
 

 

 

 

TRANSLATIONAL CONTROL MECHANISMS ANALYZED  

IN NEUROSPORA CRASSA 

 

 

A Dissertation 

by 

JIAJIE WEI   

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

Approved by: 

Chair of Committee,             Matthew S. Sachs 
Committee Members,            Tatyana Igumenova 
            Xiaorong Lin 
            Keith A. Maggert 
Department Head,            U.J. McMahan 
 

August 2013 

 

Major Subject: Biology 

 

Copyright 2013 Jiajie Wei



 

ii 

 

ABSTRACT 

 

The Neurospora crassa arg-2 gene encodes the small subunit of carbamoyl 

phosphate synthetase, the first enzyme in fungal arginine (Arg) biosynthesis.  The 

arginine attenuator peptide (AAP), specified by an upstream open reading frame 

(uORF), stalls ribosomes at its termination codon in response Arg to control the 

translation of arg-2.  In project 1, the effect of AAP and Arg on ribosome peptidyl 

transferase center (PTC) activity was analyzed in N. crassa and wheat germ cell-free 

translation extracts using the transfer of nascent AAP to puromycin as an assay. The 

results show that inhibition of PTC activity by the AAP and Arg is the basis for the 

AAP’s function. The mode of PTC inhibition appears unusual because neither a specific 

amino acid nor a specific nascent peptide chain length was required for AAP to function. 

In eukaryotic translation initiation, the stringency of start codon selection impacts 

initiation efficiencies at AUG codons in different contexts and at near-cognate codons 

(NCCs) that differ from AUG by a single nucleotide. In project 2, a codon-optimized 

firefly luciferase reporter was used to examine the stringency of start codon selection in 

N. crassa. In vivo and in vitro results indicated that the hierarchy of initiation in N. 

crassa is similar to that in human cells. The preferred context was more important for 

efficient initiation from NCCs than from AUG. 

In project 3, the use of NCCs was also specifically examined for the N. crassa 

cpc-1 gene. cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying a 

transcription activator, which drives the primary transcriptional response to amino acid 
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starvation. In vitro studies showed that uORF1 and uORF2 in cpc-1 are functionally 

analogous to uORF1 and uORF4 in GCN4.  uORF1 promotes reinitiation at downstream 

start codons. uORF2 inhibits translation from the main cpc-1 start codon. Four NCCs in 

the CPC1 reading frame and upstream of uORF2 can also be used for translation 

initiation.  

In summary, we explored uORF-mediated translational regulation and the use of 

NCCs as initiation codons. Taken together, these studies establish N. crassa as a model 

system to examine mechanisms contributing to translational control including initiation 

and termination.  
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NOMENCLATURE 

 

AAP arginine attenuator peptide 

ABC ATP-binding cassette 

AdoMetDC S-Adenosylmethionine decarboxylase 

ATF4  activating transcription factor 4 

3-AT 3-aminotriazole 

CPE cytoplasmic polyadenylation element  

CPEB cytoplasmic polyadenylation element binding protein 

CPS carbamoyl phosphate synthetase 

CrPV  cricket paralysis virus 

CTT C-terminal tail 

CYH cycloheximide 

4E-BP 4E-biding protein 

eEF eukaryotic elongation factor 

eIF eukaryotic initiation factor 

EMCV encephalomyocarditis virus 

ER endoplasmic reticulum 

eRF eukaryotic release factor 

FMDV foot-and-mouth disease virus 

FRET fluorescence resonance energy transfer 

GAAC general amino acid conrol 
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GAP GTPase activating protein 

GCN2 general control non-derepressible-2 

GCRE general control response element 

GEF guanine nucleotide exchange factor  

HCV hepatitis C virus  

HRI heme-regulated inhibitor 

ITAF IRES trans-acting factor 

IRES internal ribosome entry site 

LUC luciferase 

MARK mitogen-activated protein kinase  

MFC multifactor complex 

miRNA microRNA 

mRNP messenger ribonucleoprotein 

MSL male specific lethal 

mTOR mammalian target of rapamycin 

NCC near-cognate codon 

NMD nonsense-mediated mRNA decay 

NTT N-terminal tail 

ORF open reading frame 

PABP poly(A) biding protein 

Pak2 p21-activated kinase 

PERK PKP-like endoplasmic reticulum kinase 
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PIC preinitiation complex 

PKR protein kinase RNA-dependent 

PTC peptidyl-transferase center 

qPCR quantitative PCR 

RAP ribosome-arrest peptide 

RLU relative light unit 

RRF ribosome recycling factor 

SXL sex-lethal 

TC ternary complex 

TDE translational derepression element 

TOP oligopyrimide 

4-TU 4-thiouracil 

uORF upstream open reading frame 

UTR untranslated region 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Regulation of eukaryotic gene expression occurs at multiple steps including 

transcription, post-transcriptional processing, messenger RNA (mRNA) stability, 

translation, post-translational modification, and protein degradation.   

