
VEHICLE DISPATCHING PROBLEM AT THE CONTAINER TERMINAL

WITH TANDEM LIFT QUAY CRANES

A Dissertation

by

YAO XING

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Luca Quadrifoglio

Committee Members, Bruce Wang

 Yunlong Zhang

 Wilbert E. Wilhelm

Head of Department, John Niedzwecki

August 2013

Major Subject: Civil Engineering

Copyright 2013 Yao Xing

ii

ABSTRACT

The most important issue at a container terminal is to minimize the ship’s turnaround

time which is determined by the productivities of quay cranes (QCs). The tandem lift

quay cranes have 33% higher productivities than single lift QCs. However, the tandem

lift operations bring new challenges to the vehicle dispatching at terminals and this has

become a big issue in the application of tandem lift QCs. The vehicle dispatching at

terminals is to enhance the QCs’ productivities by coordinating the QCs’ operation

schedules and the vehicles’ delivery schedules.

The static version of the problem can be formulated as an MILP model and it is a

combinational optimization problem. When the type of QC is tandem lift, the problem

becomes more complicated because it requires two vehicles side by side under the QC.

Thus, the alignments of vehicles have to be considered by coordinating the delivery

schedules between vehicles. On the other hand, because the containers are operated

alone by the yard cranes, the vehicles could not be grouped and dispatched in pairs all

the time.

This dissertation investigates the static and dynamic version of the problem and

proposes heuristic methods to solve them. For the static version, Local Sequence Cut

(LSC) Algorithm is proposed to tighten the search space by eliminating those feasible

but undesirable delivery sequences. The time windows within which the containers

should be delivered are estimated through solving sub-problems iteratively. Numerical

iii

experiments show the capability of the LSC algorithm to find competitive solutions in

substantially reduced CPU time.

To deal with the dynamic and stochastic working environment at the terminal,

the dissertation proposes an on-line dispatching rule to make real-time dispatching

decisions without any information of future events. Compared with the longest idle

vehicle rule, the proposed priority rule shortens the makespan by 18% and increases the

QCs’ average productivities by 15%. The sensitivity analysis stated that the superiority

of the priority rule is more evident when the availability of vehicles is not sufficient

compared with the frequency of releasing transportation requests.

iv

ACKNOWLEDGEMENTS

I would like to specially thank my advisor and committee chair, Dr. Luca

Quadrifoglio for his patient guidance and mentorship during the past five years. I would

also like to thank my committee members, Dr. Zhang, Dr. Wang, and Dr. Wilhelm, for

their guidance and suggestions that help me finish this dissertation.

Thanks to UTCM who provided financial support for my PhD study and research

in Texas A&M University. I also appreciate Mr. Shi in Nansha Container Terminal, who

answered me questions about terminal operations and provided me precious operation

data for my research. I would also like to thank Dr. Alan Zhang in Moffatt and Nichol

Engineers for his help and guidance for my research.

Thanks also go to all my friends and classmates at Texas A&M University,

especially those in the division of transportation engineering, for their friendships and

help.

Finally, I especially thank my deeply loved parents and my husband for their

love, patience and encouragement.

v

TABLE OF CONTENTS

 Page

ABSTRACT ...ii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ..vii

LIST OF TABLES ... viii

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 8

2.1 Terminal Logistics.. 8

2.2 Transportation Optimization at Terminals ... 10

2.3 Mathematical Algorithms ... 13
2.3.1 Exact Methods ... 13
2.3.2 Heuristic Algorithm ... 13

2.3.3 Simulation ... 17

3. NANSHA CONTAINER TERMINAL ... 19

3.1 Layout... 20
3.2 Equipment .. 21
3.3 Container Flow ... 24

4. PROBLEM STATEMENT .. 26

4.1 Problem Description ... 27
4.2 Model Formulation ... 29

5. LOCAL SEQUENCE CUT ALGORITHM ... 33

5.1 Motivation .. 33
5.2 Basic Scheme of Local Sequence Cut Algorithm .. 35

5.2.1 Initial Solution ... 36
5.2.2 Time Windows and Cut-off Delivery Sequences .. 37

5.2.3 Sub-problems ... 42

5.2.4 Analysis of the Sub-problem Result .. 48

vi

5.2.5 Process of Basic Scheme ... 55
5.3 Enhanced Scheme .. 56

5.3.1 Treatment at Early Stages .. 56
5.3.2 Size Limit on Sub-problems .. 56

5.4 Overall Process of LSC Algorithm .. 57
5.5 Numerical Experiments .. 59

5.5.1 LSC v.s. Optimality ... 59
5.5.2 Time Windows and Cut-off Delivery Sequences .. 64

6. MODIFIED LSC ALGORITHM ... 69

6.1 Priority Based Heuristic Method .. 70
6.1.1 Creation of Assignments ... 72

6.1.2 Priority Measurement .. 73
6.2 Selection Mechanism ... 76
6.3 Numerical Experiment Results... 78
6.4 Sensitivity Analysis .. 82

6.4.1 Initial Solution ... 83
6.4.2 Time Limit for Solving Sub-problems .. 84

7. ON-LINE DISPATCHING POLICY ... 86

7.1 Priority On-line Dispatching Rule.. 89

7.2 Numerical Experiment ... 91
7.2.1 Design of the Experiment .. 91

7.2.2 Experimental Scenarios ... 91
7.2.3 Numerical Experiments Results .. 93

7.3 Sensitivity Analysis .. 95

7.3.1 Cycle Time .. 95
7.3.2 Vehicle Speed .. 98

8. CONCLUSION AND FUTURE RESEARCH .. 101

REFERENCES ... 103

vii

LIST OF FIGURES

 Page

Figure 1 Container flow in the loading and unloading operations 1

Figure 2 A storage block served by a yard crane (RTGC). .. 3

Figure 3 Different types of QC. ... 5

Figure 4 Geographic location of NCT. ... 19

Figure 5 Satellite view and the layout of NCT. .. 20

Figure 6 Part of a quay crane’s working sequence. .. 22

Figure 7 RTGs at the storage blocks. ... 24

Figure 8 Single loop layout at the quay side. ... 27

Figure 9 Initial delivery sequences of the two vehicles in a group. 37

Figure 10 Determination of cut-off delivery sequences. .. 41

Figure 11 Construction of sub-problems. ... 42

Figure 12 Number of cut-off delivery sequences through iteration. 66

Figure 13 Update of time bounds through iterations. ... 67

Figure 14 Current dispatching rule. .. 88

Figure 15 Performance under different degrees of stochasticity. 94

Figure 16 Performances of dispatching rules against the varied cycle times. 97

Figure 17 Performances of dispatching policies against the varied vehicle speeds. 100

viii

LIST OF TABLES

 Page

Table 1. Empirical Distribution of QCs’ Cycle Times ... 23

Table 2. Relationship Between the Operations, Requests and Tasks 28

Table 3. Calculation of Setup Time ... 39

Table 4. Extra Constraints Imposed to a Sub-Problem .. 47

Table 5. Analysis of an Upper Bound Sub-problem .. 51

Table 6. Analysis of a Lower Bound Sub-problem .. 54

Table 7. Process of the Basic Scheme for Local Sequence Cut Algorithm 55

Table 8. Entire Process of Local Sequence Cut Algorithm .. 57

Table 9. LSC v.s. Optimality (Small Size Problems) ... 61

Table 10. LSC v.s. Optimality (Large Size Problems) ... 62

Table 11. Priority Measurement in the First Step .. 74

Table 12. Priority Measurement in the Second Step .. 75

Table 13. Process of Modified LSC Algorithm ... 77

Table 14. Numerical Experiment Results of Different Methods 78

Table 15. Modified LSC Algorithm v.s. LB .. 81

Table 16. Algorithm’s Sensitivity to the Initial Solution ... 83

Table 17. Algorithm’s Sensitivity to the Time Limit in Solving Sub-problems 84

Table 18. Priority Dispatching Rule ... 90

1

1. INTRODUCTION

The first regular sea container service began in 1961 between and ports in the Caribbean,

Central and South America. The year 2010 witnessed an increase of global containerized

trade from around 30 million TEUs (twenty feet equivalent units) in 1990 to 150 million

TEUs or more in 2010 (76). Not surprisingly, such dramatic increase imposes the heavy

pressure on the operations at container terminals.

FIGURE 1 Container flow in the loading and unloading operations (61).

For a terminal, the most critical issue is to minimize the ship’s turnaround time

by accelerating operations and smoothing the container flow (FIGURE 1). There are two

types of operations – loading and unloading – at a terminal. Upon a ship arrives at the

terminal, it is berthed at the quay side according to the berth allocation decision and a

certain number of quay cranes (QCs), dependent on the size of the ship and the number

of containers, are assigned to load containers onto the ship and unload them off the dock

2

and hold. When a QC is unloading a container from the ship, it hoists the container and

lifts it from the ship then positions it on a vehicle for delivery. A fleet of vehicles with

unit capacities, namely trucks, automated guide vehicles (AGVs), and manned or

automatic saddle carriers (ASCs), transports containers from the quay side to the storage

area.

The storage area (yard area) is an open zone used to store the import and export

containers temporarily. It consists of myriad blocks, further differentiated into lanes,

rows (bays) and stacks (tiers), dependent on the span and height of the yard crane

(FIGURE 2). In each block, there are always one to two yard cranes (YCs) that store and

retrieve containers to and from the blocks. When the vehicle delivers the container to the

storage area, the yard crane stacks it on its destination storage position according to the

pre-defined storage planning. The loading operation is conducted in the reverse order.

Apparently, the ship’s turnaround time is directly determined by the working

speeds of QCs. In order to further accelerate the operations, terminals in the Netherlands,

Shanghai, Shenzhen, Dalian, Singapore, Dubai, and other areas either have already been

equipped with or have considered investing in tandem lift QCs in recent years (81, 83).

A tandem lift QC is designed to increase productivity by lifting two 40ft containers or

four 20ft containers each time, while the conventional single trolley quay crane lifts only

one 40ft or two 20ft containers each time (FIGURE 3). Tandem lift quay cranes are

equipped with a specific twin spreader. This special design facilitates its adjustment to

different container heights, as well as to side-to-side clearances of two containers when

landing them onto adjacent vehicles. To make a full use of tandem lift QC’s capacity in

3

practice, two vehicles are required to arrive at a QC, not necessarily at the same time,

However, they should get ready before a tandem lift, as these containers need to be lifted

or released together by the QC (54, 83). Tandem lift QCs are designed to accelerate the

unloading/loading operations to meet the demands of serving mega vessels in a short

time. According to published data, the tandem lift QCs can provide 33% greater

productivity than the traditional single trolley QCs (64).

FIGURE 2 A storage block served by a yard crane (RTGC) (86).

However, tandem lift operation poses new challenges and difficulties for the

vehicle dispatching problem at terminals. At the operational level, the vehicle

dispatching problem concerns scheduling a fleet of vehicles to transport containers to

enhance productivity of QCs and to smooth the container flows. Due to the lack of

4

buffer area in most terminals, the quay crane unloads/loads a container directly on/from

a vehicle. Thus, the QC cannot proceed to its next operation if there is no vehicle waiting

under it. According to studies, the QC’s actual productivity in operation only achieves

around 40-60% of its technical maximum capacity and its waiting for a vehicle’s

availability is one reason for this (51, 73). It is well understood that the QCs’ operation

efficiency and the terminal throughput critically depend on the vehicle dispatching

operation (34, 28), the main focus in this dissertation.

When the quay crane is a traditional single lift, the problem involves a

combinational optimization that can be categorized in the Vehicle Routing Problem

(VRP) (7, 29) or Parallel Machine Scheduling Problem. Conversely, when the quay

cranes are tandem lifts, the problem becomes more complicated because of the

alignment of vehicles dispatched to pick up or drop off containers at the QCs (9). To

accommodate tandem lift operation, there are supposed to be two vehicles side by side

waiting under a QC. Otherwise, the QC and the vehicle that arrives earlier must wait for

other vehicle’s arrival. Such idling not only delays the QC’s operations However, also

affects the productivity of vehicles. On the other hand, when the two vehicles leave the

tandem lift QC and travel to the storage area, they separate and become independent

again. Because the two containers operated in the same tandem lift may be stored in

totally different storage blocks and the YC can only operate one 40ft or two 20ft

containers each time. Thus, we could not simply bind two vehicles as a group and

dispatch them together all the time.

5

(a) Conventional single-trolley quay crane

(b) Tandem lift QC

FIGURE 3 Different types of QC.

Actually, the transportation of containers between the QCs and YCs has become

a big issue of the application of tandem lift QCs. Without an effective operation

technique and efficient vehicle dispatching policy, the application of tandem lift QCs

6

may not increase the productivity as expected. In turn, the lack of such a policy reduces

the productivity of vehicles (1, 64 and 82). In such a case, in addition to the coordination

between the QCs’ operation schedules and the vehicles’ delivery schedules, the delivery

schedules of different vehicles have to be synchronized simultaneously.

Nonetheless, until now, there exists very little literature that investigates the

special working pattern of tandem lift QCs and their influence on the vehicle dispatching

problem at the container terminal. No researcher has yet solved the problem through

employment of mathematical models or algorithms. Thus, the contribution of this study

is as follows:

This study considers the working characteristics of tandem lift QCs in the

modeling of and solution to the vehicle dispatching problem. In addition, both the model

and the proposed method in this dissertation can be applied to the similar vehicle

dispatching problems with precedence relationships.

For the static version of the problem, we formulated the problem as a mixed

integer linear program with the objective of minimizing the makespan, the total time it

takes to load and unload all containers. To solve such a combinatorial optimization

problem, this dissertation proposes an innovative heuristic method to tighten the search

space by eliminating those feasible but undesirable delivery sequences. This method is

capable of finding competitive solutions within a significantly shorter CPU time.

For the dynamic version of the problem, this dissertation develops an on-line

dispatching policy to make decisions without information of future events. The

numerical experiments reveal that the proposed method performs better than the

7

currently employed dispatching rule. Its superiority is more substantial when there are

too few vehicle resources compared to transportation requests.

The rest of this dissertation is organized as follows: the second section reviews

the related work and literature in the area of terminal operations and vehicle dispatching

problems. The third section introduces the container terminal from which operation data

for this dissertation was gathered. The third section is followed by the section of the

problem statement and the mathematical model. The subsequent two sections present the

algorithms for solving the static version of the problem and assess their performance

through a series of numerical experiments. Then, the on-line dispatching rule is

introduced and analyzed in the seventh section. The conclusion and discussion based on

this study comprise the last section of this dissertation.

8

2. LITERATURE REVIEW

Vehicle dispatching problems frequently arise in logistic systems. Unfortunately, most

published research does not apply to a container terminal due to the container terminal’s

specific operation characteristics. This, in turn, requires the development of algorithms

that consider the special characteristics and constraints associated with the operations at

terminals. In the following, we restrict literature review to the research related to the

following topics: terminal logistics, transportation optimization in the terminal, and the

optimization method of solving the vehicle dispatching problem. The review is not

meant to be exhaustive, but rather deals with issues and problems similar to the one

discussed in this dissertation.

2.1 Terminal Logistics

Operation research methods have become the main approaches to the optimization of

operational issues in container terminals. Terminal logistics can be generally classified

into the following categories.

Berth allocation: Berth allocation ideally begins an average of two to three

weeks before the ship’s arrival. Its main objectives are to determine the berthing times

and positions of ships along the berth (30, 41, 57 and 63), and to minimize the mooring

and process time of the shi (21, 31 49, and 42).

Crane assignment and split: Depending on the size of the ship, three to five

cranes operate at one oversea vessel and one to two cranes for a feeder ship. The

9

optimization of the crane assignment and scheduling could be formulated as an MIP

model, with the objective of minimizing the sum of the delays and turnaround times of

all ships (4, 12, and 67) and the maximization of the utilization of the cranes’ capacities

(56). The crane assignment was also discussed as part of an integrated optimization

problem with berth allocation (66, 56).

Stowage planning: Stowage planning assigns positions within the ship to

specific categories of containers and considers the container’s attributes, such as the

destination, weight, or container type. The shipping lines and the terminal operators

using an off-line optimization method decide planning. The stowage planning heavily

affects the loading and unloading sequences of container, a major factor for determining

the working sequences and schedules of cranes and horizontal transporters (23). Its

objectives focus on the minimization of the number of shifts during terminal operation

(1, 2, and 13) and the maximization of the utilization of the ship’s storage capacity (17).

Storage and stacking policies: Storage and stacking policies attract increasing

attention due to the scarcity in land area and continuous growth in containerization

transportation. These policies are used to decide the specific block and slot for each

container stored in the storage area. The yard reshuffle plays the most important role in

the construction of storage and stacking policies. Most related studies were dedicated to

the investigation of the stack configurations and their influences on the number of yard

reshuffles (25, 35, 43, and 48). Besides, the utilization of storage area (37, 36, 38 and

75); the turnaround time of the ship (48, 68); the travel distance between the quay and

yard side (40, 85) are also considered when making decisions.

10

A more comprehensive and detailed review about the logistics and operation

problem in container terminals was given in the work of Steenken et al. (73), Stahlbock

et al. (72), Vis and de Koster (78), Günther and Kim (23).

2.2 Transportation Optimization at Terminals

The transportation in a terminal can be distinguished between horizontal and vertical

(stacking) transport. The former one can be further divided into the quay side transport

and the land side transport. The quay side transport refers to the containers’

transportation between the quay crane and the yard crane, carried out by a fleet of trucks,

trailers, AGVs, or straddle carriers. External trucks or trains outside the terminal carry

out land side transport. Vertical transport refers to the stacking transport carried out by

gantry cranes, straddle carriers (SC), rubber-tired gantry cranes (RTG), and rail-mounted

gantry cranes (RMG; also called automated stacking cranes (ASC)). Because neither

stacking transport nor land side horizontal transport is the concern of this dissertation,

we only review related papers on the quay side transport in the terminal. As the

connection between the operations in the quay side and the yard side, optimization of the

vehicle dispatching process should be integrated with other activities.

