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ABSTRACT 

 

 This research proposes an efficient reliability modeling and simulation 

methodology in power systems to include photovoltaic units, wind farms and storage. 

Energy losses by wake effect in a wind farm are incorporated. Using the wake model, 

wind shade, shear effect and wind direction are also reflected. For solar modules with 

titled surface, more accurate hourly photovoltaic power in a specific location is 

calculated with the physical specifications. There exists a certain level of correlation 

between renewable energy and load. This work uses clustering algorithms to consider 

those correlated variables. Different approaches are presented and applied to the 

composite power system, and compared with different scenarios using reliability 

analysis and simulation. To verify the results, reliability indices are compared with those 

from original data. 

            As the penetration of renewables increases, the reliability issues will become 

more important because of the intermittent and non-dispatchable nature of these sources 

of power. Storage can provide the ability to regulate these fluctuations. The use of 

storage is investigated in this research. 

To determine the operating states and transition times of all turbines, Monte 

Carlo is used for system simulation in the thesis. A conventional power system from 

IEEE Reliability Test Systems is used with transmission line capacity, and wind and 

solar data are from National Climatic Data Center and National Renewal Energy 



 

iii 

 

Laboratory. The results show that the proposed technique is effective and efficient in 

practical applications for reliability analysis. 
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NOMENCLATURE 

 

CAES Compressed Air Energy Storage 

ENSI Energy Not Supplied Interruption 

ET Equation of Time 

EENS Expected Energy Not Supplied 

FGFCM Fast Global Fuzzy C Means 

FGKM Fast Global K Means 

FCM Fuzzy C Means 

FPCM Fuzzy Probabilistic C Means 

GFCM Global Fuzzy C Means 

GKM Global K Means 

KM K Means 

LOLE Loss of Load Expectation 

LSTM Local Standard Time Meridians 

NREL National Renewable Energy Laboratory 

NCDC National Climatic Data Center 

PV Photovoltaic 

PCM Probabilistic C Means 

PHES Pumped Hydro Energy Storage 

RTS Reliability Test Systems 

RHS Right Hand Side 
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1. INTRODUCTION  

 

 Renewable energy is becoming more pervasive as it is a sustainable resource and 

there is no carbon dioxide emission. For these reasons, many countries have set targets 

to include a significant share of wind and solar power into their energy portfolios. 

However, wind or solar power is unstable because of its intermittent and fluctuating 

characteristics. So a detailed reliability analysis and estimation of power systems is 

critical for the growing penetration of such resources. This research has focused on 

several problems to make this analysis closer to the reality. 

 The first problem is development of more accurate models of the wind farms. A 

model based on birth and death process was proposed in [1]. It only considers transition 

behaviors between adjacent states. This model would be accurate if the wind was 

modeled on a continuous basis. However, the wind speed data is collected and used on 

basis of intervals like 10 minutes to an hour. During these periods transitions are also 

possible to other states. This research proposes a more accurate model as shown in 

Figure 1 called an exact transition rate model [2]-[3] which demonstrates state changes 

over time with transition rates. The number indicates a state, and arrows indicate 

possible transitions between states. Transition behaviors are determined by transition 

rates from a state to another state.  This approach considers all transition behaviors 

between wind speed or direction states from an actual wind data in wind farm. The 

probability of each wind state can be derived by using the transition rates. However this 

model cannot incorporate the correlation between load and wind speed, even though it 
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uses all transitions between the various wind speed or direction states. So this method is 

appropriate for modeling of conventional generating turbines or wind turbines if there 

were no correlation between the renewable energy and the load but not for the wind or 

solar power when such a correlation does exist. As efficient data mining methods, 

clustering approaches [4]-[5] for considering correlation are presented and compared in 

this work to solve this problem. Several different clustering methods are introduced and 

applied to an example power system with wind farm and photovoltaic (PV) system. This 

research shows an efficient methodology for the modeling and simulation of the system 

using clustering which is able to keep the correlation between renewable energy and 

load, reducing the original data size. 

 

 

                              

Figure 1. Transition Rate Matrix Method 

 

 

 Another problem dealt in this work is the more accurate modeling of energy 

production from wind and solar farms. Because of the energy conservation principle, the 

wind speed (energy) entering a turbine is higher than that leaving it, since turbines 

generate electricity from the entering wind. During this process, in the area behind a 

 1  2  3 
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turbine, leeside, turbulent flow occurs. This power loss is called wake effect [6]-[8]. 

Because of this effect, downstream wind turbines generate less power, because of lower 

wind speed. In general, for a free standing wind turbine, there is no wake effect by other 

wind turbines. However, when a turbine is located in a relatively close spacing with 

others, wake effect can have a significant influence on the calculations. As the effect 

gets stronger, loadability of wind farms decreases. Therefore, it is essential to consider 

the wake effect and to examine its impact on the wind farm reliability and economics for 

more accurate and reliable power calculation. PV array consists of a number of PV 

modules connected in series or parallel. Its power depends on a radiation from solar 

energy which is changed by the absorption, diffuseness, or reflection of clouds and 

atmosphere dusts. Physical characteristics of a module determine actual PV power over 

time. For more accurate calculation of solar power generation, this work considers 

inclination of solar modules and cloud effect. The third problem considered here is that 

of the role of storage.  Integration of storage into the system improves loadability of the 

system by providing extra energy at an appropriate time as well storing energy when 

there is surplus. A methodology for optimal storage deployment is also proposed and 

studied in this work. 

 Monte Carlo Simulation [9]-[10] is used for system simulation. This dissertation 

uses both random sampling and the next event form of sequential method and the results 

are compared. The wake effect is incorporated with each method and reliability indices 

[11]-[14] such as Loss of Load Expectation (LOLE), Expected Energy Not Supplied 

(EENS), and Energy Not Supplied Interruption (ENSI) are used for quantitative 
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reliability analysis. Wind data is taken from the National Renewable Energy Laboratory 

(NREL) [15] and National Climatic Data Center (NCDC) [16], and load data are from 

IEEE Reliability Test Systems (RTS) [17]. 
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2. SIMULATION AND ESTIMATION OF RELIABILITY IN A WIND FARM 

CONSIDERING WAKE EFFECT

 

              

           This section describes the improvements made in the models of wind farms. One 

of these is the inclusion of wake effect models and the second is the development of 

more accurate state transition model.  

 

2.1 Wake Effect Models  

            

          Wind energy is becoming more pervasive as it is a sustainable resource and there 

is no carbon dioxide emission. For these reasons, many countries have set targets to 

include significant share of wind and solar power into their energy portfolios. However, 

wind power is unstable because of its intermittent and fluctuating characteristics. So a 

detailed reliability analysis and estimation of the impact of wind power systems is 

critical for the growing penetration of such resources. 

          Because of the energy conservation principle, the wind speed (energy) entering a 

turbine is higher than that leaving it, since turbines generate electricity from the entering 

wind. During this process, in the area behind a turbine, leeside, turbulent flow occurs. 

This power loss is called wake effect [6]-[8]. Because of this effect, downstream wind 

turbines generate less power, because of lower wind speed. In general, for a free 

                                                 

 Reprinted with permission from “Simulation and Estimation of Reliability in a Wind 

Farm Considering the Wake Effect” by H. Kim, C. Singh and A. Sprintson, April 2012, 

IEEE Transactions Sustainable Energy, vol. 3, no. 2, pp. 274-282, Copyright [2012] by 

IEEE. 
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standing wind turbine, there is no wake effect by other wind turbines. However, when a 

turbine is located in a relatively close spacing with others, wake effect can have a 

significant influence on the calculations. As the effect gets stronger, loadability of wind 

farms decreases. Therefore, it is essential to consider the wake effect and to examine its 

impact on the overall wind power system reliability and economics for more accurate 

and reliable wind power calculation. This dissertation shows that wake effect does make 

an impact on the reliability of a wind farm and quantifies this impact. 

 There are many types of wake models [18]-[20] for the wind speed modeling and 

analysis. The generally accepted models, N.O. Jensen model [21]-[22], Eddy Viscosity 

(J.F. Ainslie) model [23], and G.C. Larsen model [24] are adopted, and modified in this 

work. Jensen and Larsen model are based on the kinematic model employing momentum 

equation. Eddy model comes from the field model using flow field on a wind farm. From 

original wake models, this dissertation develops newly modified wake models by wind 

shade and wind shear effect.  

            Wake effect relies on wind direction as well as wind speed. So by varying wind 

direction, upstream and downstream turbines are updated over time so that waked speed 

of downstream turbines is calculated using proposed wake models. So wind direction 

also plays an essential role on power loss by wake effect in a wind farm generation as 

well as wind speed data. So every hour wind speed and direction determine waked speed 

in a wind farm. 
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2.1.1 N.O. Jensen Model  

            

          The N.O. Jensen model was first developed by N.O. Jensen in 1984. It is a simple 

model with linearly expanding wake effect. Figure 2 shows the schematic for the model 

description and waked speed from natural undisturbed wind is generated using (1). 

)1(})
d

d
)(C11(1{vv 2

x

tfw 

 

where x [m] is an axial distance between turbines, fv  [m/s] is undisturbed wind speed, 

tC  is thrust coefficient, wv  [m/s] is the waked speed, kx2dd x  , and k is a wake 

decreasing constant. It is assumed to be 0.075 for onshore in this dissertation.  Because of 

the combined wake effect by adjacent turbines, Equation (1) is modified to (2). 

                                   

                              

Figure 2. Schematic of N.O. Jensen model 
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where n is the number of upstream turbines for a downstream turbine, and xid  [m] is the 

wake region by upstream turbine i. 

Wind speed is also affected by adjoining natural terrains or artificial 

constructions, which is called the wind shade effect [22].  In less than about 1 [km] of the 

atmosphere layer, wind is becoming stronger, as the height goes up. This is the wind 

shear effect [25]. By taking into account for each effect, (2) is modified to (3) and (4). 

)4(
)h/hln(

)h/hln(
)}

A

A
()

d

d
)(C11(1{vv

)3()}
A

A
()

d

d
)(C11(1{vv

oref

o
n

i

si2

ix

tfw

n

i

si2

ix

tfw









 

where A [ 2m ] is the rotor disc area and siA [ 2m ] is the shades area by upstream turbine 

i, depending on wind direction. And oh [m] is a roughness length [26], refh [m] is the 

reference height, and h[m] is the height of the downstream turbine. For a wind farm with 

turbines of different height, (4) is useful to apply. 

 

2.1.2 Eddy Viscosity Model  

            

          Eddy Viscosity model was first constructed by J.F. Ainslie in 1988, solving the 

equivalent thin shear layer approximated from Navier-Strokes equation. It is assumed that 

the wake behavior is axis symmetric and stationary so that the model has two dimensional 

description of field. The waked speed is given in (5.1). 
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where r[m] is a radial distance and TI is turbulence intensity. 

Similarly, by considering cumulative wake effect, wind shade and shear effect, 

waked speed in a wind farm is derived by (6). 

)6(
)h/hln(

)h/hln(
)]

A

A
}()

b

r
(56.3exp{B1[vv

oref

o
n

i

si2i
fw    

where ir [m] is a radial distance from upstream turbine i. 

