2)

which is the superposition of (3.1) with all n ∈ Z. In this respect, at least for M5 with

at least two dimensions compactified, the longitudinal momentum is still given by the

basic excitations, which are the selfdual strings here. The only difference is that the

selfdual string is the one dimensional object, so the transverse momentum carried by

it will appear as the two dimensional wave other than the one dimensional wave. The

momentum mode carried by the particles is the one dimensional wave. To get the

complete spectrum, we need the particles with the location covering x4, or the selfdual

strings with the orientation covering the 45 plane. {δ(x4 −X4)|X4 ∈ [0, 2πR4)} and{
1

2πR4
e
inx4
R4 |n ∈ Z

}
are different bases for the same Hilbert space.

For M5 branes with x3 x4 x5 compactified to circles with the radii R3 R4 R5, if

B35 = 1
2πR3R5

, B45 = 1
2πR4R5

, the tensionless selfdual string localized in x4 winding
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R3 R5 n l times could be described by the wave function

1

4π2R3R5

exp

{
i(− lx3

R3

+
nx5

R5

)

}
δ(x1 −X1)δ(x2 −X2)δ(x4 −X4), (3.3)

while the tensionless selfdual string localized in x3 winding R4 R5 n m times could

be described by the wave function

1

4π2R4R5

exp
{
i(−mx4

R4

+
nx5

R5

)
}
δ(x1 −X1)δ(x2 −X2)δ(x3 −X3). (3.4)

Now there are two sets of bases for the P5 momentum mode. One may wonder

whether the superposition of either of them can give the same exp
{
inx5

R5

}
δ(x1 −

X1)δ(x2 −X2)δ(x3 −X3)δ(x4 −X4).

This is indeed the case. Consider the coincident D4 branes with the longitudinal

x3 and x4 compactified to circles. Do the T-duality transformations along x3 and

x4 successively. The [i, j] monopole string wrapping x3, localized in x4, carrying one

unit of D0 charge and the [i, j] longitudinal momentum P3 becomes D2 wrapping x′3

and x′4, intersecting the ith and the jth D2 branes at one point, carrying the definite

F03 and A4. The [i, j] monopole string wrapping x4, localized in x3, carrying one

unit of D0 charge and the [i, j] longitudinal momentum P4 becomes D2 carrying the

definite F04 and A3. The superposition of D2 states with either the definite A4 and

all possible F03 or the definite A3 and all possible F04 will give the D2 state with

the definite A3 and A4, which is dual to the D0 localized in x3 and x4. So, the [i, j]

tensionless selfdual strings wrapping x4 carrying the given P5 momentum and all

possible P4 momentum compose the bases which is equivalent to the [i, j] tensionless

selfdual strings wrapping x3 carrying the same P5 momentum and all possible P3

momentum. The superposition of either of them may give the [i, j] D0 located at
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a definite point in x3 × x4. Notice that for this equivalence to be valid, ~vij = 0 is

necessary, otherwise the T-dual [i, j] D2 brane will be a tube wrapping either x3 or

x4 depending on which circle the selfdual string wraps. So, for coincident M5/D4

branes, to get the complete spectrum for P5 momentum, we only need to select an

arbitrary selfdual string extending in 1234 space, carrying the given P5 momentum

and all possible longitudinal momentum. The generated Hilbert space is the same

no matter which selfdual string is selected.

On D4 branes, the [i, j] P5 momentum can only be carried by the [i, j] selfdual

strings. There is no classical solution for the point-like instanton with the charge

[i, j]. However, we do have the solution for the chargeless point-like instantons, which

may consist of N instanton partons with charge [1, 2], · · ·, [N − 1, N ], [N, 1], while

the size ρ is the parameter characterizing the distance between the instanton partons

[72, 73]. Similarly, for type IIA NS5 branes with x5 compactified, the P5 momentum

is carried by the point-like closed strings, which are also composed by the [1, 2], · · ·,

[N − 1, N ], [N, 1] closed selfdual strings from M theory’s point of view. It is difficult

to get a single closed selfdual string with charge [i, j]. However, if one longitudinal

dimension of D4 is compactified, an instanton on D4 branes will be dual to a D-

string on D3 branes winding the transverse circle one time. A closed D-string is

composed by the [1, 2], · · ·, [N − 1, N ], [N, 1] D-string segments [72, 73]. The [i, j]

D-string segment can exist independently, because it is the [i, j] monopole string

extending along the compactified longitudinal dimension carrying the transverse P5

momentum. Similarly, for the P4 longitudinal momentum mode on D4 branes, we

have the [i, j] P4 mode carried by the [i, j] open string, which is the [i, j] selfdual

string winding x5 one time, carrying the transverse P4 momentum, and so can also

exist separately. The [1, 2], · · ·, [N − 1, N ], [N, 1] P4 modes can combine together to

give a chargeless P4 mode as well, but it is not so necessary here.
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For N coincident M5 branes with the compactified x5, the 6d (2, 0) tensor mul-

tiplet could be decomposed into the zero mode and an infinite tower of KK modes.

The zero mode is the 5d vector multiplet in adjoint representation of U(N). The KK

modes are in the 5d (2, 0) tensor multiplet. The U(1)N part of the tensor multiplet

is easy to construct, which is related with the D0 brane (point-like M2 carrying

P5) confined to each M5. There is no similar point-like [i, j] P5 mode (the [i, j] D0

brane), which is supposed to give the nonabelian part of the 5d tensor multiplet.

We do have the line-like [i, j] P5 mode, which is in the vector other than the tensor

multiplet. This is expected. The line-like P5 mode extending along x4 could be taken

as the point-like P5 mode with P4 = 0. So we actually truncate the field content of

the 5d (2, 0) multiplet to its zero mode along x4, which is in the 4d vector multiplet.

To recover the 5d (2, 0) tensor multiplet, all momentum along x4 should be included,

and so we should consider all tensionless strings extending in 45 plane, carrying the

transverse momentum (P4, P5), with the same P5 but all P4. In this way, four mod-

uli of the point-like P5 mode is recovered, with one position moduli replaced by the

momentum moduli. 5d massive tensor multiplet is decomposed into the sum of the

4d KK modes in vector multiplet, forming the U(N) adjoint representation.

In the language of the 4d SYM theory, the P5 momentum carried by the [i, j]

tensionless selfdual string is actually the [i, j] (0, 1) string with mass P5, whose moduli

space is R3 × S1, the same as the center of mass part of the moduli space of the

instanton in R3 × S1 [74]. The momentum along S1 is the electric charge. The

(0, 1) string carrying n momentum mode along S1 is the (n, 1) string. In S1 → ∞

limit, the quantization of the instanton in R4 gives the 5d massive (2, 0) multiplet.

Correspondingly, the quantization of the (n, 1) strings in R3 for all n ∈ Z should

give the same multiplet.

Consider Bµν in 5d massive (2, 0) multiplet with mass 1/R5. Bµν satisfies the
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selfduality condition

Bµν = −iR5

2
εµνλρσ∂

λBρσ (3.5)

and the equation of motion

∂λ∂λBµν +
1

R2
5

Bµν = 0, (3.6)

where µ, ν, λ, ρ, σ = 0, 1, 2, 3, 4 [58]. Do a further compactification on x4,

Bµν =
∑
k

eikx4/R4B(k)
µν . (3.7)

Due to (3.5), for i, j = 0, 1, 2, 3 and k ∈ Z, B
(k)
ij could be expressed in terms of

B
(k)
i4 thus could be dropped. We are left with a tower of the 4d massive vector field

A
(k)
i = B

(k)
i4 satisfying the constraint

∂iA
(k)
i = 0 (3.8)

as well as the equation of motion

∂j∂
jA

(k)
i + (

1

R2
5

+
k

2

R2
4

)A
(k)
i = 0. (3.9)

Each A
(k)
i carries 3 degrees of freedom, the same as B

(k)
ij . In 45 plane, the (n, 1) string

carries the momentum (n/R4, 1/R5) thus gives the 4d vector multiplet A
(n)
i . All of

the A
(n)
i are on the equal footing, which is consistent with the S-duality. To account

for the P5 momentum m/R5 with m > 1, we need (n,m) strings, so altogether,

all (m,n) strings should be included to give the complete 6d dynamics. Under the

compactification on x4 and x5, the 6d field Bαβ with α, β = 0, · · · , 5 is decomposed
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into the 4d KK modes (n/R4,m/R5) corresponding to the (m,n) string. Each KK

mode gives a 4d massive vector field A
(n,m)
i , for which, the constraint and the equation

of motion could be obtained by replacing R5 and k in (3.9) by R5/m and n.

Extending the discussion to the nonabelian case is a little difficult, since we don’t

know the equations for the nonabelian tensor field. However, we do know that the

(n/R4, 0) mode, which is the KK mode of the 5d massless SYM field, is in 4d adjoint

massive vector multiplet. The rest (n/R4,m/R5) modes are related with (n/R4, 0)

via the S-duality, so they should also form the 4d adjoint massive vector multiplet.

The whole KK tower of the 4d vector multiplet together may give the 6d (2, 0) tensor

multiplet in adjoint representation of U(N).

3.2 Selfdual strings with the orientation covering a plane and the M5-D3 duality

In previous discussion, we have seen that a tensionless selfdual string with the

transverse position (X1, X2, X3, X4) can be taken as a 6d massless particle with the

wave function δ(x1−X1)δ(x2−X2)δ(x3−X3)δ(x4−X4). In x5 direction, it is a plane

wave with the zero momentum. Another selfdual string with the transverse position

(X1, X2, X3, X5) gives the wave function δ(x1−X1)δ(x2−X2)δ(x3−X3)δ(x5−X5).

In 45 plane, the complete spectrum is
{
ei(P4x4+P5x5)|∀ P4, P5

}
, so selfdual strings

extending along all possible directions in 45 plane should be included to give the

complete spectrum for a single 6d particle. The common eigenstates of X̂1 X̂2 X̂3 P̂4

P̂5,

Λ =
{
δ(x1 −X1)δ(x2 −X2)δ(x3 −X3)eiP4x4eiP5x5|∀X1, X2, X3, P4, P5

}
(3.10)

may be the suitable bases, the superposition of which can give a 6d particle localized

in (X1, X2, X3, X4, X5). Although the position eigenstates can also be obtained,

the basic excitations are [i, j] selfdual strings other than the [i, j] particles. Since
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it is (3.10) other than the position eigenstates that is naturally realized, the KK

modes in this theory may tell us more than the KK modes in theories with point-like

excitations.

Until now, our discussion is only restricted to coincidentM5 branes, for which, the

(P4, P5) momentum, even with the charge [i, j], always takes the value (n/R4, m/R5).

The situation will be different if ~vij 6= 0, so there must be something carrying the

momentum. The natural candidate carrying the (P4, P5) momentum is the selfdual

string extending along the 45 plane. Consider the [i, j] selfdual strings with the length

and the orientation characterized by the vector (qR4, pR5) in 45 plane. p and q are

co-prime, so the selfdual string only winds x4 × x5 once. In 123 space, the string is

localized at a point. The Wilson surface in x4×x5 is trivial. Nevertheless, each [i, j]

string can still effectively pick up the background 2-form field B45 = k/(2πR4R5),

∀ k ∈ N. ∀m,n ∈ Z, ∃ k, p, q, m = kq, n = kp. In 45 plane, the [i, j] string will get

the definite transverse momentum (n/R4,−m/R5), thus could be taken as the plane

wave e
i(
nx4
R4
−mx5

R5
)
. If the momentum in 123 space is (P1, P2, P3), the energy will be

E =

√
P 2

1 + P 2
2 + P 2

3 +
n2

R2
4

+
m2

R2
5

, (3.11)

which is the energy of a 6d massless particle. When ~vij 6= 0, the [i, j] selfdual string

will have the rest mass 2π|~vij|
√
q2R2

4 + p2R2
5, so the energy should be modified to

E =

√
P 2

1 + P 2
2 + P 2

3 +
n2

R2
4

+
m2

R2
5

+ 4π2|~vij|2(q2R2
4 + p2R2

5), (3.12)

which is the energy of a 6d massive particle.

Notice that there is an ambiguity for the mass of the zero mode in 4d. With

k = 0, any (qR4, pR5) string can be the 4d zero mode with mass 2π|~vij|
√
q2R2

4 + p2R2
5.
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However, the zero mode is unique. In the dual D3 picture, there are unwrapped [i, j]

(p, q) strings with the length |~vij|. One may choose one possible (qR4, pR5)/(p, q)

as the zero mode. A particular S-frame is selected in this way, while in other S-

frames, all (qR4, pR5) can get the chance to act as the zero mode. For the point-like

excitations, the 5d momentum can uniquely fix the state; however, for the line-like

excitations, with the given 5d momentum, the selfdual string orientations can still

vary in a 4d space orthogonal to the momentum. If the selfdual string orientations

are restricted to a plane, a one-to-one correspondence between the momentum and

state may be realized except for the momentums orthogonal to that plane. So, the

fixing of the S-frame is necessary. As is shown in later discussions, the M5-D3 duality

also intrinsically involves the selection of the S-frame.

For M5 compactified on x5, the P5 zero mode should be the state with the zero

momentum along x5, localized in 1234 space. Selfdual string extending along x5

is the only one meeting the requirement, and so, in Coulomb branch, the mass of

the W-bosons is given by 2π|~vij|R5 without the ambiguity. Notice that there is a

distinction between the little string theory and the theory on coincident M5 branes.

For little string theory with x5 compactified, there are momentum mode and the

winding mode. The momentum mode is carried by the closed string. Although

the string has the finite tension, the mass of the momentum mode is still m/R5,

because the string without winding x5 can shrink to point thus has the zero mass

and has no contribution to the energy. On the other hand, for 6d (2, 0) theory with

x5 compactified, the zero mode is the 5d SYM field. In Coulomb branch, the mass

of the [i, j] zero mode is 2π|~vij|R5 other than 0, since the zero mode is actually the

selfdual string winding x5 once. There is no way to get rid of the lowest winding

mode, because we do not have the closed charged selfdual string, while the straight

selfdual string localized in 1234 space must extend along x5.

64



The direct study of the 6d (2, 0) theory is difficult. The x5 compactification will

give the 5d massive tensor multiplet, which is also not quite accessible. The 4d KK

modes upon the compactification on x4 × x5 are relatively easy to study. Moreover,

the previous discussion indicates that (3.10) might be the suitable bases to consider

the 6d theory, so in the following, we will focus on the 4d KK modes arising from

the 6d theory.

Actually, M5 with x4 and x5 compactified in 11d spacetime is dual to D3 with

one transverse dimension compactified in 10d spacetime. Consider N coincident

type IIB NS5 branes with x4 and x5 compactified to circles with the radii R4 and

R5. The vacuum expectation values of the gauge fields along x4 and x5 are A4i and

A5i respectively. The T-duality transformation along x5 gives N coincident type

IIA NS5 branes with x′4 and x′5 compactified to circles with the radii R4 and R′5.

R′5 = 1/(4π2TM2R10R5), where R10 the radius of x′10, the M theory dimension. The

positions of the type IIA NS5 branes on x′10 are A5i/(2πTM2R
′
5). The 2-form field B

on type IIA NS5 branes also gets the vacuum expectation value B45i = A4i/(2πR
′
5).4

Under the S-duality transformation, type IIB NS5 branes become the D5 branes,

which, under the T-duality transformation along x5, turn into the D4 branes with

the transverse dimension x′′5 compactified to a circle with the radius R′′5. R′′5 =

1/(4π2TM2R
′′
10R5), where R′′10 is the radius of the new M theory circle. The positions

of the D4 branes on x′′5 are A5i/(2πTM2R
′′
10). Another T-duality transformation along

x′′4 takes D4 into D3 branes with the transverse dimension x′′′4 and x′′′5 compactified

to circles with the radii 1/(4π2TM2R
′′
10R4) and 1/(4π2TM2R

′′
10R5). The positions of

4If the vacuum expectation values Aµi for µ = 1, 2, 3 on type IIB NS5 branes are also turned
on, on type IIA NS5 branes, there will be Bµ5i = Aµi/(2πR

′
5). So, among the five gauge fields on

type IIB NS5 branes, one, for example, A5i, is converted to the position along the M theory circle,
while the rest four turn into Bµ5i. The four scalar fields on type IIB NS5 branes become four scalar
fields on type IIA NS5 branes. The 6d (1, 1) theory has 4 + 4 bosonic degrees of freedom, while
the 6d (2, 0) theory has 3 + 5 bosonic degrees of freedom. The T-duality transformation converts
one gauge field into the scalar field.
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the D3 branes on x′′′4 and x′′′5 are [A4i/(2πTM2R
′′
10), A5i/(2πTM2R

′′
10)].

Until now, we only used the T-duality and S-duality for type IIA and type IIB

string theories with no M theory involved. Let us use the new symbols to give

a summary. Consider N coincident type IIA NS5 branes with x4, x5 and the M

theory dimension x10 compactified to circles with the radii R4, R5 and R10. Suppose

the positions of the NS5 branes on x10 are X10
i , the vacuum expectation values of

the 2-form field on x4 × x5 are B45i. After a series of duality transformations, we

get N D3 branes with the transverse dimension x′10 and x′45 compactified to circles

with the radii R′10 = R10R5/R̃10 and R′45 = 1/(4π2TM2R4R̃10). The positions of

the D3 branes on x′10 × x′45 are [X10
i R5/R̃10, B45iR5/(TM2R̃10)]. TF1 = 2πTM2R̃10,

TD1 = 2πTM2R̃10R4/R5. The duality transformations also take the NS5 branes

into N D4 branes with the transverse dimension x′′5 compactified to circle with the

radius R′′5 = R10R5/R̃10. The positions of the D4 branes on x′′5 are X10
i R5/R̃10. The

NS5A−D4 and NS5A−D3 duality shows that the both sides have the same degrees

of freedom. Especially, the four vector fields on D4 as well as the three vector fields

and one scalar field on D3 are dual to the four 2-form fields Bµ5 on NS5. The rest

2-form fields on NS5 have no counterpart thus could be dropped. This is consistent

with the self-duality condition on NS5. Especially, for NS5 compactified on x4×x5,

Bµν(x4, x5, ~x) =
1

2π
√
R4R5

∑
n,m

ei(nx4/R4+mx5/R5)B(n,m)
µν (~x). (3.13)

The zero mode has no winding number around x′45. B
(0,0)
45 (~x)→ X45(0,0)(~x), B

(0,0)
i5 (~x)

→ A
(0,0)
i (~x), where i = 1, 2, 3. The rest B(0,0)

µν could be neglected. The bosonic degrees

of freedom are 6 + 2 = 8. The higher mode has the nonzero x′45 winding number, so

there is no X45(n,m) for m,n 6= 0. B
(n,m)
i5 (~x)→ A

(n,m)
i (~x), where i = 1, 2, 3. B

(n,m)
45 (~x)

together with A
(n,m)
i (~x) gives 4−1 = 3 gauge degrees of freedom, so the total bosonic
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degrees of freedom are still 5 + 3 = 8.

In R10 →∞ limit, NS5 branes become M5 branes, while on D3 and D4 branes

side, x′10 and x′′5 are decompactified. So, M5 branes with x4 and x5 compactified

is dual to the D3 branes with the transverse x′45 compactified; M5 branes with

x5 compactified is dual to D4 branes. For T-duality, Dp with the longitudinal xp

compactified is dual to Dp−1 with the transverse x′p compactified, with Ap converted

to Xp, the momentum mode along xp transformed to the winding mode along x′p. For

M5, we have Bµν instead of Aµ, so two longitudinal dimensions x4 x5 are transformed

to one transverse dimension x′45, while the (P4, P5) momentum modes become the

winding modes of the (p, q) strings along x′45 for all co-prime p q.