Bish et al. (6) addressed the vehicle-scheduling-location problem of assigning a

storage location to each import container and dispatching vehicles to the containers in

order to minimize the total time for unloading a vessel. To solve such an NP-hard

problem, an assignment problem based (APB) heuristic algorithm was presented. The

11

effectiveness of the proposed heuristic was analyzed from both worst-case and

computational points of view.

Bish (4) developed a mathematical method for the so-called multiple-crane-

constrained vehicle scheduling and location problem (MVSL). The problem is to

determine the storage location for import containers; dispatch vehicles to containers and

schedule the loading and unloading operations of the cranes with the objective of

minimizing the turnaround time of ships. He analyzed the complexity of the problem and

proved that it was NP-hard. He proposed a heuristic algorithm and measured its

effectiveness according to the worst-case performance ratio of the heuristic algorithm.

Kang et al. (32) presented mathematical models to optimize the number of the

quay cranes and trucks with the objective of minimizing the operation cost. A

Markovian-based decision model was proposed as a complement to the queue model to

handle generally distributed service times and non-steady-state operations. However,

their study only focused on the unloading operations at the container terminals.

Koo et al. (44) proposed a fleet management procedure for the transportation

system in a terminal. The objective of the management is to simultaneously find the

minimum fleet size and route for each vehicle while satisfying all requirements. The first

phase was constructed to obtain a lower bound on the fleet size. Then a tabu search-

based procedure was presented for the travel route for each vehicle, satisfying all the

transportation requirements within the planning horizon.

Meersmans and Wagelmans (55) considered an integrated problem that involved

the scheduling of different equipment at automated terminals. They presented a branch-

12

and-bound algorithm and a heuristic beam search algorithm to minimize the makespan

of their schedules. However, they only considered loading operations in their work.

Murty et al. (58, 59) described and analyzed a variety of interrelated activities of

daily operations at a container terminal and proposed an integrative decision support

system (DSS) for decision making. The objective of the DSS is multi-folded and

included the minimization of waiting times for external trucks, minimization of the

congestion inside and outside the terminal, and so on. The proposed DSS was evaluated

at a terminal in Hong Kong and revealed a reduction of 30% in a vessel’s turnaround

time, as well as a reduction of 35% in container handling costs.

Qiu and Hsu (69) presented a bi-directional path layout and an algorithm for

routing AGVs without conflicts and to minimize the space requirement of the layout.

The routing efficiency was analyzed in the terms of the distance and time AGVs need to

complete all transportation jobs.

Saanen et al. (71) compared the productivity of the automated container terminal

(ACT) where the AGVs or automated lift vehicles (ALVs) are used as the horizontal

transporter. Their performances were compared using simulation and cost modeling.

Vis et al. (79) developed a network formulation and a minimum flow algorithm

to determine the necessary number of AGVs required at a semi-automated container

terminal. The algorithm proposed was a strongly polynomial time algorithm and usable

in warehouses and manufacturing systems, as well.

13

2.3 Mathematical Algorithms

To solve the mathematical models of vehicle dispatching problems and evaluate

different vehicle dispatching policies, the existing approaches can be generally divided

into two categories: simulation models and mathematical solution; as well, the latter can

be divided further into exact methods and heuristic methods.

2.3.1 Exact Methods

Due to the extremely high computational burden, there has been very little research

attempted to ascertain exact solutions to the vehicle dispatching problem.

Langevin et al. (45) proposed a dynamic programming based method to solve

instances with two vehicles.

Correa et al. (11) solved the dispatching and conflict-free routing of AGVs by

combining constraint programming for scheduling and mixed integer programming for

conflict-free routing.

2.3.2 Heuristic Algorithm

Although the exact method can guarantee the optimal solution, its unacceptable

computation time is the main obstacle to its application. Thus, further efforts have been

dedicated to propose an effective heuristic method that solves the problem quickly with

tolerable errors.

14

Ng et al. (62) formulated the vehicle dispatching and scheduling problem in a

terminal as an MILP and solved it using the genetic algorithm (GA) with greedy

crossover technique. The numerical experiments revealed that the proposed GA method

outperformed the GA methods that employed other crossover schemes. However, their

models did not consider the availability of the cranes, and each job starts as long as the

vehicle arrives.

Local search techniques are heuristics that start from an initial feasible solution

and “move” locally in the neighborhood of the solution space. The main drawback is that

the solution found might be a local ideal but potentially far from the global best. Due to

the varied techniques for escaping the local optimum, the local search technique is also a

classic and effective method to solve vehicle dispatching problems. Chen et al. (10)

presented an integrated model to schedule the different equipment in a container

terminal. They solved the problem using tabu search algorithm and developed certain

mechanisms to assure the quality and efficiency of the algorithm.

Homayouni et al. (27) solved the integrated scheduling of quay crane and AGV

by using simulated annealing algorithm. They investigated the effects of initial

temperature and the number of trials on the algorithm and compared them with the

results obtained from solving the MILP model using branch-and-bound method.

In addition to classic search algorithms, there are plenty of heuristic methods

designed to deal with characteristics of the working environment and the operation

requirement. Some of them were proposed as an on-line dispatching method for practical

application.

15

Hartmann (26) proposed a general optimization model for scheduling jobs at the

container terminal. The model could be applied to AGVs, straddle carriers, gantry

cranes, and workers. He proposed a priority rule based heuristic method and developed a

genetic algorithm for solution. However, they only considered the loading operation in

the research, and all the AGVs return to a common point after delivering a container.

Bish et al. (5) developed an easily implementable heuristic algorithm based on

the greedy and reversed greedy algorithm. They identified both the absolute and

asymptotic worst-case performance ratios of these heuristics. The above three studies did

not consider the job ready times in the scheduling decisions.

Kim and Bae (39) developed a mixed integer programming model for assigning

optimal delivery tasks to vehicles and proposed a look-ahead vehicle dispatching method

to minimize the total idle time of a quay crane resulting from the late arrivals of AGVs.

Briskorn et al. (8) proposed an AGV dispatching strategy based on inventory

management. The simulation study revealed the inventory-based strategy outperformed

the conventional due-date-based strategies. However, their model required buffer area at

the quay side, and they did not consider the precedence relationship in containers’

discharging process.

As opposed to the assumption of fixed AGV’s capacity in almost all research,

Grunow et al. (19, 20) proposed a flexible priority rule for dispatching multi-load AGVs.

Their numerical experiments revealed that the developed pattern-based off-line heuristic

outperformed conventional on-line dispatching rule used in flexible manufacturing

system (FMS).

16

Lim et al. (50) proposed an auction-based assignment algorithm in the sense that

the dispatching decisions were made through communication among related vehicles and

machines for matching multiple tasks with multiple vehicles. Their method considered

future events and the performance of the method was compared through a simulation

study.

Egbelu and Tanchoco (16) investigated those popular AGV dispatching rules in

the manufacturing system and classified them into two categories. Vehicle-initiated rules

are applied when an idle vehicle appears, and work-center-initiated rules are applied

when there is a delivery task available. Their study suggested the modified first come

first served (MFCFS) rule outperformed other rules. They also concluded that distance

based rules are sensitive to the guide-path layout and the location of pick-up and drop-

off stations.

Egbelu (15) posited that the source driven rules are not suitable in the systems

based on just-in-time principle. He proposed a priority dispatching rule based on the

demand states of the load destinations. They suggested that AGVs should be first

dispatched to delivery tasks bound for input buffers whose lengths are below a threshold

value.

Kim et al. (33) suggested an AGV dispatching method in a manufacturing job

shop environment. They proposed a procedure to dispatch AGVs for balancing workload

among different machines, as well as the workload between the machines and the

transporters.

17

Taghaboni-Dutta (74) proposed Vehicle Assignment by Load Utility Evidence

(VALUE) method for the assignment problem. The objective of their method attempted

to achieve a higher throughput of machines by using a value-added approach to

determine the AGV assignment.

2.3.3 Simulation

Due to the numerous stochastic and uncertainty elements, for instance ship delays,

equipment failure, human factors, and so on, discrete event simulation approach is

always used to evaluate and compare the operation process and equipment installations.

Simulation results provide valuable decision information and support guidance for the

design of the terminal and the logistic process (18).

Bae et al. (3) compared the performances of AGV and automated lifting vehicles

(ALV) in an automated container terminal through simulation experiments and

concluded that ALVs reached the same productivity level as the AGVs, using far fewer

vehicles.

Duinkerken and Ottjes (14) developed a simulation model to determine the

number of AGVs, maximum AGV speed, crane capacity, and stack capacity.

Huo et al. (28) examined the influence of the quantity and the speed of the

internal trucks on the handling time of ships, using Witness simulation software. These

researchers indicated that the quantity of trucks should be configured dynamically,

according to the different stages of handling and that increasing speed of trucks would

not necessarily improve the handling efficiency of the cranes.

18

Lau et al. (52) discussed the relationship between the number of AGVs and the

terminal’s layout via simulations and concluded that the yard layout has inevitable

effects on the terminal performance, as well as on the number of AGVs.

Liu and Ioannou (53) compared four different vehicle-initiated AGV dispatching

rules in an ACT from aspects of the throughput of quay crane, average waiting rate of

AGV in the quay crane’s queue, and so on.

Park et al. (65) developed a simulation model to compare the performance of

different transporter in an ACT, using ARENA package. Based on the simulation results,

they concluded that automated stacking crane is more efficient than AGV.

Vis et al. (80) analyzed the minimum vehicle fleet size under time window

constraints at a container terminal. In their study, there were buffer areas under the quay

cranes and in the storage area. The transportation of containers must start in the time

window, determined in advance.

Yang et al. (82) and Vis and Harika (77) examined and compared the effects of

using AGVs and ALVs on unloading times of a ship through simulation studies.

Yun and Choi (84) developed an object-oriented approach to simulate the

operation of a container terminal using SIMPLE++ simulation software.

19

3. NANSHA CONTAINER TERMINAL

The operation data used in this study is provided by Guangzhou Nansha Container

Terminal Phase I (NCT) in Guangzhou, China. NCT is located in the southeast of

Guangzhou City and at the estuary of Pearl River, the geographic and geometrical center

of Pearl River Delta, as seen in FIGURE 4. The businesses at NCT include container

loading/discharging, stacking, warehousing, manufacturing, processing, maintenance,

and so on.

FIGURE 4 Geographic location of NCT.

20

3.1 Layout

The terminal is 1400m long and 1300m wide with a water depth of 15.5m. The layout of

NCT is a typical parallel, side-loaded terminal layout (FIGURE 5) where the containers

stacks are parallel with the berth. This type of layout is the most popular in Asian

container terminals. All the QCs are equipped at the waterside of the terminal, and all the

storage blocks are located at the other side. Rubber-tired gantry cranes (RTGCs) and

rail-mounted gantry cranes (RMGCs) are always used as yard cranes in the storage area

(46, 47). Vehicles can park at a side of a block where the container is picked up (put

down onto) the vehicles. The path area in the quay side is a multi-lane loop layout where

vehicles travel in a single loop. It is very convenient and simple for traffic control at the

terminal. The loop is a fixed sequence of picking up and dropping off points at QCs and

YCs.

FIGURE 5 Satellite view and the layout of NCT.

21

3.2 Equipment

The quay side of NCT is equipped with sixteen quay cranes. Thirteen are conventional

single trolley QCs, and three are tandem lift QCs. A few days prior to the arrival of a

ship, the terminal will be informed of the status of the ship and containers. Then the

terminal operators make the plan of quay crane allocation and generate working

sequences for those QCs and the storage plan of import containers, according to the rules

and regulations in the terminal. The generation of the working sequence has to consider

many elements, like the weight, size, and content of the container, the contract between

the shipper and the terminal, the stability of the ship, and so on. FIGURE 6 is part of a

QC’s working sequence, generated using the software in NCT. The content of the

working sequence is explained in the following way:

SEQ – the number of the operation sequence;

D/L – the type of operation, where D represents discharge (unload) and L

represents load the container;

F/E – the weight of the container, where F represents that the container is full and

E as empty;

CNTR No. – Each container is labeled with a unique code number. This code

number is used for the operator to track the information and status of every container.

During the operation process, the operator and the manager can access the information

of a container by scanning its code number.

FROM POS. and TO POS. – the container’s storage position on the ship. In the

unloading process, the QC unloads the containers from the ship and the TO POS.

22

column is empty. During the loading process, the quay crane loads the containers onto

the ship, and the FROM POS. column is empty.

FIGURE 6 Part of a quay crane’s working sequence.

Unless encountering an unexpected event, the containers are loaded/unloaded

following the QCs’ working sequences, predetermined according to the stowage

planning and other detailed information sent to the terminal, such as the historical

average cycle time and travel time (23, 60). The cycle time of a QC is the time required

to transfer a container between the ship and a vehicle. The cycle time depends, for

example, on the design capabilities of the crane, the operation experience of the crane

23

driver, the type of ship, and the position of the container in the ship. The cycle time of

the tandem lift QC used in this study is based on the record of 10hrs’ operations in NCT.

According to the empirical distribution listed in TABLE 1, the time interval 80-90

seconds takes the highest percentage. The cycle time used in the mathematical model is

supposed to be the QC’s designed working speed, assuming there is no idling due to

other external influences. Thus, the cycle time intervals shorter than 50 seconds or

longer than 140 seconds are not included. These long cycle times might due to the

mistake records or possible large disturbances, like breakdowns of equipment, wrong

information on containers, or generally unexpected events and mistakes.

TABLE 1 Empirical Distribution of QCs’ Cycle Times

Cycle time (sec) Fraction

50-60 0.04

60-70 0.08

70-80 0.15

80-90 0.19

90-100 0.14

100-110 0.13

110-120 0.09

120-130 0.10

130-140 0.08

The yard cranes employed in the storage area of NCT are rubber-tired gantry

crane (RTG, FIGURE 7). Among the seven lanes under each RTG, six lanes are used to

stock the containers and the other one is used as the passenger lane for trucks passing.

24

The height of the containers stacked in the storage area is always fiver layers. There are

total eighty blocks in the yard area for the containers’ temporal storage and 46 RTGs for

storing and retrieving containers. The RTGs can travel between the blocks according to

the working loads among different blocks. There is always one or two RTGs stack and

retrieve containers at each block.

FIGURE 7 RTGs at the storage blocks.

3.3 Container Flow

To facilitate understanding the container flow in the terminal and interrelated activities

of different equipment, we precisely describe the unloading process as an example.

When a tandem lift QC starts unloading a pair of containers following its

working sequence, two trucks are chosen from the pool of idle vehicles to pick up the

two containers at the QC side. When these two vehicles have arrived there and stop

under the QC side by side, the QC starts to position the containers on them; otherwise,

25

the QC has to wait for them, delaying and disrupting the current unloading operation and

the succeeding operations in that QC’s working sequence. In contrast, the two vehicles

might arrive before the QC is ready to position the two containers onto them. Obviously

this case does not generate any additional waiting time for the QC. However, it might

affect other operations’ availabilities of vehicles. After this step in the process, the two

vehicles travel to the two containers’ storage blocks and drop them off there. When the

vehicle arrives at the storage block, the vehicle must stop in front of the block and wait

for the signal. When the yard crane is available, the vehicle proceeds to the passenger

lane and the YC lifts the container from the vehicle and stacks it to its destination

position according to the command sent from the control center. Note that the storage

blocks for the two containers in the same tandem lift might be different from each other.

For the loading process, since it is conducted in the reverse order of unloading process,

we do not elaborate here further.

26

4. PROBLEM STATEMENT

The problem central to this dissertation is to seek a way to dispatch a fixed number of

vehicles to transport containers between the tandem lift QCs and YCs with the objective

of minimizing the makespan or the total time it takes to finish loading and unloading all

containers in the planning horizon.

For the purpose of modeling, the layout of NCT is simplified as a single loop

layout with multi-lane paths without losing the main characteristics (FIGURE 8). The

QCs are lined up in a row along the berth, while all storage blocks are located at the

opposite side. The containers are transported by a fleet of trucks that travel in a

counterclockwise direction. All the vehicles are identical and have the same unit

capacity. Each vehicle can carry only one 40ft container or two 20ft containers at a time.

In the remainder of this dissertation, two 20ft containers are treated as one 40ft container

since they are always operated and transported together.

The cycle time (denoted by) of a tandem lift QC is defined as the duration

necessary to transfer two containers from a ship (vehicle) to a vehicle (ship). In an

unloading process, the cycle time starts from the moment the QC lifts containers from a

deck or a hold, and ends at the moment the QC is ready to position them onto vehicles.

In a loading process, it starts from the moment the QC lifts containers from vehicles, and

ends at the moment the QC positions them onto the ship.

27

FIGURE 8 Single loop layout at the quay side.

4.1 Problem Description

The QCs equipped along the berth and the vehicles used for the transportation are

numbered as  1, 2 , ,kq q q and  1, 2 , ,mv v v , respectively. All the operations in

the
kq ’s working sequence are numbered as  1 2, , , ,s

k k ko o o and each could be

loading or unloading operation. The two containers operated by
kq as its ths operation are

referred to as ,1s

kc and ,2s

kc . The number 1 and 2 in the superscript refer to the two

containers in the same tandem lift. When a QC starts one operation, a transportation

request s

kr and four tasks are generated correspondingly. Take for instance, the

following: when s

ko is a loading operation, the transportation request s

k
r is to transport the

two containers
,1s

k
c and

,2s

k
c from

kq to their destination blocks where the YCs stack them

to their destination positions. And two vehicles are required to complete two pickup

tasks (
,1s

kp and
,2s

kp) of containers
,1s

k
c and

,2s

k
c at

kq and two drop-off tasks (
,1s

kd and
,2s

kd) of

28

them at the YCs. The relationship between the operations, the transportation requests

and the tasks are summarized in TABLE 2.