 

2.1.3 G.C. Larsen Model  

            

          G. C. Larsen model was first developed by G.C. Larsen in 1988. It is based on 

Prandtl’s turbulent boundary layer equation. In this dissertation, the first order 

approximation solution is described. Following equation shows the mathematical 

expression for waked speed calculation. 
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     Similarly, cumulative wake effect, wind shade and shear effect are incorporated as 

shown in (8). 

)8(
)h/hln(

)h/hln(
]

A

A
})c3()

2

35
(

)AxCc3(r{})xx(AC{
9

1
1[vv

oref

osi22.02

1

3.0

n

i

5.0

it

2

1

5.1

i
3

1

2

oitfw








 

 

where ix [m] is an axial distance from upstream turbine i. 

 

2.2 Wind Turbine Output Power 

 

 In this work, power generated by wind energy conversion systems is derived 

using general power curve [27] of a wind turbine, given by (9). 
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where parameters A, B, and C are given by following equations (10.1), (10.2), and 

(10.3). They depend on cut in speed and rated speed, respectively. 
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where outP  is power output generated, ciV  is cut in speed, rV   is rated speed, coV  is cut 

out speed, and rP  is rated power. 

 At cut in speed, turbines begin generating power and then power increases 

nonlinearly with the speed. From rated speed to cut out speed, turbine keeps generating 

rated power, and above cut out speed, turbine is shut down for the equipment safety. 

 

2.3 Transition Rate Matrix Approach 

 

 Wind farm model consists of wind turbine model and wind speed model, as 

shown in Figure 3. In conventional power systems, two or three state models are used to 

represent a generation unit [28], representing fully available, forced outage and forced 
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derated conditions. However, in wind turbine model, for each wind speed level, power 

generated is assigned to the fully available or forced outage state of a turbine. Figure 3 

shows the state space of a wind turbine for each wind speed state. The circles in the left 

box represent wind speed states, and the squares in the right box indicate wind turbine 

states. The arrows between the circles represent transitions between different wind speed 

states and the arrows between the squares are failure and repair transitions of turbines 

with specific rates.  State Up is properly working state, and state Down is out of service 

state. The lines between the circle and the squares indicate that for a given wind speed, a 

turbine could be either up or down. The transition rates between the up and down states 

could be represented as a function of the wind state as the failure rate may depend on the 

wind speed. It can be seen that the possible capacity states is two times the number of 

wind speed states. The aggregate state of wind farm is updated with sampling so that the 

corresponding power is determined on simulation time. 

For wind speed model, reference [1] suggests birth and death Markov chain. This 

is based on a stochastic process [29] where each state of a system transits as a function 

of time. In the Markov chain, each state moves to the next neighboring state through 

birth and death process. If the sampling time is small i.e., is close to zero, wind speed 

can be considered to change smoothly over time. In this situation, the model suggested 

by [1] would represent the physical reality correctly.  However, in practice sampling is 

done at intervals like 10 minutes. In such a situation speed cannot be assumed to transit 

smoothly and transitions to remote states can occur more frequently. So if the birth and 

death model is used for a wind data sampled at finite intervals as is the case in practice, 
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some transitions between wind states can be lost. Then, resultant steady state 

probabilities will not be correct. This dissertation introduces a transition rate matrix 

method [2]-[3] by which all possible transition rates between states from original wind 

data can be captured. The resultant probability will be very close to each state’s fraction 

of total operation time. From the given wind data, transition rates between any set of 

states are calculated using (11).  

 

 

                                  

Figure 3. State Space of a Wind Turbine 
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where ij  [#/s] is transition rate from state i to j, ijF [#/s] is frequency from state i to j, iP  

is time in state i as fraction of total time, ijN  [#] is number of transition from state i to j, 

T [s] is total time, and iT  [s] is duration time of state i. 

Using calculated transition rates, steady state probability of each state is derived 

by the following algorithm [3]. 

 

1. Find transition rate matrix, A. 

where element j≠ifora ijij   

jifor -a ∑
j

ijii   

  2. Transpose matrix A to tA . 

3. In tA , replace the elements of a randomly chosen row k by one and call this B. 

4. Find state probabilities using P=inv (B)*C 

 

where P is steady state probability matrix, C is column vector such that kth element is 

one and the others are all zero, and inv (B) is the inverse matrix of matrix B. 

 In the model described, wind speed states are defined and then corresponding 

power for a turbine is determined depending on its status of up or down. It should be 

noted that the transition rate matrix developed in this approach using equation 10 

represents average transition rates and the matrix when solved will provide correct 

average probabilities over the period of study. This approach is useful when load and 

wind can be assumed to vary independently of each other. 
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2.4 Case Studies and Results 

 

To illustrate application of the methodology discussed in this dissertation, a 

simple wind farm system shown in Figure 4 is used. There are 16 identical wind 

turbines. Symbol o indicates the placement of a wind turbine which is located at the 

center of hub. The layout consists of 6d by 6d square spacing for wind turbine where d is 

the rotor diameter of a turbine. In practice, spacing between turbines is represented in 

terms of rotor diameter. One conventional unit is also added to the wind farm. The 

power generated by this unit is characterized by failure and repair rates regardless of 

wind speed. Its capacity is 40 [MW] which is the same as the capacity of the wind farm.  

Table 1 shows the total system capacity and peak load. To reduce fluctuations of wind 

power, a conventional generating unit is added into the proposed wind farm. The load 

data comes from IEEE RTS [17]. 

 

 

                                 

Figure 4. Layout of a Wind Farm 
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Table 1. System Capacity and Peak Load for Wind Farm 

 
Generation [kW] 

Peak load [kW] 
Wind farm Conventional unit 

2500 *16=40000 40000 30000 

 

 

Tables 2 and Table 3 show wind data and wind turbine data respectively. Wind 

speed and direction data comes from Western Wind Resources, National Renewable 

Energy Laboratory (NREL) [15]. The location is Texas station number 1. The data starts 

from 01/01/2006 12:00 am and goes up to 12/31/2006 11:50 pm. In the extreme weather 

(above 19m/s), failure rates increase as described in Table 4. This is based on the 

information from many studies that have shown that as the wind speed goes up, failure 

rates also increase [30]-[31]. The given wind speed data varies with sampling time of 10 

[min].  

 

 

Table 2. Wind Speed Data 

 
Wind speed data 

Peak wind[m/s] 33.01 

Minimum wind[m/s] 0.27 

Mean wind[m/s] 7.79 

Standard deviation[m/s] 3.35 

Sampling time[min] 10 

Number of samples 52560 
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Table 3. Wind Turbine Data 

 
Wind turbine data 

Cut in speed[m/s] 6 

Rated speed[m/s] 11 

Cut out speed[m/s] 19 

Rated power[kW] 2500 

Rotor diameter[m] 80 

Hub height[m] 70 

 

 

Table 4. Transition Rates of a Wind Turbine for Different Speed 

 
 Conventional unit Wind turbine 

Weather  
Normal  

speed 

Extreme 

speed(>19m/s) 

Failure rate[#/yr] 6 6 36 

Repair rate[#/yr] 130 130 36 

 

 

It should be noted that there can exist periods of calm during which wind is 

continuously below 5 [m/s]. From the given data, it is observed that calm periods of 5 

hours or above occur on 36 days. If transition rate matrix approach is used, then using 

(11), the calm period would increase the probability of wind speed states 1 and 2 and 

decrease the outward frequency from these states.  Thus the average probability of the 
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states will be accounted for correctly but using this approach the correlation of load with 

the calm period can not be captured using this approach. 

Wind direction is shown by wind rose with sampling time of 10 [min]. The wake 

effect on wind the farm depends on the changing wind direction over time. By 

embedding the wake effect with varying wind direction, resultant overall power of wind 

farm is computed. Suppose that wind blows from the west at one time. Then, from the 

given layout of this wind turbine farm in Figure 4, turbines 1, 2, 3, and 4 have no waking 

effect.  For turbine 9, its upstream turbines are, 1, 2, 3, 4, 5, 6, 7, and 8. However, for 

upstream turbines, 2, 3, 4, 6, 7, and 8, the shade area is zero. So, turbine 9 is actually 

influenced by waking upstream turbines 1 and 5, according to equation 5. By virtue of 

layout and wind direction, each turbine in the following groups has the same wake 

effect:  {5, 6, 7, and 8}, {9, 10, 11, and 12} and {13, 14, 15, and 16}.  

Wind speed states are first defined as shown in Table 5. Then, frequency and 

duration of each state is also calculated.  Using the general power curve, we can 

calculate power output for each state. Power generated gets bigger as the wind speed 

increases above the cut in speed and over the rated speed, power is maintained. Above 

the cut out speed, there is no power generated.  

Tables 6 and Table 7 describe differences between the birth and death Markov 

chain and the exact transition rate method. For example, for state 1, transitions to state 3, 

4, 5, 6, 7, and 9 are neglected in the birth and death model. Basically state probabilities 

by the birth and death model do not have all transitions, since transitions between 

neighboring wind speed levels only are considered. On the other hand, probabilities 
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using exact transition rates cover all the transitions. So by using the exact transition 

rates, more accurate results are obtained.  

 

 

Table 5. Wind Speed States for Wind Farm 

 
State Range[m/s] Freq[#/yr] Dur[yr/#] Power[kW] 

1 0-4 407 0.00030 0 

2 4-5 921 0.00009 0 

3 5-6 1128 0.00009 0 

4 6-7 1210 0.000093 215.26 

5 7-8 1253 0.000094 668.94 

6 8-9 1236 0.000094 1153.5 

7 9-10 1119 0.000087 1668.94 

8 10-11 920 0.000080 2215.26 

9 11-12 719 0.000081 2500 

10 12-13 543 0.000071 2500 

11 13-14 379 0.000065 2500 

12 14-15 252 0.000054 2500 

13 15-16 166 0.000050 2500 

14 16-17 123 0.000053 2500 

15 17-18 74 0.000070 2500 

16 18-19 48 0.000064 2500 

17 19-20 32 0.000039 0 

18 20-21 23 0.000031 0 

19 21-34 13 0.000109 0 
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Table 6. Transitions from State 1 for Different Approaches 

 
Birth and death Markov chain Exact transition rate method 

Transitions Transition rates[#/y] Transitions Transition rates[#/y] 

1-2 2925 1-2 2925 

  1-3 208 

  1-4 56 

  1-5 24 

  1-6 32 

  1-7 8 

  1-9 8 

 

          

          In the wake model, the thrust coefficient which is a function of wind speed is 

needed. In general, it is provided by the manufacturer of wind turbines. In this work, it is 

calculated using the Wind Atlas Analysis and Application Program (WAAAP) [22], one 

of the wind analysis tools for wind turbines or wind farms. Thrust coefficient curve is 

shown in Figure 5. At the cut in speed, it has a steep rise, and then it decreases as wind 

speed goes up. This means that the wake effect is relatively weak at high wind speed. A 

west wind is considered for examining the wake effect.  

To find the changes of wind states for different wake models in details, let us 

observe a case of south wind direction. When the wind blows from the south, upstream 

turbines are {4,8,12,16} and downstream turbines are {3,7,11,15},{2,6,10,14}, and 

{1,5,9,13} from Figure 4. Figure 6, Figure 7 and Figure 8 show the state changes of 
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downstream turbines for three different models. Arrows indicates the change of the state. 