Whereas the regulation of transcription controls the level of mRNA that can be 

translated into proteins, the regulation of translation has unique features, making it 

crucial for processes including cell cycle progression, cell proliferation, development 

and differentiation, aging and apoptosis (1). Translational control can rapidly modulate 

protein levels in cells exposed to various extracellular and intracellular signals.  Most 

translational controls are through the reversible phosphorylation of translation factors, 

making it energetically economical.  Regulation of translation provides a fine control 

compared to usually more pronounced changes in transcription rates. Systems that lack 

the transcriptional control, such as reticulocytes and platelets, use the translational 

control to modulate gene expression. Translation also supports spatial control, which is 

critical for polarity.  

Translation includes three major stages: initiation, elongation, and termination.  

Multiple factors and steps are involved in translation to provide various means to 

exquisitely control gene expression including rates, accuracy, direction, and localization.  

This chapter summarizes the processes and mechanisms of translation and translational 

control in eukaryotic cells.   



 

 2 

The regulatory role of upstream open reading frames (uORFs) and nascent 

peptides in translation is also reviewed in this chapter.  uORFs are common regulatory 

elements that are found within many eukaryotic transcripts.  Bioinformatic studies find 

that 49% of human and 44% of mouse transcripts contain at least one uORF (2). Two 

examples of genes containing uORFs will be discussed in the following chapters: the 

Neurospora crassa arg-2 and cpc-1 genes.  The arg-2 uORF encodes an evolutionarily 

conserved arginine attenuator peptide (AAP) that regulates translation in response to 

arginine (Arg).  The AAP is shown to regulate translation as a uORF in fungal, plant, 

and animal cell-free systems.  The AAP also retains its function when placed as a 

domain near the N-terminus or internally within a large polypeptide.  Our detailed 

studies on the AAP are documented in CHAPTER 2.  cpc-1, the homolog of 

Saccharomyces cerevisiae GCN4, is the major cross-pathway regulatory gene in N. 

crassa.  It is required for N. crassa to induce expression of amino acid biosynthetic 

genes under amino acid starvation.  Effects of two uORFs in the cpc-1 transcript on its 

translation are discussed in CHAPTER 4.   

This chapter also reviews translation initiation from non-AUG start codons.  

Many codons differing by a single nucleotide from AUG can be used as an initiation 

codon, albeit at significantly reduced levels.  CHAPTER 3 describes the detailed studies 

on the usage of the non-AUG initiation codons in N. crassa.  Effects of non-AUG 

initiation codons on the translation of N. crassa cpc-1 are discussed in CHAPTER 4.  
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 The molecular mechanism of eukaryotic translation  1.1.

The ribosome is a multiprotein machine that plays a central role in protein 

translation.  The ribosome consists of two subunits (30S and 50S in prokaryotes and 40S 

and 60S in eukaryotes) that combine to assemble three binding sites for tRNA, 

designated A (aminoacyl), P (peptidyl) and E (exit) sites (3).  In eukaryotic cells, 

sequences within the 5’-untranslated region (5’-UTR), the open reading frame (ORF) 

region(s), and the 3’-untranslated region (3’-UTR) of mRNAs serve as cis elements that 

regulate various aspects of translation (Figure 1.1) (4, 5).  Most eukaryotic mRNAs are 

modified at their 5’ ends with a m7G(5’)ppp(5’)N cap structure and at their 3’ ends with 

a poly(A) tail.  The cap structure is essential for multiple cellular processes, including 

translation initiation (6, 7), mRNA stability (8, 9), and mRNA transport and localization 

(10, 11).  Although an internal ribosome entry site (IRES) can also serve as a translation 

initiation site in some cases, the majority of translation in eukaryotes is “cap-dependent.”  

With respect to the poly(A) tail, the average length is ~70 nucleotides in yeast and ~200-

250 nucleotides in mammals (12).  The cap structure and the poly(A) tail can interact 

with each other via interactions between poly(A) binding protein (PABP), eIF4G (a 

translation initiation factor) and eIF4E (a mRNA 5’ cap-binding protein).  This results in 

the circularization of eukaryotic mRNAs and the enhancement of translation (13-18). 
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Figure 1.1. cis-acting elements on mRNA that affect gene expression. The cap 
structure at the 5’ end of the mRNA and the poly(A) tail at the 3’ end strongly stimulate 
translation initiation. Secondary structures, such as hairpins, block translation. IRESs 
mediate cap-independent translation. uORFs normally function as negative regulators by 
reducing translation from the main ORF. Adapted by permission from MacMillan 
Publishers Ltd (5). 

 

 

1.1.1. Initiation   

Translation initiation is considered to be the most highly regulated phase in 

translation in eukaryotic cells (19).  It is a multi-step process that recruits initiator tRNA, 

translation initiation factors (eIFs), and ribosomal subunits to the 5’ ends of capped 

mRNAs to form an initiation complex in the cytoplasm (Figure 1.2) (20, 21).  A ternary 

complex (TC) is first formed by the GTP-bound eukaryotic initiation factor 2 (eIF2) and 

Met-tRNAi
Met.  TC joins with eIF1, eIF5, and eIF3 to form a multifactor complex that 

binds to the small (40S) ribosomal subunit to form a 43S pre-initiation complex (PIC).  

