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ABSTRACT 

 

Poultry transport coops are rarely washed and demonstrate to be a major point of 

broiler carcass contamination.  Our laboratory hypothesized that foaming disinfectants 

and cleaners commonly used within processing plants may be used to clean and disinfect 

poultry transport coops.   The objective of this study was to evaluate treatments 

consisting of a low-pressure water rinse (LPWR), a foaming additive alone, foaming 

cleaner or peroxyacetic acid with a foaming additive to reduce bacteria on broiler 

transport coops.  A high-pressure water rinse (HPWR) applied prior to and following 

treatments was also evaluated.  Homogenized feces was evenly applied to the floors of 

pre-cleaned transport coops and allowed to dry.  The first study used fresh layer feces 

and evaluated the treatments ability to reduce aerobic bacteria from the manure.  The 

second study added a HPWR step to determine whether this technique would reduce 

bacteria.  In the third study, Salmonella Typhimurium was added to the homogenized 

fecal slurry to evaluate how effectively these methods reduce aerobic bacteria and 

Salmonella on coop surfaces.  The field study utilized laboratory treatments proven to be 

most effective on freshly soiled broiler integrator coops.   

All foaming treatments were applied using a compressed air foam system 

(CAFS) using a 1 inch fire hose.  Ten minutes post-treatment, all surfaces were rinsed 

with a LPWR for 30 seconds to remove residual disinfectant.  Samples were collected 

from the transport coops prior to and following treatments utilizing a flame sterilized 5 

X 5 cm stainless steel template and a gauze swab pre-applied with buffered peptone 
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water.  All samples were stomached, serially diluted, spread plated onto agar plates, 

incubated for 24 h at 37° C and enumerated.  The foam cleaner and peroxyacetic acid 

with a foam additive significantly reduced (P < 0.05) aerobic bacteria up to 4.84 to 5.17 

logs, respectively when compared to the LPWR.  The addition of a HPWR following 

product application significantly reduced bacteria on integrator coops, in the field study, 

but didn’t improve efficacy of our treatments in laboratory trials.  These data suggest 

that a CAFS may be used in combination with disinfectants and cleaners to reduce 

bacteria on poultry transport coops.  
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NOMENCLATURE 

 

ARS Agriculture Research Service 

C Celsius 

CAFS Compressed air foam system 

cm Centimeter 

END Exotic Newcastle disease 

FC Foam cleaner 

FSIS Food Safety Inspection Service 

GBS Guillain-Barré Syndrome 

HPAI Highly pathogenic avian influenza 

HPWR High-pressure water rinse 

gal Gallon 

in Inch 

LPAI Low pathogenic avian influenza 

LPWR Low-pressure water rinse 

oz Ounce 

P Probability 

PAA Peroxyacetic acid 

ST Salmonella Typhimurium 

TPC Total plate count 
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CHAPTER I  

INTRODUCTION 

 

The poultry industry has continued to grow because the demand for their product 

has significantly increased in the last several decades.  The continued growth could be 

attributed to the low cost when compared to beef or because of it being a healthier option 

now that consumers are becoming more conscious of the food they eat (Gotsis, et al., 

2013).  Per capita consumption of meat in the US is 123 kg, including 50 kg of poultry 

(Stenhouse, 2008).  According to the CDC (2010), Salmonella and Campylobacter 

contaminated poultry products were a significant source of foodborne illness from 1998-

2010 which makes poultry have the most outbreak cases for a single food commodity.  

The United States Department of Agriculture - Food Safety Inspection Service published 

a document entitled “Compliance Guideline to Reduce Levels of Salmonella and 

Campylobacter in Poultry,” which illustrates the importance of these two pathogens to 

the industry.  This compliance guideline is designed to help reduce foodborne illnesses 

caused by the consumption of poultry products which would also reduce deaths and 

costs associated with outbreaks (Food Safety Inspection Service, 2010).  

Several hours before broilers are transported to a processing plant, feed is 

withdrawn to allow for the gut to partially empty its contents, which will minimize 

potential fecal contamination of the carcass (Papa and Dickens, 1989; Papa, 1991).  

Transportation of broilers has been shown to be a significant stressor, resulting in 

increased shedding of foodborne pathogens due to feed withdrawal, coprophagy and 
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depressed immune function (Stern, et al., 1995; Whyte, et al., 2001).  Feed withdrawal 

increases crop and cecal colonization in market age broilers by Salmonella (Ramirez, et 

al., 1997) and Campylobacter (Byrd, et al., 1998) because of a reduction in lactic acid 

producing bacteria is observed in the crop when food is withdrawn (Corrier, et al., 

1999b), followed by an increase in the pH of the crop (Hinton, et al., 2000), creating an 

environment conducive to pathogen growth.  As these changes occur, an increase in 

coprophagy while searching for feed adds to increased Salmonella and Campylobacter 

colonization during feed withdrawal (Corrier, et al., 1999a). 

Cross contamination of broilers may occur when flocks are placed into 

transportation coops that contain feces from previously transported broilers.  Dirty 

transportation coops harbor microorganisms on floor surfaces and become a vector for 

cross contamination (McCrea and Macklin, 2006).  A survey done by Northcutt and 

Jones (2004) found that only 9% of large poultry facilities clean and disinfect their 

transportation coops before being reused.  Researchers found that catching, loading and 

transportation are times that cause stress which increases levels of pathogens in broilers 

(Mulder, 1995).  Broilers can spend 3-12 hours in transportation coops which increases 

levels of Salmonella by 20-40% in the gut due to coprophagy and externally on their 

skin and feathers (Berrang and Northcutt, 2005b; Northcutt and Berrang, 2006; Food 

Safety Inspection Service, 2010). 

 Researchers have previously evaluated techniques to reduce the microbial load 

on transportation coops using a low-pressure water rinse (LPWR) followed by an 

extended drying time of 24 to 48 hours.  This method has been recommended by USDA-
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FSIS, however, this method may not be practical due to the limited space and 

availability of coops (Berrang and Northcutt, 2005a; Food Safety Inspection Service, 

2010).    

Our laboratory evaluated the use of foaming disinfectants and cleaners to reduce 

bacteria on poultry transportation coops.  The addition of a high-pressure water rinse 

(HPWR) prior to or following the treatment was also evaluated to determine if it further 

reduced the bacterial load.  Salmonella Typhimurium was added to fresh layer manure in 

one of the studies to assess how well these methods reduced not only aerobic bacteria 

but Salmonella as well.  Once a good evaluation of our disinfectants was seen over 

several studies, our laboratory took this experimental design to a broiler processing 

facility for a field study utilizing contaminated coops. 
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CHAPTER II 

LITERATURE REVIEW 

 

Economic Impacts in Poultry  

 Poultry diseases have a significant impact on production and economics of the 

industry (Lister, 2008).  The U.S. poultry industry and its customers spend millions of 

dollars every year on medical costs and lost income due to reportable diseases, 

foodborne pathogens, immunosuppressive viruses and infection costs.  United States 

residents’ medical costs in 2009 associated with Campylobacteriosis was $19 million 

and Salmonellosis was $49 million (Scharff, 2010).  Bermudez and Stewart-Brown 

(2008) mention that humans can be a vehicle in which diseases are spread, “because of 

their mobility, duties, curiosity, ignorance, indifference, carelessness, or total 

concentration on current profit margin, humans constitute one of the greatest potential 

causes of the introduction of disease.”  People visit poultry farms because they could be 

a contract worker who is responsible for care of the birds, a neighbor to the area where 

the farm is located, or a visitor that is interested in seeing what a commercial farm looks 

like.  These visitors provide potential sources for diseases that can be spread and cause 

outbreaks on farms (Bermudez and Stewart-Brown, 2008).  Visitors to a poultry farm 

should be required to clean and disinfect their shoes and wear freshly cleaned clothing to 

prevent the spread of disease and those not following these procedures should be 

prevented from entering the premises.  Anyone who discovers a reportable disease must 

report it within 24 hours of diagnosis to a veterinarian, diagnostic lab, or state 
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veterinarian so that proper protocol to depopulate birds with this disease may be 

followed (TAHC, 2012).   

 Salmonella and Campylobacter can cause infections in humans and are 

responsible for the majority of acute gastroenteritis cases in the world (Mulder, 1995).  

Finan (2010) estimates that the US spends $152 billion a year on costs associated with 

foodborne illnesses, this number was calculated by adding total costs associated with all 

pathogens.  The Government Accountability Office reported in 1999 that the federal 

government spent $1 billion on food safety efforts and state governments spent $300 

million, which illustrates the importance of making improvements to reduce foodborne 

illnesses that occur (General Accounting Office, 2001).  Food safety is a major concern 

due to large economic losses caused by hospitalization and absences from work from 

bacterial associated enteritis in humans.  However, European researchers suggest that 

between 50% and 80% of reported foodborne illnesses occur in the home (Scott, 1996).  

This could be during food preparation, due to the cross-contamination of kitchen counter 

tops with raw food and cooked products (Gough and Dodd, 1998).   

Avian Influenza 

Avian Influenza is categorized as either highly pathogenic avian influenza 

(HPAI) or low pathogenic avian influenza (LPAI), the differences between the 

classifications depends on the severity of the illness that they cause (Rebel, et al., 2011).  