For D3, R′45 = 1/(2πR4TF1) = 1/(2πR5TD1). The five transverse dimensions of

M5, xI , are dual to the rest five transverse dimensions of D3, x′I . I = 6 · · · 10. If

the B45 on M5 branes gets the vacuum expectation value B45i, D3 branes will be

separated along x′45 with the transverse positions

X ′45
i = 2πR5B45i/TF1 = 2πR4B45i/TD1. (3.14)

If the scalar fields on M5 branes get the vacuum expectation value ΦI
i , D3 branes

will be separated along x′I with the transverse positions

X ′Ii = 2πR5ΦI
i /TF1 = 2πR4ΦI

i /TD1. (3.15)

If the Bµ5 for µ = 1, 2, 3 on M5 branes gets the vacuum expectation value Bµ5i, the

gauge field Aµi on D3 branes will get the vacuum expectation value

Aµi = 2πR5Bµ5i. (3.16)
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(3.16) indicates that the (0, 0) mode of M5 is dual to the (1, 0) string on D3 with

the winding number 0. A particular S-frame is selected.

For D4, if the five scalar fields on M5 branes get the vacuum expectation value

ΦI
i , D4 branes will be separated along x′′I with the transverse positions

X ′′Ii = R5ΦI
i /(TM2R̃10). (3.17)

If the Bµ5 for µ = 1, 2, 3, 4 on M5 branes gets the vacuum expectation value Bµ5i,

the gauge field Aµi on D4 branes will get the vacuum expectation value

Aµi = 2πR5Bµ5i. (3.18)

There’s no other Bosonic fields on D4 branes, so the rest 2-form fields on M5 branes

can be neglected. D4 is equivalent to M5 compactified on x5 other than M5 reduced

along x5.

Let us concentrate on the M5−D3 duality. The [i, j] (qR4, pR5) selfdual string

on M5 is dual to the [i, j] (p, q) string on D3. If x4 and x5 are compact, x′45 will also

be compact, so even if B45 = 0, the covering space of x′45 will still have N coincident

D3 branes distributed with the period 2πR′45. ∀ i, j, we have the [i, j] (p, q) string

connecting the ith and the jth D3 branes with the length 2πkR′45, corresponding to

the [i, j] (qR4, pR5) selfdual string coupling with the 2-form field B45 = k/(2πR4R5),

getting the momentum (kp/R4,−kq/R5). If the other transverse fields on D3 also

get the vacuum expectation value, the mass of the [i, j] (p, q) string will be

M = 2π
√
q2R2

4 + p2R2
5

√
(

k

2πR4R5

)2 + |~Φij|2, (3.19)

which is the same as the energy of the [i, j] (qR4, pR5) selfdual string.
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The (kp/R4,−kq/R5) momentum mode is dual to the [i, j] (p, q) string winding

x′45 k times. D3 with one transverse dimension compactified is T-dual to D4 with

one longitudinal dimension compactified, with the winding mode converted to the

momentum mode. So, the (p, q) string with all possible winding numbers gives a 5d

SYM theory whose basic excitations are (p, q) strings. In this way, the 4d KK modes

are equivalent to a series of 5d SYM fields labeled by (p, q) with p and q co-prime. The

(p, q) 5d SYM fields, when lifted to 6d, are translation invariant along the (qR4, pR5)

direction. They are the fields related with the (qR4, pR5) selfdual strings. With all

(p, q) included, the selfdual string orientation then covers the whole 45 plane. In

R4, R5 →∞ limit, the selfdual string orientation can be represented by the angle θ.

For every θ ∈ [0, π), there is a corresponding 5d SYM theory. Fields related with

the same θ have the standard SYM type coupling. The coupling between the SYM

fields related with the different θ will be discussed later.

One can make a comparison between the 6d (2, 0) theory and the 6d SYM theory

living in D5 branes. D5 with the longitudinal dimension x4 and x5 compactified

is T-dual to D3 with the transverse dimension x′4 and x′5 compactified. The [i, j]

(n/R4,m/R5) momentum mode is dual to the [i, j] F1 winding x′4 and x′5 n and m

times. With m fixed, the winding modes along x′5 give the 5d massive SYM theory,

which, with all of m included, becomes the 6d SYM theory. On the other hand, for

the 6d (2, 0) theory living in M5 branes, when m = 0, the [i, j] (n/R4, 0) momentum

mode is dual to the [i, j] (1, 0) string winding x′45 n times, from which, one can

indeed get a 5d SYM theory. However, when m = 1, the (n/R4, 1/R5) mode is dual

to the (n, 1) string winding x′45 one time. Such strings, when combine together, will

give the 5d massive tensor multiplet rather than the 5d massive vector multiplet.

Since the (n, 1) strings are also in the adjoint representation of U(N), the 5d massive

tensor multiplet will also form the U(N) adjoint representation. Even though, the
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nonabelian interaction for them is different from the vector multiplet.

When ~vi = 0, all D3 branes are separated along a straight line, so the possible

BPS states are still the original 1/2 BPS states. To get the new states, the vacuum

expectation values of the five scalar fields on M5 branes must be turned on. In

D3 brane picture, D3’s then appear as N arbitrary points in the 5d transverse space

orthogonal to x′45. The only possible new BPS states are 1/4 BPS 3-string junctions,

which are also the bound states of the [i, j] (p, q) string and the [j, k] (r, s) string.

On M5 side, the 3-string junction is the bound state of the [i, j] [j, k] selfdual strings

each carrying the transverse momentum (kp/R4,−kq/R5) and (hr/R4,−hs/R5).

We are interested with the N coincident M5 branes, since in that case, the states

can be massless in six dimensional sense thus will contribute to the entropy. We have

seen that the bound states of the momentum mode cannot give the new degrees of

freedom, but we haven’t considered the bound states of the momentum mode and the

zero mode, which, for example, can be taken as the tensionless [i, j] (0, R5) string.

In D3 brane picture, that is the massless [i, j] (1, 0) string, which may form the

1/4 BPS threshold bound state with any [j, k] (p, q) strings with the length 2πkR′45.

In 6d, they are the [i, j] (0, R5) and the [j, k] (qR4, pR5) tensionless selfdual strings

located at the same point in 123 space. The former has the zero momentum in

45 plane, while the later carries the transverse momentum (kp/R4,−kq/R5). It is

unclear whether they may form the threshold bound state or not, but there is no

other possibilities left. In 4d SYM theory, these states are massive unless k = 0 but

in 6d, they are massless.

We can also consider the bound state of the zero mode and momentum mode

when the zero mode has the finite mass, for example, the [i, j] (R4, 0) selfdual string

with tension |~vij| and the momentum mode (kp/R4,−kq/R5) carried by the tension-

less [j, k] (qR4, pR5) selfdual string. When q = 0, the bound state is at the threshold,
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which is the the [i, j] selfdual string carrying the [j, k] longitudinal momentum. No-

tice that the (0, R5) selfdual string appears as the zero momentum plane wave in x5

direction. If x5 is taken as the M theory direction, then in type IIA, selfdual string

extending along x4 is just the monopole string on D4, which, of course, also has

the zero momentum along x5. The above bound state is the [i, j] monopole string

carrying the longitudinal momentum offered by the [j, k] (massless) open string. On

the other hand, the selfdual string localized in x5 should carry the point-like P4

momentum, which, however, only naturally exists in chargeless situation.

3.3 The interaction of the 6d (2, 0) theory seen from its KK modes on x4 × x5

Recall that in [23], the equations of motion for the 3-algebra valued (2, 0) tensor

multiplet involve a constant vector field Cµ, giving a direction along which all of

the fields are required to be translation invariant. The theory with the fixed Cµ

describes the selfdual string extending along it. The selfdual string has the zero

momentum along Cµ but may get the arbitrary momentum along the four transverse

dimensions, so the theory describing it is just the 5d U(N) SYM theory, which is

the reduction of the 6d (2, 0) theory along Cµ. To recover the full 6d theory, we

need the selfdual strings with the orientations covering all directions in a plane,

which, for definiteness, is taken as the 45 plane. Correspondingly, Cµ is replaced

by Cµ(θ) = cos θδ4
µ + sin θδ5

µ, while the original fields f(xµ) now become f(θ, xµ).

µ = 0 · · · 5. With the extra dimension θ added, we get a 7d theory, which, under the

constraint Cµ(θ)∂µf(θ, xµ) = 0, is a 6d theory again.

Suppose the U(N) 6d (2, 0) tensor multiplet field configuration is given. For sim-

plicity, consider the scalar fields XI(xm, x4, x5), where m = 0, 1, 2, 3, I = 6, 7, 8, 9, 10.

∫
dxθ X

I(xm, cos θxθ + sin θyθ,− sin θxθ + cos θyθ) = ΦI(xm, θ, yθ) (3.20)
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is the scalar field in the 5d SYM theory related with θ. XI and ΦI have the scaling

dimensions 2 and 1 respectively. ΦI is the zero mode of XI along Cµ(θ). Also, notice

that

∫
dxθdyθ X

I(xm, cos θxθ + sin θyθ,− sin θxθ + cos θyθ) = φI(xm) (3.21)

is independent of θ. φI is the zero mode of ΦI(xm, θ, yθ) in the 4d spacetime. All of

the 5d SYM theories share the same zero mode in 4d, because the 6d theory has the

unique zero mode in 4d. The vector field A and the spinor field η with the scaling

dimensions 1 and 3/2 in 5d SYM theory could be constructed in the similar way from

the 6d 2-form field B and the spinor field Ψ with the scaling dimensions 2 and 5/2.

Since the integration is carried out along a particular direction, more precisely, the

original scalar fields, 2-form field, and the spinor field are converted into the vector

fields, vector field, and the spinor-vector field respectively.

One may also want to reconstruct XI from ΦI .

XI(xm, x4, x5) =
∫
dp4dp5 e

i(p4x4+p5x5)φI(p4,p5)(xm). (3.22)

If x4 and x5 are compact, p4 = kp̄4/R4, p5 = −kp̄5/R5, (p̄4, p̄5) is the co-prime pair,

XI(xm, x4, x5) =
∑

(p̄4,p̄5)

∑
k

e
ik(

p̄4x4
R4
− p̄5x5

R5
)
φI(p̄4,p̄5;k)(xm) =

∑
(p̄4,p̄5)

ΦI(xm, p̄4R5x4−p̄5R4x5).

(3.23)

ΦI(xm, p̄4R5x4 − p̄5R4x5) is the discrete version of ΦI . In continuous limit,

XI(xm, x4, x5) =
∫
dθdpθpθ e

ipθ(− sin θx4+cos θx5)φI(θ;pθ)(xm)

=
∫
dθ Φ̃I(xm,− sin θx4 + cos θx5). (3.24)
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However, Φ̃I is not the ΦI in (3.20). The latter is

ΦI(xm,− sin θx4 + cos θx5) =
∫
dpθ e

ipθ(− sin θx4+cos θx5)φI(θ;pθ)(xm) (3.25)

with pθ left out in the integral. XI is only the direct superposition of Φ̃I(θ), which

is not the zero mode in Cµ(θ) direction. Nevertheless,
{

Φ̃I(θ) | ∀θ ∈ [0, π)
}

and{
ΦI(θ) | ∀θ ∈ [0, π)

}
are equivalent bases.

We now have a series of θ-parameterized 5d U(N) SYM theories, which is effec-

tively a 6d theory with 5 scalars, 3 gauge degrees of freedom and 8 fermionic degrees

of freedom. It may at least exhaust the 1/2 BPS field content of the 6d (2, 0) theory.

The next problem is the interaction. Fields belong to the same 5d SYM theory have

the standard SYM coupling among themselves. It is also necessary to consider the

couplings involving fields in different 5d SYM theories. Actually, the 6d SYM theory

could also be decomposed in this way, while the local interactions in the original 6d

theory induce the couplings among the 5d theories labeled by different θ.

To see this coupling more explicitly, we’d better decompose the 6d fields into the

4d KK modes. For scalars, the decomposition is as that in (3.22). Similarly, for the

6d SYM fields such as the scalars Y L(xm, x4, x5), L = 6, 7, 8, 9, we also have

Y L(xm, x4, x5) =
∫
dp4dp5 e

i(p4x4+p5x5)ϕL(p4,p5)(xm). (3.26)

The two-field coupling Y LY L′ gives

∫
dx4dx5 Y

L
ij Y

L′

ji =
∫
dp4dp5 ϕ

L
(p4,p5)ij(xm)ϕL

′

(−p4,−p5)ji(xm), (3.27)
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the three-field coupling Y LY L′Y L′′ gives

∫
dx4dx5Y

L
ij Y

L′

jk Y
L′′

ki =
∫
dp4dp5dq4dq5ϕ

L
(p4,p5)ij(xm)ϕL

′

(q4,q5)jk(xm)ϕL
′′

(−p4−q4,−p5−q5)ki(xm),

(3.28)

and similarly for the n-field coupling. In the dual D3 brane picture, ϕL(p4,p5)ij(xm)

corresponds to the F-string connecting the ith and the jth D3 branes represented

by the vector (p4, p5) in transverse space. The above coupling is possible because

the bound state of the [i, j] (p4, p5) F-string and the [j, k] (q4, q5) F-string is the [i, k]

(p4+q4, p5+q5) F-string. The conclusion also holds in Coulomb branch. ϕL(p4,p5)ij(xm)

then corresponds to the F-string represented by the vector (p4, p5, ~vij) in transverse

space.

(p4, p5, ~vij) + (q4, q5, ~vjk) = (p4 + q4, p5 + q5, ~vik). (3.29)

On the other hand, for fields in tensor multiplet, such as XI , the two-field coupling

XIXI′ is indeed

∫
dx4dx5 X

I
ijX

I′

ji =
∫
dp4dp5 φ

I
(p4,p5)ij(xm)φI

′

(−p4,−p5)ji(xm), (3.30)

but the three-field coupling and the n-field coupling cannot take the similar form

as (3.28). On D3 branes, φI(p4,p5)ij(xm) corresponds to the [i, j] (p4, p5) string5.

When (p4, p5) ∝ (q4, q5), the bound state of the [i, j] (p4, p5) string and the [j, k]

(q4, q5) string is still the [i, k] (p4 + q4, p5 + q5) string, so, the coupling like (3.28)

is possible. φI(p4,p5)ij(xm) and φI
′

(q4,q5)jk(xm) belong to the same 5d SYM theory with

θ = − arctan(p4/p5). However, for unparallel (p4, p5) and (q4, q5), the bound state

will be the 3-string junction other than the single string6. The similar problem also

5More accurately, it is the [i, j] (p̄4, p̄5) string winding x′45 k times. p4 = kp̄4/R4, p5 = −kp̄5/R5,
p̄4 and p̄5 are co-prime. For simplicity, we just denote it by (p4, p5).

6The bound state exists only when the [i, j] [j, k] strings have the suitable mass. Here, we just

74



exists for the 5d massive tensor multiplet. The KK modes in 4d could be represented

by the [i, j] (p4, p5) strings with the fixed p5 but all possible p4. Obviously, (p4, p5)

and (p′4, p5) are not parallel unless p4 = p′4. To summarize, if we concentrate on

a single kind of the selfdual strings, the theory will be the 5d SYM theory; if we

consider the selfdual strings with the different orientations, the theory will involve

the tensor multiplet, for which, the interaction is not the standard SYM type.

Then the problem reduces to the coupling between φ(p4,p5)ij(xm) and φ′(q4,q5)jk(xm)

for the unparallel (p4, p5) and (q4, q5). The bound state of the [i, j] (p4, p5) string and

the [j, k] (q4, q5) string is the 3-string junction other than the traditional [i, k] (P4, P5)

string. Unlike the 6d SYM theory, we now get more states and should also quantize

them. A given 3-string junction is characterized by the charge vector ve = (r4, s4, t4)

and vm = (r5, s5, t5), for which, no common divisor exists. r s t are related with the

i j k branes, while the rest N − 3 branes are neglected.

r4 + s4 + t4 = r5 + s5 + t5 = 0. (3.31)

In x45, v45
ij = 2πkR′45, v45

jk = 2πhR′45. In transverse space, we may also have ~vij

and ~vjk, which will make the string junction massive. The total momentum of the

3-string junction is

(P4, P5) = (
kr4 − ht4

R4

,
−kr5 + ht5

R5

) = (p4 + q4, p5 + q5). (3.32)

where (p4, p5) = (kr4/R4,−kr5/R5) = (kp̄4/R4,−kp̄5/R5), (q4, q5) = (−ht4/R4,

ht5/R5) = (hq̄4/R4,−hq̄5/R5). p̄4 and p̄5, q̄4 and q̄5 are not necessarily co-prime

now. For (p̄4, p̄5) ∝ (q̄4, q̄5), (P4, P5) ∝ (q̄4, q̄5), while for the unparallel (p̄4, p̄5)

assume so.
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and (q̄4, q̄5), k and h may generate two dimensional momentum. Especially, if the

SL(2,Z) invariant intersection number [69] I = t5r4 − t4r5 = ±1, (P4, P5) can cover

all of (n/R4,m/R5); otherwise, it can only cover (nI/R4,mI/R5). We will use

(p̄4, p̄5), (q̄4, q̄5) and (P4, P5) to denote the 3-string junction. When R4, R5 → ∞,

the 3-string junction is characterized by the 2d vectors ~C(θ1), ~C(θ2) and (P4, P5).

~C(θ3) = −~C(θ1)− ~C(θ2), (P4, P5) = θ̂1pθ1 − θ̂2pθ2 , where θ̂1 and θ̂2 are unit vectors.

For the given ~vij and ~vjk, the 3-string junction exists only when (P4, P5) satisfies

some particular condition

f(p̄4,p̄5,q̄4,q̄5,~vij ,~vjk)(P4, P5) > 0, (3.33)

so the 3-string junction cannot have the arbitrary momentum in 45 plane. The

selfdual string in 45 plane can only carry the 1d transverse momentum. Here, the

bound state of two unparallel selfdual strings can carry the 2d momentum, but this

momentum cannot cover the 2d space.

Fields arising from the quantization of the 3-string junctions can then be denoted

by φ(~r,~s,~t;P4,P5)ijk(xm) or φ(θ1,θ2,θ3;P4,P5)ijk(xm) in decompactification limit. ~r+~s+~t = 0.

The corresponding 6d field is

X(~r,~s,~t)ijk(xm, x4, x5) =
∑
P4,P5

ei(P4x4+P5x5)φ(~r,~s,~t;P4,P5)ijk(xm), (3.34)

or

X(θ1,θ2,θ3)ijk(xm, x4, x5) =
∫
dP4dP5 e

i(P4x4+P5x5)φ(θ1,θ2,θ3;P4,P5)ijk(xm). (3.35)
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In polar coordinate, (3.35) could also be written as

X(θ1,θ2,θ3)ijk(xm, θ, ρ)

= sin(θ2 − θ1)
∫
dpθ1dpθ2 e

iρ[sin(θ−θ1)pθ1−sin(θ−θ2)pθ2 ]φ(θ1,θ2,θ3;pθ1 ,pθ2 )ijk(xm).(3.36)

In terms of k and h, (3.34) becomes

X(~r,~s,~t)ijk(xm, x4, x5) =
∑
k,h

e
i[k(

r4x4
R4
− r5x5

R5
)−h(

t4x4
R4
− t5x5

R5
)]
φ(~r,~s,~t;k,h)ijk(xm). (3.37)

In (3.34)-(3.37), (P4, P5) is in the range specified by (3.33).