Red color shows only one state drop, blue dotted ones show two state drops. Wind speed 

drop by wake effect relatively decreases, as the wind speed grows up. For example, for 

turbines {1,5,9,13} in Figure 6, states from 4 to 11 drop by two states. However, states 

from 12 to 16 falls only one state. And for high speed beyond state 17, there is no change 

by wake effect. Turbines {1,5,9,13} show more wake loss than {3,7,11,15} regardless of 

wake models. This is because that for turbines {1,5,9,13} more wake effects are 

influenced by around upstream turbines as the combined wake effect increases, shown by 

Figure 4.  

For turbines {3,7,11,15}, waked speed from different models have a similar value. 

However, for turbines {1,5,9,13}, the state changes from Jensen and Eddy model have a 

similar value, which is a little bit different from Larsen model. Basically, in the original 

Larsen model (7.1), cumulative wake effect by neighboring several upstream turbines and 

wind shear effect are neglected. So it is appropriate for situations like neither cumulate 

wake effect nor wind shear effect.  

As these effects are included on the original Larsen model, waked speed from 

modified model (8) shows different value from that by two other wake models. So it 

means that for a wind farm with cumulative wake effect or wind shear, modified Larsen 

model has some deficiencies as a wake model.  
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Table 7. Probability of Each State Using Different Approaches 

Range [m/s] for 

each state 

Fraction 

Probability 

Birth and death model 

Probability 

Transition rate 

matrix Probability 

1 0-4 0.12477 0.15555 0.12482 

2 4-5 0.08622 0.10243 0.08621 

3 5-6 0.10664 0.11825 0.10660 

4 6-7 0.11305 0.11846 0.11303 

5 7-8 0.11860 0.11801 0.11860 

6 8-9 0.11672 0.11021 0.11670 

7 9-10 0.09754 0.08725 0.09750 

8 10-11 0.07372 0.06334 0.07369 

9 11-12 0.05878 0.04900 0.05877 

10 12-13 0.03858 0.03142 0.03859 

11 13-14 0.02486 0.01985 0.02488 

12 14-15 0.01377 0.01026 0.01378 

13 15-16 0.00840 0.00580 0.00842 

14 16-17 0.00658 0.00421 0.00660 

15 17-18 0.00519 0.00303 0.00520 

16 18-19 0.00308 0.00150 0.00309 

17 19-20 0.00127 0.00062 0.00127 

18 20-21 0.00072 0.00029 0.00072 

19 21-34 0.00142 0.00045 0.00143 
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Figure 5. Thrust Coefficient Curve 

 

 

                                       

Figure 6. State Changes of Turbines Using Jensen Model 

 

 

                                    
Figure 7. State Changes of Turbines Using Eddy Model 
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Figure 8. State Changes of Turbines Using Larsen Model 

 

 

It is assumed that the hub height of turbines 1, 5, 9, and 13 is changed from 70 

[m] to 150 [m]. It is assumed that roughness length [26] is 0.03 [m]. This value is used 

for a typical landscape which is the open agricultural area without fences and very 

scattered buildings. Then using model (4), wind state changes are shown in Figure 9. 

Similarly, there is wake effect on the whole. Overall, wind states drop less than Figure 6, 

because of wind shear effect. Here is an interesting point. States 14, 15, and 16 in Figure 

9 goes up even with the wake effect, although they go down from Figure 6 or Figure 7. 

This is because wind shear effect removes energy losses by wake effect at high speed. In 

practice, to build up turbines with 150 [m] hub height is uneconomical because of 

construction costs. However, equation (4) is used effectively for wind farm with 

changing ground heights or with different hub heights of turbines. 

 

 

 

Figure 9. State Changes of Turbines Using Jensen Model with Shear Effect 
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For Monte Carlo simulation, random sampling and next event are used as non-

sequential and sequential approach, respectively. Table 8 shows reliability indices with 

wake and without wake using the birth and death model. As wake model, Jensen model 

using (3) is used to calculate waked speed. Using changing wind direction data, wake 

effect is applied for the proposed wind farm. The results from random sampling are 

almost the same as those from next event. As would be expected, when wake effect is 

included, reliability level drops.  

 

 

Table 8. Reliability Indices Using Birth and Death Markov Chain 

 
Random sampling Next event 

Indices Without wake With wake Without wake With wake 

LOLE[h/y] 146.82 163.90 150.98 162.28 

EENS[kWh-yr] 278.81 362.53 291.82 350.30 

 

 

Table 9 is based on the transition rate method using Jensen model. The exact 

transition rate approach is considered more accurate, since all transition rates are 

included. LOLE and EENS are lower when the full transition rate matrix is used as all 

wind speed transitions are properly accounted for. 

 

 

 



 

26 

 

 

Table 9. Reliability Indices Using Transition Rate Matrix Method 

 
Non-sequential Sequential 

Indices Without wake Jensen Without wake Jensen 

LOLE[h/y] 130.79 178.30 132.17 180.48 

EENS[kWh-yr] 255.18 296.82 261.01 301.60 

 

 

Figure 10 shows the correlation between load data and wind speed. These data are 

based on average value during a day. The original load data are scaled down by dividing 

3000 in order to present them with wind speed at a picture. It is observed that power 

generated from wind speed is very small during the peak load time. When wake effect is 

included in the wind farm, the reliability level intends to drop as shown by Table 10. It is 

observed that reliability index LOLE from Jensen and Eddy model has the similar value, 

while LOLE from Larsen model is relatively smaller than those from others. It appears 

that Larsen model does not explain the combined wake effects well. LOLE from 

transition rate approach and that from original data are different, since transition rate 

approach cannot take the correlation between wind speed and load over time, even though 

it considers all transitions between different wind speed states. Using transition rate 

approach, Figure 11 compares EENS by different wake models with pattern similar to 

LOLE. Table 11 shows the computation time to get EENS for different wake effect 

scenarios. As wake effect is incorporated on the wind power system, it takes a longer time 

to simulate. This is because that waked speed calculation by varying wind direction is 

added on the simulation. And calculation time for three different wake models is similar. 
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Figure 10. Correlation between Load and Wind Speed 

 

 

Table 10. LOLE Comparison by Different Wake Models 
  

Index Approaches Without wake Jensen Eddy Larsen 

LOLE 

[h/y] 

Exact transition 130.79 180.48 172.22 151.67 

Original data 216.59 269.61 274.08 229.38 
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Figure 11. EENS Comparison by Wake Models 
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Table 11. Running Time Comparison by Different Wake Models 

 

Models Without wake Jensen Eddy Larsen 

Computation time [min] 4.03 11.46 11.37 11.57 
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3. CLUSTERING APPROACH FOR RELIABILITY SIMULATION IN A WIND 

FARM

 

         

3.1 Clustering Techniques 

 

 Clustering is an effective approach for data mining as it groups original data into 

several clusters. It maintains data characteristics but reduces data size.  From the 

clustering perspective, the approach can be classified into two categories, partitional 

clustering and hierarchical clustering [32]-[33]. The objective of partitional clustering is 

to partition the original data into the specific cluster sizes with a criterion function. On the 

other hand, hierarchical clustering generates clusters as a hierarchical tree. In this 

dissertation, partitional clustering approach is presented in details and discussed. As 

correlated variables, the observation data consists of wind, solar and load data. Figure 12 

shows the clustering concept. Here N is the total number of data, and M is the dimension 

of the data - in this case M is two.  K is the number of optimal clusters. The clustering 

approach is used to demonstrate the correlation between renewable energy and load. For 

partitional clustering, eight different clustering methods are presented and compared. 

These methods require the number of clusters as an input value. To find the optimal 

number of clusters, validity measurement [34] is used as shown by (12.1). Here iC is the 

                                                 

 Reprinted with permission from “Comparison of Clustering Approaches for Reliability 

Simulation of a Wind Farm” by H. Kim and C. Singh, Oct. 2012, Power System 

Technology (POWERCON) IEEE International Conference, pp. 1-6, Copyright [2012] 

by IEEE. 
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center of cluster i , aI  is the distance between a point and a cluster center, and bI  is the 

distance between different clusters. So the desirable and compact clustering size is 

achieved by finding the minimum value of the validity.  

       Figure 13 shows the procedure to find the optimal clustering size. Before we start 

clustering process, we need to determine the optimal cluster size as input of clustering 

algorithm. The optimal cluster size is taken from validity measurement for best clustering 

results. 

 

 

 

                   

Figure 12. Description of Clustering 
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Figure 13. Procedure for Validity Measurement 

 

 

3.1.1 K Means (KM)  

 

 K Means (KM) [4], [32] is simple, has fast simulation time and described in 

Figure 14. However, it depends on the initial choice of clusters, which can cause the 

local optimum. It means that different initial clusters can produce different optimal 

clusters. Here isd  is the distance between point i and cluster s, and convergence 

coefficient   is assumed to be 0.00001 in the work.   

 

3.1.2 Fuzzy C Means (FCM)  

 

 Fuzzy C Means (FCM) [35] is fuzzy, which means that one point may be in 

several clusters. So it returns not only the optimal clusters but also the membership 

distribution, shown by Figure 15. The cluster with the highest membership is chosen to 

one of a point. Similar to KM, this method is sensitive to the initial choice of clusters. 

Read wind/load data 
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Here m is a user-defined parameter, which is set to be two in this work. Sometimes, 

ird or isd can be zero. For these singularity issues, membership is plugged into zero. 

  

 

 

                        

Figure 14. KM Clustering 

 

 

3.1.3 Probabilistic C Means (PCM)  

 

 Probabilistic C Means (PCM) [36] is appropriate for the noisy data. In Figure 15, 

instead of irU , irT  is evaluated, as described by (13.1).  Contrary to FCM, there is no 

singularity problem in this approach, even if ird becomes zero.  
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Figure 15. FCM Clustering 
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3.1.4 Fuzzy Probabilistic C Means (FPCM)  

   

 Fuzzy Probabilistic C Means (FPCM) [36] combines FCM and PCM. In Figure 

15, clusters are calculated using (14.1). Here isU  is the same as in FCM. Parameters a 

and b are set to be zero in this work. 
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3.1.5 Global K Means (GKM)  

 

  Global K Means (GKM) [37] is independent of the initial choice of clusters as 

shown in Figure 16.   

 

3.1.6 Fast Global K Means (FGKM) 

 

 The big issue in GKM is that it takes a long time to cluster data. The initial kth 

cluster is determined only after calculation of the cluster error for all points ix . On the 

other hand, FGKM [37] calculates ib  to find the best point
*

ix , described in (15.1), 

instead of computing the cluster error from Figure 16. The calculation of  ib  does not 
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require kth cluster value, and only uses ( 1k21 C,...,C,C  ). A point 
*

ix  with the maximum 

ib  is selected as the initial kth cluster. If the term 
2

ij

j

1k pd   is negative for j, it is 

plugged into zero. Here ijp  is the distance between point i and point j. 

 

 

                                  

Figure 16. GKM Clustering 
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3.1.7  Global Fuzzy C Means (GFCM)  

 

 For FCM, the global approach can be applied as well [38]. In Figure 16, cluster 

error mE  is used to determine the initial kth cluster, shown by (16). To calculate mE , all 

membership degrees for clusters,  s=1,2,…k are necessary. A point 
*

ix  with the 

minimum mE becomes the initial kth cluster. And then, FCM is carried out with clusters 

(
*

ik21 xC,...,C,C  ).  
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3.1.8 Fast Global Fuzzy C Means (FGFCM)  

 

 To reduce the running time in GFCM, the fast approach is applied as well. 

