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ABSTRACT

6d (2, 0) theory on M5 branes is investigated by considering its KK modes on a
2d space. Selecting KK modes on different 2d spaces amounts to choosing different
set of selfdual strings as the perturbative degrees of freedom thus will give the 6d
theories related to each other by U-duality. The 4d effective theory for the KK modes
is studied via the M5-D3 duality. Except for the (p, q) open strings, which is the KK
mode arising from the selfdual strings, the 3-string junction should also be added
since it is the bound state of the (p, q) open strings. The quantization of the 3-string
junctions gives the fields, which, when lifted to 6d, may account for the conformal
anomaly of the 6d (2, 0) theory. The interaction between the open strings and the
3-string junctions is also considered. The Lagrangian and the corresponding N=4
supersymmetry transformation is obtained up to some additional terms to be added.
Although the original 6d (2, 0) theory is not constructed directly, the 4d effective
theory for the KK modes gives an equivalent description, from which the 6d S-matrix

can be calculated.
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1. INTRODUCTION

String/M theory offers a natural framework to construct the various quantum
field theories. For example, the U (N) Super Yang-Mills could be realized as the
effective theory on N coincident D branes. The quantization of the open strings
ending on D branes gives the super Yang-Mills field, while the Chan-Paton factors
carried by open strings account for the U (N) gauge asymmetry. Aside from D branes
in string theory, there are also M2 branes and M5 branes in M-theory, from which, the
interesting quantum field theory may be obtained. The low energy effective theory
on multiple M2 branes has been well understood in recent years. However, the low
energy effective theory on multiple M5 branes is still an open problem. All we know
is it is a 6d conformal field theory with the (2, 0) supersymmetry and the Ay_;
gauge symmetry. When reduced on one dimension, the 6d (2, 0) theory becomes
the ordinary 5d U (N) Super Yang-Mills. AdS/CFT also predicts that the theory
should have the N3 other than N? degrees of freedom. The twisted reduction of the
6d (2, 0) theory on the 2d surfaces gives the fruitful N=2 gauge theories related to
each other by S-duality, which is the peculiar property of this theory. In chapter,
we will introduce the string/M theory embedding of the 6d (2,0) theory. Section A
and section B gives the type IIB and the M theory realization of the 6d (2,0) theory
respectively. Section C is about the little string theory, a close relative of the 6d

(2,0) theory.
1.1 The type IIB realization of the 6d (2,0) theory

In [1], Witten considered the type IIB string theory compactified on R® x K3 and
discovered a new superconformal six-dimensional string theory without the dynami-

cal gravity, invariant under the (2,0) supersymmetry algebra, classified by the ADE



group.

K3 space is a four-dimensional hyper-Kahler surface [2]. Let M represents the K3
manifold, then the relevant properties of the K3 geometry is the homology Hy(M)
of two-cycles, which is also dual to the cohomology of 2-forms Hy(M). When the
volume of the 2-cycles embedded in K3 shrink to zero, K3 reaches a singular point
in moduli space, in which, the gauge symmetry develops [1]. The singularities obey
an ADE classiffication, i.e. there are two infinite series, A,, r = 1,2--- and D,,
r=3,4--- and three exceptional cases £6, E7 and E8. Suppose {w*|w® € Hy(M)}
is a basis of 2-forms, while {C§} is the dual 2-cycles, then there is a one-to-one
correspondence between the node of each simply laced Dynkin diagram and C§.

Type ITA theory on R® x K3 gives another 6d theory, which is invariant under
the (1,1) supersymmetry, and is also classified by the ADE group [1]. The (2,0) and
(1, 1) supersymmetries comes from type ITA and type IIB string theories respectively.
The particle states in the 6d (1,1) theory arising from the K3 compactification of
type ITA has two sources. Uncharged fields come from the dimensional reduction of
the ten-dimensional type IIA supergravity. For example, the moduli parameterizing
the volume of C§ becomes the scalars in 6d, while the RR 3-form A3 becomes 1-forms
via

A3 — A% A w®. (1].)

The charged states arise from D2-branes wrapped on the two-cycles C§. The D2-A3
coupling then becomes

oAz — /dTA“. (1.2)
03

The mass of the charged states is proportional to the volume of CY. When C¥
collapses to zero size, charged states are massless, and then the nonabelian gauge

symmetry is obtained. This is in agreement with the duality between the heterotic



string on the space Rg x Ty and the Type ITA string on R® x K3.

For the 6d (2,0) theory from the type IIB string theory compactified on R® x K3,
the particle states still has two sources. Chargeless fields come from the dimensional
reduction of the ten-dimensional Type IIB supergravity. Now the the RR 4-form A,
becomes 2-forms via

Cy — BS AW, (1.3)

D3-branes wrapping on the two-cycle Cf give the 1d charged strings in 6d. The

D3-Cy coupling in 10d reduces to the string-B§ coupling, i.e.
d'oCy — / d20 BS. (1.4)
c3

The tension of teh string is still proportional to the volume of C% and will become
tensionless when the volume of C§ approaches 0. Both C; and D3 are selfdual, so in
6d, the tensor B§ and the strings are also selfdual.

In summary, Type ITA supergravity compactified on K3 gives the 6d (1, 1) vector
multiplet, while the type IIB supergravity on K3 gives the 6d (2, 0) tensor multiplet.
For the charged states, D2 wrapping 2-cycles are 0d states in 6d, while D3 wrapping
2-cycles give the 1d states in 6d. The neutral 6d (1, 1) vector multiplets together with
the charged point states compose the 6d (1, 1) vector multiplet in the representation
of the ADE algebra. 6d (1, 1) theory is then a Super-Yang Mills theory. The same
conclusion does not hold for the 6d (2, 0) theory because the charged states are 1d

strings.
1.2 6d (2,0) theory on M5 branes

The A-series of the 6d (2, 0) theory also has an interpretation in M-theory, which

is supposed to be the unification of all five different string theories. The theory is



still under the developing, but it is very clear that M theory should reduce to the
eleven dimensional supergravity in low energy limit and contains the two dimen-
sional branes and the five dimensional branes, both are 1/2 BPS states preserving
16 supersymmetries. With respect to the 3-form field in 11d supergravity, M2 brane
and the M5 brane are electric and the magnetic states respectively. The Ay_; type
6d (2,0) theory are low energy effective theory on N coincident M5 banes [3]. The
type I1IB picture and the M theory realization are equivalent, as is shown in [4, 5].

The five scalars are then the Goldstone bosons from the spontaneous symmetry
breaking of translational invariance induced by the five brane and parameters as the
relative transverse positions of the Mb5-branes in the eleven-dimensional space. Just
as open strings may end on D-branes, open M2 branes may end on M5 branes. From
the M5 branes’ point of view, these open M2 branes will appear as the strings. At the
origin of moduli space, the M5-branes coincide and the strings become tensionless,
in parallel with the Type IIB picture. Aside from the A-series, the D-series 6d (2,
0) theory can also be described in M theory. The parallel orientifold plane should
be added in this case. The exotic series E6, E7 and E8 have no known M-theory
realization.

The existence of the 6d SCFT is also predicted by AdS/CFT [6]. The near horizon
limit of the black M5 solutions is AdS; x S*. M theory on AdS7 x S* is suppose to be
dual to a 6d superconformal field theory. AdS/CFT duality offers some clues about
this unknown 6d SCFT. For example, the entropy of the 6d (2, 0) theory should have
a N3 scaling [7], in contrast to the N? scaling entropy of the 4d super-yang mills

theory.



1.3 Little string theory

M theory compactified on St gives the type ITA string theory. Correspondingly,
M5 brane with a transverse dimension compactified becomes the NS5 brane. Type
ITA little string theory [8, 9], which is the low energy theory on NS5, could be taken as
the 6d (2, 0) theory with a transverse dimension compactified. The compactification
of the transverse dimension will add more degrees of freedom, namely, the winding
mode. Especially, closed membrane wrapping S gives the closed fundamental string
on NS5 with the tension Ty = 20 RT)y2. 6d (2, 0) tensor multiplet then appears as
the lowest oscillation mode of these noncritical strings [10, 11, 12]. However, one thing
to notice is that these strings are all chargeless and is essentially the fundamental
string arising from the closed membrane other than the selfdual string from the open
membrane.

The low energy effective theory on type IIB NS5 branes is the type IIB little
string theory. Here, the string refers to the type IIB string. Under the S-duality
transformation, NS5 brane becomes the D5 brane, while the fundamental strings on
NS5 becomes the D string on D5. In type IIB the NS5-F1 and the D5-D1 bound
state both exist. The effective theory on N coincident D5 branes is the U(N) super-
yang-mills theory. Correspondingly, the type IIB little theory is just a 6d (1, 1)
U(N) super yang-mills theory.

Type ITA NS5 branes compactified on a circle of radius R is T-dual to type
IIB NS5 branes compactified on a circle of radius 1/M?R. In fact, in the type IIB
realization, type IIA string theory on R® x K3 x S is also T-dual to the type I1IB

string on R% x K3 x S!, since K3 is the self-mirror space.



2. HOPF-WESS-ZUMINO TERM IN THE EFFECTIVE ACTION OF THE 6D
(2,0) FIELD THEORY REVISITED*

We discuss the Hopf-Wess-Zumino term in the effective action of the 6d (2,0)
theory of the type Ay_; in a generic Coulomb branch. For such terms, the super-
gravity calculation could be trusted. We calculate the WZ term on supergravity
side and show that it could compensate the anomaly deficit, as is required by the
anomaly matching condition. In contrast with the SYM theory, in which each WZ
term involves one root e; — e;, here, the typical WZ term involves two roots e; — e;
and e;, —e;. Such kind of triple interaction may come from the integration out of the
massive objects carrying three indices. A natural candidate is the recently proposed
1/4 BPS objects in the Coulomb phase of the 6d (2,0) theories. The WZ term could
be derived from the field theory by a 1-loop calculation. Without the 6d (2,0) theory
at hand, we take the supersymmetric equations for 3-Lie algebra-valued (2, 0) tensor
multiplet as the starting point to see how far we can go. Although the H3 A A3 part
of the WZ term may be produced under the suitable assumptions, the A3 A F; part
is far more difficult to obtain, indicating that some key ingredient is still missing.

Low energy effective action of the field theory in the Coulomb branch may contain
the Wess-Zumino term arising from the integration out of massive fermions getting
masses via the Yukawa coupling with the vacuum expectation value of the scalar fields
[13, 14]. The existence of the Wess-Zumino term is also required by the anomaly
matching condition [15]. At a generic point of the moduli space, the gauge symmetry

is broken, and then, the 't Hooft anomaly produced by massless degrees of freedom is

*Part of this section is reprinted with permission from “Hopf-Wess-Zumino term in the effective
action of the 6d, (2,0) field theory revisited” by S. Hu and D. V. Nanopoulos, JHEP 1110, 054,
(2011), http://link.springer.com/article/10.1007/JHEP10(2011)054. Copyright 2011 by SISSA -
Trieste (Italy).



different from the anomaly at the origin. On the other hand, the anomaly matching
condition states that the 't Hooft anomaly should be the same everywhere on the
moduli space of vacua. As a result, away from the origin, the integrating out of the
massive degrees of freedom should generate the Wess-Zumino term in the low energy
effective action compensating the deficit so that the total anomaly remains the same
(15, 16].

The WZ term is a topological term that does not depend on the metric nor the
coupling, so it is protected without the need of invoking any supersymmetric non-
renormalization theorems. For such terms, we may expect that the 1-loop calculation
in field theory and the supergravity calculation would match. On supergravity side,
the Wess-Zumino term is associated with the magnetic-electric coupling. For Dp-
branes with p > 3, it is given by [y, , Fs ,(AdA)P™> = (=1)? [y, . Fs , AA(NdA)P*
[17, 18], where Fy_, is the magnetic field strength, while (AdA)P~2 offers the electric
charge. When p =3, [y, , Fs_p(AdAY™ — [y Fs, because the D3-brane carries
magnetic as well as the electric charge [18]. For M5 branes, the WZ term is composed
by [, dba A Az and [y, Az A Fy, which are discussed in [19] and [16] respectively.
Jw, db2 A Az does not contribute to the anomaly. It is [y, A3 A Fy that accounts
for the anomaly deficit. [16] considered the situation when the gauge symmetry is
broken from SU(N + 1) to SU(N) x U(1) by the vacuum expectation value ¢*. The

~ ~

corresponding WZ term takes the form of [;. o3(¢) A dos(¢), where dos(¢) is the
pullback of the 4-form field strength generated by a single M5 brane while 03((/5) is the
corresponding 3-form potential. ¢ = ¢/|¢|. It was shown that with the coefficient
given by N(N + 1)/2, the WZ term could indeed reproduce the anomaly deficit
between SU(N + 1) and SU(N) x U(1). In this note, we will extend the discussion
to the generic Coulomb branch (¢{,---,¢%). We will show that the supergravity

calculation could give the right coefficient, while the WZ term, although takes the



form of [y 03(q§ij) A dO'g(ggkj) with ¢y = (6 — ¢;)/|¢: — ¢,], could produce the same
amount of anomaly as that of [, o3(¢) A dos(¢). So the WZ term obtained from
the supergravity calculation indeed compensates the anomaly deficit.

In the generic Coulomb branch, the WZ term in SYM theory is (—1)? [y,
Fg,p(@j) A AijINdA;]P4Y which is the typical pair-wise interaction arising from
the the integration out of massive fermions carrying index (i,j), or open strings
connecting the 4, and the j;, D-brane [17, 18]. The term [y, o3(0i;) A dos(¢y;) for
M5 branes seems indicate some kind of triple interaction: three M5 branes could
interact simultaneously. One may naturally expect that such term comes from the
integration out of massive fermions with (7, j, k) index, or open M2 branes connecting
the 4, the ji,, and the ky, M5 branes. In [20] and more recently, [21], the 1/4 BPS
objects in the Coulomb phase of the ADE-type 6d (2,0) superconformal theories are
considered. They are made of waves on selfdual strings and junctions of selfdual
strings. In [21], it was shown that the number of 1/4 BPS objects matches exactly
one third of the anomaly constant ¢ = dghg for all ADE types, indicating that the
anomaly may be produced by these 1/4 BPS objects. Moreover, the tension of the
string junctions is characterized by (|¢; — @5, |¢; — ¢kl |¢x — ¢4|), which is just what
is needed to produce the WZ term, since the selfdual string with tension |¢; — ¢, is
not enough to give the coupling like Ug(qu‘j) A dO’g(ggkj).

For SYM theories, the WZ term could be derived by a standard 1-loop calculation
[17, 18, 22]. It is natural to expect that the WZ term for 6d (2,0) theories could also
be derived in a similar way [16]. However, the 6d (2,0) theory is not constructed
yet. Moreover, since the theory is strongly-coupled, it is possible that the Lagrangian

formulation does not exist at all. Nevertheless, in [23], the supersymmetric equations

of motion for the 3-algebra valued (2,0) tensor multiplet were found. The 3-algebra

1Aij = A; — A;. It is the relative flux that makes sense.



may play an important role in M-theory, as is shown in the construction of the field
theory for multiple M2 branes [24, 25, 26]. For M5 branes, progress has been made in
the reconstruction of the single M5 brane from the BLG model and the ABJM theory
via the Nambu-Poisson algebra [27, 28, 29, 30]. If the fundamental degrees of freedom
for M5 branes carry three indices, the most natural algebra structure for them is the
3-algebra. A serious problem is that there is no finite dimensional Euclidean 3-algebra
satisfying the fundamental identity except for A4. In [23], the fundamental identity
is imposed for the closure of the supersymmetry. We will show that a weaker version
of the fundamental identity could also ensure the supersymmetry. The equations in
[23] could be naturally interpreted as the supersymmetric gauge field equations on
loop space, as is shown in [31]. We will give a slightly different set of gauge field
equations, in which the loop parameter R does not appear, while the auxiliary field
C*" does not need to be factorized to the vector and the 3-algebra part. Even if
the fundamental identity is relaxed to a weaker version, it is still difficult to find a
definite representation of the 3-algrbra with N3 scaling generators. We will neglect
this problem and go ahead to discuss the WZ term based on equations in [23]. It
may be possible to get the H3 A A part of the WZ term, but it’s more difficult to
obtain the A3 A F part. To relate the Hopf-Wess-Zumino term derived from the field
theory and that obtained from supergravity, we made special assumptions on both
sides. The final forms of the two could at most have the similar structure, but are
still different, so there must be some key ingredient missing. Besides, to get H3 A As,
we need d = 5, which is consistent with [23], in which, the constraint reduces the
dynamics from 6d to 5d. However, for As A F}, we still need d = 6.

This chapter is organized as follows: In section 2, we get the WZ term for 6d Ay_4
(2,0) theory in a generic Coulomb branch from the supergravity calculation. Part

of the details is given in appendix A. In section 3, we will show that the WZ terms



obtained from the supergravity calculation could indeed compensate the anomaly
deficit thus guarantee the anomaly matching condition. In section 4, we will discuss
the degrees of freedom in M5 branes producing the WZ term. In section 5, we
will review the equations of motion for the 3-algebra valued (2,0) tensor multiplet
obtained in [23], and rewrite it as the supersymmetric gauge field equations. Based
on the equations in [23], we will derive the WZ term on the field theory side to see how
close it could approach the WZ term obtained from supergravity. In section 6, we
will discuss the possible representation of the 3-algebra with the relaxed fundamental

identity. The conclusion is in section 7.
2.1 The Hopf-Wess-Zumino term from the supergravity calculation

Consider the 6d (2, 0) field theory describing N M5 branes. On a generic Coulomb
branch (¢¢,---,¢%) with a = 1---5 and ¢; # ¢;, for i # j, the gauge symmetry is
broken to U(1)". On field theory side, N copies of (2,0) tensor multiplets remain
massless, while the rest fields get mass. Integrating out these massive degrees of
freedom, one gets the effective action of the 6d, (2, 0) field theory on Coulomb branch.
On supergravity side, we have N M5 branes locating at (¢, -+, ¢n). At least for
WZ terms, the calculation on both sides should coincide. 6d (2,0) field theory is
still mysterious to us, while the multi-centered supergravity solution of M5 branes
is more tractable, so we will try to get the WZ term in the effective action through
the supergravity calculation.

The action for the coupling of M5 branes with the 11d supergravity could be
written as? [32, 33, 34]

S = S,+Sus

2Just as the (6.15) in [34], *Fy could be added into the worldvolume of the M5 brane, but then
an equal term will appear in the bulk.

10



1 1 . A 1
= — R——xF NF,—-F,NF;NA
2/{2/M11* 2* 4 e 4 3

. 1 - -
_ T5 /W d6£\/— det(gwj + (ivl*hi’»)yl/) + 5’01 AN h3 AN *(’Ul A *h3)
6

T T
+ 3 dbz/\A3+—5/ As A Fy (2.1)
2 We 2 W~

where F4 = dAg, W6 = 8W7,

ﬁ4 = F4 + 2H2T5 * G7, (22)

h3 - dbg - Ag. (23)

d x G7 = xJg. *Jg is the the Mb5-brane current. The last term in (2.1) is just the

Hopf-Wess-Zumino term proposed in [16]. The field equations for Fy are

dFy = 2k*Ts * Jg, (2.4)
A 1 - A
dx Fy + 5F4 A Fy = —26%Ty hs A xJg. (2.5)

xG7, Az, and Fj have the dependence on gauge, while xJg, hz, and Fy are gauge
independent. (2.4) and (2.5) only contain gauge invariant quantities.

Suppose the vacuum expectation values of by are equal to zero, consider N Mb
branes locating at (¢q,---,¢n). One can choose the slowly varying configuration
(¢1,- -+, ¢n), for which, FyAEy = 0. Since dby = 0, one can further assume A3 AxJg =
0, thus d x Fy, = 0. F then becomes the magnetic field generated by N M5 branes

in the configuration (¢q,- -, dn).

N N
F4 = ZF47;, Ag = ZAg,L (26)
i=1

i=1

11



Note that M5 brane with hg flux carries the magnetic as well as the electric charge,
and so hz A Fy involves the electric-electric interaction as well as the electric-magnetic
interaction. Under the present assumption, h3AFy only contains the electric-magnetic
coupling, which is our expectation for the WZ term. To calculate the WZ term on
the j; M5 brane, we need the pullback of A3 and F} on the corresponding W;. The

pullback of *G7 on W5 vanishes, so we simply have

N N
A3/\F4:/ A3/\F4:Q%/ Zogij/\Zw%j, (27)
W W k=1

W7j 7 =1

where dos;; = wa;i. wa;; 1s the pullback of wy; on We,. wy; is the unite volume form
J J J J

of S* surrounding the i,, brane. Altogether, we have

2T5NNN

E - _ w1 / - ‘
2 ]z:l /W7j A3 A F4 - 2 Z Z Z Wi, U3zg A w4kj (28)

i=1j=1k=1

Aside from the Fy A Fy A Az term in supergravity, [ Az A Fy is the other term which
has the N3 scaling.

However, (2.8) is still not exactly the WZ term in the effective action. First, when
1= j = k, we get a self-interaction term. There are totally /N such terms. These self-
interaction terms will be produced only when the N massless tensor multiplets are
also integrated out. Since we only integrate massive degrees of freedom, these terms
will not appear in the effective action. Second, for the given brane configuration,
or equivalently, the Coulomb branch, the more accurate expression for the effective

action on supergravity side should be [35]

Sep = Sg + Sus, (2.9)

where Sy is the action of the supergravity fields generated by M5 branes, while Sys is

12



the action of M5 branes on the background generated by themselves. Scs¢ is on-shell
with respect to supergravity as it should be. (2.8) comes from Sys5. As is shown in

the appendix A, S, contains a term which is —2/3 of (2.8), so altogether, we conclude

that
Q2T5 N N N N
Lwz = % > > / O3i5 N\ Wakj — Z/ O3ii N\ Waii) (2.10)
i=1j=1k=1"W7; =1/ Wi
or
3 N N N N
2/4,2FWZ = #(Z Z Z/ 03ij VAN Wiak; — Z/ O34 N\ (JJ4M), (211)
=1 ]21 k=1 W7j =1 e

where Q; = 2x%T5.
2.2 The anomaly matching

At the origin of the moduli space, 6d, Ay_; (2, 0) field theory has the following
form of anomaly when coupled to a background SO(5)r gauge field 1-form A, and

in a general gravitational background [36, 37].
1
Is(N) = (N — 1)I5(1) + ﬂ(N3 — N)po(F). (2.12)

I3(1) is the anomaly polynomial for a single, free, (2, 0) tensor multiplet [38, 39]:

1

Is(1) = 8

n2(F) = el )+ {(01(F) = pi (R 213

pa(F') is the second Pontryagin class for the background SO(5)g field strength F:

po(F) = S (o) [(0rF?) A (4rF?) — 200 Y] (2.14)

At a generic point of the moduli space, the only massless degrees of freedom are N —1

copies of tensor multiplets giving rise to the anomaly of (N —1)Ig(1). However, based

13



on 't Hooft anomaly matching condition, the integration out of the massive degrees
of freedom will produce the WZ term in the effective action, which will offer the
missing (N3 — N)po(F')/24 part so that the total anomaly is still the same as before
[16]. In the following, we will show that the WZ term in (2.11) could indeed give the
(N3 — N)po(F)/24 part of the normal bundle anomaly.

Turn on the background SO(5)g gauge field A on Wg. W7 = W, so A could

be smoothly extended to W7. On Wy, we have gauge field A% = — A%

1 )

with a,b =
1---5,i=1---7. In presence of the background field A, the pullback of the S* unite

volume form on W7 becomes

~

A 1 1 R R R .
wi(p, A) = 564@57 A) = 647%1--@5[(Dilﬁb)al(Di2¢)a2(Dz‘3¢)a3(Di4¢)a4

—2F{302 (D 6) " (Diy )™ + Fii FEit]omeda® A+ A da' (2.15)
Na la ab 1b ab : 2 : :

(Dip)* = 0,9 — AP ¢, FY is the field strength. ¢ is a unite vector in the transverse

space R°. If w4((ﬁ, A) represents the pullback of the 4-form field strength generated

~

by the ¢, M5 brane on W7;, ¢ is determined by the relative position of W, and W7;.

Especially, at the boundary of W7;, ¢ is simply determined by the relative position

of We; and We; in the transverse space, i.e.

N
Pt = L (2.16)
9 — @5
where ¢¢ is the vacuum expectation value of scalar field for the i;, M5 brane.
64($, A) is the global angular form defined over the sphere bundle with fiber S*

and base space W5.

des = 0. (2.17)
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Under the SO(5) transformation,

qga N gga _’_Aabng

AP A dA® 4 [A, A (2.18)

D¢* and F transform covariantly under (2.18), while e4(¢, A) is SO(5) invariant.
For the present problem, we have N2 — N global angular forms 64((/5, A) with different
¢ but the same A. Since e, is S O(5) invariant, they can also be equivalently repre-
sented by 64(q§, A) with the same ¢ but different A. po(F) is the second Pontryagin

class of a rank 5 real vector bundle, nevertheless, we still have

pa(F) = x(F)?, (2.19)

where x(F) is the Euler class of a rank 4 subbundle with the orthogonal line bundle

trivial. One can always choose particular QASO so that

es(do, A) = x(F) (2.20)

Actually, for such ¢y, D¢y = 0, so 64(¢20, A) reduces to the Euler class. We take this
QZSO as the standard and transform all of the angular forms into the form of 64(q§0, fl),
where A are different connections defined on the same normal bundle. Just as the

invariant polynomials, if A and A’ are two different connections,

64(&0, 121) - 64(¢20, 121/) = d€3(<£0, 121) - deS(GBmAI) = dR(éow‘L A/), (2-21)
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with e3 the corresponding Chern-Simons forms.

R 1 R R R

R(¢o, A, A) = =5 [ dt €ayas [(Decho) " (Dio)™ — F 46557,
3272 Jo

where

T]:A—A/, At:A/‘l—tT], F;g:dAt—A?, Dt:(d—At)
R(¢o, A, A’) is SO(5) invariant.

63($0> 21) - 63($0> A,) = R(ng,/i, /1/)-

For different connections, ez only differ by a SO(5) invariant term.

Return to the original global angular form 64(g5, A), we will have

64(&7 A) = X(F) + dOé(Qg, A)a

~

es(d, A) A ea(d, A) = pa(F) + dB(9, ', A),
where both v and 3 are SO(5) invariant.

~

p2<F) = d[€3(¢> A) A 64<$/7 A) - ﬁ(éa ¢2/a A)]

By descent equations,

Oles(9, A) Aea(df, A)] = 0p3(A) = dpj(A).
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Now, consider the SO(5) gauge transformation of (2.11). For each term,

Slg [, 7s(6. ) nen@. A = Lo [ eadA) e@ A)

PN B
= i, =5 [ pa. (@220

There are totally N3 — N such terms, so I'yyz could indeed reproduce the (N3 —
N)ps(F)/24 part of the anomaly.

If the SU(N) group is broken to some subgroup like U(Ny) x U(Ny) x SU(N3)
with Ny + Ny + N3 = N, the deficit of the anomaly produced by massless degrees
of freedoms is (N® — N} — N3 — N3)po(F')/24. Corresponding, I'yz will contain

N3 — N} — N3 — N3 terms exactly compensating the deficit.
2.3 The degrees of freedom in M5 branes producing the WZ term

The supergravity interaction between D-branes is pairwise. This is consistent
with the fact that the WZ term for N D-branes in a generic Coulomb branch could
be written as the sum of N(N — 1)/2 terms labeled by (ij) index [17, 18]. On the
other hand, the [ A3 A F term in the action of M5 branes gives a triple interaction.
That is, three M5 branes could interact simultaneously. The supergravity interaction
for D-branes is produced by open strings connecting two D-branes. Similarly, one
may expect that the triple interaction [ As A Fy could be produced by open M2
branes connecting three M5 branes.

Another example of N interaction is given by M theory compactified on a Calabi-
Yau threefold with M5-branes wrapping 4-cycles, giving rise to N = 1 5d supergravity
along with the chiral strings [40, 41]. In the bulk, we have Chern-Simons term
Cy N dCy A dCy, while in the worldsheet of chiral strings, [ C; A dCy may exist [16].

These N? degrees of freedom in entropy are explained as states living at the triple-
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intersection of M5 branes [42, 43].