Similarly, we can also consider fields related with string webs, if there is only

one scalar field gets the vacuum expectation value. For simplicity, consider the 4d

(n/R4, 1/R5) momentum modes, or alternatively, the (n, 1) strings with n ∈ Z. One

may take the [1, 2], · · ·, [N − 1, N ] strings as the simple modes, from which, the 5d

field can be constructed as

Z
(1)
i,i+1(xm, x4) =

∫
dp4 e

ip4x4φ(p4)i,i+1(xm), (3.38)

The 5d field is in the (2, 0) tensor multiplet, but we only consider the scalar here.

The bound state of the [i, i+ 1], · · ·, [i+ k − 1, i+ k] strings has the charge vector

ve = (0, · · · , 0, ni, ni+1 − ni, · · · ,−ni+k−1, 0, · · · , 0), (3.39)

vm = (0, · · · , 0, 1, 0, · · · , 0,−1, 0, · · · , 0) (3.40)

and the total momentum (
∑k−1
a=0 ni+a/R4, k/R5). When ni = · · · = ni+k−1, the bound

state reduces to the [i, i+k] (
∑k−1
a=0 ni+a/R4, k/R5) mode. The corresponding 5d field
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is

Z
(k)
(ni,···,ni+k−1)i,···,i+k(xm, x4) =

∫
dp4 e

ip4x4φ(ni,···,ni+k−1;p4)i,···,i+k(xm). (3.41)

It seems that the quantization of the string webs gives an infinite number of fields

with the infinite degrees of freedom. However, these fields can be neatly reorga-

nized to give the (N3 − N)/6 degrees of freedom. For example, in (3.41), the

field is actually Zp4 i,···,p4 i+k−1
(xm), which is equivalent to Z(xm, x4 i, · · · , x4 i+k−1) ∼

Z(xm, x4 i) · · ·Z(xm, x4 i+k−1) thus has k degrees of freedom. Altogether,

N−1∑
k=1

k(N − k) =
N3 −N

6
. (3.42)

Recall that in previous discussion, the N3 degrees of freedom comes from the [i, j]

[j, k] string bound state. These two are actually equivalent. Here, we take N − 1

simple modes as the basic degrees of freedom. We can also take [i, j] modes with

i < j fundamental, then each [i, j] [j, k] bound state gives one degrees of freedom7,

which, together with the [i, j] modes, becomes

C3
N + C2

N =
N3 −N

6
. (3.43)

However, C2
N out of (N3 −N)/6 comes from the [i, j] selfdual strings, while the rest

C3
N is not enough to produce the anomaly on M5 branes [75, 76]. To give the right

anomaly coefficient, we need the [i, j] [j, k] selfdual string bound state including the

situation when two of i j k are the same. The total number of the bound states is

N3 −N .

With the fields related with strings as well as the string junctions, we can consider

the possible couplings among them. First, the bound state of the [i, j] (r4, r5) string

7It is one other than two because the rest one has already been counted by the [i, j] modes.
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and the [j, k] (−t4,−t5) string, or the [j, k] (s4, s5) string and the [k, i] (−r4,−r5)

string, or the [k, i] (t4, t5) string and the [i, j] (−s4,−s5) string is the [i, j, k] 3-string

junction with ve = (r4, s4, t4) and vm = (r5, s5, t5). The momentum of the 3-string

junction is the sum of the two individual strings. 2 + 2→ 3.

φ(r4,r5;k)ij(xm)φ′(−t4,−t5;h)jk(xm) ∼ φ′′(~r,~s,~t;k,h)ijk(xm), (3.44)

φ(s4,s5;h)jk(xm)φ′(−r4,−r5;−k−h)ki(xm) ∼ φ′′(~r,~s,~t;k,h)ijk(xm), (3.45)

φ(t4,t5;−k−h)ki(xm)φ′(−s4,−s5;k)ij(xm) ∼ φ′′(~r,~s,~t;k,h)ijk(xm), (3.46)

which could be derived from the coupling

∫
dx4dx5 X(r4,r5)ij(xm, x4, x5)X ′(−t4,−t5)jk(xm, x4, x5)X ′′(~r,~s,~t)ijk(xm, x4, x5), (3.47)

with

X(r4,r5)ij(xm, x4, x5) =
∑
k

e
ik(

r4x4
R4
− r5x5

R5
)
φ(r4,r5;k)ij(xm), (3.48)

X ′(−t4,−t5)jk(xm, x4, x5) =
∑
h

e
−ih(

t4x4
R4
− t5x5

R5
)
φ(−t4,−t5;h)jk(xm). (3.49)

In polar coordinate, the coupling is

∫
ρdρdθ X(θ1)ij(xm, θ, ρ)X ′(θ2+π)jk(xm, θ, ρ)X ′′(θ1,θ2,θ3)ijk(xm, θ, ρ), (3.50)

where

X(θ1)ij(xm, θ, ρ) =
∫
dpθ1 e

ipθ1ρ sin(θ−θ1)φ(θ1;pθ1 )ij(xm), (3.51)

X(θ2+π)jk(xm, θ, ρ) =
∫
dpθ2 e

−ipθ2ρ sin(θ−θ2)φ(θ2+π;pθ2 )jk(xm). (3.52)

Now, consider the bound state of φ(u4,u5;g)li(xm) /φ(u4,u5;−g)il(xm) and φ′
(~r,~s,~t;k,h)ijk

(xm).
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If (u4, u5) = (r4, r5) or (u4, u5) = (−r4,−r5), the bound state will still be the 3-string

junction φ′′
(~r,~s,~t;k+g,h)ljk

(xm), 2 + 3→ 3; otherwise, it is a 4-string junction, 2 + 3→ 4.

The situation is similar if i is replaced by j or k. The 2 + 3 → 3 type relation may

give the couplings like

XliX
′
ijkX

′′
ljk, XilX

′
ijkX

′′
ljk, XliX

′
ijkX

′′
knX

′′′
ljn (3.53)

and so on.

The 2+2→ 2, 2+3→ 3 couplings could be realized as the matrix multiplication.

Moreover, they can also be visualized as the junction of two 2-boundary-M2’s and

the junction of one 2-boundary-M2 and one 3-boundary-M2 respectively. Therefore,

they are more reasonable than the couplings like 2 + 2→ 3 and 2 + 3→ 4.

We now have two sets of fields f(r4,r5)ij(xm, x4, x5) and f(~r,~s,~t)ijk(xm, x4, x5), or

alternatively, f(θ)ij(xm, α, ρ) and f(θ1,θ2,θ3)ijk(xm, α, ρ). f(r4,r5)ij(xm, x4, x5) is transla-

tion invariant along the (r5R4, r4R5) direction, so it is the previous discussed field

satisfying the constraint Cµ(θ)∂µf(θ)ij(xm, α, ρ) = 0. Conversely, f(θ1,θ2,θ3)ijk(xm, α, ρ)

is a 6d field without the constraint8. f(θ)ij with all θ included is equivalent to a 6d

field. f(θ1,θ2,θ3)ijk with all θ1 θ2 θ3 included is equivalent to a 9d field, since it is re-

lated with the bound state. f(θ1), f(θ2) and f(θ3) may couple with each other through

f(θ1,θ2,θ3).

f(θ)ij is a vector multiplet composed by the scalars ΦI
(θ), the vector A(θ)µ and the

spinor η(θ) with the scaling dimensions 1, 1 and 3/2 respectively, coming from the

Cµ(θ) direction integration of the scalars XI , the 2-form Bµν and the spinor Ψ with

the scaling dimensions 2, 2 and 5/2. As a 6d vector, Cµ(θ)A(θ)µ = 0.

The field content of f(θ1,θ2,θ3)ijk can be reconstructed from the 4d KK mode.

8(3.33) gives a restriction on the range of k and h in (3.37). Especially, if k = 0 or h = 0,
f(θ1,θ2,θ3)ijk is also translation invariant along one direction, as we will see later.
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The KK compactification of f(θ1,θ2,θ3)ijk on x4 × x5 gives the 4d field φ(~r,~s,~t;P4,P5)ijk,

which, in 4d SYM theory, is related to the 3-string junction with the charge vector

ve = (r4, s4, t4) and vm = (r5, s5, t5), having the total mass P5 and the total electric

charge P4. The multiplet structure of φ(~r,~s,~t;P4,P5)ijk is V4⊗Vin, where V4 is the vector

supermultiplet coming from the free center-of-mass part, Vin is the internal part

determined by ve and vm. For ve = (r4, s4, t4), vm = (1, 0,−1), Vin = [|s4|/2] ⊕

[|s4|/2− 1/2]⊕ [|s4|/2− 1/2]⊕ [|s4|/2− 1], giving a total of 4|s4| states [67]. As the

string web, it has Eext = 3 external points and Fint = |s4| internal points [69]. If

φ(~r,~s,~t;P4,P5)ijk is lifted into the 6d field f(~r,~s,~t)ijk, V4⊗Vin will become T6⊗Vin, with T6

the tensor supermultiplet from the center-of-mass part. So, f(~r,~s,~t)ijk at least contains

a tensor multiplet factor.

It is difficult to determine Vin in decompactification limit. The simplest possibility

is |s4| = 1 with one internal point, and then Vin = [1/2] ⊕ [0] ⊕ [0]. Recall that for

1/2 BPS states with the degeneracy of 24, we have the 6d (2, 0) tensor multiplet

T6, whose KK modes along x5 are the 5d massless vector multiplet V5 and the 5d

massive (2, 0) tensor multiplets T5. The KK modes of V5 and T5 on x4 are the 4d

vector multiplets V4. The massless limit of the 5d massive tensor multiplet is the 5d

massless vector multiplet. For 1/4 BPS states, in 4d, we get V4 ⊗ ([1/2]⊕ [0]⊕ [0]).

The V4 ⊗ [1/2] part gives

j 3/2 1 1/2 0 -1/2 -1 -3/2

Degeneracy 1 4 7 8 7 4 1

which, when combines with the rest two V4, could be organized into 1 spin-3/2

fermion, 6 vectors, 14 spin-1/2 fermions and 14 scalars, forming the massive rep-

resentation of the 4d N = 4 superalgebra with 26 states. In massless limit, the

bosonic part of V4 ⊗ ([1/2] ⊕ [0] ⊕ [0]) is composed by 6 vectors and 20 scalars,
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with each vector containing two degrees of freedom. V4, when lifted to 5d with

P5 = 0 or P5 6= 0, becomes V5 or T5. The lifted V4 ⊗ ([1/2] ⊕ [0] ⊕ [0]) could be

naively denoted by V5 ⊗ ([1/2] ⊕ [0] ⊕ [0]) and T5 ⊗ ([1/2] ⊕ [0] ⊕ [0]), which are

all complex now. Actually, one V4 ⊗ ([1/2] ⊕ [0] ⊕ [0]) only gives the 3-string junc-

tion with one possible orientation; if the other orientation is taken into account,

we will also get 26 × 2 = 27 states. The field content of V5 ⊗ ([1/2] ⊕ [0] ⊕ [0])

could be organized into 1 spin-3/2 fermion, 6 vectors, 13 spin-1/2 fermions and 14

scalars, while the field content of T5 ⊗ ([1/2] ⊕ [0] ⊕ [0]) could be organized into 2

selfdual tensors, 1 spin-3/2 fermion, 4 vectors, 13 spin-1/2 fermions and 10 scalars.

T6⊗ ([1/2]⊕ [0]⊕ [0]) and T5⊗ ([1/2]⊕ [0]⊕ [0]) have the same field content, forming

the 6d massless (2, 1) multiplet and the 5d massive (2, 1) multiplet respectively. The

5d massive selfdual tensors and the 5d massive vectors, containing 3 and 4 degrees

of freedom, become the 6d massless selfdual tensors and the 6d massless vectors, still

with 3 and 4 degrees of freedom. T6 ⊗ ([1/2] ⊕ [0] ⊕ [0]) compactified on x5 gives

V5 ⊗ ([1/2] ⊕ [0] ⊕ [0]) and T5 ⊗ ([1/2] ⊕ [0] ⊕ [0]), which, when further compacti-

fied on x4, becomes V4 ⊗ ([1/2] ⊕ [0] ⊕ [0]). Just as V5 is the massless limit of T5,

V5⊗([1/2]⊕[0]⊕[0]) could also be taken as the massless limit of T5⊗([1/2]⊕[0]⊕[0]).

The 2 massive 5d selfdual tensors become 2 massless 5d vectors, while the 4 mas-

sive 5d vectors become 4 massless 5d vectors plus 4 scalars. T6 ⊗ ([1/2]⊕ [0]⊕ [0]),

T5 ⊗ ([1/2]⊕ [0]⊕ [0]) and V5 ⊗ ([1/2]⊕ [0]⊕ [0]) are all complex, so the total states

for each are 27 other than 26. Each multiplet will form the N×N×N or N̄× N̄× N̄

representation of U(N), so they cannot be real, as the fields in adjoint representation

do.

f(θ1,θ2,θ3)ijk may be a (2, 1) multiplet composed by the scalarsX(θ1,θ2,θ3), the vectors

V(θ1,θ2,θ3), the 2-forms B(θ1,θ2,θ3), the spin-1/2 fermions Ψ(θ1,θ2,θ3) and the spin-3/2

fermions η(θ1,θ2,θ3). In principle, the 6d (2, 0) theory can only contain the (2, 0) tensor
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multiplet, but now, the (2, 1) multiplet is also added. There will be the couplings

between the (2, 1) multiplet and the vector multiplet arising from the reduction of

the tensor multiplet along a particular direction. The incorporation of the (2, 1)

multiplet into the scattering amplitude is also discussed in [68] for M5 compactified

on S1. It was shown that the BB′A coupling is one of the possibilities. B and B′

are the 2-forms in 5d massive (2, 1) multiplet, while A is the zero mode vector in 5d.

In the following, we will only discuss X, B and Ψ with the scaling dimensions 2, 2,

5/2 respectively. Of course, X, B and Ψ are not necessarily the R-symmetry singlet,

but the indices in transverse dimensions are neglected for simplicity.

Let us consider the possible dimension six couplings for these fields. For two-field

couplings, there are

∂X∂X, ∂X(θ1,θ2,θ3)∂X
∗
(θ1,θ2,θ3), Ψ̄∂Ψ, Ψ̄(θ1,θ2,θ3)∂Ψ(θ1,θ2,θ3),

∂B∂B, ∂B(θ1,θ2,θ3)∂B
∗
(θ1,θ2,θ3). (3.54)

X Ψ B compose a 6d (2, 0) tensor multiplet in adjoint representation of U(N),

which is equivalent to Φ(θ) A(θ) η(θ) with all θ included. We do not have terms like

XijX
′
jkX

′′
ki, but the two-field couplings like XijX

′
ji are allowed. The tensor multiplet

representation works well in free theory. The possible three-field couplings are

AθaX(θ1,θ2,θ3)∂X
∗
(θ1,θ2,θ3), AθaΨ̄(θ1,θ2,θ3)Ψ(θ1,θ2,θ3),

ΦθaΨ̄(θ1,θ2,θ3)Ψ(θ1,θ2,θ3), AθaB(θ1,θ2,θ3)∂B
∗
(θ1,θ2,θ3), (3.55)

where a = 1, 2, 3. The possible four-field couplings are

AθaX(θ1,θ2,θ3)AθbX
∗
(θ1,θ2,θ3), ΦθaX(θ1,θ2,θ3)ΦθbX

∗
(θ1,θ2,θ3),
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AθaB(θ1,θ2,θ3)AθbB
∗
(θ1,θ2,θ3), ΦθaB(θ1,θ2,θ3)ΦθbB

∗
(θ1,θ2,θ3), (3.56)

with a, b = 1, 2, 3. Based on the above couplings, the nonabelian generalization of

Hµνλ can then be defined as

Hijk = dBijk + Ali ∧Bljk + Amj ∧Bimk + Ank ∧Bijn, (3.57)

with H ∼ H(θ1,θ2,θ3)µνλ, A
l
i ∼ Al(θ1)µi, A

m
j ∼ Am(θ2)µj, A

n
k ∼ An(θ3)µk, B ∼ B(θ1,θ2,θ3)µν .

Fermions may get mass through the Yukawa coupling ΦθaΨ̄(θ1,θ2,θ3)Ψ(θ1,θ2,θ3). In

order to compare with the 3-string junctions in 4d SYM theory, we will use (~r, ~s,~t)

instead of (θ1, θ2, θ3). Consider Ψ(~r,~s,~t)ijk and ΦI
(~u;lm)µ. The vacuum expectation

value of XI is X̄I
lm = vImδlm, then the induced vacuum expectation value for ΦI

µ is

Φ̄I
(~u;lm)µ = ũµv

I
mδlm. Similar with the equation for fermions in [23],

ΓµDµΨA +XI
CC

ν
BΓνΓ

IΨDf
CDB

A = 0, (3.58)

we may have

iΓ0ΓµΓI [Φ̄
I
(~r;il)µΨ(~r,~s,~t)ljk + Φ̄I

(~s;jl)µΨ(~r,~s,~t)ilk + Φ̄I
(~t;kl)µΨ(~r,~s,~t)ijl]

= iΓ0ΓµΓI [r̃µv
I
i δilΨ(~r,~s,~t)ljk + s̃µv

I
j δjlΨ(~r,~s,~t)ilk + t̃µv

I
kδklΨ(~r,~s,~t)ijl]

= iΓ0ΓµΓI(r̃µv
I
i + s̃µv

I
j + t̃µv

I
k)Ψ(~r,~s,~t)ijk = MΨ(~r,~s,~t)ijk, (3.59)

where in the last step, we assume Ψlmn = 0 for l,m, n 6= i, j, k so that Ψ is a generator

with the index [i, j, k].

M = iΓ0ΓµΓI(r̃µv
I
ij − t̃µvIjk) = iΓ0ΓµΓI(s̃µv

I
jk − r̃µvIki) = iΓ0ΓµΓI(t̃µv

I
ki − s̃µvIij).

(3.60)
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The [i, j, k] (~r, ~s,~t) string is the bound state of the [i, j] (~r) and [j, k] (−~t) strings

or the [j, k] (~s) and [k, i] (−~r) strings or the [k, i] (~t) and [i, j] (−~s) strings. In

(3.60), the mass of the bound state is expressed in terms of the component strings.

r̃4 = 2πr5R4, r̃5 = 2πr4R5, r̃µ = 0, for µ = 0, 1, 2, 3, so

iΓ0ΓµΓI r̃µv
I
i = iΓ0Γ4ΓI2πr5R4v

I
i + iΓ0Γ5ΓI2πr4R5v

I
i , (3.61)

and similarly for s̃µ and t̃µ. As a result,

M = iΓ0Γ4ΓI(r̃4v
I
i + s̃4v

I
j + t̃4v

I
k) + iΓ0Γ5ΓI(r̃5v

I
i + s̃5v

I
j + t̃5v

I
k)

= iΓ0Γ4ΓIQ
I
M + iΓ0Γ5ΓIQ

I
E. (3.62)

where QI
E and QI

M are the electric and the magnetic charge vectors in 4d SYM theory.