According to the Animal and Plant Health Inspection Service (APHIS; 2008)  a virus 

strain can be determined by a laboratory-based experiment; eight birds are inoculated 

with a test virus and if no chickens die due to the virus it is referred to as LPAI but if 6 
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or more chickens die, the virus is designated as HPAI which gives the virus a 75% or 

greater mortality rate.  Clinical signs that are seen in poultry infected with LPAI include 

abnormalities in the respiratory, digestive, urinary and reproductive organs.  Examples 

of the respiratory symptoms that are seen include: coughing, sneezing, rales, rattles and 

excessive lacrimation.  Domestic chickens will display clinical signs such as huddling, 

ruffled feathers, depression, decreased activity, lethargy, decreased feed and water 

consumption and occasional diarrhea (Swayne and Halvorson, 2008).  Clinical signs 

seen in HPAI include decreased egg production, depression, respiratory issues and a 

decrease in food and water consumption; however, some infected birds may not display 

any clinical signs.  Outbreaks associated with HPAI have an overall high rate of 

mortality and morbidity that leads to a need for a depopulation of ill birds (Swayne and 

Halvorson, 2008).  In 2004, estimates were made to determine how much a similar 

caliber of outbreak would affect the US and it was estimated to cost $100 to $200 billion 

dollars (McLeod, et al., 2004).  A paper written by McLeod and co-workers (2004) 

describes four main reasons why HPAI is closely watched:  1) highly pathogenic avian 

influenza may become a zoonotic disease which could negatively affect human health,  

2) based on the outbreak of 2003- 2004, farmers experienced severe economic losses due 

to reduced production,  3) costs associated with keeping the endemic disease in control 

and 4) migratory birds spreading virus from central Asia to Europe and Africa.  Avian 

influenza can quickly move to other continents with an uncontrolled widespread 

outbreak, that in turn would be problematic for global trade due to importation 

restrictions (McLeod, et al., 2004).  Keeping avian influenza from spreading globally is a 
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concern because during the pandemic of 1918 more people died from influenza than 

from World War I (Billings, 1997).   

In 2002, five million birds in Virginia, West Virginia and North Carolina were 

found to have a strain of low pathogenic avian influenza (LPAI) which cost the industry 

$149 million (Capua and Alexander, 2004).  The prevention and eradication of avian 

influenza is of significant economic importance to the poultry industry due to production 

losses and potential human health concerns.  Vaillancourt and colleagues (2009) suggest 

that a better response plan between the poultry industry and government agencies is 

needed to prevent and eradicate avian influenza outbreaks. 

Exotic Newcastle Disease 

Exotic Newcastle disease (END) is also known as viscerotropic velogenic 

Newcastle disease (VVND; Miller et al. 2010) .  Newcastle disease is caused by a virus 

which was first reported to have caused an outbreak in 1926 in Java, Indonesia and 

Newcastle-upon-Tyne, England (Kraneveld, 1926; Alexander and Senne, 2008).  Exotic 

Newcastle disease was first seen in California in 1950 from chukars and pheasants 

imported from Hong Kong, and any epidemics since are thought to have occurred due to 

bird smuggling (Kinde, et al., 2005).  Exotic Newcastle disease was reported to be in the 

US again in 1970 in a pet shop bird in New York City and chickens in El Paso County, 

Texas (Walker, et al., 1972).  Towards the end of 2002, an END outbreak was reported 

in Southern California in small flocks of backyard birds, including some being used for 

illegal cockfighting which caused a spread of this disease to its neighboring states 

Nevada and Arizona (Nolen, 2002; Wakamatsu, et al., 2006).  This outbreak infected 14 
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commercial poultry farms that totaled two million birds depopulated (Avian Veterinary 

Medicine Association, 2003).  This disease can cause serious outbreaks that would 

require quarantine, depopulation, control and cleanup if found to be present in a poultry 

flock.  Clinical signs for non-vaccinated chickens that are known to be infected with 

END may have depression, anorexia, lethargy, respiratory distress, coughing, gasping, 

greenish watery diarrhea and fever, but this disease is of great concern due to birds 

shedding the virus which may never show clinical signs (Kinde, et al., 2005).  The 

economic loss in 1972 in California totaled $56 million and took 3 years to eradicate 

(Omohundro and Walker, 1973).  It was estimated that if an END outbreak occurred that 

was uncontrolled it would cost the US $200 to $800 million for the first year 

(Omohundro and Walker, 1973). 

Salmonella 

 The genus Salmonella is found in the Enterobacteriaceae family (Bennasar, et 

al., 2000; Grimont, et al., 2000).  Salmonella is a Gram negative, intracellular, straight 

rod shaped, non-spore forming, generally motile with peritrichous flagella (Rubin and 

Weinstein, 1977; Kwang, et al., 1996; Gray and Fedorka-Cray, 2002; Molbak, 2005).  

Soil, water, food and gastro-intestinal tracts are typical areas were Salmonella spp. are 

found (Anderson and Ziprin, 2001).  Salmonella spp. are mostly motile with the 

exception of serotypes of S. gallinarium and S. pullorum which are found in poultry and 

can be transmitted both vertically and horizontally (Grimont, et al., 2000).  Salmonella 

pullorum can cause an infection known as pullorum disease and S. gallinarum causes an 

infection known as fowl typhoid which can both be controlled through vaccination or at 
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times positive birds are depopulated (Shivaprasad, 2000).  Clinical signs that are seen in 

chicks and poults include anorexia, diarrhea, dehydration, weakness and high mortality.  

In mature fowl both pullorum disease and fowl typhoid may cause a decrease in egg 

production, fertility, hatchability, anorexia and increased mortality (Shivaprasad, 2000).  

This organism is a facultative anaerobe that can grow with or without the presence of 

oxygen at a pH growth range between 4.5 to 9.0.  However, its most optimal pH is 

between 6.5 to 7.5 and a temperature of 37
o 
C although it grows from 8 to 45

o
C (Ziprin, 

1994; Garcia-Del Portillo, 2000; Hanes, 2003).  Salmonella can grow in a high moisture 

environment but prefers a water activity of (aw) 0.93 (Garcia-Del Portillo, 2000; Gray 

and Fedorka-Cray, 2002) and sodium chloride (NaCl) environment between 3 to 4% and 

350 mg/L of sodium nitrite (NaNO2) (Garcia-Del Portillo, 2000). 

Human Salmonella infections traced to poultry were reported as early as 1899 

(Lister and Barrow, 2008).  Poultry meat and eggs are considered the primary hosts for 

salmonellosis (Li and Mustapha, 2002; Capita, et al., 2003; Vadhanasin, et al., 2004).  

The World Health Organization has released guidelines to monitor and detect 

Salmonella in poultry (Wray and Davies, 1994), which demonstrates the importance of 

this microorganism to the poultry industry and how it should be set as a critical control 

point in a company’s Hazard Analysis and Critical Control Points (HACCP) because a 

large amount of this bacteria be an indicator of improper sanitation.  Cleaning and 

disinfection programs for this microorganism are being set by USDA and are being 

improved upon by researchers (Food Safety Inspection Service, 2010).  Poultry houses, 
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for example, are recommended to be cleaned and disinfected to reduce pathogens that 

may be present for site decontamination (Lister, 2008). 

In 2008, Salmonella was the leading foodborne pathogen to be found in poultry 

and poultry products (Gast, 2008).  The CDC (2011a) estimated in 2011 that Salmonella 

caused 1,027,561 illnesses, 19,336 hospitalizations and 378 deaths in the U.S. These 

data rank Salmonella as first in both hospitalizations and deaths and number two in 

highest number of illnesses for all foodborne pathogens.  Salmonella is not a new 

concern for government agencies, such as the USDA- FSIS (Dubbert, 1988).  Research 

to lower Salmonella has been a priority for many years and has long been studied by the 

USDA-Agricultural Research Service (Bailey, 1988). The CDC (2011b) reported that in 

2011, 16.47 people per 100,000 population in the U.S. were linked to having a case 

associated with Salmonella.   

Campylobacter 

 Campylobacter is a Gram negative, thermophilic, obligate microaerophilic 

curved rod bacterium found in the intestinal tract of poultry and other vertebrate animals 

(Byrd, et al., 1998; Newell and Fearnley, 2003).  There are three main species of 

zoonotic Campylobacter that are found in poultry, including Campylobacter jejuni, 

Campylobacter coli and Campylobacter lari (Evans and Powells, 2008).  

Campylobacteriosis causes 2.4 million human infections annually (Newell and Fearnley, 

2003; Eberle and Kiess, 2012).  According to the CDC, Campylobacter caused 845,024 

illnesses, 8,463 hospitalizations and 76 deaths CDC (2011a).  Campylobacter is ranked 

third in hospitalizations, fifth in deaths and fourth in foodborne illnesses.  The CDC 
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(2011b) reported that in 2011, 14.31 people per 100,000 population were treated for 

Campylobacteriosis; which was a 14% increase from their 2006-2008 evaluation. 

Campylobacter jejuni is found in large numbers in layer feces which can be passed via 

coprophagy (Ahmed, et al., 2013).  It is important to control, prevent and reduce this 

microorganism because it has the potential for foodborne transmission to humans.  It can 

cause gastroenteritis in humans with symptoms such as self-limiting watery and/or 

bloody diarrhea, abdominal cramps and fever; however immune compromised patients 

conditions could be worse which would require the administration of antibiotic treatment 

(Mead, et al., 1999; Zhang, 2008).  This microorganism is linked to poultry and poultry 

products and is associated with Guillain-Barré Syndrome which is an acute 

polyneuropathy disorder (Fields and Swerdlow, 1999).  Horizontal transmission of this 

microorganism has been found in old litter, untreated drinking water, farm animals, 

domestic pets, wildlife, insects, equipment and transportation vehicles (Zhang, 2008).  

Reducing surface contamination of this pathogen on transportation coops through 

cleaning and disinfecting may eliminate cross-contamination of carcasses by this 

pathogen. 