FGFCM [38] computes mJ  to find the best initial candidate of ix , shown by (17). A 

point 
*

ix  with the minimum mJ  is chosen as the initial kth cluster. And then, FCM is 

similarly operated.   
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3.2 Comparison between Different Clustering Approaches 

 

 This section discusses about the best choice from the proposed clustering 

techniques. For the different clustering methods, the corresponding number of iterations 

is developed, and compared, shown by Table 12. Here N is the data size, k is the number 

of clusters, and   is a convergence coefficient. In KM, one term Nk  is the calculation of 

the distance between points and clusters, and another one Nk  is iterations for calculation 

of new clusters. In FCM, the term 2Nk  is the iterations for calculation of membership 

degree, Nk2  is iterations for the calculation of new clusters. In PCM, a new term Nk  is 

added to FCM case which is related to irT in (13.1). In FPCM, new term kN2  is added to 

FCM case which calculates isB in (14.3). In GKM, term  )NkNk(  is changed 

to  )NNk( , compared with KM. This is because the global approach calculates only 

kth cluster. And the other one k  is the calculation of cluster error E in Figure 16. In 

FGKM, term  )1k(N2   represents iterations for the calculation of ib  in (15.1). In 

GFCM,  )N2Nk( 2  is substituted instead of  )Nk2Nk( 2 , since the global approach 

computes only kth one cluster as well. The other Nk  is for cluster error mE in (16). 

Finally, FGFCM has term kN2  because of mJ in (17). 

From the viewpoint of simulation time in Table 10, KM is very efficient. 

However it is sensitive to the initial selection of clusters, because of local optima. FCM 

still has local optimum, although it provides the additional membership degree 

information. PCM is not appropriate, since it is appropriate for noisy data. Global 
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approach gets over the sensitivity of initial choice of clusters, and fast global method 

reduces running time of global approach, holding the global optimum. Therefore, 

FGFCM is the efficient clustering approach, considering a compromise between 

simulation speed and clustering accuracy. 

 

 

Table 12. Iteration for Clustering 

 

Iterations 

KM FCM 

 )NkNk(   )Nk2Nk( 2  

PCM FPCM 

 )NkNk2Nk( 2   )Nk2kNNk( 22  

GKM FGKM 

]k)NNk[(Nk   ])NNk()1k(N[k 2   

GFCM FGFCM 

]Nk)N2Nk[(Nk 2   ])N2Nk(kN[(k 22   

  

 

3.3 Generation from a Wind Farm 

 

In practice, a wind farm has wake effect [7] between wind turbines. There are 

many models [18]-[19] to describe the wake effect in a wind farm. In this dissertation, 

N. O. Jensen model is used for a wake model, since it is simple and shows good 

performance for the modeling and simulation of waked speed. Figure 17 shows the basic 

schematic of the model. From the figure, wake speed at distance x is calculated using 

(18). 
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Figure 17. Proposed N. O. Jensen Model for Clustering 
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where fv [m/s] is free wind speed, tC  is thrust coefficient, wv  [m/s] is the waked speed, 

d is the diameter of an upstream turbine, kx2dd x  , and k is a wake decreasing 

constant which is set to be 0.075 for onshore in this dissertation [35]. By considering the 

combined wake effect and shade effect in [22], [25], 
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where n is the number of upstream turbines, and xid  [m] is the wake region by upstream 

turbine i where A [ 2m ] is the rotor area and siA [ 2m ] is the shade area by upstream 

turbine i. Wake effect depends on the wind direction. As the wind direction changes, the 

upstream and downstream turbines are updated and shade area between them is also 

changed. As a result, waked speed is calculated to include these effects.  
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A wind farm consists of a number of wind turbines which generate power 

depending on wind speed. A general wind power curve [27] is adopted in this work. To 

incorporate the wake effect, the power of each turbine is determined by waked speed and 

not by free wind speed with varying wind direction.  The total power of a wind farm is 

calculated by the sum of the power of all turbines and by their failure/ repair 

characteristics.  

 

3.4 Case Studies and Results 

 

 Monte Carlo [2], [10] is adopted for system simulation procedure. Wind data 

used is from National Renewable Energy Laboratory (NREL) [15] and load data is from 

IEEE Reliability Test System (RTS) [17]. Final reliability indices are calculated by 

operating inner product of indices from each cluster seed and their probabilities. The 

reliability index from each cluster is taken by convergence criterion to use coefficient of 

variation [13], [37].  Equation (18) shows computation of final reliability index, Loss of 

Load Expectation (LOLE). Here LOLE is the final index we desire to calculate, iC  is the 

probability for optimal cluster i, iLOLE  is sub index calculated by cluster i, and n is the 

clustering size.  The optimal cluster seeds represent characteristics of the original data, 

and their probabilities are distribution of the original data. Other indices, like Expected 

Energy Not Supplied (EENS) and Energy Not Supplied Interruption (ENSI) can be 

computed in this way. Based on the proposed different clustering algorithms, the 

corresponding programming is developed and simulated using Matlab. Reliability 
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indices, LOLE and EENS [12] are computed and compared with different clustering 

approaches. To see the validity of results, reliability indices using original data are also 

calculated and compared. 

)20(LOLECLOLE
n

1i

ii




 

The layout of a wind farm is illustrated in Figure 18. It has 16 identical wind 

turbines whose distance is six times the diameter of turbines. To regulate the fluctuating 

characteristics of wind generation, one conventional generating unit is included in the 

wind farm whose capacity is the same as that of the wind farm, described in Table 13. 

Wind turbine information and wind data are gleaned from National Renewable Energy 

Laboratory (NREL) [15], and load data from IEEE Reliability Test System (RTS) [17], 

shown by Table 14 and Table 15. From the original wind data, wind states are identified, 

and the corresponding frequencies, durations, power and probabilities are calculated in 

Table 16. Power output of each state is computed using power curve [27]. Figure 19 

shows an example of iterations required for KM, GKM, and FGKM using Table 12. KM 

is the fastest. In GKM the iterations exponentially increase for simulation as the number 

of clusters goes up. Fast global approach overcomes the drawback of global approach by 

shortenings the running time extremely.  
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Figure 18. Proposed Wind Farm for Clustering 

 

 

Table 13. System Capacity and Peak Load for Clustering 

 
Capacity [kW] 

Annual peak load [kW] 

Wind farm Conventional unit 

100 *16=1600 1600 1000 

 

 

Table 14. Failure and Repair Rates of Turbines 

 

Units Wind turbine 

Conventional unit 

Weather Normal speed Extreme speed(>19m/s) 

Failure rate[#/yr] 6 36 6 

Repair rate[#/yr] 130 36 130 
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Table 15. Wind Speed and Turbine Data for Clustering 

 

Peak wind speed [m/s] 29.07 

Minimum wind speed [m/s] 0.29 

Mean wind speed  [m/s] 8.10 

Cut in speed [m/s] 6 

Rated speed [m/s] 11 

Cut out speed [m/s] 19 

Rated power [kW] 100 

Rotor diameter [m] 80 

Hub height [m] 70 

 

 

 

 

For the proposed wind farm, the optimal cluster size and the corresponding 

validity measurement for each clustering approach are shown in Table 17. Total data 

size of 8736 in one year is sharply decreased to 7 - 11.  

Table 18 compares the running time of each clustering method for selected 

optimal cluster size. Figure 20 shows the distribution of data and clusters for FGKM. 

There are seven distinct clusters, and each black circle symbol indicates cluster center of 

the points. 
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Table 16. Wind Speed States for Clustering 

 
State Range [m/s] Freq [#/yr] Dur [h/#] Power [kW] Prob 

1 0-4 603 2.596 0 0.179 

2 4-5 1136 0.588 0 0.077 

3 5-6 1269 0.580 0 0.084 

4 6-7 1342 0.601 8.61 0.092 

5 7-8 1393 0.629 26.76 0.100 

6 8-9 1271 0.628 46.14 0.092 

7 9-10 1135 0.627 66.76 0.082 

8 10-11 1047 0.582 88.61 0.070 

9 11-12 870 0.573 100 0.057 

10 12-13 670 0.551 100 0.042 

11 13-14 514 0.497 100 0.029 

12 14-15 424 0.511 100 0.025 

13 15-16 360 0.480 100 0.020 

14 16-17 267 0.427 100 0.013 

15 17-18 190 0.458 100 0.010 

16 18-19 154 0.428 100 0.008 

17 19-20 118 0.474 0 0.006 

18 20-21 82 0.435 0 0.004 

19 21-34 38 2.344 0 0.010 
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Figure 19. Example of Iterations for Different Cluster Size 

 

 

 

Table 17. Optimal Clustering Size 

 
Approach KM FCM PCM FPCM 

Optimal k 10 11 8 8 

Validity 0.125 0.126 0.110 0.250 

Approach GKM FGKM GFCM FGFCM 

Optimal k 7 7 7 7 

Validity 0.122 0.113 0.183 0.179 
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Table 18. Running Time of Clustering 

 
Approach KM FCM PCM FPCM 

Running time [min] 0.016 2.1 3.5 151 

Approach GKM FGKM GFCM FGFCM 

Running time [min] 100.2 76.2 454 84 
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Figure 20. Example of Data Distribution Using FGKM 
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Using these results, LOLE is calculated and compared in Table 19. KM, FCM, 

and FPCM have similar value, which is different from the original case. This means 

these approaches converge to the local optimum by the sensitivity of initial choice of 

clusters. And PCM is also different since wind and load data are not noisy.  

Global and fast global methods are closer to the original case, although they take 

longer time to simulate. These methods optimally add one cluster in an incremental way, 

instead of choosing the initial k clusters. So it’s so time consuming. EENS is also 

calculated and compared in Figure 21. For non global approaches, resultant EENS shows 

fluctuations, depending on initial randomly selected clusters. However, for global 

approaches, the results are very close to those from original data approach. 

 

 

Table 19. Reliability Index Comparison by Different Clustering Approaches 

 

Index Original data 

Clustering Approach 

KM FCM PCM FPCM 

LOLE[h/y] 259.22 

328.78 332.38 370.05 335.72 

GKM FGKM GFCM FGFCM 

263.81 269.18 268.12 270.68 
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Figure 21. EENS by Different Clustering Approaches 
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4. RELIABILITY EVALUATION IN COMPOSITE POWER SYSTEMS WITH 

PHOTOVOLTAICS AND WIND USING MULTI-DIMENSIONAL 

CLUSTERING 

         

4.1 Modeling for Photovoltaic System Generation 

 

 Photovoltaic (PV) array consists of a number of PV modules connected in series 

or parallel. Its power depends on a radiation from solar energy which is changed by the 

absorption, diffusion, or reflection of clouds and atmospheric dusts. And physical 

characteristics of a module determine actual PV power over time. 