M2 = | ~QE|2 + | ~QM |2 + ΓIΓJΓ4Γ5(QI
MQ

J
E −QJ

MQ
I
E). (3.63)

The third term is a matrix, nevertheless,

√
[ΓIΓJΓ4Γ5(QI

MQ
J
E −QJ

MQ
I
E)]2 = 2| ~QE × ~QM | (3.64)

The above result can be compared with the mass of the 3-string junctions in 4d SYM

theory, which is

Z2
+ = | ~QE|2 + | ~QM |2 + 2| ~QE × ~QM |. (3.65)

The mass term together with iΨ+Γµ∂
µΨ gives the energy

E = Γ0Γµp
µ + iΓ0Γ4ΓIQ

I
M + iΓ0Γ5ΓIQ

I
E, (3.66)
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where µ = 1, 2, 3, 4, 5, Γ+
µ = −Γµ.

E2 = |~p|2+| ~QE|2+| ~QM |2+ΓIΓJΓ4Γ5(QI
MQ

J
E−QJ

MQ
I
E)+2iΓI(Q

I
Mp

4+QI
Ep

5). (3.67)

(3.67) can be rewritten as

E2 = papa + (Q45
EQ

45
E +Q45

MQ
45
M) + (QI

EQ
I
E +QI

MQ
I
M)

+ ΓIΓJΓ4Γ5(QI
MQ

J
E −QJ

MQ
I
E) + 2iΓI(Q

45
EQ

I
M −QI

EQ
45
M), (3.68)

where a = 1, 2, 3. Q45
E = p4, Q45

M = −p5. p4 and p5 enter the energy formula as

another charge vector Q45
E and Q45

M . p1, p2 and p3 appear as the normal transverse

momentum. In 4d SYM theory, with v45
i and vIi turned on, the energy of the 3-string

junction carrying the transverse momentum (p1, p2, p3) is consistent with (3.68). The

above result can be compared with the 6d SYM theory, for which,

E = Γ0Γµp
µ + Γ0ΓIv

I
ij, (3.69)

so

E2 = pµpµ + vIijv
I
ij, (3.70)

which is the energy of a particle with the rest mass
√
vIijv

I
ij carrying the 5d momentum

pµ. Now, we have different Dirac operator, giving rise to a dispersion relation different

from the standard
√
m2 + p2 type.

√
m2 + p2 is the dispersion relation for a Lorentz

invariant theory. The 3-string junctions breaks the SO(5, 1) symmetry into SO(3, 1).

Obviously, f i(θ)j and f(θ1,θ2,θ3)ijk are in the adjoint and the N ×N ×N represen-
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tations of SU(N) respectively.

f i(θ)j → U i
l f

l
(θ)nU

+n
j , f(θ1,θ2,θ3)ijk → U l

iU
m
j U

n
k f(θ1,θ2,θ3)lmn, ∀ U ∈ SU(N). (3.71)

AN−1 6d (2, 0) theory compactified on a Riemann surface with the genus g > 1 could

be decomposed into the TN part and the IN part. Each TN part has the SU(N)3

symmetry, while each IN part gives a SU(N) gauge group [47, 48]. Still, there are two

sets of fields with the index [i, j, k] and [i, j] which may couple with each other, quite

like what we have discussed above. This is not accidental. The 3-string junction on

D3, when lifted to M theory, corresponds to M2 with three boundaries, which may

be denoted by M2(C1, C2, C3), with C1 ∼ ~r, C2 ∼ ~s, C3 ∼ ~t [77]. M2 with two

boundaries is M2(C). M2(C1, C2, C3) and M2(C) may couple at the boundary as

long as C = C1, or C = C2, or C = C3, while the product is still M2(C1, C2, C3).

Likewise, the TN part of the Riemann surface offers the nontrivial 1-cycles [C1], [C2],

[C3] for M2 to end. [C1] + [C2] + [C3] = 0. Each M2([C1], [C2], [C3]) can only couple

with the adjacent M2([C1]), M2([C2]), and M2([C3]). The boundary coupling is

the standard
∑
i La···biMic···d = Na···bc···d type, indicating that M2(C1, C2, C3) should

be in the N × N × N or N̄ × N̄ × N̄ representation. The Σg theory has 3(g − 1)

SU(N) gauge groups associated with each 1-cycle. Fields related with the different

SU(N) groups cannot couple to each other directly. Similarly, the 6d (2, 0) theory

may contain a series of SU(N) groups associated with the selfdual strings labeled by

θ. Still, fields related with different θ do not have the direct coupling. The situation

is different for the 6d SYM theory, in which, there is only one gauge group. Even if

the 6d SYM theory is compactified on a Riemann surface with g > 1, there is still

only one gauge group. The reason is that the basic excitations on M5 is line-like,

while the basic excitations on D5 is point-like.
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In above discussion, we didn’t pay too much attention to the condition (3.33).

For the given vIi and (~r, ~s,~t), the allowed (P4, P5) are not arbitrary. Especially, when

vIij = 0, ∀ i, j, no (P4, P5) can satisfy (3.33). Nevertheless, when P4 = 0 or P5 = 0,

the equality can be saturated, while the bound states are at the threshold or just

decay. If they do not decay, then (3.36) and (3.37) should be replace by

X(θ1,θ2,θ3)ijk(xm, sin(θ − θ1)ρ) = sin(θ2 − θ1)
∫
dpθ1 e

ipθ1ρ sin(θ−θ1)φ(θ1,θ2,θ3;pθ1 ,0)ijk(xm)

(3.72)

and

X(~r,~s,~t)ijk(xm, r4x4R5 − r5x5R4) =
∑
k

e
ik(

r4x4
R4
− r5x5

R5
)
φ(~r,~s,~t;k,0)ijk(xm). (3.73)

(3.72) and (3.73) are translation invariant along the θ1 direction and the (r5R4, r4R5)

direction respectively. They are the zero mode of the original 6d field (3.36) and

(3.37) along the θ1 and the (r5R4, r4R5) directions. φ(~r,~s,~t;k,0)ijk(xm) is the 4d 1/4

BPS field in V4 ⊗ Vin multiplet. Summing over all possible k will give a 5d field

in V5 ⊗ Vin multiplet. On the other hand, summing over φ(~r,~s,~t;k,h)ijk(xm) with all

possible k but the fixed nonzero h will give a 5d field in T5 ⊗ Vin multiplet. (3.72)

and (3.73) are in the V5 ⊗ Vin multiplet. They are actually the bound state of the

[i, j] (r4, r5) string with momentum (kr4/R4,−kr5/R5) and the [j, k] (−t4,−t5) string

with momentum (0, 0). As is mentioned before, the 4d (0, 0) mode of the 6d field is

unique, so (−t4,−t5) should be fixed, while the field in (3.72) and (3.73) could simply

be denoted by X(θ1)ijk(xm, sin(θ− θ1)ρ) and X(~r)ijk(xm, r4x4R5 − r5x5R4). Although

X(θ1)ijk or X(~r)ijk is a 5d field, with all θ1 or (r4, r5) included, the 6d field can be

recovered again.

φ(~r;k)ijk(xm)φ′(~r;g)li(xm) ∼ φ′′(~r;k+g)ljk(xm). (3.74)
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X(~r)ijk or X(θ1)ijk can only couple with X(~r)li or X(θ1)li. Both of them are translation

invariant along the same direction, so the coupling is still 5 dimensional. Now,

we have the 7d fields fij(θ, xµ) together with gijk(θ, xµ) subject to the constraints

Cµ(θ)∂µfij(θ, xµ) = 0 and Cµ(θ)∂µgijk(θ, xµ) = 0. Fields related with different θ

cannot couple with each other. It must be admitted that such scenario is not quite

interesting.

3.4 The momentum-carrying BPS states in 5d SYM theory

Until now, all of the discussions are carried out in 6d theory’s framework. In

6d theory, the KK modes are fields thus are treated perturbatively. When we say

5d SYM theory, we only mean the KK modes of the 6d fields have the SYM type

coupling. In this section, we will turn to the genuine 5d SYM theory.

The 6d tensor multiplet field compactified on x5 gives the 5d massless vector

multiplet field and a tower of 5d massive tensor multiplet fields, while the 6d tensor

multiplet field compactified on x4 × x5 gives the 4d massless vector multiplet field

and a tower of 4d massive vector multiplet fields. The 5d SYM theory contains the

perturbative 5d massless SYM field and a tower of instantons, the quantization of

which gives the 5dmassive tensor multiplet. The 5d SYM theory with x4 compactified

also contains the BPS states, the quantization of which gives the 4d vector multiplets.

All KK modes could be realized in 5d SYM theory as the nonpertubative states. It

is expected that the 5d SYM theory may give another definition for the 6d (2, 0)

theory [65, 58].

The field configurations in SYM theories are classified by boundary conditions.

For 5d SYM theory, the boundary configurations are characterized by Π3(SU(N)) ∼=

Z with k ∈ Z the winding number. The sector with the particular k corresponds to

89



the KK mode with P5 = k/R5. The energy is bounded by

E ≥ |k|/R5. (3.75)

The equality holds for configurations representing the localized k/R5 mode which

have the zero average momentum in 1234 space. The path integral covers all these

configurations, so the 5d SYM theory will unavoidably carry the 6d information and is

intrinsically a 6d theory. 5d theory can be obtained only by an artificial truncation.

Since the configuration only carries the chargeless P5 momentum, there might be

some kind of confinement happen.

In the following, we will discuss the generic BPS states in 5d SYM theory. The

(P4, P5) modes will appear as the BPS states in 4d SYM theory only when one

transverse dimension is compactified and so the extra degrees of freedom are added.

For 5d SYM theory, KK modes are intrinsically included.

The field content of the 5d N = 2 U(N) SYM theory consists of a vector Aµ with

µ = 0, 1, 2, 3, 4, five scalars XI with I = 6, 7, 8, 9, 10 and fermions Ψ. x5 is the extra

dimension associated with M-theory. The action is

S = − 1

g2
YM

∫
d5x tr

(1

4
FµνF

µν +
1

2
DµX

IDµXI − i

2
Ψ̄ΓµDµΨ

+
1

2
Ψ̄Γ5ΓI [XI ,Ψ]− 1

4

∑
I,J

[XI , XJ ]2
)
, (3.76)

where DµX
I = ∂µX

I − i[Aµ, X
I ], Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. For time-

independent bosonic solutions with a single non-vanishing scalar field X6, the as-

sociated energy is

E =
1

g2
YM

∫
d4x tr

[1
4
FijFij +

1

2
F0iF0i +

1

2
DiX

6DiX
6
]
, (3.77)
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where i = 1, 2, 3, 4. For an arbitrary vector Ci with |C| = 1, E could be rewritten as

E =
1

g2
YM

∫
d4x tr

[1
2

(F0i − sin θCkFik + cos θDiX
6)2

+
1

2
(
1

2
CkεilmkFlm ± cos θCkFik ± sin θDiX

6)2

+ sin θ (F0iCkFik ∓
1

2
CkεilmkFlmDiX

6)

+ cos θ (∓1

8
εiklmFikFlm − F0iDiX

6)
]
. (3.78)

Note that

Pk = − 1

g2
YM

∫
d4x tr(F0iFik), QMk = Z6

k = − 1

2g2
YM

∫
d4x tr(εiklmFlmDiX

6),

P5 = − 1

8g2
YM

∫
d4x tr(εiklmFlmFik), QE = Z6

5 =
1

g2
YM

∫
d4x tr(F0iDiX

6),(3.79)

So

E ≥ sin θCk(−Pk ±QMk) + cos θ(±P5 −QE) ≥Max(Z+, Z−), (3.80)

where

Z± =
[
(CkPk ± CkQMk)

2 + (P5 ±QE)2
] 1

2 . (3.81)

If Z+ ≥ Z−, E = Z+ for

F0i = sin θCkFik − cos θDiX
6, (3.82)

1

2
CkεilmkFlm = cos θCkFik + sin θDiX

6. (3.83)

If Z+ ≤ Z−, E = Z− for

F0i = sin θCkFik − cos θDiX
6, (3.84)

91



1

2
CkεilmkFlm = − cos θCkFik − sin θDiX

6. (3.85)

In both cases,

E =
1

g2
YM

∫
d4x tr

[
(CkFik)

2 + (DiX
6)2
]
. (3.86)

Moreover, if θ 6= 0, from (3.82-3.85), we also have CiDiX
6 = CiF0i = 0. For

simplicity, in the following, we will only consider the case with Z+ ≥ Z−. The

situation with Z+ ≤ Z− is similar.

Without loss of generity, let Ck = δ4
k, then (3.82) and (3.83) become

F0i = sin θFi4 − cos θDiX
6, (3.87)

1

2
εilm4Flm = cos θFi4 + sin θDiX

6. (3.88)

E =
[
(P4 +QM4)2 + (P5 +QE)2

] 1
2 . (3.89)

For θ 6= 0, F04 = D4X
6 = 0. When θ = 0, (3.87)-(3.89) reduce to

F0i = −DiX
6,

1

2
εilm4Flm = Fi4. (3.90)

E = |P5 +QE|. (3.91)

These are the equations for the dyonic instantons discussed in [58]. F04 = D4X
6 = 0

is not necessary. If is imposed, the original SO(4) symmetry will be broken to SO(3).

P4 6= 0, QM4 6= 0, but P4 +QM4 = 0. When θ = π/2,

F0i = Fi4,
1

2
εilm4Flm = DiX

6. (3.92)

E = |P4 +QM4|. (3.93)
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The solution describes the monopole string extending along the x4 direction, carrying

momentum P4. P5 6= 0, QE 6= 0, but P5 +QE = 0.

For the time-independent bosonic solutions with Ck = δ4
k, the supersymmetry

transformation becomes

δεΨ =
1

2
FµνΓ

µνΓ5ε+DµX
6ΓµΓ6ε

= DaX
6Γa(Γ

6 + cos θΓ05 + sin θΓ123Γ5)ε

+Fa4Γa(Γ45 − sin θΓ05 + cos θΓ123Γ5)ε, (3.94)

where a = 1, 2, 3. D4X
6 = F04 = 0 is imposed. δεΨ = 0, ε should satisfy

(1 + cos θΓ056 − sin θΓ046)ε = 0, (3.95)

(1 + sin θΓ04 − cos θΓ05)ε = 0, (3.96)

in which Γ012345ε = ε is used. The solution is 1/4 BPS. For θ = 0, we have ε =

−Γ056ε = Γ05ε, which are the supersymmetries preserved by dyonic instantons [58].

For θ = π/2, ε = Γ046ε = −Γ04ε, which are the supersymmetries preserved by the

monopole strings extending along x4 carrying momentum P4. If DaX
6 and Fa4 are

not independent, for example, DaX
6 = sin θDaΦ and Fa4 = cos θDaΦ as that in [58],

(3.94) will reduce to

δεΨ = DaΦΓa(sin θΓ
6 + cos θΓ45 − Γ04)ε

= DaΦΓaΓ04(sin θΓ04Γ6 + cos θΓ05 − 1)ε = 0. (3.97)

The solution becomes 1/2 BPS. Moreover, for this state, F0i = 0, so Pk = QE = 0,

E =
√
Q2
M4 + P 2

5 . It may describe the monopole string extending along x4 carry-
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ing the uniformly distributed D0 charge. Conversely, if Fa4 = sin θDaΦ, DaX
6 =

− cos θDaΦ, Fab = 0, E =
√
Q2
E + P 2

4 . The solution describes the F1 string carrying

P4 momentum, which is also 1/2 BPS.

Another special kind of 1/2 BPS states have Fi4 = 0 or X6 = 0. When X6 = θ =

0, we get the instanton equation

F0i = 0,
1

2
εilm4Flm = Fi4, (3.98)

the solution of which describes the D0 branes revolved in D4 branes. E = |P5|. The

quantization of the instanton state gives the 5d massive (2, 0) tensor multiplet T5

without charge. When θ 6= 0,

F0i = sin θFi4,
1

2
εilm4Flm = cos θFi4. (3.99)

The SO(4) symmetry is broken to SO(3). Therefore, we may look for solutions

which are translation invariant along x4. E =
√
P 2

4 + P 2
5 . The solution describes

the D0 branes localized in R3 carrying momentum P4, which, in D3 picture, is the

(p, q) strings winding x′4. The quantization gives the 4d massive vector multiplet

V4 that is also the KK mode of the 5d massive tensor multiplet T5. The original

four position moduli of the instantons become the three position moduli plus one

momentum moduli. tan θ = P4/P5. The (p, q) string can be open or closed, thus

carries the [i, j] charge or not, so is the corresponding 4d vector multiplet. On the

other hand, if Fi4 = 0, θ = 0, the equations will be

F0i = −DiX
6,

1

2
εilm4Flm = 0, (3.100)

whose solutions are [i, j] F1 strings, the quantization of which gives the 5d vector
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multiplet V5. E = |QE|. When θ 6= 0,

F0i = − cos θDiX
6,

1

2
εilm4Flm = sin θDiX

6. (3.101)

The solution describes the bound state of the [i, j] F1 and the [i, j] monopole string

extending along x4, whose quantization also gives the 4d vector multiplet V4. E =√
Q2
E +Q2

M4. tan θ = QM4/QE. In this case, θ is just the previously mentioned label

for the selfdual strings parallel to the 45 plane. A reduction along x5 is made to get

the states with P5 = 0. Selfdual strings extending along x5 already have P5 = 0 and

is projected to a point in 5d. The rest selfdual strings are projected to a straight line

extending along x4, which is the bound state of the [i, j] F1 and the [i, j] monopole

string. F1 has the definite momentum P4 = 0, while the monopole string carries no

D0 charge, so the bound state is the zero mode of the 6d theory on x4 × x5, which

should be unique, but is now degenerate.

For 1/4 BPS state, when θ = 0, we get (3.90), whose solution is the dyonic

instanton, the quantization of which gives the 5d massive (2, 1) multiplet with 26

complex states composed by 1 spin-3/2 fermion, 13 spin-1/2 fermions, 2 selfdual

tensors, 4 vectors and 10 scalars [58], which is actually the previously mentioned

T5⊗([1/2]⊕ [0]⊕ [0]). When θ 6= 0, the equations are (3.87) and (3.88). The solution

corresponds to the bound state of the string and the monopole string, carrying the

P4 P5 transverse momentum respectively. The string and the monopole string carry

the different charge, for example, [i, j] and [j, k]. The quantization gives the 4d

V4⊗ ([1/2]⊕ [0]⊕ [0]) multiplet with 26 real states composed by 1 spin-3/2 fermion,

14 spin-1/2 fermions, 6 vectors and 14 scalars, which is the massive KK mode of

T5 ⊗ ([1/2] ⊕ [0] ⊕ [0]). Notice that for the F1-D0 bound state, D0 is chargeless,

so the corresponding multiplet can only carry the [i, j] charge. On the other hand,
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for the F1-D2 bound state with the transverse momentum involved, F1 and D2

may carry the [i, j] and [j, k] charges, and so the corresponding multiplet may have

the index [i, j, k]. Just as the 1/2 BPS case, D0 in momentum other than position

eigenstate of x4 can carry charge.

