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ABSTRACT

This dissertation contains two essays studying panel data econometric models.

First, we consider the problem of estimating a nonparametric panel data models with

fixed effects. We propose using the profile least squares method to concentrate out

the fixed effects and then estimate the unknown function by the kernel method. We

show that our proposed estimator is consistent and has an asymptotically normal

distribution. Monte Carlo simulations show that our proposed estimator performs

well compared with several existing estimators.

Second, we study the effects of Hong Kong’s fixed exchange rate against U.S.

dollar using a novel panel data method. After the 1997 Asian Financial Crisis, many

of the Asia countries adopted flexible exchange rate policies while Hong Kong still

keeps its fixed exchange rate. By comparing Hong Kong versus its major trading

partners, we show that if like other Asian countries, Hong Kong had adopted a float

exchange rate policy in October 1998, Hong Kong’s (counterfactual) total value of

exports would increase by 14.65 %. Similarly, Hong Kong’s total value of imports

would increase about 31%. We conclude that Hong Kong dollar is overvalued by

9.34% due to its fixed exchange rate policy.
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1. INTRODUCTION

In this thesis, we first consider the problem of estimating a nonparametric panel

data models with fixed effects. Panel data records information on each individual

unit over time, the rich information contained in panel data allows researchers to

estimate complex models and answer questions that may not be possible using time

series or cross sectional data alone. As a result of the increased availability of panel

data, longitudinal data analysis becomes a popular subject of theoretical and applied

study. Arellano (2003), Baltagi (2005) and Hsiao (2003) provided excellent overviews

of parametric panel data model analysis. The early literatures on nonparametric

estimation of panel models focused on semiparametric and nonparametric estimation

of random effects models, see Li and Stengos (1996) and Lin and Carroll (2001),

among others. However, most economists believe that it is more likely that the

correlation between the individual effects and the regressors follows an unknown

pattern. If that is the case, one should specify the true model as a fixed effects model

rather than a random effects model.

Second, we study the effects of Hong Kong’s fixed exchange rate against U.S. dol-

lar using a novel panel data method. The Asian Financial Crisis began in July 1997,

when China just resumed soverei-gnty of Hong Kong. Indonesia, Republic of Korea

(hereafter, Korea), Thailand, Malaysia, Philippines and Hong Kong were affected by

the Asian Financial Crisis. Before 1999, aforementioned countries have changed their

exchange rate policy, except for Hong Kong. We examine (I) the effects of switch-

ing Hong Kong’s exchange rate policy on Hong Kong’s external trade, and (II) the

overvaluation of Hong Kong dollar. For part (I), there is numerous factors affects ex-

ternal trade. And these factors are hard to control for. Hsiao, Ching and Wan (2011;

1



henceforth, HCW) proposed a simple-to-implement panel data method to construct

a counterfactual to measure the treatment effects, without identifying variations in

other factors. Motivated by HCW’s method, we use external trade for other coun-

tries to control for the potential changes in those of Hong Kong. By regressing the

treatment group with the control groups before the exchange rate policy change,

we estimate the hypothetical external trade under a float Hong Kong exchange rate

policy using those of the control group. Comparing the hypothetical value with the

actual value, we can identify the changes in Hong Kong’s import/export prices. Using

purchasing power parity (PPP), we evaluate the changes in Hong Kong’s exchange

rate to measure whether Hong Kong dollar is overvalued under its fixed exchange

rate policy as part (II).

2



2. NONPARAMETRIC ESTIMATION OF FIXED EFFECTS PANEL DATA

MODELS

2.1 Introduction

Panel data records information on each individual unit over time, the rich infor-

mation contained in panel data allows researchers to estimate complex models and

answer questions that may not be possible using time series or cross sectional data

alone. As a result of the increased availability of panel data, longitudinal data anal-

ysis becomes a popular subject of theoretical and applied study. Arellano (2003),

Baltagi (2005) and Hsiao (2003) provided excellent overviews of parametric panel

data model analysis. The early literatures on nonparametric estimation of panel

models focused on semiparametric and nonparametric estimation of random effects

models, see Li and Stengos (1996) and Lin and Carroll (2001), among others. How-

ever, most economists believe that it is more likely that the correlation between the

individual effects and the regressors follows an unknown pattern. If that is the case,

one should specify the true model as a fixed effects model rather than a random

effects model.

There are various estimation methods for estimating a fixed effects nonparamet-

ric panel data model. We describe five estimation methods which can be classified

into two approaches. Three of the methods are based on the first difference ap-

proach which removes the fixed effects completely and estimates the nonparametric

component by kernel method. The remaining two methods, along with our proposed

method, use profile least square method to (asymptotically) concentrate out the fixed

effect and estimate the nonparametric component by kernel method.

Herderson, Carroll and Li (2008; henceforth, HCL) introduced an iterative non-
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parametric kernel estimator assuming large n and fixed T , and derived the rate of

convergence of their estimator. One important advantage of HCL’s estimator and

other estimators based on first differencing method is that they all completely remove

the fixed effect parameter. However, HCL failed to obtain asymptotic distribution

results of their estimator due to the complication of iterative estimation procedure.

Qian and Wang (2012) proposed to estimate the nonparametric component by

marginal integration method assuming fixed T and large n. One problem of marginal

integration method is that it is computational very costly. To evaluate a marginal in-

tegration based estimator, one must compute (nT )2 regression, each of which requires

O(nTh1...hq) operations, where hs is the bandwidth associated with the sth com-

ponent of the covariate in the nonparametric regression model. Thus, the marginal

integration estimator takes O((nT )3h1...hq) operations to compute.

Kim, Linton and Hengartner (1999; henceforth, KLH) proposed an estimator

that is computationally more efficient than the marginal integration based estimator

by exploiting conditional density estimation from the marginal integration estima-

tor proposed by Linton and Nielsen (1995). This estimator is computationally less

costly than a marginal integration based estimator. However, the simulation results

reported in section 2.4 suggests that this estimator is less efficient than our proposed

estimator.

Su and Ullah (2006; henceforth, SU) proposed a local linear kernel estimator

based on a partial linear nonparametric panel data model with fixed effect. With

fixed T and large n, they derived the asymptotic distribution of their proposed

estimator by imposing a strong identification condition, namely, that
∑n

i=1 µi = 0,

where {µi} are the unobserved individual fixed effects. In this chapter we replace the

strong identification condition of Su and Ullah (2006) by a much weaker condition

that E(µi) = 0. We derive the asymptotic distribution of our proposed estimator

4



under this weak identification condition.

Li and Sun (2011; henceforth, LS) proposed a local constant kernel estimator

using nonparametric least squares dummy variables (LSDV) method requiring large

n and large T . However, their estimator has large estimation errors when T is small.

This is because their estimator is near singular when T is small. This problem is

indeed revealed by the simulation results reported in section 2.4. In contrast, our

proposed estimator does not suffer the near singular problem when T is small as we

will show in section 2.2.

In this chapter we proposed an alternative estimator in the spirit of Li and Sun

(2011). The main contribution of our chapter is that our estimator does not suffer the

near singular problem when T is small. For example, the simulation results reported

in section 2.4 show that when T = 2, Li and Sun’s (2011) estimator’s estimation mean

squared errors does not decrease as n increases from 200 to 500, while our proposed

estimator’s estimation mean squared errors is halved when n increases from 200 to

500.

The remaining parts of the chapter are organized as follows. We introduce the

model and our estimator in section 2.2. We develop the limiting distribution of

the proposed estimator in Section 2.3. Section 2.4 reports Monte Carlo simulation

results to compare the performance of our proposed estimator with some of the

existing estimators. We conclude the chapter in Section 2.5. Mathematical proofs

are postponed to the Appendix.

2.2 Model and Estimation Method

We consider the following nonparametric fixed effects panel data model

Yit = m(Xit) + µi + νit, i = 1, ..., n; t = 1, ..., T (2.2.1)

5



where Xit ∈ Rq (q ≥ 1), and Yit, µi, and νit are all scalars. m(·) is an unknown

smooth function. For the nonparametric fixed effects model (2.2.1), as in Li and Sun

(2011), we allow E (µi|Xit,1, ..., Xit,q) 6= 0.

Rewriting model (2.2.1) in a matrix form gives

Y = m(X) +D0µ+ V,

where m(X) = [m(X1),m(X2), . . . ,m(Xn)]′ with m(Xi) = [m(Xi1), . . . ,m(XiT )]′ for

i = 1, 2, . . . , n. Y and V are similarly defined. µ = [µ1, µ2, . . . , µn]′. D0 = In ⊗ ιT

is an nT by n matrix, ‘⊗’ denotes the Kronecker product, In denotes the identity

matrix of dimension n, ιT denotes a T × 1 column vector of ones, and A′ denotes the

transpose of the matrix A.

To estimate the unknown function m(x), we will use the profile least squares

method - an extremely powerful method in the estimation of nonparametric/semi-

parametric models in statistics. Specifically, we treat the fixed effects as unknown

parameters and estimate m(·) as a function of these unknown parameters. Substitut-

ing the estimated nonparametric function into a least-square type objective function

to minimize the objective function over the fixed effects parameters, we obtain an

expression of the fixed effect parameters in terms of nonparametric regression func-

tion. Finally, replacing the fixed effects parameters by the function obtained in the

previous step yields the consistent estimator for m(·).

For any given value of µ, we estimate the unknown function m(x) by (x is an

interior point in the support of X)

mµ(x) = arg min
m∈R

[Y − ιnTm(x)−D0µ]′Kh(x)[Y − ιnTm(x)−D0µ], (2.2.2)

6



where Kh(x) = diag{Kh(X11, x), · · · , Kh(X1T , x), Kh(X21, x), · · · , Kh(XnT , x)} is an

nT × nT diagonal matrix, Kh(Xit, x) =
∏q

s=1 h
−1
s k((Xit,s − xs)/hs) is the product

kernel function, and k(·) is the univariate kernel function.

Taking derivatives of the objective function in equation (2.2.2) with respect to

m(x) gives

ι′nTKh(x)[Y − ιnT m̃(x)−D0µ] = 0.

Rearranging terms in the above equation and solve for m̃(x) yields

m̃µ(x) = [ι′nTKh(x)ιnT ]
−1
ι′nTKh(x)[Y −D0µ]

=

∑n
i=1

∑T
t=1(yit − µi)Kh(Xit, x)∑n

i=1

∑T
t=1Kh(Xit, x)

. (2.2.3)

Note that m̃µ(x) defined in equation (2.2.3) is not feasible because {µi} is unob-

servable. Next, we estimate the fixed effects vector µ by

µ̂ = arg min
µ

(Y −D0µ− m̃µ(X))′(Y −D0µ− m̃µ(X)), (2.2.4)

where m̃µ(X) = [m̃µ(x11), . . . , m̃µ(xnT )]′ is defined in equation (2.2.3). Equation

(2.2.4) shows that µ̂ is a standard least-squares dummy variables (LSDV) estimator

of µ when m(x) is replaced by m̃µ(x) defined in equation (2.2.3).

Substituting equation (2.2.3) into equation (2.2.4), we obtain

µ̂ = arg min
µ

(Y −D0µ)′P (Y −D0µ), (2.2.5)

where P = [InT −S]′[InT −S] with S = (sh(x11), . . . , sh(xnT ))′ being an nT ×nT ma-

trix. Each argument of S is an nT × 1 vector of sh(x)′ = [ι′nTKh(x)ιnT ]−1 ι′nTKh(x).

From equation (2.2.5) one may conclude that µ̂ = [D′0PD0]
−1D′0PY , but this estima-

7



tor is not feasible since D′0PD0 is singular. We need to replace D0 by another matrix

D such that D removes the unobserved fixed effects asymptotically and D′PD is

non-singular. Following the practice in Su and Ullah (2006), Li and Sun (2011) and

Sun, Carroll and Li (2009), we use Dµ̂ to replace D0µ, where D = [−ιn−1 In−1]
′⊗ ιT

is an nT × (n− 1) matrix. Then Dµ̂ = (µ̂1, µ̃
′)′ with µ̂1 = −

∑n
i=2 µ̂i, and

µ̃ ≡ (µ̂2, . . . , µ̂n)′ = [D′PD]
−1
D′PY.