Microorganisms in Processing Plants 

The demand for poultry products has steadily increased in the past decade with 

USDA projected demands for poultry as high as 46% for 2011 when compared to 2007 

(Mallo, 2010; USDA, 2013).  Producing large quantities of meat and eggs safely, for a 

growing population, becomes a significant challenge for the poultry industry (Stenhouse, 

2008).  Reducing the bacterial load of microorganisms entering the plant from 
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transportation coops could result in birds entering the plant with less organic matter on 

their feathers and lower the possibility for bacterial cross-contamination of carcasses 

(Ramesh, et al., 2004).  One may hypothesize that feed withdrawal and feed changes will 

increase the amount of foodborne pathogens, however, Northcutt and co-workers 

(2003b) found that feed changes or the length of feed withdrawal did not affect levels of 

Campylobacter at pre-evisceration or evisceration which may be because birds were 

only transported a distance of 0.2 km which may have not been a good comparison to 

actually industry practices. 

The picking department at a poultry processing facility tends to be an area of 

concern due to high numbers of bacteria present on chicken carcasses and is a source of 

cross contamination (Arnold, 2007).  Berrang and Dickens (2000) followed six flocks 

and found that levels of coliforms, Escherichia coli, and Campylobacter had all dropped 

post scalding because birds are exposed to boiling water temperatures that reduces or 

eliminates pathogens but levels increased post picking due to being in contact with the 

rubber picker fingers that have removed feathers from all previously processed birds that 

may have contained feces on their bodies.  The chilling department is another area in 

which cross-contamination may occur.  For example, if a Salmonella positive carcass 

enters an immersion chiller it could potentially contaminate carcasses that are free of the 

pathogen and is why new methods to reduce cross-contamination are still being 

evaluated by researchers (Smith, et al., 2005).  The Food Safety and Inspection Service 

has recently mandated zero tolerance for visible fecal contamination of carcasses 
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entering a chiller in 2012; increasing the need for improved methods to reduce carcass 

adulteration (Food Safety Inspection Service, 2012b).     

Experiments done by Northcutt and co-workers (2003a) demonstrated that 

contamination on the body of the birds entering a processing facility is a critical factor to 

carcass bacterial counts that are found once processed.  Feed withdrawal and 

transportation caused an increase on carcass counts for E. coli and Campylobacter 

recovery in pre-chill but didn’t affect post-chill due to the use of chlorine (Northcutt, et 

al., 2003a).  Cleaning of transportation coops could help reduce the bacterial load that 

enters a plant; which may decrease the levels of harmful microorganisms.  Reducing the 

amount of fecal matter may help with the overall processing of the birds because of less 

cross-contamination. 

Transportation Coop Studies   

Researchers have determined that dirty transport coops harbor organisms that 

may contaminate subsequent flocks (McCrea and Macklin, 2006).  Currently only 9% of 

large poultry facilities are cleaning their coops before being reused (Northcutt and Jones, 

2004; Berrang and Northcutt, 2005b).  Unwashed coops are a vehicle for cross 

contamination with approximately 250 birds per coop (Berrang, et al., 2003; Hansson, et 

al., 2005).  Studies show that during the 3-12 hours that broiler chickens spend in 

transportation coops defecating they tend to have levels of Salmonella increase by 20-

40% in the gut and externally on the skin and feathers of birds due to being moved and 

defecating on the cages (Berrang and Northcutt, 2005b; Northcutt and Berrang, 2006; 
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Food Safety Inspection Service, 2010).  Birds become stressed from catching, loading 

and transportation and this can cause increases of pathogens (Mulder, 1995).     

A study performed at four different processing facilities located in different states 

during all four seasons found transport coops positive with Salmonella before being used 

to pick up a broiler flock and after broilers were removed (Bailey, et al., 2001).  

Furthermore, Salmonella and Campylobacter at the receiving department of a processing 

plant was directly traced from transportation cages (Corry, et al., 2002; Slader, et al., 

2002).  Cross-contamination of Campylobacter was found to be possible when 

uninfected broilers were placed in transport coops that contained infected broilers; these 

uninfected broilers were found to be positive after transportation (Newell, et al., 2001; 

Berrang, et al., 2003).   

Berrang and Northcutt (2005a) used recycled fiberglass flooring cut into ten 5 by 

5 cm squares and then contaminated with intestinal gut contents from the colon, ceca and 

small intestines.  Forced hot air drying of transport coops for 24 to 48 hours has proven 

to dry feces and kill bacteria present which may reduce cross-contamination during live 

haul of broilers (Berrang, et al., 2011a).  Another study used gut contents from recently 

processed birds the addition of a cultured field strain of Campylobacter to contaminate 

their experimental coop flooring.  Coop flooring squares were inoculated and allowed to 

dry for 60 minutes at room temperature, a LPWR and absorbent cornstarch followed by 

24 hours of drying.   These treated materials had no Campylobacter present after 24 

hours of drying (Berrang, et al., 2011b).  The combination of water spraying and 

extending drying time (24 or 48h) was also found to lower numbers of Campylobacter, 
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Coliform and Escherichia coli bacteria present.  This study found that allowing transport 

coops to dry for 24h and then applying a spray wash was below their limit of detection 

(less than 50 cfu of Campylobacter, 5 cfu of E. coli and 5 cfu coliform) for each bacteria 

evaluated (Berrang and Northcutt, 2005a).  Based on the research that has been done on 

transportation coops; many include extended drying time to lower microorganisms that 

may be present.  As a result of coop costs and space requirements being able to allow 

extended drying time to all coops being used may not be a practical option for all 

processing plants (Berrang, et al., 2004).   

Additional research on transportation coops that has been done hypothesized 

whether the type of flooring would affect the amount of bacterial recovery.  Fiberglass 

was compared against wire mesh floors and levels of several microorganisms were 

found to be marginally higher on birds sampled with their feathers from the fiberglass 

flooring (Buhr, et al., 2000).  Even though birds from the fiberglass floors were 

noticeably dirtier, their levels of bacterial recovery after being feather removal were not 

significantly different from the birds that were transported on wire mesh flooring 

(McCrea and Macklin, 2006).   

One study evaluated thirteen chemical disinfectants on the surfaces of transport 

coops with galvanized steel flooring which suggests that halogens, phenolic, and 

quaternary ammonium compounds significantly reduced Salmonella (Ramesh, et al., 

2002).  Another similar study used levulinic acid and sodium dodecyl sulfate to lower 

counts of Salmonella present on chicken cages (Zhao, et al., 2011).  These experiments 

proved that Salmonella can be lowered by approximately 5 or 6 logs by using levulinic 



 

 16 

 

 

acid and sodium dodecyl sulfate.  They suggested that using foaming disinfectants on 

transport coops may significantly reduce levels of both Salmonella and aerobic bacteria, 

which could reduce contamination of carcasses. 

A recent literature search suggests that there are few procedures on how to clean 

and sanitize transport coops, this may be because it is currently not a requirement for 

poultry processing facilities to clean and sanitize their transportation coops before being 

reused. 

Disinfectants and Cleaners  

Disinfection of an area or object is needed to reduce, eliminate or prevent 

microbial populations and the poultry industry uses chemical applications in the live 

production phases for either sanitation or pest control (Eckman, 1994).  Commonly used 

classes of disinfectants in production agriculture include alcohols, halogens, quaternary 

ammonium compounds, phenols, aldehydes and oxidizing agents (Smith, 2010).  

Disinfectants are able to act on microorganisms in two different ways: lethal action and 

growth inhibition. Lethal action is also known as bactericidal, fungicidal or virucidal 

effects.  Growth inhibition of bacteria or fungi is known as bacteriostasis or fungistasis, 

respectively. Since killing microorganisms present on transportation coops is preferable, 

lethal action is the intentional endpoint when using disinfectants (Maris, 1995).The 

mechanism of action for all disinfectant classes are as follows: alcohols precipitate 

proteins and denature lipids, halogens such as bleach denature proteins, quaternary 

ammonium compounds denatures proteins and bind phospholipids of cell membranes, 

phenols denature proteins and alter cell wall permeability, aldehydes denature proteins 
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and alkylates nucleic acids and oxidizing agents such as peroxyacetic acid (PAA) 

denature proteins and lipids (Denyer and Stewart, 1998; Dvorak, 2005).  The mechanism 

of action for a soap, also known as a surfactant, which is a type of detergent, can change 

the tension of water and can disrupt the cell membrane (Desai and Banat, 1997).  

Understanding the mechanism of action for all types of disinfectants is important to 

comprehend because different classes are needed depending on the circumstances such 

as the type pathogen being targeted or whether there will be organic matter present on 

the surface which is being disinfected. 

The disinfectant PAA is commonly used in the poultry industry and is approved 

for use as an antimicrobial in processing chillers (Bauermeister, et al., 2008) because it 

has demonstrated the ability to lower numbers of Salmonella and Campylobacter present 

in poultry processing chillers.  

In an experiment Kassaify and colleagues (2007) reported that PAA was able to 

kill 99.99% of Salmonella present in skim milk using a 0.5% PAA concentration and 

100% kill was seen using a 1.0% PAA concentration.  In the absence of skimmed milk, 

PAA at both 0.5% and 1.0% concentrations was able to eliminate all viable Salmonella 

present.  This proves the efficacy of PAA based disinfectants against Salmonella.  

Rodgers and co-workers (2001) mention that all disinfectants in his study were effective 

when tested against strains of Staphylococcus aureus at a poultry hatchery but when 

introduced to hatchery organic matter efficacy suffered.  Glutaraldehyde, phenol and 

quaternary ammonia were evaluated at three commercial chicken hatcheries by 

Willinghan and colleagues (1996) and found that Serratia marcescens, Bacillus cereus, 
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Bacillus thuringiensis, Bacillus badius, Enterococcus faecalis, Enterococcus faecium, 

Pseudomonas stutzeri and Enterobacter agglomerans became resistant to the use of one 

or more of the three disinfectant types that were used at manufacturers recommended 

concentrations.  Resistance can be seen when the concentrations being used are no 

longer effective in killing viable bacteria present.  Correct concentrations and exposure 

time for the disinfectants are important to its overall performance when the disinfectants 

are in an environment where organic matter may be present.  The mode of action of 

glutaraldehyde is to alter the RNA, DNA, and protein synthesis of microorganisms 

(Rutala, et al., 2008).  Russell (1982) mentions that pH, temperature, disinfectant 

concentration, presence of organic matter, presence of particular ions and other factors 

are important to the efficacy of antiseptics and disinfectants.  The researchers in this 

study were not surprised with the amount of resistance to the glutaraldehyde disinfectant 

because of it being commonly used in hatcheries for many years.  Stringfellow and co-

workers (2009) also concluded that when using disinfectants, correct contact time, 

temperature, and amount of organic matter present plays a factor on product efficacy.     