The 43S PIC joins with capped mRNA whose 5’ end is bound to eIF4F (composed of 

eIF4E/eIF4G/eIF4A) and whose 3’ end is bound to PABP to form a 48S PIC. This 

complex scans the 5’ untranslated region of the mRNA until the start codon is 
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recognized by Met-tRNAi
Met.  After recognition of the start codon, the ejection of eIF1 

from the PIC triggers the hydrolysis of eIF2 bound GTP, a process requires eIF5 (a 

GTPase activating protein), followed by the release of Pi and the dissociation of eIF2 

and eIF5.  eIF5B, a second GTPase, facilities the recruitment of the large (60S) 

ribosomal subunit to form the 80S elongating ribosome, which represents the conclusion 

of translation initiation (20-23).  Specific molecular mechanisms involved in translation 

initiation are discussed below.  
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Figure 1.2. Simplified model for cap-dependent initiation of protein synthesis in 
eukaryotes. See the text for further details. Adapted by permission from American 
Society for Microbiology (21).  
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1.1.1.1. Formation of the TC 

eIF2, consisting of α, β, and γ subunits, brings the initiator tRNA to the 40S 

subunit.  The N-terminal region of eIF2β contains three lysine-rich segments (K-boxes), 

each consistent of 6-8 consecutive lysine residues.  These K-boxes facilitate the binding 

of eIF2 to eIF5, eIF2B, and RNA (24-26).  The γ subunit of eIF2 is implicated in GTP 

and Met-tRNAi binding and shows sequence and structural similarity to EF-Tu/eEF1A, 

which is a GTPase that delivers aminoacyl-tRNAs to their binding sites on ribosomes 

(27-33).  Footprinting studies reveal direct interactions between the aminoacyl-tRNAs 

and γ and β subunits, but not the α subunit, suggesting that eIF2α may affect tRNA 

binding allosterically (34).  The specific binding of eIF2 with the initiator tRNA and not 

elongator tRNAs results from the recognition of the methionyl residue and an A1:U72 

pair at the end of the receptor stem of the initiator tRNA (6, 22).  Direct contacts 

between eIF2γ and 18S rRNA helix 44, which spans the body of the 40S subunit, are 

also detected (34).  

eIF2 binds Met-tRNAi 15 fold more tightly in its active GTP-bound form than in 

its inactive GDP-bound form (22).  After the initiation codon is recognized, eIF2 leaves 

the ribosome in the inactive GDP-bound form. GDP is then exchanges for GTP by the 

guanine nucleotide exchange factor eIF2B to promote the binding of another Met-tRNAi 

and the reassembly of the TC (6, 35-37).  The phosporylation of a conserved serine 

residue at position 51 on the eIF2α subunit results in a stable interaction between eIF2α 

and eIF2B.  The sequestration of eIF2B reduces the rate of GDP-GTP exchange and the 

formation of TC, which decreases general translation initiation.  This pathway provides a 
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way of translational control in response to multiple stress conditions by activating 

kinases that phosphorylate eIF2α (38, 39).   

1.1.1.2. Formation of the 43S preinitiation complex (43S PIC) 

The TC, formed by the GTP-bound eIF2 and Met-tRNAi
Met, binds to the 40S 

ribosomal subunit to form the preinitiation complex (43S PIC), which can be purified by 

sucrose gradient centrifugation (37).  The assembly and function of the PIC appears to 

be facilitated by the eIF1, eIF1A, eIF5, and eIF3 complex (40-42).  Both N-terminal and 

C-terminal domains of eIF5 interact directly with eIF2 (43).  eIF1, eIF1A, and eIF3 bind 

directly and cooperatively to the 40S subunit.  eIF1 and eIF1A locate near the ribosomal 

P site and A site, respectively (44, 45).  C-terminal and N-terminal tails (CTT and NTT) 

of eIF1A project into the P site in the PIC (45). The NTT interacts with eIF2 and eIF3 to 

promote TC recruitment in vivo (46).  eIF1 and eIF1A induce an “open” conformation of 

the PIC to enable the binding of PIC to capped mRNA and the scanning of PIC on the 

mRNA to locate the start codon.  In mammals, eIF3 is the largest and most complex 

initiation factor.  It binds to the solvent face of the 40S subunit and interacts with the TC, 

eIFs 1, 1A and 5 (47). It is proposed to coordinate the assembly of PIC by serving as a 

bridge to connect components bound near the mRNA entry and exit channels (48-50).  In 

the absence of the ribosome, eIF3 can also form a multifactor complex (MFC) with eIFs 

1, 5 and the TC to prevent the diffusion of these initiation components (40). 
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1.1.1.3. Association of the preinitiation complex with mRNA 

The association of the PIC with capped mRNA is a complex process that 

involves PABP and several initiation factors.  The eIF4F complex is composed of eIF4A 

(an RNA helicase), eIF4E (a cap-binding protein), and eIF4G (51).  eIF4G serves as a 

scaffold protein with multiple binding domains for other initiation factors and mRNA 

(52, 53).  eIF4G increases eIF4E’s affinity for the cap structure of mRNAs (54-57).  

eIF4A, an ATP-dependent RNA helicase, enhances the binding of the 43S PIC at the cap 

structure of mRNAs that contain secondary structures in their 5’UTR (58, 59).  eIF4G 

interacts with mRNA sequences both upstream and downstream of the nucleotides in the 

initiation sites to position eIF4A at the mRNA entry channel (60).  The binding of eIF4G 

to eIF4A helps to align the DEAD-box motif of eIF4A in the orientation required to 

unwind secondary structures in the mRNA to produce a single-stranded binding site for 

the 43S PIC near the 5’ cap (61-63).  eIF4G also interacts with the PABP (64).  A stable, 

circular messenger ribonucleoprotein (mRNP), referred to as the “closed loop” structure, 

is created by linking the eIF4E bound cap structure and the eIF4G bound poly(A) tail.  