It is convenient to work in D3 picture. With x4 compactified, under the T-duality

transformation along x4, A4 → X4. Let F0a = Ea,
1
2
εabc4Fbc = Ba, (3.87) and (3.88)

could be rewritten as

Ea = sin θDaX
4 − cos θDaX

6, (3.102)

Ba = cos θDaX
4 + sin θDaX

6, (3.103)

which are the standard BPS equations for the N = 4 SYM theory with two scalar

fields X4 and X6 turned on. In the language of the N = 4 SU(N) SYM theory,

∫
dSa Ea = ep ·H,

∫
dSa Ba =

4π

e
q ·H, (3.104)

where the vectors p and q are the electric and the magnetic charges respectively. H

generates the Cartan subalgbra of SU(N).

p ·H = diag(p1, p2, · · · , pN), q ·H = diag(q1, q2, · · · , qN), (3.105)

∑N
i=1 pi =

∑N
i=1 qi = 0. Suppose

〈
XI
〉

= vI · H = diag(vI1 , v
I
2 , · · · , vIN), v6

1 ≥ v6
2 ≥

· · · ≥ v6
N ,

Q4
E =

∫
d3x ∂atr

[
X4Ea

]
= ep · v4 = e

N∑
i=1

piv
4
i ∼ −P4, (3.106)

Q6
E =

∫
d3x ∂atr

[
X6Ea

]
= ep · v6 = e

N∑
i=1

piv
6
i ∼ QE, (3.107)
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Q4
M =

∫
d3x ∂atr

[
X4Ba

]
=

4π

e
q · v4 =

4π

e

N∑
i=1

qiv
4
i ∼ −P5, (3.108)

Q6
M =

∫
d3x ∂atr

[
X6Ba

]
=

4π

e
q · v6 =

4π

e

N∑
i=1

qiv
6
i ∼ −QM4. (3.109)

The energy becomes9

E =
√

(Q4
E +Q6

M)2 + (Q6
E −Q4

M)2. (3.110)

x4 ∼ x4 + 2πnR. The transverse position of the ith D3 brane in 4-6 plane could be

denoted by (v4
i , v

6
i ), where vIi ∈ (−∞,+∞).

The generic 1/2 BPS state is the (p, q) string connecting the i j D3 branes with

the mass

E =

√
[ep(v6

i − v6
j )−

4π

e
q(v4

i − v4
j )]

2 + [
4π

e
q(v6

i − v6
j ) + ep(v4

i − v4
j )]

2. (3.111)

Especially, if e2p(v6
i − v6

j ) = 4πq(v4
i − v4

j ), the state will reduce to a [j, i] D2 brane

carrying [j, i] P4 momentum, while if 4πq(v6
i − v6

j ) = −e2p(v4
i − v4

j ), the state will

become a [i, j] string with [j, i] D0 charge. Notice that in this case, the P4 momentum

and the D0 charge spread uniformly over the D2 branes and the strings.

The simplest 1/4 BPS state is the 3-string junction with i j k representing three

distinct D3 branes with coordinates (v4
i , v

6
i ), (v4

j , v
6
j ), (v4

k, v
6
k). With the charge vector

ve = (1, 0,−1), vm = (0, 1,−1), the mass is

E =

√
[e(v6

i − v6
k)−

4π

e
(v4
j − v4

k)]
2 + [

4π

e
(v6
j − v6

k) + e(v4
i − v4

k)]
2. (3.112)

The corresponding state on D4 is a [i, k] string with v4
k − v4

j D0 charge and a [k, j]

9For (3.110) to be valid, for the given vI , p q should be selected so that Z+ ≥ Z−, otherwise
E =

√
(Q4

E −Q6
M )2 + (Q6

E +Q4
M )2.
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D2 brane with v4
k − v4

i P4 momentum. Especially, when e2(v6
i − v6

k) = 4π(v4
j − v4

k),

the state reduces to the [k, j] D2 brane carrying [k, i] P4 momentum, while when

4π(v6
j − v6

k) = e2(v4
k − v4

i ), the state reduces to the [i, k] string carrying [k, j] D0

charge. The [i, k] string and the [k, j] D2 brane are parallel, so the bound state does

not exist, nevertheless, with suitable amount of P4 momentum and the D0 charge,

the bound state may form. With the given A4, the [i, j] string (D2 brane) can only

carry the [i, j] P4 momentum (D0 charge). However, they can carry the [j, k] or [i, k]

D0 charge (P4 momentum), which is actually the transverse momentum of the [j, k]

or [i, k] D2 brane (string).

Now, consider string webs with more external legs. For i ≥ k ≥ l ≥ j, the [i, j]

D2 brane (string) [k, l] string (D2 brane) bound states do not exist. The bound state

may exist if the [k, l] string (D2 brane) carries the appropriate P4 momentum (D0

charge). In general, the charge vector can be taken as pi = 1, pj = −1, pa = 0 for

a 6= i, j, qa = 0 for a > i or a < j.

P4 = e(v4
j − v4

i ), QE = e(v6
i − v6

j ),

P5 = −4π

e

i∑
m=j

qmv
4
m =

4π

e

i∑
m=j

rm(v4
m+1 − v4

m),

QM4 = −4π

e

i∑
m=j

qmv
6
m =

4π

e

i∑
m=j

rm(v6
m+1 − v6

m). (3.113)

This is the bound state of the [i, j] string and rm [m+ 1,m] D2 branes each carrying

v4
m+1 − v4

m [m+ 1,m] D0 charge. Especially, if the [i, j] string carries the transverse

momentum P4 so that P4 + QM4 = 0, the state will reduce to the [i, j] string with

rm v4
m+1− v4

m [m+ 1,m] D0 charge. Conversely, one may let qi = 1, qj = −1, qa = 0
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for a 6= i, j, pa = 0 for a > i or a < j.

P5 =
4π

e
(v4
j − v4

i ), QM4 =
4π

e
(v6
j − v6

i )

P4 = −e
i∑

m=j

pmv
4
m = e

i∑
m=j

sm(v4
m+1 − v4

m),

QE = e
i∑

m=j

pmv
6
m = −e

i∑
m=j

sm(v6
m+1 − v6

m). (3.114)

The corresponding state is the bound state of the [j, i] D2 brane and sm [m,m+ 1]

strings each carrying the v4
m+1 − v4

m P4 momentum. When P5 + QE = 0, the state

becomes [j, i] D2 brane carrying sm v4
m+1 − v4

m [m+ 1,m] P4 momentum.

We can give a more precise description for these longitudinal-momentum-carrying

states. For example, for string web in Fig. 3.1, suppose the strings extending in x4

x6 directions are (1, 0) and (0, 1) strings, while the rest ones are (1, 1) strings, then

the state could be taken as the [i, n] D2 extending along x4× x6, for which, the [i, j]

[k.l] [m,n] D2 carry the zero P4 momentum, the [j, k] [l,m] D2 have the uniformly

distributed TF1|v4
ab|, TF1|v4

cd|, P4 momentum, while the rest TF1|v4
ja|, TF1|v4

bk|, TF1|v4
lc|,

TF1|v4
dm|, P4 momentums are localized on the jth, kth, lth, mth D4 branes.

[i, j] D2 (F1) is composed by [i, i + 1] · · · [j − 1, j] D2’s (F1’s). Each [a, a + 1]

D2 (F1) must have the same transverse velocity, otherwise, the bound state cannot

be formed. On the other hand, the longitudinal momentums along x4 (x5) on each

[a, a+ 1] D2 (F1) are independent, so the degrees of freedom on the [i, j] D2 (F1) is

j − i. Altogether, there are N(N − 1)/2 [i, j] D2 (F1), therefore, the total number

of degrees of freedom is (N3 − N)/6. The N3 scaling comes from the longitudinal

momentum. Both transverse momentum and the longitudinal momentum carry the

charge. The [i, j] D2 (F1) can only carry the [i, j] transverse momentum but the

[k, l] longitudinal momentum for any i ≤ k < l ≤ j. The index calculation in [78]
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Figure 3.1: The ijklmn string web

also showed the (N3−N)/6 degrees of freedom for the longitudinal momentum mode

on open D2’s connecting D4’s.

If there are more than one scalar fields get the vacuum expectation value, the

string webs with more than three external points may not be BPS. For 3-string

junctions i j k, one can always choose two particular orthogonal transverse directions,

in terms of which, the coordinates are (v4
i , αi, βi), (v4

j , αj, βj), (v4
k, αk, βk) and the

mass formula is

E =

√
[|αjk|+ (β2

ik + v4 2
ik )

1
2 ]2 + [|αik| − (β2

jk + v4 2
jk )

1
2 ]2. (3.115)

When i j k are located in a straight line, βi,j,k = 0, (3.115) reduces to the previous

equation.

3.5 The degrees of freedom at the triple intersection of M5 branes

In this section, we will consider the the triple intersecting configuration of the M5

branes 5⊥5⊥5. Suppose there are N1 M5 branes extending in 0 1 2 3 4 5 direction,
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N2 M5 branes extending in 0 1 2 3 6 7 direction, and N3 M5 branes extending in

0 1 4 5 6 7 direction (see Fig. 3.2). The common transverse space is x8 x9 x10,

0      1      2      3      4      5      6      7      8      9      10

  *      *      *      *      *      *M5

M5

M5

  *      *      *      *                      *      *

  *      *                      *      *      *      *

Figure 3.2: The M5 M5 M5 configuration

while the common longitudinal spacetime is x0 x1 with x0 the time direction. If

x8 = x9 = x10, the N1 + N2 + N3 M5 branes will have N1N2N3 triple intersections

no matter whether each bunch of M5 branes are coincident or not. The black hole

entropy calculation shows that there are N1N2N3 degrees of freedom at the triple

intersections, so each intersection will offer one degree of freedom [79]. The situation

can be compared with the 4⊥4 configuration for N1 and N2 intersecting D4 branes

with N1N2 3d intersections. There are U(1) × U(1) massless hypermultiplets living

at each intersection producing the N1N2 entropy. So, we may expect that similarly

the triple intersection will also capture some nonabelian features of M5.

Consider one intersection and label the three M5 branes by i, j, k. In the most

generic case, i j k M5 branes appear as three points vIi v
I
j v

I
k in x8 × x9 × x10

transverse space. Still, we want to compactify two longitudinal dimensions of M5

branes to simplify the problem. There are two distinct possibilities: x2 × x4 and
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x2×x1. M theory compactified on x2 gives the type IIA string theory, with the i j k

M5’s becoming the D4 D4 NS5. The triple intersection of the D4 D4 NS5 branes

still have the N1N2N3 entropy, so the KK mode along x2 can be safely dropped10.

0      1      2      3      4      5      6      7      8      9      10

  *      *              *              *D3

D5

NS5

  *      *              *      *              *      *

  *      *                      *      *      *      *

Figure 3.3: The D3 D5 NS5 configuration

Then compactify on x4 with the radius R4 and do a T-duality transformation,

we get D3 D5 NS5 (see Fig. 3.3). The state carrying [i, j, k] index is the 3-string

junction with (p, q), (p, 0), (0, q) strings ending on D3 D5 NS5, which will become

massless when vIi = vIj = vIk. This is the scenario discussed in [43]. The 3-string

junction is the point-like particle in x0 × x1, so they may give the field f ijk(x0, x1)

localized at the intersection. In M theory with x2×x4 compactified to T 2, the 3-string

junction is lifted to aM2 embedded along a holomorphic curve in x2×x4×x8×x9×x10,

ending on the three M5’s along (pR2, qR4), pR2, qR4 [77]. Still, the problem is that

when the three M5 branes intersect, the 3-string junction is at the threshold and may

decay into the component strings. If they do decay, then at the triple intersection,

10The P2 momentum may have the relevance with the c = 6 central charge. With one M5 fixed,
there are 4 moduli to characterize the 5⊥5⊥5 intersection, while for D4 D4 NS5, only 3 moduli
are left, since the motion along x2 is neglected.

102



there will be no BPS state related with all three branes.

0      1      2      3      4      5      6      7      8      9      10

  *                      *      *      *D3

D3

NS5

  *                      *                      *      *

  *      *                      *      *      *      *

Figure 3.4: The D3 D3 NS5 configuration

The other possibility is to compactify on x1 with the radius R1 and also do a

T-duality transformation. We get D3 D3 NS5 (see Fig. 3.4). In x8 × x9 × x10,

no string junction can be formed. We may consider the 3-string junction in, for

example, x1×x8 plane. The KK mode along x1 cannot be dropped. Actually, in the

T-dual picture, x1 is a circle with the radius 1
TF1R1

, so D3 and D3 will be separated

with the distance m
TF1R1

in the covering space.

In x1 × x8 plane, NS5 is a straight line locating in v8
k, while the i j D3’s appear

as two points with coordinates (v1
i , v

8
i ), (v1

j , v
8
j ), v

1
ij = m

TF1R1
. The simplest 3-string

junctions are given in Fig. 3.5. In Fig. 3.5 (A) and (C), the io oj ok strings carry

the charge (p, q) (p, 0) (0, q), tan 6 ioj = − qR1

pR2
. In Fig. 3.5 (B), the io oo′ o′j strings

carry the charge (p, q) (p, 0) (p, q), tan 6 ioo′ = tan 6 oo′j = − qR1

pR2
. Actually, there are

also (0, q) oa string and the (0, q) bo′ string ending on NS5 with the zero length.

The string junctions like this always exist as long as the suitable charge vectors are

taken. The mass of the string junctions in (A) and (C) is qTD1|v8
ik|+ pTF1|v1

ij|. The
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Figure 3.5: The 3-string junction in 18 plane

mass of the string junctions in (B) is qTD1|v8
ij| + pTF1|v1

ij|. In the T-dual picture,

Fig. 3.5 (A) corresponds to q [i, k] monopole strings with tension TM2|v8
ik| wrapping

x1 carrying the [i, j] longitudinal momentum P1 = pm/R1. The situation is similar

for Fig. 3.5 (C). Fig. 3.5 (B) corresponds to q [i, j] monopole strings with tension

TM2|v8
ij| wrapping x1 carrying the [i, j] longitudinal momentum P1 = pm/R1.

When v8
i = v8

j = v8
k, Fig. 3.5 (A) and (C) reduce to the [i, k] tensionless monopole

strings wrapping x1 carrying the [i, j] longitudinal momentum P1 = m/R1, which is

offered by the potentially existing [i, j] massless string. In Fig. 3.5 (B), with oa oo′ or

oo′ bo′ kept, the state becomes the [i, k] or [k, j] tensionless monopole string wrapping

x1 carrying the [i, j] longitudinal momentum P1 = m/R1 offered by the [i, j] massless

string. Monopole string wrapping x1 carrying P1 momentum corresponds to the KK

mode of f ijk(x0, x1) along x1. Again, at the intersection, the state may decay into

the monopole string and the string, and then there will be no BPS state relevant to

all three branes.

At the 5⊥5⊥5 intersection of three NS5A’s or NS5B’s or D5’s, there are type IIA

strings, or type IIB strings, or D-strings living at the intersection. The F-string or

D-string has the 4d transverse monition thus may produce the c = 6 central charge.
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The oscillation of the F-string or D-string gives the P1 momentum. The problem

is that neither F-string nor D-string carries charge, so it is difficult to explain their

relation with the three intersecting branes. Moreover, this picture is different from

the pair-wise D brane intersection case, for which, the state at the intersection is the

[i, j] open string.
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4. THE EFFECTIVE THEORY FOR KK MODES

In this chapter, we will explicitly discuss the 4d fields arising from the quanti-

zation of the 3-string junctions as well as their 5d and the 6d lifts. We will show

that the non-chiral part of the fields are suppressed in 6d, while the chiral part of

the fields are exactly 4N3 copies of the (2, 0) tensor multiplet. On the other hand,

the scale anomaly of the 6d (2, 0) theory in large N limit is indeed equal to the

scale anomaly of 4N3 copies of the (2, 0) tensor multiplet. In 4d, the interaction

between the 3-string junctions is mediated by the N=4 vector multiplet arising from

the quantization of the open strings. We will try to construct the 4d Lagrangian

describing the coupling between the 3-string junctions and the open strings.

4.1 The field content of the 3-string junction in 4d and its 5d and 6d lifts

On N parallel D3 branes, various string webs can be constructed. Let Fint and

Eext represent the numbers of the internal faces and the external legs of the string

webs respectively. When Fint = 0, Eext = n, the quantization of the string webs

gives the supermultiplet with the highest spin n/2 [69]. For n = 1, we get the

hypermultiplet in the fundamental representation of U(N); for n = 3, we get the

N=6 multiplet in the tri-fundamental representation of U(N). The gauge interaction

is mediated by the open strings with n = 2, the quantization of which gives the N=4

vector multiplet in the adjoint representation of U(N). With the co-prime p and

q fixed, the low energy effective theory describing the interaction of the (p, q) open

strings is the N = 4 SYM theory with the dimensionless coupling constant

g(p, q) =
|p− qτ |2

=τ
. (4.1)
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Hypermultiplet and the N=6 multiplet can also be added as the matter.

D3 with the transverse x45 compactified has the R-symmetry SO(5). The ex-

istence of the 3-string junction will also need the D3 branes to be separated along

another transverse direction, say x6, which will then reduce the R-symmetry to

SO(4) ∼ SU(2) × SU(2). Quantization of the 3-string junctions gives the mas-

sive N = 6 multiplet in 4d, whose representation under the little group and the

R-symmetry group SO(3)× SU(2)× SU(2) is

field SO(3)× SU(2)× SU(2)

Sµ (4; 1, 1)

Vµ (3; 1, 2)⊕ 2⊗ (3; 2, 1)

ζ 3⊗ (2; 1, 1)⊕ 2⊗ (2; 2, 2)⊕ (2; 3, 1)

ϕ (1; 3, 2)⊕ 2⊗ (1; 2, 1)⊕ 2⊗ (1; 1, 2)

The 12 real supercharges have the representation

supercharge SO(3)× SU(2)× SU(2)

Q1 (2; 1, 2)

Q2 (2; 2, 1)

Q3 (2; 2, 1)

When the SO(5) R-symmetry is recovered, the representations of the fields and the

supercharges under SO(3)× SO(5)× SU(2) are

field SO(3)× SO(5)× SU(2)

Sµ (4; 1, 1)

Vµ (3; 1, 2)⊕ (3; 4, 1)

ζ (2; 1, 1)⊕ (2; 4, 2)⊕ (2; 5, 1)

ϕ (1; 5, 2)⊕ (1; 4, 1)
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supercharge SO(3)× SO(5)× SU(2)

Qα1 (2; 1, 2)

Qγ (2; 4, 1)

There are altogether 64 real states arising from the quantization of the 3-string

junction [i, j, k] with the give charge vector (p, q,−p − q). The charge conjugate is

the 3-string junction [i, j, k] with the charge vector (−p,−q, p+ q). So finally, we get

the CPT self conjugate multiplet with 64 complex states.

The decomposition of the N=4 vector multiplet under SO(3)×SU(2)×SU(2) is

field SO(3)× SU(2)× SU(2)

Aµ (3; 1, 1)

ξ (2; 1, 2)⊕ (2; 2, 1)

X (1; 2, 2)⊕ (1; 1, 1)

The 8 real supercharges have the representation

supercharge SO(3)× SU(2)× SU(2)

Q1 (2; 1, 2)

Q2 (2; 2, 1)

When the SO(5) R-symmetry is recovered, the representations of the fields and the

supercharges under SO(3)× SO(5)× SU(2) are

field SO(3)× SO(5)× SU(2)

Aµ (3; 1, 1)

ξ (2; 4, 1)

X (1; 5, 1)
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supercharge SO(3)× SO(5)× SU(2)

Qγ (2; 4, 1)

They are all singlet under the second SU(2) of the R-symmetry group. There are

16 real states arising from the quantization of the [i, j] open string with the charge

vector (p,−p). The charge conjugate is the [i, j] (−p, p), or equivalently, the [j, i]

(p,−p) string. So, no extra states need to be added. We get the CPT self conjugate

multiplet with 16 real states.