Replacing D0µ in equation (2.2.3) by Dµ̂, we obtain a feasible estimator of m(x)

given by

m̂(x) = sh(x)′MY ≡ [ι′nTKh(x)ιnT ]
−1
ι′nTKh(x)MY, (2.2.6)

where M = InT −D[D′PD]−1D′P .

From equation (2.2.6) we see that our estimator requires the inverse of ι′nTKh(x)ιnT =∑n
i=1

∑T
t=1Kh(Xit, x). Even when T = 2, as long as n is large,

∑n
i=1

∑T
t=1Kh(Xit, x)

will be positive1 (with probability one) so that unlike Li and Sun’s (2011) estimator,

our estimator does not suffer the near singular problem when T is small.

We derive the asymptotic distribution of m̂(x) in the next section.

2.3 Asymptotic Distribution for the Estimator

In order to derive the asymptotic distribution of m̂(x), we fisrt list some regularity

conditions and definitions.

(A1) (Yi, Xi) are independently and identically distributed (i.i.d.) continuous ran-

dom variables, where Yi = (Yi1, . . . , YiT )′ and Xi = (Xi1, . . . , XiT )′. Xit is a

strictly stationary α-mixing process with mixing coefficients αk = O
(
k−(δ+2)/δ

)
1This is because (nT )−1

∑n
i=1

∑T
t=1Kh(Xit, x)

a.s.→ f(x) > 0, where f(x) is the density function
of Xit evaluated at Xit = x.

8



and E
(
‖Xit‖2+δ

′
)
<∞ for some δ′ > δ > 0. Let f(x) denote the density func-

tion of Xit and ft,s (x1, x2) = ft,s (Xit = x1, Xis = x2) denote the joint density

function of (Xit, Xis). Let S denote the support of Xit; then, f (x) > 0 at any

interior point x ∈ S. m (x), f (x), and ft,s (x1, x2) are all twice continuously

differentiable in the neighborhood of x ∈ S. X, the nT × q matrix defined in

equation (2.2.1), has full rank q.

(A2) The unobserved fixed effects µi are i.i.d., with E(µi) = 0, E(µ2
i ) = σ2

µ > 0,

and E (µi|Xit) 6= 0. The idiosyncratic errors {νit} are i.i.d. across all i and t and

E (νit| {(µi, Xit)}) = 0, E (ν2it| {(µi, Xit)}) = σ2
v , and E

(
|νit|2+δ

′
| {(µi, Xit)}

)
<

∞ for all i and t.

(A3) The product kernel function is K(u) =
∏q

s=1 k(us), where the univariate ker-

nel function k(·) is a bounded, symmetric (around zero) probability density

function with compact support on R.

(A4) As n → ∞ and T → ∞, hj → 0 for all j = 1, 2, · · · , q, nTh1...hq → ∞, and√
nTh1...hq

∑q
j=1 h

2
j = O(1).

(A5) As n → ∞ and T → ∞, hj → 0 for all j = 1, 2, · · · , q, nTh1...hq → ∞ and

n
∑q

j=1 h
4
j = O(1).

The above assumptions are quite standard and are commonly seen in the litera-

ture on nonparametric estimation. The conditional homoskedastic error Assumption

A2 can be relaxed to allow for conditional heteroskedasticity. Assumption A4 is

satisfied when one chooses bandwidths h1, ..., hq by the least squares cross-validation

method.

We present the limiting distribution of m̂(x) below and delay the proofs to the

Appendix.

9



THEOREM 2.3.1. Define ζ0 =
∫
K(v)2dv and Bh (x) = κ2

∑q
s=1 h

2
s[ms(x)fs(x)/

f(x) + 1
2
mss(x)], where ms(x) = ∂m(x)

∂xs
, mss(x) = ∂2m(x)

∂x2s
, fs(x) = ∂f(x)

∂xs
and κ2 =∫

k(v)v2dv. Then at an interior point x ∈ S, the limiting distribution of m̂(x)

depends on the behavior of Th1...hq and are given as follows.

1. Under Assumptions A1-A4, when Th1...hq → 0,

√
nTh1...hq [m̂(x)−m(x)−Bh (x)]

d→ N

(
0,
ζ0σ

2
v

f (x)

)
.

2. Under Assumptions A1-A4, when Th1...hq → a0, where a0 is some constant,

√
nTh1...hq [m̂(x)−m(x)−Bh (x)]

d→ N

(
0, a0σ

2
µ +

ζ0σ
2
v

f (x)

)
.

3. Under Assumptions A1-A3 and A5, when Th1...hq →∞,

√
n [m̂(x)−m(x)−Bh (x)]

d→ N
(
0, σ2

µ

)
.

Theorem 2.3.1 requires that both n and T are large. For the case of large n and a

fixed value of T , deriving the asymptotic distribution of m̂(x) is a challenging task.

However, Monte Carlo Simulations show that our estimator performances well when

T is small.

It may seem that the above asymptotic result of our estimator is similar to that

of Li and Sun (2011). However, there is a major difference between our proposed

estimator and the estimator of Li and Sun (2011). It can be shown, after some sim-

plifications, that Li and Sun’s estimator (Li and Sun, 2011, p.18) can be represented

by

m̂LS(x) =
1

n

n∑
i=1

∑T
t=1Kh(Xit, x)yit∑T
t=1Kh (Xit, x)

. (2.3.1)

10



From equation (2.3.1), we can see that when T is small, say T = 2, there is a high

chance that the denominator
∑2

t=1Kh(Xit, x) = Kh(Xi1, x) + Kh(Xi2, x) is zero (or

near zero) for some i, which leads to a large value of m̂LS(x). Consequently, Li and

Sun’s estimator can yield a large estimation mean squared error when T is small.

Our estimator does not suffer this problem as the denominator of our estimator is

in the form of (nT )−1
∑n

i=1

∑T
t=1Kh (Xit, x), which converges to f(x) > 0 as long

as n is large for any value of T . The simulations reported in section 2.4 confirms

our above analysis, i.e., the simulations show that Li and Sun’s (2011) estimator has

large estimation mean squared error (MSE) when T is small, while our estimator has

relatively small estimation MSE as long as n is large, T can be small or large.

2.4 Monte Carlo Simulations

In this section we use simulations to assess the performance of our proposed esti-

mator and compare its behavior with the five existing estimators reviewed in section

2.1. We consider the following Data Generating Processes (DGP). Specifically, we

generate Yit by

DGP1 : Yit = sin(2Xit) + µi + νit,

DGP2 : Yit =Xit − 0.5X2
it + µi + νit,

where Xit is i.i.d. uniform[-1,1], νit is i.i.d. N(0, 1), vi is i.i.d. uniform[-1,1], and µi

= vi+ c0T
−1∑T

s=1Xis. Also, Xit, νit, and vi are mutually independent of each other.

We take c0 = 0.5, 1 and 2 so that µi and {Xit : t = 1, . . . , T} are correlated. We take

n = 50, 100, 200, and 500 and T = 2, 3, 4, 5, 10, 20. The number of Monte Carlo

replications is M = 1, 000. We use the standard normal kernel function to compute

the proposed estimator, and the bandwidth used is selected via h = cσ̂x(nT )−1/5,
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where σ̂x is the sample standard deviation of {Xit}i=1,...,n;t=1,...,T , and without losing

generality, c is 1. DGP1 is used in Li and Sun (2011) and Henderson, Carroll and

Li (2008). DGP2 is a quadratic function, which is a commonly used specification in

empirical applications.

To compare the different estimators, we report the average mean squared error

(AMSE) of our proposed estimator along with the five estimators reviewed in section

2.1. AMSE for m̂ (x) is defined as

AMSE(m̂) =
1

M

M∑
j=1

1

nT

n∑
i=1

T∑
t=1

[m̂j (Xit)−m (Xit)]
2 ,

where j refers to the jth simulation replication.

The simulation results are reported in Tables C.1-C.8. Tables C.1-C.3 report

simulation results for DGP1 with c0 = 0.5, 1, 2, respectively. Tables C.4-C.6 report

simulation results for DGP2 with c0 = 0.5, 1, 2, respectively. Because the marginal

integration based estimator is computationally very costly, we only computed it for

cases T ≤ 5 and n ≤ 200 and report the results, along with our proposed estimator, in

Table C.7. Table C.7 also reports the computation times of the marginal integration

(MI) estimator and our estimator. Finally, Table C.8 compares computation times

for different estimators.

We observe several patterns comparing Tables C.1-C.7. First, for any c0, the

AMSEs of all estimators decrease as both n and T grow, indicating that all the

estimators are consistent. Second, for given c0, n and T , our proposed estimator

m̂LC (x) performs well compared with all the other estimators for all cases. Third,

for fixed n and T , the larger c0 is, the larger the AMSEs of m̂LC (x), m̂SU (x) and

m̂LS (x) are. The pattern arises because as c0 increases, the variance of the fixed

effects increases. The simulation results show that the AMSEs of the three estimators
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vary as c0 changes, suggesting that the estimators can be sensitive to the unknown

fixed effects in finite sample applications, although asymptotically, the fixed effects is

removed and does not affect the consistency and the asymptotic distribution of these

estimators. In contrast, HCL, KLH and the marginal integration method remove

the fixed effects completely. In all three tables, for small T , the ASMEs of m̂LS(x)

are much larger than other estimators, suggesting the near singular problem of LS’s

estimator for small T .

The last two columns of Table C.7 and Table C.8 report the computation time

in seconds for different estimators. The estimators proposed by KLH and LS are

relatively computationally less costly. HCL’s estimator is time consuming in most

cases due to the iterative procedure. The marginal integration estimator is extremely

time consuming.

2.5 Conclusions

We propose using the profile least square method to estimate a nonparamet-

ric panel data fixed effects model. We derive the asymptotic distribution of our

proposed estimator when both n and T are large. Our proposed estimator has an

asymptotically normal distribution with different variances depending on the order

of magnitude of Th1...hq. When n is large and T is small, the asymptotic analysis

of our proposed estimator is quite complex and we leave the asymptotic analysis of

our estimator for the small T case as a future research topic. Monte Carlo simula-

tions show that in finite sample applications our proposed estimator performs well

compared with existing estimators.
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3. IS HONG KONG DOLLAR OVERVALUED? EVIDENCE FROM HONG

KONG’S TRADE PRICES POST FINANCIAL CRISIS

3.1 Introduction

The Asian Financial Crisis began in July 1997, when China just resumed soverei-

gnty of Hong Kong. Indonesia, Republic of Korea (hereafter, Korea), Thailand,

Malaysia, Philippines and Hong Kong were affected by the Asian Financial Crisis.

Before 1999, aforementioned countries have changed their exchange rate policy, ex-

cept for Hong Kong.

This chapter examines (I) the effects of switching Hong Kong’s exchange rate

policy on Hong Kong’s external trade, and (II) the overvaluation of Hong Kong dollar.

For part (I), there is numerous factors affects external trade. And these factors are

hard to control for. Hsiao, Ching and Wan (2011; henceforth, HCW) proposed a

simple-to-implement panel data method to construct a counterfactual to measure

the treatment effects, without identifying variations in other factors. Motivated by

HCW’s method, we use external trade for other countries to control for the potential

changes in those of Hong Kong. By regressing the treatment group with the control

groups before the exchange rate policy change, we allow for the impact of underlying

factors to change by countries. Also, unlike difference-in-difference (DID) method,

the weights for more relevant control countries are higher than those of less relevant

control countries in our method. In a word, we estimate the hypothetical external

trade under a float Hong Kong exchange rate policy using those of the control group.

Comparing the hypothetical value with the actual value, we can identify the changes

in Hong Kong’s import/export prices. Using purchasing power parity (PPP), we

evaluate the changes in Hong Kong’s exchange rate to measure whether Hong Kong
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dollar is overvalued under its fixed exchange rate policy as part (II).