The formation of this “closed loop” promotes reinitiation by post-termination ribosomes 

and is proposed to provides a guard against the synthesis of truncated proteins that could 

be harmful to cells (16, 65).  

In one model of mRNA recruitment, the mRNA is first processed to form an 

“activated mRNP”, which then binds to the 43S PIC.  eIF4G facilitates 43S PIC 

association with this “activated mRNP” by interacting simultaneously with mRNA and 

initiation factors bound to the PIC (eIF3 in mammals and eIF1 and eIF5 in yeast) (21).  
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As a result, the 43S PIC is recruited to the mRNA and is ready to scan downstream (55).  

Another model proposes that eIF4F factors bind directly to the PIC to form a “holoPIC” 

to directly recruit an mRNA.  Distinguishing between these two models will require the 

development of new experimental approaches (66). 

1.1.1.4. Recognition of the start codon  

After binding to capped mRNA, the 43S PIC scans the mRNA for an initiation 

site (typically an AUG codon) in a suitable sequence context.  During scanning, ATP 

hydrolysis enables eIF4A to remove any secondary structure (67).  When an AUG enters 

the P site of the 40S subunit, a codon-anticodon interaction with Met-tRNAi
Met signals 

the start of translation.  Sequences surrounding the AUG codon are also important for 

initiation codon recognition (68, 69).  An AUG codon with an A at the -3 position and a 

G at the +4 position is favored for efficient initiation (70).  An AUG codon in a poor 

context may be bypassed by the PIC.  The scanning process and the recognition of the 

AUG codon require several initiation factors, including eIF1, eIF1A, eIF2, eIF3 and 

eIF5 (6, 40, 71-74).  eIF1 and eIF1A promotes scanning by stabilizing an open 

conformation of the 43S PIC when non-AUG codons are in the P site (74).  After eIF1 

dissociation and Pi release in response to codon-anticodon base pairing, PIC closing is 

accompanied by movements of domains of eIF1A and eIF5 (75-77).   

Pi release, which is markedly accelerated by start codon recognition, is more 

important to AUG recognition than GTP hydrolysis itself (78).  Release of Pi, making 

GTP hydrolysis irreversible, is controlled by the dissociation of eIF1 from the PIC.  

eIF1A, which occupies the A-site, can regulate start codon selection in two ways.  Its C-
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terminal tail (CTT) supports continued scanning at non-AUG codons and must be 

evicted from the P site upon tRNAi accommondation, whereas its N-terminal tail has the 

ability to promote eIF1 release at AUG codons and arrest scanning (45, 79).  eIF5 itself 

can enhance the dissociation of eIF1 from the PIC (80).  Mutations in tRNAi and eIF3 

that impair start codon recognition suggest that tRNAi itself and eIF3 also contribute to 

this molecular mechanism (81). 

1.1.1.5. Assembly of the 80S ribosome  

The translation initiation stage concludes when a second GTPase initiation factor 

eIF5B interacts with the CTT of eIF1A to stimulate the dissociation of eIF5 and 

eIF2·GDP and stimulates the recruitment of the 60S ribosomal subunit (82).  After 

subunit joining, eIF5B hydrolyzes its bound GTP to trigger a conformational 

rearrangement in the 80S initiation complex (82-84).  After the release of eIF5B, eIF1A 

leaves the interface region of the ribosome. eIF1A is thus a factor that functions from the 

beginning of translation initiation to its end (85).  As a result, the 80S initiation complex 

contains Met-tRNAi
Met in the P-site and an empty A-site for the binding of the first 

aminoacyl-tRNA to start elongation.  

1.1.1.6. Internal initiation 

Although the majority of eukaryotic translation initiation is cap-dependent, some 

mRNAs can bypass the conventional scanning mechanism by using an internal ribosome 

entry site (IRES) to directly recruit ribosomes and initiate translation (86).  Internal 

initiation was first discovered in picornaviruses (87, 88).  Initiation from IRESs needs 
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several noncanonical IRES trans-acting factors (ITAFs), which can stabilize the active 

conformations formed by highly structured sequence elements within the IRES (89, 90).  

Translation initiation from IRESs provides a unique advantage for viral mRNAs.  The 

IRESs of hepatitis C virus (HCV) bind directly to the 40S subunit without eIF4F (91, 92) 

and the IRESs of cricket paralysis virus (CrPV) can initiate translation without any eIFs 

or even Met-tRNAi (93, 94).  This allows viral IRESs to recruit host ribosomes without 

the need to compete for eIFs in infected cells. Viral proteins can cleave host cell proteins 

or change the phosphorylation state of host proteins to shut down cellular cap-dependent 

translation, while allowing viral cap-independent translation (95, 96). 

Several IRESs were discovered in cellular mRNAs that are active during mitosis 

or apoptosis.  These IRESs facilitate the expression of essential regulators when cap-

dependent translation is impaired (97, 98).  