One concern that is periodically brought up in the industry is whether the 

inclusion disinfectants may cause resistance in microorganisms. A study by Gradel and 

colleagues (2005) showed that the strains of Salmonella and Escherichia coli did not 

become resistant to the five disinfectants between first and last isolate (January 1992- 

October 2001) that were used in his study when persistently applied to poultry houses .  

New regulations or guidelines to improve food safety for egg and meat products are 

implemented by USDA when new research has proven to help the industry (Food Safety 
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Inspection Service, 2012a).  Payne and co-workers (2005) evaluated a phenolic 

compound, a nascent oxygen compound and a compound that contained potassium 

peroxymonosulfate/sodium chloride as the active ingredients and applied these 

disinfectants to the floors of poultry houses and found significant reductions in aerobic 

and yeast and mold plate counts.  These trials were done in a laboratory and at a 

commercial broiler house for the field trials to prove that similar results could be 

achieved. 

Foam 

A typical poultry farm can easily contain 150,000 birds or more and in the case 

of an outbreak, using firefighting foam to depopulate could be a possible alternative to 

currently approved methods for the humane euthanasia of poultry (Dawson, et al., 2005; 

Raj, 2008).  The euthanization of a mass production of poultry due to a disease outbreak, 

natural disaster or structural damage to the facility is needed (Caputo, et al., 2013).  The 

use of water-based foam to depopulate poultry was approved by USDA-APHIS and the 

American Veterinary Medical Association in 2006 (American Veterinary Medical 

Association, 2007).  Foam was approved because of six reasons which include: being 

readily available, environmentally friendly, biodegradable, compatible with carcass 

disposal methods, minimum irritation to poultry and not a significant human health risk 

(American Veterinary Medical Association, 2007).  Comparisons of gas euthanasia of 

birds versus a water-based depopulation foam suggest that CO2 and water-based foam 

were very similar in effectiveness but the water-based foam was more effective than 

argon-CO2 gassing (Alphin, et al., 2010).  This new method has also been tested to 
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euthanize floor-reared broilers with a compressed air foam system and found that using 

these methods would be much less labor intensive, but has currently not been seen to 

depopulate poultry in the industry (Benson, et al., 2007).  Euthanizing a large population 

of commercial broilers led to the interest in using this method on ducks and researchers 

found that this was also a practical method to depopulate (Benson, et al., 2009; Caputo, 

et al., 2013).  Caputo and co-workers (2012) found that the combination of foam with 

atropine used together produced faster rates of unconsciousness in the ducks compared 

to foam or CO2 gas used independently.  Depopulation using a water-based foam has 

also been tested on a turkey population and proved to be another valid option for an 

emergency case to depopulate a flock (Rankin, 2010).  Flory and Peer (2010) found that 

euthanizing turkeys with firefighting foam is a successful way to depopulate.   

Currently firefighting foam has only minimally been used to depopulate poultry 

operations but has not been evaluated to clean and disinfect poultry transportation coops.  

The addition of a compressed air foam system (CAFS) is a new method that has been 

shown to be a great way to effectively and rapidly depopulate birds (Benson, et al., 

2007) but using it to apply disinfectants and cleaners would be a new method that the 

poultry industry may implement.  A CAFS is an apparatus that may be used with the 

addition of a disinfectant to generate compressed air foam.  The additional use of a 

HPWR step is thought to be effective in reducing microorganisms found on poultry 

transportation coops due to previous research that demonstrates that a LPWR can 

significantly reduce bacteria present on transportation coops (Berrang and Northcutt, 

2005b).  Cleaning and disinfecting poultry transportation coops has been previously 



 

 21 

 

 

studied by Berrang and co-workers but the addition of using a CAFS to apply 

disinfectants and cleaners is novel. 



 

 22 

 

 

CHAPTER III 

USE OF FOAMING DISINFECTANTS AND CLEANERS TO REDUCE 

AEROBIC BACTERIA ON POULTRY TRANSPORT COOPS 

 

Introduction 

 Transportation coops have been shown to be a vehicle for cross-contamination 

because of birds defecating and shedding microorganisms on them during transportation 

(Hansson, et al., 2005).  Mulder (1995) described transportation as a stressor for poultry.  

Broilers may spend from 3 to 12 hours in transport coops before being processed, which 

increases their levels of Salmonella due to these environmental stressors weakening the 

immune system (Berrang and Northcutt, 2005b; Northcutt and Berrang, 2006; Food 

Safety Inspection Service, 2010).  An animal’s immune system causes the lymphatic 

tissues and organs to regress and as a result they become sensitive toward pathogens 

(Fillion, et al., 1984; Tufft and Nockles, 1991).  

Disinfectants such as peracetic acid (PAA) are currently being used in poultry 

chillers at processing plants because of its ability to reduce microorganisms such as 

Campylobacter and Salmonella (Bauermeister, et al., 2008).  Campylobacter and 

Salmonella are concerns to the poultry industry because they are commonly found in 

poultry products and poultry is the highest single food commodity that causes foodborne 

illness (CDC, 2011a).  Guidelines are written to prevent and eliminate microorganisms 

such as Campylobacter and Salmonella in the poultry industry (Food Safety Inspection 

Service, 2010).  Microorganisms have been extensively investigated in multiple areas of 
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a poultry processing plant to better understand the areas of processing where the highest 

microbial levels exist (Berrang and Dickens, 2000).  Bacterial levels increase in the 

picking department because picking fingers come into contact with feathers that at times 

have organic matter and microorganisms which may cross-contaminate subsequent 

carcasses (Arnold, 2007).  Reducing the amount of organic matter and the associated 

microbes entering the plant from the transportation coops would lower possible cross-

contamination (Ramesh, et al., 2004).   

It is currently not a requirement for broiler integrators to clean and disinfect 

poultry transportation coops before being reused, which is why cross-contamination is a 

concern.  Broilers determined to be negative for Campylobacter become positive post-

transportation in coops used for transport of Campylobacter positive flocks (Berrang, et 

al., 2003).  Other investigators have also suggested that transportation coops may be a 

source of cross contamination (McCrea and Macklin, 2006).  Allowing transportation 

coops to be washed followed by an extended drying time of 24 to 48h has been 

evaluated and found to be successful in reducing numbers of microorganisms present.  

Although these methods may not be a practical for use in the entire industry since this 

would require more available coops and a large amount of space for drying (Berrang and 

Northcutt, 2005a).  

Firefighting foam is approved for use in the poultry industry to depopulate birds 

during a reportable disease outbreak (American Veterinary Medical Association, 2007).   

A common practice to depopulate broilers is to euthanize using CO2 but this method 

requires catching all birds and placing in a gas chamber.  Benson and co-workers (2007) 
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concluded that foam is a quick and successful alternative method to depopulate broilers 

that is less labor intensive.  Using a compressed air foam system (CAFS) to apply 

disinfectants or cleaners in foam is a new method that is thought to be a possible 

approach in the efforts to disinfect but has not yet been evaluated.  A CAFS can be an 

efficient means to disinfect and sanitize poultry transportation coops because it of its 

great velocity, good contact time and its ability to adhere well to its surface.  Minimal 

previous published research studies have been performed utilizing a CAFS with the 

exception of it being used to depopulate poultry operations (Benson, et al., 2007).   

The objective of these studies was to evaluate the application of disinfectants 

with a foam additive (FA) or a foaming cleaner (FC) on bacteria present on poultry 

transportation coops and to determine if a high-pressure water rinse (HPWR) prior to or 

following foam application improves efficacy.  We hypothesized that the application of 

disinfectants or cleaners with foam using a CAFS will significantly reduce aerobic 

bacteria on broiler transport coops. 

Materials and Methods 

Experimental Design 

Lab Trial 1 - Peroxyacetic Acid – Aerobes 

Lab trial 1 utilized three transportation coops, with each one representing a different 

treatment.  Treatments consisted of: 1) low-pressure water rinse (LPWR); 2) FA alone; 

and 3) peroxyacetic acid with a foaming additive (PAA+FA). 
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Lab Trial 2 - Foam Cleaner - Aerobes 

Lab trial 2 utilized three transportation coops, with each one representing a different 

treatment.  Treatments consisted of: 1) LPWR; 2) FA alone; and 3) FC.  

Lab Trial 3 - Peroxyacetic Acid with a High-Pressure Water Rinse - Aerobes 

Lab trial 3 utilized four transportation coops, with each one representing a different 

treatment.  Treatments consisted of: 1) LPWR; 2) PAA+FA; 3) a HPWR step followed 

by the PAA+FA; and 4) PAA+FA followed by a HPWR step. 

Lab Trial 4 - Foam Cleaner with a High-Pressure Water Rinse - Aerobes 

Lab trial 4 utilized four transportation coops, with each one representing a different 

treatment.  Treatments consisted of: 1) LPWR; 2) FC; 3) a HPWR step followed by the 

FC; and 4) FC followed by a HPWR step. 