In [20] and more recently, [21], the 1/4 BPS objects in the Coulomb phase of the
ADE-type 6d (2, 0) superconformal theories are explored. They are made of waves on
selfdual strings and junctions of selfdual strings. Especially, in [21], it is shown that
the number of 1/4 BPS objects matches exactly one third of the anomaly constant
cg = dghg for all ADE types, which strongly indicates that the anomaly may be
produced by these 1/4 BPS objects. In Ay_; case, there are N(N —1)/2 1/2 BPS
selfdual strings with tension T}; o |¢; — ¢;|. On each selfdual string, there are left
and right 1/4 BPS waves. Turning on these BPS waves, we get N(N — 1) 1/4 BPS
objects. For every three M5 branes ijk, 1/4 BPS junction exists. The tension of
the string junctions is characterized by (|¢; — ¢;l,|¢; — ¢k, |¢x — ¢i|). The junction
forms a dual lattice to the triangle A;jx, if one indentify the SO(5) in Wi with the
SO(5) in the transverse space. For such configuration, the tension of selfdual strings
is balanced and the junction is 1/4 BPS. There are totally N(N —1)(N — 2)/3 such
objects because of the junction and anti-junction. Altogether, the 1/4 BPS objects
on N M5 branes in a generic Coulomb branch is N(N? —1)/3.

Let us rewrite (2.11) in a more symmetric way.

QIQQFWZ = Z Qijkj + Z Qij, (230)
17,37k kA 7]

where

Q3
Qi = 2L
ik 6 [/W7

+ / (0366 A\ Wajk + O35 N Wair)]. (2.31)
Wy

(0355 A Waks + O3k A waji) + /WT(Usz'j A Wagj + O35 N Waij)
J

i
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Qi = Cgf[/Wﬂ(03ji/\w4ii+03n'/\W4ji+03ji/\w4ji)+/w7j (0315 Awajj+0355 Awaij+ 030 Awaij )|
(2.32)
It seems that junction and anti-junction may produce the term €;;;,, while left and
right waves on selfdual strings could give €2;;. Recall that in D-brane case, the WZ
term arising from the integration out of massive fermions 1);; is expressed in terms of
the vector ¢;— ¢, [17, 18]; here, the WZ term produced by string junctions (ijk) could
be calculated from the vectors (¢; —¢;, ¢; — dx, ¢, — ¢;). When i = k, the three string
junctions degenerate to one selfdual string with tension 7}; o< |¢; — ¢;| and the other
tensionless selfdual string perpendicularly ending on it. So, in some sense, selfdual
string with waves is a degeneration of the string junction. ;; = %(Qij + Qj45)-
Except for [y, Az A Fy, M5 brane action contains another term [y, dby A Az =

= Jw b2 AN Fy = [y, H3 A Az. Now suppose the vacuum expectation value of by on
the iy, M5 brane is by, [y, Hs A Az part of the WZ term should also enter into the
low energy effective action, although it does not contribute to the anomaly since

dHs = 0. In [19], based on the supergravity calculation, it is shown that

I'y = /W6 Hs A AS X _E/WG b2ij A Wyij = ;/WG H3ij A 03ij, (233)

where by = by — by, Hszyj = dbyj = Hs; — Hs;. This is the typical pairwise
interaction. The reduction of [y, Hz A Az on St gives Jw, P2 A Az, the WZ term of
the 5d SYM theory. In 5d SYM theory, [y, F> A A3 is generated by the integration
out of massive fermions coming from the selfdual strings wrapping S, so it is quite
possible that (2.33) is produced by 1/2 BPS selfdual strings.

The non-abelian part of the R-symmetry anomaly are all accounted for by 1/4
BPS objects. R-symmetry anomaly and Weyl anomaly are related by supersymme-

try. In [44], the conformal anomaly of 6d (2, 0) SCFT of Ayx_; type is calculated
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as

Ago(N) = (N — 1) Agens + (N* — N) A, (2.34)

where Aje,s is the conformal anomaly of the free (2,0) tensor multiplet. It is ex-
pected that the 1/4 BPS objects could produce (N3 — N)A, if they could give the
corresponding part in R-symmetry anomaly. Note that N — 1 1/2 BPS massless
particles and N(N — 1)(N — 2)/3 junctions of selfdual strings always contribute to
the anomaly and entropy. However, the N(N — 1)/2 selfdual strings have no con-
tribution to the anomaly nor entropy unless the BPS waves are turned on thus the
supersymmetry is reduced to 1/4. Once the selfdual strings become 1/4 BPS, the
anomaly polynomial of them is the same as that of the string junctions, since the
1/4 BPS selfdual strings could be taken as the degeneration of the string junctions.

Then the question is why the 1/2 BPS selfdual strings have no contribution to
the anomaly and the entropy. In N = 4 SYM theory, 1/4 BPS states arising from
string junctions ending on three D3 branes also exist [45], however, the anomaly and
entropy are both give by 1/2 BPS particles. The general form of the anomaly for a
6d (2,0) SCFT of the ADE type G is

AQ,O - TGAtens + CgAx, (235)

where c¢q = dghg = rcha(hg + 1). g, dg and hg are the rank, the dimension, and
the Coxeter number of the Lie algebra of type G. The theory contains rg 1/2 BPS
massless particles, rghg 1/2 BPS selfdual strings, and c¢¢/3 1/4 BPS objects. The
anomaly of the single M5 brane does not have the Ay part, so rg 1/2 BPS massless
particles only contribute to Aye,s. Then Ax should be generated by 1/2 BPS selfdual

strings or 1/4 BPS objects. If one wants to interpret it in terms of selfdual strings,
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each selfdual string should give the anomaly of (hg + 1)Ax, which in SU(N) case,
is (N + 1)Ax. It is difficult to explain this hg + 1 factor. Otherwise, since the total
number of the 1/2 BPS states is dg, they can account for the Ay part if each one
contributes hgAx. This looks more reasonable, but the problem is that the rg 1/2
BPS massless particles will contribute to A;.,s as well as Ax. The most natural
possibility is that Ay is produced by 1/4 BPS objects, which are intrinsically three
selfdual string junctions.

Finally, notice that for N = 4 SYM theory, the anomaly takes the form A, =
(N? —1)A,ee, where A, is the anomaly of a free vector multiplet. The anomaly is
not renormalized from weak to strong coupling, so we can calculate it from the free
field value. Besides, N? — 1 elements in the Lie algebra give the same contribution
to the anomaly, indicating that they are allowed to transform into each other. On
the other hand, for 6d (2, 0) SCFT, the anomaly polynomial is of the form Ay, =
(N — 1)Asens + (N? — N)Ax other than (N3 — 1)A;.,s, which seems indicate that
there are something special about the non-abelian part.

6d (2,0) SCFT compactified on S* gives 5d SYM theory. Selfdual strings wrap-
ping on S' become 1/2 BPS particles. The unwrapped selfdual strings and 1/4 BPS
string junctions in 6d descend to the corresponding string-like objects in 5d [20, 21].
String junctions could also appear as point-like particles in the compactified theory.
Consider the 6d SCFT compactified on a Riemann surface 3, with g > 1 [46, 47, 48],
the T part of X, is the natural place for string junctions to wrap. >, is built from
2(g — 1) Ty blocks and 3(¢g — 1) Iy blocks. Ty and Iy are spheres with 3 and 2 full
punctures respectively. The dimension of the Coulomb branch for Ty and Iy are

(N—-1)(N-2)
5 5

ATy = ddy =N —1. (2.36)
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The effective number of vector multiplets for T and I are

Note that
2(g — 1)d.Tn +3(g — 1)dIy = (g — 1)(N* = 1) (2.38)
and
AN® N

are the dimension of the Coulomb branch and the effective number of vector multi-
plets for the X, theory. Especially, when g = 1, 3; is simply constructed from one

In. The degrees of freedom arising from strings could be calculated as

nry = anN - dcTN = 401%[, Ny = nU]N - dCIN = 20]2V (240)

nr, could be naturally accounted for by string junctions®, while n;, is associated
with the selfdual strings. In the generic point of the Coulomb branch of T, the
Seiberg-Witten curve is a Riemann surface with (N — 1)(N — 2)/2 genus and 3N
simple punctures [47, 49]. In that case, nr, could also be explained as the number
of M2 branes with two boundaries. However, at the origin of the moduli space, the
only nontrivial configurations are M2 branes with three boundaries. The anomaly
polynomial Ig(/N) in 4d is obtained from Ig(/N) in 6d by the integration over X,

[50, 51]. Both of them have a N3 scaling part.

3String junctions could give 2C%;, but the extra factor 2 is a little difficult to explain.
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2.4 WZ term from the integration of massive fermions

The WZ term could be derived by a 1-loop calculation in field theory. For SU(N)
gauge theories, this has been done in [17, 18, 22]. In Coulomb branch, fermions get
mass due to the Yukawa coupling. The integration of the fermion loop gives WZ
terms in the low energy effective action. We don’t know the structure of the 6d (2,0)
field theory. A recent calculation on scattering amplitudes [52] indicates that an
interacting 6d Lagrangian with classical OSp(8|4) symmetry cannot be constructed
using only (2, 0) tensor multiplets, even if the Lagrangian is non-local. A Lagrangian
description may exist, however, if one includes additional degrees of freedom, for
example, the selfdual strings. If the Lagrangian could be constructed, then it may
contain the fermionic degrees of freedom, and the corresponding Dirac operator and
Yukawa couplings. We may expect that the WZ term could be obtained by the
similar fermion-loop integration. Of course, if the Lagrangian does not exist at
all no matter what kinds of degrees of freedom are added, such calculation is not
valid. In the following, we will discuss the possible ingredients of this theory and the
relevance with the WZ term. It is just a speculation and the final answer is still far.

First, let us consider the possible algebra structure. The SU(N) gauge theo-
ries are constructed through the 2-algebra. The Yukawa coupling is I';[X7,+]. In
Coulomb branch, it becomes I';(¢! — ¢§)wij, giving mass |¢; — ¢;| to ¥i;. |¢; — ¢;] is
the length of the string connecting the i, and the j;; D-branes. On the other hand,
the Lagrangian of the M2 branes has the 3-algebra structure [24, 25, 26]. The ABJM
theory could also be written in the 3-algebra language and has a sextic potential
[53]. The Yukawa coupling takes the form T';T';[X?, X7 ¢)]. The fermion mass scales
as the area other than the length, reflecting the fact that M2 branes are connected

by M2 branes other than strings [54, 55]. M5 branes are also connected by M2
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branes, so we may expect that the interaction could also be constructed through the
3-algebra. However, there is a difference. The M2 branes connecting parallel M2
branes are totally located in the transverse space. The endpoint is simply a point.
As a result, we get I';T;[XT, X7 9], where X! and X7 carry the transverse index.
Conversely, the M2 branes connecting parallel M5 branes have one dimension living
in the worldvolume of M5. The endpoint is a string. Correspondingly, we may have
L, X1 4], where p=0---5,1=6---10.

Actually, in [23], an attempt to find the 6d (2,0) theory with the 3-algebra struc-
ture has already been made. It was shown that for the closure of the supersymmetry;,
an additional vector C* must be introduced, while the 3-brackets appearing in the
equations of motion always take the form [C*, A, B]. Later, in [31, 56], the equations
of motion found in [23] get a natural interpretation as the supersymmetric gauge
field equations in loop space. Especially, in [31], it was shown that the BPS solu-
tions to these equations yield the non-abelian extension of the selfdual string solitons
proposed by [57], indicating that these equations may capture some aspects of the
dynamics of M5 branes. C* is associated with the vector tangential to the loop in
the worldvolume of M5 branes.

In the following, we will discuss the relevance of the equations in [23] with the
WZ term. With the equations of motion at hand, we may try to derive the WZ term
in a similar way as that in [17, 18].

The field content in [23] includes the tensor multiplet composed by X! with
I =6---10, v, and H"* with pu,v,\ = 0---5, an auxiliary gauge field A*, and
a vector field C*. XTI <, H** and C* take values in a vector space A with the
basis t*, i.e. X! = XIt% etc. As a 3-algebra, A has an associated Lie algebra g,
spanned by the transformations [t?,°, ], where * stands for an arbitrary element of

A. A* takes values in g,. A*XT = A" [te t° X', etc. A* and H** are related by
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FE e 0 ] = [Cy, H* ], with FY the field strength of A%,. So, for the given Cj,
Fr is actually a transgression of H** [31].
The dimension of A is denoted by d(A), which is not specified at present. VA, B €

A, there is an inner product (A|B) = (B|A)*. The fundamental identity is

[A,B,[X.Y,Z]] = [|A, B, X),Y, Z) + [X,|A, B,Y], Z] + |X,Y,|A, B, Z]]. (2.41)

As is well known, the only nontrivial finite-dimensional 3-Lie algebra with positive
definite metric is A4, so we have to either accept a Euclidean 3-algebra with (2.41)
violated, or a Lorentzian 3-algebra satisfying (2.41). In [23], the supersymmetry
transformation is discussed, and the fundamental identity is imposed for the closure
of the supersymmetry. In appendix B, we will show that such restriction could be
relaxed in some degree. Actually, since all 3-bracket takes the form of [C*, A, B], the
fundamental identity only needs to hold for such kind of gauge transformations. More
concretely, we need a subspace A C A,V C1, 0y € A, [C1,Co, %] =02V X1, Xy, Y €
A,

[027X27 [ClaXhY]] - [Clqua [CQ’XQ’YH
— [[027X2701]7X17Y]+[Clv[027X27X1]7Y]
= [Clv [CQaXQaXl]ay]

= [0y, [Ch, X2, X4, Y. (2.42)

The fundamental identity only needs to be satisfied for gauge transformations gen-
erated by [C, X, «|. [01,02] = d3, where d1x = [C1, X1, %], dox = [Co, Xy, %], d3x =
[C1, [Cy, Xo, X1], %] = [Cs, [C1, X2, X1], %]. One can define a Lie-algebra g generated

10bviously, V A € A, [4, A, %] = 0. In [31], A is a one-dimensional space generated by C. Here,
we want to keep more possibilities, so A may contain more than one generators.
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by [C,X,%], V C € A,V X € A, for which, the Jacobi identity is satisfied. The
theory only has the relevance with g. We even don’t need to know the definition of
[X,Y, Z] if none of them belong to A.

Similar with [31], we may try to describe selfdual strings by fields valued in g.

by = [C 0,4, (2.43)
X! =[C,, X"+, (2.44)
Fr = [Cy, H™, %), (2.45)

The original tensor multiplet, when combined with C*, becomes fields associated
with selfdual strings. ¢, X and H are converted to the vector spinor, the 1-form and
the 2-form respectively. From z;u, One can also construct a spinor 1; = F,ﬂZ“.

The equations of motion for 3-algebra valued (2, 0) tensor multiplets found in

23] are

[C*,CY, %] =0, (2.46)
v,CH =0, (2.47)
[C°,V, X1 %] =0, [C°,V,0,%] =0, [C°,V,Hux, * =0, (2.48)
FH — [Cy, H" %] = 0, (2.49)
I, Ve + [ X T, T ] =0, (2.50)
VX! - ;[Oﬂ,a/?, DLry) + [, X7 (G, X, XT]] = 0, (2.51)

1 1 -
Vi Hyon + ZEMM,T[CU, X1 VX ]+ genmror [C7,, T =0, (2.52)
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where V#* = 0F —iA* X1 4 H,,\ € A, C* € A.
Fr = gV AP — 9P AY + [A”, AX). (2.53)

For generic A" € gx, F* € g5. However, (2.49) shows that Fm € g, so we may also
require A* € g, and then V,C* = 0,C* = 0. The supersymmetry transformations

are [23]

6X" =iely,

5 =T,V X e + 112FWHW5 — ;F”FA[XI, X7, CHe,
§Hy = 3iel Vg + el s (X, 0, C7,

§A, = el [CH ¥, ],

5C, = 0. (2.54)

(2.46) and (2.49) are automatically satisfied by definition. From (2.46)-(2.52),
we can derive the equations of motion for @ZH, X ,f, and F*. For ffu = [C,, Y, |, the

covariant derivative is defined as

VY, = 0'Y, —i[A)Y,]
= [8VCM7 Y, *] + [C/u 8VY> *] - i[AZb[ta7 tb’ C,u]a Y, *] - i[CM’ AZb[ta7 tbv Y]> *]

= [Cp, VY %] (2.55)
The obtained equations are

TV, — TV [XE 4] =0, (2.56)

7 =

VEX A+ 5[0, T+ (XD (XY, XS =0, (2.57)
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ViuFo =0, (2.58)

~ 1 -~ ~ = o~ = ~
V= 51 KL VX 4 5 (0,9 = AT =0, (2:59)

together with the constraints
Vi, = VPX! =V*Gun , =0, (2.60)
where Gz, = [Cpy Hur, %], 672 Grun , = FW. From (2.56), we also have
I,V*p — T [X ) ) = 0. (2.61)
The corresponding supersymmetry transformations read as

0X) =iy,

7, vy 1 v 1 \ %
0y = D LieV X+ TG — STl e( X, XS,
0 F, = 3021, Vb + g0 T e[ X7, 07,

§A, = el . (2.62)

The constraints (2.48), or equivalently, (2.60), are quite crucial for equations (2.56)-
(2.59) to take a neat form.

We will derive (2.58) and (2.59) as an example. Since [C*, V\H ., *| = 0,

V[qu@] = [CAy V[un{)\]y *]
1

7 _
= _ZEMVK)\O'T[CA7 [007 Xla VTX]L *] - gEMVK)\O'T [CA, [Caa Q;Da FT¢]7 *] (263)
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From (2.42), we have
[C*[C7, X1, V™ X{], %] = [C7,[C*, XT, VT X{], #], (2.64)

[C*,[C7, %, T7¢], %] = [C7,[C*, 9, T7¢)], +]. (2.65)

As a result, V[HF,,H] = 0. The Bianchi identity is satisfied, so FW is indeed the field

strength of A,. Since H = xH, from (2.52),

VMHMVA+214([CV7 XI7 V/\‘XVI] - [Ckv XI) VVXI])_’_ZS([CW 1/7’ FA¢] - [C)w QZa FV¢]) = 0.

(2.66)
So
VHE,, = [C* VFH 0z, %]
= O [C X VX — [0, X7V, X 4
N 4@'8[0& (C,, 00, Ta] — [Ch, ¥, Do), 4]
= XLV (10,0 - B D) = (267)

where we have used V X7} = 0.

(2.56)-(2.59) looks quite like the equations of motion of the SYM theory. Fields
1;,“ X /5, and A, take values in a 2-Lie-algebra g, while the corresponding theory
becomes a gauge theory. The Bianchi identity and the field equation for F' could
be derived from the equation for H, if the selfdual condition is imposed. These
equations are extension of the supersymmetric gauge field equations in loop space
obtained in [31], for which, C* = Ci#(7), |2(7)| = R.

The auxiliary field C'* is now absorbed in @Eu, X i, and F'W. Note that when

C* = 0, the original (2.46)-(2.52) reduce to the equations of motion for free tensor
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multiplets, while the new-defined fields become zero. These new fields may represent
selfdual strings. The length of C'* characterizes the length of strings. Especially,
when the strings shrink to points, which are described by tensor multiplets, the
interaction disappears. A particular C* corresponds to a particular set of selfdual
strings. We want to take C* as the new degrees of freedom added, so we will not
specify it. The path integral may cover all possible configurations of C*.

Now, consider the Coulomb branch of the theory. The supersymmetry transfor-
mation (2.54) for the original fields suggests that the vacuum configuration is given
by constant X7 satisfying [C*, X1, X7] = 0, while the supersymmetry transforma-
tion (2.62) for the new fields shows that the vacuum is given by constant X ;1 with
[Xi,f(yj] = 0. From (2.42) it is easy to see if [C*, X! X7] = 0, [Xlﬁ,f(y‘]] = 0.
Choose a maximal subspace Ag, Ag C A, VA,B € Ay, VO € A, [C,A,B] = 0.
A = Ay @ Ay, there is a special set of basis {tl . -tM} for Ay, VC € A, VA € Ay,
[C, A t™] o t™. Ag and {tl > -tM} could be taken as the Cartan subalgebra and
the roots respectively. Suppose the vacuum expectation value of X7 is given by
X1, X' e Ao [Cu XE 07 = ¢L 1™ Let [Co, X'\ #] = X L, [Cyyt™, %] = 7, then
X L) = F, b, &7 is the corresponding root in g. Similarly, suppose the vacuum
expectation value of H** is H™ HM* € Ay, then [Cy, H* t™] = fA¢™. For
(O, HPA o) = Fwv, [Fow ] = fuvfm,

To calculate the WZ term, we need to plug the vacuum expectation values into
the Dirac equation for fermions. Let ¢ denote fermions taking values in the root
t™. From (2.50),

L, Vip™ 4 ¢l THT ™ = 0. (2.68)

From (2.61),
DVH™ + ¢l THT ™ = 0. (2.69)
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Besides,
[C\, H"A T, T 0™ = foT, 0™, [FP, T,04M = f2T,T0m. (2.70)

Y™ and Y™ are the 6d anti-chiral and chiral fermions respectively. Written as the
11d Majorana spinors, ['7¢™ = —¢™, ™ = 1/?’”, where I'; = T'g12345. One can
either choose ¥™ or 1;’“ to do the calculation. Here, we use 9. Just as that in

(17, 18], the WZ term could be written as

1-T
T, =Tr {ln iDL, 0" 4 oL, A% 4 il I T}, ] 5 7} , (2.71)

T 1 . 1-T;
ol @) T
00h @) " o 5T, ar +ivryer, 1T

), (2.72)

where Sp is the trace in spinor indices. WZ term comes from the imaginary part of

the effective action. Taking the difference of (2.72) with its complex conjugate,

oImI’ 1 1
_—rmm _ _Z .
(5¢,Inu(x) 25p[<x| ZT ov+T, AV + /L'FVI‘I¢£nV |[l7> I 7]
1
= —5%lel 75 / ) TAT T
= 1 / r“rr 9.73

(2.73) may be expanded as the sum of the terms proportional to 1 or Tr(I'yy, -+ - T'ag, ),
where Mj, ..., M are distinct indices. Note that Tr(Ipy, ---T'ay) = 0 unless k =
11, so we need to extract the term proportional to Tr(Iy---T'1p) x €..10. In the
numerator, il"T';¢! in /D will be kept, while in the denominator,

/D* = =0 + ¢l By + 2r Ly f — T Y10 gL, + T gl by, + -+ (2.74)
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where fhV = oAy — OV Al + (AL LAY

I N VoY 1 oV P i VI W PRt
/D* 5 (0% = & @r)"
The integral that needs to be performed is
1 d?p 1
— _1 n+1/
o L R Tl R A
T(n+1-4¢ 1
_ ntl-p) . (2.76)

(2v/m)iT(n+1) ( [QL 3ty )2nr2—d

The constraint [C*, V4™, %] = 0 reduces the dynamics from 6d to 5d. If C* is taken
as the vector tangential to the selfdual string, the constraint means that the physical
momentum of the string is along the transverse direction. As a result, d = 5.

In analogy with the 5d SYM theory, we may let n = 4, and then 2n +2 — d = 5.

SImTy  Sp{ET,L 8 = T, TV 070, + T Ty 6K 00, + - J1¢E, AT DAT Ty }
5oL (x) ™ (ol o)

murml

(2.77)

The term containing one f#” and three 9°¢7  is

6[/1 fmpl/am ¢7Jnll/1 8,02 ¢7Jn21/2 8,03 ¢7Jr?1/3 fn)\
I < =
5¢mp<x) ( '{nu 571[)5

Sp[LPTY AT DT TP T TATAT, T, Ty DTl (2.78)

The counterpart of L; in the low energy effective action is L} o< [y, Hz A As,

! J J-: Js 1L
5Ll ePrHPIP2PS €1 Jo J3L1hmpl’#apl gbrri 892 QZSTY? 603 an% gbm

x , (2.79)
7 (@) (\/ &L bumr)?
Here m denotes a particular root. If m ~ (i,7), ¢}, = ¢ — &} = ¢, hmpyp =
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Pipvy — Njpup = Nijpwp- In general, one may expect that gbﬁ could be expanded as
gbﬁ = Yk Ckuai, where ¢, and af, are vectors along the longitudinal and transverse
directions respectively. The simplest situation is ¢, = ¢, @ 0,02, = 0,Cmud;, +
Crn 0o, = Crn0pd,. Therefore, 9,07, TPTT L | = |c [P TP0,,02 0% . Simi-
larly, 0,1, 0p, @2, TPATVITP2I2 ~ —|c,, |20,y 41 0,, 2171 T2, where we have ne-

glected the term involving ¢%,0,¢7,. (2.78) is simplified to

5L1 fmpucmuapl ¢£ 8p2 ¢7{12 8103 ¢7{§ ¢£1

6oL () ol (\/OhGmr)®

Sp[LPT* TP T#2 T, T Ty DT (2.80)

To get the nonzero result, the first six Gamma matrices should multiply to 1, while
the last five Gamma matrices should cover I'g---T'j5. The trace then becomes
Sp[Lo -« To] ~ €o..10- p1, p2 and p3 must be different, so {p, v, u} = {p1, p2, ps}. One
can similarly expand f,. as fipr = PmpwoCoy- fnpvCmp = PmproCoyCmp- As is men-
tioned before, ¢, is not fixed but should also be integrated in the path integral. The
orientation of the selfdual string in 6d spacetime is arbitrary. Summing over all pos-
sible directions, 3= ¢7,Cmy = |Cml*95, 50 X fnprCmp = Panpvo 2 € = |Com|* mpup-

(2.80) then becomes

5[’1 |Cm ’ (*hm)PVHapl (ﬁgll 8P2 (b?{% 8{’3 (br{:; ¢£1 €PVIP1P2P3

dpl (x) > (\/M)5 €J1J2J3LI (2.81)

Compared with (2.79), (2.81) contains * which is resulted from I'; inside the trace.
This is not quite satisfactory, but luckily, since xh = h, (2.79) and (2.81) still coincide
up to a |c,,| factor.

Notice that to get L; which is close to L}, d = 5 is quite crucial. For an ordinary

I 1% )277,—4

6d theory without the constraint, the denominator is (/¢ ,é.r

, SO one cannot
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get L] no matter which n is taken. In other words, to get the WZ term H3 A As,
the basic degrees of freedom should be the 1d object with 5d momentum other than
the 0d object with 6d momentum. For 1/2 BPS selfdual strings, the momentum is
along the transverse direction, since the momentum along the longitudinal direction
may reduce the selfdual string to a 1/4 BPS state [58]. So the constraint in [23] may
indicate that the selfdual strings involved in equations are 1/2 BPS states, while the
WZ term Hs A Az is generated by 1/2 BPS selfdual strings.

The next problem is to get the WZ term corresponding to As A Fy ~ 03 A wy,
which is much more difficult. First, we need to find an explicit expression for os.

Consider the 5d transverse space with coordinate ¢%, a; =6--- 10,
1 .
W1 = €arazazasas W(ﬁaldqﬁ‘” A dp® A dp™ N\ dp®™ = x¢. (2.82)

o3 could be constructed in analogy with the gauge field describing the magnetic

monopole in 3d space. Select an arbitrary vector v, v - ¢ = |v||¢| cos 6,

(cos® 0 — 3cosf + 2) (v A )
3sin’ Ov]|¢|
(v-0)° = 3(v- )| + 2v’| ¢
3sin O|v|4|p|7
€arazagasas V" PT2AP™ N dd™ N do™. (2.83)

g3 =

o3 is singular on a ray OV starting from the origin and extending in —wv direction.
In 11d spacetime, OV x Wy = W;. W5 is the Dirac brane similar to the Dirac string
(32, 34]. Replace v by —v, we get another 3. Take the average of these two o3’s, the

last term in (2.83) could be dropped. Of course, in this case, the singularity exists
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in a straight line. The typical WZ term is 03;; A Wagi. dosj; = waj.

(U¢1)3—3(U¢1)‘U|2|¢Z|2 al La a a a
oy = (L0 IO BT i o5 5y s iz, (28)

(V- ;i) = 3(v - o) v il
3sin® O[v[*|dji| 7| o

€a1aza3a4asEb1babsbybs
b b b b b
VO by AP N d@SE N AT A ddy; N ddyg A dop A doy.