1.1.2. Elongation  

Translation elongation mechanisms are relatively conserved between prokaryotic 

and eukaryotic systems (99, 100).  Elongation can be divided into three major steps: the 

decoding of an mRNA codon by the cognate aminoacyl-tRNA, the formation of peptide 

bond through peptidyl transferase activity, and the translocation of the tRNA-mRNA 

complex.  These steps are facilitated by several elongation factors. 

At the beginning of elongation, a peptidyl-tRNA is in the ribosomal P site and 

the A site is empty to accept the aminoacyl-tRNA.  The eukaryotic elongation factor 

eEF1A, homologous to prokaryotic EF-Tu, binds either the cognate or noncognate 

aminoacyl tRNA in a GTP-dependent manner and carries the tRNA to the A site.  The 
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selection of the cognate tRNA relies on several factors, including the codon-anticodon 

interaction between the mRNA and the tRNA, conformational changes in the ribosome 

and GTP hydrolysis by eEF1A/EF-Tu (101).  After the formation of the peptide bond 

between the peptidyl-tRNA in the P site and the aminoacyl-tRNA in the A site, 

translocation occurs to move the newly formed peptidyl-tRNA from the A site to the P 

site and the deacylated tRNA from the P site to the E site, thus resulting in an empty A 

site to accept another aminoacyl-tRNA.  

1.1.2.1. Role of eEF1A 

The eukaryotic elongation factor 1 (eEF1) consists of eEF1A and eEF1B (102). 

eEF1A delivers the aminoacyl-tRNA to the empty A site and hydrolyzes eEF1A-bound 

GTP by its GTPase activity.  eEF1B, a guanine nucleotide exchange factor (GEF), 

functions similarly to prokaryotic EF-Ts but through a different mechanism.  eEF1B 

accelerates the dissociation of GDP from eEF1A to recycle the inactive GDP-bound 

factor to its active GTP-bound state (102). 

The fidelity of elongation is high with the rate of misincorporated tRNAs 

between 10-3 and 10-4 (103).  Since both noncognate tRNA and cognate tRNA are 

carried to the A site of the ribosome, aminoacyl-tRNA must be carefully selected.  

During the initial selection, eEF1A·GTP·aa·tRNA presents the noncognate and cognate 

tRNAs to the decoding site of the mRNA-programmed 80S ribosome at different angles 

(104).  For the noncognate tRNA, eEF1A·GTP·aa·tRNA dissociates from the ribosome 

more rapidly and the GTPase activation of eEF1A/EF-Tu occurs more slowly (105).  An 

accepted codon-anticodon recognition triggers a signal transferred from the small 
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ribosomal subunit (decoding site) to the large ribosomal subunit (eEF1A GTPase domain 

binding site) to hydrolyze GTP (101, 106, 107).  After this irreversible step of GTP 

hydrolysis, the rate of tRNA accommodation is faster for cognate tRNAs than the rate 

for noncognate tRNAs.  This difference further ensures a high accuracy of tRNA 

selection (101, 108-111).   

1.1.2.2. Peptidyl transferase and translocation  

A peptide bond is formed between the aminoacyl-tRNA in the A site and the 

peptidyl-tRNA in the P site.  The peptidyl transferase center (PTC), built up of highly 

conserved rRNA elements on the large ribosomal subunit, promotes peptide bond 

formation (112).  The peptidyl transferase reaction starts when the α-amino group of the 

A site aminoacyl-tRNA nucleophilically attacks the carboxyl carbon of the C-terminal 

amino acid in the P site (Figure 1.3).  The ribosomal large subunit does not chemically 

catalyze this reaction (113, 114).  The ribosome accelerates the peptide bond formation 

by positioning the two substrates and changing the rate-limiting transition state (115).   

Immediately after peptide bond formation, conformational changes in the 

ribosome move the acceptor ends of the tRNAs in the P and A sites to the E and P sites, 

with the anticodon loops remaining in the P and A sites, respectively.  As a result, a so-

called hybrid P/E and A/P state is formed (3).  This hybrid state is stabilized the binding 

of eukaryotic elongation factor 2 (eEF2) or prokaryotic EF-G.  The GTP hydrolysis by 

eEF2/EF-G and the release of Pi promote a conformational change in the ribosome to 

“unlock” the ribosome, triggering the movement of tRNA-mRNA, leading to the 

formation of P/P and E/E states (116-118).  Spontaneously, another conformational 
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change is induced by the release of Pi from eEF2/EF-G to bring the ribosome back to its 

“locked” state.  Pi release is also coupled to the release of eEF/EF-G from the ribosome 

and the release of the deacylated tRNA from the E site.  