The control for these studies was a LPWR which involved the use of a standard 

garden hose to rinse each of the ten compartments of the transportation coop.  The 

standard garden hose was moved from the left side to the right side of each compartment 

which took less than 30 seconds, in order to perform the LPWR.  All treatments were 

given a 10-minute contact time and were followed by a LPWR of the transportation 

coops to remove any potential residual chemicals.  The concentrations that were used for 

all trials were the maximum concentrations recommended by the manufacturers.  The 

HPWR was achieved by using a power washer (Briggs & Stratton Elite Series, 

Milwaukee, WI) for 1 minute at 3000 psi on each transportation coop. 
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Cleaners and Disinfectants 

The FC used in specified lab trials was an alkaline/chlorine based FC (Chlor-A-

Foam
®
 XL; DuPont, Wilmington, DE) which was used at 118.29 mL/L (4 oz/gal) 

concentration.  This product contained its own foaming agent so a FA was not added to 

this product. 

The disinfectant (Peraside™; Enviroguard Sanitizer
®
; Rochester, NY) that was 

used in specified trials has two main components; peroxyacetic acid and hydrogen 

peroxide, which was used at a 118.29 mL/L (4 oz/gal) concentration.  This product did 

not contain its own foaming agent so a FA was added to this product when used.  The 

FA (Perafoam
®
;
 
Enviro Tech Chemical Services INC, Modesto, CA) was added at a 1% 

concentration. 

Compressed Air Foam System (CAFS) 

 Foam is composed of air, soap and water.  We utilized a CAFS that can produce 

2,271.25 L (600 gallons) of firefighting foam per minute.  For each trial, 189.27 L (50 

gallons) of tap water was measured into the tank of the CAFS followed by 5.92 L (200 

oz) of FC or 5.86 L (198 oz) of PAA with 59.15 mL (2 oz) of the FA (PAA+FA).  A 

2.54 cm (1 in) fire hose was used to apply the foam from the CAFS to the contaminated 

coops. 

Transportation Coops 

 Four transportation coops (Bright Coop, Nacogdoches, TX)   were obtained from 

a local broiler integrator for these trials.  Each coop had ten holding compartments in a 

configuration of two columns with five rows.  Each coop represented an experimental 
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unit/treatment.  During experiments ten pre-treatment and ten post-treatment samples 

were taken from each transportation coop. 

Fecal Slurry 

Feces were collected from single combed white Leghorn chickens (Hy-Line, 

Bryan, TX) housed at the Texas A&M University Poultry Research Center.  Five 

hundred grams of feces and one liter of tap water was mixed, and filtered to remove 

large particulates and feathers to make a homogeneous slurry.  

Paint Roller Application 

 Once the homogenous fecal slurry was filtered, it was placed in a paint roller tray 

and a clean paint roller was used to apply the slurry onto the entrance of each 

compartment at a width equivalent to the length of one roller (23 cm).  The slurry 

applied onto the transportation coops was given an hour dry time to simulate minimum 

industry conditions. 

Bacterial Recovery/Sampling 

 Samples were taken from each of the ten compartments of the transportation 

coops after one-hour of drying time.  The samples were taken using a sterile 5 by 5 cm 

gauze that was pre-applied with buffered peptone water in a 4 oz WHIRL-PAK® bag 

(Nasco® Fort Atkinson, Wisconsin) using a 5 by 5 cm stainless steel template that was 

soaked in 100% ethanol and flame sterilized.  In order to avoid sampling overlap all pre-

treatment samples were taken from the left side of each compartment and all post-

treatment samples were taken from the right. 
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Culture 

 Samples were kept in the 4 oz WHIRL-PAK® bags and homogenized by 

stomacher blender (Seward® Bohemia, NY) for 30 seconds at normal speed.  The series 

of 10-fold dilutions were performed into Butterfield’s dilution tubes, plated onto tryptic 

soy agar (Difco Laboratoies, Detroit, MI) and incubated for 24 hours at 37˚ C for a final 

concentration of 1:4 x 10
6
. 

Statistical Analysis 

Levels of bacterial recovery data were subjected to a one-way ANOVA using the 

GLM procedure, with means deemed significantly different at P < 0.05 and separated 

using Duncan’s multiple range test (SPSS, 2010). 

Results and Discussion 

 The objective of lab trial 1 was to evaluate if PAA+FA could reduce aerobic 

bacteria on transportation coops (Table 1).  Significant reductions (4.17 and 4.77 log10, 

respectively) of aerobic bacteria were observed from coops treated with PAA+FA in 

both replications.  The FA and the LPWR treatments were statistically similar in both 

replications, suggesting that the addition of a detergent did not reduce aerobic bacteria as 

compared to the LPWR control.  These data suggest that the use of PPA+FA followed 

by a LPWR significantly reduced aerobic bacteria present when compared to a LPWR 

used alone.  Berrang and Northcutt (2005a) also evaluated a LPWR as a method to 

reduce Campylobacter, coliforms and Escherichia coli on transportation coops.  The 

source of bacterial contamination in this broiler transportation study was obtained from 

recently slaughtered broiler gut contents that were thoroughly mixed before smearing a 



 

 29 

 

 

thin layer onto their coop flooring squares and allowed a 60-minute dry time.  The 

source in which to contaminate the surface of our transportation coops was different but 

both studies applied thin layers of the contaminant to the transportation floorings.  

However, Berrang and Northcutt (2005a) found that a LPWR significantly reduced 

bacterial counts in their studies.  Further, the addition of a quaternary ammonium 

chloride compound or sodium hypochlorite didn’t cause additional reductions.   

 

 

Table 1:  Lab Trial 1- Peroxyacetic Acid- Aerobes.   
All treatments were given a 10-minute contact time and were followed by a LPWR of 

the transportation coops to remove any residual chemical.  Values for reductions in 

aerobic bacteria recovery were calculated by subtracting post-treatment from pre-

treatment samples. 

Treatment
1 

Replication 1 

Log10 reductions aerobic 

plate count 

Replication 2 

Log10 reductions aerobic 

plate count 

LPWR *1.73
b 

± 0.52 1.76
b 

± 0.35
 

FA 2.09
b 

± 0.69
 

2.17
b 

± 1.18
 

PAA+FA 4.17
a 
± 1.47

 
4.77

a 
± 0.91

 

1
LPWR= Low-pressure water rinse; FA= Foam additive; and PAA+FA= Peroxyacetic 

acid with a foam additive 
a-b

Column values with different superscripts differ significantly (P < 0.05). 

*Data are mean ± standard deviation log10 reduction 

 

 

 

The limited effect of the disinfectants could be due to the presence of excessive organic 

matter or limited contact time (5 minutes) on the transportation coops.  Stringfellow and 

co-workers (2009) concluded that when using disinfectants, correct contact time, 
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temperature, and amount of organic matter present significantly affects the effectiveness 

of the antimicrobial compounds.   

The objective of lab trial 2 was to evaluate if a FC could reduce aerobic bacteria 

on transportation coops (Table 2).  Observations from replication 1 revealed that a 

similar reduction of aerobic bacteria came from all three treatments and no significant 

differences were observed.  In replication 2, results show that the treatment using the FC 

and the FA had a similar statistical reduction of aerobic bacteria (1.94 and 2.27 logs, 

respectively).  The LPWR had a 0.79 log reduction of aerobic bacteria, which was 

statistically lower than the FA and FC.  

 

 

Table 2:  Lab Trial 2- Foam Cleaner- Aerobes. 

All treatments were given a 10-minute contact time and were followed by a LPWR of 

the transportation coops to remove any residual chemical.  Values for reductions in 

aerobic bacteria recovery were calculated by subtracting post-treatment from pre-

treatment samples. 

Treatment
1
 Replication 1 

Log10 reductions aerobic 

plate count 

Replication 2 

Log10 reductions aerobic 

plate count 

LPWR *0.48 ± 0.42
 

0.79
b 

± 0.53
 

FA 0.72 ± 0.76
 

1.94
a 
± 0.71

 

FC 1.00 ± 0.95
 

2.27
a 
± .057

 

1
LPWR= Low-pressure water rinse; FA= Foam additive; and FC=Foam Cleaner 

a-b
Column values with different superscripts differ significantly (P < 0.05). 

*Data are mean ± standard deviation log10 reduction 
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The objective of lab trial 3 was to investigate a HPWR step prior to or following 

PAA+FA and evaluate whether this additional step was an added benefit.  Replication 1 

used PAA+FA (Table 3) and results showed all coops treated with PAA+FA alone or 

with the HPWR prior to or following the treatment were all statistically similar (P < 

0.05) in achieving reductions in aerobic bacteria, which ranged from 4.37 to 5.17 logs of 

TPC.  The LPWR was consistently associated with the lowest reduction of aerobic 

bacteria (1.16 logs) when compared to the PAA+FA treatments. 

In replication 2 (Table 3) all coops treated with PAA+FA alone or with the 

HPWR, prior to or following the treatment, were shown to be statistically similar (P < 

0.05) in the reduction of aerobic bacteria.  Significant reductions of aerobic bacteria 

from the transport coops treated with PAA+FA alone or with the HPWR prior to or 

following the treatment ranged from 3.96 to 5.06 logs.  The LPWR was consistently 

associated with the lowest reduction of aerobic bacteria (1.33 logs).  

The objective of lab trial 4 was to include a HPWR step prior to or following the 

FC and evaluate whether this additional step improved efficacy.  The last lab trial 

utilized the FC against aerobic bacteria (Table 4) results in replication 1 show that the 

coop treated with the HPWR followed by the FC (3.60 logs) was statistically different (P 

< 0.05) from the coop treated with the FC following the HPWR and the LPWR, but not 

different from the FC used alone (3.10 logs).  The FC used alone was also statistically 

similar to the FC followed by the HPWR which had a 2.82 log reduction of TPC.  The 

lowest reduction came from the LPWR at 1.11 logs of aerobic bacteria.    
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Table 3:  Lab Trial 3- Peroxyacetic Acid with a High-Pressure Water Rinse- 

Aerobes. 