TABLE 2 Relationship Between the Operations, Requests and Tasks

s

ko
s

k
r QC side task YC side task

Unload
,1s

k
c and

,2s

k
c

from the ship

Transport
,1s

k
c and

,2s

k
c from the

QC to the YC

,1s

kp and
,2s

kp
,1s

kd and
,2s

kd

Load
,1s

k
c and

,2s

k
c onto

the ship

Transport
,1s

k
c and

,2s

k
c from

the YC to the QC

,1s

kd and
,2s

kd
,1s

kp and
,2s

kp

Given a number of vehicles and QCs with predetermined sequences of

operations, vehicle dispatching problem is to dispatch vehicles to complete all the tasks

with the objective of minimizing the makespan. As long as the assignments of vehicles

are decided, the schedules of all tasks are decided at the same time. In addition to those

constraints shared among those classical vehicle routing and scheduling problem, there

are extra constraints to account for the working characteristics of tandem lift operations:

(1) Precedence Constraints: Since all the containers are operated following the

pre-defined working sequences, their transportation could not violate their

precedence relationships. In other words, the containers
,1s

k
c and

,2s

k
c cannot be

picked up or dropped off by any vehicle before the containers
',1s

k
c or

' , 2s

k
c if

's s . Consequently, the earliest starting time of QC side tasks, pick-up or

29

drop-off tasks whose locations are at the QCs are heavily dependent on the

containers’ delivery sequences.

(2) Simultaneous Constraint: Because of the tandem lift operation, the two

containers in the same tandem lift should be picked up or dropped off by the

vehicles at the same time. In other words, the starting times of their

corresponding QC side tasks should be the same. Thus, the starting time of a

QC side task
,1s

kd or
,1s

kp depends on not only the transportation of
,1s

k
c , but

also the delivery schedule of
,2s

k
c .

(3) Capacity Constraint: Because of the vehicle’s unit capacity, the two

containers in the same lift cannot be transported by the same vehicle.

4.2 Model Formulation

Based on the above description, the problem can be formulated as an MILP model with

the objective of minimizing the makespan. The parameters and the notations that will be

used in the dissertation are presented as follows:

, ,i j t the index of tasks

,m n the index of vehicles

k the index of quay cranes

s

the index of the operations in a QC’s working sequence

g
 the index of the two containers operated in one tandem lift

s

ko
 the

ths operation in the working sequence of kq

30

,s g

kc the container unloaded/loaded in the operation s

ko

,s g

kp the pick-up task of container
,s g

kc

,s g

kd

the drop-off task of container
,s g

kc

,s g

ky
the quay side task of container

,s g

kc , i.e. the pick-up or drop-off

task whose

location is at the QC side. For unloading operation , ,s g s g

k ky p

while for loading operation , ,s g s g

k ky d

b the dummy begin task

e the dummy end task

C the set of all containers

V the set of all vehicles

Q the set of all quay cranes

kS
the set of all operations in the working sequence of kq

P
the set of all pick-up tasks

D
the set of all drop-off tasks

T
the set of all tasks T P D

Y the set of all quay side tasks

ji, the travel time from task i to task j


 the tandem lift QC’s working cycle time



the time needed to position (lift) a container from a crane to

(from) a vehicle



the vehicles’ average waiting time at a YC

M a sufficient large positive number

The decision variables in the model include:

31

jix ,
 the binary variable which equals to 1 if task j is immediately

completed after task i by the same vehicle;

i the time when the vehicle arrives at the QC/YC where the task i is;

i the time when the task i starts;

 makespan; the time when all tasks have been completed

With the notations, parameters and variables described above, the problem is

formulated as the following MILP model.

 min (1)

Subject to:

,

b j

j P

x V


 (2)

,

i e

i D

x V


 (3)

,

1 ,
i t

i T b

x t T


   (4)

,

1 ,
t j

j T e

x t T


   (5)

, ,
,

where , 1 or 21 , ,
ks g s g

k kp d
Sk Q s gx    (6)

, ,
 (-1) , · ,

j i i j i j
M x i T b j T           (7)

, ,
 (1) , ,

j i i j i j
M x i T b j T             (8)

 ,
t t

t Y  

(9)

+ ,
t t

T Yt  

(10)

1, , , , 1 , where 1 or 2 - > ,
y y

s g s g
k k

kk Q s s S g      

(11)

32

,1 ,2 , , = where
y y

s s
k k

kk Q s S   

(12)

 ,
t

t T   

(13)

,
0 , 1},{ .

i j
x i , j T 

(14)

The objective is to minimize the time of completing all pick-up and drop-off

tasks. Constraints (2) and (3) ensure that each vehicle delivers at least one container by

assigning the dummy begin and end tasks. V denotes the cardinal of the set of vehicles.

Constraints (4) and (5) ensure that each container is delivered by one and only one

vehicle. Constraint (6) ensures the vehicle that picks up a container at a QC (YC) must

be the same one that drops it off at a crane. Constraints (7) and (8) define the arrival time

when a vehicle executes a task. Constraint (9) ensures that a quay side task’s starting

time cannot be earlier than the vehicle’s arrival time. The vehicle’ average waiting time

at the container’s storage block is represented in constraint (10). The precedence

relationship in the QCs’ working sequences is guaranteed by constraint (11). Constraint

(12) ensures that the pick-up or drop-off tasks of two paired containers start at the same

time. Constraint (13) defines the calculation of makespan. Constraint (14) defines the

binary variable.

33

5. LOCAL SEQUENCE CUT ALGORITHM

5.1 Motivation

The difficulties in solving the problem lie in the fact that when the number of containers

increases, the volume of binary decision variables and the search region expands quickly

and significantly. The exact method, like branch-and-bound method, cannot find the

optimal, even a feasible solution within acceptable computation time. Thus, this

dissertation proposes an algorithm to reduce the search region by eliminating those

feasible but undesirable solutions. Then the solver searches for a good, or even the

optimal solution, within a reduced feasible region.

The proposed algorithm is inspired by the concept of “logic cuts.” The algorithm

reduces the feasible region by eliminating some integer feasible solutions demonstrably

not optimal, according to the logic considerations. These “cuts” can be indeed very

effective. They may significantly shrink the feasible region and considerably quicken the

reduction of the optimality gap throughout the iterations of the solver. As a result, they

can be extremely beneficial in reducing the CPU time in the search for optimality. The

concept of “logic cuts” has been successfully applied in solving the complex

combinational problems. Quadrifoglio et al. (70) developed sets of logic cuts to solve a

MIP formulation for the static scheduling problem of a mobility allowance shuttle transit

(MAST) system. They took advantage of those cuts based on the reasonable assumptions

of the passengers’ behavior to develop sets of logic cuts and impose them into the MIP

formulation. Indeed, they developed sets of logic cuts to speed up the search for

34

optimality. The computation experiment revealed that the developed inequalities

effectively removed inefficient solutions from the feasible region and reduced the

computation time up to 90%. Guignard et al. (22) formulated an integrated timber

harvest and transportation planning problem as 0-1 MIP model. They sped the searching

process by using different tightening techniques, including the addition of logical

inequalities, lifting of inequalities, and branch-and-bound branching priorities based on

consideration of double-contraction.

The algorithm proposed in this dissertation is named Local Sequence Cut (LSC)

Algorithm. If container
,s g

kc is transported immediately after
', '

'

s g

kc by the same

vehicle, then
', ' ,

'(,)s g s g

k kc c is defined as a delivery sequence of
,s g

kc . Thus, a solution

to the problem is a combination of every container’s delivery sequence. The entire

feasible search region is the set of all containers’ feasible delivery sequences satisfying

all constraints. Therefore, the mission of LSC algorithm is to reduce the search region by

eliminating those feasible but undesirable delivery sequences without losing the

possibility of finding a good, even optimal, integer solution. Since the objective of the

problem is to minimize the makespan, it is reasonable that there should be a time window

for every QC side task’s starting time. If a QC side tasks starts within its time window, it

implies that the delivery of the container does not delay the operation of that container or

postpone the current best makespan. Otherwise, it means that the container is transported

too late or too early, and its current delivery sequence is defined as a cut-off delivery

sequence and removed from the search space.

35

The upper and lower bounds of these time windows are estimated through

constructing and solving upper and lower sub-problems iteratively until all time

windows have been updated or the maximum number of iterations is reached. At the end

of the algorithm, all the cut-off delivery sequences based on the final time windows are

excluded from the search space of the original MILP model by setting those

corresponding binary decision variables to 0. Consequently, the solver searches for the

solution within the reduced feasible region and is supposed to find a good, even optimal

solution much more quickly. The process and details of the algorithm are stated in the

following.

5.2 Basic Scheme of Local Sequence Cut Algorithm

At first, we introduce the basic scheme of the proposed LSC algorithm. Denote the upper

and lower bounds of a QC side task’s starting time ,s g

ky
 as follows:

,s g

ky
 , , 1 or 2,

k
k Q s S g   the earliest allowable starting time of the QC side

task
,s g

k
y ; or the lower bound of ,s g

ky
 (,1 ,2s s

k ky y
 )

,s g

ky
 , , 1 or 2,

k
k Q s S g   the latest allowable starting time of the QC side task

,s g

k
y ;

or the upper bound of ,s g

ky
 (,1 ,2s s

k ky y
 )

36

5.2.1 Initial Solution

To start the iteration, the algorithm requires a set of initial lower and upper bounds for

the QC side tasks. The initial solution can be obtained by any method; we present one

simple approach here. We divide all vehicles into several groups as evenly as possible

and each group serves one QC only. For instance, assume that there are three QCs and

six vehicles, then all vehicles are divided into three groups. Then the two vehicles in

each group only serve one QC from the beginning to the end. FIGURE 9 shows the

initial assignments of vehicles and delivery sequences of containers. The containers

transported sequentially by Vehicle 1 are
,11,1 2,1 3,1 ,1{ , , , , , , }kSs

k k k k kc c c c c and

those by Vehicle 2 are
,21,2 2,2 3,2 ,2{ , , , , , , }kSs

k k k k kc c c c c . As long the delivery

sequences are determined, each QC side task’s starting time is known at the same time.

Assume that the first pair of containers 1,1

kc and 1,2

kc unloaded by
kq are picked up by

vehicles at time . Because of the precedence relationship and the QC’s cycle time, the

succeeding containers ,s g

kc operated by
kq cannot be picked up or dropped off by

vehicles earlier than

, (1)s g

ky
s     (15)

The initial upper bounds are calculated according to the objective value of the initial

solution, viewed as the current best makespan denoted by * . And the upper bounds of

all QC side tasks’ starting times are calculated as:

37

, * ()s g

k
ky

S s      (16)

The initial lower and upper bound calculated by equation (15) and (16) are quite loose

and defined as the absolute lower and upper bounds. Because there is no QC side task

could start earlier or later than its corresponding absolute lower or upper bound.

FIGURE 9 Initial delivery sequences of the two vehicles in a group.

5.2.2 Time Windows and Cut-off Delivery Sequences

One core mission of the algorithm is to determine whether or not a feasible delivery

sequence of a container is a cut-off delivery sequence, dependent on the relationship

between the QC side task’s starting time and its time window. When container
,s g

kc is

transported following the sequence
', ' ,

'(,)s g s g

k kc c , if the QC side task’s starting time is

later or earlier than the upper or lower bound of its current time window, then

', ' ,

'(,)s g s g

k kc c is defined as a cut-off delivery sequence. However, the starting times are

38

unknown until the entire problem has been solved. Thus, the algorithm uses an easy-to-

check and comparative variable – arrival time -- taking the place of starting time in

deciding cut-off delivery sequences.

Because the traveling times and the operation times at the YC side are

deterministic, the earliest and latest arrival time of a QC side task (,s g

ky
 and ,s g

ky
) are

easily estimated by the following equations (17) and (18). After finishing its current QC

side task ', '

'

s g

ky , the vehicle needs some time to arrive at its next QC side task ,s g

ky . It

includes the traveling times and necessary operation and waiting times at the YC side.

Here, we define the sum of those times as setup time between the two tasks (', ' ,
' ,

 s g s g
k ky y

).

Now the earliest and latest arrival time ,s g

ky
 and ,s g

ky
 can be calculated by adding the

setup time to the lower and upper bound of task ,s g

ky ’s starting time as stated in

equations (17) and (18).

, ', ' ', ' ,
' '

 s g

k

s g s g s g
k k ky y y ,y

 η   , (

(17)

, ', ' ', ' ,
' '

 s g

k

s g s g s g
k k ky y y ,y

 η   . (

(18)

The calculation of ', ' ,
'

s g s g
k ky ,y

η is determined by what types the tasks ', '

'

s g

ky and ,s g

ky are.

All the four possible cases are listed in TABLE 3. In case 1, both tasks ', '

'

s g

ky and ,s g

ky

are pick-up tasks at the QC side, denoted by (P, P). The vehicle leaves 'kq after picking

39

up container ', '

'

s g

kc and then travels to the YC where container ', '

'

s g

kc is stacked. After that,

this vehicle travels to the QC where container ,s g

kc is unloaded and picks it up. This

whole process, i.e., from QC to YC and then to QC, is denoted by Q-Y-Q in TABLE 3.

One can easily see that ', ' ,
'

s g s g
k ky ,y

η

consists of two traveling times and two handle times as

shown in the equation (19). For the case (P, D), the two adjacent QC side tasks are the

pick-up and drop-off tasks, respectively. The vehicle first picks up the container ', '

'

s g

kc at

'kq and drops it off at its destination block at the YC side. Then this vehicle picks up

another container ,s g

kc at the YC side and drops it off at kq . Other cases in TABLE 3 can

be explained in a similar fashion.

TABLE 3 Calculation of Setup Time

Case (P, P): Q – Y – Q

', ' , ', ' ', ' ', ' ,
' ' ' ', , ,

 s g s g s g s g s g s g
k k k k k ky y p d d p

          (19)

Case (P, D): Q – Y – Y – Q

', ' , ', ' ', ' ', ' , , ,
' ' ' ', , , ,

 s g s g s g s g s g s g s g s g
k k k k k k k ky y p d d p p d

                (20)

Case (D, P): Q – Q

', ' , ', ' ,
' ', ,

 s g s g s g s g
k k k ky y d p

    (21)

Case (D, D): Q – Y – Q

', ' , ', ' , , ,
' ', , ,

 s g s g s g s g s g s g
k k k k k ky y d p p d

            (22)

Note: P: pick-up task; D: drop-off task; Q: quay crane; Y: yard crane.

40

Now we are ready to present the criteria employed to determine the cut-off

delivery sequences. Illustrated in FIGURE 10 as an example, now the criterion depends

on the relationship between the earliest (latest) arrival time and the upper (lower) bound

of the starting time. Assume that time windows of QC side tasks
,m m

m

s g

ky ’s starting times,

where 1 to 4m  , have been decided during earlier iteration of the proposed method and

are , ,[,]s g s g

k k

m m m m

m m
y y
  . The ranges of those time windows are signified by the solid red blocks

in FIGURE 10. To determine whether or not container 2 2

2

,s g

kc , 3 3

3

,s g

kc and 4 4

4

,s g

kc are allowed

to be transported immediately after container 1 1

1

,s g

kc by the same vehicle without violating

their current time windows, their earliest and latest possible arrival times ,,[,]s gm m

km

s gm m
km

yy
 

are calculated according to the equations (17) to (22) and presented by the white blocks.

According to the criteria, the delivery sequence 1 1 4 4

1 4

, ,(,)s g s g

k kc c is a cut-off delivery

sequence, as the earliest arrival time is still later than the upper bound of the time

window. The vehicle’s late arrival delays the operation of container 4 4

4

,s g

kc and all its

succeeding operations and the current best makespan. At the same time, 2 2

2

,s g

kc should not

be transported immediately after 1 1

1

,s g

kc by the same vehicle, either. Its latest arrival time

,2 2

2

s g

k
y

 is earlier than the time window’s lower bound ,2 2

2

s g

k
y
 . This case, of course, does not

delay the operation of its succeeding operations. However, the vehicle’s waiting time at

the QC is a waste of vehicle resources and might affect other operations’ availabilities of

vehicles, postponing the current best makespan as a result. Thus, only 3 31 1

1 3

,,(,)
s gs g

k kc c is not

41

a cut-off delivery sequence because its arrival time block overlaps with the

corresponding starting time block, i.e. , ,3 3 3 3, ,3 3 3 3

3 3
3 3

, ,s g s g
s g s g

k k
k k

y yy y
       
      

.

In summary, assuming that a vehicle is dispatched to transport the container ,s g

kc

immediately after delivering ', '

'

s g

kc , if the vehicle’s arrival time at the kq violates the

criteria expressed in (23), then the delivery sequence
', ' ,

'(,)s g s g

k kc c is a cut-off delivery

sequence.

, ,, ,, ,s g s gs g s g
k kk k

y yy y
       
   

 (23)

FIGURE 10 Determination of cut-off delivery sequences.

42

5.2.3 Sub-problems

(a) Upper bound sub-problem

(b) Lower bound sub-problem

FIGURE 11 Construction of sub-problems.

43

Now, the only issue left that critically entails the algorithm is the estimation of time

windows. Since the container’s delivery schedule is dependent on its delivery sequence,

as long as the earliest and latest delivery sequence is determined, the lower and upper

bound of the QC side task’s starting time can be determined by constructing and solving

sub-problems. In addition, the optimized results of sub-problems are also used to check

whether or not the containers’ earliest and latest delivery sequence affects the operations

of containers and the current best makespan.