 

 

 

Figure 1.3. A model for the peptidyl transferase center from Haloarcula 
marismortui with substrates in both A site and P site. This model was obtained by 
superimposing an A-site substrate complex (PDB #1FGO, purple) on the structure of a 
P-site substrate complex (PDB #1M90, green). Possible hydrogen-bonding interactions 
involving the α-amino group and the N3 of A2486 (2451) and the 2‘-OH of A76 are 
indicated. Adapted by permission from RNA society (112).  
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1.1.2.3. Role of eEF2 and eEF3 

eEF2 binds to the 80S ribosome. It functions as a GTPase and catalyzes the 

translocation of the two tRNAs and the mRNA after peptide bond formation.  The 

hydolysis of the eEF2/EF-G-bound GTP facilitates the translocation and the release of 

eEF2/EF-G from the ribosome (116).  In the absence of eEF2/EF-G, tRNAs can move in 

the backward direction spontaneously. That is, tRNAs can move from the post- to the 

pre-translocation position (119, 120).  The large-scale conformational changes of 

eEF2/EF-G during translocation may promote the directional movement of tRNAs and 

prevent the backward sliding of tRNAs (121, 122). 

eEF3, found exclusively in fungi, is an exception to the evolutionary 

conservation of elongation (123).  eEF3, containing two ATP-binding cassettes (ABCs), 

may facilitate the release of deacylated tRNA from the E site (124-126).  The gene 

encoding eEF3 is essential for yeast viability (127).  eEF3 associates with translating 

ribosomes, interacts with eEF1A, and is found primarily in polysome fractions, 

consistent with its requirement for peptide bond formation (128, 129).  Further studies 

are needed to determine the function of eEF3 in translation elongation.  

1.1.2.4. Role of eIF5A 

eIF5A was originally shown to stimulate the transfer of methionine from Met-

tRNAi in the 80S initiation complex to the aminoacyl-tRNA analog puromycin and was 

denoted as an initiation factor (130).  Recent studies have implicated eIF5A in the 

process of translation elongation (131).  Inactivation of an eIF5A temperature-sensitive 

mutant resulted in polysome retention in the absence of the elongation inhibitor 



 

 17 

cycloheximide and increased ribosome transit times.  The interaction between eIF5A and 

eEF2 further supports a role for eIF5A in translation elongation (131).  eIF5A stimulates 

the reactivity of peptidyl-tRNA in the ribosomal P site with either aminoacyl-tRNA or 

protein ligands that enter the A site, suggesting its mechanism of action (131).  eIF5A 

also promotes translation of polyproline motifs (Dever et al., unpublished data). The 

detail function of eIF5A in translation elongation needs to be determined by future 

studies.  

1.1.3. Termination  

Translation termination occurs when the ribosome reaches the end of the coding 

sequence with a stop codon entering the ribosomal A site.  The sequence surrounding the 

termination codon has an effect on the efficiency of termination (132-134).  The 

termination process includes the recognition of the stop codon and the hydrolysis of 

peptidyl-tRNA. Hydrolysis of peptidyl-tRNA is followed by the nucleophilic attack of 

water on the ester carbonyl group of the peptidyl-tRNA.  The cleavage of an ester bond 

leads to the release of the nascent peptide.  Prokaryotes have three release factors, RF1, 

RF2, and RF3. Eukaryotic cells have only two release factors, eRF1 and eRF3.  The 

entry and the activation of water are facilitated by eRF1 through the induced 

conformational changes in the ribosome (22).  Mutations in ribosomal RNA, eRF1 and 

eRF3 can increase stop codon read-through and lead to “nonsense suppression” 

phenotypes (135, 136).   
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1.1.3.1. eRF1 and eRF3 

Class I release factors (RF1 and RF2 in prokaryotes and eRF1 in eukaryotes) 

directly recognize the stop codon and catalyze the hydrolysis of the peptidyl-tRNA (137-

141).  In prokaryotes, RF1 decodes UAA and UAG, while RF2 decodes UAA and UGA 

(142).  eRF1 is the only class I release factor in eukaryotes and can recognize all three 

stop codons (UAA, UAG and UGA) (143-145). eRF1 is a tRNA-shaped protein 

composed of three domains: N-terminal (N), middle (M) and C-terminal (C) domains 

(146).  Conserved residues of eRF1 from different parts of the polypeptide chain may 

cluster in space to form a three-dimensional network for decoding.  A “cavity” model for 

the stop-codon recognition is suggested based on the importance of highly conserved 

NIKS and YxCxxxF motifs at the tip of eRF1 domain N.  The highly conserved GGQ 

motif in the M domain of eRF1 triggers peptide-tRNA hydrolysis when correctly 

positioned in the PTC of the ribosome (146).  The C domain is involved in the 

interaction with the class II release factor eRF3 (146).  

Class II release factors (RF3 in prokaryotes and eRF3 in eukaryotes) are 

ribosome-dependent GTPases (147).  RF3 promotes the release of RF1/RF2 from the 

post-termination complexes (148).  eRF3 binds to eRF1 with high affinity to form a 

stable complex and to enter the ribosome together.  eRF1 stabilizes the binding of GTP 

(but not GDP) to eRF3 (149).  Both the 80S ribosome and eRF1 are required for the 

activation of eRF3’s GTPase activity.  The GTP hydrolysis by eRF3 couples the stop 

codon recognition and the peptidyl-tRNA hydrolysis by eRF1 (150-153).  Peptide 
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release is very inefficient with eRF1 alone.  eRF3 ensures rapid and efficient peptide 

release (150, 151).  

1.1.3.2. The eRF1 GGQ motif 

The GGQ motif is universally conserved in all class I release factors and 

positioned in a loop at the end of a stem region that interacts with the PTC (154-156).  