There are two vital choices for part (I). One is the choice of control groups. Since

exchange rate is mostly affected by international trade, we use Hong Kong’s major

trading partners as control groups, shown in Table C.91. For Hong Kong’s imports,

there are 11 major suppliers that supply more than 85% of Hong Kong’s imports.

About 83% of Hong Kong’s exports are shipped to its 10 major export destinations.

Among Hong Kong’s major trading partners, Korea, Thailand and Malaysia are

the countries changed their exchange rate policy after the Asian Financial Crisis.

Based on Table C.9, the control groups for this chapter are: Canada, the mainland

of China (hereafter, China), France, Federal Republic of Germany (hereafter, Ger-

many), Italy, Japan, Korea, Malaysia, Netherlands, Singapore, Taiwan, Thailand,

United Kingdom (hereafter, UK), and United States (hereafter, US). The other vital

choice is the effective time of switching exchange rate regime. Table C.102 shows the

exchange rate policy for countries we examined in this chapter before and after the

Asian Financial Crisis.

A few definitions are important for understanding the changes in exchange rate

regime. Fixed exchange rates, or pegged exchange rate, indicates that there are

no fluctuations from the central rate. One advantages of fixed exchange rate is its

stability. Hong Kong exchange rate is fixed to 7.80 per US dollar. France, Ger-

many, Italy, and Netherlands have an exchange rate fixed to euro. Malaysia (after

September 1998) also has a pegged exchange rate to US dollar. Managed floating

exchange rate suggests that value of the currency is determined by market demand

1Sources: Hong Kong Annual Yearbook (1997-1999), Appendix 20: Hong Kong’s External Trade
by Major Trading Partner.

2Sources: World Currency Yearbook (WCY), IMF Annual Report on Exchange Arrangement
and Exchange Restriction (IMF) , and European Central Bank. The currency of France, Germany,
Italy and Netherlands became the euro after December 1998. The conversion rate between the euro
and the countries’ currency was set irrevocably.
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and supply. However, some intervention might be taken on currency demand. For

example, the government may desire for a lower currency to increase exports. The

exchange rate policy for Korea (March 1980- November 1997) and Malaysia (Decem-

ber 1992-September 1998) are managed floating. In the 1990s, Chinese exchange rate

regime is on more market-oriented basis. Since 1994, China has been maintaining

a controlled float foreign exchange regime. Free floating exchange rate means that

the value of a currency is determined purely by demand and supply of the currency.

The central bank neither sets target, nor takes intervention for the exchange rate in

the market. In our sample, Canada, Japan, Korea (after 1997), Singapore, Taiwan,

Thailand (after July 1997) and UK (after 1992) use free floating exchange rate policy.

Based on Table C.10, we use October 1998 as the time of the hypothetical policy

invention on Hong Kong’s exchange rate policy. That is, hypothetically, Hong Kong

changed its exchange rate policy from fixed to float on October 1998.

For part (II), one could apply HCW’s method on Hong Kong fixed exchange

rate to evaluate the overvaluation of Hong Kong dollar. However, regressions on

Hong Kong’s exchange rate using Hong Kong’s trading partners’ exchange rates are

not useful, since that first, Mussa (1986) showed that exchange rates behaved very

differently under fix and flexible exchange rate system; second, it is not, mechanically,

very meaningful to regress a fixed number on a set of random variables. Then, to

evaluate the overvaluation of Hong Kong dollar, we use purchasing power parity

(PPP) to examine Hong Kong’s exchange rate. In PPP,

st = a+ b1pt + b2p
∗
t + et, (3.1.1)

where st, pt, and p∗t are the logarithm of the nominal exchange rate, domestic prices

and foreign prices, correspondingly, and et is the error term. In PPP theory, a = 0,

16



b1 = 1, and b2 = −1. The choices of prices using in PPP is important. Xu (2003)

demonstrated that trade price index (TPI) is a more appropriate price index for

exchange rate forecasting than consumer price index (CPI) or wholesale price index

(WPI), where TPI is a weighted average of export price and import price using total

value of exports and imports as weights. Thus, we examine the behavior of total

value of imports/exports and the import/export volume to measure the movements

of Hong Kong’s trade price. And Hong Kong’s exchange rate increases if Hong Kong’s

trade price increases.

Using HCW’s approach, we find that Hong Kong’s exports prices would increase

by about 9.54% if Hong Kong uses float exchange rate policy after October 1998.

And Hong Kong’s import price increases by 9.14%. Both indicate that Hong Kong’s

TPI is increasing, which suggests increasing Hong Kong’s exchange rate. Therefore,

we conclude that Hong Kong dollar is overvalued by 9.34% if Hong Kong keeps using

fixed exchange rate policy.

This chapter is organized as following. Section 3.2 reviews HCW’s method and

presents our estimation strategy. We describe the data in Section 3.3. Section 3.4

reports the estimation results. Section 3.5 concludes the chapter.

3.2 The Model

In this section we first review a panel data model estimation method proposed by

Hsiao, Ching and Wan (2011, HCW) which is related to the method we will propose

to evaluate the effect of Hong Kong’s fixed exchange rate policy.

3.2.1 HCW Method

HCW proposed using a panel data model to estimate average treatment effects

(ATE). Let y1it and y0it denote country i’s economic measurements in period t be-

fore and after October 1998. y represents for total value of imports/exports and
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import/export volume index. The policy change effect to Hong Kong (i = 1)’s value

at time t is

∆1t = y11t − y01t.

However, since Hong Kong’s value for float exchange rate policy, y11t, is not observable.

We need to predicted ŷ11t using the observed data. Based on HCW (2011), we assume

that there exists a K×1 vector of unobservable common factors ft that drives external

trade of all countries to change over time. These factors can be global economic

growth, technology innovation, environmental improvements, etc. Therefore, for

Hong Kong’s external trade before and after October 1998 (T1), we have

y1t =

 y01t = α1 + β′1ft + u1t, t < T1,

y01t = α1 + β′1ft + u1t, t > T1,

where α1 is a country specific intercept, β′1 is a factor loading vector of dimension

K × 1, u1t is the error term. y1t has the same equation format before and after

October 1998 since Hong Kong uses the same exchange rate policy. For those of

Hong Kong’s major trading partners (i = 2, ..., N) before and after October 1998

(T1), we have

yit =

 y0it = αi + β′ift + uit, t < T1,

y1it = αi + β′ift + ∆it + uit, t > T1,

where αi, β
′
i and uit are similarly defined. ∆it are the treatment effects of switching

exchange rate policy for country i’s external trade after October 1998. The error

term can be I(0) or I(1), according to Bai, Li, and Ouyang (2012; henceforth, BLO).

Unlike DID method, βi can be different among i. We assume that there are only a

few common factors affect different countries’ external trade, i.e., K < N .

Again, since y11t is not observable for t > T1, we need to estimate the counter-
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factual value ŷ11t after October 1998. HCW (2011) suggests using Yt = (y2t, ..., yNt)
′

in lieu of ft to predict y11t for post-treatment period. In particular, we estimate the

linear regression model

y11t = α1 + β′Yt + ε1t, for t < T1,

where α1 is a scalar parameter, β = (β2, ..., βN)′ is an (N−1)×1 vector of parameters,

and ε1t is the error term. Estimating equation (3.2.1) by OLS regression, we have the

consistent estimates α̂1 and β̂. According to Assumption 6 of HCW and Proposition

2.1 of BLO, y11t can be predicted by

ŷ11t = α̂1 + β̂′Yt, for t > T1.

Then, the possible treatment effects that Hong Kong changed its exchange rate

policy from flat to float are

∆̂1t = ŷ11t − y01t, for t > T1,

and the average treatment effect is

∆̂1 =
1

T − T1

T∑
t=T1+1

∆̂1t,

where T is the total number of observations. Based on Lemma 2 and Lemma 4 of

HCW and Proposition 2.2 and Proposition 2.3 of BLO, it is easy to show that ∆̂1

converges to the true average treatment effects ∆1 in probability, under the condition

that both T1 and T − T1 are large.
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3.2.2 Our Estimation Strategy

We study Hong Kong’s fixed exchange rate effect on its economic outcomes.

Different from the treatment-control case considered in HCW, here Hong Kong’s

fixed exchange rate policy remains effective throughout the sample period. In this

sense there is no ‘treatment’ occurred to Hong Kong in the middle of our sample.

However, there was a significant event, the Asia Financial Crisis that occurred in

1997-1998. During this period, several countries changed their foreign exchange rate

policy, such as Korea, Malaysia and Thailand. We conjecture that Hong Kong’s

dollar would depreciate significantly against US dollar if Hong Kong had adopted

a flexible exchange rate policy during that time. The purpose of this chapter is

to investigate, since the 1997 Asian Financial Crisis, whether Hong Kong dollar is

overvalued (against US dollar) due to its fixed exchange rate policy after. For this

purpose we need to estimate the counterfactual Hong Kong’s exchange rate under

the scenario of a flexible exchange rate regime. Our problem is much more difficulty

than the standard treatment effects estimation problems such as considered in HCW

(2011) or in the usual difference in difference (DID). One major difficulty in our

analysis is that Hong Kong’s exchange rate is fixed throughout, hence, regressing

Hong Kong’s exchange on other countries’ exchange rate is meaningless. We have to

seek alternative estimation strategies. We use import/export price and purchasing

power parity to examine the counterfactual effects of Hong Kong exchange rate. Our

estimation procedure consists of the following steps. To facilitate the discussion we

will call October 1998 as the treatment date (denote as T1).

1. Hong Kong’s export price.

(a) Similar to HCW (2011), we regress (logarithm of) Hong Kong’s total

value of exports on that of its major trading partners using data prior to
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October 1998 (pre-treatment data),

y1t = α1 + β′Yt + ε1t for t < T1, (3.2.1)

where y1t is Hong Kong’s total value of exports at time t, Yt = (y2t, ..., yNt)
′

a vector of other countries’ total value of exports. Then, we use the

estimate coefficients of equation (3.2.1), along with the major trading

partners’ total value of exports, to compute Hong Kong’s counterfactual

of total value of exports for the post-treatment period. Let ŷ11t denote this

counterfactual value.

ŷ11t = α̂1 + β̂′Yt, for t > T1. (3.2.2)

Then, the average treatment effects (ATE) for Hong Kong’s total value of

exports (TVE) is

¯̂
∆TV E =

1

T − T1

T∑
t=T1+1

∆̂TV E,1t =
1

T − T1

T∑
t=T1+1

(
ŷ11t − y01t

)
,

where ∆̂TV E,1t represents the estimated treatment effects for Hong Kong

total value of exports (TVE) at time t and y01t are the observed Hong

Kong’s total value of exports.

(b) Repeat step 1 (a) for Hong Kong’s export volume (EV), i.e., replace total

value of exports by export volume index in step 1 (a), we estimate the

ATE for Hong Kong’s export volume, i.e.,
¯̂
∆EV after October 1998.

Based on step 1 (a) and 1 (b), we can measure the change in Hong Kong’s

export price as follows. Let EP denote export price. Recall that TV E and
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EV represent for total value of exports and export volume, respectively, we

have

EP j
1t =

TV Ej
1t

EV j
1t

, for j = 0, 1.

Hence, the change in Hong Kong’s export price (EP) can be computed by

∆̂EP,1t = ln

(
EP 1

1t

EP 0
1t

)
= ln(EP 1

1t)− ln(EP 0
1t)

= ln(TV E1
1t)− ln(TV E0

1t)−
[
ln(EV 1

1t)− ln(EV 0
1t)
]

= ∆̂TV E,1t − ∆̂EV,1t.

Then, the average estimated treatment effects for export price is

¯̂
∆EP =

1

T − T1

T∑
t=T1+1

∆̂EP,1t =
1

T − T1

T∑
t=T1+1

[
∆̂TV E,1t − ∆̂EV,1t

]
=

¯̂
∆TV E−

¯̂
∆EV .