For the sake of illustration, we explain an upper bound sub-problem in detail. In

FIGURE 11, this sub-problem is to estimate 3,1
2y

 and 3,2
2y

 . Since these two containers

are operated in the same tandem lift, there should be 3,1 3,2
2 2y y

  . We define 3

2L as the set

of the latest delivery sequences of containers 3,1

2c and 3,2

2c . According to the criteria in the

determination of cut-off delivery sequences, if the container is transported later than its

latest delivery sequence, the earliest arrival time will be later than the current time

window’s upper bound. As shown in FIGURE 11, if the container 3,1

2c is transported

immediately after container 4,1

1c by the same vehicle, there will be 3,1 3,1
2 2y y

  . However, if

3,1

2c is transported immediately after container 5,1

1c then 3,1 3,1
2 2y y

  (a violation).

Consequently, the container 4,1

1c is added to the set 3

2L . Because the delivery schedule of

3,1

2c is also dependent on the delivery of 3,2

2c , operated in the same tandem lift, the latest

delivery sequences of 3,2

2c are also added into the set 3

2L .

44

However, until now the latest delivery sequences of containers and are only

defined according to the estimated time windows and the calculated arrival times,

instead of the actual starting times. To check whether or not the two target containers’

latest delivery sequences delay their operations or the current best makespan, the

algorithm optimizes the delivery sequences of all related containers that are circled by

the dashed frame, using an upper bound sub-problem. In addition to the constraints of

the original MILP model, there are some extra constraints imposed on the MILP model

of the sub-problem:

(1) The two target containers 3,1

2c and 3,2

2c must be transported following the latest

delivery sequence in the set 3

2L by adding constraint
2

3

2

,

3 ,

2

,

1

, 2
g

s g

k

d p

gc L

s g

k

x


  .

(2) The delivery sequences of containers represented by the dashed grey blocks

(denoted by
3

2) do not affect the delivery sequences or schedules of related

containers, so the sub-problem does not optimize those containers’ delivery

sequences or schedules. Thus, they are transported following their delivery

sequences of the initial solution.

(3) To reduce the computation burden of the sub-problem, all temporary cut-off

delivery sequences of related containers (denoted as the set 3

2) based on

current time windows are eliminated from the search space by setting the

corresponding binary decision variables to zero. They are defined as

temporary cut-off sequences because they are only valid in this specific sub-

45

problem. When constructing the next sub-problem, all the temporary cut-off

sequences need to be re-checked according to the new time windows.

After adding the extra constraints listed in TABLE 4, the algorithm constructs the

upper sub-problem for 3,1
2y

 and 3,2
2y

 then solves it using the branch-and-bound method.

Assume that the optimized delivery sequences of the target containers are 1 1

1

, 3,1

2(,)s g

k
c c and

2 2

2

, 3,2

2(,)s g

k
c c and the starting time of

3,1

2y and
3,2

2y is 3,1
2

*

y
 . If 3,2 3,1 3,1

2
3
22 2

,1

*

yy y y
      ; this

implies that their latest delivery sequences do not violate the current upper bound of the

time window or postpone the current best makespan. Then the optimized starting time

3,1
2

*

y
 is used as the new upper bound (,

2
3,1
2

3 1

*

yy
 ). In addition, all the containers operated

before 3,1

2c and 3,2

2c update their upper bound at the same time. Due to the precedence

constraints and the QC’s cycle time, they could not be picked up or dropped off by any

vehicle later than 3,1
2

(3)
y

s    at the QC side.

If instead, 3,2 3,1 3,1
2

3
22 2

,1

*

yy y y
      , it states that even following the best of the latest

delivery sequences, the deliveries of the two target containers still delay the operations

of container 3,1

2c and 3,2

2c so much that the current best makespan is postponed. Then those

two delivery sequences
1 1

1

, 3,1

2(,)s g

k
c c and

2 2

2

, 3,2

2(,)s g

k
c c are added to the set of permanent cut-

off delivery sequences (denoted as
2

s). Logically, since it is too late to transport the

container 3,1

2c or 3,2

2c immediately after the container 1 1

1

,s g

k
c and 2 2

2

,s g

k
c , it is reasonable to

forbid them or the containers operated before them by 2q to be transported immediately

46

after the containers that are operated after 1 1

1

,s g

k
c or 2 2

2

,s g

k
c . Furthermore, all these

corresponding delivery sequences are defined as the permanent cut-off delivery

sequence, as well. Distinct from those temporary cut-off sequences introduced above,

the permanent cut-off sequences are permanently removed from the search spaces of

following sub-problems from this point on. Note that this is a sequential heuristic

approach and we are not guaranteeing that the overall optimal solution of the problem

cannot include any one permanent cut-off delivery sequence.

Lower bound sub-problems are constructed and solved in a similar fashion;

indeed, the only difference proves to be whether or not the earliest delivery sequences of

target containers affect other QCs’ operations excessively, such that the current best

makespan is postponed. Refer to FIGURE 11 (b): when container
3,1

2c is transported

immediately after
2,2

1c the latest arrival time is earlier than the lower bound of its current

time window, i.e.

3,1 3,1
2 2y y

  . Meanwhile, if
3,1

2c is transported immediately after
3,2

1c by

the same vehicle, the vehicle’s arrival time does not violate the current lower bound of

the starting time, i.e.

3,1 3,1
2 2y y

  . Then the container
3,2

1c is added into the set of the

earliest delivery sequence
3

2F . After determining the earliest delivery sequences of
3,1

2c

and
3,2

2c , the lower bound sub-problem is constructed through addition of extra

constraints (28)-(31) to the original MILP model.

If the optimized results of the lower bound sub-problem reflect that the target

containers’ earliest delivery sequences do not delay other QCs’ operations, the optimized

47

starting time is employed to update the lower bound of the target containers’ QC side

tasks’ starting time. At the same time, the containers operated after these target

containers update their lower bounds of starting times. Otherwise, if the results state that

the target containers are transported too early and that other QCs’ operations are delayed

so much that the current best makespan is postponed as a result, their earliest delivery

sequences are defined as permanent cut-off delivery sequences. The containers operated

after these target containers cannot be transported earlier than those earliest delivery

sequences.

TABLE 4 Extra Constraints Imposed to a Sub-Problem

Extra constraints added to the upper bound sub-problem of ,s g
ky



,

,

2

,

1

, 2
s g

k

k

g

k

ss
d p

gc L

s g

k

x


 
(24)

 , ', '
'

, ', '

',
0 , , cs g s g

kk

s g s g s

k kkd p
x c 

(25)

 , ', '
'

, ', '

',
1 , , cs g s g

kk

s g s g s

k kkd p
x c 

(26)

,
 , ,

s g

k

ky
k Q s S   

(27)

Extra constraints added to the lower bound sub-problem of ,s g
ky



,

,

,

2

,
1

2
s s gg

ks g ks

kk

d p
gc F

k
x



 
(28)

 , ', '
'

, ', '

',
0 , , cs g s g

kk

s g s g s

k kkd p
x c 

(29)

 , ', '
'

, ', '

',
1 , , cs g s g

kk

s g s g s

k kkd p
x c 

(30)

,
 , ,

s g

k

ky
k Q s S   

(31)

48

5.2.4 Analysis of the Sub-problem Result

Due to time constraints, not every sub-problem can be solved to optimality.

Therefore, it is important to analyze the results and extract as much information as

possible to update the time windows and the permanent cut-off delivery sequences. This

procedure is referred to as the analysis of the sub-problem result. The first goal of the

process is to determine whether or not the solution is eligible for further consideration. If

it is, the analysis is to determine whether or not the target containers ,1s

kc and ,2s

kc are

allowed to be delivered following the current optimized delivery sequences without

worsening the current optimal makespan. The time window or the set of permanent cut-

off delivery sequences are updated accordingly; otherwise, the results are discarded

directly. The complete process is presented in TABLE 5 and TABLE 6

Upper Bound Sub-problem

The core mission of the upper bound sub-problem is to check whether or not the target

container ,1s

kc and ,2s

kc ’s latest delivery sequences are late, delay the operations of
kq
,

 and

postpone current optimal makespan.

Assume that the optimal solution to the sub-problem is , *s g
ky

 . The results

obtained within the time limit is ,s g
ky

 and the current delivery sequences are 1 1

1

, ,1(,)s g

kk

sc c

and 2 2

2

, ,2(,)s g

kk

sc c . If the sub-problem has been solved to optimal within the time limit, i.e.

, , *s g s g
k ky y

  , the algorithm updates the time window or the set of permanent cur-off

49

delivery sequences following the rules introduced in the last part. If the sub-problem is

not solved to the optimal within the time limit, it is possible that , , *s g s g
k ky y

  . Therefore,

even if , ,s g s g
k ky y

 

holds, we cannot conclude that the containers ,1s

kc and ,2s

kc are

transported too late following their latest delivery sequences. To avoid the exclusion of

potential good solutions due to the possibly inaccurate estimation of actual starting time

and time windows, an alternative criterion is utilized in making the decision. Note that

* ()
k

S s    is the absolute upper bound for any QC side task ,s g

ky because of the

precedence relationship. For the solution to the upper bound sub-problem, there are three

cases:

 (1)

, * ()
ks g

ky
S s     

,s g
ky

 has exceeded its upper bound so much that the makespan is necessarily delayed.

The current upper bound ,s g
ky

 shall not be updated based on this optimization result.

However, whether or not the current delivery sequences 1 1

1

, ,1(,)s g

kk

sc c and 2 2

2

, ,2(,)s g

kk

sc c

should be cut forever from the search space as permanent cut-off sequences still

requires more discussion.

(a) If the starting time of 1 1

1

,s g

k
y or 2 2

2

,s g

k
y is also later than its absolute upper bound (

,1 1
1

1

1* ()s g

k
y k

S s      or ,2 2
2

2

2* ()s g

k
y k

S s     ), it is highly possible that the size

of the sub-problem is too large to be solved to optimal within the short time limit.

Hence, the results are viewed as ineligible for any update.

50

(b) If both 1 1

1

,s g

k
y and 2 2

2

,s g

k
y start earlier than their absolute upper bounds (

,1 1
1

1

1* ()s g

k
y k

S s      and ,2 2
2

2

2* ()s g

k
y k

S s     ), the upper bound sub-problem

is viewed as solved to near-optimal. The solution may be very close, or even the

same as the optimal solution. In such a case, we determine that it is too late to

transport the containers ,1s

kc and ,2s

kc in the current delivery sequences and their

succeeding operations cannot be finished before their absolute upper bounds.

Then the algorithm updates the set of permanent cur-off delivery sequences

accordingly.

(2)

, * ()
ks g

ky
S s     

,s g
ky

 does not exceed its absolute upper bound and the makespan is not necessarily

delayed. Thus the current delivery sequences are not defined as the permanent cut-

off sequences. However, whether or not the optimized starting time can be used to

update ,s g
ky

 still necessitates further discussion.

(a) If both 1 1

1

,s g

k
y and 2 2

2

,s g

k
y start later than their absolute upper bounds, it is highly

possible that the size of the sub-problem is too large to be solved to optimal

within the time limit. Hence, the results are viewed as ineligible to update the

time window.

(b) If at most only one task, 1 1

1

,s g

k
y or 2 2

2

,s g

k
y , starts later than its absolute upper bound,

it implies that the current best delivery sequences of the containers ,1s

kc and ,2s

kc do

51

not necessarily postpone the current best makespan * ; thus, the algorithm

updates the upper bound using the optimized starting time, i.e. , ,s g s g
k ky y

  . At the

same time, all the containers operated before the target containers by
kq should

check, and update if necessary, the upper bound of their QC side tasks’ starting

times according to the precedence relationship using equation (32).

', ', ' 1,min(,), 's g s g s g
k k ky y y

s s      (32)

(c) If *  and all containers’ delivery sequences have been optimized in the sub-

problem,  is the makespan of the entire problem. Thus, if the makespan 

obtained from the optimization result is better than the current best solution * ,

then *  .

TABLE 5 Analysis of an Upper Bound Sub-problem

Analysis of the upper bound sup-problem of ,s g
ky



if , * ()
ks g

ky
S s      then

 if ,1 1
1

1

1* ()s g

k
y k

S s      and ,2 2
2

2

2* ()s g

k
y k

S s      then

 go to the next sub-problem;

 else

 , ,s g s g
k ky y

 

52

TABLE 5 Continued

 ', ', ' 1,min(,), 's g s g s g
k k ky y y

s s     

 if *  and all containers’ delivery sequences have been optimized in the sub-

problem then

 *  ;

 ', ' ', ' ' 1, '
' ' '

min(,)s g s g s g
k k ky y y

     where 'k Q , '', ' 1 ks s S  ;

 end if

 end if

end if

if , * ()
ks g

ky
S s      then

 if ,1 1
1

1

1* ()s g

k
y k

S s      and ,2 2
2

2

2* ()s g

k
y k

S s      then

 remove
1

', ',(,)s g

k

s g

kc c from the search space as permanent cut-off delivery sequences,

where
1's s and 's s ;

 remove
2

', ',(,)s g

k

s g

kc c from the search space as permanent cut-off delivery sequences,

where
2's s and 's s ;

 else

 go to the next sub-problem;

 end if

end if

Lower Bound Sub-problem

For a lower bound sub-problem, the optimization result is to decide whether or not the

containers ,1s

kc and ,2s

kc are transported too early such that the other QCs’ operations are

delayed due to lack of accessibility to the vehicles. Now, assume that the lower bound

53

sub-problem of ,s g
ky has been solved within a short time limit. The possible situations

raised are:

(1)

, ,s g s g

k ky y
 

According to the principle in constructing the lower bound sub-problem, this

scenario should be very rare. It is highly possible that the size of the sub-problem is

too large to be solved to optimal in the time limit. Therefore, the results are ignored

without any further analysis. Here we use ,s g
ky

 instead of * ()
k

S s    to avoid

the situation that might result in the mistake in seeking cut-off delivery sequences.

(2)

, ,s g s g
k ky y

 

(a) If both 1 1

1

,s g

k
y and 2 2

2

,s g

k
y start later than their absolute upper bounds (

,1 1
1

1

1* ()s g

k
y k

S s      and ,2 2
2

2

2* ()s g

k
y k

S s     ), the implication is that

containers ,s g

kc are transported too early and that other QCs’ operations are delayed

so much that the current optimal makespan is postponed as a result. Thus, the

algorithm updates the set of permanent cut-off delivery sequences according to

the results.

(b) the implication is that the current delivery sequences do not affect the operations

of
1k

q or
2k

q . Hence, the results are eligible to update the lower bound, i.e.,

, ,s g s g
k k

y y
  . At the same time, all the containers operated after the target

container check and update their lower bounds according to the equation (33)

54

', ' 1, ',max(,)s g s g s g
k k ky y y     where 's s (33)

TABLE 6 Analysis of a Lower Bound Sub-problem

Analysis of the lower bound sub-problem of ,s g
ky

 if , ,s g s g
k ky y

 

then

 if , ,1 1 1 1

1 1

s g s g

k k
y y

  or , ,2 2 2 2

2 2

s g s g

k k
y y

  then

, ,s g s g

k k
y y

  ;

 ', ' 1, ',max(,)s g s g s g
k k ky y y     where 's s ;

 end if

 if ,1 1
1

1

1* ()s g

k
y k

S s      and ,2 2
2

2

2* ()s g

k
y k

S s      then

 remove
1

', ',1(,)s g

k

s

kc c from the search space as permanent cut-off delivery sequences,

where
1's s and 's s ;

 remove
2

', ',2(,)s g

k

s

kc c from the search space as permanent cut-off delivery sequences,

where
2's s and 's s ;

 end if

else

 go to the next sub-problem;

end if

55

5.2.5 Process of Basic Scheme

Combining the parts introduced above, the basic scheme of the proposed LSC algorithm

is illustrated in TABLE 7.

TABLE 7 Process of the Basic Scheme for Local Sequence Cut Algorithm

The Basic Scheme for Local Sequence Cut Algorithm

for each transport request
s

kr do

 seek the temporary cut-off delivery sequences that violate the current time bounds

and determine the set s

kL , s

k , and s

k ;

 construct the upper bound sub-problem of ,s g
ky

 ;

 solve the sub-problem;

 analyze the results of the upper bound sub-problem;

end for

for each transport request
s

kr do

 seek the temporary cut-off delivery sequences that violates the current time bounds

and determine the set s

kF , s

k , and s

k ;

 construct the lower bound sub-problem of ,s g
ky ;

 solve the sub-problem;

 analyze the results of the lower bound sub-problem;

end for

introduce all cut-off sequences into the original MILP model and set all corresponding

decision variables x to be 0;

solve the original MILP model.

56

5.3 Enhanced Scheme

As the problem size increases, even solving the sub-problems becomes time-consuming.

In addition to the basic scheme, it is necessary to develop several enhanced schemes for

improving the performance of the algorithm.

5.3.1 Treatment at Early Stages

During the first iterations, the time windows are usually too loose to generate enough

cut-off delivery sequences, and there are always too many containers that can be

delivered before or after the target containers without violating the time windows. As a

result, the size of the sub-problem is always too large for the exact method. Thus, it is

reasonable to regulate that the delivery sequence
, ,(,)s g s g

kk
c c to be a cut-off sequence if

(34)

5.3.2 Size Limit on Sub-problems

If the size of a sub-problem is too large for the MILP solver, the solver may not find any

feasible integer solution or only finds a bad feasible solution whose result is not eligible

for any update. To avoid either of the cases, the size of the sub-problem should be

examined before its construction. For each sub-problem in the basic scheme, a threshold

is imposed on the number of the decision variables that have been decided according to

 () (|V| / | |)abs s s floor Q 

57

the set s

k and s

k . If the minimum threshold cannot be met, the algorithm directly skips

to the next sub-problem.