(2.85)

The field theory calculation gives 6y z/d¢!, which is the counterpart of the
Lorentz force on supergravity side. Consider a M5 brane in a background field Fj,

the action contains the term S = — [y Ag, dAg = «Fy + Az A F4/2.

s
5!
1

= = @€P1P2P3P4P5p6 aﬂl Y™ 8p2 Yy aps Yy ap4 Yy ap5 Yy apﬁ yre (dA6)Imn2n3n4n5n6

1
_ a€p1 P2P3P4P5 06 am Y™ 8p2 Y™ 8,03 Ve 6p4 Y™ ap5 Yy aﬂe yre
N 1 ~
(*F4 + 5143 VAN F4)In1n2n3n4’n5n6

= Jer + ger- (2.86)

Y™ are embedding coordinates. n; = 0---10, YI = ¢!. fs; and g¢; are forces
related with the magnetic-magnetic interaction and the electric-magnetic interaction

respectively. ggr is the Lorentz force derived from the WZ term. If db, is also taken
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into account,

1 n n n n n n 1 n
Jor = a6019299,/)4;)596aply 10,,Y™0,.Y 38P4Y 46p5Y 50,,Y 6(§h3 A Fy) Inynansnansne-

(2.87)
For the WZ term in (2.31),°
0035 Oy

0 fwy, O3ji NWaki
ol Iwnlban ey M o A Sy

= (03)i N Fair) (%) — (wagi N Fspir + wags A Fsjir)(z). (2.88)

OWri = Wi, v € W,

J J: J:
€101 1213 PRt N iz N dg?
| i

Fapir = « (2-89)

up to a total derivative. « is a constant. Except for the 6-form, (2.88) also contains

the 7-form because o3 A w, alone is not closed.

0 fiw, (0355 N Waki + O3ki A Waji)

067 (x)

= (035 A\ Fir + 036 A Fsir) ()

—2(waji A Fspir + wari A Fsjir)(x), (2.90)

0w, Qiji

0 (x)

X (03ji A Fakir + 035 A\ Fajir — 0365 A Faijr — 03556 A Fair) ()

—2(waji A Fapir + wags A Fsjir — Warg A Fiigr — wage A Faipr) (). (2.91)

We need to get the 6-form of (2.91) from the field theory calculation. Unfortu-

SHere, for simplicity, the last line in (2.88) is denoted as the differential form, but it should be
more accurately written in the form like that in (2.86) and (2.87).
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nately, there are several problems. The only input on field theory side is the vacuum
expectation value (¢q,---,dn) on Ws. As a result, we have to construct the 6-form
from (¢ij, Pjk, Gri). 03; may differ from (2.84) by an exact 3-form. However, (2.84)
contains a constant vector v, which has no relevance with the vacuum expectation
value. Nevertheless, to preserve the supersymmetry, the vacuum expectation value
should be constant, so we may take (¢1,---,¢y) as constant and replace the v in
(2.85) by ¢ = ¢ — bi. i should be distinguished from ¢;. The former is only
defined at the boundary Wy, while the latter is defined in the entire W;. For forms
living on W, gz_SjZ- = ¢j;, S0 one may write o3j; A Fspr as

(Pri - 05i)° — 3(Pwi - Dji) | Dwil *| 5l

3 sin* 9|¢ki|9’¢ji’9
gtz AdgSE A dgSi A ddp: A del A deys. (2.92)

(2

O3ji A F3ki1 = @ €Tb1bobsbs €Laiazasas |¢]Z|2¢£Z¢?zl

Gri - Oji = |Pril|Pji] cos . Of course, in this case, the pullback of o3;; A Firir on Wy
actually vanishes.
Now, return to the field theory calculation. To get a 6-form like (2.92), we may

let n=71.

oIml’,,

56t )
Sp{ (A0, D f2 — L0500, + DTk 6,00, + - 0L T I Ty}

x Iz
( #m mI) 16-=d
(2.93)
The term containing six 0” gbgw is
5L2 x — apl ¢7{11V1 a,02 ¢7{12V2 a,03 Qb,{%,s a,04 qb’r{;lw; aﬂs ¢7{15V5 6/76 ¢7{fl/6 7[§p 7{11/ fn)\
I _
0m () (/O
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Sp[[PT AT P2 2P Vs Pa VAT P VS TPe Vo TPV ATH
ISP AV VR AVR S RS s i Y

(2.94)

Except for d¢ on the left-hand side, there are nine ¢ in the numerator, so to get
a scale-invariant result, we must have d = 6. The result is in contrast with the
previous discussion on Hz A As, for which, the scale invariant result needs d = 5. So
it seems that for N3 degrees of freedom, the 6d dynamics is still necessary. Note that
the near-extremal entropy of the M5 branes scales as the entropy of the 6d massless
ideal gas [59].

To related (2.94) with (2.92), we need to make a further assumption on ¢},
Consider the 6d (2, 0) theory of the Ay_1 type. m ~ (i, ) is not enough to produce

(2.92), so one may let m ~ (i, 7,k). It is natural to expand ¢/, , as

I I I I I I I I I I
Prp = Cip@iiF CipuPhi+ ConPij = CijuPie — CikpPij = ChinPij — CijuPhi = CikuPhi — ChinPjp»
(2.95)

where ¢, = ci — cju
6¢£nu = ij,u5¢i1 + C’ik,u5¢][' + Cjiyd(ﬁi- (296)
In analogy with the previous calculation,

N

muva
~ DOTP [~ |exi*0p, ¢3! Opa 057 + (Chi + €5i)0py B3k Opa 03

(Cﬂ Clﬂ) J1a2 ki |C]Z| ap1¢k P2 kz

vV B ) J1 Ja
I (CJW1 Ckivy — Cjivy Chinn )8/31 qbkz p2¥j

l\DM—
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1
=T (i Criva = CjivaCrivs)Ops 2 Op i) (2.97)

To get an expression which has the similar structure as (2.92), we have to assume
|cjil* = |¢il*, cri-cji = dri- @ji. This could be realized if one defines an inner product
preserving linear mapping ¢ from the 5d transverse space to the 6d longitudinal
spacetime. For example, g(z,) = 2,5, n = 6---10. ¢; = g(¢;). Each g gives an
identification of the internal SO(5) group and the spatial SO(5) rotational group.
Recall that in [20, 21], the locking of the internal SO(5) R-symmetry and the spatial
SO(5) rotational symmetry is quite crucial for the construction of 1/4 BPS string
junctions, while the junction composed by three half selfdual strings should form a
lattice dual to the triangle (¢;;, ¢k, ¢ri). Obviously, (¢;j, ¢jk, cki) is just a lattice dual
to (Pij, Gjk, Pri), SO it seems that the orientation of the three half selfdual strings
could be characterized by (c;j, ¢jk, Cki)-

I M
murml

[N

[ewil* @3 + lei P owil” — 2(cri - cij) (Pni - dis)]

= 23(|¢a 2] — (ki - )]

N

= 22| g |bsj | sin O = 2255, (2.98)

where s, is the area of the triangle Ayj. Replace 6Ly/d¢),,(x) by 0Ly /6] (x), due
to (2.96), there will be an extra ¢, entering into the numerator of (2.94).

1
FAFM%M¢#A =35

2FAH(Cjikckiu_cjmcki)\)qbij_|Ckz'|2¢§Ji+(cji'Cki)qséi"_(cki'cji%bﬁ‘_|Cji|2¢£i

(2.99)
1

LT kb by = ST T (CgipChiv = CiivChip) (D5 DL — DTsbr) (2.100)

SO

A K ,J L . L(.J K K . J
rer FHFKJijN¢mp i Pmx = 2Lk g sin” 9|Cji|2lcki|2¢kj( ji‘bki — Py Gpi) + -+
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= 2Ty sin® 0] |onil*Orc; (0 dks — S5 dia) + - (2.101)

Plug (2.97), (2.99) and (2.100) into (2.94), the rest Gamma matrices carrying
longitudinal indices are ['"*I'P2['P3'P4'P5['P6 | which should multiply to 1, so there will
be at most three matrices with different indices. Aside from the trace, each term also
contains a factor 0,, $0,,$0,, $0,, 90, 0, ¢, Where ¢ can be ¢j; or ¢r;. Notice that 0
acting on the same ¢ must carry different indices, otherwise, the anti-symmetrization
of the transverse indices of ¢ may give zero. As a result, there must be three ¢;;
and three ¢;. Altogether, there are 16 terms with the coefficient (¢;; - br;)® and
28 terms with the coefficient (¢;; - dri)|Pji|*|dri|>. The result is still far from (2.92).
Just as the previous discussion for Hs A As, due to the I'7, an extra * exists. Of
course, the selfdual condition should also be imposed on hy = dby — Az, which may
solve the problem. However, at present stage, o3 # *o3. Moreover, there are ten
Gamma matrices inside the trace carrying the transverse indices, so the final result
is zero. This is not quite unacceptable. Under the present assumption, the Lorentz
force will vanish. If we neglect this problem and simply assume the trace in (2.94)

gives ePLP2P3PAPSOS (€ pre g g0 1 €10 TuTsds — €T JadsJeEILI1 23 )s

0Ly B(dji - dui)? +7(¢>ﬂ ori)l s P onal”
59252](1:) x sin 0‘¢k1‘8’¢ﬂ’8 ¢k1 (¢k1 - ¢jl>

€P1P2P3P1P5P6 (

€IKJ1J2J3s€IL Iy Jsds — 6JKJ'4J5J'6‘EILJ]Jng)

aﬂl jilam 31128 3¢J36 4¢ 65975 6 kz (2'102)

[ and vy are two integers that cannot be determined because of the ambiguities of
the trace. In the above calculation, ¢}, , = criu®f; — cijudi; is used. One can also
plug ¢l = Ciju®h — Ciru®l; oF B, = Cikp®hi — Crind}y, into (2.94) and the results

should be equal. However, from (2.94) to (2.102), several terms are neglected, so we
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still need to add the terms from the other two expressions and then take the average.

The final result is

JLy
o; (x)

oC  €P1PRPIPAPSLS (€ 1y s g T €1 LTy s ds — EJK Jads e €ILTyJas)

[ﬁ(¢ji'¢k1) + v(ji - ¢k’l)‘¢jl‘ ’¢sz2
3 sin® O[3l

P1¢Jla Jz28 ¢J3a 4¢kz 05¢ aﬂﬁqb

B(dij - bus)® + v (bij - Onj)|bij | dni |2
3sin® p|gr;|*| i |

0, (l% p2¢i§' p3¢i o D120 D75 0 07

ﬁ((bjk'¢z‘k)3+’7(¢jk‘¢ik)|¢jk|2|¢zk|2¢ 16K ot
3sin® o| g[8 ¢jn |8 kI

am¢;']lclap2¢glgaps¢£ap4¢jéap5 jlzapﬁ 3‘]2]7 (2'103)

ngkz(gbkz gbgz)

_|_

J K L
Diei Pij Prsj

+

where (¢ 0rj) = [@ij]|rj| cos p, (G- Pir) = |Djk||dix| cos o, sin O] |bri| = sin pley;]
|61 = sino|gu||Pjk| = 2si;,. Obviously, (2.103) is not the expected 6-form in (2.91),
the most serious problem is the appearance of sin® other than sin? in the denominator.

Recall that to derive H3 A Az, m ~ (i, ), while to get A3 A Fy, m ~ (i, 7, k). It is
better if the two could be obtained in a unified way. If one replaces the o3;; in (2.31)

and (2.32) by hg;; = hai — ha;,

Q3
Q. = —Fl /W6 baji N Waki + bari A\ Waji + baij A Waj
Fborj A Waij + bagg A Waj + baji A Waig

QS
= _Fl /W boki A\ Wagi + bagj A Wagj + baji N Wajk
6

3
= —% /W h3ki A Waki + hgij A Waij + hgjk A Wik - (2104)
7

SR O AU (2.105)
ig 3 Jw, 3ig /\ Wiij- .
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If hgi = Hgi/N,
i
’ '
Z Qijk‘ + Z Qz’j = 6 Z /W Hs;ij N waij, (2.106)

where Hs;; = Hs; — H3; is the 3-form appearing in the low energy effective action.

Correspondingly,

5 Jy QL
W X (hgik A Faipr + haij A Fsi1)(x) (2.107)

If we expand f#” in a similar way as that in (2.95),

uwooo_ N2 N2 HYN g pvh 2N

_ BV 12N LU [
= Cjk)\hki _Clcikhjk —Clcikhij _Cijkhki . (2108)

Plug fl = CkikhngA — cipnhl® and Doy = Chip®ij — CijuPh; Into (2.78), one may get
the undesired terms involving both gbi[j and ¢f.. Even if we neglect these terms, the

extra sin® § in the denominator is still a serious problem.
2.5 The representation of the 3-algebra
Until now, a definite representation of the 3-algebra A is still not given. Consider
A associated with the 6d (2,0) theory of the type Ay_;. The dimension of A is
denoted by d(N). Based on the counting of the degrees of freedom, one may expect
d(N) — N = (N® — N)/3. A natural candidate is the cubic matrices introduced in
[60], which is the extension of the Hermitian matrix. The elements are T, satisfying

Tijie = Tiki = Thij = Tjip = Tiji = Tigy (2.109)
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i,j,k =1---N. The 3-product is defined as (ABC);jx = A;jiBuiCjr. The 3-bracket

is given by
[A,B,C]| = ABC + BCA+ CAB — BAC — CBA — ACB. (2.110)

The gauge transformation is realized as 6X = ia®[t,,t,, X]. There is a natural
metric in A:

(A|B) = Aijsz‘*jk = AijrBjik, (2.111)

which is invariant under the gauge transformation, i.e. (0A|B) + (A|0B) = 0. The

Cartan subalgebra is Ag,
AO = {X|XZJ]€ = 5ijcjk + 5jkcki + 5}%‘@]’} . (2112)

A is given by A = {C|C € Ao, Cyj; = ¢;}. The fundamental identity does not hold in
general. It is hoped that it will be satisfied for gauge transformations in the form of
[C,X,%],VC €A,V X €A, but unfortunately, this is not the case.

Another natural 3-algebra is the Nambu-Poisson algebra [61], the elements of

which generate the volume-preserving diffeomorphism transformations of the 3d man-

ifold M. The Nambu bracket is defined as

For M = T3, the basis of functions could be selected as {Xﬁ = 62’””“””“}, where ¢
are the Cartesian coordinates on T with the equivalence relations 2% ~ x% + k¢,
k* e Z.

[Xl_; Xﬁl’ Xﬁ] — (27T7:)3€abclambncxf+m+ﬁ. (2114)
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Obviously, if [ = am, [Xf, XM, %] = 0. X" generate a subspace A, A = {f(mqx%)}.

f is only the function of m,x®.

[f(maz®), g, h] = f'[m1(02903h—03902h)+ma(D3g01h—01 gDsh)+mg(D1gOah—0Dag0i h)].

(2.115)
In special case like m = (1,0, 0), the Nambu bracket reduces to the Poisson bracket,
which has the finite dimensional matrix realization with the gauge group effectively
taken as U(N) X U(N) x---xU(N), the direct product of N U(N) groups. However,
the problem is that the three indices (i, 7, k) are not in equal footing, which is not
reasonable. One can also let m = (1,1,1), but in that case, it is difficult to get a
finite realization.

It seems that even if the fundamental identity is relaxed to a weaker version, it
is still hard to find a satisfactory finite dimensional Euclidian 3-algebra. Another
problem deserving discussion is the Cartan subalgebra which is directly related with
the Coulomb branch. For cubic matrices, V A, B,C € Ay, [A, B,C] = 0. For Nambu
algebra, V ﬁ

Ap={xIx = X a1k, = 0}, (2.116)

Y f,g9,h € Ay, [f, g, h] = 0. Obviously, both dimAy and dimA; have the N? scaling.
It is likely that for 3-algebra A with dimA ~ N3, the Cartan subalgebra will have
the N? scaling dimension. On the other hand, the vacuum configurations of the N
M5 branes are only characterized by N vectors in transverse space, so the dimension
of the Coulomb branch can only be N — 1. Nevertheless, to get the Coulomb branch,
we also need to mod out the gauge equivalent configurations. For Nambu algebra,

Vx € Ap 1-Vx =0, so x is the collection of the functions invariant under the

translation along the [’ direction. Select an arbitrary vector m, [-m=0.V X € Ap,

44



one can always make a suitable volume-preserving diffeomorphism transformation,
under which, x — x(m,z®). The gauge inequivalent configurations are then param-
eterized by 1d functions x(m,z®) with the N scaling dimension. Actually, under the
appropriate gauge transformation, any function f(z1,xs,x3) in A could be converted
into the form of f(x1), because f is a scalar function. The gauge inequivalent class is
characterized by { f(z1)}. This is quite like the Hermitian matrices. One can always
diagonalize a Hermitian matrix by a unitary transformation, so the gauge inequiv-
alent class is parameterized by eigenvalues, which, in continuous limit, becomes the
1d function. We have seen that the dimension of the Coulomb branch has the N
scaling, but there is still a problem. In Coulomb branch, fermions taking values in
elements of the Cartan subalgebra will remain massless, so the massive fermions will

have the N® — N? other than N® — N scaling. In (2.95), if i = j, ¢}, = 0, but

Do , is something related with the area, while it is
zg jk’ k:z zk kz mu
( Z»Ij, ik ¢L.) that is directly related with the string tension. For elements in Cartan

algebra, the triangle is degenerate, but the distances do not vanish unless i = j = k.

It is better if the fermion mass is directly related with (¢, ¢5,, ¢t;) other than (bﬁm
Finally, notice that for cubic matrices, if C* € A, Cli; =, XT ey, X m = ¢!,

then [C*, X1, Y] = (95edl + drach + OLck)Yijn, VY € A. This is just the equation
proposed in (2.95). Besides, in the previous discussion, C* is given by N vectors

{c} -y}, which is consistent with the cubic matrices and the Nambu algebra, for

both of which, dimA ~ N.
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3. MOMENTUM MODES OF M5-BRANES IN A 2D SPACE*

We study M5 branes by considering the selfdual strings with the orientation
covering a plane. With the internal oscillation frozen, each selfdual string gives a
5d SYM field. All selfdual strings together give a 6d field with 5 scalars, 3 gauge
degrees of freedom and 8 fermionic degrees of freedom in adjoint representation of
U(N). Selfdual strings with the same orientation have the SYM-type interaction.
For selfdual strings with the different orientations, which could also be taken as the
unparallel momentum modes of the 6d field on that plane or the (p, q) (r, s) strings on
D3 with (p,q) # (r,s), the [i, j] + [J, k] — [¢, k] relation is not valid, so the coupling
cannot be written in terms of the standard N x N matrix multiplication. 3-string
junction, which is the bound state of the unparallel [z, j] [7, k] selfdual strings, may
play a role here.

The effective theory on M5 branes is special in that the basic excitations, the
selfdual strings, are 1d objects other than the 0d objects, like those on D branes
or M2 branes [1, 3]. If the selfdual strings can be closed and can shrink to point
like the fundamental strings, then we will still have a theory with the semi-point-
like excitations. For selfdual strings without the charge, this is indeed the case. In
abelian theory, the quantization of the point-like M2 confined to M5 brane gives
the (2,0) tensor multiplet [12, 10, 11]. Moreover, the basic excitations on (2, 0) little
string theory [62] living on N coincident type ITA NS5 branes are closed fundamental
strings, which are also the closed selfdual strings coming from M2 wrapping the M

theory circle intersecting NS5 along a closed curve. There is no evidence showing

*Part of this section is reprinted with permission from “Momentum modes of M5-
branes in a 2d space” by S. Hu and D. V. Nanopoulos, JHEP 1206, 139 (2012),
http://link.springer.com/article/10.1007/JHEP06(2012)139. Copyright 2012 by SISSA - Trieste
(Ttaly).
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that for selfdual strings carrying charge, the situation is the same. On D4 branes,
the [i, 7] monopole string can carry the DO charge. The closed [i, j] monopole string
with the vanishing length carrying D0 will appear as the point-like instanton with
charge [i, j]. However, the classical instanton solution with charge [i, j] is associated
with the [7, j] monopole string extending along a straight line, while the point-like!
1/2 BPS instanton solutions are always chargeless. The closed monopole string with
no DO charge is the selfdual string with the winding number and the momentum
both zero along x5, which will give a 5d massless SYM field in adjoint representation
of U(N), in addition to the original 5d SYM field coming from the selfdual strings
winding x5 once. The SYM field like this is always massless even if the D4 branes
are separated from each other, so it will dominate at the Coulomb branch. However,
on D4, no such field exists. We do not get the clue for the existence of the closed
charged selfdual strings. Actually, when the charged selfdual string becomes curved,
different parts of it may exert force to each other, so it cannot vibrate freely and
cannot be closed as the chargeless strings do.

Then we have to incorporate the 1d object in a 6d field theory. In this note, we will
take the [i, j] tensionless selfdual string extending along, for example, the x5 direction,
as the point-like 6d excitation, which is in the position eigenstate in 1234 space but
in the P; = 0 momentum eigenstate in x5. If so, selfdual strings extending along the
same direction cannot give the complete Hilbert space for the 6d particle. To get the
full Hilbert space, we need to consider selfdual strings with the orientations covering
all directions in a plane. The superposition of the selfdual strings with orientations
covering a plane can give the 6d point-like excitations localized in 12345 space, but
it seems that somehow, the position representation is not the suitable one, since it

is the [i, j] selfdual strings other than the [i, j] point-like excitations that naturally

!By point-like, we mean the instanton solution is localized in R*, centered around a point.
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exist. One plane is already enough to define a 6d field theory, so different planes
may give the dual versions for the same 6d theory. This is quite similar with the
N = 4 SYM theory, for which one (p, q) string defines a 4d theory, while the rest
(p, q) strings give the dual 4d theories.

Theories with the line-like excitations are intrinsically different from those with
the point-like excitations. If the excitations are line-like, a reduction on x5 will give
the selfdual strings extending along x5, while a further reduction on z, will make
P, = 0. The first reduction selects a particular selfdual string; the second one is
just the normal reduction in local field theories. With 4 and 5 switched, we will get
the selfdual strings extending along x4, with P; = 0, which is S-dual to the selfdual
strings extending along x5 with Py = 0. On the other hand, if the excitations are
point-like, both sequences will give the point-like selfdual strings with Py = P5 = 0.
In [63, 64], Witten has shown that due to the conformal symmetry, the 45 and 54
reductions for the 6d (2,0) theory will give two S-dual 4d SYM theories other than
one 4d theory, which strongly indicates that the basic excitations on M5 cannot be
point-like.

Recall that in [23], the equations of motion for the 3-algebra valued (2,0) tensor
multiplet contain a constant vector field C,. A given C), will reduce the dynamics
from 6d to 5d. However, if C, covers all directions in a plane, we will get a set of
f-parameterized 5d SYM theories?, which is equivalent to a 6d theory with 5 scalars,
3 gauge degrees of freedom and 8 fermionic degrees of freedom. Each 5d SYM
theory has the 5d vector multiplet in adjoint representation of U(N), arising from
the quantization of the open [i,j] M2 intersecting M5 along the C,(6) direction.

The oscillation along C,(6) is frozen, so the spectrum is the same as that from

ZHere and in the following, by 5d SYM theory, we only mean the 6d C,,(6)-translation invariant
fields have the SYM-type coupling. It’s not the genuine 5d SYM theory. A single 5d SYM theory
already contains the complete KK modes as the nonpertubative states [65, 58].
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the quantization of the open string. For the given 6d (2,0) tensor multiplet field
configuration, each 5d SYM field comes from the reduction of the 6d field along C,,(9).
This is actually a special kind of KK compactification, using the polar coordinate
other than the rectangular coordinate.

Suppose the selfdual string orientations are restricted in 45 plane, then the com-
mon eigenstates of [Xl,XQ,XS, ]54, ]55] can be selected as the bases to generate the
Hilbert space. In this respect, it is convenient to consider the KK mode of the 6d
(2,0) theory with x; and x5 compactified to circles with the radii Ry and Rs. M5
branes with the longitudinal z; and x5 compactified is dual to the D3 branes with

® compactified. The vacuum expectation values of the 2-form field

the transverse x'*
on 4 X x5 is converted to the transverse positions of the D3 branes on 2/*®. The
duality differs from the T-duality in that two longitudinal dimensions are converted
to one transverse dimension so that the total dimensions are reduced from 11 to
10. The (n/R4, m/R5) momentum mode of the 6d theory is dual to the (p,q) string
winding 2% k times, with n = kp, m = —kq, p and ¢ are co-prime. The [i, j] (p, q)
strings form the adjoint representation of U(N). Correspondingly, the momentum
modes as well as the original 6d field are also in the U(NN) adjoint representation.
The (n/R4, m/R5) momentum modes are in 4d vector multiplet Vj, which, when
combine together, give the 6d tensor multiplet 75 in U(N) adjoint representation. Al-
though the 6d tensor multiplet is in the adjoint representation, the coupling involving
more than two fields cannot be realized as the standard matrix multiplication, as the
SYM-type couplings do. SYM coupling is obtained by studying the scattering am-
plitude of the open strings ending on D branes. [4, j|+ [J, k| — [¢, k], so the L;MZNZ“
type coupling is possible. On the other hand, for M5, we need to consider the scat-

tering of the selfdual strings parallel to a given plane. Selfdual strings with the same

orientation still have the SYM-coupling, while for selfdual strings with different ori-
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entations, the [i,j] + [j, k] — [i, k] relation is not valid, so the [, j] (n/R4,m/R5)
mode, the [j, k] (k/Ry,1/Rs5) mode, and the [k,i] (—(n+k)/R4, —(m +1)/Rs5) mode
of the 6d field cannot couple unless nl = mk, in which case all of them belong to the

same 5d SYM theory with tanf = —2£%5 The difference between the SYM theory

mR4”

and the effective theory on M5’s is rooted in the fact that the boundary of the open
string is the point, while the boundary of the open M2 is the straight line.

The (n/R4,m/Rs) momentum mode of the 6d SYM theory on D5 is dual to
the open F'1 ending on D3 with the winding number (n,m) around ) x zf. From
the scattering amplitude of the massive winding open strings and the massless open
strings on D3, one can reconstruct the original 6d SYM theory. Similarly, for M5, we
need to consider the interaction of the open (p, ¢) strings ending on D3 winding 2 k
times for all co-prime (p, ¢) and all nonnegative k, or in other words, the interaction
for all of the monopoles and dyons in A" =4 SYM theory. When the scalar fields on
M5 branes get the vacuum expectation value, D3 branes will be separated in the rest
5d transverse space, and then the 3-string junctions [45, 66], which are also the bound
states of the [i, 7] [J, k] selfdual strings each carrying the transverse momentum in 45
plane, can be formed. The 3-string junction is characterized by three vectors (r4,75),
(84, 85) and (4, t5) in 45 plane, which may couple with the (n/ R4, m/R5) momentum
modes as long as (n,m) o (ry,—r5), or (n,m) o< (s4,—s5) or (n,m) o< (t4, —ts).
The quantization of the 3-string junction with the lowest spin content gives the 1/4
BPS multiplet V; @ ([1/2] & [0] @ [0]) with 2° states [67], which, when lifted to 6d,
becomes the (2,1) multiplet with 27 states, among which, half are tri-fundamental
and half are tri-anti-fundamental representation of U(N). [i,1] + [I, j, k] — [i, 7, k],
[7,m] + [i,m, k] — [i, ], k], [k,n] + [i,7,n] — [i, ], k], so we may have couplings like
ViT,, 9% or ViT,, Tk, 3

3In [68], the scattering amplitude involving two charged 5d KK modes and one 5d zero mode
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However, with the given scalar vacuum expectation value v; on M5, the bound
states of the [i, j] ¥i; (n/R4, m/R5) momentum mode and the [j, k] U, (k/Ra,1/R5)
momentum mode exist only under the certain condition h(4;;, Uk, n/Rs, m/Rs, k/ Ry,
l/Rs) > 0 with h = 0 specifying the marginal stability curve [69]. Especially, when
U;; = 0, Vi,j, except for n = m = 0 or K = [ = 0, which is at the curve of the
marginal stability, the rest bound states do not exist. The bound state of the [i, j]
(0,0) momentum mode and the [j, k] (n/ R4, m/Rs) momentum mode could be taken
as the tensionless selfdual string carrying the longitudinal momentum. It is unclear
whether it is the bound state or just two separate states.

When compactified on x5, the [i, j] selfdual string extending along x5 becomes the
[i, 7] F'1 localized in 1234 space. For the rest selfdual strings, to get the definite P
momentum, they must carry the definite transverse momentum thus are projected
to the bound states of the [i,j] F'1 and the [i,j] monopole string, each carrying
the suitable Py and Ps transverse momentum, localized in 123 space. The 1/2 BPS
solutions for the BPS equations in 5d SYM theory match well with the above states,
except for instantons, which is also localized in 1234 space. Similarly, the 3-string
junctions in 6d, when projected to 5d, become the bound states of the [i, j] F'1 and
the [, k] monopole string with P, and Ps transverse momentum, localized in 123
space. Except for the dyonic instantons, the generic 1/4 BPS solutions in 5d SYM
theory involving no more than three D4’s have a one-to-one correspondence with
these states.