When lifted to 5d and 6d the little group and the R-symmetry group becomes

SU(2)×SU(2)×SU(2)×SU(2), under which, the fields and the supercharges have

the representation [58, 68]

field SU(2)× SU(2)× SU(2)× SU(2)

sµ (3, 2; 1, 1)

aµ (2, 2; 1, 2)⊕ (2, 2; 2, 1)

λ (1, 2; 1, 1)⊕ (1, 2; 2, 2)

bµν (3, 1; 2, 1)

χ (2, 1; 1, 1)⊕ (2, 1; 3, 1)⊕ (2, 1; 2, 2)

Φ (1, 1; 1, 2)⊕ (1, 1; 3, 2)⊕ (1, 1; 2, 1)

field SU(2)× SU(2)× SU(2)× SU(2)

Aµ (3, 1; 1, 1)

ξ (2, 1; 1, 2)⊕ (2, 1; 2, 1)

X (1, 1; 2, 2)⊕ (1, 1; 1, 1)
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supercharge SU(2)× SU(2)× SU(2)× SU(2)

Qα1 (1, 2; 2, 1)

Qα2 (2, 1; 2, 1)

Qβ (2, 1; 1, 2)

Notice that under the second SU(2) of the SU(2) × SU(2) little group, (bµν , χ,Φ),

(Aµ, ξ,X) and (Qα2 , Qβ) are all singlet, while (sµ, aµ, λ) and Qα1 are doublet. As a re-

sult, the supersymmetry transformation generated by (Qα2 , Qβ) will keep (bµν , χ,Φ)

(sµ, aµ, λ) and (Aµ, ξ,X) separate, while the supersymmetry transformation gener-

ated by Qα1 will transform (bµν , χ,Φ) and (sµ, aµ, λ) into each other. (bµν , χ,Φ) is

the chiral sector of the (2, 1) multiplet (bµν , χ,Φ, sµ, aµ, λ).

When the SO(5) R-symmetry is recovered, the representations of the fields and

the supercharges under SU(2)× SU(2)× SO(5)× SU(2) become

field SU(2)× SU(2)× SO(5)× SU(2)

sµ (3, 2; 1, 1)

aµ (2, 2; 4, 1)

λ (1, 2; 5, 1)

bµν (3, 1; 1, 2)

χ (2, 1; 4, 2)

Φ (1, 1; 5, 2)

field SU(2)× SU(2)× SO(5)× SU(2)

Aµ (3, 1; 1, 1)

ξ (2, 1; 4, 1)

X (1, 1; 5, 1)
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supercharge SU(2)× SU(2)× SO(5)× SU(2)

Qα1 (1, 2; 1, 2)

Qγ (2, 1; 4, 1)

Let SU(2)1 and SU(2)2 represent the first and the second SU(2) of the little group

respectively, SU(2)R represent the SU(2) in R-symmetry group, then (bµν , χ,Φ),

(sµ, aµ, λ) and (Aµ, ξ,X) all form the [(3, 1), (2, 4), (1, 5)] representation of SU(2)1×

SO(5). With respect to SU(2)2 × SU(2)R, (bµν , χ,Φ), (sµ, aµ, λ) and (Aµ, ξ,X)

are in the (1, 2), (2, 1) and (1, 1) representations respectively. Qγ is the standard

(2, 0) supercharges in the 6d (2, 0) theory, and is in the (2, 4) representation of

SU(2)1 × SO(5), (1, 1) representation of SU(2)2 × SU(2)R. Therefore, the way Qγ

acting on (bµν , χ,Φ), (sµ, aµ, λ) and (Aµ, ξ,X) is exactly the same as the action of

the (2, 0) supercharge on the (2, 0) tensor multiplet, or the N=4 supercharge on

the massive N=4 vector multiplet when reduced to 4d. (bµν , χ,Φ), (sµ, aµ, λ) and

(Aµ, ξ,X) transform separately. Namely,

bµν
Qγ↔ χ

Qγ↔ Φ, sµ
Qγ↔ aµ

Qγ↔ λ, Aµ
Qγ↔ ξ

Qγ↔ X. (4.2)

On the other hand, Qα1 is in the (1, 1) representation of SU(2)1 × SO(5), (2, 2)

representation of SU(2)2 × SU(2)R, so it can only make the

sµ
Qα1↔ bµν , aµ

Qα1↔ χ, λ
Qα1↔ Φ (4.3)

transformations.

4.2 The conformal anomaly of the 6d (2, 0) theory and the (2, 1) multiplet

The conformal anomaly of the 6d (2, 0) theory and the (2, 1) multiplet

We may determine the 5d and 6d Weyl weight of the (2, 1) multiplet (bµν , χ,Φ, sµ,
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aµ, λ). bµν has the dimension 2, aµ has the dimension 1, so if ηα1 and ηγ are the

supersymmetry transformation parameters of Qα1 and Qγ respectively, sµ, ηα1 and

ηγ will have the dimension 3/2, 1/2 and −1/2 respectively. The Weyl weight of the

whole multiplet is then

field sµ aµ λ bµν χ φ

weight 3/2 1 3/2 2 5/2 2

On the other hand, when reduced to 4d, the (2, 1) multiplet becomes the N=6

multiplet (S, V, ζ, ϕ), for which, the Weyl weight is

field Sµ Vµ ζ ϕ

weight 3/2 1 3/2 1

In 4d, N=6 multiplet is the conformal field, however, in 6d, only the (bµν , χ,Φ) sector

in the (2, 1) multiplet is conformal.

The kinetic terms for the (2, 1) multiplet in 6d can then be written as

S6
k =

∫
d6x [db+ ∧ ∗db+

i

2
χ̄γµ∂µχ+

1

2
∂µφ+∂µφ]

+
1

R2
4

[
i

2
s̄µγ

µνρ∂νsρ + da+ ∧ ∗da+
i

2
λ̄γµ∂µλ]. (4.4)

All fields are complex and are in the tri-fundamental representation of U(N). The

reduction along x5 gives

S5
k =

∫
d5x R5[db+ ∧ ∗db+

i

2
χ̄γµ∂µχ+

1

2
∂µφ+∂µφ]

+
R5

R2
4

[
i

2
s̄µγ

µνρ∂νsρ + da+ ∧ ∗da+
i

2
λ̄γµ∂µλ]. (4.5)

Reducing along x4 further, b, χ, φ will absorb R4 to give the vector ã, spinor χ̃, and

scalar φ̃ with the dimension 1, 3/2, 1, respectively, i.e. R4b ∼ ã, R4χ ∼ χ̃, R4φ ∼ φ̃.
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The 4d action is then

S4
k =

R5

R4

∫
d4x [dã+∧∗dã+

i

2
¯̃χγµ∂µχ̃+

1

2
∂µφ̃+∂µφ̃+

i

2
s̄µγ

µνρ∂νsρ+da
+∧∗da+

i

2
λ̄γµ∂µλ]

(4.6)

with no dimensional coupling constant. (4.6) is the 4d free action for fields arising

from the quantization of the 3-string junction, which is our starting point. (4.4) and

(4.5) take the present form due to the requirement that the dimensional reduction to

4d should give (4.6). In the decompactification limit, R4, R5 →∞, the non-conformal

sector (sµ, aµ, λ) in (4.4) vanishes since (bµν , χ,Φ) and (sµ, aµ, λ) are assumed to have

the comparable magnitude.

S6
k =

∫
d6x [db+ ∧ ∗db+

i

2
χ̄γµ∂µχ+

1

2
∂µφ+∂µφ]. (4.7)

With the 6d kinetic terms given, it is straightforward to calculate the free field

conformal anomaly of the (2, 1) multiplet. If the free action for a field f in the curved

background is f∆ff , the partition function and the effective action will then be

Z =
∫

df e−
1
2

∫
d6x f∆ff , Γ =

1

2
ln det ∆f . (4.8)

The heat kernel expansion is [80]

(Tre−s∆f )s→0 ∼
6∑
p=0

s
1
2

(p−6)
∫

d6x
√
g bp. (4.9)

The logarithmical divergence comes from b6, which is the conformal anomaly. b6 =

b6(∆f ) is determined by the type of the field.

Go back to (4.4), in the R4 →∞ limit, (sµ, aµ, λ) do not have the contribution to

the conformal anomaly. According to (4.1), (bµν , χ, φ) contains 10 scalars, 2 selfdual
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tensors, 8 chiral spinors, all complex and are in the tri-fundamental representation

of U(N), so (4.4) is just the free action for 4N3 copies of the (2, 0) tensor multiplet.

The conformal anomaly of one copy of (2, 0) tensor multiplet is [81]

btens6 =
1

(4π)37!
(−245

8
E6 − 1680I1 − 420I2 + 140I3 +∇iJ

i), (4.10)

so the conformal anomaly of (bµν , χ, φ) is just

b
(bµν ,χ,φ)
6 =

4N3

(4π)37!
(−245

8
E6 − 1680I1 − 420I2 + 140I3 +∇iJ

i). (4.11)

The type-D anomaly ∇iJ
i is not written explicitly, since it is scheme-dependent.

AdS/CFT predicts that in large N limit, the conformal anomaly of the interacting

6d (2, 0) theory should be

A(2,0) =
4N3

(4π)37!
(−35

2
E6 − 1680I1 − 420I2 + 140I3 +∇iJ

i). (4.12)

Compared with (4.11), the coefficients in front of E6, the type-A anomaly, are differ-

ent, while the coefficients for type-B anomalies are the same. In 6d, the coefficients

of the type-B anomalies are related with the 2 and 3 point functions thus is un-

renormalized. On the other hand, the coefficient of the type-A anomaly is related

with some 4 point functions, so its value may differ in free theory and the interacting

theory [81]. The situation is different for 4d N = 4 SYM theory, in which, the type-B

and type-A anomalies are related with the 2 and 3 point functions respectively thus

are both un-renormalized. As a result, b4 arising from N2 copies of the free N = 4

vector multiplet exactly gives the conformal anomaly of the full 4d interacting theory.

The (sµ, aµ, λ) sector is suppressed in 6d. The (bµν , χ,Φ) sector then form the

representation of the (2, 0) supersymmetry. Qα1 , the (0, 1) part of (2, 1) can be
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neglected in 6d, while the remaining Qγ, the (2, 0) part of the (2, 1), is the surviving

supersymmetry in 6d, so the 6d theory is indeed chiral.

Aside from (bµν , χ,Φ) and (sµ, aµ, λ), in 6d, we also have (Bµν ,Ψ, Y ) in adjoint

representation of U(N), arising from the selfdual string. They are the 6d lift of the

5d vector multiplet (Aµ, ξ,X).

Aµ ∼ RθBµν , ξ ∼ RθΨ, X ∼ RθY. (4.13)

The kinetic term for (Bµν ,Ψ, Y ) is

s6
k =

∫
d6x [dB ∧ ∗dB +

i

2
Ψ̄γµ∂µΨ +

1

2
∂µY ∂µY ]. (4.14)

The interaction terms take the form of χ̄γIX
Iχ, so (Aµ, ξ,X) and (bµν , χ,Φ) are of

the comparable magnitude. When Rθ → ∞, s6
k → 0. (Bµν ,Ψ, Y ) do not have the

contribution to the conformal anomaly.

4.3 The coupling between the N=6 multiplet and the N=4 vector multiplet

The coupling between the N=6 multiplet and the N=4 vector multiplet Now we

need to consider the coupling between the N=6 or (2, 1) multiplet and the N=4 vector

multiplet. The first subtlety is that the N=6 multiplet is the N×N×N matrix, while

the N=4 multiplet is the N ×N matrix. It is necessary to define the multiplication

between these two kinds of matrices. There are two kinds of multiplications. Let U i
j

be the unitary N ×N matrix, V i
j the adjoint N ×N matrix, then

(Uf)ijk ≡ U i
lU

j
mU

k
nf

lmn, (4.15)

(V f)ijk ≡ V i
l f

ljk + V j
mf

imk + V k
n f

ijn. (4.16)
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For the 3-string junction with the charge vector (k1, k2, k3), let f ijk(k1,k2,k3) represent

the field in N = 6 multiplet, the covariant derivative can then be defined as

Dµf
ijk
(k1,k2,k3) = ∂µf

ijk
(k1,k2,k3) − i(Aµf)ijk(k1,k2,k3) (4.17)

= ∂µf
ijk
(k1,k2,k3) − iA

i
(k1)µ lf

ljk
(k1,k2,k3) − iA

j
(k2)µ mf

imk
(k1,k2,k3) − iAk(k3)µ nf

ijn
(k1,k2,k3),

where A(k1), A(k2), A(k3) are gauge fields for open strings with the charge vector k1,

k2, k3 respectively. Under the local U(N) gauge transformation,

f ijk(k1,k2,k3) → U i
lU

j
mU

k
nf

lmn
(k1,k2,k3), Ai(ka)µ j → U i

mU
+n
j Am(ka)µ n + iU i

l ∂µU
+l
j , (4.18)

Dµf
ijk
(k1,k2,k3) → U i

lU
j
mU

k
n [Dµf(k1,k2,k3)]

lmn. (4.19)

For K, L, M in anti-tri-fundamental, adjoint and tri-fundamental representation

of U(N),

LM ≡ (LM)abc = LapM
pbc + LbqM

aqc + LcrM
abr, (4.20)

LK ≡ (LK)abc = LpaKpbc + LqbKaqc + LrcKabr, (4.21)

K(LM) = Kabc(LM)abc = KabcL
a
pM

pbc +KabcL
b
qM

aqc +KabcL
c
rM

abr (4.22)

= (LK)abcM
abc = (KL)M = KLM.

L1(L2M)− L2(L1M) = [L1, L2]M, (4.23)

L1(L2K)− L2(L1K) = [L1, L2]K. (4.24)

As a result,

Dµ(LM) = (DµL)M + L(DµM), (4.25)
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where DµL = ∂µL− i[Aµ, L] is the ordinary covariant derivative for fields in adjoint

representation.

[Dµ, Dν ]f
ijk
(k1,k2,k3) (4.26)

= − i
3

[F i
(k1)µν lf

ljk
(k1,k2,k3) + F j

(k2)µν mf
imk
(k1,k2,k3) + F k

(k3)µν nf
ijn
(k1,k2,k3)]

= − i
3

(Fµνf)ijk(k1,k2,k3),

where F(ka)µν is the field strength of A(ka)µ. Although L1(L2M) 6= (L1L2)M , fields

in tri-fundamental representation have the enough algebra properties so that during

the calculation, we can simply take them as the fields in fundamental representation.

To see it more explicitly, consider the coupling between the N=1 hypermultiplet

in tri-fundamental representation and the N=1 vector multiplet in adjoint repre-

sentation. The superfield for hypermultiplet is Φijk, while the superfield for vector

multiplet is V i
j . Under the local U(N) gauge transformation,

Φlmn → (e−iΛ)lp(e
−iΛ)mq (e−iΛ)nrΦpqr, Φ+

lmn → (eiΛ
+

)pl (e
iΛ+

)qm(eiΛ
+

)rnΦ+
pqr, (4.27)

(eV )ab → (e−iΛ
+

)ac(e
V )cd(e

iΛ)db , (4.28)

where Λ and Λ+ are chiral and anti-chiral superfield in adjoint representation respec-

tively.

Φ+eV Φ = Φ+
ijk(e

V )il(e
V )jm(eV )knΦlmn → Φ+eV Φ (4.29)

is then gauge invariant. In WZ gauge,

eV = 1 + V +
1

2
V 2. (4.30)
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Plug (4.30) into Φ+eV Φ, the D-term is

Φ+eV Φ|θθθ̄θ̄ = [Φ+Φ + Φ+V Φ +
1

2
Φ+V V Φ]|θθθ̄θ̄. (4.31)

This is almost the same as the situation when Φ is in fundamental representation.

The only difference is that the way V acting on Φ is as that in (4.16). Also,

Φ+V V Φ = Φ+V (V Φ) = (Φ+V )(V Φ) 6= Φ+V 2Φ. (4.32)

Now, we may try to write down the interacting Lagrangian for the N=6 multiplet.

For simplicity, we will consider the case when the SO(5) symmetry is recovered, that

is, the R-symmetry group is SO(5)×SU(2). N=6 multiplet is the 4d KK mode of the

5d or 6d (2, 1) multiplet. The reduction of (bµν , χ,Φ) gives (aα1
µ , χ

γ α1 ,ΦI α1), while

the reduction of (sµ, aµ, λ) gives (sµ, a
γ
µ, λ

I , ψ, ϕγ). For the sake of the explicitness,

the R-symmetry index is also added. α1 = 1, 2, γ = 1, 2, 3, 4, I = 1, 2, 3, 4, 5. The

N=4 vector massive multiplet is then (Aµ, ξ
γ, XI).

field SO(3)× SO(5)× SU(2)

Aµ (3; 1, 1)

ξγ (2; 4, 1)

XI (1; 5, 1)

field SO(3)× SO(5)× SU(2)

aα1
µ (3; 1, 2)

χγ α1 (2; 4, 2)

ΦI α1 (1; 5, 2)
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field SO(3)× SO(5)× SU(2)

sµ (4; 1, 1)

aγµ (3; 4, 1)

λI (2; 5, 1)

ψ (2; 1, 1)

ϕγ (1; 4, 1)

Under the reduction, sµ → sµ + ψ, aµ → aγµ + ϕγ.

The massive fields (aα1
µ , χ

γ α1 ,ΦI α1) in 4d are the KK modes of the 6d massless

fields (b̃α1
mn, χ̃

γ α1 , Φ̃I α1), where m = 0, · · · , 5. The 6d kinetic terms for (b̃α1
mn, χ̃

γ α1 ,

Φ̃I α1) can be written as

L̃k =
1

24
h̃α1+
lmn h̃

lmn α1 +
i

2
¯̃χ
γ α1γm∂mχ̃

γ α1 +
1

2
∂mΦ̃I α1+∂mΦ̃I α1 , (4.33)

where h̃α1
lmn = 3∂[lb̃

α1

mn]. (4.33) is invariant under the supersymmetry transformation

δb̃α1
mn = iη̄γγmnχ̃

γ α1 , (4.34)

δχ̃γ α1 =
1

12
γlmnh̃α1

lmnη
γ + γmγIη

γ∂mΦ̃I α1 ,

δΦ̃I α1 = −iη̄γγI χ̃γ α1 .

(4.34) is closed up to a gauge transformation for b̃α1
mn.