One should note that the upper and lower bounds of starting times have different

effects on searching solution. A relatively higher upper bound does not exclude a

desirable delivery sequence as a cut-off sequence while a relatively higher lower bound

may remove “good” sequences in the succeeding searching processes. To guarantee a

higher quality of the solution, a stricter limit is imposed on the problem size for the

lower bound sub-problems than that for the upper bound sub-problems. Moreover, we

point out here that because the computation speed of the LSC algorithm is greatly

determined by the updates of time windows, the computation might be accelerated along

with the increasing vehicles.

5.4 Overall Process of LSC Algorithm

After adding the enhanced schemes, the overall process of LSC algorithm is stated in

TABLE 8.

TABLE 8 Entire Process of Local Sequence Cut Algorithm

input initial upper and lower bounds;

do while not all the , ,,s g k
ky

k Q s S   have been updated or the maximum number of

iteration has not been reached;

 for each transport request
s

kr do

58

TABLE 8 Continued

 determine the set s

kL , s

k and s

k ;

 if the sub-problem size is smaller than the threshold then

 construct the upper bound sub-problem of ,s g
ky

 ;

 solve sub-problem within a time limit;

 if the solver cannot find any feasible solution then

 go to the next sub-problem;

 else

 analyze the results of the upper bound sub-problem;

 end if

 end if

 end for

 for each transport request
s

kr do

 determine the set s

kF , s

k and s

k ;

 if the sub-problem size is smaller than the threshold then

 construct the lower bound sub-problem of ,s g
ky ;

 solve the sub-problem within a time limit;

 if the solver cannot find any feasible solution then

 go to the next sub-problem;

 else

 analyze the results of the lower bound sub-problem;

 end if

 end if

 end for

end do while

introduce all cut-off sequences into the original MILP model and set all corresponding

decision variables x to be 0;

solve the MILP model within a time limit;

if *  then

59

TABLE 8 Continued

* 

end if

5.5 Numerical Experiments

In this section, we evaluate the performance of LSC algorithm against the branch-and-

bound method realized by CPLEX. All the runs are performed using CPLEX 12.1 with

default setting and C++ in a 3.30 GHz CPU with 4.0 GB RAM. The QC’s cycle time

uses the mode value in the empirical distribution listed in TABLE 1. The handle time at

the QC/YC includes the necessary time that a QC/YC lifts/retrieves a container

onto/from a vehicle, as well as the extra travel time because of the vehicle’s deceleration

as it approaches and leaves a QC/YC (39). The average waiting time of vehicles at the

YC side uses the historical value in the NCT, also consistent with the value in the study

of Lee and Kim (46, 47). It includes the waiting time of the pass permit before the

vehicle enters the passenger lane and the possible waiting for availability of the YC.

5.5.1 LSC v.s. Optimality

To illustrate the LSC method and test its performance, this section presents a series of

numerical experiments. To allow for statistically meaningful results, for each problem

size 10 cases were executed. The results are presented herein.

60

We compare the performance of the LSC method against the MILP model,

directly solving by the ILOG-CPLEX in terms of objective value and the computation

time. To ensure that the CPLEX finds the optimal solution, we first compared the two

methods in twenty small size instances, listed in TABLE 9. The scale of a case is

represented by the numbers of the case number. For example, 24-9-1 implies that there

are in total twenty-four containers, 48 pick-up and drop-off tasks, and nine vehicles in

the model; and the last number 1 denotes the first case of the same problem size. All the

working sequences of QCs and the storage blocks of containers are randomly generated

by the program. The second and third columns present the objective values found by the

CPLEX and the proposed LSC method, respectively.

The results listed in TABLE 9 indicate that the LSC method is able to find the

optimal solution in most cases. For the cases with twenty-four containers and 9 vehicles,

both methods solve the MILP model very quickly. The problem is solved to optimal via

the LSC method in 9 out of 10 cases. Even in the only exception, i.e., case 1, the solution

gap is marginal compared to the optimal one. When there are 36 containers and 12

vehicles in the model, the number of binary decision variables increases significantly

from 595 to 1326. Thus, the CPLEX needs up to 1.5 hours to solve the problem to

optimal. However, the proposed LSC method solves the problem within 15 minutes and

finds the optimal solution within such a short time in 6 out 10 cases. The largest gap

between the optimal solutions is only about 3.4% and the average gap is smaller than

1%.

61

Next, the proposed LSC algorithm is computationally tested in a large test bed,

where the instances are considered rigorously, using exact methods. In TABLE 10, the

computational times of the CPLEX and LSC method are illustrated in the columns with

the name T_CPLEX and T_LSC, respectively. We allow the CPLEX to work for a time

limit up to 10 hours. The best integer solutions found by the CPLEX within the time

limit are used as the benchmark for assessing the LSC algorithm. The objective of the

solution and computational time of the LSC method are revealed in the columns named

LSC and T_LSC, respectively.

TABLE 9 LSC v.s. Optimality (Small Size Problems)

Case CPLEX LSC Gap (%)

24-9-1 988 998 1.012

24-9-2 1049 1049 0.000

24-9-3 1006 1006 0.000

24-9-4 984 984 0.000

24-9-5 1088 1088 0.000

24-9-6 770 770 0.000

24-9-7 925 925 0.000

24-9-8 1102 1102 0.000

24-9-9 1018 1018 0.000

24-9-10 923 923 0.000

average 0.101

36-12-1 1191 1191 0.000

36-12-2 1020 1044 2.353

36-12-3 1182 1182 0.000

36-12-4 1096 1108 1.095

36-12-5 1103 1103 0.000

36-12-6 1121 1128 0.624

36-12-7 958 958 0.000

36-12-8 1127 1127 0.000

62

TABLE 9 Continued

Case CPLEX LSC Gap (%)

36-12-9 1098 1098 0.000

36-12-10 1108 1145 3.339

average 0.741

Note: CPLEX – the optimal solution found by CPLEX-OLOG;

 LSC – the best solution found by LSC method;

 Gap – (LSC – CPLEX) / CPLEX * 100%

In 16 out of 40 cases, the LSC method finds a better solution than the CPLEX.

The objective values obtained from the LSC method is 11.111% lower in the best case

and 6.397% higher in the worst case, compared with the CPLEX. The average gap

between the two methods does not exceed 4%. However, the computation time

consumed by the LSC method is only 1/5 to 1/4 of the CPLEX.

TABLE 10 LSC v.s. Optimality (Large Size Problems)

Case No. Best Integer Best Node T_CPLEX LSC T_LSC Gap

72-15-1 2268 1354 10hr 2016 100min -11.111

72-15-2 2045 1357 10hr 2031 100min -0.685

72-15-3 1980 1326 10hr 1882 100min -4.949

72-15-4 2050 1288 10hr 2040 100min -0.488

72-15-5 2124 1314 10hr 2076 100min -2.260

72-15-6 2074 1307 10hr 2114 100min 1.929

72-15-7 2065 1186 10hr 2052 100min -0.630

72-15-8 2347 1357 10hr 2314 100min -1.406

72-15-9 2154 1308 10hr 1940 100min -9.935

72-15-10 2225 1337 10hr 2078 100min -6.607

average -3.614

72-18-1 1676 1250 10hr 1536 90min -8.353

72-18-2 1625 1349 10hr 1685 90min 3.692

63

TABLE 10 Continued

Case No. Best Integer Best Node T_CPLEX LSC T_LSC Gap

72-18-3 1783 1390 10hr 1772 90min -0.617

72-18-4 1715 1492 10hr 1683 90min -1.866

72-18-5 1726 1436 10hr 1754 90min 1.622

72-18-6 1628 1434 10hr 1662 90min 2.088

72-18-7 1850 1409 10hr 1852 90min 0.108

72-18-8 1562 1504 10hr 1596 90min 2.177

72-18-9 1794 1450 10hr 1802 90min 0.446

72-18-10 1779 1376 10hr 1779 90min 1.124

average 0.042

72-21-1 1490 1410 10hr 1524 40min 2.282

72-21-2 1569 1555 10hr 1577 40min 0.510

72-21-3 1613 1498 10hr 1627 40min 0.868

72-21-4 1488 1474 10hr 1489 40min 0.067

72-21-5 1445 1417 10hr 1445 40min 0.000

72-21-6 1476 1449 10hr 1516 40min 2.710

72-21-7 1574 1556 10hr 1600 40min 1.652

72-21-8 1424 1417 10hr 1424 40min 0.000

72-21-9 1509 1315 10hr 1533 40min 2.916

72-21-10 1499 1487 10hr 1517 40min 1.201

average 1.221

90-21-1 1932 1635 10hr 1932 2hrs 0.000

90-21-2 2006 1608 10hr 1946 2hrs -2.991

90-21-3 1901 1782 10hr 1973 2hrs 3.787

90-21-4 1780 1711 10hr 1816 2hrs 2.022

90-21-5 2037 1605 10hr 1915 2hrs -5.989

90-21-6 2059 1571 10hr 1954 2hrs -5.100

90-21-7 1696 1692 10hr 1728 2hrs 1.887

90-21-8 2079 1629 10hr 2212 2hrs 6.397

90-21-9 2062 1268 10hr 2036 2hrs -1.261

90-21-10 1913 1599 10hr 1987 2hrs 2.265

average -0.139

Note: Best Node – the best non-integer solution found by the CPELX

64

Another important observation is that for the problems that consist of the same

number of containers, the more vehicles there are, the faster the problem is solved. The

main reason is because more vehicles lead to the relatively lower upper bounds of

starting times. Since the construction of a sub-problem is dependent on the range of time

windows, the lower upper bound is undoubtedly helpful in estimating the starting times

more precisely and controlling the size of sub-problem effectively. Consequently, they

accelerate the solution of sub-problems and shorten the total CPU time of the algorithm.

5.5.2 Time Windows and Cut-off Delivery Sequences

At the end of the algorithm, the CPLEX is allowed to solve the original MILP model

within only 20 minutes. Its solution is comparable to the one found by the CPLEX alone

running 10 hours. The success is attributed to the introduction of those cut-off delivery

sequences defined by the algorithm. According to the numerical experiments, at the end

of the algorithm, the binary decision variables of the original MILP model have been

halved before the CPLEX starts to solve it. To state how the cut-off delivery sequences

and the time bounds are updated through iteration, we take one case 72-18-4 as an

instance.

FIGURE 12 plots the number of cut-off delivery sequences eliminated from the

search space of the sub-problems. They are comprised of those temporary cut-off

delivery sequences according to the current time windows and the permanent cut-off

delivery sequences decided during earlier iteration. Here, we only record the sub-

problems whose sizes satisfy the pre-defined threshold, as only these would proceed to

65

be solved by the CPLEX. There are a total of 151 sub-problems constructed and solved

during iteration. We notice that the number of cut-off delivery sequences always keeps

increasing when the algorithm is solving upper bound sub-problems. When the

algorithm starts to construct and solve lower bound sub-problems, the number of cut-off

delivery sequences reaches relative stability or increases very slowly. This implies that

the update of starting times’ lower bounds is lesser than upper bounds. That is because

(1), in constructing a lower bound sub-problem, the target containers are forced to be

transported following their earliest delivery sequences. As a result, the optimized starting

time of the corresponding QC side task is the same as its current lower bound; and (2), to

avoid excluding potential “good” delivery sequences from the search spaces, the criteria

in updating time windows or the set of permanent delivery sequences is stricter than

analysis of the results of upper bound sub-problems. FIGURE 12 implies that the upper

bound sub-problems are more critical to the update of time windows and the set of

permanent cut-off delivery sequences.

To present how the time windows are updated through iteration, FIGURE 13

records the time window of all containers operated by the same QC. Because the two

containers operated in the same tandem lift have the same time window for their QC side

tasks, each bar in FIGURE 13 represents the time window of those two QC side tasks’

starting time. The lines above and below the bars are the upper and lower bound of the

time windows.

66

FIGURE 12 Number of cut-off delivery sequences through iteration.

FIGURE 13(a) is the original time windows calculated using the initial solution

and the QC’s cycle time. The initial time windows are very loose and they share the

same ranges. During the first iteration, only the first few time windows are updated,

while others remain the same, because most sub-problems are not solved by the CPLEX

due to their problem sizes. When more time windows are updated, more sub-problems

satisfy the pre-defined threshold and are solved by the CPLEX. FIGURE 13(c) – (d)

show very clearly that the time windows are narrowed greatly through the next two

iterations. When the third iteration ends, all starting times have been updated. The green

triangles plotted in FIGURE 13(d) represent the starting times in the final solution, all

visibly positioned within the final time windows. It proves that the effectiveness of LSC

algorithm in estimating the time windows.

1000

1200

1400

1600

1800

2000

2200

2400

2600

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

#
 c

u
t-

o
ff

sub-problems

67

(a) The initial time windows

(b) After the first iteration

(c) After the second iteration

FIGURE 13 Update of time bounds through iterations.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 B

o
u

n
d

s

Operation

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 B

o
u

n
d

s

Task

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
 B

o
u

n
d

s

Task

68

FIGURE 13 Continued

(d) After the third iteration

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12

S
ta

r
t

T
im

e

Task

69

6. MODIFIED LSC ALGORITHM

The numerical experiments in the last section have shown that the proposed LSC

algorithm is capable of reducing the search space effectively by cutting off the delivery

sequences based on the estimation of time windows. However, the original algorithm is

still not efficient enough to handle the problems of larger size. The reasons can be

summarized as follows:

(1) According to the analysis in previous section, the updates of upper bounds

play a key role in the algorithm. It determines the quality and the speed of the

algorithm significantly. Unfortunately, the upper bounds of many starting

times cannot be updated at the beginning stage. Such a disadvantage is more

crucial when the operations increase. The algorithm needs more iteration to

update the time windows of all QC side tasks’ starting times.

(2) Contrary to those sub-problems not constructed or solved due to their large

sizes, there are some other sub-problems are constructed and solved

repeatedly through iteration without contributing any new information to the

algorithm. The set of the latest or earliest delivery sequences are the same as

those in the last iteration; the optimized starting time of sub-problem is the

same as the current upper or lower bound. In such cases, these sub-problems

are defined as meaningless sub-problems, because the algorithm does not

benefit from their solutions but consume CPU time only.

70

To solve the above two problems and further accelerate computation, this section

is dedicated to propose the modified LSC algorithm. The solution to the first problem is

to propose a heuristic method as an alternative to the CPLEX to solve the sub-problems,

especially when the sub-problem size does not satisfy the pre-defined threshold. In

addition, its computation time should be more competitive than the CPLEX and not

affected significantly by the problem size as the CPLEX. The solution to the second

problem is to develop a set of selection mechanisms to prevent the algorithm from

constructing and solving those meaningless sub-problems. In summary, the employment

of the heuristic method is to accelerate the update of the time windows, especially the

upper bounds, of the starting times. The introduction of the selection mechanism is to

detect the meaningless sub-problems and prevent wasting CPU time on them. Thus, the

modified LSC method is expected to quicken the searching process significantly

compared to the original algorithm, without affecting the solution quality. The following

parts introduce the modified LSC method in more details.

6.1 Priority Based Heuristic Method

To provide a more computationally efficient method to solve the sub-problem, a

heuristic method is proposed and used to solve the upper bound sub-problems without

any size limit. If the result is eligible to update the upper bound of the starting time, it

will not be solved by the CPLEX again even if its size satisfies the pre-defined

threshold. To avoid the elimination of good solutions, the result from the heuristic

method would not be used to define the permanent cut-off sequences, even if it is

71

eligible for that. Based on the similar consideration, the heuristic method is not used to

solve the lower bound sub-problems. In addition, to accelerate the computation further,

as long as one time window is updated, the algorithm solves the entire problem via the

heuristic method. If the objective is better than the current best makespan, it is used as

the current best makespan, and every starting time’s upper bound is checked and updated

if necessary according to the equation (16).

The heuristic method only considers the active transportation requests in making

the decisions. An active request refers to the one whose predecessor requests have all

been completed, and we can predict when the container is ready to be picked up or

dropped off at the QC side. For example, if kq ’s (1)ths  operation is a loading

(unloading) operation, then the request s

kr is released and becomes active when kq

finishes lifting (positioning) the containers from (onto) the vehicles. Thus, at any

moment, there are at most Q active requests, and each of them needs two vehicles to

transport the containers. An assignment of a transport request s

kr to two vehicles mv and

nv is denoted as (, ,)s

k m nass r v v here and after.

The mission of the algorithm is to determine which one is the best among all

possible assignments. To deduce the assignment that benefits the most to minimize the

makespan, a priority-based heuristic method is developed to measure the priorities of the

assignments by comparing their attributes. Then the vehicles are dispatched according to

the assignment with the highest priority. The consideration of the priority measurement

72

includes the minimization of the QC’s idle time and maximization of the vehicles’

utilization.

6.1.1 Creation of Assignments

An active request s

kr needs two vehicles to transport the target containers ,1s

kc and ,2s

kc .

The principles in constructing sub-problems are still applied in creating the assignments.

If  1 1 2 2

1 2

, ,,s g s g

k kc c is a temporary cut-off delivery sequence according to the current time

windows or a permanent cut-off delivery sequence according to the previous iteration,

then the vehicle that is delivering container 1 1

1

,s g

kc cannot be dispatched to transport

container 2 2

2

,s g

kc consecutively. At the same time, the two target containers ,1s

kc and ,2s

kc

must be transported following one of their latest or earliest delivery sequences. All

satisfying assignments of the request s

kr are added to the set s

k . For the purpose of

priority measurement, the following attributes of each assignment are calculated and

recorded:

(1) QC idle time — denotes the QC’s waiting time due to the late arrival of

vehicles. When the vehicles arrive later than the time when a QC is ready to

lift/position containers from/onto vehicles, the QC has to wait for them. It is

obviously that the minimization of a QC’s idle time is helpful to shorten the

makespan and increase the productivity of the QC.