2. Hong Kong’s import price.

Similar to the calculation of export price, we only need to change ‘E’ (export)

to ‘I’ (import) as follows: replacing EP , TV E and EV by IP , TV I and IV

in step 1 respectively, where IP , TV I and IV represent for import price, total

value of imports, and import volume, respectively. This gives us the estimated

change in Honk Kong’s import price (IP), i.e.,
¯̂
∆IP .

3. Generate the change in trade price index (TPI) as a weighted average of the

change in Hong Kong’s export price and import price, using Hong Kong’s total

value of exports and imports as weights.

∆TPI =
TV E × ¯̂

∆EP + TV I × ¯̂
∆IP

TV E + TV I
.
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4. According to PPP, st = pt − p∗t + et, where st, pt, and p∗t are the logarithm

of the bilateral exchange rate, Hong Kong’s trade prices and US trade prices,

respectively, and et is the error term. Under the assumption that US price level

is not affected by the treatment of 1997 Asia Financial Crisis. We obtain the

treatment effects on the bilateral exchange rate (∆st) given by ∆st = ∆TPI.

That is, the percentage (counterfactual) change in Hong Kong’s exchange rate

equals to the percentage (counterfactual) change in Hong Kong’s trade price

index. Then, a positive (negative) ∆TPI implies a overvalued (undervalued)

Hong Kong dollar.

3.3 The Data

The data sample for this chapter includes Hong Kong and Hong Kong’s 14 major

trading partners: Canada, China, France, Germany, Italy, Japan, Korea, Malaysia,

Netherlands, Singapore, Taiwan, Thailand, UK, and US. We use the monthly data

from IMF’s International Financial Statistics (IFS) (1991-2002). Total value of im-

ports/exports measured in national currency in log level and import/export volume

index (2005=100) for the 14 trading partners are used in lieu of the common factors

ft to predict those of Hong Kong after October 1998. IFS reports the data for most

of the countries.

Available for all the countries, the total value of imports/exports in national

currency is reported in IFS. We use the log level of the total value of imports/exports

in the regression.

The monthly data of import/export volume index are available in IFS, except for

China, Malaysia and Taiwan. These data reported in IFS use the trading volume

of 2005 as baseline. The Taiwanese data are from the Department of Statistics of

Taiwan. We change the baseline of the data from year 2011 to 2005. Chinese and
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Malaysian data are the linear interpolation of the annual data from UNCTD3. The

baseline is changed from year 2000 to 2005.

Hong Kong’s total value of imports/exports and import/export volume index are

all non-seasonal adjusted. We use these data to examine the treatment effects of

changing Hong Kong’s exchange rate policy from fixed to float and the overvaluation

of Hong Kong dollar. The empirical results are reported in the next section.

3.4 Results

Using HCW’s method, we regress Hong Kong’s economic measurements (y1t)

with those (Yt) of Hong Kong’s major trading partners from January 1991 to Oc-

tober 1998. The economic measurements are: total value of imports/exports and

import/export volume index. The regression model is as following. Since all of Hong

Kong’s economic measurements are non-seasonal adjusted data. We add seasonal

dummies in equation (3.2.1):

y1t = α1 + β′Yt +
11∑
j=1

γ1jDjt + ε1t for t < T1, (3.4.1)

where Djt for j = 1, ..., 11 are the monthly dummies and i may be different for

different regression. For instance, the control groups for section 3.4.1 are the countries

of domestic exports destinations, shown in Table C.9. Section 3.4.2 uses the imports

supplier in Table C.9.

3.4.1 Exports

In this section, y1t in equation (3.4.1) is the Hong Kong’s total value of exports,

Yt is the vector of the total value of exports for Hong Kong’s major domestic export

destinations. Table C.11 shows the OLS regression results, with very high adjusted

3United Nations Conference on Trade and Development, Handbook of Statistics and data files
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R-square and the p-value of F-statistics being 0.0000. Both suggest that the major

export destinations’ export values are good predictors for Hong Kong’s total value

of exports.

Figure B.1 plots the actual and the predicted total value of exports before and

after October 1998. We reports the estimated treatment effects after October 1998

in Table C.12. The autocorrelation functions for the treatment effects after October

1998 are plotted in Figure B.2 4. Based on Figure B.2, it seems that there is no serial

correlation for the treatment effects of Hong Kong total value of exports. Then, the

long-run effect is 0.1465, with t-statistic being 18.96, which is statistically significant.

This means that changing Hong Kong’s exchange rate policy from fixed to float will

significantly increase Hong Kong’s total value of exports by 14.65%.

For the regression of export volume, y1t in equation (3.4.1) is the Hong Kong’s

export volume index, Yt is the vector of the export volume indices for Hong Kong’s

major domestic export destinations. Table C.13 reports the regression results for

Hong Kong’s export volume index. The actual and the predicted export volume

index before and after October 1998 are plotted in Figure B.3. The estimated treat-

ment effects after October 1998 are reported in Table C.14. Figure B.4 plots the

autocorrelation functions for the treatment effects after October 1998, which sug-

gests fitting an AR(4) model to the estimated treatment effects for export volume

index after October 1998.

∆̂1t =0.9802 + 0.3490∆1t−1 + 0.3549∆1t−2 − 0.1234∆1t−3 + 0.3046∆1t−4.

(1.31) (2.37) (1.91) (−0.90) (1.72)

4The shade area uses Bartlett’s formula for MA(q) 95% confidence bands. The shade areas for
the rest autocorrelation functions figures use the same formula.
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This indicates the long-run effect is 8.5262, with t-statistic being 1.15, which is

statistically insignificant. However, based on Table C.14, the average treatment

effects for Hong Kong’s exports volume is 5.11% with large t-statistics being 6.69.

Notice that the increase in export volume is smaller than the increase in total value

of exports, indicating that Hong Kong’s export price increases by 14.65%− 5.11% =

9.54%.

3.4.2 Imports

This section uses y1t in equation (3.4.1) as the Hong Kong’s total value of imports

and Yt as the vector of the total value of imports for Hong Kong’s major imports

suppliers. The OLS regression results are shown in Table C.15. Adjusted R-square

is very high. The p-value of F-statistics is 0.0000. Both suggest that the major

suppliers’ imports values are good predictors for Hong Kong’s total value of imports.

Figure B.5 plots the actual and the predicted total value of imports before and

after October 1998. We reports the estimated treatment effects after October 1998

in Table C.16. The autocorrelation functions for the treatment effects after October

1998 are plotted in Figure B.6, suggesting that there is serial correlation in the

treatment effects. Then, we fit an AR(3) model to the treatment effects of Hong

Kong total value of imports.

∆̂1t =0.0972 + 0.0375∆1t−1 + 0.2725∆1t−2 + 0.4176∆1t−3.

(3.02) (0.26) (2.06) (4.15)

This indicates the long-run effect is 0.3567, with t-statistic being 8.60, which is

statistically very significant. Based on Table C.16, the average treatment effects for

Hong Kong’s total value of imports in 31.04% with t-statistics being 21.11.
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Now, we change y1t in equation (3.4.1) to the Hong Kong’s import volume index

and Yt to the vector of import volume indices for Hong Kong’s major suppliers. Table

C.17 reports the regression results for Hong Kong’s import volume index. The actual

and the predicted import volume index before and after October 1998 are plotted

in Figure B.7. The estimated treatment effects after October 1998 are reported in

Table C.18. Figure B.8 plots the autocorrelation functions for the treatment effects

after October 1998. Based on Figure B.8, we fit an AR(4) model to the treatment

effects of Hong Kong import volume index.

∆̂1t =1.7014 + 0.4961∆1t−1 + 0.4757∆1t−2.

(1.33) (3.47) (3.65)

This indicates the long-run effect is 60.2695, with t-statistic being 0.80, which is

statistically insignificant. However, based on Table C.18, the average treatment

effects for Hong Kong’s imports volume is 21.90% with large t-statistics being 16.02.

Similarly, t the increase in import volume is smaller than the increase in total value of

imports, indicating that Hong Kong’s import price increases by 31.04%− 21.90% =

9.14%.

3.4.3 Overvaluation

Combining the results for Hong Kong’s external trade from November 1998 to

December 2002, we find that if Hong Kong uses float exchange rate, Hong Kong’s

export (import) price increases by 9.54% (9.14%), since Hong Kong’s total value of

exports (imports) increases by 14.65% (31.04%) and Hong Kong’s export (import)

volume index increases by 5.11% (21.90%). Also, the average Hong Kong’s total

value of exports (imports) is about 15.9 (16.6) billions after October 1998. Hong
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Kong’s trade price (TPI) increases by

∆TPI =
TV E × ¯̂

∆EP + TV I × ¯̂
∆IP

TV E + TV I

=
15.9× (14.65%− 5.11%) + 16.6× (31.04%− 21.90%)

15.9 + 16.6
= 9.34%,

which indicates that Hong Kong dollar is overvalued by 9.34% if Hong Kong keeps

using fixed exchange rate policy.

3.5 Conclusions

Using a simple-to-implement panel data method proposed by Hsiao, Ching and

Wan (2011), we examine Hong Kong’s imports/exports changes as a result of dif-

ferent exchange rate policies. That is, we regress the external trade on those of

other countries before October 1998 and exploit the dependence among countries to

construct a counterfactual for Hong Kong’s external trade assuming Hong Kong’s

exchange rate policy being float after October 1998.

Using the data for Hong Kongs 14 major trading partners, we find that changing

Hong Kong exchange rate policy from pegging to US dollar to float rate would

increase Hong Kong’s total value of exports by 14.65%, which is larger than the

increase in the export volume (5.11%). Hong Kong’s total value of imports increases

significantly by 31.04%, larger than the increase in the import volume (21.90%).

All of which indicates an increase in Hong Kong’s trade price, which is a more

appropriate price index for exchange rate forecasting than CPI or WPI. Based on

purchasing power parity (PPP), we conclude that Hong Kong dollar is overvalued

by 9.34% if Hong Kong continues using fixed exchange rate policy.
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4. CONCLUSIONS

In this thesis, we first propose using the profile least square method to estimate a

nonparametric panel data fixed effects model. We derive the asymptotic distribution

of our proposed estimator when both n and T are large. Our proposed estimator

has an asymptotically normal distribution with different variances depending on the

order of magnitude of Th1...hq. When n is large and T is small, the asymptotic

analysis of our proposed estimator is quite complex and we leave the asymptotic

analysis of our estimator for the small T case as a future research topic. Monte

Carlo simulations show that in finite sample applications our proposed estimator

performs well compared with existing estimators.

Second, we examine Hong Kong’s imports/exports changes as a result of different

exchange rate policies, using a simple-to-implement panel data method proposed by

Hsiao, Ching and Wan (2011). That is, we regress the external trade on those of

other countries before October 1998 and exploit the dependence among countries to

construct a counterfactual for Hong Kong’s external trade assuming Hong Kong’s

exchange rate policy being float after October 1998. Using the data for Hong Kongs

14 major trading partners, we find that changing Hong Kong exchange rate policy

from pegging to US dollar to float rate would increase Hong Kong’s total value of

exports by 14.65%, which is larger than the increase in the export volume (5.11%).

Hong Kong’s total value of imports increases significantly by 31.04%, larger than

the increase in the import volume (21.90%). All of which indicates an increase in

Hong Kong’s trade price. Based on purchasing power parity (PPP), we conclude

that Hong Kong dollar is overvalued by 9.34% if Hong Kong continues using fixed

exchange rate policy.
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APPENDIX A

PROOF OF THEOREM 2.3.1

Throughout the Appendix, we use the following notations: ‘
d→’ and ‘

p→’ refer

to convergence in distribution and convergence in probability, respectively. For a

function g : Rq → R, we use g(1) (x) = ∂g (x) /∂x (a q × 1 vector) and g(2) (x) =

∂2g (x) /∂x∂x′ (a q×q matrix) to represent g’s first- and second- order partial deriva-

tives, respectively.