The rest of this chapter is organised as follows: In section 2, we discuss the

longitudinal momentum mode on branes with special emphasis on the point-like

for M5 branes compactified on S! is considered. The charged KK mode is the 1/4 BPS dyonic
instanton in 5d massive (2,1) multiplet, while the zero mode is in 5d massless vector multiplet.
The incorporation of the spin-3/2 particles of the (2,1) multiplet into the theory requires a novel
fermionic symmetry.
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charged 1/2 BPS instantons on D4 branes. In section 3, we consider the selfdual
strings on M5 branes with the orientation covering the 45 plane, or equivalently,
the KK momentum mode of the 6d theory upon the compactification on x4 X x5. In
section 4, we study the interaction of the 6d (2, 0) theory by considering its KK mode
on r4 X x5. In section 5, we consider various momentum-carrying BPS states in 5d
SYM theory, especially, the monopole string carrying the longitudinal momentum
and the string carrying DO charge. In section 6, we discuss the states living at the

triple intersection of M5 branes. The discussion is in section 7.
3.1 The longitudinal momentum mode on branes

For a Dp brane with the transverse dimension z,.; compactified to a circle S,
the brane may locate at a particular point in S! or have the definite momentum
along S*. In the former situation, after the T-duality transformation along z,,1, D,
becomes D, with the gauge field A,,; getting the vacuum expectation value. In
the latter case, the T-duality transformation converts D), into D, with the definite
electric flux Fy(pq1). Dpt1 cannot have the definite A, and Fy(,41) simultaneously,
just as D, cannot have the definite z,.; and P,y at the same time. In M theory,
if x5 is compactified to S', M2 transverse to x5 may either locate at a particular
point in S* or have the definite P; momentum. M2 with zero Ps; momentum is D2 in
type ITA string theory. M2 with nonzero Ps momentum is the D2-D0 bound state.
The transverse velocity should be the same everywhere on D2 so the D0 charges
are uniformly distributed over D2. If the masses of the D2 and D0 are ms and my
respectively, the energy of the D2-D0 bound state is y/m3 + m3, in contrast to the
energy of the D4-D0 bound state, which is my + my.

For Dp brane with the longitudinal dimension z, compactified to a circle S*, D,

may carry momentum along x,. Under the T-duality transformation in p direction,
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we get the D,_;-F'1 bound state with F'1 ending on D,_; winding the transverse
circle 2. If the iy, and the jy, D,_; branes are separated along another transverse

'+ the closed F'1 becomes open, which, under the T-duality transfor-

dimension x
mation along x’?, gives the open [i, j] string ending on Dp branes carrying the P,
momentum. So, more precisely, the P, longitudinal momentum of the D, brane is

the P, transverse momentum of the open strings living on them. Consider the 74, and

the jy, D, branes with the [i, j| string orthogonally connecting them carrying mo-

mentum F,, the total energy is m, + \/T,%Jﬁi — ;|2 + P2, where m,, and T |0; — ¥
are masses of D, and [i, j] string respectively. When 7; = ¥}, the energy reduces to
my, + | P,|, corresponding to the D, branes carrying the [i, j] P, longitudinal momen-
tum. The low energy effective action on N coincident Dp branes is the U(N) SYM
theory. When compactified on x,, one may get an infinite tower of KK modes still
in the adjoint representation of U(NN). We have seen that the P, momentum carries
charge, thus is indeed in the adjoint representation.

For M2 branes, two M2 branes orthogonally intersecting at a point may form the
threshold bound state, so the transverse momentum of one M2 gives the longitudinal
momentum of the other, as long as the two can keep intersecting at one point.
Similarly, it is natural to expect that for M5 branes, the P, longitudinal momentum
may actually be the P, transverse momentum of the selfdual strings living in them.
Especially, for 5d SYM theory, the P; momentum may just come from the monopole
strings living in D4. However, P; like this is distributed in a straight line other than
localized at a point. Localized instantons do exist, which are D0 branes resolved
in D4. The line-like P; momentum carried by selfdual strings has the [¢, j] charge,
while the point-like P; momentum corresponding to D0 branes is chargeless. It is
interesting to see the relation between these two kinds of momentum modes on M5,

and especially, whether it is possible to obtain the point-like 1/2 BPS momentum
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mode carrying charge.

One may want to consider the closed selfdual strings, which, with the length
shrinking to zero, may carry the point-like momentum. However, the selfdual strings
carrying charge must extend along a straight line. We cannot get the closed charged
selfdual strings unless the worldvolume of the M5 branes has the nontrivial 1-cycle.
Consider the [i, j] selfdual string segment extending along ABC, where A B C' are
three points in the worldvolume of M5. Suppose ABL BC, then the AB, BC' strings
are actually the same as the [i, j] F'1 and the [i, j| D1. The configuration like this is

not BPS, so F'1 and D1 may exert force to each other. The [i, j] F'1-D1 bound state

is not at the threshold and has the mass |17ij]\/|AB|2 + |BC|? due to the binding
energy. So we are actually talking about the [z, j] selfdual string segment extending
along AC. The [i, j] selfdual string cannot vibrate freely, because different parts may
exert force to each other.

On the other hand, the chargeless selfdual strings do not have this problem.
They can be closed and may carry the point-like momentum. One such example is
the [¢,7] selfdual string. On the i, M5 brane, we have the zero length [i,] closed
selfdual string, or in other words, the collapsed M2 brane, the quantization of which
gives the expected U(1) (2,0) tensor multiplet [12, 10, 11]. When compactified
on x5, the point-like D2 with P; momentum becomes the DO confined to the iy,
D4. Another example is the little string theory [10, 11, 14, 8, 9]. Consider N
coincident type ITA NS5 branes with the longitudinal dimension x5 compactified
to a circle with the radius Rs. The 114, dimension is ziy which is compactified
with the radius Ri9. There are closed fundamental strings with tension 27w Rq¢T o
living in NS5, which are closed M2’s wrapping x19 intersecting M5 along a closed
curve. After a series of duality transformations, the momentum mode (carried by

the type IIA string) along x5 is converted to the DO branes living in D4 branes
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with the compactified transverse dimension zf. If the original type IIA closed string
has the finite length, we will get a closed D2 wrapping x% intersecting D4 along a
closed curve and carrying the uniformly distributed DO charge. The D0 branes are
obtained when the size of the D2 brane carrying them shrinks to zero. Actually, the
type IIA NS5 brane picture and the D4 brane picture are S-dual to each other with
5 and 10 switched. On type ITA NS5 branes, the P; momentum is carried by the
closed string. When the string shrinks to a point, we simply take it as a momentum
mode without the string involved. Similarly, on D4 branes, we may have closed D2
carrying Ps; momentum. With the closed D2 shrinking to a point, we are left with
the DO brane/Ps momentum.

On a single NS5 brane, purely P; momentum is carried by strings that do not
wind x5, or alternatively, M2’s that do not wrap z5. Correspondingly, on a single
D4 brane, the purely P; momentum mode should be carried by the closed D2 branes
other than strings. The complete KK modes on NS5 branes upon the compactifi-
cation on x5 are characterized by (m,n), where m and n are the winding number
and the momentum mode of the string along x5 respectively. The (m,n) mode has
the mass 2mmTr  Rs + n/Rs. (m,0) mode, (0,n) mode and (m,n) mode are in the
5d (1,1), (2,0) and (2,1) multiplets preserving 1/2, 1/2, and 1/4 supersymmetries
respectively [70]. For the dyonic strings in [58], with x¢ compactified to a circle, the
bound state of the [1,2] and [2, 1] dyonic strings carrying n instanton number is just
be the (1,7) mode here. The generic (m,n) mode is obtained by the quantization of
the type ITA strings. Especially, with N, = 0, the level-matching condition requires
Ng = mn, so the oscillation mode along the string must be turned on [70, 71]. This
is easy to understand. For type ITA string wrapping x5, P5s can only come from the
internal oscillation since there is no transverse momentum along x5. On the other

hand, if the [i, j] selfdual strings wrapping x5 cannot oscillate, the P; momentum
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carried by it can only come from selfdual strings extending in 1234 space. The (m, n)
mode in this case is actually the threshold bound state of the (m,0) mode and the
(0,mn) mode. The former is associated with the selfdual string extending along s,
while the latter is given by the tensionless selfdual strings extending along 1234 space
carrying the Ps momentum. It is possible for the [i, j] (m,0) mode and the [j, k] (0, n)
mode to form the threshold bound state with ijk indices, which we will discuss later.

Now, let us consider the relation between the point-like charged Ps momentum
mode and the line-like charged P; momentum mode. For N coincident D4 branes
with the longitudinal dimension x4 compactified, the T-duality transformation along
x4 converts the D4-D0 bound state into the D3-D1 bound state with D1 winding
2’*. More precisely, D1 carrying the definite electric flux, or equivalently, D1-F1
bound state, corresponds to D0 carrying the definite Py momentum, while D1 with
the definite A4 field corresponds to D0 with the exact x4 position. We may take
the (n,1) strings in D3 as the bases, the superposition of which gives D1 with the
definite A4, which is also the DO located at a definite point in D4. Moreover, since
D1 ending on D3’s can also carry charge, the [i,j] D1 wrapping z* is dual to the
4, j] D2 wrapping x4 with the D0 charge spreading over #;; X x4. When @;; = 0, we
are left with the tensionless [7, j| monopole string winding x4 carrying the uniformly
distributed DO charge, which could also be taken as the [i,j] DO with the zero
momentum along z4. Similarly, the [i, j] (n,1) string is dual to the tensionless [7, j]
monopole string winding x4 carrying the uniformly distributed D0 charge and the
massless [, j] string carrying Py momentum, which could be simply taken as the [i, j]
DO carrying P;. Still, the superposition of the [i, j] (n, 1) strings gives the [z, j] DO
located at a definite point in D4. The instanton solutions describing the [¢, j] DO
with the definite P, momentum have the translation invariance along x4, involving

both magnetic and the electric fields. These states compose the complete spectrum
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for the charged DO living in D4, while the localized charged DO is the superposition
of them.
The above discussion can be directly extended to M5 branes. Consider M5 branes

with x4 and x5 compactified with the radii R4 and R5, By = Tensionless

_k
2nR4R5 "
selfdual string winding x4 and x5 m and n times will carry the transverse momentum,

which can be described by the wave function

1
47T2 R4R5

exp {ik(—’g* + ”;%”:’)} §(zr — X1)6(xs — Xo)8(2s — X3).  (3.1)

When k = 1, the P momentum localized in x4, has the wave function

}5($1 —X1)5($2 —X2)5($3 —X3)5(234 —X4), (32)

which is the superposition of (3.1) with all n € Z. In this respect, at least for M5 with
at least two dimensions compactified, the longitudinal momentum is still given by the
basic excitations, which are the selfdual strings here. The only difference is that the
selfdual string is the one dimensional object, so the transverse momentum carried by
it will appear as the two dimensional wave other than the one dimensional wave. The
momentum mode carried by the particles is the one dimensional wave. To get the
complete spectrum, we need the particles with the location covering x4, or the selfdual
strings with the orientation covering the 45 plane. {§(z4 — X4)| X, € [0,27R,)} and

inxy
1

{e Ry |n € Z} are different bases for the same Hilbert space.

2w Ry

For M5 branes with x3 x4 x5 compactified to circles with the radii R3 R,y Rs, if

Bss = the tensionless selfdual string localized in x; winding

_1 pB.=_1
2rR3R5 4 27R4R5’
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R3 R5 n [ times could be described by the wave function

1 . lrs  nxs
m exXp {Z(_Rg + Rg,)} 5(1‘1 — X1)5(ZL‘2 — X2)5(£E4 — X4), (33)

while the tensionless selfdual string localized in x3 winding Ry Rs n m times could
be described by the wave function

1 { mxs NTs
i

PR PV R R5)} 6(x1 — X1)0(z2 — X3)d(23 — X3). (3.4)

Now there are two sets of bases for the P5; momentum mode. One may wonder
whether the superposition of either of them can give the same exp {%} Sz —
X1)0(zg — X39)0(x3 — X3)d(z4 — Xy).

This is indeed the case. Consider the coincident D4 branes with the longitudinal
r3 and x4 compactified to circles. Do the T-duality transformations along z3 and
x4 successively. The [z, j] monopole string wrapping 3, localized in x4, carrying one
unit of DO charge and the [i, j] longitudinal momentum P; becomes D2 wrapping
and 2/, intersecting the i, and the jy, D2 branes at one point, carrying the definite
Fo3 and A4. The [i, j] monopole string wrapping x4, localized in x3, carrying one
unit of DO charge and the [i, 7] longitudinal momentum P, becomes D2 carrying the
definite Fpy, and Az. The superposition of D2 states with either the definite A4 and
all possible Fy3 or the definite A3 and all possible Fy, will give the D2 state with
the definite A3 and A4, which is dual to the DO localized in x3 and z4. So, the [i, j]
tensionless selfdual strings wrapping x4 carrying the given P; momentum and all
possible Py momentum compose the bases which is equivalent to the [i, j] tensionless
selfdual strings wrapping z3 carrying the same Ps; momentum and all possible Pj

momentum. The superposition of either of them may give the [i, j] DO located at
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a definite point in z3 x x4. Notice that for this equivalence to be valid, 7;; = 0 is
necessary, otherwise the T-dual [i, j] D2 brane will be a tube wrapping either x5 or
x4 depending on which circle the selfdual string wraps. So, for coincident M5/D4
branes, to get the complete spectrum for P; momentum, we only need to select an
arbitrary selfdual string extending in 1234 space, carrying the given P5; momentum
and all possible longitudinal momentum. The generated Hilbert space is the same
no matter which selfdual string is selected.

On D4 branes, the [i, 7] Ps momentum can only be carried by the [, j] selfdual
strings. There is no classical solution for the point-like instanton with the charge
i, j]. However, we do have the solution for the chargeless point-like instantons, which
may consist of N instanton partons with charge [1,2], ---, [N — 1, N], [V, 1], while
the size p is the parameter characterizing the distance between the instanton partons
[72, 73]. Similarly, for type IIA NS5 branes with x5 compactified, the P; momentum
is carried by the point-like closed strings, which are also composed by the [1,2], - - -,
[N —1, NJ, [N, 1] closed selfdual strings from M theory’s point of view. It is difficult
to get a single closed selfdual string with charge [i, j]. However, if one longitudinal
dimension of D4 is compactified, an instanton on D4 branes will be dual to a D-
string on D3 branes winding the transverse circle one time. A closed D-string is
composed by the [1,2], ---, [N — 1, N], [N, 1] D-string segments [72, 73]. The [, j]
D-string segment can exist independently, because it is the [i,j] monopole string
extending along the compactified longitudinal dimension carrying the transverse P;
momentum. Similarly, for the P, longitudinal momentum mode on D4 branes, we
have the [i, j] Py mode carried by the [i, j] open string, which is the [i, 7] selfdual
string winding x5 one time, carrying the transverse P, momentum, and so can also
exist separately. The [1,2], ---, [N — 1, N|, [N, 1] P, modes can combine together to

give a chargeless P, mode as well, but it is not so necessary here.
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For N coincident M5 branes with the compactified x5, the 6d (2,0) tensor mul-
tiplet could be decomposed into the zero mode and an infinite tower of KK modes.
The zero mode is the 5d vector multiplet in adjoint representation of U(N). The KK
modes are in the 5d (2,0) tensor multiplet. The U(1)" part of the tensor multiplet
is easy to construct, which is related with the D0 brane (point-like M2 carrying
P5) confined to each M5. There is no similar point-like [z, j] Ps mode (the [i, j] DO
brane), which is supposed to give the nonabelian part of the 5d tensor multiplet.
We do have the line-like [i, j] Ps mode, which is in the vector other than the tensor
multiplet. This is expected. The line-like P5; mode extending along x4 could be taken
as the point-like P mode with Py = 0. So we actually truncate the field content of
the 5d (2,0) multiplet to its zero mode along x4, which is in the 4d vector multiplet.
To recover the 5d (2,0) tensor multiplet, all momentum along x4 should be included,
and so we should consider all tensionless strings extending in 45 plane, carrying the
transverse momentum (P, Ps), with the same Ps but all P;. In this way, four mod-
uli of the point-like P5 mode is recovered, with one position moduli replaced by the
momentum moduli. 5d massive tensor multiplet is decomposed into the sum of the
4d KK modes in vector multiplet, forming the U(N) adjoint representation.

In the language of the 4d SYM theory, the P; momentum carried by the [i, j]
tensionless selfdual string is actually the [i, 7] (0, 1) string with mass Ps, whose moduli
space is R® x S', the same as the center of mass part of the moduli space of the
instanton in R® x S? [74]. The momentum along S! is the electric charge. The
(0,1) string carrying n momentum mode along S* is the (n,1) string. In ST — oo
limit, the quantization of the instanton in R* gives the 5d massive (2,0) multiplet.
Correspondingly, the quantization of the (n, 1) strings in R? for all n € Z should
give the same multiplet.

Consider B, in 5d massive (2,0) multiplet with mass 1/R5. B,, satisfies the
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selfduality condition

1R

B#V = _TG;W)\pcra/\BpU (35>
and the equation of motion
>\ 1
(9 a,\BW + ?BMV - 0, (36)
5

where pu, v, \, p,0 =0,1,2,3,4 [58]. Do a further compactification on xy,
By, =Y e*m/fap®), (3.7)
k

Due to (3.5), for i,j = 0,1,2,3 and k € Z, Bg-c) could be expressed in terms of
Bl-(f ) thus could be dropped. We are left with a tower of the 4d massive vector field

AP = Bi(f ) satisfying the constraint

FA® =0 (3.8)

as well as the equation of motion

1K
+ 24 <o, (3.9)

0,00 A 4 (=
J 7 + (Rg Ri

Each Agk) carries 3 degrees of freedom, the same as ijk ) Tn 45 plane, the (n, 1) string
carries the momentum (n/Ry, 1/R5) thus gives the 4d vector multiplet AE”) . All of
the AE") are on the equal footing, which is consistent with the S-duality. To account
for the Ps momentum m/Rs; with m > 1, we need (n,m) strings, so altogether,
all (m,n) strings should be included to give the complete 6d dynamics. Under the

compactification on x4 and x5, the 6d field B,g with a, 8 = 0,---,5 is decomposed
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into the 4d KK modes (n/R4, m/R5) corresponding to the (m,n) string. Each KK
mode gives a 4d massive vector field Ag"’m), for which, the constraint and the equation
of motion could be obtained by replacing R5 and k in (3.9) by Rs/m and n.
Extending the discussion to the nonabelian case is a little difficult, since we don’t
know the equations for the nonabelian tensor field. However, we do know that the
(n/R4,0) mode, which is the KK mode of the 5d massless SYM field, is in 4d adjoint
massive vector multiplet. The rest (n/Ry,m/Rs) modes are related with (n/Ry,0)
via the S-duality, so they should also form the 4d adjoint massive vector multiplet.
The whole KK tower of the 4d vector multiplet together may give the 6d (2,0) tensor

multiplet in adjoint representation of U(N).
3.2 Selfdual strings with the orientation covering a plane and the M5-D3 duality

In previous discussion, we have seen that a tensionless selfdual string with the
transverse position (X, Xo, X3, X4) can be taken as a 6d massless particle with the
wave function 0(zq — X1)0(xe — X3)0 (23— X3)0(x4 — X4). In x5 direction, it is a plane
wave with the zero momentum. Another selfdual string with the transverse position
(X1, X2, X3, X5) gives the wave function 0(z1 — X1)d(x2 — X2)d(x3 — X3)0(25 — X5).
In 45 plane, the complete spectrum is {ei(P a4t Psas) |y P4,P5}, so selfdual strings
extending along all possible directions in 45 plane should be included to give the
complete spectrum for a single 6d particle. The common eigenstates of X1 X, X3 Py

PE)?
A= {5(:{}1 — X1>5(.§62 — X2>5($3 — X3>€iP4z4€iP5w5|v Xl, XQ, Xg, P4, P5} (310)

may be the suitable bases, the superposition of which can give a 6d particle localized
in (X, X5, X3, Xy, X5). Although the position eigenstates can also be obtained,

the basic excitations are [i, j] selfdual strings other than the [i, j] particles. Since

62



it is (3.10) other than the position eigenstates that is naturally realized, the KK
modes in this theory may tell us more than the KK modes in theories with point-like
excitations.

Until now, our discussion is only restricted to coincident M5 branes, for which, the
(Py, Ps) momentum, even with the charge [i, j], always takes the value (n/Ry, m/Rs).
The situation will be different if @j; # 0, so there must be something carrying the
momentum. The natural candidate carrying the (P, P5) momentum is the selfdual
string extending along the 45 plane. Consider the [, j] selfdual strings with the length
and the orientation characterized by the vector (¢Ry4, pRs) in 45 plane. p and ¢ are
co-prime, so the selfdual string only winds x4 X x5 once. In 123 space, the string is
localized at a point. The Wilson surface in z4 X x5 is trivial. Nevertheless, each [i, j]
string can still effectively pick up the background 2-form field Bys = k/(2nR4R5),
VkeN. Vm,ne€Z,Ik,p,q, m=kq, n=kp. In 45 plane, the [i, j] string will get
the definite transverse momentum (n/Ry, —m/Rs), thus could be taken as the plane

.(nx4 mzg

wave (B~ R ). If the momentum in 123 space is (Py, Py, Ps), the energy will be

2 2

n

Rj

m

+ D2
It

E:\/P12+P22+P32+ (3.11)
which is the energy of a 6d massless particle. When ;; # 0, the [i, j] selfdual string

will have the rest mass 27|0;;]\/¢? R + p?R2, so the energy should be modified to

n?2  m?
7+7

E:\/1312+P§+P§+Ri 2

+4m2 |0 (P 1Y + p* R3), (3.12)

which is the energy of a 6d massive particle.
Notice that there is an ambiguity for the mass of the zero mode in 4d. With

k =0, any (¢Ry4, pR5) string can be the 4d zero mode with mass 27|v;;]\/¢> R} + p>R2.
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However, the zero mode is unique. In the dual D3 picture, there are unwrapped [i, j]
(p, q) strings with the length |7j;|. One may choose one possible (¢R4, pR5)/(p, q)
as the zero mode. A particular S-frame is selected in this way, while in other S-
frames, all (¢Ry4, pRs) can get the chance to act as the zero mode. For the point-like
excitations, the 5d momentum can uniquely fix the state; however, for the line-like
excitations, with the given 5d momentum, the selfdual string orientations can still
vary in a 4d space orthogonal to the momentum. If the selfdual string orientations
are restricted to a plane, a one-to-one correspondence between the momentum and
state may be realized except for the momentums orthogonal to that plane. So, the
fixing of the S-frame is necessary. As is shown in later discussions, the M5-D3 duality
also intrinsically involves the selection of the S-frame.

For M5 compactified on x5, the P5 zero mode should be the state with the zero
momentum along x5, localized in 1234 space. Selfdual string extending along x5
is the only one meeting the requirement, and so, in Coulomb branch, the mass of
the W-bosons is given by 27|v;;|Rs without the ambiguity. Notice that there is a
distinction between the little string theory and the theory on coincident M5 branes.
For little string theory with x5 compactified, there are momentum mode and the
winding mode. The momentum mode is carried by the closed string. Although
the string has the finite tension, the mass of the momentum mode is still m/Rs,
because the string without winding x5 can shrink to point thus has the zero mass
and has no contribution to the energy. On the other hand, for 6d (2,0) theory with
x5 compactified, the zero mode is the 5d SYM field. In Coulomb branch, the mass
of the [i, j] zero mode is 27|0;;|R5 other than 0, since the zero mode is actually the
selfdual string winding x5 once. There is no way to get rid of the lowest winding
mode, because we do not have the closed charged selfdual string, while the straight

selfdual string localized in 1234 space must extend along xs.
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The direct study of the 6d (2,0) theory is difficult. The x5 compactification will
give the 5d massive tensor multiplet, which is also not quite accessible. The 4d KK
modes upon the compactification on x4 X x5 are relatively easy to study. Moreover,
the previous discussion indicates that (3.10) might be the suitable bases to consider
the 6d theory, so in the following, we will focus on the 4d KK modes arising from
the 6d theory.

Actually, M5 with x4 and x5 compactified in 11d spacetime is dual to D3 with
one transverse dimension compactified in 10d spacetime. Consider N coincident
type IIB NS5 branes with x4 and x5 compactified to circles with the radii R4 and
Rs5. The vacuum expectation values of the gauge fields along x4 and x5 are Ay; and
As; respectively. The T-duality transformation along x5 gives N coincident type
ITA NS5 branes with z; and zf compactified to circles with the radii Ry and Rj.
R. = 1/(47*TyaR19R5), where Ry the radius of x,, the M theory dimension. The
positions of the type IIA NS5 branes on 2, are As; /(21T o R5). The 2-form field B
on type ITA NS5 branes also gets the vacuum expectation value Bys; = Ay /(27 RE).4
Under the S-duality transformation, type IIB NS5 branes become the D5 branes,
which, under the T-duality transformation along x5, turn into the D4 branes with
the transverse dimension zf compactified to a circle with the radius Rf. RY =
1/(4m* Ty Ry R5), where R}, is the radius of the new M theory circle. The positions
of the D4 branes on z¥ are As; /(2T RY,). Another T-duality transformation along
x) takes D4 into D3 branes with the transverse dimension z/’ and x7 compactified

to circles with the radii 1/(4m*Ty R Rs) and 1/(47*Ty2 R R5). The positions of

4If the vacuum expectation values Ay for p=1,2,3 on type IIB NS5 branes are also turned
on, on type ITA NS5 branes, there will be Bys; = A,i/(2mRE). So, among the five gauge fields on
type IIB NS5 branes, one, for example, As;, is converted to the position along the M theory circle,
while the rest four turn into B,,5;. The four scalar fields on type IIB NS5 branes become four scalar
fields on type ITA NS5 branes. The 6d (1,1) theory has 4 + 4 bosonic degrees of freedom, while
the 6d (2,0) theory has 3 + 5 bosonic degrees of freedom. The T-duality transformation converts
one gauge field into the scalar field.
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the D3 branes on o} and ¥ are [Ay/(2nTapRYy), Asi/ (27T RYy)].

Until now, we only used the T-duality and S-duality for type IIA and type IIB
string theories with no M theory involved. Let us use the new symbols to give
a summary. Consider N coincident type ITA NS5 branes with x4, x5 and the M
theory dimension z1y compactified to circles with the radii Ry, R5 and Rqy. Suppose
the positions of the NS5 branes on xyo are X°, the vacuum expectation values of
the 2-form field on x4 X x5 are Bys;. After a series of duality transformations, we
get N D3 branes with the transverse dimension 7/, and z/; compactified to circles
with the radii R}, = RioRs/Rio and Ry = 1/(4n*TysR4R10). The positions of
the D3 branes on z, x @4 are [X}°Rs5/Ryo, BisiRs/(TaaR10)]. Tr1 = 20T Ryo,
Tpy = 27Ty RioR, /Rs. The duality transformations also take the NS5 branes
into N D4 branes with the transverse dimension zf compactified to circle with the
radius R? = RygRs/R1o. The positions of the D4 branes on z are X!°R5/Ryo. The
NS54— D4 and NS54— D3 duality shows that the both sides have the same degrees
of freedom. Especially, the four vector fields on D4 as well as the three vector fields
and one scalar field on D3 are dual to the four 2-form fields B,s on NS5. The rest
2-form fields on NS5 have no counterpart thus could be dropped. This is consistent

with the self-duality condition on N S5. Especially, for NS5 compactified on x4 x x5,

1 ei(nm4/R4+mm5/R5)B(”vm) (f) (313)

- 271'\/ R4R5 rgn:m i

B,uu(xlb Ts, f)

The zero mode has no winding number around 245, BV (z) — X4500)(z), BLY(z)

— AEO’O) (Z), where ¢ = 1,2, 3. The rest Bl(f’o) could be neglected. The bosonic degrees

174

45

of freedom are 6 + 2 = 8. The higher mode has the nonzero z’*> winding number, so

there is no X4Mm) for m,n #£ 0. BU™ (%) — A™™ (%), where i = 1,2,3. B{™(Z)

together with AE”””) (%) gives 4—1 = 3 gauge degrees of freedom, so the total bosonic
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degrees of freedom are still 5 + 3 = 8.
In Rig — oo limit, NS5 branes become M5 branes, while on D3 and D4 branes
side, x, and z¥ are decompactified. So, M5 branes with x4 and z5 compactified

45 compactified; M5 branes with

is dual to the D3 branes with the transverse x’
x5 compactified is dual to D4 branes. For T-duality, D, with the longitudinal z,
compactified is dual to D,y with the transverse 2’7 compactified, with A, converted
to X7, the momentum mode along x, transformed to the winding mode along x’7. For
M5, we have B, instead of A, so two longitudinal dimensions x4 x5 are transformed
to one transverse dimension z'#®, while the (P, Ps) momentum modes become the

145

winding modes of the (p, ¢) strings along z'* for all co-prime p g¢.