(2) Arrival time difference — denotes the difference between the two vehicles’

arrival times at a QC. In such a case, both the QC and the vehicle, which

73

arrives earlier, have to wait for the other vehicle. It not only results in the

QC’s idle time but also affects the utilization of vehicles.

(3) Empty travel time — denotes the travel time of the vehicle when it is empty.

After dropping off a container at the YC or QC side, the time an empty

vehicle takes to travel to pick up the next container is defined as its empty

travel time.

(4) Arrival time difference — denotes the difference between the two vehicles’

arrival times at a QC. In such a case, both the QC and the vehicle, which

arrives earlier, have to wait for the other vehicle. It not only results in the

QC’s idle time but also affects the utilization of vehicles.

(5) Free time — denotes the moment when the vehicle finishes dropping off its

current container at the QC or YC side and becomes free to respond another

transportation request.

(6) Remaining requests — denotes the number of succeeding requests after s

kr

according to
kq ’s working sequence. The more remaining requests an active

request has, the more its delay would affect that QC’s succeeding operations

and the final makespa.

6.1.2 Priority Measurement

After the construction of assignments, the priority measurement is conducted in two

steps. In the first step, the comparison is among the assignments with the same active

74

request and only the best ones are kept for the further consideration. The QC idle time

and arrival time difference are chosen for the priority measurement in the first step. They

are the two attributes that affect the makespan directly and reflect the characteristics of

the tandem lift QC. The assignments with the shortest QC idle time and the smallest

arrival time difference are favored over others. The priority measurement in the first step

is illustrated in TABLE 11.

TABLE 11 Priority Measurement in the First Step

if 1s

k 

 keep the assignment with the shortest QC idle time then delete others;

end if

if 1s

k 

 keep the assignment with the shortest arrival time difference then delete others;

end if

After the comparison and filtration in the first step, only those best assignments

are preserved for the measurement in the second step. However, the same vehicle may

appear in the best assignments of different requests. To make the final decision, all

assignments of different active requests are compared and set priorities in the second

step. The choice of attributes and the order in which the attributes are compared mainly

focus on the maximization of the vehicles’ utilization and the degree to which the

attributes affects the makespan. If more than one assignment has the equally highest

75

priority at the end of the second step, the algorithm picks one randomly from them. The

priority measurement in the second step is presented in TABLE 12.

TABLE 12 Priority Measurement in the Second Step

if 1s

k

k Q

  then

 keep the assignments that have the shortest empty travel time and delete others;

end if

if 1s

k

k Q

  then

 keep the assignments that have the most remaining requests and delete others;

end if

if 1s

k

k Q

  then

 keep the assignments that have the shortest QC idle time and delete others;

end if

if 1s

k

k Q

  then

 keep the assignments that have the earliest free time and delete others;

end if

if 1s

k

k Q

  then

 keep the assignments that have the smallest arrival time difference and delete others;

end if

if 1s

k

k Q

  then

 keep the assignments that have the smallest early arrival time and delete others;

end if

if 1s

k

k Q

  then

 pick up one assignment randomly;

end if

if 1s

k

k Q

  then

 dispatch vehicles according to the assignment with the highest priority;

end if

76

Assume that the assignment  , ,s

k m nass r v v has the highest priority and the

vehicles have been dispatched accordingly; the next request 1s

kr
 is released and

becomes active. Then the heuristic method repeats the process until the two target

containers, whose starting times’ upper bound is the concern of the sub-problem, have

been transported. If the result is eligible for the update of the upper bound, the sub-

problem will not be solved by the CPLEX again. Otherwise, the sub-problem is sent to

the CPLEX if its size satisfies the pre-defined threshold.

6.2 Selection Mechanism

To avoid the waste of CPU time on the meaningless sub-problems, a selection

mechanism is proposed in the modified algorithm. The mechanism is triggered before

the construction of a sub-problem. In the thn iteration, the upper bound sub-problem or

lower bound sub-problem will be viewed as a meaningless sub-problem when all the

following criteria are met:

(1) In the (1)thn iteration, the upper (lower) bound sub-problem has been

solved by the CPLEX and its result was eligible for the update of upper

(lower) bound of the time window.

(2) In the (1)thn iteration, the optimized starting time was the same as the upper

(lower) bound before the construction of the sub-problem.

(3) In the thn iteration, the set of the latest (earliest) delivery sequences of the

target containers are the same as those in the (1)thn iteration.

77

If an upper bound or lower bound sub-problem is detected to be a meaningless sub-

problem, the algorithm skips to the next sub-problem directly without constructing or

solving it at all. The overall process of the modified algorithm is illustrated in TABLE

13.

TABLE 13 Process of Modified LSC Algorithm

for each transport request
s

kr do

 if the upper bound sub-problem of ,s g
ky

 is not a meaningless sub-problem then

 determine the set s

kL , s

k and s

k ;

 construct the upper bound sub-problem;

 solve the sub-problem using priority-based heuristic method;

 analyze the results of the upper bound sub-problem;

 if the result is not eligible to update the upper bound and the sub-problem satisfies

the pre-defined threshold then

 solve the sub-problem using the CPLEX;

 analyze the result of the upper bound sub-problem;

 end if

 end if

end for

solve the entire problem using priority-based heuristic method based on the current

upper and lower bounds;

if *  then

 * 

end if

for each transport request
s

kr do

 if the upper bound sub-problem of ,s g
ky is not a meaningless sub-problem then

78

TABLE 13 Continued

 determine the set s

kF , s

k and s

k ;

 construct the lower bound sub-problem;

 solve the sub-problem;

 analyze the result of the lower bound sub-problem;

 end if

end for

solve the problem using priority-based heuristic method based on the current upper and

lower bounds;

if *  then

 * 

end if

add all cut-off sequences into the original MILP model and set all corresponding

decision variables x to be 0;

solve the original MILP model using the CPLEX

6.3 Numerical Experiment Results

To test the effectiveness of the proposed heuristic method and the selection mechanism,

a series of numerical experiments are conducted. The solution and the computation time

of the modified algorithm are compared with the original algorithm introduced in the last

section and the branch-and-bound method realized using the CPLEX.

79

TABLE 14 Numerical Experiment Results of Different Methods

 CPLEX LSC Mod LSC Gap (%)

Obj Obj Obj time Cut (%) CPLEX LSC

72-15-1 2268 2016 2028 30min 29.137 -10.582 0.595

72-15-2 2045 2031 2103 30min 38.050 2.836 3.545

72-15-3 1980 1882 1954 30min 58.275 -1.313 3.826

72-15-4 2050 2040 2014 30min 37.984 -1.756 -1.275

72-15-5 2124 2076 2052 30min 37.802 -3.390 -1.156

72-15-6 2074 2114 2068 30min 38.355 -0.289 -2.176

72-15-7 2065 2052 1958 30min 31.442 -5.182 -4.581

72-15-8 2347 2314 2291 30min 32.584 -2.386 -0.994

72-15-9 2154 1940 2010 30min 54.561 -6.685 3.608

72-15-10 2225 2078 2113 30min 38.545 -5.034 1.684

average 39.673 -2.578 0.276

72-18-1 1676 1536 1664 30min 53.514 -0.716 8.333

72-18-2 1625 1685 1596 30min 56.618 -1.785 -5.282

72-18-3 1783 1772 1772 30min 47.553 -0.617 0.000

72-18-4 1715 1683 1759 30min 50.029 2.566 4.516

72-18-5 1726 1754 1730 30min 50.181 0.232 -1.368

72-18-6 1628 1662 1652 30min 59.379 1.474 -0.602

72-18-7 1850 1852 1871 30min 61.969 1.135 1.026

72-18-8 1562 1596 1619 30min 49.133 3.649 1.441

72-18-9 1794 1802 1832 30min 59.208 2.118 1.665

72-18-10 1779 1779 1801 30min 49.533 1.237 0.111

average 53.712 0.929 0.984

72-21-1 1490 1524 1490 25min 64.114 0.000 -2.231

72-21-2 1569 1577 1570 25min 52.543 0.064 -0.044

72-21-3 1613 1627 1627 25min 56.370 0.868 0.000

72-21-4 1488 1489 1488 25min 55.151 0.000 -0.067

72-21-5 1445 1445 1445 25min 39.935 0.000 0.000

72-21-6 1476 1516 1476 25min 52.657 0.000 -2.639

72-21-7 1574 1600 1574 25min 53.133 0.000 -1.625

72-21-8 1424 1424 1449 25min 46.655 1.756 1.756

72-21-9 1509 1533 1533 25min 41.725 1.590 -1.288

72-21-10 1499 1517 1507 25min 59.874 0.534 -0.659

average 52.216 0.481 -0.726

90-21-1 1932 1932 1904 40min 49.776 -1.449 -1.449

90-21-2 2006 1946 2026 40min 43.665 0.997 4.111

90-21-3 1901 1973 1958 40min 44.100 2.998 -0.760

80

TABLE 14 Continued

 CPLEX LSC Mod LSC Gap (%)

Obj Obj Obj time Cut (%) CPLEX LSC

90-21-4 1780 1816 1832 40min 47.128 2.921 0.881

90-21-5 2037 1915 2033 40min 57.441 -0.196 6.162

90-21-6 2059 1954 1978 40min 52.803 -3.934 1.228

90-21-7 1696 1728 1706 40min 65.929 0.590 -1.273

90-21-8 2079 2212 2073 40min 60.002 -0.289 -6.284

90-21-9 2062 2036 1994 40min 62.068 -3.298 -2.063

90-21-10 1943 1987 1983 40min 55.321 2.059 -0.201

average 53.823 2.059 0.061

Note: Cut (%) – percentage of decision variables that have been set to be 0 according to the

cut-off delivery sequences defined by the algorithm

 Gap/CPLEX (%) – (Mod LSC – CPLEX)/CPLEX*100%

 Gap/LSC (%) – (Mod LSC – LSC)/LSC*100%

The results listed in TABLE 14 show clearly that the proposed heuristic method

and the selection mechanism are effective in saving CPU time greatly, as expected. The

computation time consumed by the modified LSC algorithm is only 1/4 to 1/3 of the

original algorithm. More important is that when the decision variables increase greatly,

from around 5250 to around 8200, the computation time of the modified algorithm does

not increase as significantly as the original. It proves that the modified algorithm has

more potential and is more appealing in handling larger size problems. To assess the

effectiveness of the algorithm in tightening the search space, we recorded the number of

binary decision variables that have been set to be 0 according to the cut-off delivery

sequences at the end of the algorithm. The results listed in TABLE 14 indicate that the

search space of the original MILP model is halved. Thus, the CPLEX finds the equally

81

good or even better solution in 20 minutes compared with the solution found by the

CPLEX alone running 10 hours.

Compared to the best integer solution found by the CPLEX alone, the objective

value obtained from the modified LSC method is 3.649% higher in the worst case and

10.582% lower in the best case. Compared with original one, the modified algorithm is

8.333% higher in the worst case and 6.284% lower in the best case. On average, the gap

between the modified LSC algorithm, the branch-and-cut method, and the original

algorithms is within 3% and 1%, respectively. In approximately half of those forty cases,

the modified LSC method renders a better solution than other two methods in a much

shorter CPU time.

When the problem size keeps extending, the CPLEX alone could not find a

feasible solution, even running up to 10 hours. Thus, the absolute lower bound (LB) is

chosen for examining the performance of the modified LSC algorithm in the next 10

cases. The LB is calculated assuming that there is no idling and delay during the QCs’

operations. Thus, the optimal solution is impossibly lower than the LB provided here.

The total computation time consumed by the modified LSC method is 30 minutes, and

10 minutes are consumed to solve the sub-problems iteratively. According to the results

listed in TABLE 15, the number of decision variables is reduced by about 45% because

of the introduction of cut-off delivery sequences. With a much lower computation load,

the CPLEX finds a good solution in only 20 minutes. And its average gap between the

LB does not exceed 15.4%.

82

TABLE 15 Modified LSC Algorithm v.s. LB

 Mod. LSC time # bin Cut (%) LB Gap (%)

108-24-1 2055 30min 11765 45.261 1878 9.425

108-24-2 2168 30min 11765 47.488 1838 17.954

108-24-3 2128 30min 11767 46.239 1898 12.148

108-24-4 2092 30min 11763 39.369 1530 36.732

108-24-5 2350 30min 11766 38.484 1902 23.554

108-24-6 2238 30min 11766 48.683 1910 17.173

108-24-7 2183 30min 11765 41.156 1823 19.748

108-24-8 1896 30min 11765 48.729 1872 1.282

108-24-9 1992 30min 11764 44.713 1866 6.752

108-24-10 2044 30min 11766 49.074 1872 9.188

average

44.920

15.393

Note: # bin—number of binary decision variables

 Cut (%) – percentage of decision variables that have been set to be 0 according to the

cut-off delivery sequences defined by the algorithm

6.4 Sensitivity Analysis

To assess the robustness of the algorithm, sensitivity analysis is conducted to see

whether or not the search process is greatly affected by the important parameters: initial

solution and the time limit. The initial solution determines the initial upper and lower

bounds of all starting times and therefore determines the construction of sub-problems

during iteration. The time limit in solving sub-problems might affect the optimization of

sub-problems and thus the update of time windows and the set of permanent cut-off

delivery sequences. The number of containers and vehicles in the following experiments

are set to be 108 and 21, respectively.

83

6.4.1 Initial Solution

As described, we choose a very simple method to generate the initial solution to start the

iteration. However, if the algorithm is sensitive to the initial solution, we have to re-

consider the method of obtaining the initial solution or even the design of the algorithm.

To test the sensitivity of the algorithm to the initial solution, we increase and decrease

the initial solution by 10% and 20% to determine whether the final solution would be

significantly affected by the changes. Each objective value listed in TABLE 16 is the

average of 10 cases.

TABLE 16 Algorithm’s Sensitivity to the Initial Solution

Initial Solution -20% -10% 0% 10% 20% -20% -10%

Objective 2451.1 2444.9 2434.2 2490.3 2488.5 2451.1 2444.9

The computation results presented in TABLE 16 show that the changes in the

initial solution do not affect the objective value. When the objective value of the initial

solution decreases and increases by 10% and 20%, the objective value only changes

around 1% and 2.5%. Additionally, the total CPU time is not affected. This implies that

the algorithm is robust and not sensitive to the initial solution. The iteration can start

with an initial solution obtained from any simple and straightforward method.

84

6.4.2 Time Limit for Solving Sub-problems

The longer the CPLEX is allowed to solve a sub-problem, the more possible that the

sub-problem is solved to optimal, and the more accurate the upper and lower bounds

could be. However, the price for that accuracy is the possible increase in the CPU time,

especially when the problem size expands. To analyze to what extent the time limit

affects the algorithm, we re-calculate those 10 cases, varying the time limit in solving

sub-problems from 40 to 100 seconds.

TABLE 17 Algorithm’s Sensitivity to the Time Limit in Solving Sub-problems

Time Limit (sec) 40.00 50.00 60.00 70.00 80.00 90.00 100.00

Objective 2485.8 2463.1 2451.0 2450.1 2434.2 2440.8 2440.3

The results listed in TABLE 17 reveal that when the time limit increases from 40

to 100 seconds, there is only a minor decrease in the objective values. The gap between

the lowest and the highest averages of objective values is only 2.12%. Additionally, the

computation time also remains the same when the time limit varies from the 50 to 90

seconds. The reason that the algorithm is not sensitive to the time limit in solving sub-

problems can be summarized as follows: (1), because of the introduction of cut-off

delivery sequences, most sub-problems can be solved to optimal within a short time

limit. Thus, the change of the time limit does not affect the best solution and the

85

computation time of most sub-problems, and (2), even if the sub-problem is not solved

to optimal due to the reduction of the time limit, the analysis of sub-problem results

prevent those “bad” results from being used to update the time windows or the sets of

permanent cut-off delivery sequences.

In sum, the sensitivity analysis proves that the algorithm is robust. Its

computation time and objective value are not affected by the initial solution or the time

limit in solving sub-problems. In addition, the comparison between the original and

modified LSC algorithms has shown that the application of heuristic method as the sub-

problem solver quickens the searching process greatly. Thus, it is reasonable to believe

that the proposed algorithm would be improved further if another more effective

heuristic method is employed to solve the sub-problems and the original MILP model.

86

7. ON-LINE DISPATCHING POLICY

In addition to closely interrelated activities, the high degree of complexity of the

terminal operations is due to the terminal’s dynamic working environments. They

include weather conditions; wrong information of containers and external vehicles; the

mistakes during operations; the reshuffle operation in the storage area; and so on. As a

result, the uncertainties in the system become a huge challenge to the terminal’s daily

operations.

In such a stochastic working environment, decisions have to be made without

complete knowledge of future events, opposite to the static problem described in the last

two sections. Compared with the off-line dispatching rule, the on-line dispatching

method is more appropriate in a highly dynamic working environment where only

limited information about future events is available. Thanks to the employment of

advanced localization system and communication technologies, such as Differential

Global Positioning System (DGPS) and Radio Frequency Identification (RFID), the

supervisors can monitor the locations and status of different equipment and containers

and communicate with operators and drivers effectively (24). Thus, the fleet of vehicles

can be dispatched following an on-line dispatching rule, using the real-time process and

travel time.