δ[2δ1]b̃
α1
mn = · · ·+ 2iη̄γ2 (γn∂mΦ̃I α1 − γm∂nΦ̃I α1)γIη

γ
1 . (4.35)

The compactification on x5 gives the 5d KK modes with the momentum p5.
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∂5f = ip5f , so (4.33) can be rewritten as

L̃k =
1

24
hα1+
ijk h

ijk α1 +
p2

5

8
bij α1+bα1

ij +
i

2
¯̃χ
γ α1γi∂iχ̃

γ α1 − p5

2
¯̃χ
γ α1γ5χ̃γ α1 (4.36)

+
1

2
∂iΦ̃I α1+∂iΦ̃

I α1 +
p2

5

2
Φ̃I α1+Φ̃I α1 ,

where

bα1
ij = b̃α1

ij +
i

p5

∂ib̃
α1
5j −

i

p5

∂j b̃
α1
5i = − i

p5

h̃α1
5ij (4.37)

is gauge invariant. i, j, k = 0, · · · , 4, hα1
ijk = 3∂[ib

α1

jk]. The selfduality condition becomes

−6ip5b
α1
ij = εijklmh

klm α1 , (4.38)

or equivalently

−2ip5b
α1
ij = εijklm∂

kblm α1 , (4.39)

which indicates the equation

∂ihα1
ijk − p2

5b
α1
jk = 0. (4.40)

∂jbα1
jk = 0, so (4.40) is equivalent to

∂2bα1
jk − p2

5b
α1
jk = 0. (4.41)

(4.36) can be corrected into

L̃k =
1

8
∂ibjk α1+hα1

ijk +
p2

5

8
bα1+
ij bij α1 +

i

2
¯̃χ
γ α1γi∂iχ̃

γ α1 − p5

2
¯̃χ
γ α1γ5χ̃γ α1 (4.42)

+
1

2
∂iΦ̃I α1+∂iΦ̃

I α1 +
p2

5

2
Φ̃I α1+Φ̃I α1 .
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The supersymmetry transformation becomes

δbα1
ij = iη̄γγijχ̃

γ α1 − 1

p5

η̄γγ5(γj∂iχ̃
γ α1 − γi∂jχ̃γ α1), (4.43)

δχ̃γ α1 =
1

12
γijkhα1

ijkη
γ +

ip5

4
γ5γjkbα1

jk η
γ + γiγIη

γ∂iΦ̃I α1 + ip5γ5γIη
γΦ̃I α1 ,

δΦ̃I α1 = −iη̄γγI χ̃γ α1 .

(4.43) is closed and also leaves (4.42) invariant. Also, the supersymmetry transfor-

mation does not does not give bα1
ij a gauge transformation any more.

The further compactification on x4 gives the 4d KK modes with the momentum

(p4, p5), ∂4f = ip4f , ∂5f = ip5f . From (4.38), bα1
µν can be solved in terms of bα1

4µ, i.e.

bα1
µν =

i

p2
5 − p2

4

[p4(∂µb
α1
4ν − ∂νbα1

4µ)− p5

2
εµνρσ(∂ρb4σ α1 − ∂σb4ρ α1)], (4.44)

where µ, ν, ρ, σ = 0, · · · , 3. So, it is enough to consider the action with bα1
4µ. Let

R4b
α1
4µ = aα1

µ , R4χ̃
γ α1 = χγ α1 , R4Φ̃I α1 = ΦI α1 , (4.45)

consider the 4d action

R2
4L

1
k = −1

4
aµν α1+aα1

µν −
p2

4 + p2
5

2
aα1+
µ aµ α1 (4.46)

− i

2
χ̄γ α1γµ∂µχ

γ α1 +
1

2
χ̄γ α1(p4γ

4 + p5γ
5)χγ α1

− 1

2
∂µΦI α1+∂µΦI α1 − p2

4 + p2
5

2
ΦI α1+ΦI α1 ,

and

δaα1
µ = iη̄γ[

p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµχ

γ α1 +
1

(p2
4 + p2

5)1/2
η̄γγ5γ4∂µχ

γ α1 , (4.47)
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δχγ α1 =
1

2
[
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµνηγaα1

µν − i(p2
4 + p2

5)1/2γ5γ4γµaα1
µ η

γ

+ γµγIη
γ∂µΦI α1 + i(p4γ

4 + p5γ
5)γIη

γΦI α1 ,

δΦI α1 = −iη̄γγIχγ α1 .

(4.46) is invariant under the supersymmetry transformation (4.47), which is the (2,

0) supersymmetry transformation generated by Qγ. (4.47) is closed. [δ1, δ2] does not

generate the gauge transformation for aα1
µ , which is massive.

(4.46) is the free kinetic term for (aα1
µ , χ

γ α1 ,ΦI α1). Similarly, the free kinetic

term for (sµ, a
γ
µ, λ

I , ψ, ϕγ) can be taken as

L2
k = − i

2
s̄µγ

µνρ∂νsρ −
1

4
aµν γ+aγµν −

i

2
λ̄Iγµ∂µλ

I − i

2
ψ̄γµ∂µψ (4.48)

− 1

2
∂µϕγ+∂µϕ

γ − 1

2
s̄µγ

µν(p4γ
4 + p5γ

5)sν −
p2

4 + p2
5

2
aγ+
µ aµ γ

+
1

2
λ̄I(p4γ

4 + p5γ
5)λI +

1

2
ψ̄(p4γ

4 + p5γ
5)ψ − p2

4 + p2
5

2
ϕγ+ϕγ.

Under the (2, 0) supersymmetry transformation generated by Qγ,

δsµ =
i

4
(γνργµ −

1

3
γµγ

νρ)aγνρη
γ − 1

6
∂µ(4iγνaγνη

γ (4.49)

+
p4γ

4 + p5γ
5

p2
4 + p2

5

γνρaγνρη
γ)− 2(p4γ4 + p5γ5)

3
(aγµη

γ − 1

2
γµνa

ν γηγ),

δaγµ = η̄γsµ − iη̄γ[
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµγIλ

I − 1

(p2
4 + p2

5)1/2
η̄γγ5γ4γI∂µλ

I ,

δλI =
1

2
γI [

p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµνηγaγµν − i(p2

4 + p2
5)1/2γIγ5γ4γµaγµη

γ,

δψ = −iγµηγ∂µϕγ + (p4γ4 + p5γ5)ηγϕγ,

δϕγ = η̄γψ.

(4.48) is invariant.
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The (0, 1) supersymmetry transformation generated by Qα1 is

δsµ =
i

4
(γνργµ −

1

3
γµγ

νρ)aα1
νρη

α1 − 1

6
∂µ(4iγνaα1

ν η
α1 (4.50)

+
p5γ

4 + p5γ
5

p2
4 + p2

5

γνρaα1
νρη

α1) +
2(p4γ4 + p5γ5)

3
(aα1
µ η

α1 − 1

2
γµνa

ν α1ηα1),

δaα1
µ = η̄α1sµ + iη̄α1 [

p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµψ −

1

(p2
4 + p2

5)1/2
η̄α1γ5γ4∂µψ,

δχγ α1 =
1

2
[
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµνηα1aγµν − i(p2

4 + p2
5)1/2γ5γ4γµaγµη

α1

− iγµη
α1∂µϕγ + (p4γ4 + p5γ5)ηα1ϕγ,

δΦI α1 = η̄α1λI ,

δaγµ = iη̄α1 [
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµχ

γ α1 − 1

(p2
4 + p2

5)1/2
η̄α1γ5γ4∂µχ

γ α1 ,

δλI = γµη
α1∂µΦI α1 + i(p4γ4 + p5γ5)ηα1ΦI α1 ,

δψ =
1

2
[
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµνηα1aα1

µν − i(p2
4 + p2

5)1/2γ5γ4γµaα1
µ η

α1 ,

δϕγ = η̄α1χγ α1 .

The interaction is mediated by the N=4 multiplet (Aµ, ξ
γ, XI). (Aµ, ξ

γ, XI) is

the singlet of the SU(2)R, so the possible couplings are

(sµ, a
γ
µ, λ

I , ψ, ϕγ)− (Aµ, ξ
γ, XI) and (aα1

µ , χ
γ α1 ,ΦI α1)− (Aµ, ξ

γ, XI). (4.51)

(sµ, aµ, λ) is suppressed in 6d, therefore, the 4d fields of interest are (aα1
µ , χ

γ α1 ,ΦI α1)

and (Aµ, ξ
γ, XI), while the relevant 4d coupling is (aα1

µ , χ
γ α1 ,ΦI α1)− (Aµ, ξ

γ, XI).

With ∂µ replaced by Dµ, the kinetic terms become

Lk = −1

4
aµν α1+aα1

µν −
p2

4 + p2
5

2
aα1+
µ aµ α1 (4.52)

− i

2
χ̄γ α1γµDµχ

γ α1 +
1

2
χ̄γ α1(p4γ

4 + p5γ
5)χγ α1
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− 1

2
DµΦI α1+DµΦI α1 − p2

4 + p2
5

2
ΦI α1+ΦI α1 ,

We may add the interaction terms

Li =
1

6
χ̄γ α1γIξγΦI α1 − 1

6
χ̄γ α1 [

p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµξγaα1

µ (4.53)

− i

6
aµ α1+Fµνa

ν α1 − 1

2
χ̄γ α1γIX

Iχγ α1 − 1

2
aα1+
µ XIXIa

µ α1

− ΦI α1+[XI , XJ ]ΦJ α1 − 1

2
ΦI α1+XJXJΦα1

I .

The supersymmetry transformation of (aα1
µ , χ

γ α1 ,ΦI α1) is then modified into

δaα1
µ = iη̄γ[

p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµχ

γ α1 +
1

(p2
4 + p2

5)1/2
η̄γγ5γ4Dµχ

γ α1 , (4.54)

δχγ α1 =
1

2
[
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµνηγaα1

µν − i(p2
4 + p2

5)1/2γ5γ4γµaα1
µ η

γ

− i[
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γIγ

µηγXIaα1
µ

+ γµγIη
γDµΦI α1 + i(p4γ4 + p5γ5)γIη

γΦI α1 − iγIγJηγXIΦ
α1
J ,

δΦI α1 = −iη̄γγIχγ α1 .

For (Aµ, ξ
γ, XI), we have

δAµ = − i
3
η̄γγµξ

γ (4.55)

δξγ =
1

2
γµνFµνη

γ + 3DµX
IγµγIη

γ − 3iXIXJγIJη
γ,

δXI = − i
3
η̄γγIξγ.

L = Lk + Li is not completely invariant under the supersymmetry transformation

(4.54) and (4.55). Some additional terms are to be added to make the susy comple-

tion.
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If we are only interested in the 6d dynamics, then this is all we need to con-

sider, since (sµ, aµ, λ) is suppressed in 6d, (sµ, a
γ
µ, λ

I , ψ, ϕγ) and (aα1
µ , χ

γ α1 ,ΦI α1) are

decoupled. Nevertheless, in 4d, we can still write down an interacting Lagrangian

describing the coupling between (sµ, a
γ
µ, λ

I , ψ, ϕγ) and (Aµ, ξ
γ, XI). With ∂µ replaced

by Dµ, the kinetic terms (4.48) becomes

L2
k =

i

2
s̄µγ

µνρDνsρ −
1

4
aµν γ+aγµν +

i

2
λ̄IγµDµλ

I +
i

2
ψ̄γµDµψ +

1

2
Dµϕγ+Dµϕ

γ

+
1

2
s̄µγ

µν(p4γ
4 + p5γ

5)sν +
p2

4 + p2
5

2
aγ+
µ aµ γ

− 1

2
λ̄I(p4γ

4 + p5γ
5)λI − 1

2
ψ̄(p4γ

4 + p5γ
5)ψ +

p2
4 + p2

5

2
ϕγ+ϕγ,

with the interaction

L2
i =

i

6
s̄µγ

µνξγaγν +
i

6
ψ̄ξγϕγ +

1

6
λ̄IγI [

p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµξγaγµ −

i

6
aµ γ+Fµνa

ν γ

+
1

2
s̄µγ

µνγIX
Isν +

1

2
ψ̄γIX

Iψ +
1

2
λ̄IγJX

JλI

− 1

2
aγ+
µ XIXIa

µ γ +
1

2
ϕγ+XIX

Iϕγ.

The (2, 0) supersymmetry transformation is corrected into

δsµ =
i

4
(γνργµ −

1

3
γµγ

νρ)aγνρη
γ − 1

6
Dµ(4iγνaγνη

γ +
p5γ

4 + p5γ
5

p2
4 + p2

5

γνρaγνρη
γ)

+
2(p4γ4 + p5γ5)

3
(aγµη

γ − 1

2
γµνa

ν γηγ) + γIXIη
γaγµ,

δaγµ = η̄γsµ − iη̄γ[
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµγIλ

I +
1

(p2
4 + p2

5)1/2
η̄γγ5γ4γIDµλ

I ,

δλI =
1

2
γI [

p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµνηγaγµν − i(p2

4 + p2
5)1/2γIγ5γ4γµaγµη

γ

+ iγIJ [
p5γ4 − p4γ5

(p2
4 + p2

5)1/2
]γµηγXJa

α1
µ ,

δψ = −iγµηγDµϕγ + (p4γ4 + p5γ5)ηγϕγ − γIXIη
γϕγ,
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δϕγ = η̄γψ.

Still, both L2 = L2
k + L2

i and the above transformation are to be completed.

Up to present, we only considered the Lagrangian for (sµ, a
γ
µ, λ

I), (bα1
µν , χ

γ α1 ,

ΦI α1), (Aµ, ξ
γ, XI), when the SO(5) R-symmetry is recovered. If the R-symmetry is

SO(4), the 6d/5d field content are (sµ, aµ β, a
α2
µ , ψ, ψ

α2
β ) and (bα1

µν , ψ
α1,α2 , ψα1

β ,Φ
α1,α2

β ,

Φα1), which, when compactified to 4d, becomes

(sµ, aµ β, a
α2
µ , ψ, ψ

α2
β ) −→ (sµ, ρ, aµ β, a

α2
µ , ϕβ, ϕ

α2 , ψ, ψα2
β ), (4.56)

(bα1
µν , ψ

α1,α2 , ψα1
β ,Φ

α1,α2

β ,Φα1) −→ (aα1
µ , ψ

α1,α2 , ψα1
β ,Φ

α1,α2

β ,Φα1). (4.57)

α1, α2, β = 1, 2. (Aµ, ξ
γ, XI) could be written as (Aµ, ξ

α2 , ξβ, X
α2
β , X).

Lk and L2
k then become

Lk = −1

4
aµν α1+aα1

µν +
p2

4 + p2
5

2
aα1+
µ aµ α1 (4.58)

+
i

2
ψ̄α1,α2γµDµψ

α1,α2 − 1

2
ψ̄α1,α2(p4γ

4 + p5γ
5)ψα1,α2

+
i

2
ψ̄α1
β γ

µDµψ
α1
β −

1

2
ψ̄α1
β (p4γ

4 + p5γ
5)ψα1

β

+
1

2
DµΦα1,α2+

β DµΦα1,α2

β +
p2

4 + p2
5

2
Φα1,α2+
β Φα1,α2

β

+
1

2
DµΦα1+DµΦα1 +

p2
4 + p2

5

2
Φα1+Φα1 ,

L2
k =

i

2
s̄µγ

µνρDνsρ −
1

4
aµν α2+aα2

µν −
1

4
aµν+
β aµν β (4.59)

+
i

2
ψ̄α2
β γ

µDµψ
α2
β +

i

2
ψ̄γµDµψ +

i

2
ρ̄γµDµρ

+
1

2
Dµϕα2+Dµϕ

α2 +
1

2
Dµϕ+

βDµϕβ

+
1

2
s̄µγ

µν(p4γ
4 + p5γ

5)sν +
p2

4 + p2
5

2
(aµ α2+aα2

µ + aµ+
β aµ β)
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− 1

2
ψ̄α2
β (p4γ

4 + p5γ
5)ψα2

β −
1

2
ψ̄(p4γ

4 + p5γ
5)ψ − 1

2
ρ̄(p4γ

4 + p5γ
5)ρ

+
p2

4 + p2
5

2
(ϕα2+ϕα2 + ϕ+

β ϕβ),
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5. CONCLUSIONS∗

5.1 Hopf-Wess-Zumino term in the effective action of the 6d (2, 0) field theory

revisited

We discussed the WZ term in the low energy effective action of the 6d (2, 0)

field theory in the generic Coulomb branch. As a topological term, WZ term does

not depend on the metric nor the coupling, so it is protected. For such terms, the

supergravity calculation and the 1-loop calculation in field theory will give the same

result. There is no available 6d (2, 0) field theory at present, so we will first calculate

the WZ term on supergravity side. We then show that the obtained WZ term could

indeed compensate the anomaly deficit, indicating that it is the desired term required

by the anomaly matching condition.

For SYM theory in a generic Coulomb branch, each WZ term involves one root

ei−ej, which is consistent with the fact that the supergravity interaction is produced

by the integrating out of massive strings connecting the ith and the jth D branes.

On the other hand, for M5 branes, each WZ term involves two roots ei − ej and

ek−ej. One may expect that such kind of triple interaction may be generated by the

integrating out of the massive objects carrying (i, j, k) indices. A natural candidate

is the string junctions with tension (|φij|, |φjk|, |φki|) proposed in [20, 21].

6d (2, 0) theory should be a theory for strings. These strings are strongly-coupled.

In [23], the equations of motion for the 3-algebra valued (2, 0) tensor multiplet were

obtained. Later, in [31], it was shown that these equations have the natural in-

∗Part of this section is reprinted with permission from “Hopf-Wess-Zumino term in the effec-
tive action of the 6d, (2, 0) field theory revisited” by S. Hu and D. V. Nanopoulos, JHEP 1110,
054, (2011), http://link.springer.com/article/10.1007/JHEP10(2011)054, Copyright 2011 by SISSA
- Trieste (Italy) and “Momentum modes of M5-branes in a 2d space” by S. Hu and D. V. Nanopou-
los, JHEP 1206, 139 (2012), http://link.springer.com/article/10.1007/JHEP06(2012)139, Copyright
2012 by SISSA - Trieste (Italy).
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terpretation as the supersymmetric gauge field equations in loop space, while the

auxiliary field Cµ is the vector tangent to the loop, or in other words, the selfdual

string. 3-algebra and the string structure are two appealing features for a theory

on M5 branes, so we take the equations in [23] as the starting point to derive the

WZ term. To relate the WZ term obtained from the field theory to the WZ term

on supergravity side, we made special assumptions on fermion mass, which could be

determined only after the specification of the 3-algebra. It may be possible to get

the H3 ∧A3 part of the WZ term, but for A3 ∧F4, some indefiniteness exists and we

can at most make the both sides have the similar structure. Moreover, it seems that

H3 ∧ A3 requires the 5d momentum while A3 ∧ F4 indicates the 6d dynamics.

Finally, we discussed the representation of the 3-algebra. If the fundamental

degrees of freedom carry three indices, the natural algebra structure for them is

the 3-algrbra with N3 scaling elements. An obvious problem is there is no finite

dimensional Euclidean 3-algrbra satisfying the fundamental identity except for A4.

We show that the fundamental identity in [23] could be relaxed to a weaker version,

but even though, it is still difficult to get a satisfactory representation.

5.2 Momentum modes of M5-branes in a 2d space

We considered the momentum modes of the M5 branes on a plane, which are the

transverse momentum of the selfdual strings parallel to that plane. Different from the

D branes, on which, the momentum modes are carried by the same kind of point-like

excitations, here, the unparallel momentum modes are carried by selfdual strings with

the different orientations. Selfdual strings with the same orientation gives a 5d SYM

theory with the field configurations taking the zero Pontryagin number. The original

6d (2, 0) tensor multiplet field is then decomposed into a series of θ-parameterized

5d U(N) SYM fields, among which, fields labeled by the same θ have the standard
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SYM-type interaction. Fields labeled by different θ are associated with the selfdual

strings with the different orientations. As a result, the [i, j]+ [j, k]→ [i, k] relation is

not valid and the coupling cannot be realized as the standard matrix multiplication.