For D3, R, = 1/(2nR4yTp1) = 1/(2nR5Tp1). The five transverse dimensions of
M5, x!, are dual to the rest five transverse dimensions of D3, /. I = 6---10. If
the Bys on M5 branes gets the vacuum expectation value Bys;, D3 branes will be

separated along /> with the transverse positions

Xi,45 = 27TR5B452‘/TF1 = 27TR4B45Z'/TD1. (314)

If the scalar fields on M5 branes get the vacuum expectation value ®!, D3 branes

will be separated along 2/ with the transverse positions

X' =27 Rs®! /Ty = 2n Ry ®! /Ty (3.15)

If the B,5 for 1 = 1,2,3 on M5 branes gets the vacuum expectation value B,s;, the

gauge field A,; on D3 branes will get the vacuum expectation value

A,u,i == 27TR5BM5’£- (316)
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(3.16) indicates that the (0,0) mode of M5 is dual to the (1,0) string on D3 with
the winding number 0. A particular S-frame is selected.
For D4, if the five scalar fields on M5 branes get the vacuum expectation value

®!. D4 branes will be separated along z”"! with the transverse positions
X" = Rs®] /(TaaRao). (3.17)

If the B,5 for 1 = 1,2,3,4 on M5 branes gets the vacuum expectation value B,s;,

the gauge field A,; on D4 branes will get the vacuum expectation value
A,u,i = 27TR5BH5,L'. (318)

There’s no other Bosonic fields on D4 branes, so the rest 2-form fields on M5 branes
can be neglected. D4 is equivalent to M5 compactified on x5 other than M5 reduced
along xs.

Let us concentrate on the M5 — D3 duality. The [i, j] (¢R4, pRs) selfdual string
on M5 is dual to the [4, j] (p, ¢) string on D3. If x4 and x5 are compact, z/; will also
be compact, so even if Bys = 0, the covering space of z/; will still have N coincident
D3 branes distributed with the period 2w R);. V1,7, we have the [i, j] (p,q) string
connecting the iy, and the jy, D3 branes with the length 27k R}, corresponding to
the [7, j] (¢R4, pRs) selfdual string coupling with the 2-form field Bys = k/(2m R4 Rs),
getting the momentum (kp/ Ry, —kq/Rs). If the other transverse fields on D3 also

get the vacuum expectation value, the mass of the [i, j| (p, q) string will be

k -
M = 2W\/q2Ri+p2Rg\/(2ﬂR4R5)2+ |q)ij|27 (319)

which is the same as the energy of the [i, j] (¢R4, pR5) selfdual string.
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The (kp/R4, —kq/Rs) momentum mode is dual to the [z, j] (p, q) string winding
2/ k times. D3 with one transverse dimension compactified is T-dual to D4 with
one longitudinal dimension compactified, with the winding mode converted to the
momentum mode. So, the (p, ¢) string with all possible winding numbers gives a 5d
SYM theory whose basic excitations are (p, ¢) strings. In this way, the 4d KK modes
are equivalent to a series of 5d SYM fields labeled by (p, ¢) with p and g co-prime. The
(p,q) 5d SYM fields, when lifted to 6d, are translation invariant along the (¢R4, pR5)
direction. They are the fields related with the (qRy4, pRs) selfdual strings. With all
(p,q) included, the selfdual string orientation then covers the whole 45 plane. In
R4, Rs — oo limit, the selfdual string orientation can be represented by the angle 6.
For every 0 € [0,7), there is a corresponding 5d SYM theory. Fields related with
the same 6 have the standard SYM type coupling. The coupling between the SYM
fields related with the different 6 will be discussed later.

One can make a comparison between the 6d (2,0) theory and the 6d SYM theory
living in D5 branes. D5 with the longitudinal dimension x4 and x5 compactified
is T-dual to D3 with the transverse dimension z) and zf compactified. The [, j]
(n/ R4, m/Rs) momentum mode is dual to the [z, j] F'1 winding 2 and 2% n and m
times. With m fixed, the winding modes along z% give the 5d massive SYM theory,
which, with all of m included, becomes the 6d SYM theory. On the other hand, for
the 6d (2,0) theory living in M5 branes, when m = 0, the [¢, j] (n/R4,0) momentum
mode is dual to the [¢,j] (1,0) string winding 2’** n times, from which, one can
indeed get a 5d SYM theory. However, when m = 1, the (n/R4, 1/R5) mode is dual
to the (n, 1) string winding /%> one time. Such strings, when combine together, will
give the 5d massive tensor multiplet rather than the 5d massive vector multiplet.
Since the (n, 1) strings are also in the adjoint representation of U(NV), the 5d massive

tensor multiplet will also form the U(N) adjoint representation. Even though, the
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nonabelian interaction for them is different from the vector multiplet.

When o; = 0, all D3 branes are separated along a straight line, so the possible
BPS states are still the original 1/2 BPS states. To get the new states, the vacuum
expectation values of the five scalar fields on M5 branes must be turned on. In
D3 brane picture, D3’s then appear as N arbitrary points in the 5d transverse space
orthogonal to 2"*°. The only possible new BPS states are 1/4 BPS 3-string junctions,
which are also the bound states of the [i,j] (p,q) string and the [j, k] (7, s) string.
On M5 side, the 3-string junction is the bound state of the |7, 5] [, k] selfdual strings
each carrying the transverse momentum (kp/R4, —kq/Rs5) and (hr/Ry, —hs/R5).

We are interested with the N coincident M5 branes, since in that case, the states
can be massless in six dimensional sense thus will contribute to the entropy. We have
seen that the bound states of the momentum mode cannot give the new degrees of
freedom, but we haven’t considered the bound states of the momentum mode and the
zero mode, which, for example, can be taken as the tensionless [i, j] (0, R5) string.
In D3 brane picture, that is the massless [i, j] (1,0) string, which may form the
1/4 BPS threshold bound state with any [, k] (p, ¢) strings with the length 27k R);.
In 6d, they are the [i,j] (0, R5) and the [j, k] (¢R4, pR5) tensionless selfdual strings
located at the same point in 123 space. The former has the zero momentum in
45 plane, while the later carries the transverse momentum (kp/Ry4, —kq/Rs). 1t is
unclear whether they may form the threshold bound state or not, but there is no
other possibilities left. In 4d SYM theory, these states are massive unless £ = 0 but
in 6d, they are massless.

We can also consider the bound state of the zero mode and momentum mode
when the zero mode has the finite mass, for example, the [i, j| (R4, 0) selfdual string
with tension |7;;| and the momentum mode (kp/R4, —kq/R5) carried by the tension-

less [j, k] (¢R4, pRs) selfdual string. When ¢ = 0, the bound state is at the threshold,
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which is the the [i, j] selfdual string carrying the [j, k| longitudinal momentum. No-
tice that the (0, R5) selfdual string appears as the zero momentum plane wave in x5
direction. If x5 is taken as the M theory direction, then in type ITA, selfdual string
extending along x4 is just the monopole string on D4, which, of course, also has
the zero momentum along x5. The above bound state is the [i, j| monopole string
carrying the longitudinal momentum offered by the [j, k] (massless) open string. On
the other hand, the selfdual string localized in x5 should carry the point-like P,

momentum, which, however, only naturally exists in chargeless situation.
3.3 The interaction of the 6d (2,0) theory seen from its KK modes on x4 X x5

Recall that in [23], the equations of motion for the 3-algebra valued (2,0) tensor
multiplet involve a constant vector field C),, giving a direction along which all of
the fields are required to be translation invariant. The theory with the fixed C),
describes the selfdual string extending along it. The selfdual string has the zero
momentum along C, but may get the arbitrary momentum along the four transverse
dimensions, so the theory describing it is just the 5d U(N) SYM theory, which is
the reduction of the 6d (2,0) theory along C),. To recover the full 6d theory, we
need the selfdual strings with the orientations covering all directions in a plane,
which, for definiteness, is taken as the 45 plane. Correspondingly, C), is replaced
by C.(#) = cos8d; + sin 657, while the original fields f(x,) now become f(6,x,).
u=10---5. With the extra dimension # added, we get a 7d theory, which, under the
constraint C,(0)0" f(6,z,) = 0, is a 6d theory again.

Suppose the U(N) 6d (2,0) tensor multiplet field configuration is given. For sim-

plicity, consider the scalar fields X! (z,,, x4, 75), where m = 0,1,2,3, I = 6,7,8,9, 10.

/dxg X1 (2, cos O + sin Oyg, — sin Oxg + cos Oyg) = D' (2, 0, yp) (3.20)
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is the scalar field in the 5d SYM theory related with 6. X! and ®! have the scaling
dimensions 2 and 1 respectively. @’ is the zero mode of X’ along C,,(#). Also, notice

that
/dxgdyg X2, cos Oxg + sin Oyg, — sin Oxg + cos Oyy) = ¢ (x,,) (3.21)

is independent of 6. ¢! is the zero mode of ®!(z,,,0,vs) in the 4d spacetime. All of
the 5bd SYM theories share the same zero mode in 4d, because the 6d theory has the
unique zero mode in 4d. The vector field A and the spinor field n with the scaling
dimensions 1 and 3/2 in 5d SYM theory could be constructed in the similar way from
the 6d 2-form field B and the spinor field ¥ with the scaling dimensions 2 and 5/2.
Since the integration is carried out along a particular direction, more precisely, the
original scalar fields, 2-form field, and the spinor field are converted into the vector
fields, vector field, and the spinor-vector field respectively.

One may also want to reconstruct X’ from ®7.

X (2, 14, 75) = /dp4dp5 ei(p“”p”’ﬁ)gb([m’ps)(xm). (3.22)

If x4 and x5 are compact, py = kps/ R4, ps = —kps/Rs, (Pa, Ps) is the co-prime pair,

P44 _ P5T5 ) o

Xl(l’m,i%xs): Z Zeik( Fa s ¢(ﬁ4,;ﬁ5;k)(xm): Z q’l($m,ﬁ435$4—ﬁ534335)-

(P4,05) K (P4,P5)
(3.23)
o! (T, PaRsxy — psRyxs5) is the discrete version of ®!. In continuous limit,
X2, w4, 15) = / dfdpepy €™ 9(*Sin@x”cow%)(bfg;pg)(a:m)
= /dﬁ & (2, — sin Oy + cos Oas). (3.24)

72



However, ®' is not the ® in (3.20). The latter is
(I)I<$m; —sin x4 + cos 9$5) — /dpe eipe(— sin9x4+cos¢9:v5)¢€0;p6)(xm) (325)

with pg left out in the integral. X7 is only the direct superposition of @’ (0), which
is not the zero mode in C,(f) direction. Nevertheless, {@[(9) | VO [0,7‘()} and
{CDI(G) | V8 € [0, 7r)} are equivalent bases.

We now have a series of f-parameterized 5d U(N) SYM theories, which is effec-
tively a 6d theory with 5 scalars, 3 gauge degrees of freedom and 8 fermionic degrees
of freedom. It may at least exhaust the 1/2 BPS field content of the 6d (2,0) theory.
The next problem is the interaction. Fields belong to the same 5d SYM theory have
the standard SYM coupling among themselves. It is also necessary to consider the
couplings involving fields in different 5d SYM theories. Actually, the 6d SYM theory
could also be decomposed in this way, while the local interactions in the original 6d
theory induce the couplings among the 5d theories labeled by different 6.

To see this coupling more explicitly, we’d better decompose the 6d fields into the
4d KK modes. For scalars, the decomposition is as that in (3.22). Similarly, for the
6d SYM fields such as the scalars YL (z,,, 24, 25), L = 6,7,8,9, we also have

Y (20, 24, 15) = /dp4dp5 ei(p“”p"’“)gpé%m)(:Bm). (3.26)
The two-field coupling YXY?' gives

[ dwidas YEVE = [ dpadps ¢l s @) ol ppysilen)s (327)
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the three-field coupling YXY 'YL gives
[ dwidasYEYEVE = [ dpadpsdasds el s @) el g @) o gups-goyia(n).
(3.28)
and similarly for the n-field coupling. In the dual D3 brane picture, go(p4 ps)ii (Tm)
corresponds to the F-string connecting the iy and the 7, D3 branes represented
by the vector (p4,ps) in transverse space. The above coupling is possible because
the bound state of the [i, j] (p4, ps) F-string and the [j, k| (q4, g5) F-string is the [z, k]
(pa+qu, ps+¢qs) F-string. The conclusion also holds in Coulomb branch. cp (paps)ii ()
then corresponds to the F-string represented by the vector (p4, ps, ¥;) in transverse

space.

(pa, p5, Uij) + (q4, G5, Uji) = (Pa + qa, P5 + G5, Vi) (3.29)

On the other hand, for fields in tensor multiplet, such as X7, the two-field coupling
XX is indeed

/d$4d$5 XfJX]IZ/ = /dp4dp5 <Z5(Ip4,p5)ij(xm)¢flp4,fp5)ji(xm)7 (3.30)

but the three-field coupling and the n-field coupling cannot take the similar form
s (3.28). On D3 branes, ¢(p4 25) ”(asm) corresponds to the [i, 7] (p4,ps) string®.
When (py,ps) < (qu,¢s), the bound state of the [i, j] (ps4,ps) string and the [j, k]
(q4, qs5) string is still the [i, k] (ps + qu, p5s + ¢5) string, so, the coupling like (3.28)
is possible. ¢{p47p5)ij(a:m) and ¢(I;4,q5)jk;($m) belong to the same 5d SYM theory with
0 = —arctan(py/ps). However, for unparallel (p4, ps) and (g4, ¢5), the bound state

will be the 3-string junction other than the single string®. The similar problem also

®More accurately, it is the [i, 7] (pa, P5) string winding 2/4° k times. py = kps/ R4, ps = —kps/Rs,
P4 and ps are co-prime. For simplicity, we just denote it by (p4, ps).
6The bound state exists only when the [i, j] [j, k] strings have the suitable mass. Here, we just
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exists for the bd massive tensor multiplet. The KK modes in 4d could be represented
by the [i, j] (p4, ps) strings with the fixed ps but all possible ps. Obviously, (p4, ps)
and (pfj,ps) are not parallel unless p, = p). To summarize, if we concentrate on
a single kind of the selfdual strings, the theory will be the 5d SYM theory; if we
consider the selfdual strings with the different orientations, the theory will involve
the tensor multiplet, for which, the interaction is not the standard SYM type.
Then the problem reduces to the coupling between @, ps)ij (Tm) and ¢, i1 (Tm)
for the unparallel (p4, ps) and (g4, g5). The bound state of the [i, j] (p4, ps) string and
the [7, k] (qu, g5) string is the 3-string junction other than the traditional [i, k] (Py, Ps)
string. Unlike the 6d SYM theory, we now get more states and should also quantize
them. A given 3-string junction is characterized by the charge vector v, = (74, 4, 14)
and v,,, = (75, S5, t5), for which, no common divisor exists. r s t are related with the

1 7 k branes, while the rest N — 3 branes are neglected.

T4+ S4+ty =154+ 85 +15 =0. (331)

In 2%, v = 27kR);, vj; = 2rhR);. In transverse space, we may also have #;
and v, which will make the string junction massive. The total momentum of the

3-string junction is

]{?T‘4 — ht4 —k??“5 + ht5
Ry 7 Rs

(Py, Ps) = ( ) = (Pa+ qa,p5 + q5). (3.32)

where (ps,ps) = (kra/Ry, —krs/Rs) = (kps/Rs, —kps/Rs), (qu,q5) = (—hts/Ry,
hts/Rs) = (hgs/R4, —hqs/Rs). ps and ps, g4 and @5 are not necessarily co-prime

now. For (ﬁ4aﬁ5) X ((‘Y4aq5)ﬂ (P47P5) X <Q4aq5)7 while for the unparaﬂe1 (ﬁ47ﬁ5)

assume So.
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and (G4, qs), k and h may generate two dimensional momentum. Especially, if the
SL(2,7) invariant intersection number [69] [ = t5ry — tyrs = +1, (P4, P5) can cover
all of (n/Ry,m/R5); otherwise, it can only cover (nl/R4,mI/Rs5). We will use
(P4, D5), (Gs,G5) and (Py, Ps) to denote the 3-string junction. When Ry, Rs — oo,
the 3-string junction is characterized by the 2d vectors C(6;), C(6) and (Py, Ps).
C(05) = —C(0y) — C(0s), (P4, Ps) = O1pg, — Oopy,, where 61 and 6, are unit vectors.
For the given ¢;; and ¥, the 3-string junction exists only when (P, P5) satisfies

some particular condition

f(ﬁ4,ﬁ5,§4,§5,ﬁij,ﬁjk)(P4a PS) > 0, (3.33)

so the 3-string junction cannot have the arbitrary momentum in 45 plane. The
selfdual string in 45 plane can only carry the 1d transverse momentum. Here, the
bound state of two unparallel selfdual strings can carry the 2d momentum, but this
momentum cannot cover the 2d space.

Fields arising from the quantization of the 3-string junctions can then be denoted
bY @ (5.2:p4 P )iji (Tm) OF D6y 05.05:P1.P5)ijk (Tm) in decompactification limit. P45+t = 0.

The corresponding 6d field is

Xz iyign(Tm, T4, T5) = Y ei(P4x4+P5x5)¢(F,§,{§P4,P5)ijk(xm)a (3.34)
Py, Ps

or

X(91»92793)ijk($m’ 334,.11:5) = /dP4dP5 ei(P4x4+P5x5)¢(91,92,03;P4,P5)ijk(xm)- (3-35)
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In polar coordinate, (3.35) could also be written as

X (01,02,0)ik (Tm; 0, p)

= sin(fy — 91)/dp91dp92 eiPbn(0=0upe, _Sin(e_GQ)pBQ]¢(91,92793;p01’peg)ijk(xm)(g-?ﬁ)

In terms of k£ and h, (3.34) becomes

. 'r4z4_7‘5z5)_h(t414_t5z5

ik
X i (@my ta,w5) = 3 PO TR @) (3.37)
k.h

In (3.34)-(3.37), (P4, P5) is in the range specified by (3.33).

Similarly, we can also consider fields related with string webs, if there is only
one scalar field gets the vacuum expectation value. For simplicity, consider the 4d
(n/R4,1/Rs) momentum modes, or alternatively, the (n, 1) strings with n € Z. One
may take the [1,2], ---, [V — 1, N] strings as the simple modes, from which, the 5d

field can be constructed as

23w = [ dp e o () (3.38)

The 5d field is in the (2,0) tensor multiplet, but we only consider the scalar here.

The bound state of the [i,i + 1], - -+, [i + k — 1,7 + k] strings has the charge vector

Ve = (Oa e 707ni7ni+1 — Nyt TN k-1, 07 Tty 0)7 (339)
Vo = (0,--,0,1,0,-+-,0,—1,0,---,0) (3.40)
and the total momentum (>~ n; /Ry, k/R5). When n; = - -+ = n;;_1, the bound

state reduces to the [i,7+ k] (XFZ8 i1/ R4, k/Rs) mode. The corresponding 5d field
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k 1p4T
Z((nz,---,ni+k,1)i,---,i+k(xm?'r4) = /dp4 ep4 4¢(ni7"'7ni+k—1;p4)i1"'7i+k(xm>' (341)

It seems that the quantization of the string webs gives an infinite number of fields
with the infinite degrees of freedom. However, these fields can be neatly reorga-
nized to give the (N® — N)/6 degrees of freedom. For example, in (3.41), the
field is actually Z,,, ..p,..0 o (%), which is equivalent to Z(zy,, T4, Taiqn—1) ~

Z(Tm, Ta4) - Z (T, Taiyk—1) thus has k degrees of freedom. Altogether,

kaw —k) = N36_ al (3.42)

k=1

Recall that in previous discussion, the N3 degrees of freedom comes from the [i, j]
[7, k] string bound state. These two are actually equivalent. Here, we take N — 1
simple modes as the basic degrees of freedom. We can also take [i, j] modes with
i < j fundamental, then each [i, j] [4, k] bound state gives one degrees of freedom?,
which, together with the [4, j] modes, becomes

N3 — N

Cy+ 0% = 5

(3.43)

However, C% out of (N® — N)/6 comes from the [i, j] selfdual strings, while the rest
C%; is not enough to produce the anomaly on M5 branes [75, 76]. To give the right
anomaly coefficient, we need the [7, j| [7, k] selfdual string bound state including the
situation when two of ¢ j k are the same. The total number of the bound states is
N3 — N.

With the fields related with strings as well as the string junctions, we can consider

the possible couplings among them. First, the bound state of the [i, j| (ry, r5) string

"It is one other than two because the rest one has already been counted by the [i, j] modes.
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and the [, k] (—t4, —t5) string, or the [j, k| (s4, s5) string and the [k,i] (—r4, —75)

string, or the [k, 1] (t4,t5) string and the [z, j] (—s4, —s5) string is the [z, j, k] 3-string

junction with v, = (74, s4,t4) and v,,, = (75, S5,15). The momentum of the 3-string

junction is the sum of the two individual strings. 2 + 2 — 3.

¢(T4,T5;/€)ij(xm)gb/(—t4,—t5;h)jk(xm) ~ ¢/(,F7§‘7{';k,h)ijk(xm)’ (3.44)
¢(54785;h)jk(xm>¢,(—r4,—r5;—k—h)ki(xm> ~ Qb”f,gygk,h)@'jk(xm)a (3.45)
¢(t4,t5;fk7h)ki(fm)¢2_547_55;k)ij(xm) ~ QSI(IF"LQEk’h)Z'jk(ZL‘m)a (346)

which could be derived from the coupling
/d:l:4dx5 Xrars)ij(Tms Ta, :c5)XE7t477t5)jk(a:’m,x4, :1:'5)X(mi>”k(:cm, T4, 5), (3.47)
with
"‘414 _ 525
X(m,rg,)ij(xma Ly, IS Z 6 R4 s ¢ (ra,rs5k)ij (xm) (348)
k
4_15%5
XE_t4,_t5)jk($m,$4,x5 Z € R4 Ry ¢(7t4,7t5;h)jk($m>- (349)
h
In polar coordinate, the coupling is
/pdpd@ X (01)ij ($m, 0 p)X(92+7r Jk($m7 0 p)X(91 02,03 z]k(xm, 0 p)? (35())
where
X011 (Tm, 0, p) = /dpel O T o (3.51)
X(92+7T)jk‘<xm797p) = /dp92 67@92[)Sin(9792)¢(92+7rﬂ?92)jk(xm)' (3.52)
Now, consider the bound state of @ (uy us:0)i (Tm) /P (usus;—g)it (Tm) and qb(q 5Ek h)wk( m)-
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If (wg, us) = (r4,75) or (ug,us) = (—r4, —75), the bound state will still be the 3-string
junction (b’(’jsmkw’h)ljk(:cm), 243 — 3; otherwise, it is a 4-string junction, 2+ 3 — 4.
The situation is similar if 7 is replaced by j or k. The 2 + 3 — 3 type relation may
give the couplings like

XiXipnXie,  XaXiXin  XuXin XX, (3.53)
and so on.

The 2+2 — 2, 2+3 — 3 couplings could be realized as the matrix multiplication.
Moreover, they can also be visualized as the junction of two 2-boundary-M2’s and
the junction of one 2-boundary-M2 and one 3-boundary-M 2 respectively. Therefore,
they are more reasonable than the couplings like 2 +2 — 3 and 2 + 3 — 4.

We now have two sets of fields fi, ;5)ij(®m, T4, 5) and f(ﬁ§.7t—)ijk(xm,x4,x5), or
alternatively, f(p)ij(Zm,a, p) and fo, 0,.05)ik(Tms @, ). firars)ij(Tm, T, T5) is transla-
tion invariant along the (rs5Ry,r4R5) direction, so it is the previous discussed field
satisfying the constraint C,(0)0" f()ij (€, a, p) = 0. Conversely, f(g,.0,,05)ijk(Tm, ¢, p)
is a 6d field without the constraint®. fyi; with all ¢ included is equivalent to a 6d
field.  f(g,,6,,65)ijx With all 6; 05 03 included is equivalent to a 9d field, since it is re-
lated with the bound state. fe,), f(s,) and f(g,) may couple with each other through
J(61,62,65)-

J(0)ij 1s a vector multiplet composed by the scalars @{9), the vector Ay, and the
spinor 7 with the scaling dimensions 1, 1 and 3/2 respectively, coming from the
C,(0) direction integration of the scalars X', the 2-form B, and the spinor ¥ with
the scaling dimensions 2, 2 and 5/2. As a 6d vector, C*(0)A ), = 0.

The field content of fg, g,,)ijx can be reconstructed from the 4d KK mode.

8(3.33) gives a restriction on the range of k& and h in (3.37). Especially, if k = 0 or h = 0,
J(61,0,05)ijk is also translation invariant along one direction, as we will see later.
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The KK compactification of f(g, 0,04)ij6 00 T4 X x5 gives the 4d field ¢z p, po)ijrs
which, in 4d SYM theory, is related to the 3-string junction with the charge vector
Ve = (14, S4,14) and v, = (13, S5, t5), having the total mass P5 and the total electric
charge P,. The multiplet structure of gzﬁ(agﬁ Pa,Ps)ijk is V, ®V;,, where Vj is the vector
supermultiplet coming from the free center-of-mass part, V;, is the internal part
determined by v, and v,,. For v, = (r4,54,t4), vin = (1,0, —1), Vi, = [|s4]/2] ®
[|s4]/2 —1/2] & [|s4]/2 — 1/2] @ [|s4|/2 — 1], giving a total of 4|s4| states [67]. As the
string web, it has E.;; = 3 external points and Fj,; = |s4| internal points [69]. If
@(7.5,2:ps, )ik 18 lifted into the 6d field fzz 700, Va® Vi, will become T ® Viy,, with T
the tensor supermultiplet from the center-of-mass part. So, f z7,;, at least contains
a tensor multiplet factor.

It is difficult to determine V,, in decompactification limit. The simplest possibility
is |s4] = 1 with one internal point, and then Vj, = [1/2] @ [0] @ [0]. Recall that for
1/2 BPS states with the degeneracy of 21, we have the 6d (2,0) tensor multiplet
Ts, whose KK modes along x5 are the 5d massless vector multiplet V5 and the 5d
massive (2,0) tensor multiplets 75. The KK modes of V5 and T5 on x4 are the 4d
vector multiplets V. The massless limit of the 5d massive tensor multiplet is the 5d
massless vector multiplet. For 1/4 BPS states, in 4d, we get V3 ® ([1/2] & [0] @ [0]).
The V; ® [1/2] part gives

j 3/201]1/2|0(-1/2]-1|-3/2

Degeneracy | 1 |4 | 7 [ 8] 7 4 1

which, when combines with the rest two Vj, could be organized into 1 spin-3/2
fermion, 6 vectors, 14 spin-1/2 fermions and 14 scalars, forming the massive rep-
resentation of the 4d N' = 4 superalgebra with 2° states. In massless limit, the

bosonic part of V; ® ([1/2] @ [0] & [0]) is composed by 6 vectors and 20 scalars,
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with each vector containing two degrees of freedom. V,, when lifted to 5d with
P; = 0 or Ps # 0, becomes Vi or T5. The lifted V; ® ([1/2] @ [0] @ [0]) could be
naively denoted by Vs @ ([1/2] & [0] @ [0]) and T5 @ ([1/2] & [0] & [0]), which are
all complex now. Actually, one V; ® ([1/2] & [0] @ [0]) only gives the 3-string junc-
tion with one possible orientation; if the other orientation is taken into account,
we will also get 26 x 2 = 27 states. The field content of Vi ® ([1/2] @ [0] & [0])
could be organized into 1 spin-3/2 fermion, 6 vectors, 13 spin-1/2 fermions and 14
scalars, while the field content of T5 ® ([1/2] @ [0] & [0]) could be organized into 2
selfdual tensors, 1 spin-3/2 fermion, 4 vectors, 13 spin-1/2 fermions and 10 scalars.
Te® ([1/2]) @ [0] @ [0]) and T5 @ ([1/2] & [0] @ [0]) have the same field content, forming
the 6d massless (2, 1) multiplet and the 5d massive (2, 1) multiplet respectively. The
5d massive selfdual tensors and the 5d massive vectors, containing 3 and 4 degrees
of freedom, become the 6d massless selfdual tensors and the 6d massless vectors, still
with 3 and 4 degrees of freedom. Ty ® ([1/2] @ [0] @ [0]) compactified on x5 gives
Vs @ ([1/2] @ [0] @ [0]) and T5 ® ([1/2] @ [0] @ [0]), which, when further compacti-
fied on x4, becomes V; @ ([1/2] & [0] @ [0]). Just as V5 is the massless limit of T,
Vs®([1/2]®[0]®[0]) could also be taken as the massless limit of T5®([1/2]®[0]B[0]).
The 2 massive 5d selfdual tensors become 2 massless bd vectors, while the 4 mas-
sive 5d vectors become 4 massless 5d vectors plus 4 scalars. Ts @ ([1/2] @ [0] @ [0]),
Ts® ([1/2] @ [0] @ [0]) and V5 ® ([1/2] @ [0] & [0]) are all complex, so the total states
for each are 27 other than 2%. Each multiplet will form the N x N x N or N x N x N
representation of U(N), so they cannot be real, as the fields in adjoint representation
do.

f(61,02,0)ijx may be a (2, 1) multiplet composed by the scalars X, 9, 4,), the vectors
Vi0,,02,05), the 2-forms By, g,,), the spin-1/2 fermions ¥y, g,4,) and the spin-3/2

fermions 79, g,,6,)- In principle, the 6d (2, 0) theory can only contain the (2,0) tensor
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multiplet, but now, the (2,1) multiplet is also added. There will be the couplings
between the (2,1) multiplet and the vector multiplet arising from the reduction of
the tensor multiplet along a particular direction. The incorporation of the (2,1)
multiplet into the scattering amplitude is also discussed in [68] for M5 compactified
on S*. It was shown that the BB’A coupling is one of the possibilities. B and B’
are the 2-forms in 5d massive (2, 1) multiplet, while A is the zero mode vector in 5d.
In the following, we will only discuss X, B and ¥ with the scaling dimensions 2, 2,
5/2 respectively. Of course, X, B and ¥ are not necessarily the R-symmetry singlet,
but the indices in transverse dimensions are neglected for simplicity.