The on-line dispatching methods are typically one-to-many assignments and all

these approaches generally are classified into two categories by Egbelu and Tanchoco

(16). The first category is a request initiated dispatching rule that determines an

87

appropriate vehicle from a set of idle vehicles to match the transportation request. The

second category is vehicle-initiated dispatching rule that assigns one request from all

available requests to the single vehicle. The on-line dispatching rule currently employed

in NCT is the Longest Idle Vehicle (LIV) rule, according to the classification and

definitions in the work of Egbelu and Tanchoco (16). Assume that there are two dummy

depots at the single loop layout. The vehicles queue at depot A after dropping off

containers at the storage blocks and at depot B after dropping off containers at the quay

cranes (FIGURE 14). Once there is a newly released transportation request, the first two

vehicles in the queue at depot A or B, which are also the vehicles that remained idle the

longest among all the idle vehicles, are dispatched to pick up the containers from the QC

side or the YC side. The main advantage of the rule is its easy application in the dynamic

working environment. However, there are two main shortcomings: One is that the rule

does not make full use of the vehicle resources. Every time a vehicle drops off a

container at the QC or YC side, it returns to depot A or B, directly waiting for the next

task. Thus, the vehicles will not be dispatched to pick up the containers on their way

back to the depot. The second is that the rule does not take into consideration the

simultaneous arrival of the two vehicles. For example, during the loading process,

although the two vehicles that are dispatched to pick up the two containers may leave the

depot almost at the same time, it is still highly possible that they arrive at the QC side at

different times.

88

FIGURE 14 Current dispatching rule.

To make full use of the vehicles’ capacity and make account of the requirement

of the tandem lift operation, this section proposes a heuristic method as the on-line

dispatching rule. It is a priority-based heuristic method with the objective of minimizing

the makespan. The priority rule is not only easily implemented, but also flexible for

practical application. The choice of attributes and the order in which they are compared

can be adjusted according to the demands of the working environment. Series of

numerical experiments are conducted to compare the performance of the proposed

priority dispatching rule against the LIV rule under different degrees of stochasticity.

The sensitivities of the approach to the QC’s cycle time and the vehicles’ average

traveling speed are assessed in the sensitivity analysis.

89

7.1 Priority On-line Dispatching Rule

The proposed approach is also a request-initiated dispatching rule. It is similar to the

heuristic method introduced in the modified LSC algorithm. The differences between the

on-line and the off-line approaches are:

(1) The on-line dispatching rule only considers the first available transportation

requests, instead of all available requests in making dispatching decisions

because the QC’s cycle time is dynamic, and we cannot predict when the two

containers are available to be picked up or dropped off by vehicles at the QC

side.

(2) In constructing the assignment, the on-line rule only assigns those vehicles idle

when the requested is released. Because the vehicles’ traveling time and their

waiting time at the YC are not deterministic any more, the vehicles’ arrival times

cannot be calculated using the setup times as the off-line approach. If there is no

vehicle available at the time when the first request is released, the first two

available vehicles are dispatched to transport those two containers.

(3) Since only one request is considered every time, the on-line dispatching rule does

not need to compare the assignments with different requests. Consequently, the

priority measurement is completed in one step and the number of remaining

requests is not necessary anymore.

After some initial experiments, we decide to measure the assignments’ attributes

following the order which is presented in TABLE 18.

90

TABLE 18 Priority Dispatching Rule

do while not all the transportation requests have been assigned;

for the newly released transportation request s

kr do

 if there is no idle vehicle or there is only one idle vehicle then

 dispatch the first two available vehicles to respond the request directly;

 else then

 create the set of feasible assignments s

k by assigning the request to any two idle

vehicles;

 if 1s

k  then

 keep the assignments with the smallest QC idle time and delete others;

 end if

 if 1s

k  then

 keep the assignments with the smallest arrival time difference and delete others;

 end if

 if 1s

k  then

 keep the assignments with the smallest empty travel time and delete others;

 end if

 if 1s

k  then

 keep the assignments with the smallest early arrival time and delete others;

 end if

 if 1s

k  then

 keep the assignments with the earliest free time and delete others;

 end if

 if 1s

k  then

 pick up an assignment randomly as the dispatching decision;

 end if

 if 1s

k  then

91

TABLE 18 Continued

 dispatch the vehicles to the request according to it;

 end if

 end if

end do while

7.2 Numerical Experiment

7.2.1 Design of the Experiment

The numerical experiments in this section are designed to test the performance of the

proposed priority rule and the LIV rule in the dynamic working environment. The

performance measurements include the makespan and the QC’s average productivity.

The QC’s average productivity is the average number of containers unloaded/loaded by

each QC in one hour.

7.2.2 Experimental Scenarios

According to the empirical distribution in TABLE 1, the mode, the most frequent value

of the QC’s cycle time, is 90 seconds. Considering the traffic control problem in the

paths, the fleet size is always 8 to 12 vehicles per QC. Thus, throughout the experiments,

the number of QCs; containers and vehicles are set to be 3, 960, and 30, respectively.

To make account of the dynamic working environment, the experimental

scenarios are distinguished by the different degrees of stochasticity. In simulating the

92

dynamic working environment, the QC’s cycle time, the vehicles’ waiting times at the

YC side and the vehicles’ traveling time between the QC and YC side are simulated as

random values according to the empirical data. The different degrees of stochasticity are

simulated in the following four levels:

Deterministic: The cycle times are set to be the mean values of each time

interval in TABLE 1 and the fraction of each time interval remains. For example, the

mean value of the time interval [50, 60] is 55, and its frequency is 0.04. The vehicles’

waiting times and travel times are set to the mean values used in the last two sections.

Low: To simulate the scenario with smaller variance in the process and traveling

times, the empirical distributions are compressed such that the largest deviations from

the mode value are reduced to half of the original value. For example, in TABLE 1, the

cycle time varies from 50 to 140 seconds and the highest frequent value is 90 seconds.

The smallest and largest values are away from mode value by 40 and 50 seconds. Thus,

the distribution of the cycle times used in the Low scenario is compressed to [70,120].

The faction of each time interval remains the same, and the randomly generated cycle

times in each interval follow the uniform distribution. To take account of the variance in

the vehicles’ waiting times and traveling times, their values are allowed to be up to 10%

higher or lower than the mean value. Moreover, the randomly generated times within

above range follow the normal distribution.

Medium: The cycle time is randomly generated following the empirical

distribution in TABLE 1. The highest and lowest values of the vehicles’ waiting and

traveling times cannot exceed the 30% of the mean values.

93

High: The distribution in the High scenario is designed to account for the large

disturbance caused by the unexpected events, like the bad weather, wrong operation, and

so on. The empirical distribution is expanded such that the deviations are doubled.

Because there is no cycle time smaller than 20 seconds, the cycle time accounted in the

High scenario is from 30 to 190 seconds. The randomly generated waiting and traveling

times are allowed to be 50% lower or higher than the mean values.

Throughout the experiments, each scenario is repeated thirty times and the LIV

rule and the priority rule are tested in all those thirty cases. The QCs and the blocks

where the containers are picked up and dropped off are generated by the program

randomly for each case. The performances of the two rules are measured in the terms of

the makespan and the QCs’ average productivity.

7.2.3 Numerical Experiments Results

FIGURE 15 shows the system performance when the vehicles are dispatched following

two different rules. Generally, the effect of the increasing degree of stochasticity is

identical for the two rules. It impairs the performance of the LIV rule and the priority

rule. However, the performance reduction is not so significant, except for the scenario of

high degree of stochasticity. Compared to their own performances in the Deterministic

scenario, the performance reductions are only about 4% and 2% when the vehicles are

dispatched following the priority rule and LIV rule. Under the highly stochastic working

environment, the makespan is increased by 17.76% and the QCs’ average productivity is

decreased by 14.85% when utilizing the priority rule; to account of the large

94

disturbances in the highly stochastic working environment, more long cycle times are

included during the simulation.

(a) Makespan

(b) QCs’ average productivity

FIGURE 15 Performance under different degrees of stochasticity.

6000

7000

8000

9000

10000

11000

Det Low Med High

M
ak

e
sp

an
 (

se
c)

ds

LIV

Priority

30

40

50

60

70

80

Det Low Med High

A
vg

 P
ro

d
 (

co
n

/h
r)

ds

LIV

Priority

95

No matter what the scenario is, the priority rule clearly demonstrates the LIV

rule. According to the results of numerical experiments, the priority rule shortens the

makespan by about 19% and increases the QCs’ average productivity by about 17% in

the scenarios of Deterministic, Low and Medium. In the scenario of high degree of

stochasticity, the 11.58% shorter makespan and 12.38% higher QC productivity are

observed when the priority rule is employed.

7.3 Sensitivity Analysis

It is clear that the speed of loading and unloading operations is influenced by many

factors, namely the cycle times of QCs, the availability of vehicles, and the working

speed of yard cranes. To assess how the system performance respond to those system

input, this section conducts sensitivity analysis in the scenario of a medium degree of

stochasticity.

7.3.1 Cycle Time

The cycle time of a QC depends on the technique design of the crane and the experience

of the operator. To test the effects of varying cycle times, we decrease and increase the

cycle time () with 5, 10 and 15 seconds, respectively (5, 10, 15    ). It should be

noted that it only changes the value of the cycle time listed in TABLE 1 but each

interval’s fraction remains the same. For example, when 5   , the first interval of the

cycle time becomes 45-55 seconds and its fraction is still 0.04. The effect of the change

96

in the cycle time, which is also the frequency of generating transportation requests on the

makespan and the QC’s productivity, is investigated in this part.

FIGURE 16 shows the changes in the makespan and the QCs’ average

productivity with respect to the cycle time. Compared with the LIV rule, the priority rule

is more sensitive to the changes in the QC’s cycle time. When the  changes from -15

to 15 seconds, the makespan increases by 7.42% and the QCs’ average productivity

reduces by 7.61% with the application of the LIV rule. At the same time, when the

vehicles are dispatched following the priority rule, the increase in the makespan and the

decrease in the average productivity are up to 16.99% and 18.28%, respectively.

It is obviously that the application of the priority rule is capable of shortening the

makespan and enhancing the QCs’ productivity. However, along with the increasing

cycle time, the gap between the two rules’ performances gets smaller. When 15   ,

the makespan is 19.01% shorter and the QCs’ average productivity is 23.90% higher

utilizing the priority rule. When  reaches 15 seconds, the improvements in the

makespan and the QCs’ productivity are reduced to 10.82% and 11.32%. That is because

when the QC is capable of unloading and loading containers at a high speed, the

performance of the system is greatly determined by the availability of the vehicles.

However, when the QC’s design working speed slows down, the dispatching policy

becomes less important. The working capacity of the QC instead of the availability of

vehicles becomes the bottleneck of the system performance in that case. It proves again

that the higher a QC’s designed working capacity is, the more important the vehicles’

dispatching policy is to the QC’s actual working speed and productivity.

97

(a) Makespan v.s. Cycle Time

(b) Avg Productivity v.s. Cycle Time

FIGURE 16 Performances of dispatching rules against the varied cycle times.

7500

8000

8500

9000

9500

10000

10500

11000

-15 -10 -5 0 5 10 15

M
ak

e
sp

an
 (

se
c)

Delta Cycle Time

Priority

LIV

50

55

60

65

70

75

80

-15 -10 -5 0 5 10 15

A
v
g

 P
r
d

o
 (

c
o

n
/h

r
)

Delta Cycle Time

Priority

LIV

98

7.3.2 Vehicle Speed

The optimal fleet size is dependent on the frequency of the transportation request

generation and the time it takes vehicles to the transport containers between the QC and

YC side. The former one is decided by the QCs’ cycle time, which is discussed in the

last part, and the latter one is greatly affected by the vehicles’ traveling speed and the

dispatching policy. In this section, we investigate that to what extent the vehicles’

traveling speed affects the system performance by increasing and decreasing the

vehicles’ average traveling speed by 1, 2 and 3 m/s.

FIGURE 17 presents the makespan and the QCs’ average productivity with

different vehicle speeds and dispatching rules. The increasing vehicle speed is helpful to

enhance the QC’s productivity but such improvement becomes less significant when the

speed increases. When the vehicles travel slower, they always arrive later than the time

that the QC is ready to transfer the container onto/from them. As a result, in most cases,

the starting times of QC side tasks or the QCs’ actual working speed are more dependent

on their availabilities of vehicles. When the vehicles travel faster, the QCs’ productivity

are increased due to the improved availabilities of vehicles. However, when the vehicles

travel faster, they arrive at the QC earlier and the vehicles may spend more time waiting

under the QC. Consequently, the increase in the vehicles’ waiting time offset the reduced

travel time. In those cases, the QCs’ productivity cease increasing unless there are

improvements of other elements.

In contrast to the result in the last section, the LIV rule is more sensitive to the

change of the vehicle speed. When the vehicles’ average speed varies from 7 to 13 m/s,

99

the increase in the makespan achieves 44.90% and the reduction in the QCs’ average

productivity is up to 32.10% under the LIV rule. However, those changes are only

21.89% and 25.97% with the application of the priority rule. That is because that when

utilizing the LIV rule, the task’s availability of the vehicle is greatly dependent on the

time when the vehicle returns the depot A or B after dropping off the container. Thus,

the faster a vehicle travels, the earlier it returns to the depot and becomes available for

the next delivery. Consequently, the vehicles’ speed becomes the distinct element in

determining the performance of the LIV rule. On the contrary, when the vehicles are

dispatched following the priority rule, it is not necessary that the first available vehicle

will be dispatched to the newly released transportation request. The dispatching decision

is made according to the assignments’ priorities which are determined by multiple

attributes. As a result, the priority rule is less sensitive to the vehicles’ speed than the

LIV rule.

Being similar to the experiments in the previous section, the gap between the the

two rules becomes less significant with the increasing vehicles’ speed. When the

vehicles speed increases from 7 to 13m/s, the improvement of the makespan is reduced

from 20.23% to 8.25%, and the improvement of the QCs’ average productivity decreases

from 25.85% to 9.41%. Because when the vehicles travel faster between the QC and YC,

the availability of vehicles is necessarily improved no matter which rule is used. Thus, a

similar conclusion can be derived from the sensitivity analysis results in this section. The

vehicle dispatching rule is more important when the vehicle speed is relatively slow and

the superiority of the priority rule is more substantial in these cases.

100

(a) Makespan

(b) QC productivity

FIGURE 17 Performances of dispatching policies against the varied vehicle speeds.

7000

8000

9000

10000

11000

12000

13000

14000

-3 -2 -1 0 1 2 3

M
a

k
e
sp

a
n

 (
se

c
)

Delta Speed

Priority

LIV

40

45

50

55

60

65

70

75

80

-3 -2 -1 0 1 2 3

A
v
g

 P
r
d

o
 (

c
o

n
/h

r
)

Delta Speed

Priority

LIV

101

8. CONCLUSION AND FUTURE RESEARCH

This dissertation investigates the vehicle dispatching problem in a container terminal

equipped with tandem lift QCs. The subject remains a relatively new in the terminal

operation and lacks systematic research.

The static version of the vehicle dispatching problem is mathematically

formulated as a mixed integer linear program model. To solve such an NP-hard problem,

a heuristic algorithm is proposed to reduce the feasible search region by eliminating

those feasible but undesirable delivery sequences. The determination of cut-off delivery

sequences are defined according to the lower and upper bounds of the starting times,

estimated through constructing and solving sub-problems iteratively. The numerical

experiments results prove that, compared with the branch-and-bound method, realized

using the CPLEX, the proposed LSC algorithm is capable of finding a competitive, even

better solution and saving the CPU time up to 80%. In addition, both the computation

time and the objective value of the solution are not sensitive to the initial solution or the

time limit in solving sub-problems. In addition, the module-design of the proposed LSC

algorithm provides the flexibility in choice of the method to solve sub-problems and the

original MILP model.

For the terminal’s daily operation, this dissertation develops a less sophisticated,

priority-based on-line dispatching method to make the dispatching decision without

information of future events. The proposed priority rule and the LIV rule are compared

through series of numerical experiments simulating the dynamic QCs’ cycle times,

102

vehicles’ traveling times, and the vehicles’ waiting times at the YCs. The results reflect

that the priority rule performs better in shortening the makespan and enhancing the QCs’

average productivity under different degrees of stochasticity. The superiority of the

priority rule is more substantial when the QCs’ cycle times are shorter and/or the

vehicles’ speed is slow. In other words, the role of the vehicle dispatching rule is more

important when the availability of vehicles is not sufficient compared with the frequency

of releasing transportation requests, and the priority rule is very flexible in comparing

the priorities of assignments.

Future research on the vehicle dispatching problem in the container terminal

should focus on the integration of different activities and the investigation of the

influences of new equipment. Simultaneously, it still needs a more efficient algorithm to

solve large-scale vehicle dispatching problems to accommodate the terminal’s daily

operation.

103

REFERENCES

1. Avriel, M., M. Penn, and N. Shpirer. Container Ship Stowage Problem: Complexity

and Connection to the Coloring of Circle Graphs. Discrete Applied Mathematics,

Vol. 103, No. 1-3, 2000, pp. 271–279.

2. Avriel, M., M. Penn, N. Shpirer, and S. Witteboon. Stowage Planning for Container

Ships to Reduce the Number of Shifts. Annals of Operations Research, Vol. 76,

1998, pp. 55-71.

3. Bae, H.Y., R. Cheo, T. Park, and K. R. Ryu. Comparison of Operations of AGVs

and ALVs in a Container Terminal. Journal of Intelligent Manufacturing, Vol. 26,

2009, pp. 117-143.

4. Bish, E. K. A Multiple-crane-constrained Scheduling Problem in a Container

Terminal. European Journal of Operational Research, Vol. 144, 2003, pp. 83-107.

5. Bish, E. K., F. Y. Chen, Y. T. Leong, B. L. Nelson, J. W. Cheong Ng, and D.

Simchi-Levi. Dispatching Vehicles in a Mega Container Terminal. OR Spectrum,

Vol. 26, 2005, pp. 491-506.