 

4.1.1 Hourly Clearness Index Modeling 

 

 The hourly ratio of the irradiance on a horizontal plane to the extraterrestrial 

solar radiation is called hourly clearness index. So this demonstrates cloud effect in the 

atmosphere. This dissertation uses reliable probability density function [39]-[40] of the 

clearness index, tk  for randomness of cloud distribution, shown by (21.1). Here tuk  is a 

maximum limit, and tmk  is a mean value of tk . So fixing those two parameters, we can 

specify the cloud distribution anywhere over time. From (21.1), cumulative probability 

function is derived to (22.1) by the integration of time. 
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 To find tk , we can use Monte Carlo simulation [9]-[10] in (21.1). Here Z is a 

uniformly distributed random variable ranging from zero to one. Some papers [41]-[42] 

use Lambert W function to solve the equation. In this dissertation, Newton Raphson 

method [43] is applied as an iterative solution, illustrated by (23)-(25.3). In (24), only 

right side term depends on tk . By the approximation of Taylor series expression [43], it 

is iteratively calculated until a convergence criterion is satisfied. Jacobian J is one 

dimensional, and we choose an initial tk  as tmk  to reduce the number of iterations. 

 



 

51 

 

 

)3.25(
)rkr(e

1
J

)2.25(
k

)}kr1(e{
J

)1.25()}]kr1(e{1
C

rZk
[Jkk

)24()kr1(e1
C

rZk

)23(Z)k(P

i
tt

t

i
tt

t

i
tt

t
1i

tt

t

kk1t1

k

1

kkt

t1

k

kk

t1

k1tu1

tkkt

t1

k1tu

t







































 

4.1.2 Calculation of Solar Radiation with Inclination 

  

It would be incorrect if we directly use statistical radiation data which are based 

on the flat horizontal surface, since a PV module has a specific titled angle from the 

surface for the best insolation. An hourly radiation with inclined angle   [degree] [44] is 

shown in (26.1). Here bR  is a ratio of direct radiation on the surface to that on the flat 

surface,  [degree] is latitude of a location,  [degree] is solar declination, and n is day 

number. For instance, n=1 on January 1, and n=365 on December 31.   [degree] is 

hourly angle, T [h] is local clock time, cT  [min] is time correction factor, ET [min] is 

equation of time, and LSTM [degree] is local standard time meridians to define time 

zone. This dissertation uses 90 degrees as central time zone. dk  represents diffuse 

fraction which is modeled by the piecewise-linear approximation, and   is reflectivity. 
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           For the high insolation, we need to find   that makes Sun’s beam perpendicular 

to a PV module [44]. Figure 22 illustrates this fact. From the figures, we can determine 

  in (27)-(28). The tilted angle changes day by day, since solar declination depends on 

the number of the day. 
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Figure 22. Tilted Angle in a PV Module 

 

 

4.1.3 PV Array Output Power 

  

A PV module produces power by a product of PV current and PV voltage across 

the load and these are determined by ambient temperature and solar radiation with 

inclination, shown by (40)-(44), respectively. Here CT [ oC ] is a cell temperature, 

OTN [ oC ] is nominal operating cell temperature, SCI [A] is short circuit current, 

ik [mA/ oC ] is current temperature coefficient, OCv [V] is open circuit voltage, 

vk [mV/ oC ] is voltage temperature coefficient, and AT [ oC ] is ambient temperature. As 

I [W] increases, CT  also does. As a result, PV current increases, while PV voltage 

decreases. Finally, PV array power is determined by (43). Here FF is fill factor, 
mppV [V] 

is voltage at maximum power point, 
mppI [A] is current at maximum power point, and N 

is the number of PV modules. Table 20 shows physical specification of PV Modules. 
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Table 20. Physical Specification of PV Module 

 

Specification of PV modules 

Nominal operating cell temperature 

Current temperature coefficient 

Voltage temperature coefficient 

Short circuit current 

Open circuit voltage 

Voltage at maximum power point 

Current at maximum power point 

 

 

4.2 Generation from a Wind Farm 

 

In practice, a wind farm has wake effect [7] between wind turbines. There are 

many models [18]-[19] to describe the wake effect in a wind farm. In this dissertation, 

N. O. Jensen model is used for a wake model, since it is simple and shows good 

performance for the modeling and simulation of waked speed. Figure 23 shows the basic 

schematic of the model. From the figure, wake speed at distance x is calculated using 

(29). 

 

 

                                          

Figure 23. Proposed N. O. Jensen model for PV Systems 
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where fv [m/s] is free wind speed, tC  is thrust coefficient, wv  [m/s] is the waked speed, 

d is the diameter of an upstream turbine, kx2dd x  , and k is a wake decreasing 

constant which is set to be 0.075 for onshore in this dissertation [35]. By considering the 

combined wake effect and shade effect in [45], 
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where n is the number of upstream turbines, and xid  [m] is the wake region by upstream 

turbine i where A [ 2m ] is the rotor area and siA [ 2m ] is the shade area by upstream 

turbine i. Wake effect depends on the wind direction. As the wind direction changes, the 

upstream and downstream turbines are updated and shade area between them is also 

changed. As a result, waked speed is calculated to include these effects.  

A wind farm consists of a number of wind turbines which generate power 

depending on wind speed. A general wind power curve [27] is adopted in this research. 

To incorporate the wake effect, the power of each turbine is determined by waked speed 

and not by free wind speed with varying wind direction.  The total power of a wind farm 

is calculated by the sum of the power of all turbines and by their failure/ repair 

characteristics.  
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4.3 Clustering of Data 

 

It is generally known that there is a correlation between power produced by 

photovoltaic and wind and load, that is, they have a specific pattern with time, even 

though their generation has random behavior. To deal with the correlation, this work 

uses a clustering approach. Clustering is a grouping process to reduce original data size 

while keeping characteristics of the data. As one of partitional clustering methods, Fast 

Global Fuzzy C Means (FGFCM) [38] is applied to the power system with PV units and 

wind farms, shown by Figure 24. Here, mJ  is described in (31). Using this algorithm, a 

programming code to simulate is developed with Matlab. It finds the optimal clusters 

and membership degree of each point by adding initial cluster with the minimum 

objective function step by step. To determine the optimal cluster size, validity 

measurement [34] is used in this dissertation. 

 

 

 

 

4.4 Dimensional Clustering with Renewable Energy 

 

 If we consider only PV array in composite power system, the dimensions of 

clustering are two, PV generation and load, since there is no correlation between 

conventional generating units and load. The solar power and load from IEEE RTS are 
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the inputs of clustering process. As a result, system reliability indices are calculated by 

product and sum of reliability index of each cluster and its probability. Figure 25 shows 

the two dimensional clustering for PV system and load. Here N is the original data size, 

and K is the optimal clustering size. 

 

 

 

Figure 24. FGFCM Algorithm 
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Figure 25. Description of Two Dimensional Clustering 

 

 

            Let us consider the combination of wind farms and composite power system 

except solar units. This case is three dimensions, wind speed, direction, and load, since 

wind power depends on wind direction by wake effect as well as wind speed. Wind 

speed and load are scalars, however, wind direction data are represented by degree or 

cardinal direction. If we directly use the data for calculation of distance between points 

and cluster seeds, the clustering results turn out to be incorrect. For example, suppose 

there are two directions, 0 degree and 360 degree. If we directly use those values to 

calculate the distance between them, the distance is 360 and this is wrong. The distance 

should be just zero. This the problem to calculation of distance between points and 

clusters in wind direction data. 

            To solve this problem, this research uses a unit circle with a radius of one to 

calculate the distance. We can put wind direction data on the unit circle. The distance is 

the straight line connecting between two points. From the original wind data, a degree 

begins increasing clockwise from vertical axis. However, in mathematical rectangular 

coordinates, it starts increasing counter clockwise from horizontal axis. From given wind 

direction degree, we can transform into rectangular coordinates, illustrated in Table 21. 

The distance is the biggest when the difference between degrees is 180 degree. Using 

this approach, it is possible to do correct clustering for wind direction data. Here in the 

Original data 
X= [PV power load] 

Size: N by 2 

Optimal clusters 

C= [PV power load] 

Size: K by 2 

Clustering 



 

59 

 

 

points C and D, the first column is hourly wind speed, the second column is hourly wind 

direction, and the third column is hourly load.  Clustered wind speed and direction are 

used to calculate more accurate power of wind farm lost by wake effect. Figure 26 

shows three dimensional clustering for wind farm and load. 

  

 

Table 21. Transformation to Rectangular Coordinates 

 
Degree direction Rectangular coordinates 

A B=[cos(-A+90), sin(-A+90)] 

Distance between point C(x1,y1,z1) and D(x2,y2,z2) 
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)}902ysin()901y{sin(

)}902ycos()901y{cos(
)2x1x( 




  

 

 

 

                       

Figure 26. Description of Three Dimensional Clustering 

 

 

 Finally, let us consider a case of all combination, PV arrays and wind farms in 

IEEE RTS which consists of solar power, wind speed, direction and load for clustering, 

illustrated by Figure 27. PV units and wind farms are installed in some buses of the 

composite power system. Instead of taking original solar and wind data, clusters and 

Original data 

X= [wind speed direction load] 

Size: N by 3 

Optimal clusters 
C= [wind speed direction load] 

Size: K by 3 

Clustering 
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their probabilities are used to evaluate system reliability so that the results are compared 

with those by actual data.  

            Table 22 compares memory size required to store data for different cases. Here N 

is the number of original data, and K is the optimal cluster size. For clustering approach, 

one more dimension in column is added to a memory, because of probability information 

of each cluster.  

            For example, the coefficient of two dimensional clustering is three, since it 

includes solar power, load and probability. Clustering approach is so efficient for 

reliability evaluation of power systems, noting that K is much less than N. 

 

 

         

Figure 27. Description of Four Dimensional Clustering 

 

 

 

Table 22. Comparison of Memory Size 

 

Cases 
Approaches 

Actual data Clustering 

Two dimensions 2N 3K 

Three dimensions 3N 4K 

Four dimensions 4N 5K 

 
Original data 

X= [wind speed direction PV power load] 

Size: N by 4 

 

Optimal clusters 

C= [wind speed direction PV power load] 

Size: K by 4 

      Clustering 
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4.5 System Optimization 

 

As non-sequential Monte Carlo, random sampling method [9]-[10] is used for the 

transition of turbines’ operation with clustering. In composite system level calculations, 

all transmission constraints are considered for reliability analysis and DC power flow is 

embedded in the formulation of minimum curtailment of load formulation, shown in 

(32.1)-(32.5). In this formulation, N is the number of buses, kC  is load curtailments at 

bus k, kg  is generation at bus k, kjf  is real power flow between bus k and j, kd  is load at 

bus k, lowerg  is lower limit of generation, upperg  is upper limit of generation, lowerf  is 

lower limit of power flow, and upperf  is upper limit of power flow. Simplex method uses 

the reduced costs of the system problem to get the final optimal solution with iterations. 