All treatments were given a 10-minute contact time and were followed by a LPWR of 

the transportation coops to remove any residual chemical.  Values for reductions in 

aerobic bacteria recovery were calculated by subtracting post-treatment from pre-

treatment samples. 

Treatment
1
 Replication 1 

Log10 reductions aerobic 

plate count 

Replication 2 

Log10 reductions aerobic 

plate count 

LPWR *1.16
b 

± 0.35
 

1.33
b 

± 0.57
 

PAA+FA 5.17
a 
± 1.21

 
3.96

a 
± 1.56

 

HPWR followed by 

PAA+FA 

 

4.37
a 
± 1.31

 
4.09

a 
± 2.01

 

PAA+FA followed by 

HPWR 

 

4.95
a
 ± 1.33

 
5.06

a
 ± 1.79

 

1
LPWR= Low-pressure water rinse; PAA+FA= Peroxyacetic acid with a foam additive, 

and HPWR= High-pressure water rinse 
a-b

Column values with different superscripts differ significantly (P < 0.05). 

*Data are mean ± standard deviation log10 reduction 

 

 

 

Replication 2 (Table 4) revealed that all treatments using the FC alone or with a 

HPWR, before or following treatment, had a statistically significant difference (P < 

0.05) from the LPWR that ranged from (3.46 to 3.71 logs, respectively).  The lowest 

reduction came from the LPWR at 0.71 logs of TPC.  Berrang and Northcutt (2005a) 

evaluated reductions of Campylobacter, coliforms and Escherichia coli on transportation 

coop flooring that had been allowed to dry for 15 minutes, 24 hours, or 48 hours 

followed by a LPWR.  They found that a LPWR reduced all bacteria when compared to 

a control. The use of a disinfectant with an additional HPWR step had not been 
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evaluated in reducing bacteria on transportation coops until evaluated in the current 

trials.  However, the HPWR did not further improve efficacy in all lab trials.   

 

 

Table 4:  Lab Trial 4- Foam Cleaner with a High-Pressure Water Rinse- Aerobes. 

All treatments were given a 10-minute contact time and were followed by a LPWR of 

the transportation coops to remove any residual chemical.  Values for reductions in 

aerobic bacteria recovery were calculated by subtracting post-treatment from pre-

treatment samples. 

Treatment
1
 Replication 1 

Log10 reductions aerobic 

plate count 

Replication 2 

Log10 reductions aerobic 

plate count 

LPWR *1.11
c 
± 0.79

 
0.71

b 
± 0.61

 

FC 3.10
ab 

± 0.66
 

3.46
a 
± 0.61

 

HPWR followed by FC 3.60
a 
± 1.04

 
3.71

a 
± 1.25

 

FC followed by HPWR 

 
2.82

b 
± 0.70

 
3.46

a 
± 0.55

 

1
LPWR= Low-pressure water rinse; FC= Foam cleaner; and HPWR= High-pressure 

water rinse 
a-c

Column values with different superscripts differ significantly (P < 0.05). 

*Data are mean ± standard deviation log10 reduction 

 

 

This may be because transportation coops that were used for this study did not have a 

great deal of organic matter present on them.  An actual broiler processing facility would 

have organic matter in a larger quantity and could be substantially different from the 

homogeneous fecal slurry used for the laboratory studies.  The organic matter used for 

these studies had water added and was filtered to remove large particulates to avoid 
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sampling variability.  The technique to reduce large particulates from the fecal slurry 

may be why coops that were cleaned with a disinfectant or with a HPWR step did not 

alter the results from the different coops evaluated.  The amount of organic matter 

present on a surface may affect the efficacy of the disinfectant used, which is one 

potential reason why these studies may not have revealed a difference with the 

disinfectant used alone or with a HPWR step.  In these trials the organic matter used may 

have possibly been present in too thin of a layer.  The current study did not prove that 

the bacteria present were killed on the coops or whether the bacteria were physically 

washed away.  Regardless, bacteria levels were reduced or removed.  As such, this 

observation may be irrelevant since the bacteria is no longer present on the 

transportation coops that tend to be a vehicle for cross-contamination.  

The bacterial load in a field setting is different in quantity when compared to the 

fecal slurry made for these laboratory studies and a HPWR step may be more beneficial 

in lowering the amount of bacteria present.  According to Dvorak (2005), removal of all 

organic matter prior to disinfection becomes essential in the efficacy of the disinfectant 

due to the fact that the organic matter acts as a barrier to the microorganisms present.   
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CHAPTER IV 

USE OF FOAMING DISINFECTANTS AND CLEANERS TO REDUCE 

AEROBIC BACTERIA AND SALMONELLA ON                                      

POULTRY TRANSPORT COOPS  

 

Introduction 

Transportation coops are shown to be a vector for cross-contamination because 

of birds defecating and shedding pathogens on them during the 3-12 hours that 

transportation and holding takes before birds are processed (Hansson, et al., 2005).  

Transportation coops contain organic matter and microorganisms left by previously 

transported flocks (McCrea and Macklin, 2006).  Salmonella levels can increase by 20 to 

40% during loading, transportation and holding before being processed (Berrang and 

Northcutt, 2005b; Northcutt and Berrang, 2006; Food Safety Inspection Service, 2010).  

Transportation is a known and studied stress factor involved in the poultry industry and 

is why studies show increasing levels of microorganisms during this event (Mulder, 

1995).  Poultry transportation coops are not required to be cleaned and disinfected prior 

to reuse, which may be a possible reason for it being a concern for cross-contamination 

(Berrang, et al., 2003; McCrea and Macklin, 2006).  Researchers have found that 

broilers determined to be negative for Campylobacter become positive post-

transportation in coops used for transport of Campylobacter positive flocks (Berrang, et 

al., 2003).  Research has been done to evaluate reductions in bacteria present on 

transportation coops by washing and allowing an extended drying time.  This was found 
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to be successful but may not be a practical method for the industry since this would 

require more available coops and a large amount of space for drying (Berrang and 

Northcutt, 2005b).  

Campylobacter and Salmonella are a concern within the industry because their 

common presence in poultry products that are high in foodborne illness from 

consumption of poultry and poultry products (CDC, 2011a).  Disinfectants, such as 

PAA, are currently used in processing plant chillers because of their ability to reduce 

microorganisms such as Campylobacter and Salmonella (Bauermeister, et al., 2008).  

Guidelines to control and prevent these two microorganisms have been written and are in 

place for the poultry industry (Food Safety Inspection Service, 2010).  Poultry 

processing plant departments have been evaluated to analyze levels and assess where 

high loads of pathogens are found (Berrang and Dickens, 2000).  Mechanical feather 

removal within the processing plant is one area were the bacterial load increases because 

of picker fingers contacting feathers with high levels of organic matter containing 

microorganisms that may possibly cross-contaminate carcasses (Arnold, 2007).  

Lowering the amount of microorganisms and organic matter entering the plant from the 

transportation coops should result in less organic matter on  feathers and lower 

possibility for cross-contamination (Ramesh, et al., 2004). 

The poultry industry may utilize firefighting foam to depopulate birds during a 

reportable disease outbreak.  This technique has been conditionally approved by  the 

American Veterinary Medical Association and USDA-Animal Plant Health Inspection 

Service (American Veterinary Medical Association, 2007).  Benson and colleagues 
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(2007) concluded that foam is a quick and successful alternative method to depopulate 

broilers that is less labor intensive and meets all twelve criteria for an approved 

euthanasia.  Using a compressed air foam system (CAFS) may be an efficient way to 

disinfect and sanitize poultry transportation coops.  Researchers observed that this 

technique washes surfaces due to the velocity of the foam, increases contact time and 

improves adherence to surfaces.  The authors have not found any publications utilizing 

CAFS for disinfection and sanitization in production agriculture.  However, the food 

industry does utilize foaming disinfectants and cleaners to reduce microbial surface 

contamination, suggesting that a scalable approach using CAFS has potential.  

The objective of the current study was to evaluate the disinfection of poultry 

transportation coops using a foam cleaner (FC), peroxyacetic acid with foam 

(PAA+FA), or PAA+FA with a high-pressure water rinse (HPWR) prior to or following 

the foam application on aerobic bacteria and Salmonella recovery.  The field study was 

conducted at a commercial poultry processing facility.  This trial evaluated PAA+FA 

alone and with a HPWR prior to the foam application to evaluate aerobic bacteria and / 

or Salmonella present on poultry transportation coops.  We hypothesized that the 

application of disinfectants or cleaners with foam using the CAFS will significantly 

reduce Salmonella and aerobic bacteria on broiler transport coops. 
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Materials and Methods 

Experimental Design 

Lab Trial 1 - Peroxyacetic Acid with a High-Pressure Water Rinse - Aerobes 

and Salmonella Recovery 

Lab trial 1 utilized four transportation coops, with each one representing a different 

treatment.  Treatments consisted of a: 1) low-pressure water rinse (LPWR); 2) 

PAA+FA; 3) HPWR step followed by the PAA+FA; and 4) PAA+FA followed by a 

HPWR step. 

Lab Trial 2 - Foam Cleaner with a High-pressure Water Rinse - Aerobes and 

Salmonella Recovery  

Lab trial 2 utilized four transportation coops, with each one representing a different 

treatment.  Treatments consisted of: 1) LPWR; 2) FC; 3) HPWR step followed by the 

FC; and 4) FC followed by a HPWR step. 

Field Trial - Peroxyacetic Acid with a High-Pressure Water Rinse – Aerobes 

The field trial was conducted at a broiler processing facility and utilized three 

transportation coops.  Treatments consisted of: 1) LPWR; 2) PAA+FA; and 3) a HPWR 

step followed by PAA+FA.  