6. Bish, E. K., T. Y. Leong, C. L. Lil, J. W. C. Ng, and D. S. Levi. Analysis of a New

Vehicle Scheduling and Location Problem. Naval Research, Vol. 48, No. 5, 2001,

pp. 363-385.

7. Bodian, L., and B. Golden. Classification in Vehicle Routing and Scheduling.

Networks, Vol. 11, No. 2, 1981, pp. 97-108.

8. Briskorn, D., A. Drexl, and S. Hartmann. Inventory-based Dispatching of

Automated Guided Vehicles on Container Terminals. OR Spectrum, Vol. 28, No. 4,

pp. 611-630.

9. Chao, S. L., and Y. J. Lin. Evaluating Advanced Quay Cranes in Container

Terminals. Transportation Research Part E, Vol. 47, 2011, pp. 432-445.

10. Chen. L., N. Bostel, P. Dejax, J. Cai, and L. Xi. A Tabu Search Algorithm for the

Integrated Scheduling Problem of Container Handling Systems in a Maritime

104

Terminal. European Journal of Operational Research, Vol. 181, 2007, pp. 40-58.

11. Correa, A. I., A. Langevin, and L. M. Rousseau. Dispatching and Conflict-free

Routing of Automated Guided Vehicle: A Hybrid Approach Combing Constraint

Programming and Mixed Integer Programming. Lecture Notes in Computer Science,

Vol. 3011, 2004, pp. 370-379.

12. Daganzo, C. F. The Crane Scheduling Problem. Transportation Research Part B,

Vol. 23, 1989, pp. 159–175.

13. Dubrovsky, O., G. Levitin, and M. Penn. A Genetic Algorithm with a Compact

Solution Encoding for the Container Ship Stowage Problem. Journal of Heuristics,

Vol. 8, 2002, pp. 585–599.

14. Duinkerken, M. B., and J. A. Ottjes. A Simulation Model for Automated Container

Terminals. Proceedings of the Business and Industry Simulation Symposium (ASTC

1999), Washington, D.C., 1999.

15. Egbelu, P. J. Pull versus Push Strategy for Automated Guided Vehicle Load

Movement in a Batch Manufacturing System. Journal of Manufacturing Systems,

Vol. 6 1987, pp. 209–221.

16. Egbelu, P. J., and J. M. A. Tanchoco. Characterization of Automatic Guided Vehicle

Dispatching Rules. International Journal of Production Research, Vol. 22, No.3,

1984, pp. 359-374.

17. Fan, L., M. Y. H. Low, H. S. Ying, H. W. Jing, Z. Min, and W. C. Aye. Stowage

Planning of Large Containership with Tradeoff between Crane Workload Balance

and Ship Stability. Proceedings of the International Multi Conference of

Engineerings and Computer Scientists 2010. Vol. III, March 17-19, 2010, Hong

Kong.

18. Gibson, R. R., B. C. Carpenter, and S. P. Seeburger. A Flexible Port Traffic

Planning Model. Proceeding of the 1992 Winter Simulation Conference, 1992, pp.

1296-1306.

19. Grunow, M. G., H. O. Gunther, and M. Lehmann. Strategies for Dispatching AGVs

at Automated Seaport Container Terminals. OR Spectrum, Vol. 28, 2006, pp. 587-

105

610.

20. Grunow, M., H. O. Gunthr, and M. Lehmann. Dispatching Multi-load AGVs in

Highly Automated Seaport Container Terminals. Container Terminals and

Automated Transport Systems Part I, 2005, pp. 231-255.

21. Guan, Y., and R. K. Cheung. The Berth Allocation Problem: Models and Solution

Methods. OR Spectrum, Vol. 26, 2004, pp. 75-92.

22. Guignard, M., C, Ryu, and K. Spielberg, Model Tightening for Integrated Timber

Harvest and Transportation Planning. European Journal of Operational Research,

Vol. 111, 1998, pp. 448-460.

23. Günther, H. O., and K. H. Kim. Container Terminals and Terminal Operations. OR

Spectrum, Vol. 28, 2006, pp. 437-445.

24. Guo, X., S. Y. Huang, W. J. Hsu, and M. Y. H. Low. Yard Crane Dispatching Based

on Real Time Data Driven Simulation for Container Terminals. Proceeding of the

2008 Winter Simulation Conference, 2008, pp. 2648-2655.

25. Han, Y., L. H. Lee, E. P. Chew, and K. C. Tan. A Yard Storage Strategy for

Minimizing Traffic Congestion in a Marine Container Transshipment Hub. OR

Spectrum, Vol. 30, No. 4, 2008, pp. 697–720.

26. Hartmann, S. A. General Framework for Scheduling Equipment and Manpower at

Container Terminals. OR Spectrum, Vol. 26, No. 1, 2004, pp. 51-74.

27. Homayouni, S. M., T. S. Hong, N. Ismail, and A. M. K. Ariffin, Optimization of

Integrated Scheduling of Quay Cranes and Automated Guided Vehicles Using

Simulated Annealing algorithm. Proceedings of the 2011 International Conference

on Industrial Engineering and Operations Management, Kuala Lumpur, Malaysia,

Jan, 22-24, 2011, pp. 550-555.

28. Huo, J. Z., L. Zhang, and C. Peng. Simulation Studies of Truck Configuration in a

Container Terminal. Proceedings of the 6
th

 world congress on intelligent control and

automation. Dalian, China, June 21-23, 2006. pp. 6217-6221.

29. Ichoua, S., M. Gendreau, and J. Y. Potvin. Diversion Issues in Real-time Vehicle

Dispatching. Transportation Science, Vol. 34, 2000, pp. 426-438.

106

30. Imai, A., E. Nishimura, and S. Papadimitriou, The Dynamic Berth Allocation

Problem for a Container Port. Transportation Research Part B, Vol. 35, 2001, pp.

401–417.

31. Imai, A., K. Nagaiwa, and C. W. Tat. Efficient Planning of Berth Allocation for

Container Terminals in Asia. Journal of Advanced Transportation, Vol. 31, 1997,

pp. 75-94.

32. Kang, S., K., J. C. Medina, and Y. Ouyang. Optimal Operations of Transportation

Fleet for Unloading Activities at Container Ports. Transportation Research Part B,

Vol. 42, 2008, pp. 970-984.

33. Kim, C. W., M. A. Tanchoco, and P. H. Koo. AGV Dispatching Based on Workload

Balancing. International Journal of Production Research, Vol. 37, No. 17, 1999, pp.

4053-4066.

34. Kim, K. H. 2009. Harbor Logistics in Busan, Korea. The Asia-Pacific Weeks Berlin

2009.

35. Kim, K. H. Evaluation of the Number of Rehandles in Container Yards. Computers

& Industrial Engineering, Vol. 32, 1997, pp. 701-711.

36. Kim, K. H., and H. B. Kim. Segregating Space Allocation Models for Container

Inventories in Port Container Terminals. International Journal of Production

Economics, Vol. 59, 1999, pp. 415–423.

37. Kim, K. H., and H. B. Kim. The Optimal Determination of the Space Requirement

and the Number of Transfer Cranes for Import Containers. Computers & Industrial

Engineering, Vol. 35, 1998, pp. 427–430.

38. Kim, K. H., and H. B. Kim. The Optimal Sizing of the Storage Space and Handling

Facilities for Import Containers. Transportation Research Part B, Vol. 36, 2002, pp.

821-835.

39. Kim, K. H., and J. W. Bae. A Look-ahead Dispatching Method for Automated

Guided Vehicles in Automated Port Container Terminals. Transportation Science,

Vol. 38, No. 2, 2004, pp. 224-234.

40. Kim, K. H., and J. W. Bae. Re-marshaling Export Containers in Port Container

107

Terminals. Computers & Industrial Engineering, Vol. 35, 1998, pp. 655–658.

41. Kim, K. H., and K. C. Moon. Berth Scheduling by Simulated Annealing.

Transportation Research Part B, Vol. 37, 2003, pp. 541–560.

42. Kim, K. H., and K. T. Park. A Crane Scheduling Method for Port Container

Terminals. European Journal of Operational Research, Vol. 156, 2004, pp. 752–

768.

43. Kim, K. H., and K. T. Park. A Note on a Dynamic Space-allocation Method for

Outbound Containers. European Journal of Operational Research, Vol. 148, No. 1,

2003, pp. 92–101.

44. Koo, P. H., W. S. Lee, and D. W. Jang. Fleet Sizing and Vehicle Routing for

Container Transportation in a Static Environment. OR Spectrum, Vol. 26, No. 2,

2004, pp. 193-209.

45. Langevin, A., D. Lauzon, and D. Riopel, Dispatching, Routing and Scheduling of

Two Automated Guided Vehicles in a Flexible Manufacturing System. International

Journal of Flexible Manufacturing System, Vol. 8, 1996, pp. 246-262.

46. Lee, B. K., and K. H. Kim. Comparison and Evaluation of Various Cycle-time

Models for Yard Cranes in Container Terminals. International Journal of

Production Economics, Vol. 126, 2010, pp. 350-360.

47. Lee, B. K., and K. H. Kim. Optimizing the Yard Layout in Container Terminal. OR

Spectrum, Vol. 35, No. 2, pp. 363-398.

48. Lee, L. H., E. P. Chew, K. C. Tan, and Y. Han. An Optimization Model for Storage

Yard Management in Transshipment Hub. OR Spectrum, Vol. 28, 2006, pp. 539-

561.

49. Li, C. L., X. Cai, and C. Y. Lee. Scheduling with Multiple-job-on-one-Processor

Pattern. IIE Transactions, Vol. 30, No. 5, 1998, pp. 433-445.

50. Lim, J. K., K. H. Kim, K. Yoshimoto, J. H. Lee, and T. A. Takahashi, Dispatching

Method for Automated Guided Vehicles by Using a Bidding Concept. OR Spectrum,

Vol. 25, 2003, pp. 25-44.

51. Lind, D., J. K. Hsieh, and M. A. Jordan. Tandem-40 Dockside Container Cranes and

108

Their Impact on Terminals. ASCE Ports 2007 Conference, San Diego, CA.

52. Liu, C. I., H. Jula, K. Vukadinovic, and P. Ioannou. Automated Guided Vehicle

System for Two Container Yard Layouts. Transportation Research Part C, Vol. 12,

2004, pp. 349-368.

53. Liu, C., I., and P. A. A. Ioannou. Comparison of Different AGV Dispatching Rules

in an Automated Container Terminal. Intelligent Transportation Systems, 2002.

Proceedings. The IEEE 5th International Conference on, pp. 880-885.

54. McCarthy, P. W., M. A. Jordan, and L. Wright. Dual-hoist, tandem 40 crane

considerations. Port Technology International,

http://www.porttechnology.org/technical_papers/dual_hoist_tandem_40_crane_cons

iderations/

55. Meersmans, P. J. M., and A. P. M. Wagelmans. 2001. Effective Algorithms for

Integrated Scheduling of Handling Equipment at Automated Container Terminals.

ERIM report series research in management, ERS-2001-36-LIS, 2001.

56. Meisel, F., and C. Bierwirth. Integration of Berth Allocation and Crane Assignment

to Improve the Resource Utilization at a Seaport Container Terminal. Operation

Research Proceedings, 2005, pp. 105-110.

57. Moon, K. C. A Mathematical Model and a Heuristic Algorithm for Berth Planning.

PhD thesis, Pusan National University, Pusan, Korean, 2000.

58. Murty, K. G., J. Liu, Y. Wan, and R. Linn. A Decision Support System for

Operations in a Container Terminal. Decision Support System, Vol. 39, 2003, pp.

309-332.

59. Murty, K. G., J. Liu, Y. Wan, C. Zhang, M. Tsang, and R. Linn. DSS (decision

support systems) for Operations in a Container Shipping Terminal. In Proceedings

of the First Gulf Conference on Decision Support Systems, Kuwait, November 6–8,

2000, pp. 189–208.

60. Ng, W. C. Crane Scheduling in Container Yards with Inter-crane Interference.

European Journal of Operational Research, Vol. 164, 2005, pp. 64–78.

61. Ng, W. C., and K. L. Mak. Yard Crane Scheduling in Port Container Terminals.

109

Applied Mathematical modeling, Vol. 29, 2005, pp. 263-276.

62. Ng, W. C., K. L. Mak, and Y. X. Zhang. Scheduling Trucks in Container Terminals

Using a Genetic Algorithm. Engineering Optimization, Vol. 39, No. 1, 2007, pp. 33-

47.

63. Nishimura, E., A. Imai, and S. Papadimitriou. Berth Allocation Planning in the

Public Berth System by Genetic Algorithms. European Journal of Operational

Research, Vol. 131, 2001, pp. 282–292.

64. Nye, L. W. Advanced Technology in Terminal Design. Moffatt & Nichol.

http://aapa.files.cms-

plus.com/SeminarPresentations/2009Seminars/2009LatinAmerican/09LATEXEC_

Nye_ Larry.pdf.

65. Park, N., H. R. Choi, H. K. Kwon, S. W. Lee, and S. H. Lee. A Study on the

Efficiency of Transportation Equipment at Automated Container Terminals.

Proceedings of the 2007 WSEAS International Conference on Computer

Engineering and Applications, Gold Coast, Australia, January 17-17, 2007, pp. 360-

365.

66. Park, Y. M., and K. H. Kim. A Scheduling Method for Berth and Quay Cranes. OR

Spectrum, Vol. 25, 2003, pp. 1–23.

67. Peterkofsky, R. I., and C. F. Daganzo. A Branch and Bound Solution Method for the

Crane Scheduling Problem. Transportation Research Part B, Vol. 24, 1990, pp.

159–172.

68. Preston, P., and E. Kozan. An Approach to Determine Storage Locations of

Containers at Seaport Terminals. Computers & Operations Research, Vol. 28, 2001,

pp. 983–995.

69. Qiu, L., and W. J. A. Hsu. A Bi-directional Path Layout for Conflict-free Routing of

AGVs. International Journal of Production Research, Vol. 39, 2001, pp. 2177-

2195.

70. Quadrifoglio, L., M. M. Dessouky, and F. Ordonez, Mobility Allowance Shuttle

Transit (MAST) Services: MIP Formulation and Strengthening with Logic

110

Constraints. European Journal of Operational Research, Vol. 185, 2008, pp. 481-

494.

71. Saanen, Y., J. van Meel, and A. Verbraeck, 2003. The design and assessment of next

generation automated container terminals. Technical Report, TBA Nederland/Delft

University of Technology.

72. Stahlbock, R., and S. Voß, Operation Research at Container Terminal: a Literature

Update. OR Spectrum, Vol. 30, 2008, pp. 1-52.

73. Steenken, D., S. Voß, and R. Stahlbock. Container Terminal Operation and

Operations Research – a Classification and Literature Review. OR Spectrum, Vol.

26, 2004, pp. 3-49.

74. Taghaboni-Dutte, F., A Value-added Approach for Automated Guided Vehicle Task

Assignment. Journal of Manufacturing Systems, Vol. 16, No. 1, 1997, pp. 24-34.

75. Taleb-Ibrahimi, M., and B. de Castilho, Storage Space vs. Handling Work in

Container Terminals. Transportation Research Part B, Vol. 27B, No. 1, 1993, pp.

13-32.

76. United Nations Conference on Trade and Development (UNCTAD) 2011, Statistics

of Worldwide Maritime Transport

http://archive.unctad.org/Templates/Page.asp?intItemID=5803&lang=1.

77. Vis, I. F. A., and I. Harika. Comparison of vehicle types at an automated container

terminal. OR Spectrum, Vol. 26, 2004, pp. 117-143.

78. Vis, I. F. A., and R. de Koster. Transshipment of Containers at a Container

Terminal: An Overview. European Journal of Operation Research, Vol. 147, 2003,

pp. 1-16.

79. Vis, I. F. A., R. de Koster, K. J. Roodbergen, and L. W. P. Peeters. Determination of

the Number of Automated Guided Vehicles Required at a Semi-automated

Container Terminal. Journal of the Operational Research Society, Vol. 52, 2001,

pp. 409-417.

80. Vis, I. F. A., R. M. B. de Koster, and M. W. P. Savelsbergh. Minimum Vehicle Fleet

Size under Time-window Constraints at a Container Terminal. Transportation

http://archive.unctad.org/Templates/Page.asp?intItemID=5803&lang=1

111

Science, Vol. 39, 2005, pp. 249-260.

81. World Maritime News. The Netherlands: APM Terminals Orders Quay Cranes from

Cargotec. http://worldmaritimenews.com/archives/57559/. Accessed June 12, 2012.

82. Yang, C. H., Y. S. Choi, and T. Y. Ha, Simulation-based Performance Evaluation of

Transport Vehicles at Automated Container Terminals. OR Spectrum, Vol. 26, 2004,

pp. 149-170.

83. Yavary, M., A. Jacob, M. Richter, and L. Nye. Master Planning of a Semi-

Automated Container Terminal. Ports 2010: Building on the Past, Respecting the

Future. pp. 1254-1264.

84. Yun, W. Y., and Y. S. Choi. A Simulation Model for Container-terminal Operation

Analysis Using an Object-oriented Approach. International Journal of Production

Economics, Vol. 59, 1999, pp. 221-230.

85. Zhang, C., J. Liu, Y. Wan, and K. G. Murty, and R. J. Linn. Storage Space

Allocation in Container Terminals. Transportation Research Part B, Vol. 37, No.

10, 2003, pp. 883-903.

86. Zhang, C., Y. Wan, J. Liu, and R. J. Linn. Dynamic Crane Deployment in Container

Storage Yards. Transportation Research Part B, Vol. 36, 2002, pp. 537-555.

http://worldmaritimenews.com/archives/57559/