Let us consider the possible dimension six couplings for these fields. For two-field

couplings, there are

0X0X, 0X(0,,6,650X (5, .05.0,)> VOV, Vg, 9,050 (1,0,.05)5

8383, 83(91792’93)83€01762793) (354)

X ¥ B compose a 6d (2,0) tensor multiplet in adjoint representation of U(N),
which is equivalent to ®g) Ag) 1) with all  included. We do not have terms like
Xij X x Xy, but the two-field couplings like X;; X7, are allowed. The tensor multiplet

representation works well in free theory. The possible three-field couplings are

A0, X(01,0205)9X (0, 05,090 A0,V (01.02.05) Y (61,602.65)5

oo ¥ (61,02,05) Y (61.02.05) A9aB(91,92,93)aB€91,92,93)7 (3.55)

where a = 1, 2,3. The possible four-field couplings are
A0, X (0,020 A0, X (0,,0,.00): L0 X(61.02.05)P0, X(p, 0, 65)5
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A0, B(0:,02,00) 40, B0, 0,0 P0.B(01,02,05)P0, B, 0,.0,)> (3.56)

with a,b = 1,2,3. Based on the above couplings, the nonabelian generalization of

H,,» can then be defined as
Hije = dBiji + AL A Biji, + AT A Binie + A} A Bijn, (3.57)

with H ~ H(gl 02,03) v A Al Am ~ A?;Q) : AZ ~ A?&g)yk? B~ B(91792,93)My.

(61)pi> o

Fermions may get mass through the Yukawa coupling q)ga@(91’92’93)\11(91792793). In
order to compare with the 3-string junctions in 4d SYM theory, we will use (7, 3, f}

instead of (01,02,03). Consider W .5, and <I> The vacuum expectation

m)p”

value of X! is X} = vl 6, then the induced vacuum expectation value for Cbi is

(imyp = U0} 01 Similar with the equation for fermions in [23],

T“D,W 4 + XLCHT, I, fOPB, =0, (3.58)
we may have

170 I 51 1
ir FMF[[(I)(F;il)u\IJ(F,E',E)ljk + (I)(s*;jl)qu(yf,s*,i)ilk + Cb(ﬁkl),u\p(ﬁé',f)ijl]

= zrorﬂrl(m{ + §uv]1~ + E,m,g)\p(ﬁgymjk = MY e pyinn (3.59)

where in the last step, we assume Vy,,,,, = 0 for [, m,n # i, j, k so that W is a generator

with the index [, j, k].

M = iFOF“F](fHUfj - fﬂv;k) = iFOF“FI(@LUJIk Fuvp,) = LT (08, — sﬂvfj)

(3.60)
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The [i,j, k| (7, 5,t) string is the bound state of the [i, ] (7) and [, k] (—f) strings
or the [j,k] (5) and [k,i] (=) strings or the [k,i] (£) and [i,j] (—5) strings. In
(3.60), the mass of the bound state is expressed in terms of the component strings.

Ty = 27T7“5R4, 7:5 = 27T7”4R57 f“ = 0, for n = 0, 1,2,3, SO
iL°THT 7, vf = iTOT*T  27rs Ryw! + i0°T°T 1277y Rs vy (3.61)
and similarly for 5, and Eu- As a result,

M = iP0F4F[<7:4UiI —f- 541}][- —f- £4Ul€) —I— iFOF5F[ (7:51){ + 551}]]» + 'E5’U,€)

= IT*T;Q%, +i°T°T; QL. (3.62)
where QI and @}, are the electric and the magnetic charge vectors in 4d SYM theory.
M? = |Gl +|Qul* + TiT, DT (Q4,Q% — Q1 Q). (3.63)

The third term is a matrix, nevertheless,

VIDIT TS (Q1, Q4 — Q1QL) = 2|Gp x Gl (3.64)

The above result can be compared with the mass of the 3-string junctions in 4d SYM

theory, which is

72 = Qe+ |1Gu* +2|Gp x Qul- (3.65)

The mass term together with ¢W+T",0"VU gives the energy

E =Tol,p" +il°T*T Q% + 4TI T, Q% (3.66)
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where = 1,2,3,4,5, I'f = —T',..

E* = |7 +| Qe+ QG+ T T T (Q4, Q7 — Q1,Q%) +2iT 1(Q,p* +QLp°). (3.67)

(3.67) can be rewritten as

E* = ppa+ (QFQF + Q@) + (QpQr + Qu Qi)

+ DT (QyQp — QuQp) + 2T1(QFQy — QpQay),  (3.68)

where a = 1,2,3. Q¥ = p*, Q1) = —p°. ps and ps enter the energy formula as
another charge vector Q% and Q%5. p!, p? and p* appear as the normal transverse
momentum. In 4d SYM theory, with v} and v} turned on, the energy of the 3-string
junction carrying the transverse momentum (p', p?, p*) is consistent with (3.68). The
above result can be compared with the 6d SYM theory, for which,

E =Tolup" + Tol'v);, (3.69)
SO

E? = pup, + vjv] (3.70)

17

which is the energy of a particle with the rest mass m carrying the 5d momentum
p*. Now, we have different Dirac operator, giving rise to a dispersion relation different
from the standard v/m?2 + p? type. v/m? + p? is the dispersion relation for a Lorentz
invariant theory. The 3-string junctions breaks the SO(5, 1) symmetry into SO(3,1).

Obviously, f(ie)- and f(, 6,,65)ijx are in the adjoint and the NV x N x N represen-

J
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tations of SU(N) respectively.
Floy; = UlflonUs™,  for000)ik = UiUS'UL fi0, 02.05)mn, YU € SU(N). (3.71)

An_1 6d (2,0) theory compactified on a Riemann surface with the genus g > 1 could
be decomposed into the Ty part and the Iy part. Each Ty part has the SU(N)3
symmetry, while each Iy part gives a SU(N) gauge group [47, 48]. Still, there are two
sets of fields with the index [7, j, k] and [i, j] which may couple with each other, quite
like what we have discussed above. This is not accidental. The 3-string junction on
D3, when lifted to M theory, corresponds to M2 with three boundaries, which may
be denoted by M2(Cy,Cs, Cs), with Cy ~ 7, Cy ~ &, Cs ~ £ [77]. M2 with two
boundaries is M2(C). M2(Cy,Cs,C3) and M2(C') may couple at the boundary as
long as C' = (4, or C = (Cy, or C' = (3, while the product is still M2(C, Cs, Cs).
Likewise, the Ty part of the Riemann surface offers the nontrivial 1-cycles [C1], [Cy],
[C3] for M2 to end. [C1] 4+ [Cy] + [C5] = 0. Each M2([C4], [Cs], [C3]) can only couple
with the adjacent M2([Cy]), M2(]Cs]), and M2([C3]). The boundary coupling is
the standard Y°; Ly..piMic..a = Na...pe.a type, indicating that M2(C, Cy, C3) should
be in the N x N x N or N x N x N representation. The ¥, theory has 3(g — 1)
SU(N) gauge groups associated with each 1-cycle. Fields related with the different
SU(N) groups cannot couple to each other directly. Similarly, the 6d (2,0) theory
may contain a series of SU(N) groups associated with the selfdual strings labeled by
. Still, fields related with different # do not have the direct coupling. The situation
is different for the 6d SYM theory, in which, there is only one gauge group. Even if
the 6d SYM theory is compactified on a Riemann surface with g > 1, there is still
only one gauge group. The reason is that the basic excitations on M5 is line-like,

while the basic excitations on D5 is point-like.
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In above discussion, we didn’t pay too much attention to the condition (3.33).
For the given v! and (7, 5, t), the allowed (P, Ps) are not arbitrary. Especially, when
vl =0, VYi,j, no (Py, Ps) can satisfy (3.33). Nevertheless, when Py = 0 or P; = 0,
the equality can be saturated, while the bound states are at the threshold or just

decay. If they do not decay, then (3.36) and (3.37) should be replace by

X(01,02,05)ijk (T, s (0 — 01)p) = sin(6 — 0,) / dpg, €175 G0, 01 03100, )i (Tm)
(3.72)

and

X(F,§,E)ijk(xm7r4x4R5 —r5r5Ry) = Z e e ¢(F,§,Ek,0)ijk(xm>‘ (3.73)
k

(3.72) and (3.73) are translation invariant along the ¢, direction and the (75 Ry, r4R5)
direction respectively. They are the zero mode of the original 6d field (3.36) and
(3.37) along the 6 and the (rsRy,m4R5) directions. ¢z )i (Tm) is the 4d 1/4
BPS field in V, ® Vj,, multiplet. Summing over all possible k will give a 5d field
in V5 ® Vi, multiplet. On the other hand, summing over ¢z ;. n)ix(Tm) With all
possible k& but the fixed nonzero h will give a 5d field in Ty ® V;,, multiplet. (3.72)
and (3.73) are in the V5 ® V,, multiplet. They are actually the bound state of the
i, 7] (r4,75) string with momentum (kry/ Ry, —krs/Rs) and the [j, k] (—t4, —t5) string
with momentum (0,0). As is mentioned before, the 4d (0,0) mode of the 6d field is
unique, so (—t4, —t5) should be fixed, while the field in (3.72) and (3.73) could simply
be denoted by X(g,)ijk(Tm,sin(0 — 61)p) and X (@m, ravaRs — rsa5Ry). Although
Xoyyijk or X(mik s a 5d field, with all 6, or (r4,75) included, the 6d field can be

recovered again.

¢(F;k)ijk(xm)ﬁb,(r;g)li(xm) ~ ¢/(,ﬁk+g)ljk(xm)- (3.74)
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X(#ijk or X(g,)ijx can only couple with X7 or X(g,);. Both of them are translation
invariant along the same direction, so the coupling is still 5 dimensional. Now,
we have the 7d fields f;;(0,z,) together with g;;x(#,z,) subject to the constraints
C.(0)0"fi;(0,x,) = 0 and C,(0)0"g1(6,x,) = 0. Fields related with different 6
cannot couple with each other. It must be admitted that such scenario is not quite

interesting.
3.4  The momentum-carrying BPS states in 5d SYM theory

Until now, all of the discussions are carried out in 6d theory’s framework. In
6d theory, the KK modes are fields thus are treated perturbatively. When we say
5d SYM theory, we only mean the KK modes of the 6d fields have the SYM type
coupling. In this section, we will turn to the genuine 5d SYM theory.

The 6d tensor multiplet field compactified on x5 gives the 5d massless vector
multiplet field and a tower of 5d massive tensor multiplet fields, while the 6d tensor
multiplet field compactified on x4 X x5 gives the 4d massless vector multiplet field
and a tower of 4d massive vector multiplet fields. The 5d SYM theory contains the
perturbative 5d massless SYM field and a tower of instantons, the quantization of
which gives the 5d massive tensor multiplet. The 5d SYM theory with x4 compactified
also contains the BPS states, the quantization of which gives the 4d vector multiplets.
All KK modes could be realized in 5d SYM theory as the nonpertubative states. It
is expected that the 5d SYM theory may give another definition for the 6d (2,0)
theory [65, 58].

The field configurations in SYM theories are classified by boundary conditions.
For 5d SYM theory, the boundary configurations are characterized by II3(SU(N)) =

Z with k € Z the winding number. The sector with the particular k& corresponds to
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the KK mode with P; = k/Rs. The energy is bounded by

E > |k|/Rs. (3.75)

The equality holds for configurations representing the localized k/Rs mode which
have the zero average momentum in 1234 space. The path integral covers all these
configurations, so the 5d SYM theory will unavoidably carry the 6d information and is
intrinsically a 6d theory. 5d theory can be obtained only by an artificial truncation.
Since the configuration only carries the chargeless P; momentum, there might be
some kind of confinement happen.

In the following, we will discuss the generic BPS states in 5d SYM theory. The
(Py, Ps) modes will appear as the BPS states in 4d SYM theory only when one
transverse dimension is compactified and so the extra degrees of freedom are added.
For 5d SYM theory, KK modes are intrinsically included.

The field content of the 5d N' = 2 U(N) SYM theory consists of a vector A, with
w=0,1,2,3,4, five scalars X! with I =6,7,8,9,10 and fermions V. x5 is the extra

dimension associated with M-theory. The action is

I T ) S I S
S = —g%M/d:ctr(4FuyF + 5D X DX = ZUT D, W
1. 1
+5 UTTI X 0] ZZ[XI,XJP) : (3.76)

1,J

where D, X' = 9, X' —i[A,, X"], F, = 0,A, — 0,A, — i[4,,A)]. For time-
independent bosonic solutions with a single non-vanishing scalar field X°, the as-

sociated energy is

1 1 1 1
E=- / d'x tr| L FyFy + 5 FoFo + 5 DiX°DiX°], (3.77)
9y 4 2 2
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where i = 1,2,3,4. For an arbitrary vector C; with |C| = 1, E could be rewritten as

1 1
E = — /d4x tr[f(FOi — sin §Cy Fy, 4 cos 0.D; X5)?
9y m 2

1.1
+§(§Ck5ilmkﬂm + cos 0C, Fy, + sin 0D; X °)?

1 X
+sin @ (Fo,Crp i F §Ck€umszmDiX6)

1
+ €08 (Fg€inim ik Fim — FoiD; X°)] . (3.78)
Note that
1 4 6 1 4 6
Po= = [ds u(FoFa), Qun= 2= 50— [ d's tr(eim Fin DiX®),
9y M 9y M
1 1
Pi=—— / 'z tr(Eipim Fin F), Qp = 28 = — / d*z tr(FyD; X5)Y3.79)
89y m 9y m
So
E Z sin@Ck(—Pk + QMk) -+ cos 9(:|:P5 — QE) Z Ma:lj'(ZJr, Z,), (380)
where
1
Zs = |(CuPy £ CrQun)” + (P5 £ Qp)?|”. (3.81)
If Z+ Z Zf, E = Z+ for
Foi = sin0C, Fyy, — cos D; X°, (3.82)
1
§Ck€ilmkﬂm = cos 0Cy Fy, + sin t9Dl)(6 (383)
Kz, <7Z 6 FE=27Z_ for
Foi = sin0C, Fy, — cos 0D, X, (3.84)
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1
§Ok5ilmkﬂm = — COS QCkEk — sin QDZX6 (385)

In both cases,
1

2
9y m

E= / d'z tr[(CuF)* + (DiX®). (3.86)

Moreover, if 6 # 0, from (3.82-3.85), we also have C;D;X® = C;Fy; = 0. For
simplicity, in the following, we will only consider the case with Z, > Z_. The
situation with Z, < Z_ is similar.

Without loss of generity, let Cy = ¢, then (3.82) and (3.83) become

Foi = sin0F;; — cos0D; X", (3.87)

1 i 6
§5ilm4Flm =cosOF;, +sinfD; X°. (3.88)

1
b= [(P4 + Q) + (Ps + QE)Q} ° (3.89)

For 6 # 0, Fyy = D, X% = 0. When 6 = 0, (3.87)-(3.89) reduce to
6 1

Foi = —-D; X7, §€ilm4Fzm = Fi. (3.90)
E=I|Ps+Qgl. (3.91)

These are the equations for the dyonic instantons discussed in [58]. Fyy = D, X% =0
is not necessary. If is imposed, the original SO(4) symmetry will be broken to SO(3).
P47é0, QM47£0, but P4—|—QM4:0. WhQHQZW/Q,

1
Foi = Fia, §€izm4Fzm = D; X", (3.92)
FE = ]P4—|—QM4|. (3.93)
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The solution describes the monopole string extending along the x4 direction, carrying
momentum Py. Ps #0, Qg # 0, but Ps+ Qg = 0.
For the time-independent bosonic solutions with Cj, = 4}, the supersymmetry

transformation becomes

1
5V = iFWF“”Fg,e—i—DHX(SF“Fﬁe
= D, X°T,(I'% 4 cos 0T g5 + sin 6T 19515 )€

—I—Fa4I‘a(F45 — sin 0F05 -+ cos 9F123F5)6, (394)
where a = 1,2,3. D,X% = Fy, = 0 is imposed. §.¥ = 0, € should satisfy
(1 -+ cos 6F056 — sin 9F046)6 = O, (395)

(1 +sin Oy — cosOl5)e = 0, (3.96)

in which T'g12345¢ = € is used. The solution is 1/4 BPS. For § = 0, we have ¢ =
—Tos66 = Tose, which are the supersymmetries preserved by dyonic instantons [58].
For § = /2, € = I'gye¢ = —T'g4€, which are the supersymmetries preserved by the
monopole strings extending along x, carrying momentum P. If D, X% and F,; are
not independent, for example, D, X% = sin0D,® and F,4, = cos§D,® as that in [58],

(3.94) will reduce to

56\1’ = DaCI)Fa(sin 0F6 —+ cos 0F45 — F04)6

= D ®T,Toy(sin OTg4T° + cos g5 — 1)e = 0. (3.97)

The solution becomes 1/2 BPS. Moreover, for this state, Fo; = 0, so P, = Qg = 0,

E = /@3, + P?. Tt may describe the monopole string extending along x4 carry-
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ing the uniformly distributed DO charge. Conversely, if F,4; = sin6D,®, D, X% =
—cosD,®, Fy =0, F = \/m. The solution describes the F'1 string carrying
P, momentum, which is also 1/2 BPS.

Another special kind of 1/2 BPS states have Fj; = 0 or X% = 0. When X® =6 =

0, we get the instanton equation

1
Fo =0, §€ilm417lm = Fu, (3.98)

the solution of which describes the DO branes revolved in D4 branes. E = |P5|. The
quantization of the instanton state gives the 5d massive (2,0) tensor multiplet T}

without charge. When 6 # 0,

1
FOZ' = sin QFM, §€ilm4ﬂm = COS 9E4 (399)

The SO(4) symmetry is broken to SO(3). Therefore, we may look for solutions
which are translation invariant along z,. F = /P? + P2. The solution describes
the DO branes localized in R? carrying momentum Py, which, in D3 picture, is the

4. The quantization gives the 4d massive vector multiplet

(p,q) strings winding '
V4 that is also the KK mode of the 5d massive tensor multiplet T5. The original
four position moduli of the instantons become the three position moduli plus one
momentum moduli. tanf = P,/Ps. The (p,q) string can be open or closed, thus

carries the [i, j] charge or not, so is the corresponding 4d vector multiplet. On the

other hand, if Fj; = 0, # = 0, the equations will be

1
Foi = —DiXG, §5ilm4Flm =0, (3-100)

whose solutions are [i,j] F'1 strings, the quantization of which gives the 5d vector
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multiplet V5. E = |Qg|. When 6 # 0,
1
FOi = — COS QDZ'X6, §5ilm4ﬂm = sin HDZXG (3101)

The solution describes the bound state of the [i, j] F'1 and the [4, j] monopole string
extending along x4, whose quantization also gives the 4d vector multiplet V,. FE =
\/m. tand = Qp4/Qp. In this case, 6 is just the previously mentioned label
for the selfdual strings parallel to the 45 plane. A reduction along z5 is made to get
the states with P; = 0. Selfdual strings extending along z; already have P; = 0 and
is projected to a point in 5d. The rest selfdual strings are projected to a straight line
extending along x4, which is the bound state of the [z, j] F'1 and the [z, j] monopole
string. F'1 has the definite momentum P, = 0, while the monopole string carries no
DO charge, so the bound state is the zero mode of the 6d theory on x4 X x5, which
should be unique, but is now degenerate.

For 1/4 BPS state, when # = 0, we get (3.90), whose solution is the dyonic
instanton, the quantization of which gives the 5d massive (2,1) multiplet with 2°
complex states composed by 1 spin-3/2 fermion, 13 spin-1/2 fermions, 2 selfdual
tensors, 4 vectors and 10 scalars [58], which is actually the previously mentioned
Ts@([1/2]®[0]®[0]). When 6 # 0, the equations are (3.87) and (3.88). The solution
corresponds to the bound state of the string and the monopole string, carrying the
P, P5 transverse momentum respectively. The string and the monopole string carry
the different charge, for example, [i,j] and [j,k]. The quantization gives the 4d
Vi® ([1/2] @ [0] @ [0]) multiplet with 2° real states composed by 1 spin-3/2 fermion,
14 spin-1/2 fermions, 6 vectors and 14 scalars, which is the massive KK mode of
Ts @ ([1/2] @ [0] @ [0]). Notice that for the F'1-D0 bound state, DO is chargeless,

so the corresponding multiplet can only carry the [i, j] charge. On the other hand,
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for the F'1-D2 bound state with the transverse momentum involved, F'1 and D2
may carry the [i, j] and [j, k| charges, and so the corresponding multiplet may have
the index [i, 7, k]. Just as the 1/2 BPS case, DO in momentum other than position
eigenstate of x4 can carry charge.

It is convenient to work in D3 picture. With x4 compactified, under the T-duality
transformation along x4, Ay — X*. Let Fy, = F,, %eabc4Fbc = B,, (3.87) and (3.88)
could be rewritten as

E, =sinfD,X* — cos D, X°, (3.102)
B, = cos0D,X* 4+ sin0D,X°, (3.103)

which are the standard BPS equations for the N/ = 4 SYM theory with two scalar

fields X* and X° turned on. In the language of the N'=4 SU(N) SYM theory,

4
/dSa E,—ep-H, /dSa B, = q-H, (3.104)
(&

where the vectors p and q are the electric and the magnetic charges respectively. H

generates the Cartan subalgbra of SU(N).

p-H =diag(pi,p2,---,pn), a-H =diag(q1, ¢, -, qn), (3.105)

Sip = T = 0. Suppose (X') = v H = diag(vf v}, v}), of > 0§ >
ZU?V,

N
b= /d3x Oatr {X4Ea] =ep-vi=ed pv} ~ P, (3.106)

i=1

N
0 = /d3x 8atr[X6Ea} =ep-vi=¢ed pv~Qp, (3.107)

=1
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4 4

= /d3x Qatr{X4B } Iq v IZ%U ~ —Ps, (3.108)

€ =1

3 6B Am V6 AT &K

/d x 0, tr[X } —q-Vv’ = —Zqivi ~ —Qnra. (3.109)

€ € iz

The energy becomes’

b= \/( B+ QM)+ (Q% — Qi) (3.110)

2t ~ 2* + 27nR. The transverse position of the i, D3 brane in 4-6 plane could be

denoted by (v}, v8), where v! € (—o0, +00).
The generic 1/2 BPS state is the (p, ¢) string connecting the ¢ 7 D3 branes with

the mass

Ezwepwf—vf)—fq(v P (gl — o)+ eplt — )P (3100)

Especially, if e’p(vf — v?) = 4mq(v} — v}), the state will reduce to a [7,1] D2 brane
carrying [j,1] P, momentum, while if 47g(v{ — v?) = —e’p(v} — v}), the state will
become a [i, j] string with [j, ] DO charge. Notice that in this case, the Py momentum
and the DO charge spread uniformly over the D2 branes and the strings.

The simplest 1/4 BPS state is the 3-string junction with i j k representing three
distinct D3 branes with coordinates (v}, v?), (v}, v?), (v, vy). With the charge vector

v, = (1,0,-1), v, = (0,1, —1), the mass is

E = \/[e(v? —vp) — ?(v;‘ — )2+ [g(v? —05) + e(v} — vh)]2. (3.112)

The corresponding state on D4 is a [, k] string with v — v} DO charge and a [k, ]

9For (3.110) to be valid, for the given v/, p q should be selected so that Z, > Z_, otherwise
E=\/(Q — Q)+ (Q% + Q3%
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D2 brane with v — v} Py momentum. Especially, when e*(vf — vf) = 4w (v} — vy),
the state reduces to the [k, j] D2 brane carrying [k,i] Py momentum, while when
dm(v? — vy) = €*(vy — v}), the state reduces to the [i, k] string carrying [k, j] DO
charge. The [i, k| string and the [k, j] D2 brane are parallel, so the bound state does
not exist, nevertheless, with suitable amount of P; momentum and the DO charge,
the bound state may form. With the given Ay, the [i, j] string (D2 brane) can only
carry the [7, j] Py momentum (DO charge). However, they can carry the [, k] or [¢, k]
DO charge (P, momentum), which is actually the transverse momentum of the [j, k]
or [i, k] D2 brane (string).

Now, consider string webs with more external legs. For ¢ > k > [ > j, the [i, j|
D2 brane (string) [k, (] string (D2 brane) bound states do not exist. The bound state
may exist if the [k, (] string (D2 brane) carries the appropriate P, momentum (D0

charge). In general, the charge vector can be taken as p; = 1, p; = —1, p, = 0 for

a#i,5,q =0fora>iora<j.

Py=e(vj —vi), Qp=e(v]—vy),

4 & 4 &
Ps = T Z vafn = o Z Tm(v:-ln—f—l - U’jln)a
m=j m=j
4 & 4 &
Quma = —? Z quSI = o Z Tm(vglﬂ - Ufn)- (3'113)
m=j m=j

This is the bound state of the [i, j] string and r,, [m + 1, m] D2 branes each carrying

U1 — U, [m—+1,m] DO charge. Especially, if the [¢, j] string carries the transverse
momentum Py so that Py + Qnq = 0, the state will reduce to the [i, j] string with
[m+ 1,m] DO charge. Conversely, one may let ¢; =1, ¢; = —1, ¢, =0

4 4
Tm U1 — Uy
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for a # 1,7, po = 0 for a > i or a < j.

47 47
Ps = ?(U;l —v), Qumi= ?(U? — 7))

7 7
P4 = —€ Z pmvfn =€ Z Sm(vfn+1 - Uﬁm)v
m=j m=j

Qe==e> puvd =—€> 8,00, — ). (3.114)
m=j m=j

The corresponding state is the bound state of the [j,¢] D2 brane and s, [m,m + 1]

strings each carrying the v, — vj, Py momentum. When Ps + Qg = 0, the state

4

becomes [j,] D2 brane carrying s, vp,., — Up,

[m + 1, m] P, momentum.

We can give a more precise description for these longitudinal-momentum-carrying
states. For example, for string web in Fig. 3.1, suppose the strings extending in x4
xg directions are (1,0) and (0, 1) strings, while the rest ones are (1, 1) strings, then
the state could be taken as the [i,n] D2 extending along x4 X x4, for which, the [i, j]
[k.l] [m,n] D2 carry the zero Py momentum, the [j, k] [{,m] D2 have the uniformly
distributed Ty |vgy|, Tr1|vg|, Py momentum, while the rest Tpy [0, |, Tet|vie], Tra|vgl,
Tri|vi .|, Py momentums are localized on the ji, ke, lin, my, D4 branes.