At the beginning, it is required to choose the initial basic feasible solution once the 

system problem is converted into the standard form. However, we cannot choose the 

initial basic variable for basic feasible solution in some constraints because of reverse 

(negative) power flow limits in transmission lines. As an alternative method, artificial 

variables are added to the problem. There are generally two approaches for using 

artificial variables [46]; two phase method, and big M method - two phase method is 

used in this work. Two phase method has two phases to optimize a problem. At the 

phase one level, its objective function is the sum of all artificial variables. If the optimal 

value is not zero, it does not have any feasible solutions, since artificial variables are 

added to the original problem. Otherwise, it goes to next level, phase two. If some 



 

62 

 

 

artificial variables are in basic variable set, they are replaced by other non-basic 

variables and the simplex process iterates using the reduced costs to find the final 

optimal solution to the original problem. Programming code is developed for the 

algorithm of two phase method using a computer tool Matlab.  
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 To reduce the running time, we can use sensitivity analysis [46]-[47] for linear 

programming. It determines whether current optimization process should be taken 

directly from previous optimization information, or carried out again. Figure 28 shows 

the sensitivity analysis procedure. If the inverse of coefficient matrix by basic variables 

in the power flow equations, 
1B
 times current Right Hand Side (RHS) vector, b is 

bigger than zero, we can directly get current load curtailments by product of coefficient 

vector of objective function by basic variables, BC  and 
1B
, and b. Otherwise, the 

optimization should be newly started again, since previous basic matrix no longer holds 

feasibility. Loss of Load Expectation (LOLE) is used as one of reliability indices. It 

indicates mean system failure hour during simulation period, one year. The results for 

different dimensional cases are compared with those from actual data. The system 
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simulation to calculate LOLE from actual data is based on next event method, one of 

sequential Monte Carlo [9]-[10]. 

 

 

               

Figure 28. Sensitivity Analysis Procedure 

 

 

4.6 Case Studies and Results 

 

Figure 29 illustrates a layout of the proposed power system. Energy from 

conventional generating units and wind farm and PV array is supplied to the load 

through transmission lines of IEEE RTS.  

Perform system optimization using 

two phase method to get basic 

matrix , cost vector , and RHS b 
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Figure 29. Layout of Proposed Power System 

 

 

Table 23 shows system capacity and annual peak load. By the product of PV 

current and PV voltage across the load in a cell, solar power is generated. So no 

failure/repair process of in PV modules is considered although there may be 

failure/repair process for some components like diode, or resistance. Five identical PV 

arrays are deployed on some buses in the IEEE RTS.  

For hourly clearness index modeling, maximum limit, tuk  and mean value, tmk  

are set to be 0.864 and 0.4, respectively. We assume that convergence coefficient is 

0.000001 for iteration of Newton Raphson method to calculate clearness index. And 

reflectivity is 0.26 for calculation of solar radiation in (26.1), which is used for green 

grass surface. Table 24 describes PV module’s operating specification. From the 

proposed model and the specification for PV array generation, Figure 30 shows average 

hourly PV power. It has a peak value at noon. The latitude and longitude of the PV array 

located are (30.595 0 , 96.366 0 ). 

Wind farm PV array 

Conventional units 

IEEE RTS Grid 

Load 
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Table 23. System Capacity and Peak Load for PV Systems 

 

PV array 

Peak Watt of 

a module [W] 

# of 

modules 

Locations of bus Capacity [MW] 

264 90000 15-19 118.8 

Wind farm 

Capacity of a 

turbine [MW] 

# of 

turbines 

Locations of bus Capacity [MW] 

5 16 3,20,24 240 

IEEE RTS 

Peak load [MW] 

3405 

Total conventional generation [MW] 

3405 

 

 

 

 

 

Table 24. Proposed Specification of PV Module 

 
Open circuit voltage [V] 24 

Short circuit current [A] 13 

Voltage at maximum power [V] 23 

Current at maximum power [A] 12 

Voltage temperature coefficient [mV/ oC ] 60 

Current temperature coefficient [mA/ oC ] 1.5 

Nominal cell operating temperature [ oC ] 42 
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Average hourly PV array power [MW] during a day 
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Figure 30. Average Hourly PV Array Power 

       

 

 

Figure 31 shows layout of a wind farm proposed in this work. Three identical 

wind farms are installed at buses of IEEE RTS. The transition rate information of 

turbines is described in Table 25. Table 26 and Table 27 show wind speed state and 

direction state, respectively. 
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Figure 31. Proposed Wind Farm for PV Systems 

 

 

Table 25. Transition Rates of Turbines 

 
Units Conventional unit Wind turbine 

Weather  

Normal 

speed 

Extreme speed 

(>19m/s) 

Failure rate[#/yr] 6 6 36 

Repair rate[#/yr] 130 130 36 

 

 

 

  For the proposed power system, 124 slack variables and 3 artificial variables are 

initialized for optimization in the two phase method. Equation (33.1)-(33.6) shows 

original problem for bus number one in IEEE RTS. Here 1A  is the upper limit of 

generation at bus one. It changes every hour depending failure/repair behavior of 

turbines. The upper limit of transmission line connected with bus one is 175 [MW]. 
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Table 26. Wind Speed States for PV Systems 

 

State 

Range 

[m/s] 

Prob. 

Freq 

[#/yr] 

Dur 

[h/#] 

Power 

[MW] 

1 0-4 0.1856 546 2.9689 0 

2 4-5 0 0 0 0 

3 5-6 0.0833 562 1.2954 0 

4 6-7 0.0814 581 1.2238 0.43 

5 7-8 0.0777 560 1.2125 1.33 

6 8-9 0.0767 556 1.2050 2.30 

7 9-10 0.0725 523 1.2103 3.33 

8 10-11 0.0672 491 1.1955 4.43 

9 11-12 0.0619 467 1.1585 5 

10 12-13 0 0 0 5 

11 13-14 0.0590 426 1.2089 5 

12 14-15 0.0474 357 1.1597 5 

13 15-16 0.0458 341 1.1730 5 

14 16-17 0.0314 224 1.2232 5 

15 17-18 0.0311 235 1.1574 5 

16 18-19 0.0224 171 1.1462 5 

17 19-20 0 0 0 0 

18 20-21 0.0160 120 1.1667 0 

19 21-34 0.0406 171 2.0760 0 
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Table 27. Wind Direction States for PV Systems 

 

States Direction Prob. 

Freq 

[#/yr] 

Dur 

[h/#] 

1 N 0.1956 637 2.6829 

2 NNE 0.0291 170 1.4941 

3 NE 0.0211 120 1.5333 

4 ENE 0.0222 125 1.5520 

5 E 0.0309 159 1.6981 

6 ESE 0.0394 204 1.6863 

7 SE 0.0689 359 1.6769 

8 SSE 0.1419 649 1.9106 

9 S 0.2603 763 2.9803 

10 SSW 0.0496 286 1.5140 

11 SW 0.0239 139 1.5036 

12 WSW 0.0117 73 1.3973 

13 W 0.0117 78 1.3077 

14 WNW 0.0143 83 1.5060 

15 NW 0.0294 169 1.5207 

16 NNW 0.0500 231 1.8918 

 

 

To convert into standard form, slack variables are added on the problem in 

(34.1)-(34.6). Here iS  indicates slack variable for i=1, 2, 3, 4, and 5. And variables are 
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non-negative. To have the initial basic matrix with non-negativity of RHS, an artificial 

variable should be added in (34.1) because of negative power flow. So (34.1) is replaced 

by (35) where 1Z  is artificial variable.  iS  and 1Z  are used for the initial basic variables 

to make up basic matrix in phase one. After the simplex process, if 1Z  is zero, it goes to 

next phase two so that the final solution to the original problem is derived.  One can do 

the numbering manually as below. 
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Clustering results are presented in Table 28, Table 29, and Table 30, 

respectively. LOLE of each cluster tends to decreases as wind farms and PV units are 

incorporated on the power system.  
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Table 28. Clustering in Two Dimensions 

 

Cluster 

# 

Clusters=[PV 

power,load]=[MW,MW] 

Prob. 

LOLE[h/y] 

of each 

cluster 

1 [3.5,2091.5] 0.1844 7 

2 [1.5,1629.1] 0.1571 3.9 

3 [5.6,2718.5] 0.1394 106.7 

4 [0,1328] 0.1220 3.6 

5 [4.6,2381.3] 0.1883 45.9 

6 [5.7,2973.1] 0.0687 105 

7 [2.5,1841] 0.1401 3.2 

 

 

Table 29. Clustering in Three Dimensions 

 
Cluster 

# 

Clusters=[wind 

speed,direction,load]=[m/s,state,MW] 

Prob. 

LOLE[h/y] of 

each cluster 

1 [9.1,8,2091.5] 0.1840 5.7 

2 [7.4,8,1628.3] 0.1566 3.6 

3 [10.8,9,2718.6] 0.1394 103 

4 [6,7,1327.9] 0.1221 3.3 

5 [10,8,2380.7] 0.1884 40.6 

6 [10.2,9,2973.1] 0.0687 103.9 

7 [8.9,8,1840.7] 0.1408 3 
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Table 30. Clustering in Four Dimensions 

 

Cluster 

# 

Clusters=[wind speed,direction,PV power,load] 

=[m/s,state,MW,MW] 

Prob. 

LOLE[h/y] of 

each cluster 

1 [9.1,8,3.5,2091.5] 0.1838 5.4 

2 [7.4,8,1.2,1628.3] 0.1567 2.57 

3 [10.8,9,5.6,2718.6] 0.1399 98.7 

4 [6,7,0.2,1327.9] 0.1221 2.17 

5 [10,9,8,5.1,2380.1] 0.1881 36.2 

6 [10.2,9,6,2973.1] 0.0687 99.98 

7 [8.9,8,2.4,1840.7] 0.1407 2.07 

         

 

Table 31 compares LOLE for different cases using the original data as well as 

clustering method. The results from original data are based on the sequential simulation 

using next event method.  

LOLE using proposed clustering approach with random sampling is calculated 

by using cluster information shown in Table 28, Table 29, and Table 30. The actual data 

size, 8736 is grouped into the optimal cluster size, 7. The correlation between renewable 

energy and load is well preserved by clustering, observing that LOLE is very similar 

each other.  
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Table 31. LOLE [h/y] for Different Cases 

 

Cases 

LOLE [h/y] 

Original data Clustering 

Without renewable energy 36.50 36.11 

IEEE RTS+PV arrays 34.11 33.52 

IEEE RTS+Wind farms 32.01 31.58 

IEEE RTS+PV arrays+Wind farms 30.14 29.43 
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5. DEPLOYMENT OF OPTIMAL STORAGE BUSES IN COMPOSITE POWER 

SYSTEMS WITH WIND FARMS 

         

5.1 Modeling for Wind Farm Generation 

 

    Conventional units’ ability to generate power depends on their failure and 

repair status. Unlike these units, the ability of wind turbines in a wind farm to generate 

power depends on the wind speed as well as their operational status. This is why a wind 

farm is represented by a product of wind speed model and wind turbine model.  The 

output of each wind turbine is determined by combining these two models. This research 

uses the general wind power curve [27] whose input information is a cut in speed, rated 

speed, cut out speed, and rated power to determine wind power.  Then overall power of 

wind farm, which is equal to the sum of the total contribution of all wind turbines, is 

supplied to the load at a given time. 

For wind speed models, two approaches are presented in the dissertation and 

applied to the system; transition rate method [2]-[3] and clustering method [32]-[33]. 

From original wind speed data, wind states are identified so that the frequency, duration 

and probability of each state can be calculated. 

 

5.1.1 Transition Rate Matrix Approach 

 

This approach is based on the transition rates among wind states. Transition rate 
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is the ratio of number of state changes and duration of the stay in the state before 

transition. To consider wind speed changes, all transition rates are extracted from the 

original wind speed. Using these rates, the frequency, duration, and probability of all 

wind states can be derived.  