Rewriting m̂(x), we obtain,

m̂(x) = sh(x)′MY

= sh(x)′M(m(X) +D0µ+ V )

≡ m̂1(x) + m̂2(x) + m̂3(x),

where m̂1(x) = sh(x)′Mm(X), m̂2(x) = sh(x)′MD0µ and m̂3(x) = sh(x)′MV .

We derive the limiting results of m̂1(x), m̂2(x) and m̂3(x) in the following sub-

sections.

A.1 Limiting result of m̂1(x)

Recall that sh(x)′ = [ι′nTKh(x)ιnT ]−1ι′nTKh(x) is a 1 by nT vector with a typical

element given by sh,it(x).

Lemma A.1. Under Assumptions A1-A4,

sh,it(x) =
Kh(Xit, x)∑n

i=1

∑T
t=1Kh(Xit, x)

=
Kh(Xit, x)

nTf(x)
[1 + op(1)]. (A.1)
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Proof: It follows from (nT )−1
∑n

i=1

∑T
t=1Kh(Xit, x) = f(x) + op(1).

We decompose m̂1(x) into different parts next. By Taylor expansion, we have

m(Xit)−m(x) = (Xit−x)′m(1)(x) + 1
2
(Xit−x)′m(2)(x)(Xit−x) +R(Xit−x), where

R(Xit−x) = m(Xit)−m(x)− (Xit−x)′m(1)(x)− 1
2
(Xit−x)′m(2)(x)(Xit−x). Then,

m̂1(x) = sh(x)′(InT −D[D′PD]−1D′P )m(X)

= sh(x)′[ιnTm(x) +m(X)− ιnTm(x)−D[D′PD]−1D′Pm(X)]

= sh(x)′ιnTm(x) +
n∑
i=1

T∑
t=1

sh,it(x)(Xit − x)′m(1)(x)

+
1

2

n∑
i=1

T∑
t=1

sh,it(x)(Xit − x)′m(2)(x)(Xit − x) +R(x)

− sh(x)D[D′PD]−1D′Pm(X)

= m(x) +
n∑
i=1

T∑
t=1

sh,it(x)(Xit − x)m(1)(x)

+
1

2

n∑
i=1

T∑
t=1

sh,it(x)(Xit − x)′m(2)(x)(Xit − x) +R(x)

− sh(x)′D[D′PD]−1D′Pm(X)

≡ m(x) + A11 + A12 +R(x)− A14,

where

A11 =
n∑
i=1

T∑
t=1

sh,it(x)(Xit − x)m(1)(x) (A.2)

A12 =
1

2

n∑
i=1

T∑
t=1

sh,it(x)(Xit − x)′m(2)(x)(Xit − x), (A.3)

R(x) =
n∑
i=1

T∑
t=1

sh,it(x)R(Xit − x) (A.4)
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A14 =sh(x)′D[D′PD]−1D′Pm(X). (A.5)

By recalling that the leading term of sh,it(x) is Kh(Xit,x)
nTf(x)

[1 + op(1)], it is easy to

show that R(x) = Op(
∑q

s=1 h
4
s).

Lemma A.2. Under Assumptions A1-A4,

A11 = Bh (x) +Op

(
q∑
s=1

h4s

)
+Op

(
(nTh1...hq)

−1/2
q∑
s=1

hs

)
, (A.6)

where Bh (x) = κ2
∑q

s=1 h
2
s[ms(x)fs(x)/f(x) + 1

2
mss(x)] = O (

∑q
s=1 h

2
s) and κ2 =∫

Rq v
2k(v)dv, where ms(x) = ∂m(x)

∂xs
, mss(x) = ∂2m(x)

∂x2s
and fs(x) = ∂f(x)

∂xs
.

Proof : By Lemma A.1, we obtain

A11 = m(1)(x)′
n∑
i=1

T∑
t=1

sh,it(x)(Xit − x) +
1

2

n∑
i=1

T∑
t=1

sh,it(x)(Xit − x)′m(2)(x)(Xit − x)

= m(1)(x)′
n∑
i=1

T∑
t=1

(nT )−1f−1(x)Kh(Xit, x)(xit − x)

+
1

2

n∑
i=1

T∑
t=1

(nT )−1f−1(x)Kh(Xit, x)(Xit − x)′m(2)(x)(Xit − x)

= f−1(x)m(1)(x)′(nT )−1
n∑
i=1

T∑
t=1

Kh(Xit, x)(Xit − x)

+ f−1(x)
1

2
(nT )−1

n∑
i=1

T∑
t=1

Kh(Xit − x)(Xit − x)′m(2)(x)(Xit − x).
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Therefore,

E(A11) = f−1(x)m(1)(x)′E(Kh(Xit, x)(Xit − x))

+ f−1(x)
1

2
E(Kh(Xit, x)(Xit − x)′m(2)(x)(Xit − x))

= κ2

q∑
s=1

h2s[ms(x)fs(x)/f(x) +
1

2
mss(x)] +O(

(
q∑
s=1

h4s

)
.

Using the same methods, it is easy to show that V ar(A11) = O ((nTh1...hq)
−1∑q

s=1 h
2
s).

Hence, we have A11 = Bh(x) + Op (
∑q

s=1 h
4
s) + Op

(
(nTh1...hq)

−1/2∑q
s=1 hs

)
. This

completes the proof of Lemma A.2.

Lemma A.3. For two square matrices A and B, if AA=A, BB=B, AB=BA=0, and

A+B=I, then

C−1 = (aA+ bB)−1 =
1

a
A+

1

b
B, (a, b 6= 0) (A.7)

Proof :

CC−1 =(aA+ bB)(aA+ bB)−1 = (aA+ bB)(
1

a
A+

1

b
B)

=AA+
b

a
BA+

a

b
AB +BB = A+B = I.

Lemma A.4.

(D′D)−1 =
1

T
In−1 −

1

nT
Jn−1,

where Jn−1 = ιn−1ι
′
n−1.
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Proof : Since D = [−ιn−1 In−1]
′ ⊗ ιT ,

D′D =([−ιn−1 In−1]
′ ⊗ ιT )′([−ιn−1 In−1]

′ ⊗ ιT )

=([−ιn−1 In−1][−ιn−1 In−1]
′)⊗ ι′T ιT = T [ιn−1ι

′
n−1 + In−1].

Let J̄n−1 ≡ 1
n−1Jn−1 = 1

n−1ιn−1ι
′
n−1 and En−1 ≡ In−1 − J̄n−1, we have

D′D = T (In−1 + Jn−1) = T [In−1 + (n− 1)J̄n−1] = T [nJ̄n−1 + En−1]. (A.8)

By Lemma A.3, we have a = n, b = 1 A = J̄n−1 = 1
n−1Jn−1, B = En−1 = In−1− J̄n−1,

AA = 1
n−1Jn−1

1
n−1Jn−1 = 1

(n−1)2 ιn−1ι
′
n−1ιn−1ι

′
n−1 = 1

(n−1)ιn−1ι
′
n−1 = A, BB = (In−1−

J̄n−1)(In−1 − J̄n−1) = B and AB = J̄n−1(In−1 − J̄n−1) = 0 = BA. Therefore,

(D′D)−1 =
1

T

[
1

n
J̄n−1 + En−1

]
=

1

T

[
1

n
J̄n−1 + In−1 − J̄n−1

]
=

1

T

[
1− n
n

J̄n−1 + In−1

]
=

1

T

[
1− n
n

1

n− 1
Jn−1 + In−1

]
=

1

T
In−1 −

1

nT
Jn−1.

Lemma A.5. Under Assumptions A1-A4, as n→∞ and T →∞,

(D′PD)−1 = (D′D)−1 −Op(δn),

where δn = h2 + 1√
nTh

.

Proof : Recall that D = [−ιn−1 In−1]
′ ⊗ ιT and P = [InT − S]′[InT − S], we have

that D′PD = D′D−D′S ′D−D′SD+D′S ′SD = T [ιn−1ι
′
n−1 + In−1]−∆, where the
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(n− 1) square matrix ∆ is

∆ =


sh,2,2 − sh,1,2 − sh,2,1 + sh,1,1 · · · sh,n,2 − sh,1,2 − sh,n,1 + sh,1,1

. . .

sh,2,n − sh,1,n − sh,2,1 + sh,1,1 · · · sh,n,n − sh,1,n − sh,n,1 + sh,1,1



+


sh,2,2 − sh,1,2 − sh,2,1 + sh,1,1 · · · sh,2,n − sh,1,n − sh,2,1 + sh,1,1

. . .

sh,n,2 − sh,1,2 − sh,n,1 + sh,1,1 · · · sh,n,n − sh,1,n − sh,n,1 + sh,1,1



−


∑n

j=1{sh,2,j − sh,1,j}2 · · ·
∑n

j=1{sh,2,j − sh,1,j}{sh,n,j − sh,1,j}
. . .∑n

j=1{sh,2,j − sh,1,j}{sh,n,j − sh,1,j} · · ·
∑n

j=1{sh,2,j − sh,1j}2


where sh,i,j =

∑T
s=1

∑T
t=1 sh,it(Xjs) and sh,it(Xjs) is a typical element of sh(x)′ =

[ι′nTKh(x)ιnT ]−1 ι′nTKh(x) when x = Xjs. Rewrite sh,i,j and by Lemma A.1, we have

sh,i,j =
T∑
s=1

T∑
t=1

sh,it(Xjs) =
T∑
s=1

∑T
t=1Kh(Xit, Xjs)∑n

i=1

∑T
t=1Kh(Xit, Xjs)

.

As n→∞ and T →∞,

sh,i,j =
T∑
s=1

Tf(Xjs)

nTf(Xjs)
[1 + δn] =

T

n
[1 + δn],

where δn = Op

(
h2 + 1√

nTh

)
. Then, D′PD = D′D − ∆ = D′D − δnJn−1. This

completes the proof of Lemma A.5.

Let (s.o.) denotes small order terms, which means if A = B[1 + op(1)], then

A = B + (s.o.), where B is the leading term, and (s.o.) represents the terms that

have smaller order than B.
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Lemma A.6. Under Assumption A1-A4 and by Lemma A.4 and Lemma A.5, for

any nT by 1 vector ΠnT = (π11, π12, · · · , π1T , π21, · · · , πnT )′, we have

sh(x)′D[D′PD]−1D′PΠnT

=
1

n2T

n∑
i=2

T∑
t=1

πit[1 + δn]− 2

n3T 2

n∑
i=1

T∑
t=1

πit[1 + δn] +
1

n4T 3

n∑
i=1

T∑
t=1

πit[1 + δn],

where e1 = (0, . . . , 0, 1, . . . , 1) is a 1 by nT row vector with the first T elements being

zeros and the rest elements being ones.

Proof : By Lemma A.5, we have

sh(x)′D[D′PD]−1D′PΠnT = sh(x)′D[D′D]−1D′PΠnT + (s.o.)

= sh(x)′D[D′D]−1D′[InT − S ′ − S + S ′S]ΠnT + (s.o.)

= sh(x)′D[D′D]−1D′ΠnT − sh(x)′D[D′D]−1D′S ′ΠnT − sh(x)′D[D′D]−1D′SΠnT

+sh(x)′D[D′D]−1D′S ′SΠnT + (s.o.)

≡ B1 −B2 −B3 +B4 + (s.o.),

where the definitions of Bj, j = 1, ..., 4, should be apparent.

Recall that D = [−ιn−1 In−1]
′ ⊗ ιT and by Lemma A.4,

D[D′D]−1D′ =D

[
1

T
In−1 −

1

nT
Jn−1

]
D′

=
1

nT



0T×T 0′(n−1)T×T

(n− 1)JT −1 · · · −1

0(n−1)T×T
. . .

−1 · · · −1 (n− 1)JT


,

where 0T×T is a T by T square matrix with all elements being zeros. The diagonal
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T by T elements of the low left part of the matrix are (n− 1), and the rest elements

are −1.