[i, 7] D2 (F1) is composed by [i,i+ 1] --- [j — 1,7j] D2’s (F1’s). Each [a,a + 1]
D2 (F1) must have the same transverse velocity, otherwise, the bound state cannot
be formed. On the other hand, the longitudinal momentums along x4 (x5) on each
la,a+ 1] D2 (F'1) are independent, so the degrees of freedom on the [i, 7] D2 (F'1) is
j —i. Altogether, there are N(N — 1)/2 [i,j] D2 (F'1), therefore, the total number
of degrees of freedom is (N? — N)/6. The N? scaling comes from the longitudinal
momentum. Both transverse momentum and the longitudinal momentum carry the
charge. The [i,j] D2 (F1) can only carry the [i,j] transverse momentum but the

[k, 1] longitudinal momentum for any ¢ < k < [ < j. The index calculation in [78§]
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Figure 3.1: The ijklmn string web

also showed the (N®— N)/6 degrees of freedom for the longitudinal momentum mode
on open D2’s connecting D4’s.

If there are more than one scalar fields get the vacuum expectation value, the
string webs with more than three external points may not be BPS. For 3-string
junctions ¢ 7 k, one can always choose two particular orthogonal transverse directions,
in terms of which, the coordinates are (v}, 3;), (v}, oy, B;), (v, ax, Bx) and the

mass formula is

B = \fllagel + (B + vl + llaw] — (B + 0282 (3.115)

When i j k are located in a straight line, 3;;» = 0, (3.115) reduces to the previous

equation.
3.5 The degrees of freedom at the triple intersection of M5 branes

In this section, we will consider the the triple intersecting configuration of the M5

branes 51515. Suppose there are N; M5 branes extending in 0 1 2 3 4 5 direction,
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Ny M5 branes extending in 0 1 2 3 6 7 direction, and N3 M5 branes extending in

01456 7 direction (see Fig. 3.2). The common transverse space is g g o,

M5 x * * * * *
M5 = * * * * *
M5 « * * * * *

Figure 3.2: The M5 M5 M5 configuration

while the common longitudinal spacetime is xg x; with zy the time direction. If
Ty = Tg9 = T19, the N7 + Ny + N3 M5 branes will have N; N, N3 triple intersections
no matter whether each bunch of M5 branes are coincident or not. The black hole
entropy calculation shows that there are NiNoN3 degrees of freedom at the triple
intersections, so each intersection will offer one degree of freedom [79]. The situation
can be compared with the 414 configuration for N; and N, intersecting D4 branes
with Ny Ny 3d intersections. There are U(1) x U(1) massless hypermultiplets living
at each intersection producing the N; Ny entropy. So, we may expect that similarly
the triple intersection will also capture some nonabelian features of M5.

Consider one intersection and label the three M5 branes by 4, j, k. In the most
generic case, i j k M5 branes appear as three points v} v]I vl in x2g X 9 X 19

transverse space. Still, we want to compactify two longitudinal dimensions of M5

branes to simplify the problem. There are two distinct possibilities: x5 x x4 and

101



o X 1. M theory compactified on x5 gives the type IIA string theory, with the i j k
MY5’s becoming the D4 D4 NS5. The triple intersection of the D4 D4 NS5 branes

still have the N; Ny N3 entropy, so the KK mode along x5 can be safely dropped!®.

D3 = * * *
D5 = * * * * *
NS5 = = *  x Kk %

Figure 3.3: The D3 D5 NS5 configuration

Then compactify on x4 with the radius R4 and do a T-duality transformation,
we get D3 D5 NS5 (see Fig. 3.3). The state carrying [i, j, k| index is the 3-string
junction with (p,q), (p,0), (0,q) strings ending on D3 D5 NS5, which will become
massless when v/ = v/ = vf. This is the scenario discussed in [43]. The 3-string
junction is the point-like particle in xq X 1, so they may give the field f¥*(xq, ;)
localized at the intersection. In M theory with x4 X 24 compactified to T2, the 3-string
junction is lifted to a M2 embedded along a holomorphic curve in x5 X x4 Xxg X X9 X 10,
ending on the three M5’s along (pRs, qR4), pRa, qRy [77]. Still, the problem is that

when the three M5 branes intersect, the 3-string junction is at the threshold and may

decay into the component strings. If they do decay, then at the triple intersection,

10The P, momentum may have the relevance with the ¢ = 6 central charge. With one M5 fixed,
there are 4 moduli to characterize the 51515 intersection, while for D4 D4 NS5, only 3 moduli
are left, since the motion along x5 is neglected.
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there will be no BPS state related with all three branes.

D3 =* * * *
D3 =« * * x
NS5 = * * * * *

Figure 3.4: The D3 D3 NS5 configuration

The other possibility is to compactify on x; with the radius R; and also do a
T-duality transformation. We get D3 D3 NS5 (see Fig. 3.4). In xg X xg9 X x19,
no string junction can be formed. We may consider the 3-string junction in, for

example, x; X xg plane. The KK mode along x; cannot be dropped. Actually, in the

T-dual picture, x; is a circle with the radius TFi 7 50 D3 and D3 will be separated

with the distance 7"z in the covering space.

In z; x xg plane, NS5 is a straight line locating in v, while the ¢ j D3’s appear

as two points with coordinates (v}, v), (v},v5), vj; = 7. The simplest 3-string

junctions are given in Fig. 3.5. In Fig. 3.5 (A) and (C), the i0 0j ok strings carry

g

- InFig. 35 (B), the io 00" 0'j strings

the charge (p. ) (p.0) (0,q), tan Zioj =
carry the charge (p,q) (p,0) (p,q), tan Zioo' = tan Loo'j = —%. Actually, there are
also (0,q) oa string and the (0,q) bo" string ending on NS5 with the zero length.

The string junctions like this always exist as long as the suitable charge vectors are

taken. The mass of the string junctions in (A) and (C) is ¢Tp1|vS.| + pTr1|vy]. The

il

103



(A) (B) ©)

Figure 3.5: The 3-string junction in 18 plane

mass of the string junctions in (B) is ¢Tp:1|v};| + pTri|vj;]. In the T-dual picture,
Fig. 3.5 (A) corresponds to ¢ [i, k] monopole strings with tension Ty |vf | wrapping
x1 carrying the [i, 7] longitudinal momentum P, = pm/R;. The situation is similar
for Fig. 3.5 (C). Fig. 3.5 (B) corresponds to ¢ [i,j] monopole strings with tension
TMQIU%\ wrapping z; carrying the [7, j] longitudinal momentum P; = pm/R;.

When v} = v§ = v}, Fig. 3.5 (A) and (C) reduce to the [7, k] tensionless monopole
strings wrapping 7 carrying the [¢, j] longitudinal momentum P; = m/R;, which is
offered by the potentially existing [4, j| massless string. In Fig. 3.5 (B), with oa 00 or
00’ bo' kept, the state becomes the [i, k| or [k, j] tensionless monopole string wrapping
x1 carrying the [i, j] longitudinal momentum P, = m/R; offered by the [i, j] massless
string. Monopole string wrapping x; carrying P, momentum corresponds to the KK
mode of fU¥(zg,x;) along x;. Again, at the intersection, the state may decay into
the monopole string and the string, and then there will be no BPS state relevant to
all three branes.

At the 51515 intersection of three NS54’s or NSbg’s or D5’s, there are type I[TA

strings, or type IIB strings, or D-strings living at the intersection. The F-string or

D-string has the 4d transverse monition thus may produce the ¢ = 6 central charge.
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The oscillation of the F-string or D-string gives the P, momentum. The problem
is that neither F-string nor D-string carries charge, so it is difficult to explain their
relation with the three intersecting branes. Moreover, this picture is different from
the pair-wise D brane intersection case, for which, the state at the intersection is the

i, 7] open string.
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4. THE EFFECTIVE THEORY FOR KK MODES

In this chapter, we will explicitly discuss the 4d fields arising from the quanti-
zation of the 3-string junctions as well as their 5d and the 6d lifts. We will show
that the non-chiral part of the fields are suppressed in 6d, while the chiral part of
the fields are exactly 4N copies of the (2, 0) tensor multiplet. On the other hand,
the scale anomaly of the 6d (2, 0) theory in large N limit is indeed equal to the
scale anomaly of 4N? copies of the (2, 0) tensor multiplet. In 4d, the interaction
between the 3-string junctions is mediated by the N=4 vector multiplet arising from
the quantization of the open strings. We will try to construct the 4d Lagrangian

describing the coupling between the 3-string junctions and the open strings.
4.1 The field content of the 3-string junction in 4d and its 5d and 6d lifts

On N parallel D3 branes, various string webs can be constructed. Let Fj,; and
E..; represent the numbers of the internal faces and the external legs of the string
webs respectively. When Fj,, = 0, E.,; = n, the quantization of the string webs
gives the supermultiplet with the highest spin n/2 [69]. For n = 1, we get the
hypermultiplet in the fundamental representation of U(N); for n = 3, we get the
N=6 multiplet in the tri-fundamental representation of U(/N). The gauge interaction
is mediated by the open strings with n = 2, the quantization of which gives the N=4
vector multiplet in the adjoint representation of U(N). With the co-prime p and
q fixed, the low energy effective theory describing the interaction of the (p,q) open
strings is the N = 4 SYM theory with the dimensionless coupling constant

_lp—ar?

9(p,q) S

106



Hypermultiplet and the N=6 multiplet can also be added as the matter.

D3 with the transverse x45 compactified has the R-symmetry SO(5). The ex-
istence of the 3-string junction will also need the D3 branes to be separated along
another transverse direction, say zg, which will then reduce the R-symmetry to
SO(4) ~ SU(2) x SU(2). Quantization of the 3-string junctions gives the mas-
sive N = 6 multiplet in 4d, whose representation under the little group and the

R-symmetry group SO(3) x SU(2) x SU(2) is

field SO(3) x SU(2) x SU(2)
Vv, (3:1,2) ®2® (3;2,1)

¢ [30((21L1)®e2®(2:2,2)8(2;3,1)
@

(1;3,2) ®2® (1;2,1) ® 2 ® (1:1,2)

The 12 real supercharges have the representation

supercharge | SO(3) x SU(2) x SU(2)
o (2:1,2)
(2 (2;2,1)
Qs (2;2,1)

When the SO(5) R-symmetry is recovered, the representations of the fields and the
supercharges under SO(3) x SO(5) x SU(2) are

field | SO(3) x SO(5) x SU(2)

=~

(3;1,2) ® (3;4,1)

(2;1,1) & (2;4,2) & (2;5,1)

(1;5,2) @ (1;4,1)

S |
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supercharge | SO(3) x SO(5) x SU(2)
Q (2;1,2)

There are altogether 64 real states arising from the quantization of the 3-string
junction [i, j, k] with the give charge vector (p,q,—p — ¢). The charge conjugate is
the 3-string junction [¢, j, k] with the charge vector (—p, —q, p+ ¢q). So finally, we get
the CPT self conjugate multiplet with 64 complex states.

The decomposition of the N=4 vector multiplet under SO(3) x SU(2) x SU(2) is

field | SO(3) x SU(2) x SU(2)
Ay (3;1,1)

3 (2:1,2) @ (2:2,1)

X (1;2,2) ® (1;1,1)

The 8 real supercharges have the representation

supercharge | SO(3) x SU(2) x SU(2)
@ (2;1,2)

When the SO(5) R-symmetry is recovered, the representations of the fields and the
supercharges under SO(3) x SO(5) x SU(2) are

field | SO(3) x SO(5) x SU(2)
Ay (3;1,1)

3 (2;4,1)

X (1;5,1)

108



supercharge | SO(3) x SO(5) x SU(2)

They are all singlet under the second SU(2) of the R-symmetry group. There are
16 real states arising from the quantization of the [i, j] open string with the charge
vector (p, —p). The charge conjugate is the [i,j] (—p,p), or equivalently, the [j,]
(p, —p) string. So, no extra states need to be added. We get the CPT self conjugate
multiplet with 16 real states.

When lifted to 5d and 6d the little group and the R-symmetry group becomes
SU(2) x SU(2) x SU(2) x SU(2), under which, the fields and the supercharges have

the representation [58, 68]

field | SU(2) x SU(2) x SU(2) x SU(2)

S, (3,2:1,1)
a, (2,2;1,2) ® (2,2;2,1)
A (1,2:1,1) & (1,2:2,2)
by (3,1;2,1)

x | (2,1:1,1)®(2,1;3,1) ®(2,1;2,2)

(1,1;1,2) ®(1,1;3,2) & (1,1;2,1)

field | SU(2) x SU(2) x SU(2) x SU(2)
A, (3,1;1,1)

¢ (2,1;1,2) @ (2,1:2,1)

X (1,1;2,2) ® (1,1;1,1)
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supercharge | SU(2) x SU(2) x SU(2) x SU(2)
QM (1,2;2,1)
Q (2,1;2,1)
Qs (2,1;1,2)

Notice that under the second SU(2) of the SU(2) x SU(2) little group, (b, x, P),
(A, & X) and (Q*2, Q) are all singlet, while (s,, a,, A) and Q' are doublet. As a re-
sult, the supersymmetry transformation generated by (Q*?, Q3) will keep (b, X, P)
(Susau, A) and (A, &, X) separate, while the supersymmetry transformation gener-
ated by Q** will transform (b, x,®) and (s,,a,, A) into each other. (b,,,x, ®) is
the chiral sector of the (2, 1) multiplet (b, X, ®, s, a,, A).

When the SO(5) R-symmetry is recovered, the representations of the fields and
the supercharges under SU(2) x SU(2) x SO(5) x SU(2) become

field | SU(2) x SU(2) x SO(5) x SU(2)

Su (3,2;1,1)
a, (2,2;4,1)
A (1,2:5,1)
b (3,1:1,2)
X (2,1;4,2)

(1,1;5,2)

field | SU(2) x SU(2) x SO(5) x SU(2)

AM (3717171)
§ (2,1;4,1)
X (1,1;5,1)
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supercharge | SU(2) x SU(2) x SO(5) x SU(2)
QM (1,2,1,2)
@y (2,1;4,1)

Let SU(2), and SU(2)y represent the first and the second SU(2) of the little group

respectively, SU(2)r represent the SU(2) in R-symmetry group, then (b, x, ®),
(8psapu, A) and (A, &, X) all form the [(3,1),(2,4), (1, 5)] representation of SU(2); x
SO(5). With respect to SU(2)s x SU(2)r, (bu, X, ®), (su,a,,A) and (A,,§, X)
are in the (1,2), (2,1) and (1, 1) representations respectively. (), is the standard
(2, 0) supercharges in the 6d (2, 0) theory, and is in the (2,4) representation of
SU(2); x SO(5), (1,1) representation of SU(2)2 x SU(2)x. Therefore, the way @,
acting on (b, x, P), (su, au, A) and (A4,,&, X) is exactly the same as the action of
the (2, 0) supercharge on the (2, 0) tensor multiplet, or the N=4 supercharge on
the massive N=4 vector multiplet when reduced to 4d. (b,.,x,®), (s,,a,, A) and

(A, &, X) transform separately. Namely,

Qv . @

b & x5 D, Sy a, SN, AuggQ”

X, (4.2)

On the other hand, Q* is in the (1,1) representation of SU(2); x SO(5), (2,2)

representation of SU(2)y x SU(2)g, so it can only make the
Sy % buv, ay, = X AE D (4.3)

transformations.
4.2 The conformal anomaly of the 6d (2, 0) theory and the (2, 1)  multiplet

The conformal anomaly of the 6d (2, 0) theory and the (2, 1) multiplet

We may determine the 5d and 6d Weyl weight of the (2, 1) multiplet (b, x, P, s,
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a,,A). by, has the dimension 2, a, has the dimension 1, so if n®* and 7, are the
supersymmetry transformation parameters of Q** and @), respectively, s,, n** and
1, will have the dimension 3/2, 1/2 and —1/2 respectively. The Weyl weight of the

whole multiplet is then

field | s, |au| A |bw | X | @

weight | 3/2| 1 [3/2] 2 |5/2|2

On the other hand, when reduced to 4d, the (2, 1) multiplet becomes the N=6

multiplet (S, V, (, ), for which, the Weyl weight is

field | S, | V.| ¢ |

weight | 3/2 | 1 |3/2] 1

In 4d, N=6 multiplet is the conformal field, however, in 6d, only the (b,,, x, ®) sector
in the (2, 1) multiplet is conformal.

The kinetic terms for the (2, 1) multiplet in 6d can then be written as

- 1
St = [ d[dbt Asdb+ Sy Dy + 506" 0,0
1

77 [500" 7 Busp + da” A xda+ SA 9] (4.4)

+

All fields are complex and are in the tri-fundamental representation of U(N). The

reduction along x5 gives

] 1
Sy = /d5:r Rs[db™ A xdb + %XV” X+ §8ugb+3u¢]
Rs i

+ w2 [fﬂ“”pausp +da™ A xda + %5\7‘%‘9@]. (4.5)

Reducing along x4 further, b, x, ¢ will absorb R4 to give the vector a, spinor y, and

scalar ¢ with the dimension 1, 3/2, 1, respectively, i.e. R4b ~ a, Ryx ~ X, R4 ~ .
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The 4d action is then

St = gz/d4m [dd+A*dd+;i7“8MX+;8“@%5)“&)—}—;Suv’”p(‘?uquLdaJ“/\*da—k;Xv“ﬁuA]

(4.6)
with no dimensional coupling constant. (4.6) is the 4d free action for fields arising
from the quantization of the 3-string junction, which is our starting point. (4.4) and
(4.5) take the present form due to the requirement that the dimensional reduction to
4d should give (4.6). In the decompactification limit, R4, R5 — 00, the non-conformal
sector (s, a,, A) in (4.4) vanishes since (b,,, x, ) and (s,, a,, A) are assumed to have

the comparable magnitude.
' 1
S8 = / A [db* A xdb+ SX7 0 + 5067 0,9, (4.7)

With the 6d kinetic terms given, it is straightforward to calculate the free field
conformal anomaly of the (2, 1) multiplet. If the free action for a field f in the curved

background is fAyf, the partition function and the effective action will then be
1 1
7z = / df e BB IAS T = Sindet A, (4.8)
The heat kernel expansion is [80]

6
(Tre™*2 )0 ~ Y s%(p_ﬁ)/ d%x /g b,. (4.9)
p=0

The logarithmical divergence comes from bg, which is the conformal anomaly. bg =
bs(Ay) is determined by the type of the field.
Go back to (4.4), in the Ry — oo limit, (s, a,, A) do not have the contribution to

the conformal anomaly. According to (4.1), (b, X, ¢) contains 10 scalars, 2 selfdual

113



tensors, 8 chiral spinors, all complex and are in the tri-fundamental representation
of U(N), so (4.4) is just the free action for 4N? copies of the (2,0) tensor multiplet.

The conformal anomaly of one copy of (2,0) tensor multiplet is [81]

1 245 :
biens = e (== Bs — 16801, — 4201 + 140L; + V,.J"), (4.10)

so the conformal anomaly of (b,,, X, ¢) is just

(buvx,®) 4N3 245 ;
be Gy (g Fo — 108011 — 42003 + 1401 + V.. (4.11)

The type-D anomaly V,J! is not written explicitly, since it is scheme-dependent.
AdS/CFT predicts that in large N limit, the conformal anomaly of the interacting
6d (2,0) theory should be

AN 35 :

Compared with (4.11), the coefficients in front of Fg, the type-A anomaly, are differ-
ent, while the coefficients for type-B anomalies are the same. In 6d, the coefficients
of the type-B anomalies are related with the 2 and 3 point functions thus is un-
renormalized. On the other hand, the coefficient of the type-A anomaly is related
with some 4 point functions, so its value may differ in free theory and the interacting
theory [81]. The situation is different for 4d N = 4 SYM theory, in which, the type-B
and type-A anomalies are related with the 2 and 3 point functions respectively thus
are both un-renormalized. As a result, b, arising from N? copies of the free N = 4
vector multiplet exactly gives the conformal anomaly of the full 4d interacting theory.

The (s,,a,, A) sector is suppressed in 6d. The (b, x, ®) sector then form the

representation of the (2,0) supersymmetry. Q', the (0,1) part of (2,1) can be
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neglected in 6d, while the remaining )., the (2,0) part of the (2, 1), is the surviving
supersymmetry in 6d, so the 6d theory is indeed chiral.

Aside from (b, x, ®) and (s,,a,, A), in 6d, we also have (B, ¥,Y) in adjoint
representation of U(N), arising from the selfdual string. They are the 6d lift of the

5d vector multiplet (A, &, X).

Ay~ RyB,  E~RyU, X ~ RyY. (4.13)
The kinetic term for (B, V,Y) is
) — 1
o8 = / &Sz [dB A *dB + %\Iwﬂaﬂxp + 50"V 9,Y). (4.14)

The interaction terms take the form of yv;X'x, so (A,,&, X) and (b, x, ®) are of
the comparable magnitude. When Ry — 00, s§ — 0. (B, ¥,Y) do not have the

contribution to the conformal anomaly.
4.3 The coupling between the N=6 multiplet and the N=4 vector = multiplet

The coupling between the N=6 multiplet and the N=4 vector multiplet Now we
need to consider the coupling between the N=6 or (2, 1) multiplet and the N=4 vector
multiplet. The first subtlety is that the N=6 multiplet is the N x N x N matrix, while
the N=4 multiplet is the N x N matrix. It is necessary to define the multiplication
between these two kinds of matrices. There are two kinds of multiplications. Let U ;

be the unitary N x N matrix, V;‘ the adjoint N x N matrix, then

U =000 (4.15)

(VF)I*E = Vi Vo fme e Ve fin, (4.16)
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For the 3-string junction with the charge vector (ky, ko, k3), let f(sz ko y) TEDTESENDLE

the field in N = 6 multiplet, the covariant derivative can then be defined as

ijk ijk
D;u' (i}l ko, kg) :U'f k1,k2, k‘3 ( /Jf) .361 ko, k3 (4]‘7>

— ijk i AT imk Ak ijn
= 0 f (k1,k2,k3) —iA (k1)p lf (k1,k2,k3) ZA(’W)H mf(klyk%k?)) ZA(ICS)# nf(kl,kmks)’

where Ay, Ary), Ay are gauge fields for open strings with the charge vector ki,

ks, k3 respectively. Under the local U(NV) gauge transformation,

ijk mn P -
f(ijﬂ,kQ,kg) - UjU3U, lkl ka,ks) A( — U, U Aleyun 10, @LU]-“, (4.18)

ka)p j

ulejgfkg k) = ULURUR D f ks o)) ™™ (4.19)

For K, L, M in anti-tri-fundamental, adjoint and tri-fundamental representation
of U(N),
LM = (LM)™ = LEMP* + L M®° + LEM ™, (4.20)

LK = (LK)abC = Lngbc + LgKaqc + LzKabr, (421)

K(LM) = Kaupe(LM)™ = Koo LAMP + Koy LYM®9 + Ko LEM ™ (4.22)

= (LK)gpeM® = (KLYM = KLM.

Li(LoM) — La(Li M) = [Ly, Lo M, (4.23)

Li(LyK) — Lo(L1 K ) = [Ly, Ly K. (4.24)
As a result,

D,(LM) = (D,L)M + L(D,M), (4.25)

116



where D, L = 0, L —i[A,, L] is the ordinary covariant derivative for fields in adjoint

representation.

[D DS k) (4.26)

imk k 9n
3 [F(kl);wlf (k1,k2,k3) + F(kg);w mf(k17k2,k3) + F(kS)AW "f(ljfhka,k?,)]

ik
- ( ﬂVf)chl,kz,kg,

where Fii,)u is the field strength of A,),. Although Ly (LoM) # (Ly1Lo)M, fields
in tri-fundamental representation have the enough algebra properties so that during
the calculation, we can simply take them as the fields in fundamental representation.

To see it more explicitly, consider the coupling between the N=1 hypermultiplet
in tri-fundamental representation and the N=1 vector multiplet in adjoint repre-
sentation. The superfield for hypermultiplet is ®“*, while the superfield for vector
multiplet is V. Under the local U(N) gauge transformation,

B s (e MM (TP, @, = (NN ) (N ), (427)

n > pgrs

() = (72 )iy, (4.28)

where A and AT are chiral and anti-chiral superfield in adjoint representation respec-

tively.
e’ ® =0 (eV)i(e" )] (e )k — DTV D (4.29)
is then gauge invariant. In WZ gauge,
1% Lo
:1—|—V+§V . (4.30)
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Plug (4.30) into ®Te"®, the D-term is
1
DTV ®lyppg = [@TD + TV + 5c1>+va1>]|999—9. (4.31)

This is almost the same as the situation when ® is in fundamental representation.

The only difference is that the way V' acting on @ is as that in (4.16). Also,
PHVVE = TV (VD) = (2HV)(VD) # T 1V20, (4.32)

Now, we may try to write down the interacting Lagrangian for the N=6 multiplet.
For simplicity, we will consider the case when the SO(5) symmetry is recovered, that
is, the R~-symmetry group is SO(5) x SU(2). N=6 multiplet is the 4d KK mode of the
5d or 6d (2, 1) multiplet. The reduction of (b, x, ®) gives (ag!, x” 1, ol a1) while
the reduction of (s,,a,, A) gives (s,,a}, M. 9, 7). For the sake of the explicitness,
the R-symmetry index is also added. oy = 1,2, v =1,2,3,4, I = 1,2,3,4,5. The

N=4 vector massive multiplet is then (4,, &7, X7).

field | SO(3) x SO(5) x SU(2)
'3 (2;4,1)

X! (1;5,1)

field | SO(3) x SO(5) x SU(2)
as (3;1,2)

X7 (2;4,2)

Pl (1; 9, 2)
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field | SO(3) x SO(5) x SU(2)
S (41, 1)

a) (3;4,1)

M (2;5,1)

0 (2;1,1)

@7 (1;4,1)

Under the reduction, s, — s, + 9, a, — a + 7.
The massive fields (aj*, x7 1, ® 1) in 4d are the KK modes of the 6d massless
fields (Bfnln,)? a1 ®ler) where m = 0,---,5. The 6d kinetic terms for (Bfnln,)ﬁ o1

@7 1) can be written as

. 1.~ . o . 1 .- .
Lk — 7h%—7|l-hlmn ar g 35(7 l,ym mX'yozl + 78m(1)1041+am(1)1a1’ (433)

24 2 2
where A1 = 36[15%74. (4.33) is invariant under the supersymmetry transformation

0Bty = 1 Y X, (4.34)
1, . i

31" Rl Yy O BT

(5(@[ ar _7;7777]567 aq )

5%7 ar

(4.34) is closed up to a gauge transformation for Bfnln.
00 bt, = -+ 4 2003 (Yn O @'t = 70, @ )y (4.35)

The compactification on z° gives the 5d KK modes with the momentum ps.
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Osf = ipsf, so (4.33) can be rewritten as

~ 1 i 2 = a1 g ST a Y
Ly = ﬂhfthkal+%bw1+bgy+%>€” W’MW—%X” X7 (4.36)

1 .- . 2 _ .
+ 781(131 aﬁ—aiq)l a1 + &(I)I oq—l—cI)I (e %1
2 2 ’

where
b — e 4 Loge — Loger — — Lje (4.37)
ij J D5 1Y5) Ds Y51 Ds 5t :
is gauge invariant. 7,7,k =0,---,4, hf;lk = 38[2-b§“,;]. The selfduality condition becomes
—6ipsbi = €ijrmh™™ 1, (4.38)
or equivalently
—2ipsb3t = €m0 b, (4.39)
which indicates the equation
O gy, — pabSE = 0. (4.40)
b =0, so (4.40) is equivalent to
b — pabsy = 0. (4.41)

(4.36) can be corrected into

1. 2 ot ey <y a
Ly = galbf’“mh?;ﬁ%b?ﬁb’”l+%>€” W’&-V"l—%fﬂ X (4.42)

1 .~ ~ 2 -
+ 781(1)1 aﬁ—aiq)I (<31 + Zﬁq)l oq—l—q)[ O‘l.
2 2
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The supersymmetry transformation becomes

w1 . .
0bi = yigX" ™t — 27577”75(%@0(” P =0T ), (4.43)

~v o 1 ijk 1« Zp ko 1 e . 7 «
0K = oV R + =P b iy 'R ipsysy &,
5@[ o1 —if]WWIf(v o1

(4.43) is closed and also leaves (4.42) invariant. Also, the supersymmetry transfor-
mation does not does not give b} a gauge transformation any more.
The further compactification on x* gives the 4d KK modes with the momentum

(Pa,P5), Oaf =ipaf, Osf = ipsf. From (4.38), b7} can be solved in terms of by}, i.e

5
b = s [ (D05 — B3 — ¥ (9PbY o1 — gpte o],

" 5 Cuvpo (4.44)
where p,v,p,0 =0,---,3. So, it is enough to consider the action with bj;. Let
Ryby = al', R0 =X, R =o', (4.45)
consider the 4d action
RiL; —la“” O‘”aZ‘}/ — Zﬁ—;pgazl+a“ a (4.46)

7;* « « 1 =Y & o
_§X’Y 1,yuauX’Y 1+§X7 1(]?4'74 _‘_p5,y5)x’y 1

1 p2 +p2
— Zorplaty plo 4 S5plaatgpla
2 ! 2 ’
and

5 4
o D?Ya — P75 1 _
005 =i =757 X"+ 57 V5740 X Y, (4.47
. [(pi +p§)1/2] g (p3 + p?)1/2 ! )
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5yt = }[pf’m — s
(pf + p3)'/?