The control for these studies was the LPWR, which involved the use of a standard 

garden hose to rinse each of the ten compartments of the transportation coop.  The 

standard garden hose was moved from the left side to the right side of each compartment 

which took less than 30 seconds to perform the LPWR.  All treatments were given a 10-

minute contact time and followed by a LPWR of the transportation coops to remove any 
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chemical residue.  The concentrations that were used for all studies were the maximum 

concentrations recommended by the manufacturers.  The HPWR used a (Briggs & 

Stratton Elite Series, Milwaukee, WI) power washer for 1 minute at 3000 psi on each 

transportation coop. 

Cleaners and Disinfectants 

The FC that was used in specified lab trials was an alkaline/chlorine based FC 

(Chlor-A-Foam
®

 XL; DuPont in Wilmington, DE) and it was used at a 118.29mL/L (4 

oz/gal) concentration.  This product contained its own foaming agent so a foam additive 

(FA) was not added to this product when used. 

The disinfectant (Peraside™; Enviroguard Sanitizer
®
 in Rochester, NY) that was 

used in specified trials was also used at a 118.29mL/L (4 oz/gal) concentration.  This 

product did not contain its own foaming agent so a FA was added to this product when 

used.  The FA (Phos-chek
®
;
 
ICL Performance Products LP, St. Louis, MO) was added at 

a 1% concentration. 

Compressed Air Foam System (CAFS) 

 Foam is composed of air, soap and water. We utilized a CAFS that can produce 

2,271.25 L (600 gallons) of firefighting foam per minute.  For each trial, 189.27 L (50 

gallons) of tap water was measured into the tank of the CAFS followed by 5.92 L (200 

oz) of FC or 5.92 L (198 oz) of PAA with 59.15 mL (2 oz) of the FA (PAA+FA).  A 

2.54 cm (1 in) fire hose was used to apply the foam from the CAFS to the contaminated 

coops. 
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Transportation Coops  

 Four transportation coops (Bright Coop, Nacogdoches, TX) were obtained from a 

local commercial broiler integrator for experimental purposes.  Each coop represented an 

experimental unit/treatment and has ten holding compartments in a configuration of two 

columns with five rows.  During experiments ten pre-treatment and ten post-treatment 

samples were taken from each transportation coop. 

 The field study utilized three transportation coops containing market-age broilers 

that had defecated throughout the coops during transport to the processing plant. 

Fecal Slurry 

Feces were collected from single combed white Leghorn chickens (Hy-Line, 

College Station, TX) housed at the Texas A&M University Poultry Research Center.  

Five hundred grams of organic matter, 500 mL Salmonella Typhimurium (ST) (Corrier, 

et al., 1990) and 500 mL of tap water was mixed.  The ST was cultured in tryptic soy 

broth (Difco Laboratories, Detroit, MI) for 24 hours at 37  C and passed every eight 

hours to spike the fecal slurry before being blended and homogenized. 

The final study, at the processing facility, did not utilize the homogeneous fecal 

slurry method since the transport coops were recently contaminated by commercial 

broiler chickens.   

Paint Roller Application 

 The homogenous fecal slurry was blended and placed in a paint roller tray and a 

clean paint roller was used to apply the slurry onto the entrance of each compartment at 

a width equivalent to the length of one roller (23 cm).  The slurry applied onto the 
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transportation coops was given allowed a 30 minute dry time to simulate industry 

conditions. 

Bacterial Recovery/Sampling 

 Samples were taken from each of the ten compartments of each transportation 

coop after 30 minutes of drying time.  The samples were collected using a sterile 5 by 5 

cm gauze padwhich was pre-soaked with XX mL of buffered peptone water and stored 

in a 4 oz WHIRL-PAK® bag (Nasco® Fort Atkinson, Wisconsin).   A 5 by 5 cm 

stainless steel template was soaked in 100% ethanol and flame sterilized between 

samples.  In order to avoid sampling overlap, all pre-treatment samples were taken from 

the left side of each compartment and all post-treatment samples were taken from the 

right. 

Culture 

 Samples were kept in the 4 oz WHIRL-PAK® bags and homogenized by 

stomacher blender (Seward® Bohemia, NY) for 30 seconds at normal speed.  The series 

of 10-fold dilutions were performed into Butterfield’s dilution tubes, plated onto tryptic 

soy agar (Difco Laboratoies, Detroit, MI) and incubated for 24 hours at 37˚ C for a final 

concentration of 1:4 x 10
6
. 

For lab trials 1 and 2 the addition of Xylose-Lysine-Tergitol 4 (XLT4) (Difco 

Laboratories, Detroit, MI) plates were used to evaluate Salmonella bacterial recovery 

and were plated from the same Butterfield’s dilution tubes then incubated for 48 hours at 

37  C for a final concentration of 1:4 x 10
6
.  Sample WHIRL-PAK® bags were incubated 

for 24 hours at 37  C then 100 mL of each sample were transferred into corresponding 
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Rappaport - Vassiliadis (RV) Salmonella enrichment broth (Difco Laboratories, Detroit, 

MI).  The RV tubes were incubated for 24 hours at 37  C and struck onto XLT4 plates 

and incubated for 24 hours at 37  C to determine how many positive samples were 

detected through selective enrichment.  

Statistical Analysis 

Bacterial recovery data were subjected to a one-way ANOVA using the GLM 

procedure, with means deemed significantly different at P<0.05 and separated using 

Duncan’s multiple range test (SPSS, 2010). 

Results and Discussion 

 The objective for lab trial 1 was to spike layer feces with Salmonella 

Typhimurium and evaluate whether a HPWR step prior to or following the PAA+FA 

treatment would be an added benefit in reducing aerobic bacteria and Salmonella (Table 

5).  Transportation coops treated with PAA+FA alone or with a HPWR step prior to or 

following the treatment in both replications were statistically similar (P < 0.05) in 

reducing aerobic bacteria (4.10 to 5.17 logs, respectively) and Salmonella (3.99 to 4.58 

logs, respectively).  The LPWR consistently had the lowest reductions in both 

replications when reducing aerobic bacteria (2.09 and 2.14 logs) and Salmonella (2.10 

and 2.16 logs). 
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Table 5:  Lab Trial 1- Peroxyacetic Acid with a High-Pressure Water Rinse- Aerobes and Salmonella Recovery. 

All treatments were given a 10-minute contact time and were followed by a LPWR of the transportation coops to remove any 

residual chemical.  Values for reductions in aerobic bacteria and Salmonella recovery were calculated by subtracting post-

treatment from pre-treatment samples. 

Treatment
1
 

 

Replication 1 

Log10 

reductions 

aerobic plate 

count 

Replication 1 

Log10 

reductions 

Salmonella 

plate count 

Direct 

plating 

incidence 

Selective 

enrichment 

incidence 

Replication 2 

Log10 

reductions 

aerobic plate 

count 

Replication 2 

Log10 

reductions 

Salmonella 

plate count 

Direct 

plating 

incidence 

Selective 

enrichment 

incidence 

LPWR *2.14
b 

± 0.47
 

2.10
b 

± 0.54
 

10/10 10/10 2.09
b 

± 0.29
 

2.16
b 

± 0.38
 

10/10 10/10 

PAA+FA  4.71
a 
± 1.33

 
4.12

a 
± 0.26

 
1/10 10/10 4.77

a 
± 1.17

 
4.22

a 
± 0.41

 
3/10 10/10 

HPWR 

followed by 

PAA+FA  

4.10
a 
± 0.81

 
3.99

a 
± 0.65

 
1/10 9/10 5.17

a 
± 0.93

 
4.48

a 
± 1.03

 
0/10 8/10 

PAA+FA 

followed by 

HPWR 

4.42
a 
± 1.38

 
4.58

a
 ± 1.21 1/10 5/10 4.89

a 
± 1.34

 
4.35

a 
± 1.35

 
2/10 7/10 

1
LPWR= Low-pressure water rinse; PAA+FA= Peroxyacetic acid with a foam additive, and HPWR= High-pressure water 

rinse 
a-b

Column values with different superscripts differ significantly (P < 0.05). 

*Data are mean ± standard deviation log10 reduction 
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The objective for lab trial 2 was to spike our feces with Salmonella Typhimurium 

and evaluate whether a HPWR step prior to or following a FC would be an added benefit 

in reducing aerobic bacteria and Salmonella (Table 6).  Treatments using a FC varied 

statistically in both replications.  In replication 1, HPWR prior to the FC and also the FC 

used alone had the greatest reductions and were statistically similar (P < 0.05) in 

reducing aerobic bacteria (4.05 and 4.23 logs, respectively).  The FC followed by the 

HPWR was statistically different (P < 0.05) from all other treatments at 3.5 log10 

reductions of aerobic bacteria and was greater than the LPWR.  The LPWR had the 

lowest reduction of aerobic bacteria at 1.12 logs. 

In the same lab trial Salmonella Typhimurium recovery was also evaluated and 

all three treatments using the FC were statistically similar (P < 0.05) to one another (3.17 

to 3.65 logs).  The LPWR had the lowest reduction at 1.82 logs of Salmonella and was 

statistically different than all other treatments.  This demonstrates that the FC is effective 

in reducing not only aerobes but Salmonella as well.   

In replication 2 of lab trial 2 (Table 6) aerobic bacteria reductions for all coops 

were statistically different from one another.  The greatest reduction was achieved from 

the HPWR followed by the FC, which was a 4.84 log10 reduction of TPC.  Another 

significant reduction came from the FC used alone with a reduction at 3.59 logs of TPC.  