Since sh(x)′ = [ι′nTKh(x)ιnT ]−1ι′nTKh(x), we have

B1 = sH(x)′D[D′D]−1D′ΠnT

=
1

nT

(
0, · · · , 0, (n− 1)sh,2(x)−

n∑
i=3

sh,i(x), · · · , (n− 1)sh,n(x)−
n−1∑
i=2

sh,i(x)

)
ΠnT

=
1 + δn

n2T 2f(x)

(
01×T , (n− 1)

T∑
t=1

Kh(X2t, x)

−
n∑
i=3

T∑
t=1

Kh(Xit − x), · · · , (n− 1)
T∑
t=1

Kh(Xnt, x)−
n−1∑
i=2

T∑
t=1

Kh(Xit − x)

)
ΠnT

=
1

n2T 2f(x)
(01×T , Tf(x), · · · , T f(x)) ΠnT [1 + δn] =

1

n2T
e1ΠnT [1 + δn]

=
1

n2T

n∑
i=2

T∑
t=1

πit[1 + δn],

where sh,i(x) =
∑T

t=1 sh,it(x) is the same defined in the proof of Lemma A.5. Lemma

A.1 is used in the second equality. The same derivation is used in the second term.

B2 =sh(x)′D[D′D]−1D′S ′ΠnT =
1

n2T
e1S

′ΠnT [1 + δn]

=
1

n2T

(∑n
i=2

∑T
t=1Kh(X11, Xit)∑n

i=1

∑T
t=1Kh(X11, Xit)

, · · · ,
∑n

i=2

∑T
t=1Kh(XnT , Xit)∑n

i=1

∑T
t=1Kh(XnT , Xit)

)
ΠnT [1 + δn]

=
1

n2T

(
f(X11)

nTf(X11)
, · · · , f(XnT )

nTf(XnT )

)
ΠnT [1 + δn] + (s.o.)

=
1

n3T 2
ι′nTΠnT [1 + δn] + (s.o.) =

1

n3T 2

n∑
i=1

T∑
t=1

πit[1 + δn] + (s.o.).
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For the third term,

B3 = sh(x)′D[D′D]−1D′SΠnT =
1

n2T
e1SΠnT [1 + δn]

=
1

n2T

(
n∑
i=2

T∑
t=1

Kh(X11, Xit)∑n
j=1

∑T
s=1Kh(Xjs, Xit)

, · · · ,

n∑
i=2

T∑
t=1

Kh(XnT , Xit)∑n
j=1

∑T
s=1Kh(Xjs, Xit)

)
ΠnT [1 + δn]

=
1

n2T

(
n∑
i=2

T∑
t=1

Kh(X11, Xit)

nTf(Xit)
, · · · ,

n∑
i=2

T∑
t=1

Kh(XnT , Xit)

nTf(Xit)

)
ΠnT [1 + δn].

For a typical elements in the above vector, we have

Kh(Xjs, Xit)

f(Xit)
=

Kh(Xjs, Xit)

f(Xit)− f(Xjs) + f(Xjs)
=

Kh(Xjs, Xit)

f(Xjs)[1− f(Xit)−f(Xjs)

f(Xjs)
]

=
Kh(Xjs, Xit)

f(Xjs)
[1 + ςit,js + ς2it,js + · · · ],

where ςit,js =
f(Xit)−f(Xjs)

f(Xjs)
and the fact that 1

1−x = 1 +x+x2 + · · · is used in the last

equality. Further calculation gives that

sh(x)′D[D′D]−1D′SΠnT

=
1

n2T

(
n∑
i=2

T∑
t=1

Kh(X11, Xit)

nTf(X11)
, · · · ,

n∑
i=2

T∑
t=1

Kh(XnT , Xit)

nTf(XnT )

)
ΠnT [1 + ςit,js + ς2it,js + · · · ][1 + δn]

=
1

n2T

(
f(X11)

nTf(X11)
, · · · , f(XnT )

nTf(XnT )

)
ΠnT [1 + δn] + (s.o.)

=
1

n3T 2
ι′nTΠnT [1 + δn] + (s.o.) =

1

n3T 2

n∑
i=1

T∑
t=1

πit[1 + δn] + (s.o.).
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Using the same method in deriving the second and the third terms above, we have

B4 =sh(x)′D[D′D]−1D′S ′SΠnT =
1

n3T 2
ι′nTSΠnT [1 + δn]

=
1

n3T 2

(
n∑
i=1

T∑
t=1

Kh(X11, Xit)

nTf(X11)
, · · · ,

n∑
i=1

T∑
t=1

Kh(XnT , Xit)

nTf(XnT )

)
ΠnT [1 + δn]

=
1

n3T 2

(
f(X11)

nTf(X11)
, · · · , f(XnT )

nTf(XnT )

)
ΠnT [1 + δn] + (s.o.)

=
1

n4T 3
ι′nTΠnT [1 + δn] + (s.o.) =

1

n4T 3

n∑
i=1

T∑
t=1

πit[1 + δn] + (s.o.).

Summarizing the above, we have shown that

sh(x)′D[D′PD]−1D′PΠnT

= sh(x)′D[D′D]−1D′ΠnT − sh(x)′D[D′D]−1D′S ′ΠnT − sh(x)′D[D′D]−1D′SΠnT

+ sh(x)′D[D′D]−1D′S ′SΠnT + (s.o.)

=
1

n2T
e1ΠnT [1 + δn]− 1

n3T 2
ι′nTΠnT [1 + δn]− 1

n3T 2
ι′nTΠnT [1 + δn]

+
1

n4T 3
ι′nTΠnT [1 + δn] + (s.o.)

=
1

n2T

n∑
i=2

T∑
t=1

πit[1 + δn]− 2

n3T 2

n∑
i=1

T∑
t=1

πit[1 + δn] +
1

n4T 3

n∑
i=1

T∑
t=1

πit[1 + δn] + (s.o.).

This completes the proof of Lemma A.6.

Lemma A.7. Under Assumptions A1-A4, Lemma A.4, A.5 and A.6,

A14 = sh(x)′D[D′PD]−1D′Pm(X) =
1

n

[
E[m(Xit)] +Op

(
1√
nT

)]
.
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Proof : By Lemma A.6, it is easy to show that

sh(x)′D[D′PD]−1D′Pm(X)

= sh(x)′D[D′D]−1D′Pm(X) + (s.o.)

=

{
1

n2T
e1[1 + δn]− 2

n3T 2
ι′nT [1 + δn] +

1

n4T 3
ι′nT [1 + δn]

}
m(X)

=
1

n2T

n∑
i=2

T∑
t=1

m(Xit)[1 + δn]− 2

n3T 2

n∑
i=1

T∑
t=1

m(Xit)[1 + δn]

+
1

n4T 3

n∑
i=1

T∑
t=1

m(Xit)[1 + δn]

=
1

n

[
E[m(Xit)] +Op

(
1√
nT

)]
+ (s.o.).

A.2 Limiting result of m̂2(x)

Define an (n−1) by 1 vector µ̃ by µ̃ = (µ2, . . . , µn)′. Then it is easy to check that

MDµ̃ ≡ 0, where M = InT − D[D′PD]−1D′P . Hence, by adding and subtracting

terms, we obtain

m̂2(x) ≡ sh(x)′MD0µ

= sh(x)′(InT −D[D′PD]−1D′P )D0µ

= sh(x)′(InT −D[D′PD]−1D′P )(D0µ+Dµ̃−Dµ̃)

= sh(x)′(D0µ−Dµ̃)− sh(x)′D[D′PD]−1D′P (D0µ−Dµ̃)

= sh(x)′(D0µ−Dµ̃)− sh(x)′D[D′D]−1D′P (D0µ−Dµ̃) + (s.o.),

where MDµ̃ ≡ 0 is used in the second to the last equality and Lemma A.5 is used

in the last equality.
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Recall that

D0µ−Dµ̃ =



µ1

...

µ1

µ2

...

µn


−



−
∑n

i=2 µi
...

−
∑n

i=2 µi

µ2

...

µn


=



nµ̄

...

nµ̄

0

...

0


,

where nµ̄ =
∑n

i=1 µi. We obtain D0µ−Dµ̃ = nµ̄e2, where e2 = (1, . . . , 1, 0, . . . , 0)′ is

an nT by 1 vector with the first T elements being ones and all other elements being

zeros.

By Lemma A.6, it is easy to show that

m̂2(x) = sh(x)′(D0µ−Dµ̃)− sh(x)′D[D′D]−1D′P (D0µ−Dµ̃) + (s.o.)

= nµ̄sh(x)′e2 −
{

1

n2T
e1[1 + δn]− 2

n3T 2
ι′nT [1 + δn] +

1

n4T 3
ι′nT [1 + δn]

}
nµ̄e2

=
nµ̄

nTf(x)

T∑
t=1

Kh(X1t, x)− nµ̄

n2T
e1e2[1 + δn] +

2nµ̄

n3T 2
[1 + δn]ι′nT e2 −

nµ̄

n4T 3
[1 + δn]ι′nT e2

= nµ̄
T∑
t=1

sh,1t(x)− 0 +
2µ̄[1 + δn]

n2T 2
− µ̄[1 + δn]

n3T 3

≡ µ̄m̂21(x) + (s.o.),

where m̂21(x) = n
∑T

t=1 sh,1t(x) =
∑T

t=1Kh(X1t,x)

Tf(x)
.

Lemma A.2.1. Under Assumptions A1-A4,

m̂21(x) = 1 + op(1),
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since 1
T

∑T
t=1Kh(X1t, x)

p→ f(x) as T →∞ and n→∞.

Recall that m̂2(x) = µ̄m̂21(x) + (s.o.) = µ̄[1 + op(1)] and
√
nµ̄

d→ N(0, σ2
µ), as

T →∞ and n→∞.

Lemma A.2.2. 1. Under Assumption A1-A4, when Th1...hq → 0,

√
nTh1...hqm̂2(x) =

√
Th1...hq

√
nµ̄

p→ 0.

2. Under Assumption A1-A4, , when Th1...hq → a0, where a0 is a constant,

√
nTh1...hqm̂2(x) =

√
Th1...hq

√
nµ̄

d→ N(0, a0σ
2
µ).

3. Under Assumption A1-A3 and A5, when Th1...hq →∞,

√
nm̂2(x) =

√
nµ̄

d→ N(0, σ2
µ),

and

√
nBh(x) =

√
nO(

q∑
s=1

h2s) =

√√√√n

q∑
s=1

h4s = O(1).

A.3 Limiting result of m̂3(x)

Lemma A.3.1. Under Assumptions A1-A4, Lemma A.4, A.5 and A.6,

√
nTh1...hqm̂3(x)

d→ N

(
0,
ζ0σ

2
ν

f(x)

)
. (A.1)
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Proof : Let ζ0 =
∫
K(v)2dv, by CLT and the same methods we prove A11,

√
nTh1...hqm̂3(x)

=
√
nTh1...hqsh(x)′MV =

√
nTh1...hqsh(x)′(InT −D[D′PD]−1D′P )V

=
√
nTh1...hqsh(x)′V −

√
nTh1...hqsh(x)′D[D′PD]−1D′PV

=
√
nTh1...hq

{
sh(x)′V − 1

nT 2
e1V [1 + δn]− 2

n2T 3
ι′nTV [1 + δn] +

1

n3T 4
ι′nTV [1 + δn]

}
+ (s.o.)

=
√
nTh1...hq

n∑
i=1

T∑
t=1

sh,it(x)νit −
√
nTh1...hq

nT 2

T∑
t=1

ν1t + (s.o.)

d→ N

(
0,
ζ0σ

2
ν

f(x)

)
.

Remark A.3.2. When Th1...hq → ∞,
√
n(nTh1...hg)

−1/2 = 1√
Th1...hq

→ 0, which

gives the result of Theorem 2.3.1 part 3.