The binding of eRF1 to the A site is stabilized by eRF1’s interactions with both of the 

ribosomal subunits.  The GTP hydrolysis by eRF3 induces conformational changes in 

eRF1, triggering the GGQ loop to enter the PTC (157, 158). The binding of the GGQ 

motif to the PTC causes conformational changes in the ribosome, exposing the ester 

bond to nucleophilic attack by a water molecule. As a result, the peptidyl-tRNA is 

hydrolyzed (154-156, 159).  A mutation in the GGQ motif of eRF1 reduces the binding 

of eRF1 to the ribosome (146, 160, 161).  The two Gly residues in the GGQ motif adapt 

a unique backbone conformation, which facilitates the binding of the GGQ motif to the 

PTC.  The Gln may function to coordinate the water molecule in the PTC and stabilize 

the product of peptidyl-tRNA hydrolysis or the transition state (140, 146, 154-156, 162).  

1.1.4. Recycling of ribosomal subunits 

After termination, 40S and 60S subunits must be dissociated from the 80S 

ribosome and the mRNA and deacylated tRNA released for the next round of translation.  

Recycling of ribosomal subunits is different in prokaryotes and eukaryotes.  In bacteria, 

the ribosome recycling factor (RRF) functions with EF-G to split the ribosome into 

subunits, following the dissociation of class I release factors by RF3.  IF3 promotes the 
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dissociation of tRNAs and the destabilization of mRNA binding (163, 164).  In 

eukaryotes, ABCE1, a conserved ATP-binding cassette (ABC) protein, has the ability to 

promote recycling of post-termination ribosomes in the presence of eRF1 (165-167).  

After eRF1/ABCE1-mediated splitting of post-termination ribosomes, both tRNA and 

mRNA remain bound to 40S subunits.  The departure of deacylated tRNA and mRNA is 

enhanced by Ligatin (also known as eIF2D) or MCT-1/DENR (168).  These proteins 

may function by stabilizing the open state of the 40S subunit from which tRNA would 

be expected to dissociate more rapidly.   

The dissociation of ribosomes is also accelerated by eIF1, eIF1A, eIF3, eIF3j 

(eIF3’s loosely associated subunit) and eIF6 (167, 169).  The opening of the mRNA 

entry channel is promoted in the ribosome in response to the binding of eIF1 and eIF1A 

(170).  The binding of eIF3 to the 40S subunit leads to an increased rate of dissociation 

of the 80S ribosome to its 40S and 60S components and a decreased rate of association 

of these two ribosomal subunits (171, 172).  The efficient dissociation of mRNA from 

the ribosome in the presence of eIF3 requires its 3j subunit (169).  eIF3j and mRNAs 

bind to the 40S subunit with a negative cooperativity (173).  eIF6 binds to the 60S 

subunit, preventing it from re-associating with the 40S subunit (174, 175).  The 

phosporylation of eIF6 releases eIF6 from the 60S subunit and allows the 60S subunit to 

join the 40S subunit (176).  eIF6 is also shown to be involved in ribosome biogenesis; its 

depletion impairs the biogenesis of the 60S subunit (177, 178).  Based on the closed-

loop model, the 40S subunit is shuttled back to the 5’-end of mRNA to facilitate 

translation reinitiation. 



 

 21 

 Translational control 1.2.

The control of translation can be global or local.  Global control regulates the 

translation of most mRNAs in the cell.  Global translational control typically targets 

eukaryotic initiation factors and accessory proteins to regulate initiation, the first and 

rate-limiting step in translation.  mRNA-specific control regulates the translation of 

mRNAs involved in a common function without disturbing general protein synthesis. 

This allows two distinct transcripts that are expressed at similar levels to produce 

different amounts of protein (1).  Sequences in the 5’ and/or 3’ UTRs function as cis-

acting elements that recruit regulatory protein complexes that can increase or decrease 

the efficiency of translation.  Some of these sequences are recognized by small 

microRNAs (miRNA) that are components of regulatory complexes that modulate the 

efficiency of translation. The molecular mechanisms of both global and mRNA-specific 

translational control will be discussed.  

1.2.1. Global control  

Global control is achieved by regulating the activity of key components in the 

translation machinery.  Many proteins involved in translation are phosphoproteins whose 

activity can be turned on and off by their phosphorylation status.  The control of those 

proteins’ phosphorylation and dephosphorylation is the major identified general 

mechanism of global translational control in eukaryotic cells.  
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1.2.1.1. Phosphorylation of eIF2 

As discussed in section 1.1.1, eIF2 is a part of the ternary complex that brings 

Met-tRNAi
Met to the small ribosomal subunit.  The hydrolysis of eIF2 bound GTP occurs 

during translation initiation.  eIF2 is released from the ribosome in the inactive GDP 

bound form, which must be converted to the GTP bound form to participate in a 

subsequent round of translation initiation.  The conversion from GDP to GTP is 

performed by eIF2B.  Phosphorylation of serine 51 of eIF2α increases the binding 

affinity of eIF2B for eIF2 (35).  The eIF2B·eIF2 complex is inactive and blocks the 

GTP-exchange reaction required for eIF2 activation.  Since eIF2B is present in limited 

amounts compared to eIF2, a small change in the level of phosphorylated eIF2α has a 

significant impact on the overall translation rate (39).   