Iy al, —i(pg + p3) PPy ey

2
+ 3, DT i (payt + psy® )y @,

5(1)1 ar _iﬁ'y,ylx'y a1

(4.46) is invariant under the supersymmetry transformation (4.47), which is the (2,
0) supersymmetry transformation generated by Q.. (4.47) is closed. [d;, d2] does not

generate the gauge transformation for aj

1. which is massive.
(4.46) is the free kinetic term for (ag', x7 1, ®l 1) Similarly, the free kinetic

term for (s, a}, M 1), 7) can be taken as

. . - .
L; = —%§M7“”paysp — Za‘“’ 7+a7w — %Alv“ﬁu)\l — %1&7“ Y (4.48)
1 1w pi + D
= 50" 0" — 55" Py + p5y ")y — S e e
1- 1- p2 + p2
+ SN (P + Py )N+ SP(pay + Py — H e e

Under the (2, 0) supersymmetry transformation generated by @,

7; vV, 1 v, 1 s UV
0su = 7 (V"% = Wy )ag,n” — cOuldiy apn’ (4.49)
pay*t + psy° gy ) — 2(p"va + p°s) (T — 37 Ja” )
pi+ P v 3 w2 ’
5 4
_ P Ya =P Y5 I _ I
oay, = 0"s, — i [ 551 VN — 5751 Vs VIO
8 8 (P +p)v2 " (p% + p3)'/? g

1 5 4
2 (pd+p2)i2
6 = —inum 0" + (p*ya + pPys)n @7,

o7 =",

v nal, —i(pi + p2) Py Py el

(4.48) is invariant.
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The (0, 1) supersymmetry transformation generated by Q' is

i, L o v
05 = 707" = 39" )agpn™ — SOu(4i"ain™ (4.50)
4 5 4 5
PV 057y an ey, 20 EP ) 0 L e
g ) 4 S = S )
5 4
« —a P VA =P 5 1 o
oay' = n*'s, + i1 1[w]%¢ - Wﬁ 5740,
o _ L PP =" o . .
(5X’Y 1 — i[m]vu n I(IZV _ Z(pi +p§)1/275'}/4’}’ual77 1
4 5

— iy 0" + (pya + PP )™ ¢,
6(131 ar ﬁal)\l,

s [p574 —p*ys

oay), = i1 vat

1
- ‘- - - - o 4 | Y a1
(pi +p§)1/2]’yﬂx (pi +p§)1/277 75’748;»( )
5)\1 — %Lnalauq)l oy Z-<p4fy4 +p575)77a1q)1 061’
10" =051 i or or - o
U=l M — i+ ) Py

57 = ¥y

The interaction is mediated by the N=4 multiplet (A4,,&7, X7T). (A4,,&7, X7) is

the singlet of the SU(2)g, so the possible couplings are
(sural, N, ©7) — (A, €, XT) and (aft, X7, @7 %) — (A,,8, XT). (4.51)

(8 @y, A) is suppressed in 6d, therefore, the 4d fields of interest are (ag*, x” *, Pl o)
and (A,, &7, XT), while the relevant 4d coupling is (agt, x7 e, Pror) — (4,8, X7).

With 9, replaced by D,,, the kinetic terms become

1 2 2
Lk = _zalw a1+az11j _ Dy ;—pE)azzl—l-au ait (4'52>
_3.—70‘1 kD Val_i_}—val( 4+ 5) vy aq
2X T PuX 2X Pay P57y )X
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- EDN(I)I a1+DM(I)I oy p421 +pg@[ 011+(I)I ai
2 2 ’

We may add the interaction terms

1 L o PPy — 0™y
L, = ¢y« Tevgplor _ Zgyearl 12 P 109 pey an 4.53
X e X [(pZer%)l/Q]’y {a;, (4.53)

i 1 1
_ g a1+F;an a1 5)27 al'YIXIX’Y ar §a31+XIXIaM a1

1
— QT FX,, X )07 — §Q)I°‘1+XJXJ<I>?1.

The supersymmetry transformation of (a$?, x7 **, ®'*1) is then modified into

5 gt
Sa®t = i_7[p Ya P s

1
o WX M e 15D 4.54
(pier%)l/?] 8 (2 + 22t P (4.54)

=
v a1 L p°yy — p'oys P B ) ON1/2, 5, 4 p ar, vy
ox = 5[wh na, —i(py +p5) "y a,n
5. _ o4
. Z[p V4 p 75]717/1,777)([&31

(p? + p2)1/2
+ DR i (phyy 4 pPys )y T — iy T X9

(S(I)I a1 _i,r—]q/,YIX'y al'

For (A,,&7, XT), we have

i
0A, = —5777%@ (4.55)
1 .
08" = 57" Fpu” + 3D X 5y = 3iX Xy,
6X! = —;ﬁwf@.
L = L; + L; is not completely invariant under the supersymmetry transformation

(4.54) and (4.55). Some additional terms are to be added to make the susy comple-

tion.
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If we are only interested in the 6d dynamics, then this is all we need to con-
sider, since (s, a,, \) is suppressed in 6d, (s, a}, N ) 7) and (agt, X7, ol 1) are
decoupled. Nevertheless, in 4d, we can still write down an interacting Lagrangian
describing the coupling between (s, a},, ', ¥, ¢7) and (A, &7, X'). With 9, replaced

by D, the kinetic terms (4.48) becomes

[ 1, - i - 1
Li = 53//7“ ’Dys, — Za“ 7+aZW + iAI’YuDu)‘I + 57/17”);@ + §D“¢7+DM907
1 B Y p2 + p2
+ 53,/% (pay* + psy°) s, + %ajﬁa‘”
1- 1_ P2 + p?
= APy + ps7")AT = SP(pay + 07N+ S
with the interaction
L? = zg VTG 4 z?ﬂf”gp”’ + }5\17[[]75% _p4%]’y“§7a7 _ Eau R al
' 6" 6 6 (p% + p3)1/2 "6 g
1 1- 1-
+ 55" X sy 4 S X 4 SN XA
1 1
— §aZ+XIX1a‘” + §¢7+X1X1g07.
The (2,0) supersymmetry transformation is corrected into
5 _1( vp, _ 1 PYa) ’Y_}D (4.V77+p5’y4+p575 gl n)
S = 3\ T g0y )yl — G Py ay 7+ 2 VAN

2 4 + 5 1
+ L 743 P) (@™ = 5hwa” ") + v Xma),
5 4
_ PP — P 1 _
e L s L

1 5 4
0N = S [
2" (pi+ph)Y
ny U[p"’w — s
(p3 + p2)1/2
5 = —iry,m DFoT + (p*ys + pPys)n 7" — 4 X7,

vy, — i(pd + p2) Py Yy

V' X gal)t,
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oY ="

Still, both L? = L3 + L? and the above transformation are to be completed.

Up to present, we only considered the Lagrangian for (su,az,)\f ), (BL, X7,
o) (A, €7, XT), when the SO(5) R-symmetry is recovered. If the R-symmetry is
SO(4), the 6d/5d field content are (s, a, g, a2, 1, 1*) and (b5}, Y022, g, PFHe2,

®1), which, when compactified to 4d, becomes
(S/u a,u B CLZQ, w7 wgz) — (8u7 P, a,u B a;ofa 9037 gpa27 w7 wg2)7 (456>

(s, 97172, g, BT, D) — (at, 172, g, DR, D). (4.57)

o2

op 00,3 =1,2. (A,,7,X") could be written as (A,, £, &5, X5, X).

Ly and L7 then become

L, = —Za‘“’ al*aﬁ,ﬂ + P 5 p5al‘;1+a“ 1 (4.58)
i T, a1, 1 T, a,o
+ §¢ 1, 2,YHD“¢ 1,002 §w 1, 2(])4’)/4 +p575)¢ 1,02

i Ne’ o 1 R 67
+ 51/1317#1);11%1 - 57%1(17474 +p575)¢51

2 2
Py + D5 2 a1,a0+ 01,00
LR

1
+ §Duq)gl,a2+D#<bg1,a2 +

2 2
+ ;Duq)al—i-DHq)al 4 ]74;_%(1)0414-(1)041’

) 1 1
? = %Eufy’“’prsp — Za“” 2t — zag”awg (4.59)

i T a i - i—
+ 53U Dudg® + ¥y Dt + 5 p7 Dup
1. w1
+ iDuSO 2+DM(,D 2 §DM¢EDMSDB
2 2
Y2 —;_p5 (a/.L aﬁa;f + ag-ﬁ-au ﬁ)

5,7 (pay* + psy®) s, +

1
2
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1. . _ 1

— SU5 (P + 7" )E — (e + 057N = 5p(pan” + P57
2 2
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5 0™ + ohog

1
2
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5. CONCLUSIONS*

5.1 Hopf-Wess-Zumino term in the effective action of the 6d (2,0) field theory

revisited

We discussed the WZ term in the low energy effective action of the 6d (2,0)
field theory in the generic Coulomb branch. As a topological term, WZ term does
not depend on the metric nor the coupling, so it is protected. For such terms, the
supergravity calculation and the 1-loop calculation in field theory will give the same
result. There is no available 6d (2,0) field theory at present, so we will first calculate
the WZ term on supergravity side. We then show that the obtained WZ term could
indeed compensate the anomaly deficit, indicating that it is the desired term required
by the anomaly matching condition.

For SYM theory in a generic Coulomb branch, each WZ term involves one root
e; —e;, which is consistent with the fact that the supergravity interaction is produced
by the integrating out of massive strings connecting the i;, and the j,; D branes.
On the other hand, for M5 branes, each WZ term involves two roots e; — e; and
er —e;. One may expect that such kind of triple interaction may be generated by the
integrating out of the massive objects carrying (i, j, k) indices. A natural candidate
is the string junctions with tension (|¢;;|, |¢;x|, |¢ri|) proposed in [20, 21].

6d (2,0) theory should be a theory for strings. These strings are strongly-coupled.
In [23], the equations of motion for the 3-algebra valued (2,0) tensor multiplet were

obtained. Later, in [31], it was shown that these equations have the natural in-

*Part of this section is reprinted with permission from “Hopf-Wess-Zumino term in the effec-
tive action of the 6d, (2,0) field theory revisited” by S. Hu and D. V. Nanopoulos, JHEP 1110,
054, (2011), http://link.springer.com/article/10.1007/JHEP10(2011)054, Copyright 2011 by SISSA
- Trieste (Italy) and “Momentum modes of M5-branes in a 2d space” by S. Hu and D. V. Nanopou-
los, JHEP 1206, 139 (2012), http://link.springer.com/article/10.1007/JHEP06(2012)139, Copyright
2012 by SISSA - Trieste (Italy).

128



terpretation as the supersymmetric gauge field equations in loop space, while the
auxiliary field C* is the vector tangent to the loop, or in other words, the selfdual
string. 3-algebra and the string structure are two appealing features for a theory
on M5 branes, so we take the equations in [23] as the starting point to derive the
WZ term. To relate the WZ term obtained from the field theory to the WZ term
on supergravity side, we made special assumptions on fermion mass, which could be
determined only after the specification of the 3-algebra. It may be possible to get
the H3 A A3 part of the WZ term, but for Az A Fy, some indefiniteness exists and we
can at most make the both sides have the similar structure. Moreover, it seems that
Hj3 A Aj requires the 5d momentum while A3 A Fy indicates the 6d dynamics.
Finally, we discussed the representation of the 3-algebra. If the fundamental
degrees of freedom carry three indices, the natural algebra structure for them is
the 3-algrbra with N3 scaling elements. An obvious problem is there is no finite
dimensional Euclidean 3-algrbra satisfying the fundamental identity except for Ay.
We show that the fundamental identity in [23] could be relaxed to a weaker version,

but even though, it is still difficult to get a satisfactory representation.
5.2 Momentum modes of M5-branes in a 2d space

We considered the momentum modes of the M5 branes on a plane, which are the
transverse momentum of the selfdual strings parallel to that plane. Different from the
D branes, on which, the momentum modes are carried by the same kind of point-like
excitations, here, the unparallel momentum modes are carried by selfdual strings with
the different orientations. Selfdual strings with the same orientation gives a 5d SYM
theory with the field configurations taking the zero Pontryagin number. The original
6d (2,0) tensor multiplet field is then decomposed into a series of #-parameterized

5d U(N) SYM fields, among which, fields labeled by the same 6 have the standard
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SYM-type interaction. Fields labeled by different § are associated with the selfdual
strings with the different orientations. As a result, the [i, j]+ [7, k] — [¢, k] relation is
not valid and the coupling cannot be realized as the standard matrix multiplication.

Since the bound state of the [7, j] 6 selfdual string and the [j, k] 0, selfdual string
is not some [i, k| selfdual string but the 3-string junction, we may also include the
string junction into the theory. Each 3-string junction is characterized by (61, 65, 03),
forming the tri-fundamental or anti-tri-fundamental representation of U(N), and
may couple with the 0; 0, 65 selfdual strings in adjoint representation of U(N).
i, 1)+ (1,7, k| = [i,7,k], [4,m] + [i,m, k] = [i,4, k], [k,n]+ [i,7,n] — [i, ], k]

The quantization of the 3-string junction will give the higher-spin multiplet, for
which the simplest one is the (2, 1) multiplet with the highest spin 3/2. It is unclear
whether the introducing of the 3-string junction will solve the problem or bring more
problems, since at the beginning, we only want to get a theory for the (2,0) tensor
multiplet. The incorporation of the 5d massive (2,1) multiplet into the 6d (2,0)
theory compactified on S was also discussed in [68], where it was suggested that
the algebraic structure of the 6d (2,0) theory may have a fermionic symmetry in
addition to the self-dual tensor gauge symmetry.

Each 3-string junction carries three indices, so they may offer the N3 degrees of
freedom on N M5 branes. However, the existing of the 3-string junction is severely
restricted by the marginal stability curve, outside of which, the string junction may
decay into the strings. For the given vacuum expectation values of the scalar fields
on M5, the momentum of the string junction on that plane cannot be arbitrary.
Especially, on coincident M5 branes, the 3-string junctions are at best at the marginal
stability curve, so it is quite likely that they may decay.

Maybe it is easier consider the problem in the dual D3 picture. For D3 with

the transverse dimension z'*5 compactified, the winding mode of the (p,q) strings
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is dual to the (n/R4, m/R5) momentum mode on M5. For the give p and ¢, open
(p, q) strings with the arbitrary winding numbers have the SYM interaction. Then
the questions are whether the open (p, q) (r, s) strings can interact or not, if can, in
which way, what is the situation when D3 branes are coincident.

Among all selfdual strings, only those parallel to a given plane are taken as the
perturbative degrees of freedom; nevertheless, different planes give the dual theo-
ries. One may compare the 6d theory with the 5d and 4d theories coming from the
reductions on x5 and x4 X x5. Obviously, selfdual string extending along x5 is the
only candidate to define the 5d theory. However, for 4d theory, any selfdual string
parallel to the 45 plane, carrying zero transverse momentum along it can act as the
perturbative degrees of freedom. Only one is selected to give the 4d field, while the
rest ones define the dual theories. Similarly, for 6d theory, selfdual strings parallel
to a specific plane can be taken to give the 6d field, while the other planes give the
dual versions. M5 on S} x Sy x S3 X S4 x S5 is dual to D3 on S; x §; x S with a
transverse S, where {1,2,3,4,5} = {i,j, k,I,m}. The (p,q) string ending on D3
winding S"™ is dual to the selfdual string extending in (¢R;, pR,,) direction, carrying
transverse momentum in x; X @,,, localized in z; X x; x x,. There are 10 possible
dual theories, corresponding to choosing the selfdual strings parallel to 10 different
2d subspaces.

M5 on T% is SL(5, Z) invariant. However, the 6d theory on M5 does not have the
explicit SL(5, Z) invariance. The SL(5,7) U-duality transformation, or the SO(5)
U-duality transformation in R®, is not a simple differorphism transformation but
is also accompanied by a reallocation of the perturbative and the nonpertubative
degrees of freedom. The U-dual 6d theories are equivalent, so the SL(5, Z) transfor-
mation is just like a change of the gauge. This is similar with the D3. Although D3

is S-duality invariant, the 4d theory on D3 does not have the SL(2,7) invariance.
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The nonpertubative SL(2, Z) transformation gives the equivalent 4d theories.
5.3 The effective theory for KK modes

We discussed the 4d fields arising from the quantization of the 3-string junctions
as well as their 5d and the 6d lifts. In 4d, we get the N=6 multiplet in tri-fundamental
representation of U(N'), which, when lifted to 5d and 6d, becomes the (2, 1) multiplet.
The (2, 1) multiplet is composed by two sets of fields (b, x, ®) and (s,, a,, A), while
the (2, 1) supercharge can be decomposed into the (2, 0) part Q7 and the (0, 1) part

Q“. The action of the (2, 1) supercharge on (2, 1) multiplet can be summarized as
b 2 X 2 D, S 2 a, 2 A, (5.1)

and

S 2 b, a, 2 X, A O, (5.2)

from which, we can determine the Weyl weight

field | s, |au| A |bu | x |0

weight | 3/2| 1 [3/2] 2 |5/2|2

(buv, X, @) has the Weyl weight (2,5/2,2), thus is the conformal sector in 6d. On
the other hand, (s, a,, A) is not conformal in 6d. Therefore, (s,,a,, \) is suppressed
in 6d. It is (b, x,®) that will have the contribution to the conformal anomaly.
(b, X, @) is 4N copies of the (2, 0) tensor multiplet, so the scale (type-B) anomaly
of the (2, 1) multiplet in 6d is 4N3bgp, which is consistent with the AdS/CFT
prediction for the scale anomaly of the 6d (2, 0) theory in large N limit.

When compactified to 4d, (b, x,®) will become (a5}, x? @ plar) if the R-
symmetry is SO(5), (agt, 12, g, ®gh*?, &) if the R-symmetry is SO(4); (s, a,,

A) will become (s,,, a, N4, p7) if the R-symmetry is SO(5), (s, p, a, s, a2, pg, P,
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¥,15*) if the R-symmetry is SO(4). The interaction is mediated by the N=4 mul-
tiplet (A,, &7, X7). Tt is (A,, &7, XT) —(agt, X7 o1 @l 1) coupling and (A, 7, XT) —
(85 @, M 1), 7)) coupling that is possible. We constructed the 4d Lagrangian with
(A, &7, XT) = (agr, x7 1, @ 1) coupling and (A, §7, XT)—(s,, @), A, 4, ¢7) coupling
and the corresponding N=4 susy transformation. The Lagrangian is not entirely in-

variant under the N=4 supersymmetry. Some additional terms are to be added.
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APPENDIX A

THE ON-SHELL ACTION FOR BRANE-GRAVITY COUPLED SYSTEM*

Consider the (d—1)-brane couples with the supergravity fields. The action is [82]

S = Sbrane + Sgravity (A1>

d—?2

1 .
Sbrane = Td/ddg[_§\/ _VVZJ@XMﬁjXNgMNeO‘(d)‘b/d+ 5 \/__'7

_7€z112---zdailXM1ai2XM2 . 8idXMdAM1M2---Md]

d!
— 5,48+ S (A.2)
Surasits = 5,3 | V7GR~ 09 — 5 ELL ] (A3)
gravity 942 9 2(d + 1)‘ d+1

The action of this form is valid for both electric and magnetic branes, while for
magnetic branes, just let o(d) — —a(d). Variation with respect to garn, Ay,

and ;; gives

D
TMN _Td/ddf _,y,yijaiXManNea(d)qﬁ/da (z — X)
” NS
IS ST VINEE W VSR BN VPN U B VAP
1 1
o FM FNMI“'Md . MNF2 —a(d)¢ A4
2d!( M- Ma 2(d + 1)9 Je ] (A.4)

*Part of this section is reprinted with permission from “Hopf-Wess-Zumino term in the effective
action of the 6d, (2,0) field theory revisited” by S. Hu and D. V. Nanopoulos, JHEP 1110, 054,
(2011), http://link.springer.com/article/10.1007/JHEP10(2011)054. Copyright 2011 by SISSA -
Trieste (Italy).
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e = 1y [ dig éniing, XM XM 0, XM Pz — X)
v 4
1

~ G (e e (A.5)
and

Yij = 8z‘XM(%'XNQMNGOC(d)(ﬁ/d- (A.6)

Then

1 D

- / ey g1~ IR~ L(00)) ~ (1 - RS

Plug (A.6) into (A.2), we get
2

From (A.5),

1
Sg = ——/dDZE\/—gJé\féneMdAMlM?..Md

—— O (V/—ge™ D App, agy g, FM M (A.9)

As a result,

Sbrane = Sl + SQ + 53

2-D 1

_ =2 = - D — _} 2 1 —a(d)¢ 172
- d 22/d w9l = 5000 = sye T el

2/{2 /de aM (d)d)AMlMT“MdFMMlde)

= ngravzty + Sboundary (Al())
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For d < 3, or equivalently, for purely electric branes, Spoundary = 0. If Mp has no
boundary, Spoundary could also be dropped. Then for the given brane configuration,

if S'is on-shell with respect to supergravity, we have

Sprane : Syravity S = (D —2) : (=d) : (D — 2 — d), (A.11)

where

Sbrane = Td/ddg[—\/— det(@iXMé?jXNgMNea(d)aﬁ/d)

1 .. .
—561112...Zdai1XM1(‘91'2XM2 tee aidXMdAMlMg---Md] <A12)

The extension to multi-brane configurations is straightforward, and (A.11) still holds.
When the dimensions of the branes are different, the exact proportional relation is
not valid anymore. Besides, when Fj; does not vanish, i.e. the (p — 1)-brane carries
p—1—2n charge, (A.11) does not hold. Naively, when D = 11, d = 6, neglecting the
boundary term, Sprane : Sgravity © S = 3 1 (=2) : 1'. However, S here is not exactly
the action for M5 branes coupling with supergravity. In the following, we will use
(2.1) as the action to get the same conclusion.
Now, consider

S = S, + Sus (A.13)

'Note that for D3, M2, M5 branes, Sprane/S equals to 2, 3/2, and 3, while the degrees of freedom
on these branes scale as N2, N3/2 and N3. This is not the coincidence. Suppose the degrees of
freedom on N branes scale as N¢. Also suppose that in Sprqne, there is a term T has the N¢
scaling. Consider N + 1 branes with large N, when the symmetry is broken from SU(N + 1) to
SU(N) x U(1), (N + 1) — N* ~ aN®~! number of T will enter into Sprqne. On the other hand,
the effective action of the system could be approximated as the action of a single brane on the
background generated by the rest N branes. In Sz, one may get N*~1T. Obviously, T in Sprane
and T in S.yy differ by a « factor. For D3, T'is [ Fs, for M5, T is [ A3 A Fy, while for M2, T is
obscure.
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with

1 1 . A 1
Sg:2/<;2/M11*R_2*F4/\F4_6F4/\F4/\A3 <A~14>
— 1 - -
SM5 = —T5 /W de\/— det(gw, + (Zvl*h?));w) + 51)1 N hg A\ *(’Ul A *h3)
6
T T
+ -l dbg/\Ag‘i‘j A3/\F4 <A15>
2 Jwe 2 Jwy,

The field equations are [32]

1 1 1 1 R
TN = — [RMN GMNR — — (FMpo B POF — ZgMN 2 (A.16)
K 27 12 8
1
d*F4+§F4/\F4 = —2/'€2T5(—A3/\*J6+F4/\*G7> (Al?)
dFy = 26Ts % Jg, (A.18)

The vacuum expectation value of by are taken to be zero, otherwise, (A.11) does not

hold. From (A.16),

1 9 3 - N
2/ dﬁg\/ TM5 gMN = 9 2/M11 —§*R+Z*F4/\F4 (Alg)
From (A.17),
T5 1 1 1 1 .
L N / S W B AR 4 -FyAF A Ay — — As AxEy (A20
2 Jwy PN o2 2 SRR e RN e oar 2T  ( )

We will still use the general relation (A.8) for M5 branes. The Nambu-Goto action
for M5 branes is more involved than that for D branes or M2 branes, so the correction

may exist, but that will not bring too many problems, since our main concern is the
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WZ term.

1 3 3 .~ . 1 T . .

S :—/ R4 Sk AE AR A A+ =2 [ sB— — A A%E
M5 912 Jar, 2* +4* 4 4+4 4 4 3+2 W7* 4 112 Jorr, 3\ *kI'y
(A.21)

1 1 1 - . 1 T . 1 .

= — —— xR+ -y NFy+—F,NFyNA5+—= F,—— As AxF
2%2/%1 g Mt A at gl AN N As ot [ T s o, R
(A.22)

Because of the last two terms, the exact proportional relation does not hold. This
is the general solution. Now, consider the multi-center M5 brane solutions and the

corresponding WZ term. In this case, d * Fy = 0, (A.20) reduces to?

T, 1 1
L5 A/\F:—/ SEAEAA A23
2 Ju, P T 2 Sy, a7 ’ ( )

In S,, we have —%F4 A Fy N\ As, so altogether,

1 1
Tyyy = —/ ~E AFAA A24
W2 o2 Jag, 12700 T (A.24)

A factor of 1/3 is involved.

Similarly, for D3 branes, one may expect that the WZ term should be one half
of the corresponding term in the D3 brane action. This is indeed the case, and it is
just this rescaled term that is obtained from the 1-loop integration and compensates

the anomaly deficit.

2Plug (2.2) into (A.23), since Fy A Fy = 0 = %G7 A Gy, (A.23) becomes an identity. However,
the right-hand side of (A.23) cannot be used for anomaly counting directly.
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APPENDIX B

THE CONSTRAINTS ON THE STRUCTURE CONSTANT FOR THE
CLOSURE OF THE SUPERSYMMETRY

In [23], the supersymmetry transformation of the tensor multiplets together with
the gauge field A, and the vector field C), is discussed. We will focus on the resulted
conditions that should be imposed on the structure constant.

The closure on C*; gives the constraint C{CY% f“PB, = 0. For the closure on AE A

we have

[01,02)A0 4 = —2i(exD\IMe1)CaD, X HhPP 4 — v CoH,unph PP 4
—i(&L T ) CLORX EX L FEFC phOPE 4
+2i(eoT e ) CADNX LA PE 4

= WED, + DA, (B.1)
The second line must vanish. I',, 5 is antisymmetric with respect to v and A, so
(CECG — CECE) fProphPP 4y = (CECh — CoCe) fPp fPPa = 0. (B2)
For the closure on H,, x4,

[01,00)Huwpn o = 0D, Hyn 4 — 2i(60, 0 e)CELXEGPPC 4 H oy b
—62’(62F[HF161)(13VA]CA — CpH, N, DQCDBA)Xé
—6i(El T ) CHX LD XH(FEPE 4 — gFPB 1)
_38i(EzrarJel)(@CFMVAPGFJ\IJD>C§<IYIDBCA . gCDBA)

+2i (eI T 1) €unpor CRCR X EX X E gPPIC 7O,
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+i(€21—‘,u,l/>\FLM€1)GIJKLMCECH EXéXﬁXé{gDB[CAfFG]ED

+3i(&l T raer) e KM CLCy g XEXLXE gPPIC , fFOF

+0° (4D Horg) 4 + €uunpr CHXEDT X g PP 4
+%€uyxp070§‘I’CFT‘I’DgCDBA>

= v'D,Huxa+ AP Hun 5, (B.3)

The fifth, sixth, and seventh lines must vanish. The fifth line equals to zero because

of (B.2). The sixth and the seventh lines vanish if
CECEfDB[CAfFG}ED =0. (B.4)

Finally, the invariance of the inner product under the gauge transformation gives the

constraint

Cg(fDCAEhEB + fDCBEhAE) _ 0’ (B5)

where <tA|tB> — hAB. fABCD _ f[ABC}D.

The above constraints could be explicitly written as

(O, 0, ] = 0, (B.6)

(C* A [C", B,Y]| - [C". BIC* A,Y)] = [[C* A,C"], B.Y]+[C",[C* A, B].Y]
= [C",[C* A, B],Y]

— [c*,]c”, A, B]Y). (B.7)

The fundamental identity should be satisfied for gauge transformations generated by

[C, A, %], for which, it reduces to the Jacobi identity.
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