We have now completed the proof of Theorem 2.3.1.
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APPENDIX B

FIGURES

Figure B.1: Treatment Effects of Hong Kong Total Value of Exports
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Figure B.2: Autocorrelations of Treatment Effects for Hong Kong Total Value of
Exports
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Figure B.3: Treatment Effects of Hong Kong Export Volume Index
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Figure B.4: Autocorrelations of Treatment Effects for Hong Kong Export Volume
Index
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Figure B.5: Treatment Effects of Hong Kong Total Value of Imports
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Figure B.6: Autocorrelations of Treatment Effects for Hong Kong Total Value of
Imports
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Figure B.7: Treatment Effects of Hong Kong Import Volume Index
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Figure B.8: Autocorrelations of Treatment Effects for Hong Kong Import Volume
Index
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APPENDIX C

TABLES

Table C.1: AMSE of m̂ (x) for Different Estimators (DGP1, c0 = 0.5)
T n m̂HCL(x) m̂KLH(x) m̂LS(x) m̂SU(x) m̂LC(x)
2 50 0.0833 0.1478 0.2052 0.0725 0.0567

100 0.0462 0.0863 0.1874 0.0415 0.0332
200 0.0253 0.0460 0.1767 0.0217 0.0177
500 0.0115 0.0240 0.1709 0.0102 0.0087

3 50 0.0670 0.0697 0.0912 0.0432 0.0372
100 0.0363 0.0394 0.0739 0.0252 0.0198
200 0.0191 0.0243 0.0682 0.0135 0.0119
500 0.0086 0.0136 0.0615 0.0063 0.0055

4 50 0.0630 0.0486 0.0525 0.0339 0.0298
100 0.0336 0.0267 0.0376 0.0196 0.0160
200 0.0176 0.0174 0.0313 0.0104 0.0089
500 0.0079 0.0097 0.0264 0.0048 0.0042

5 50 0.0570 0.0375 0.0354 0.0275 0.0242
100 0.0306 0.0219 0.0239 0.0155 0.0139
200 0.0168 0.0140 0.0174 0.0084 0.0075
500 0.0076 0.0084 0.0133 0.0038 0.0036

10 50 0.0552 0.0194 0.0178 0.0167 0.0164
100 0.0278 0.0124 0.0098 0.0094 0.0087
200 0.0158 0.0083 0.0056 0.0054 0.0048

20 50 0.0533 0.0118 0.0126 0.0127 0.0120
100 0.0291 0.0079 0.0067 0.0067 0.0062
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Table C.2: AMSE of m̂ (x) for Different Estimators (DGP1, c0 = 1)
T n m̂HCL(x) m̂KLH(x) m̂LS(x) m̂SU(x) m̂LC(x)
2 50 0.0843 0.1478 0.2091 0.0749 0.0597

100 0.0462 0.0863 0.1895 0.0424 0.0327
200 0.0262 0.0460 0.1778 0.0222 0.0186
500 0.0113 0.0240 0.1713 0.0105 0.0087

3 50 0.0066 0.0697 0.0939 0.0463 0.0379
100 0.0370 0.0394 0.0752 0.0244 0.0219
200 0.0199 0.0243 0.0688 0.0141 0.0118
500 0.0089 0.0136 0.0618 0.0064 0.0059

4 50 0.0595 0.0486 0.0545 0.0358 0.0321
100 0.0325 0.0267 0.0386 0.0192 0.0169
200 0.0178 0.0174 0.0317 0.0106 0.0098
500 0.0082 0.0097 0.0266 0.0049 0.0045

5 50 0.0596 0.0375 0.0366 0.0292 0.0258
100 0.0325 0.0219 0.0246 0.0165 0.0141
200 0.0170 0.0140 0.0178 0.0087 0.0078
500 0.0078 0.0084 0.0135 0.0040 0.0036

10 50 0.0564 0.0194 0.0183 0.0188 0.0173
100 0.0297 0.0124 0.0101 0.0098 0.0093
200 0.0161 0.0083 0.0058 0.0054 0.0041

20 50 0.0546 0.0118 0.0128 0.0130 0.0117
100 0.0300 0.0079 0.0068 0.0068 0.0064
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Table C.3: AMSE of m̂ (x) for Different Estimators (DGP1, c0 = 2)
T n m̂HCL(x) m̂KLH(x) m̂LS(x) m̂SU(x) m̂LC(x)
2 50 0.0838 0.1478 0.2217 0.0845 0.0697

100 0.0467 0.0863 0.1963 0.0476 0.0403
200 0.0242 0.0460 0.1811 0.0248 0.0212
500 0.0117 0.0240 0.1726 0.0114 0.0099

3 50 0.0659 0.0697 0.1028 0.0530 0.0462
100 0.0356 0.0394 0.0793 0.0276 0.0240
200 0.0195 0.0243 0.0707 0.0156 0.0139
500 0.0088 0.0136 0.0626 0.0070 0.0063

4 50 0.0612 0.0486 0.0610 0.0409 0.0368
100 0.0328 0.0267 0.0419 0.0218 0.0194
200 0.0176 0.0174 0.0333 0.0118 0.0106
500 0.0079 0.0097 0.0272 0.0054 0.0049

5 50 0.0591 0.0375 0.0412 0.0328 0.0289
100 0.0313 0.0219 0.0273 0.0187 0.0168
200 0.0174 0.0140 0.0189 0.0096 0.0088
500 0.0077 0.0084 0.0140 0.0045 0.0041

10 50 0.0533 0.0194 0.0204 0.0207 0.0189
100 0.0307 0.0124 0.0111 0.0107 0.0099
200 0.0158 0.0083 0.0064 0.0059 0.0055

20 50 0.0559 0.0118 0.0139 0.0140 0.0133
100 0.0297 0.0079 0.0074 0.0073 0.0069
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Table C.4: AMSE of m̂ (x) for Different Estimators (DGP2, c0 = 0.5)
T n m̂HCL(x) m̂KLH(x) m̂LS(x) m̂SU(x) m̂LC(x)
2 50 0.0758 0.1724 0.1531 0.0693 0.0596

100 0.0425 0.1150 0.1378 0.0390 0.0357
200 0.0222 0.0767 0.1288 0.0202 0.0195
500 0.0106 0.0548 0.1241 0.0096 0.0098

3 50 0.0521 0.1017 0.0867 0.0423 0.0394
100 0.0285 0.0716 0.0713 0.0226 0.0216
200 0.0158 0.0569 0.0661 0.0127 0.0131
500 0.0073 0.0446 0.0606 0.0059 0.0065

4 50 0.0438 0.0810 0.0592 0.0326 0.0316
100 0.0242 0.0592 0.0454 0.0174 0.0174
200 0.0131 0.0487 0.0397 0.0096 0.0101
500 0.0062 0.0397 0.0353 0.0044 0.0050

5 50 0.0398 0.0692 0.0440 0.0268 0.0256
100 0.0227 0.0537 0.0330 0.0150 0.0151
200 0.0123 0.0455 0.0270 0.0079 0.0085
500 0.0057 0.0380 0.0230 0.0037 0.0042

10 50 0.0332 0.0518 0.0222 0.0174 0.0177
100 0.0190 0.0441 0.0141 0.0091 0.0096
200 0.0100 0.0387 0.0097 0.0049 0.0055

20 50 0.0324 0.0433 0.0143 0.0122 0.0129
100 0.0169 0.0383 0.0081 0.0063 0.0070

57



Table C.5: AMSE of m̂ (x) for Different Estimators (DGP2, c0 = 1)
T n m̂HCL(x) m̂KLH(x) m̂LS(x) m̂SU(x) m̂LC(x)
2 50 0.0783 0.1724 0.1564 0.0687 0.0622

100 0.0439 0.1150 0.1397 0.0398 0.0372
200 0.0229 0.0767 0.1297 0.0209 0.0202
500 0.0109 0.0548 0.1245 0.0098 0.0100

3 50 0.0539 0.1017 0.0890 0.0437 0.0412
100 0.0293 0.0716 0.0724 0.0244 0.0225
200 0.0162 0.0569 0.0665 0.0133 0.0134
500 0.0075 0.0446 0.0608 0.0058 0.0067

4 50 0.0452 0.0810 0.0609 0.0329 0.0331
100 0.0249 0.0592 0.0463 0.0187 0.0181
200 0.0135 0.0487 0.0401 0.0097 0.0104
500 0.0063 0.0397 0.0354 0.0044 0.0051

5 50 0.0406 0.0692 0.0451 0.0281 0.0264
100 0.0233 0.0537 0.0337 0.0160 0.0157
200 0.0125 0.0455 0.0272 0.0079 0.0087
500 0.0058 0.0380 0.0231 0.0037 0.0043

10 50 0.0336 0.0518 0.0227 0.0178 0.0181
100 0.0192 0.0441 0.0144 0.0094 0.0099
200 0.0102 0.0387 0.0099 0.0050 0.0057

20 50 0.0326 0.0433 0.0145 0.0120 0.0132
100 0.0170 0.0383 0.0083 0.0067 0.0071
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Table C.6: AMSE of m̂ (x) for Different Estimators (DGP2, c0 = 2)
T n m̂HCL(x) m̂KLH(x) m̂LS(x) m̂SU(x) m̂LC(x)
2 50 0.0882 0.1724 0.1679 0.0817 0.0723

100 0.0492 0.1150 0.1459 0.0458 0.0427
200 0.0255 0.0767 0.1327 0.0236 0.0229
500 0.0119 0.0548 0.1256 0.0109 0.0111

3 50 0.0608 0.1017 0.0971 0.0509 0.0483
100 0.0325 0.0716 0.0762 0.0266 0.0258
200 0.0178 0.0569 0.0681 0.0147 0.0150
500 0.0081 0.0446 0.0616 0.0066 0.0073

4 50 0.0505 0.0810 0.0670 0.0393 0.0386
100 0.0276 0.0592 0.0492 0.0208 0.0208
200 0.0148 0.0487 0.0416 0.0112 0.0117
500 0.0068 0.0397 0.0360 0.0050 0.0056

5 50 0.0443 0.0692 0.0493 0.0313 0.0301
100 0.0256 0.0537 0.0361 0.0179 0.0180
200 0.0135 0.0455 0.0283 0.0091 0.0097
500 0.0062 0.0380 0.0236 0.0042 0.0047

10 50 0.0356 0.0518 0.0247 0.0198 0.0201
100 0.0201 0.0441 0.0153 0.0102 0.0108
200 0.0108 0.0387 0.0105 0.0056 0.0062

20 50 0.0336 0.0433 0.0155 0.0135 0.0142
100 0.0175 0.0383 0.0088 0.0070 0.0076
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Table C.8: Computation Time (seconds) for Different Estimators
T n m̂HCL(x) m̂KLH(x) m̂LS(x) m̂SU(x) m̂LC(x)
2 50 15 1 2 3 2

100 44 2 6 16 12
200 145 9 21 107 84
500 756 48 126 1331 1279

3 50 25 2 3 6 3
100 78 9 11 32 22
200 265 31 42 190 155
500 1409 185 254 2452 2201

4 50 37 5 5 10 5
100 121 18 18 51 35
200 415 68 70 307 241
500 2274 409 428 3772 3495

5 50 53 9 7 15 8
100 174 31 27 77 50
200 616 119 106 448 345
500 3376 710 645 5564 4839

10 50 172 39 26 55 29
100 599 150 102 281 176
200 2101 585 400 1580 1144

20 50 626 166 98 218 108
100 2188 650 396 1088 641
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Table C.9: Hong Kong External Trade by Major Trading Partner (1996-1999)

1996 1997 1998 1999
Million $ % Million $ % Million $ % Million $ %

Imports (Supplier)
China 570,442 37.1 608,372 37.7 580,614 40.6 607,546 43.6
Japan 208,239 13.6 221,646 13.7 179,947 12.6 162,652 11.7

US 121,058 7.9 125,381 7.8 106,537 7.5 98,572 7.1
Taiwan 123,202 8.0 124,547 7.7 104,075 7.3 100,426 7.2
Korea 73,302 4.8 73,226 4.5 68,836 4.8 65,432 4.7