Since the bound state of the [i, j] θ1 selfdual string and the [j, k] θ2 selfdual string

is not some [i, k] selfdual string but the 3-string junction, we may also include the

string junction into the theory. Each 3-string junction is characterized by (θ1, θ2, θ3),

forming the tri-fundamental or anti-tri-fundamental representation of U(N), and

may couple with the θ1 θ2 θ3 selfdual strings in adjoint representation of U(N).

[i, l] + [l, j, k]→ [i, j, k], [j,m] + [i,m, k]→ [i, j, k], [k, n] + [i, j, n]→ [i, j, k].

The quantization of the 3-string junction will give the higher-spin multiplet, for

which the simplest one is the (2, 1) multiplet with the highest spin 3/2. It is unclear

whether the introducing of the 3-string junction will solve the problem or bring more

problems, since at the beginning, we only want to get a theory for the (2, 0) tensor

multiplet. The incorporation of the 5d massive (2, 1) multiplet into the 6d (2, 0)

theory compactified on S1 was also discussed in [68], where it was suggested that

the algebraic structure of the 6d (2, 0) theory may have a fermionic symmetry in

addition to the self-dual tensor gauge symmetry.

Each 3-string junction carries three indices, so they may offer the N3 degrees of

freedom on N M5 branes. However, the existing of the 3-string junction is severely

restricted by the marginal stability curve, outside of which, the string junction may

decay into the strings. For the given vacuum expectation values of the scalar fields

on M5, the momentum of the string junction on that plane cannot be arbitrary.

Especially, on coincidentM5 branes, the 3-string junctions are at best at the marginal

stability curve, so it is quite likely that they may decay.

Maybe it is easier consider the problem in the dual D3 picture. For D3 with

the transverse dimension x′45 compactified, the winding mode of the (p, q) strings
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is dual to the (n/R4,m/R5) momentum mode on M5. For the give p and q, open

(p, q) strings with the arbitrary winding numbers have the SYM interaction. Then

the questions are whether the open (p, q) (r, s) strings can interact or not, if can, in

which way, what is the situation when D3 branes are coincident.

Among all selfdual strings, only those parallel to a given plane are taken as the

perturbative degrees of freedom; nevertheless, different planes give the dual theo-

ries. One may compare the 6d theory with the 5d and 4d theories coming from the

reductions on x5 and x4 × x5. Obviously, selfdual string extending along x5 is the

only candidate to define the 5d theory. However, for 4d theory, any selfdual string

parallel to the 45 plane, carrying zero transverse momentum along it can act as the

perturbative degrees of freedom. Only one is selected to give the 4d field, while the

rest ones define the dual theories. Similarly, for 6d theory, selfdual strings parallel

to a specific plane can be taken to give the 6d field, while the other planes give the

dual versions. M5 on S1 × S2 × S3 × S4 × S5 is dual to D3 on Si × Sj × Sk with a

transverse S ′lm, where {1, 2, 3, 4, 5} = {i, j, k, l,m}. The (p, q) string ending on D3

winding S ′lm is dual to the selfdual string extending in (qRl, pRm) direction, carrying

transverse momentum in xl × xm, localized in xi × xj × xk. There are 10 possible

dual theories, corresponding to choosing the selfdual strings parallel to 10 different

2d subspaces.

M5 on T 5 is SL(5, Z) invariant. However, the 6d theory on M5 does not have the

explicit SL(5, Z) invariance. The SL(5, Z) U-duality transformation, or the SO(5)

U-duality transformation in R5, is not a simple differorphism transformation but

is also accompanied by a reallocation of the perturbative and the nonpertubative

degrees of freedom. The U-dual 6d theories are equivalent, so the SL(5, Z) transfor-

mation is just like a change of the gauge. This is similar with the D3. Although D3

is S-duality invariant, the 4d theory on D3 does not have the SL(2, Z) invariance.
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The nonpertubative SL(2, Z) transformation gives the equivalent 4d theories.

5.3 The effective theory for KK modes

We discussed the 4d fields arising from the quantization of the 3-string junctions

as well as their 5d and the 6d lifts. In 4d, we get the N=6 multiplet in tri-fundamental

representation of U(N), which, when lifted to 5d and 6d, becomes the (2, 1) multiplet.

The (2, 1) multiplet is composed by two sets of fields (bµν , χ,Φ) and (sµ, aµ, λ), while

the (2, 1) supercharge can be decomposed into the (2, 0) part Qγ and the (0, 1) part

Qα. The action of the (2, 1) supercharge on (2, 1) multiplet can be summarized as

bµν
Qγ↔ χ

Qγ↔ Φ, sµ
Qγ↔ aµ

Qγ↔ λ, (5.1)

and

sµ
Qα↔ bµν , aµ

Qα↔ χ, λ
Qα↔ Φ, (5.2)

from which, we can determine the Weyl weight

field sµ aµ λ bµν χ φ

weight 3/2 1 3/2 2 5/2 2

(bµν , χ,Φ) has the Weyl weight (2, 5/2, 2), thus is the conformal sector in 6d. On

the other hand, (sµ, aµ, λ) is not conformal in 6d. Therefore, (sµ, aµ, λ) is suppressed

in 6d. It is (bµν , χ,Φ) that will have the contribution to the conformal anomaly.

(bµν , χ,Φ) is 4N3 copies of the (2, 0) tensor multiplet, so the scale (type-B) anomaly

of the (2, 1) multiplet in 6d is 4N3b6B, which is consistent with the AdS/CFT

prediction for the scale anomaly of the 6d (2, 0) theory in large N limit.

When compactified to 4d, (bµν , χ,Φ) will become (aα1
µ , χ

γ α1 ,ΦI α1) if the R-

symmetry is SO(5), (aα1
µ , ψ

α1,α2 , ψα1
β ,Φ

α1,α2

β ,Φα1) if the R-symmetry is SO(4); (sµ, aµ,

λ) will become (sµ, a
γ
µ, λ

I , ψ, ϕγ) if the R-symmetry is SO(5), (sµ, ρ, aµ β, a
α2
µ , ϕβ, ϕ

α2 ,
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ψ, ψα2
β ) if the R-symmetry is SO(4). The interaction is mediated by the N=4 mul-

tiplet (Aµ, ξ
γ, XI). It is (Aµ, ξ

γ, XI) −(aα1
µ , χ

γ α1 ,ΦI α1) coupling and (Aµ, ξ
γ, XI)−

(sµ, a
γ
µ, λ

I , ψ, ϕγ) coupling that is possible. We constructed the 4d Lagrangian with

(Aµ, ξ
γ, XI)−(aα1

µ , χ
γ α1 ,ΦI α1) coupling and (Aµ, ξ

γ, XI)−(sµ, a
γ
µ, λ

I , ψ, ϕγ) coupling

and the corresponding N=4 susy transformation. The Lagrangian is not entirely in-

variant under the N=4 supersymmetry. Some additional terms are to be added.
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APPENDIX A

THE ON-SHELL ACTION FOR BRANE-GRAVITY COUPLED SYSTEM∗

Consider the (d−1)-brane couples with the supergravity fields. The action is [82]

S = Sbrane + Sgravity (A.1)

Sbrane = Td

∫
ddξ[−1

2

√
−γγij∂iXM∂jX

NgMNe
α(d)φ/d +

d− 2

2

√
−γ

− 1

d!
εi1i2···id∂i1X

M1∂i2X
M2 · · · ∂idXMdAM1M2···Md

]

= S1 + S2 + S3 (A.2)

Sgravity =
1

2κ2

∫
dDx
√
−g[R− 1

2
(∂φ)2 − 1

2(d+ 1)!
e−α(d)φF 2

d+1] (A.3)

The action of this form is valid for both electric and magnetic branes, while for

magnetic branes, just let α(d)→ −α(d). Variation with respect to gMN , AM1M2···Md
,

and γij gives

TMN
brane = −Td

∫
ddξ
√
−γγij∂iXM∂jX

Neα(d)φ/d δ
D(x−X)√
−g

=
1

κ2
[RMN − 1

2
gMNR− 1

2
(∂Mφ∂Nφ− 1

2
gMN(∂φ)2)

− 1

2d!
(FM

M1···Md
FNM1···Md − 1

2(d+ 1)
gMNF 2)e−α(d)φ] (A.4)

∗Part of this section is reprinted with permission from “Hopf-Wess-Zumino term in the effective
action of the 6d, (2, 0) field theory revisited” by S. Hu and D. V. Nanopoulos, JHEP 1110, 054,
(2011), http://link.springer.com/article/10.1007/JHEP10(2011)054. Copyright 2011 by SISSA -
Trieste (Italy).
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JM1···Md
brane = Td

∫
ddξ εi1i2···id∂i1X

M1∂i2X
M2 · · · ∂idXMd

δD(x−X)√
−g

=
1

2κ2
√
−g

∂M(
√
−ge−α(d)φFMM1···Md) (A.5)

and

γij = ∂iX
M∂jX

NgMNe
α(d)φ/d. (A.6)

Then

S1 =
1

2

∫
dDx
√
−g TMN

brane gMN

=
1

2κ2

∫
dDx
√
−g[(1− D

2
)(R− 1

2
(∂φ)2)− 1

2d!
(1− D

2(d+ 1)
)F 2e−α(d)φ](A.7)

Plug (A.6) into (A.2), we get

S1 + S2 =
2

d
S1 (A.8)

From (A.5),

S3 = − 1

d!

∫
dDx
√
−g JM1···Md

brane AM1M2···Md

=
1

2κ2

∫
dDx

1

(d+ 1)!

√
−ge−α(d)φF 2

− 1

d!
∂M(
√
−ge−α(d)φAM1M2···Md

FMM1···Md) (A.9)

As a result,

Sbrane = S1 + S2 + S3

=
2−D
d

1

2κ2

∫
dDx
√
−g[R− 1

2
(∂φ)2 − 1

2(d+ 1)!
e−α(d)φF 2

d+1]

− 1

2κ2

∫
dDx

1

d!
∂M(
√
−ge−α(d)φAM1M2···Md

FMM1···Md)

=
2−D
d

Sgravity + Sboundary (A.10)
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For d < 3, or equivalently, for purely electric branes, Sboundary = 0. If MD has no

boundary, Sboundary could also be dropped. Then for the given brane configuration,

if S is on-shell with respect to supergravity, we have

Sbrane : Sgravity : S = (D − 2) : (−d) : (D − 2− d), (A.11)

where

Sbrane = Td

∫
ddξ[−

√
− det(∂iXM∂jXNgMNeα(d)φ/d)

− 1

d!
εi1i2···id∂i1X

M1∂i2X
M2 · · · ∂idXMdAM1M2···Md

] (A.12)

The extension to multi-brane configurations is straightforward, and (A.11) still holds.

When the dimensions of the branes are different, the exact proportional relation is

not valid anymore. Besides, when Fij does not vanish, i.e. the (p− 1)-brane carries

p−1−2n charge, (A.11) does not hold. Naively, when D = 11, d = 6, neglecting the

boundary term, Sbrane : Sgravity : S = 3 : (−2) : 11. However, S here is not exactly

the action for M5 branes coupling with supergravity. In the following, we will use

(2.1) as the action to get the same conclusion.

Now, consider

S = Sg + SM5 (A.13)

1Note that for D3, M2, M5 branes, Sbrane/S equals to 2, 3/2, and 3, while the degrees of freedom
on these branes scale as N2, N3/2, and N3. This is not the coincidence. Suppose the degrees of
freedom on N branes scale as Nα. Also suppose that in Sbrane, there is a term T has the Nα

scaling. Consider N + 1 branes with large N , when the symmetry is broken from SU(N + 1) to
SU(N)× U(1), (N + 1)α −Nα ∼ αNα−1 number of T will enter into Sbrane. On the other hand,
the effective action of the system could be approximated as the action of a single brane on the
background generated by the rest N branes. In Seff , one may get Nα−1T . Obviously, T in Sbrane
and T in Seff differ by a α factor. For D3, T is

∫
F5, for M5, T is

∫
A3 ∧ F4, while for M2, T is

obscure.
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with

Sg =
1

2κ2

∫
M11

∗R− 1

2
∗ F̂4 ∧ F̂4 −

1

6
F4 ∧ F4 ∧ A3 (A.14)

SM5 = −T5

∫
W6

d6ξ
√
− det(gµν + (iv1 ∗̃h3)µν) +

1

2
v1 ∧ h3 ∧ ∗̃(v1 ∧ ∗̃h3)

+
T5

2

∫
W6

db2 ∧ A3 +
T5

2

∫
W7

A3 ∧ F4 (A.15)

The field equations are [32]

TMN
M5 =

1

κ2

[
RMN − 1

2
gMNR− 1

12
(F̂M

4 PQLF̂
NPQL
4 − 1

8
gMN F̂ 2

4 )
]

(A.16)

d ∗ F̂4 +
1

2
F4 ∧ F4 = −2κ2T5(−A3 ∧ ∗J6 + F4 ∧ ∗G7) (A.17)

dF̂4 = 2κ2T5 ∗ J6, (A.18)

The vacuum expectation value of b2 are taken to be zero, otherwise, (A.11) does not

hold. From (A.16),

1

2

∫
W6

d6ξ
√
−g TMN

M5 gMN =
1

2κ2

∫
M11

−9

2
∗R +

3

4
∗ F̂4 ∧ F̂4 (A.19)

From (A.17),

T5

2

∫
W7

A3 ∧F4 =
1

2κ2

∫
M11

1

2
∗ F̂4 ∧F4 +

1

4
F4 ∧F4 ∧A3−

1

4κ2

∫
∂M11

A3 ∧ ∗F̂4 (A.20)

We will still use the general relation (A.8) for M5 branes. The Nambu-Goto action

for M5 branes is more involved than that for D branes or M2 branes, so the correction

may exist, but that will not bring too many problems, since our main concern is the
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WZ term.

SM5 =
1

2κ2

∫
M11

−3

2
∗R+

3

4
∗ F̂4∧ F̂4 +

1

4
F4∧F4∧A3 +

T5

2

∫
W7

∗F̂4−
1

4κ2

∫
∂M11

A3∧∗F̂4

(A.21)

S =
1

2κ2

∫
M11

−1

2
∗R+

1

4
∗ F̂4∧ F̂4 +

1

12
F4∧F4∧A3 +

T5

2

∫
W7

∗F̂4−
1

4κ2

∫
∂M11

A3∧∗F̂4

(A.22)

Because of the last two terms, the exact proportional relation does not hold. This

is the general solution. Now, consider the multi-center M5 brane solutions and the

corresponding WZ term. In this case, d ∗ F̂4 = 0, (A.20) reduces to2

T5

2

∫
W7

A3 ∧ F4 =
1

2κ2

∫
M11

1

4
F4 ∧ F4 ∧ A3 (A.23)

In Sg, we have −1
6
F4 ∧ F4 ∧ A3, so altogether,

ΓWZ =
1

2κ2

∫
M11

1

12
F4 ∧ F4 ∧ A3 (A.24)

A factor of 1/3 is involved.

Similarly, for D3 branes, one may expect that the WZ term should be one half

of the corresponding term in the D3 brane action. This is indeed the case, and it is

just this rescaled term that is obtained from the 1-loop integration and compensates

the anomaly deficit.

2Plug (2.2) into (A.23), since F̂4 ∧ F̂4 = 0 = ∗G7 ∧ ∗G7, (A.23) becomes an identity. However,
the right-hand side of (A.23) cannot be used for anomaly counting directly.
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APPENDIX B

THE CONSTRAINTS ON THE STRUCTURE CONSTANT FOR THE

CLOSURE OF THE SUPERSYMMETRY

In [23], the supersymmetry transformation of the tensor multiplets together with

the gauge field Aµ and the vector field Cµ is discussed. We will focus on the resulted

conditions that should be imposed on the structure constant.

The closure on Cµ
A gives the constraint Cµ

BC
ν
Cf

CDB
A = 0. For the closure on ABµA,

we have

[δ1, δ2]ABµ A = −2i(ε2ΓλΓ
Iε1)Cλ

CDµX
I
Dh

CDB
A − vνCλ

CHµνλDh
CDB

A

−i(ε̄2ΓµνλΓ
IJε1)Cν

CC
λ
GX

I
EX

J
Ff

EFG
Dh

CDB
A

+2i(ε2ΓµΓIε1)Cλ
CDλX

I
Dh

CDB
A

= vνF̃ B
µν A +DµΛ̃B

A . (B.1)

The second line must vanish. Γµνλ is antisymmetric with respect to ν and λ, so

(Cν
CC

λ
G − Cλ

CC
ν
G)fEFGDh

CDB
A = (Cν

CC
λ
G − Cλ

CC
ν
G)fEFGDf

DBC
A = 0. (B.2)

For the closure on HµνλA,

[δ1, δ2]Hµνλ A = vρDρHµνλ A − 2i(ε̄2ΓρΓ
Iε1)Cρ

CX
I
Dg

DBC
AHµνλ B

−6i(ε̄2Γ[µΓIε1)
(
F̃νλ]

C
A − Cρ

BHνλ]ρ Dg
CDB

A

)
XI
C

−6i(ε̄2Γρ[µνΓ
IJε1)Cρ

BX
I
CDλ]X

J
D(fCDBA − gCDBA)

−3i

8
(ε̄2ΓσΓJε1)(Ψ̄CΓµνλρσΓJΨD)Cρ

B(hDBCA − gCDBA)

+2i(ε̄2ΓτΓKε1)εµνλρστC
ρ
BC

σ
EX

I
CX

I
FX

K
G g

D[B|C
Af

FG|E]
D
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+i(ε̄2ΓµνλΓLMε1)εIJKLMCκ
BCκ EX

I
CX

J
FX

K
G g

DB[C
Af

FG]E
D

+3i(ε̄2Γρ[µνΓLMε1)εIJKLMCρ
BCλ] EX

I
CX

J
FX

K
G g

DB[C
Af

FG]E
D

+vρ
(
4D[µHνλρ] A + εµνλρστC

σ
BX

I
CD

τXI
Dg

CDB
A

+
i

2
εµνλρστC

σ
BΨ̄CΓτΨDg

CDB
A

)
= vρDρHµνλ A + Λ̃B

AHµνλ B , (B.3)

The fifth, sixth, and seventh lines must vanish. The fifth line equals to zero because

of (B.2). The sixth and the seventh lines vanish if

Cµ
BC

ν
Ef

DB[C
Af

FG]E
D = 0. (B.4)

Finally, the invariance of the inner product under the gauge transformation gives the

constraint

Cµ
D(fDCAEh

EB + fDCBEh
AE) = 0, (B.5)

where
〈
tA|tB

〉
= hAB. fABCD = f [ABC]

D.

The above constraints could be explicitly written as

[Cµ, Cν , ∗] = 0, (B.6)

[Cµ, A, [Cν , B, Y ]]− [Cν , B, [Cµ, A, Y ]] = [[Cµ, A, Cν ], B, Y ] + [Cν , [Cµ, A,B], Y ]

= [Cν , [Cµ, A,B], Y ]

= [Cµ, [Cν , A,B], Y ]. (B.7)

The fundamental identity should be satisfied for gauge transformations generated by

[C,A, ∗], for which, it reduces to the Jacobi identity.
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