 

5.1.2 Clustering Method 

 

    Load and wind speed may have a pattern of variation relative to each other as 

both values have some relation to the time of the day, season, or weather. In other terms, 

load and wind speed may be correlated variables. Exact transition method does not 

capture this correlation as the transition rate matrix contains average rates over the 

period of study and these are assumed constant. Clustering approach is proposed for 

such cases. Actual load and wind speed data as functions of time are collected. Each pair 

of wind speed and the corresponding load constitute one data point.  Then using 

clustering algorithm, all given data points are grouped into several clusters using the 

nearest cluster seeds sorting based on the Euclidean distance. Clustering is generally 

categorized into partitional methods or hierarchical methods [32]-[33]. In this work, 

partitional clustering is used and its various approaches compared. It partitions original 

data into the specific data size holding data characteristics. K-Means (KM) [4], [33] is a 

simple and fast method for this purpose. Once the clustering size is determined, it 

iterates to find the optimal clusters with the closest distance between clusters and points, 

starting from the initially selected clusters. Fuzzy C-Means (FCM) [35] provides 
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additional membership probability of clusters for each point to show fuzziness. These 

two methods basically depend on the initially randomly selected clusters. So the final 

clusters can be different depending on the initial selection. To solve this issue, global 

approach can be applied for clustering like Global K-Means (GKM) [37] and Global 

Fuzzy C-Means (GFCM) [37]. For the faster simulation procedure, Fast Global K-Means 

(FGKM) [38] and Fast Global Fuzzy C-Means (FGFCM) [38] are also examined in his 

research. These global or global fast approaches find the optimal clusters by adding a 

cluster step by step, instead of starting initial guess with preselected clustering size. They 

are independent of the initial guess so that it is possible to make more accurate and 

reliable clustering from original data. 

    As an input to clustering, cluster size should be determined using validity 

measurement [34]. Data consist of two dimensional observations; wind speed and load, 

and the size of the data is simulation period, one year in this research. The number of 

iterations for different clustering approaches is developed and compared in this work, 

shown by Table 32. Here n is the data size, k is the clustering size, and c is the number 

required to satisfy convergence. As the size of data or cluster becomes bigger, the 

simulation time of the global approach exponentially increases. And n is much bigger 

than k in general composite power systems so that fast global approaches like FGKM 

and FGFCM are efficient for  simulation. 
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Table 32. Iterations of Clustering 

Number of iterations for different clustering 

approaches 

KM FCM 

nkc2  nkc2cnk2   

GKM GFCM 

2222 nkkcnckn   22232 knkcn2ckn   

FGKM FGFCM 

nkccnk)1k(kn 22   nkc2cnkkn 322   

 

     

For wind turbine model, Monte Carlo simulation [9]-[10] is used in this work. 

Each turbine is assumed to have two generating states; fully available and out of service. 

From failure/repair rates of turbines, probabilities of two operating states can be 

calculated. As one of sequential methods, next event approach [48] is applied for the 

system simulation.  Probability distribution function for transition duration time of each 

turbine is assumed to be exponential. And then the operating state of a turbine and its 

transition time demonstrates failure and repair behaviors of the turbine. 

         

5.2 Wake Effect Models 

 

In wind farm, there is wake effect which is turbulent air flow in the area of 

leeside of turbines. This causes energy loss in power productivity. As one of wake 
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models, N. O. Jensen model [21]-[24] is used in the dissertation. From undisturbed wind 

speed, waked speed is calculated, as shown by Figure 32 and (36). To consider 

cumulative wake [45] and wind shade effect [45], modified Jensen model is applied to 

the system in (37). Here  fv [m/s] is free wind speed, tC  is thrust coefficient [22], d [m] 

is the diameter of turbines, kx2d]m[d x  , k is wake decreasing coefficient, set to be 

0.075 for onshore, and wv [m/s] is waked speed from distance x [m]. And N is number 

of upstream turbines by wake effect, ixi kx2d]m[d  , ix [m] is a distance between 

upstream turbine i and its downstream turbine. siA [ 2m ] is shade area of the downstream 

turbine by upstream turbine i, and A [ 2m ] is the rotor disc are of the downstream 

turbine. Wake effect also depends on wind direction, since upstream and downstream 

turbines vary with different direction.  New wind state by waked speed becomes input of 

general wind power curve [27] so that wind power by wake effect is finally generated 

considering the operating states of turbines. 

 

 

                                    

Figure 32. Proposed N. O. Jensen Model for Storage 
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5.3 System Optimization 

     

In composite system level calculations, all transmission constraints are 

considered for reliability analysis and DC power flow is embedded in the formulation of 

minimum curtailment of load formulation, shown in (3). In this formulation, N is the 

number of buses, kC  is load curtailments at bus k, kg  is generation at bus k, kjf  is real 

power flow between bus k and j, kd  is load at bus k, lowerg  is lower limit of generation, 

upperg  is upper limit of generation, lowerf  is lower limit of power flow, and upperf  is upper 

limit of power flow. Simplex method uses the reduced costs of the system problem to get 

the final optimal solution with iterations. At the beginning, it is required to choose the 

initial basic feasible solution once the system problem is converted into the standard 

form. 

    In general, the initial basic feasible solution may be unavailable from the 

original problem, since there are some constraints with reverse real power flows. As an 

alternative method, artificial variables are added to the problem. There are generally two 

approaches for using artificial variables [46]; two phase method, and big M method - 

two phase method is used in this research. Two phase method has two phases to 
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optimize a problem. At the phase one level, its objective function is the sum of all 

artificial variables. If the optimal value is not zero, it does not have any feasible 

solutions, since artificial variables are added to the original problem. Otherwise, it goes 

to next level, phase two. If some artificial variables are in basic variable set, they are 

replaced by other non-basic variables and the simplex process iterates using the reduced 

costs to find the final optimal solution to the original problem. Programming code is 

developed for the algorithm of two phase method using a computer tool Matlab.  

 

)5.38(fff

)4.38(ggg

)3.38(dC0

)2.38(dfgC

sConstraint

)1.38(CminfunctionObjective

upperkjlower

upperklower

kk

k

j

kjkk

N

1k

k
















 

 

        The Right Hand Side (RHS) of the power flow problem consists of load, 

available generation, and power flow capacity of the transmission, as shown in (3). So it 

changes over time, since load and generation vary every hour. It can be also changed by 

storage deployment, since the upper bound of generation vector with storage increases. 

So if we run optimization process every time, it is very time consuming. Sensitivity 

analysis [46]-[47] is used to calculate the final optimal solution to sum of load 

curtailments in the power system. By using the basic matrix B (coefficient matrix of 
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constraints by basic variables), cost vector BC  (coefficient vector of objective function 

by basic variables), and newly changed RHS newb , it can be determined whether the 

optimization should be restarted or directly calculated by sensitivity analysis. If BC  

times inverse of B  is greater or equal to zero, it means that previous basic matrix can 

hold the problem for feasible availability. So the final optimal solution is directly taken 

using new

1

B

* bBCZ  . Otherwise, optimization should be restarted, since basic matrix is 

changed by newb . 

 

5.4 Storage Techniques 

  

Renewable energy resources like wind power or solar power have fluctuating 

characteristics, since wind speed or solar radiation are based on random behaviors. So 

using renewable energy alone, it is hard to satisfy varying load. To mitigate this 

problem, energy storage can be added to the IEEE RTS. In general, significant amount 

of electric energy cannot be stored itself. So it is required to convert into other types of 

energy like kinetic, potential, or chemical energy and so on. Table 33 shows general 

storage types [49]-[52].  

 Figure 33, 34, 35 and 36 illustrate energy storage principles, respectively. 

Pumped Hydro Energy Storage (PHES) pumps water up using motor in off peak load, 

and generates power to use turbine in peak load. It requires expensive capital costs and 

suitable topography. Compressed Air Energy Storage (CAES) compresses air in 
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underground tank during off peak load, and generates power using heat from expanded 

air through recuperator. It needs lower construction costs than PHES. Flywheels spins 

flywheel in vacuum vessel in off peak load, and provides energy using mechanical 

energy. And batteries are used as storage by charging/discharging process of chemical 

energy. Figure 36 shows an example of battery complex in Northern Chile with 20MW 

capacity Lithium ion.   

 

 

Table 33. Energy Storage Techniques 

 

Types Usage level Storage Capacity Efficiency 

Pumped Hydro 

Energy Storage 

(PHES) 

Composite 

Pumping  

water 
1 [GW] 70 [%] 

Compressed Air 

Energy Storage 

(CAES) 

Compressing 

air 

100-300 

[MW] 
80 [%] 

Battery Complex 

Distribution 

Chemical 

process 

20-50 

[MW] 
90-95 [%] 

Flywheels 
Spinning 

flywheel 

25-30 

[kW] 
85-90 [%] 
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Figure 33. Layout of PHES 

 

 

            

Figure 34. Layout of CAES 
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Figure 35. Layout of Flywheel 

 

 

           

Figure 36. Example of Battery Complex in Northern Chile 
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5.5 Integration of Storage with Wind Farms 

  

 Energy storage technologies are incorporated on some buses in IEEE RTS. For 

buses without storage, conventional linear programming is used in (38.1)-(38.5). For 

buses with storage, the upper limit of the generation constraint is changed by creating 

storage vector with charge/discharge rates, illustrated in (39). Here kx  is storage vector 

at bus k, which is calculated using energy balance vector, bkx  and charge/discharge rates 

of storage. bkx  is taken from the difference between generation and load at bus k. Figure 

37 shows the process of calculation of storage vector at bus k, kx  every time. Here i is 

the sequence of time, and max_cap is the maximum capacity of storage. Positive bkx  

means energy storing mode, and negative  bkx  means energy generating mode. 

)39(xggg kupperklower   

 

5.6 Optimal Storage Deployment 

 

     One issue is to determine the buses where to place the storage. The placement 

of storage becomes important because of the transmission constraints. If there were no 

transmission constraints, then storage could be placed anywhere.  
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Figure 37. Flowchart of Calculation of Storage Vector 

 

         

               Storage bus deployment cases can be a dimensionally complex problem 

depending on the power system size. For IEEE RTS [17], there are 24 buses. If we 

choose 3 buses as storage buses with wind farm, the number of possible locations is 3 

combinations out of 24, which is 2024. To find the candidates for optimal storage buses, 

this dissertation introduces an approach based on expected capacity [3].  

    The upper limit of generation vector with storage consists of maximum 

available generation vector and storage vector. Available generation depends on the 

failure/repair process of turbines. Storage vector is determined by the energy balance 

vector and charge/discharge rates. So once charge/discharge rates are fixed, the upper 

limit of generation vector with storage is determined by expected capacity of a bus, 
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shown in (40). Here N is the number of available generation states at a bus, iC  is the 

capacity of state i, iP  is the probability of state i. One possible simple approach seems to 

be to use a bus with higher expected capacity as a candidate of the optimal storage buses 

with wind farm. The idea is that if the capacity is high then at low load periods, the 

excess capacity could be used for charging. Then one could perform simulations on a 

selected number of candidates to make the final choice. 

 

)40(PCcapapcityExpected
N

1i

ii


  

         

5.7 Case Studies and Results 

 

Figure 38 shows the schematic of the proposed system from viewpoint of a bus. 