Singapore 81,495 5.3 79,186 4.9 61,457 4.3 60,017 4.3
Germany 33,884 2.2 38,518 2.4 32,639 2.3 28,114 2.0
Malaysia 33,994 2.2 38,008 2.4 32,479 2.3 30,010 2.2

UK 33,264 2.2 36,285 2.2 29,671 2.1 26,961 1.9
Italy 31,799 2.1 31,018 1.9 23,500 1.6

Thailand 26,070 1.6 22,234 1.6 22,798 1.6
Others 224,903 14.6 212,834 13.2 187,102 13.0 167,392 13.7
Total 1,535,582 100 1,615,090 100 1,429,092 100 1,392,718 100

Domestic Exports (Destination)
China 61,620 29.0 63,867 30.2 56,066 29.8 50,414 29.6

US 53,860 25.4 55,073 26.1 54,842 29.1 51,358 30.1
UK 10,597 5.0 10,723 5.1 10,058 5.3 10,392 6.1

Germany 11,388 5.4 10,321 4.9 9,805 5.2 8,543 5.0
Taiwan 6,705 3.2 7,029 3.3 6,505 3.5 5,101 3.0
Japan 11,335 5.3 10,641 5.0 6,435 3.4 5,459 3.2

Singapore 10,009 4.7 8,404 4.0 5,103 2.7 3,682 2.2
Netherlands 4,674 2.2 5,138 2.4 4,736 2.5 4,119 2.4

Canada 3,885 1.8 3,872 1.8 3,598 1.9 3,151 1.8
France 2,947 1.4 3,210 1.5 3,171 1.7 3,081 1.8
Others 35,139 16.6 33,131 15.7 28,137 14.9 25,300 14.8
Total 212,160 100 211,410 100 188,454 100 170,600 100
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Table C.10: Counties’ Exchange Rate Policy

Country Effective Time Exchange Rate Policy
Hong Kong Fixed, 1 US$ = 7.80 HK$

China Crawling Peg
France January 1999 1 euro= 6.55957 French Franc

Germany January 1999 1 euro= 1.95583 Deutsche Mark
Italy January 1999 1 euro= 1936.27 Italian Lira

Netherlands January 1999 1 euro= 2.20371 Dutch Guilders

Korea
March 1980 Managed Floating

November 1997 Free Floating

Malaysia
March 1990 Fixed

December 1992 Managed Floating
September 1998 Fixed, 1 US$=3.80 RM

Thailand
January1970 Fixed

July 1997 Free Floating
Canada

Free Floating
Japan

Singapore
Taiwan

UK September 1992
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Table C.11: Hong Kong’s Total Value of Exports: Weights of Control Countries
Before 1998m10
Hong Kong Weights t
China 0.2346 3.39
Germany 0.0832 0.41
Singapore 0.1599 1.46
France -0.0612 -0.75
Japan 0.4964 3.13
US 0.1374 0.57
UK -0.1095 -0.56
Canada 0.2796 1.76
Taiwan 0.0976 0.75
Netherlands -0.3771 -1.36
M1 0.1932 2.88
M2 0.0013 0.02
M3 -0.0594 -1.14
M4 0.0532 1.21
M5 0.1074 2.65
M6 0.0716 1.90
M7 0.1641 4.14
M8 0.1381 3.30
M9 0.1285 3.68
M10 0.1631 4.64
M11 0.1109 3.52
Constant 0.7143 0.18
R2 0.9480
P-value of F-statistic 0.0000
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Table C.12: Treatment Effects for Hong Kong Total Value of Exports

Time Actual Predicted Treatment
1998m11 23.4048 23.4307 0.0260
1998m12 23.3536 23.4275 0.0739
1999m1 23.3476 23.4282 0.0805
1999m2 23.0470 23.2242 0.1772
1999m3 23.2514 23.3582 0.1068
1999m4 23.3445 23.4556 0.1112
1999m5 23.3629 23.4695 0.1066
1999m6 23.3804 23.4952 0.1148
1999m7 23.4837 23.6176 0.1339
1999m8 23.4970 23.6396 0.1426
1999m9 23.4695 23.6564 0.1869
1999m10 23.5046 23.7051 0.2005
1999m11 23.4992 23.6560 0.1568
1999m12 23.4908 23.6099 0.1191
2000m1 23.4754 23.6390 0.1636
2000m2 23.2272 23.4553 0.2281
2000m3 23.4814 23.6109 0.1295
2000m4 23.4840 23.7029 0.2189
2000m5 23.5595 23.7041 0.1446
2000m6 23.5078 23.7706 0.2628
2000m7 23.5708 23.8152 0.2444
2000m8 23.6596 23.8582 0.1986
2000m9 23.6883 23.8642 0.1759
2000m10 23.7129 23.9004 0.1875
2000m11 23.5791 23.7849 0.2058
2000m12 23.5322 23.6752 0.1430
Mean 23.4815 23.6258 0.1465(19.15)***
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Table C.13: Hong Kong’s Export Volume Index: Weights of Control Countries Before
1998m10
Hong Kong Weights t
China 1.0039 2.04
Germany -0.2244 -1.52
Singapore 0.6337 4.65
France -0.0579 -0.43
Japan 0.0526 0.36
US 0.1215 0.60
UK 0.2277 1.32
Canada -0.1498 -0.88
Taiwan 0.0037 0.05
Netherlands -0.2306 -1.03
M1 -2.5376 -0.89
M2 -5.7926 -2.19
M3 -5.3114 -2.53
M4 -1.2674 -1.02
M5 -0.4259 -0.22
M6 -0.8228 -0.53
M7 2.4749 1.61
M8 -1.1925 -0.61
M9 1.2509 0.96
M10 4.4323 2.90
M11 0.9015 0.55
Constant 14.4125 1.75
R2 0.9432
P-value of F-statistic 0.0000
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Table C.14: Treatment Effects for Hong Kong Export Volume Index

Time Actual Predicted Treatment
1998m11 55.3571 54.2933 -1.0639
1998m12 52.5510 56.9067 4.3557
1999m1 52.5510 50.0348 -2.5162
1999m2 38.7755 44.1475 5.3720
1999m3 48.3418 50.4637 2.1218
1999m4 52.9337 56.0718 3.1381
1999m5 53.8265 58.3421 4.5155
1999m6 54.5918 56.4490 1.8572
1999m7 60.4592 61.2715 0.8123
1999m8 60.8418 62.8125 1.9706
1999m9 59.8214 63.2130 3.3916
1999m10 61.7347 67.2121 5.4774
1999m11 61.6071 61.8713 0.2642
1999m12 61.3520 65.7518 4.3997
2000m1 60.5867 58.1757 -2.4111
2000m2 47.1939 54.3382 7.1443
2000m3 60.8418 58.1160 -2.7258
2000m4 60.9694 64.4621 3.4927
2000m5 65.9439 63.6532 -2.2907
2000m6 62.3724 65.9294 3.5570
2000m7 66.5816 70.3450 3.7634
2000m8 72.8316 73.5534 0.7218
2000m9 74.7449 71.2659 -3.4790
2000m10 76.7857 74.4737 -2.3120
2000m11 67.3469 68.9245 1.5775
2000m12 64.4133 71.3758 6.9625
Mean 62.5969 67.9365 5.1149(6.69)***
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Table C.15: Hong Kong’s Total Value of Imports: Weights of Control Countries
Before 1998m10
Hong Kong Weights t
China 0.4319 5.83
Taiwan 0.1662 2.10
Germany -0.0475 -0.35
Italy 0.1068 0.82
Singapore -0.0111 -0.10
Japan -0.0632 -0.47
US 0.3045 2.10
UK -0.0974 -0.70
Korea 0.0836 1.01
Malaysia 0.0462 0.49
Thailand 0.0987 1.25
M1 0.2705 4.11
M2 0.1926 2.87
M3 0.1427 2.63
M4 0.2243 4.55
M5 0.2021 4.31
M6 0.1850 3.72
M7 0.2344 4.80
M8 0.2483 3.43
M9 0.1951 3.62
M10 0.2145 3.79
M11 0.1681 3.72
Constant -0.5152 -0.34
R2 0.9777
P-value of F-statistic 0.0000

68



Table C.16: Treatment Effects for Hong Kong Total Value of Imports

Time Actual Predicted Treatment
1998m11 23.4111 23.5219 0.1107
1998m12 23.4147 23.5052 0.0904
1999m1 23.3538 23.4974 0.1436
1999m2 23.0605 23.3182 0.2577
1999m3 23.3606 23.6247 0.2641
1999m4 23.4059 23.6308 0.2248
1999m5 23.3660 23.6210 0.2550
1999m6 23.4259 23.6948 0.2689
1999m7 23.5242 23.7048 0.1806
1999m8 23.4774 23.6716 0.1943
1999m9 23.5004 23.7148 0.2144
1999m10 23.5159 23.7612 0.2453
1999m11 23.5018 23.7804 0.2786
1999m12 23.5679 23.6448 0.0769
2000m1 23.5016 23.8153 0.3137
2000m2 23.2971 23.6975 0.4004
2000m3 23.5865 23.8506 0.2641
2000m4 23.5660 23.9153 0.3494
2000m5 23.6170 23.8947 0.2777
2000m6 23.5567 23.9672 0.4106
2000m7 23.6294 24.0084 0.3789
2000m8 23.6830 24.0209 0.3380
2000m9 23.7222 23.9987 0.2765
2000m10 23.7376 24.0003 0.2628
2000m11 23.6075 23.9819 0.3745
2000m12 23.6245 23.7506 0.1261
Mean 23.5268 23.8363 0.3104(21.11)***
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Table C.17: Hong Kong Import Volume Index: Weights of Control Countries Before
1998m10
Hong Kong Weights t
China 1.1172 2.50
Taiwan 0.1303 1.43
Germany 0.0415 0.27
Italy -0.0085 -0.08
Singapore 0.2540 3.75
Japan 0.0383 0.37
US 0.0487 0.22
UK 0.0119 0.05
Korea 0.1082 1.33
Malaysia -0.0549 -0.38
Thailand 0.1455 2.15
M1 -4.3319 -2.41
M2 -5.2545 -2.63
M3 -3.4722 -3.02
M4 0.1442 0.14
M5 0.9286 0.73
M6 -0.9503 -0.76
M7 0.9823 0.83
M8 -0.1353 -0.06
M9 0.0043 0.00
M10 1.2273 0.78
M11 -1.0021 -0.89
Constant -12.8731 -2.35
R2 0.9671
P-value of F-statistic 0.0000
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Table C.18: Treatment Effects for Hong Kong Import Volume Index

Time Actual Predicted Treatment
1998m11 55.8981 60.2199 4.3218
1998m12 55.8981 63.8210 7.9229
1999m1 52.5469 57.6976 5.1506
1999m2 39.1421 52.9610 13.8189
1999m3 53.8874 65.5029 11.6155
1999m4 56.3003 68.3525 12.0522
1999m5 54.2895 69.6045 15.3149
1999m6 57.7748 71.9842 14.2094
1999m7 63.8070 75.2182 11.4113
1999m8 60.0536 74.7970 14.7434
1999m9 61.5281 73.3604 11.8322
1999m10 62.4665 79.2055 16.7390
1999m11 61.6622 78.1730 16.5108
1999m12 65.8177 79.8527 14.0350
2000m1 61.5281 73.3862 11.8580
2000m2 50.1340 72.7511 22.6171
2000m3 66.8901 81.2485 14.3585
2000m4 65.4156 83.5058 18.0903
2000m5 69.1689 86.9800 17.8111
2000m6 65.0134 86.3323 21.3189
2000m7 70.1072 90.0004 19.8931
2000m8 73.5925 90.5679 16.9755
2000m9 76.1394 89.1935 13.0541
2000m10 77.6139 93.5601 15.9461
2000m11 68.2306 91.0625 22.8320
2000m12 70.1072 90.6889 20.5816
Mean 65.4531 87.7900 21.9039(16.02)***
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