The FC followed by the HPWR with a reduction of 2.78 logs of TPC also had a 

significant reduction of aerobic bacteria.  The lowest reduction was observed with the 

LPWR treatment at 0.98 log reduction of TPC.   
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Replication 2 also evaluated the reductions of Salmonella.  The authors found 

that the HPWR followed by the FC had the greatest statistically significant reduction of 

3.90 logs of TPC.  The HPWR used prior to the use of the FC consistently proved to be 

the most effective way to reduce aerobic bacteria and Salmonella in both replications, 

which could be due to the fact that the organic matter was removed prior to the 

disinfectant being applied.  The organic matter that was used for lab trials had water 

added and Salmonella Typhimurium was blended to allow the slurry to be thicker in 

consistency and more true to organic matter that is naturally present on broiler 

transportation coops.  According to Dvorak (2005) the removal of organic matter first is 

essential because it acts as a barrier to the microorganisms present and affects the 

efficacy of the disinfectant.  They concluded that the efficacy of bleach is rapidly 

reduced when a large amount of organic matter present.  Perhaps this is why we saw 

better results from the coops treated by the HPWR first followed by the disinfectant or 

cleaner in this lab trial.  The FC used alone and followed by the HPWR statistically had 

similar reductions (2.82 and 3.18 logs).  Finally the LPWR statistically showed that it 

had the lowest reductions of Salmonella at 0.65 logs of TPC.   
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Table 6:  Lab Trial 2- Foam Cleaner with a High-pressure Water Rinse - Aerobes and Salmonella Recovery. 

All treatments were given a 10-minute contact time and were followed by a LPWR of the transportation coops to remove any 

residual chemical.  Values for reductions in aerobic bacteria and Salmonella recovery were calculated by subtracting post-

treatment from pre-treatment samples. 

Treatment
1
 Replication 1 

Log10 

reductions 

aerobic plate 

count 

Replication 1 

Log10 

reductions 

Salmonella 

plate count 

Direct 

plating 

incidence 

Selective 

enrichment 

incidence 

Replication 2 

Log10 

reductions 

aerobic plate 

count 

Replication 2 

Log10 

reductions 

Salmonella 

plate count 

Direct 

plating 

incidence 

Selective 

enrichment 

incidence 

LPWR *1.12
c 
± 0.39

 
1.82

b 
± 0.46

 
10/10 10/10 0.98

d 
± 0.51

 
0.65

c 
± 0.95

 
10/10 10/10 

FC 4.05
a 
± 0.71

 
3.71

a 
± 0.59

 
3/10 10/10 3.59

b 
± 0.81

 
3.18

b 
± 0.85

 
5/10 10/10 

HPWR 

followed by 

FC 

4.23
a  

± 0.53
 

3.48
a 
± 0.54

 
2/10 10/10 4.84

a 
± 1.05

 
3.90

a 
± 0.33

 
1/10 10/10 

FC 

followed by 

HPWR 

 

3.50
b 

± 0.13
 

3.65
a 
± 0.13

 
0/10 10/10 2.78

c 
± 0.74

 
2.82

b 
± 0.72

 
8/10 10/10 

1
LPWR= Low-pressure water rinse; FC= Foam cleaner; and HPWR= High-pressure water rinse 

a-d
Column values with different superscripts differ significantly (P < 0.05). 

*Data are mean ± standard deviation log10 reduction 
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The objective of the field trial was to evaluate whether PAA+FA alone or after a 

HPWR step would be effective in reducing aerobic bacteria on freshly contaminated 

broiler transportation coops from a poultry processing facility (Table 7).  Similar results 

were seen in both replications.  Significant reductions (1.72 and 2.32 logs, respectively) 

of aerobic bacteria were observed from coops treated with HPWR followed by PAA+FA 

in both replications.  The HPWR proved to be effective in a field setting, which may be 

due to the removal of organic matter present that had not been washed previously.  

 

 

Table 7:  Field Trial- Peroxyacetic Acid with a High-Pressure Water Rinse- 

Aerobes. 

All treatments were given a 10-minute contact time and were followed by a LPWR of 

the transportation coops to remove any residual chemical.  Values for reductions in 

aerobic bacteria recovery were calculated by subtracting post-treatment from pre-

treatment samples. 

Treatment
1
 Replication 1 

Log10 reductions aerobic 

plate count 

Replication 2 

Log10 reductions aerobic 

plate count 

LPWR *-0.01
c 
± 0.66

 
0.42

c 
± 0.37

 

PAA+FA 0.88
b 

± 0.62
 

0.80
b 

± 0.34
 

HPWR followed by 

PAA+FA 

 

1.72
a 
± 0.57

 
2.32

a 
± 0.40

 

1
LPWR= Low-pressure water rinse; PAA+FA= Peroxyacetic acid with a foam additive, 

and HPWR= High-pressure water rinse 
a-c

Column values with different superscripts differ significantly (P < 0.05). 

*Data are mean ± standard deviation log10 reduction 

 

 

 

Berrang and Northcutt (2005a) suggested that high-pressure rinsing may be more 

effective to significantly reduce bacterial load than a LPWR.  Their hypothesis to apply a 
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HPWR proved to be effective in a field setting along with removal of organic matter 

which is what previous research and literature suggests.  Stringfellow and co-workers 

(2009) conclude that when using disinfectants, correct contact time, temperature, and 

amount of organic matter affects product efficacy.  The higher amount of organic matter 

seen in the present study led to the conclusion that the addition of a HPWR will further 

reduce bacterial load present on transportation coops.  The PAA+FA used alone had a 

significant reduction of aerobic bacteria (0.88 and 0.80 logs).  The LPWR had the lowest 

reduction concentrations (0.0 and 0.42 logs) for the field trials conducted. 

The current study did not demonstrate that the bacteria present were killed on the 

coops or whether the bacteria were physically washed away but whether the bacteria was 

reduced or removed.  Regardless, bacteria levels were reduced or removed.  As such, 

this observation may be irrelevant since the bacteria are no longer present on the 

transportation coops that can be a vehicle for cross-contamination.  Continued research 

in a commercial setting may be needed.  Furthermore, evaluations of bacterial counts on 

carcasses that were taken from washed transport coops versus unwashed to determine 

the bacterial load that is found on the carcasses following cleaned and disinfected coops.  

These products have already been approved by the Environmental Protection Agency, 

which means that they may be implemented in being used as a poultry processing 

facility.  These data suggest that a CAFS application of cleaners and disinfectants may 

be used to significantly reduce Salmonella and aerobic bacteria on broiler transport 

coops.  While a direct comparison was not made, coops from a commercial setting were 
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found to be more difficult to clean and disinfect than coops which were contaminated in 

the laboratory.   



 

50 

 

 

CHAPTER V 

CONCLUSION 

 

Food safety and reportable diseases are a significant concern for the poultry industry 

and is why new guidelines are written and implemented.  A previous survey found that 

only 9% of large poultry processing facilities clean their transportation coops; if a 

guideline is written to require cleaning and disinfecting of coops these products and 

methods of application could be considered when implementing a plan of action 

(Northcutt and Jones, 2004).  Berrang and Northcutt have published extensive research 

on reducing pathogens on contaminated transportation coops.  Their studies involve 

drying or a LPWR to reduce levels of microorganisms present.  The effectiveness of 

allowing a 24 to 48 hour drying time in order to reduce or kill bacteria present on 

transportation coops gave poultry processing facilities an idea of what could be done, but 

this method may be difficult to implement with the limited amount of adequate space 

and equipment available (Berrang, et al., 2004).  Facilities will need extra transport 

coops in order to allow the 24 to 48 hour dry time which may involve purchasing 

additional transportation coops and thus additional cost.  The cost of one transportation 

coop, depending on the size that is used by the processing facility, can range from 

$1,400 - $1,500.  If cleaning and disinfection of transportation coops did become a 

common practice in the industry, a standard protocol like a Sanitation Standard 

Operating Procedures (SSOP) should be developed and followed (Northcutt and 

Berrang, 2006). 
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Laboratory trials utilizing a HPWR prior to the FC were found to be most effective 

in removal of organic matter when compared to the FC used alone or the LPWR which 

is recommended by the manufactures and written in literature (Dvorak, 2005).  The 

commercial field trial data did identify an added benefit of a HPWR followed by the 

PAA+FA treatment was more effective in reducing the bacterial load than LPWR.  

Previous research demonstrated that the use of a LPWR alone can effectively reduce 

bacterial load and in the present study we observed an additional two log reduction in 

bacteria when compared to our LPWR control (Berrang and Northcutt, 2005a; Berrang 

and Northcutt, 2005b).  The HPWR prior to PAA+FA treatment being the best in 

reducing aerobic bacteria wasn’t surprising due to the high amount of organic matter 

seen on the transportation coops that were allowed to accumulate over time. 

A compressed air foam system (CAFS) can be utilized to apply disinfectants with 

foam or foaming cleaners to effectively reduce aerobic bacteria and Salmonella which 

can contaminate broiler transportation coops.  The use of foam to depopulate 

commercial poultry operations has already been approved by American Veterinary 

Medicine Association (AVMA) and USDA-Animal and Plant Health Inspection Service 

(APHIS) which demonstrates that using this application for cleaning and disinfection of 

poultry transportation coops may be conceivable (American Veterinary Medical 

Association, 2007).  Disinfectants like PAA that was used for these studies is currently 

being used by the poultry industry in some of their facilities such as hatcheries or 

processing plants because of their ability to lower pathogen counts on broiler carcasses 

(Bauermeister, et al., 2008).   
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Further research could evaluate that the beneficial effects of using CAFS and the 

different disinfectants for controlling microorganisms not only on transportation coops 

but also in hatcheries and processing plant equipment.  It would be beneficial for the 

industry to evaluate whether lower bacterial counts on processed broiler carcasses are 

seen from broilers transported on disinfected transportation coops when compared to 

broilers who are transported on unwashed transportation coops. 
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