IEEE RTS has 24 buses and 32 conventional generating units having total capacity of 

3405 [MW]. The annual peak load is 2850 [MW]. Three buses of the system are 

assumed to have wind farm and storage. Generation system of IEEE RTS is placed for a 

swing bus or PV buses. Load is connected in PQ buses. Grid represents the transmission 

network of the system represented by the bus admittance matrix. Figure 39 shows the 

layout of wind farm which has 16 identical wind turbines with square by square 

structure. Here d [m] indicates the diameter of the turbine. Three wind farms are 

assumed to be installed at different buses. The capacity of each wind farm is 80 [MW], 

having each wind turbine 5 [MW]. Wind data is from National Renewable Energy 
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Laboratory (NREL) [10]. The number of site area is 10. The wind speed and wind 

turbine data are shown in Table 34. 

 

 

                               

 

Figure 38. System Configuration from Viewpoint of a Bus 

 

 

 

                                        

Figure 39. Proposed Wind Farm for Storage 
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Table 34. Wind Speed and Turbine Data for Storage 

 

Wind speed data 

Peak wind speed [m/s] 27.57 

Mean wind speed  [m/s] 8.20 

Standard deviation of wind speed [m/s] 3.19 

Wind turbine data 

Cut in speed [m/s] 6 

Rated speed [m/s] 11 

Cut out speed [m/s] 19 

Rated power [MW] 5 

Rotor diameter [m] 80 

Hub height [m] 70 

 

 

Table 35 shows failure/repair rates of conventional units and wind turbines. 

Transition rate of wind turbines depend on wind speed [30]-[31]. In the proposed 

transition rate method for wind speed modeling, all transition rates among wind speed 

states are required to be calculated. For example, Transition rates between state 12 and 

other state are shown in Table 36 from the original wind speed data. From original wind 

data, wind speed states are identified in Table 37.Clustering approach for wind speed 

model is also applied to the system. Table 38 represents the cluster seed and probability 

using FGFCM. First column of each cluster is mean wind speed, and second one is mean 
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load. From validity measurement, optimal cluster size is chosen to be seven. 

 

 

Table 35. Transition Rates of Operating Turbines 

 

Units Conventional unit Wind turbine 

Weather  Normal speed 

Extreme 

speed(>19m/s) 

Failure rate[#/yr] 6 6 36 

Repair rate[#/yr] 130 130 36 

 

 

Table 36. Transition Rate of Wind State 12 

 
Wind speed states Transition rates 

[#/h] From To 

12 

7 0.0080 

9 0.0399 

10 0.1200 

11 0.2560 

13 0.1520 

14 0.0160 

15 0.0160 
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Table 37. Identification of Wind Speed States 

 

State 

Range 

[m/s] 

Prob. 

Freq 

[#/yr] 

Dur 

[h/#] 

Power 

[MW] 

1 0-4 0.0872 321 2.37 0 

2 4-5 0.0751 731 0.89 0 

3 5-6 0.0996 997 0.87 0 

4 6-7 0.1098 1138 0.84 0.43 

5 7-8 0.1162 1215 0.83 1.33 

6 8-9 0.1199 1202 0.87 2.30 

7 9-10 0.1088 1108 0.85 3.33 

8 10-11 0.0939 977 0.84 4.43 

9 11-12 0.0730 805 0.79 5 

10 12-13 0.0487 562 0.75 5 

11 13-14 0.0328 347 0.82 5 

12 14-15 0.0138 200 0.60 5 

13 15-16 0.0082 125 0.57 5 

14 16-17 0.0050 89 0.49 5 

15 17-18 0.0034 60 0.50 5 

16 18-19 0.0017 39 0.37 5 

17 19-20 0.0009 20 0.39 0 

18 20-21 0.0006 18 0.30 0 

19 21-34 0.0011 10 0.99 0 
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Table 38. Clustering Information Using FGFCM 

 
Clusters Seeds 

([m/s],[MW]) 

Probabilities 

1 (8.21,1750.6) 0.1835 

2 (9.02,1362.7) 0.1563 

3 (7.26,2274.1) 0.1402 

4 (8.73,1111.2) 0.1220 

5 (7.91,1990.4) 0.1884 

6 (7.87,2488.2) 0.0687 

7 (8.23,1540.5) 0.1409 

 

 

Table 39 shows the expected capacity of IEEE RTS. Probability of each capacity 

state is calculated using transition matrix approach [2]-[3]. From the Table 39, if we 

select three buses with storage, there exist two choices for optimal storage deployment; 

(23, 13, 18) or (23, 13, 21). Using sensitivity analysis to compare reliability indices, the 

final optimal storage buses can be determined. From that Table, it is also possible to 

choose three more storage buses as candidates of optimal deployment. For example, if 

we select five storage buses, there is one choice; (23, 13, 18, 21, 22) by expected 

capacity order.   

Table 40 compares LOLE [h/y] by different wind speed models using two phase 

method and sensitivity analysis. Wind farms are assumed to be installed at bus 3, 17, and 

24. Clustering method is more accurate than exact transition, since it deals with 

correlation between load and wind speed.  
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Table 39. Expected Capacity of Bus 

 
Bus Expected capacity [MW] 

1 184.9639 

2 184.9639 

7 288 

13 561.4500 

15 207.6000 

16 148.8000 

18 352 

21 352 

22 297.0000 

23 619.4052 

 

 

Especially, global or fast global approach of clustering is much closer to using 

exact original wind data approach by making sure that it is convergent to the global 

optimum. Instead, it takes longer time than traditional clustering, KM or FCM in Table 

41. The running time is the duration of clustering process for the optimal cluster size 

which is determined by validity measurement. Fast global approach accelerates the 

simulation speed. Table 42 shows difference between without and with sensitivity 

analysis using clustering FGFCM. LOLE [h/y] is almost the same. With sensitivity, 

however, the number of optimizations required during simulation period, one year 

significantly decreases, 12 times in this case.  As the proposed wake model is 

incorporated on the system, reliability level drops in Table 43. As peak load increases, 
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LOLE [h/y] also goes up. 

 

 

Table 40. LOLE [h/y] by Different Wind Speed Model 

 

LOLE[h/y] 

Exact transition original 

26.399 22.90 

Clustering 

KM FCM GKM FGKM GFCM FGFCM 

25.37 25.91 22.55 23.21 23.00 22.74 

 

 

Table 41. Running Time of Different Clustering Approaches 

 

Time 

[min] 

Clustering 

KM FCM GKM FGKM GFCM FGFCM 

0.012 1.21 73.2 59.53 391.8 65.4 

 

 

Table 42. LOLE [h/y] without and with Sensitivity Analysis 

 

LOLE[h/y]/number 

of optimizations 

FGFCM 

Without sensitivity With sensitivity 

22.6421/8736 22.7418/723.474 
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Table 43. LOLE [h/y] without and with Wake Effect 

 
Peak load[MW] Without wake With wake 

2750 11.3741 14.3104 

2850 22.7418 25.6343 

2950 38.1095 41.0188 

 

 

To determine the optimal storage buses, Table 44 compares LOLE [h/y] without 

and with storage for candidates of optimal bus using FGFCM with wake effect. As can 

be seen, for cases without storage, LOLE [h/y] is almost the same regardless of the 

location of wind farms. And we know that the final optimal storage buses with wind 

farms should be bus 23, 13, and 18 by observing the changes of LOLE [h/y]. Table 45 

shows LOLE [h/y] for selected optimal storage buses, 23, 13, and 18 by different peak 

load. For a case with peak load 2850[MW], reliability indices are compared by different 

storage performances in Figure 40 and Figure 41. As charge/discharge rates and capacity 

of storage increases, LOLE [h/y] tends to decreases. Finally, EENS [MWh/y] becomes 

greater for higher peak load, shown by Figure 42.   

 

 

Table 44. LOLE [h/y] without and with Storage 

 
Cases Without storage With storage 

Bus location of wind farms 23,13,18 23,13,21 23,13,18 23,13,21 

LOLE[h/y] 25.6535 25.6543 21.8774 22.3725 
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Table 45. LOLE [h/y] of Optimal Storage 

  
LOLE [h/y] 

Peak load[MW] Optimal storage 

2750 12.3003 

2850 21.8774 

2950 36.7522 
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Figure 40. LOLE [h/y] by Different Charge/Discharge Rates 

 



 

97 

 

 

LOLE by capacity of storage

0

5

10

15

20

25

30

100 600 1100 1600

Maximum capacity [MW]

L
O

L
E

 
[
h
]

 

Figure 41. LOLE [h/y] by Different Maximum Capacity 
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Figure 42. EENS [MWh/y] by Different Peak Load 
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6. CONCLUSIONS 

 

 The proposed power system is modeled by a combination of conventional 

generation, wind farms, PV systems, and energy storage. From some original wake 

models, newly developed wake models are proposed for the wind farm to generate more 

accurate waked speed by considering cumulative wake effect, wind shade and shear 

effect in a wind farm. Improved N.O. Jensen model or Eddy Viscosity works well as a 

wake model. However, modified Larsen model shows some deficiencies as a wake 

model for a wind farm with cumulative wake effect or wind shear. As wake effect is 

incorporated into the system, reliability level drops due to energy losses. This means that 

not including wake effect can over estimate reliability.  

Turbines are modeled on two generating states; fully available and out of service. 

For wind speed modeling, birth and death process and transition rate matrix approach are 

discussed. In birth and death Markov chain, each state only moves to the next 

neighboring state. If the sampling time is small which is close to zero, wind speed can be 

considered to change smoothly over time. In this situation, the model suggested by [1] 

would represent the physical reality correctly.  However, in practice sampling is done at 

intervals like 10 minutes. In such a situation speed cannot be assumed to transit 

smoothly and transitions to remote states can occur more frequently. So if the birth and 

death model is used for a wind data sampled at finite intervals as is the case in practice, 

some transitions between wind states can be lost. This dissertation introduces a transition 

rate matrix approach [2]-[3] by which all possible transition rates between states from 
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original wind data can be captured. This approach is useful when load and wind can be 

assumed to vary independently of each other. However, in practice, there is correlation 

between them. To deal with it efficiently, clustering approach is applied to power 

systems with renewable energy. Some different clustering algorithms are presented and 

compared. As renewable energy is incorporated into the composite power system, 

different dimensional clustering approaches are demonstrated in details. For the 

failure/repair process of turbines, Monte Carlo simulation including random sampling 

and next event method is applied for the proposed power system. 

 The flow model embedded in the linear program is DC power flow. To ensure 

that an initial basic feasible solution is available, artificial variables are added to the 

original constraints. As one approach to use artificial variables, two phase method is 

applied to the system to get reliability indices.  Optimization process is needed for every 

hour of simulation. Using sensitivity analysis, we can reduce simulation running time. 

To regulate the fluctuation of renewable energy, energy storage is integrated into the 

proposed power system. Optimal storage bus using sensitivity analysis and clustering 

method are chosen and compared.  Simulation methodology to select the optimal storage 

buses is developed and applied to the system, using LOLE [h/y], EENS [MWh/y], or 

ENSI [MWh/#] to figure out the system reliability explicitly. The upper limit of 

generation vector at the bus is updated by the storage vector. As storage is added to the 

system, it is observed that the reliability is improved. 
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