A family of four kinases are known to phosphorylate eIF2α at serine 51 in 

response to different physiological conditions (179), including heme-regulated inhibitor 

(HRI), which is stimulated by heme-depletion (180); general control non-derepressible-2 

(GCN2), which responds to amino acid starvation (35); double-stranded-RNA-dependent 

protein kinase (PKR), which is activated by viral infection (181); and the PKR-like 

endoplasmic reticulum kinase (PERK), which is triggered by endoplasmic reticulum (ER) 

stress (182, 183). eIF2α is dephosphorylated when a mitogen is added to quiescent cells 

(184).  However, limited phosphorylation of eIF2α can promote the translation of bZIP 

transcription factors, such as yeast GCN4 (185), the details of which will be discussed 

later. 
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1.2.1.2. The interaction of eIF4E with 4E-BPs 

During translation initiation, eIF4E (a cap-binding protein) interacts with eIF4G 

and eIF4A to form the eIF4F complex. The eIF4F complex recruits the 43S PIC to 

mRNAs.  Interactions between eIF4E and the 5’-cap structure are enhanced when eIF4E 

is phosphorylated by the p38-mitogen-activated-protien kinase (MAPK) (186, 187).  

Thus, phosphorylation of eIF4E can increase translation when cells are treated with 

hormones, growth factors, cytokines, and mitogens (186, 188).   

The binding domain of eIF4G for eIF4E is shared by 4E-binding proteins (4E-

BPs).  When hypophosphorylated 4E-BPs bind to eIF4E, they competitively reduce the 

binding of eIF4G, thereby inhibiting the association of PIC with mRNAs to repress cap-

dependent translation (188, 189).  4E-BPs dissociate from eIF4E when they are in a 

hyperphosphorylated state.  The phosphorylation of 4E-BPs is triggered by growth 

factors and nutrient status (188, 190, 191).  In mammals, phosphorylation of 4E-BP1 is 

controlled by Akt/PKB and the mammalian target of rapamycin (mTOR) signaling 

pathways to regulate cell proliferation (192-194).  In addition, during apoptosis, the 

caspase-dependent cleavage of 4E-BP1 produces a truncated polypeptide. This 

polypeptide retains the eIF4E-binding capacity. However, it cannot be sufficiently 

phosphorylated. It thus inhibits cap-dependent translation by failing to be released from 

eIF4E (195). Certain viruses, such as encephalomyocarditis virus (EMCV), also 

decreases the phosphorylation of 4E-BP1 to shut-off the host protein synthesis without 

affecting viral cap-independent translation (96). 
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1.2.1.3. eIF4G 

eIF4G increases eIF4E’s affinity for the 5’-cap structure of eukaryotic mRNAs.  

eIF4G itself can be phosphorylated by the cytostatic p21-activated kinase (Pak2) in 

response to a variety of stress conditions that inhibit cap-dependent translation (196).  

Pak2 phosphorylates several initiation factors including eIF4G, eIF3, and eIF4B, as well 

as the MP-kinase-interacting kinase: Mnk1 (197, 198).  Phosphorylation of Mnk1 by 

Pak2 can reduce its binding to eIF4G and decrease the phosphorylation of eIF4G (197).  

eIF4G can be cleaved into two fragments by the leader proteinase of the foot-and-mouth 

disease virus (FMDV) (199, 200).  This cleavage inhibits the cap-dependent translation 

of host proteins, whereas IRES-dependent translation used by the virus is not affected 

(201).  

1.2.1.4. eEF2 

eEF2 can be phosphorylated at its N-terminal GTP-binding domain to inhibit its 

binding to the ribosome and repress translation elongation.  eEF2 kinase is a 

Ca2+/calmodulin-dependent protein kinase that is phosphorylated by the mTOR and 

stress-activated protein kinase SAPK4 pathways (202-204). The phosphorylation of 

eEF2 kinase inhibits its activity, leading to an increased level of dephosphorylated eEF2 

and more efficient translation elongation.  Recent studies suggest that, under acute 

nutrient depletion conditions, eEF2 kinase blocks translation elongation to confer cell 

survival.  eEF2 kinase can protect cells from nutrient deprivation and help tumor cell to 

adapt to metabolic stress (205). However, in response to eEF2 phosphorylation, the 

translation of certain neuronal mRNAs increases.  The repression of general translation 



 

 25 

may increase the availability of initiation factors and thus reduce the negative effect of 

eEF2 phosphorylation (206).  

1.2.2. mRNA-specific translational control  

mRNA-specific regulation confers rapid and coordinated control over one or 

more mRNAs, for example, over a set of transcripts encoding proteins with related 

functions, without affecting overall rates of translation. 

1.2.2.1. Regulation by the 5’-untranslated region (5’-UTR) 

Sequences in the 5’-UTR and 3’UTR can confer transcript-specific regulation.  

The length of 5’-UTRs is typically short with a low GC content.  Long 5’-UTRs (>200 

nucleotides) tend to decrease the efficiency of translation initiation.  Translation can be 

controlled by certain elements in the 5’-UTR, including secondary structure, 5’-terminal 

oligopyrimide (TOP) tracts, IRESs and uORFs.  The regulatory function of uORFs is 

discussed in Section 1.3.  

5’-terminal oligopyrimide (TOP) tracts are found in 5’-UTRs of mammalian 

ribosomal proteins and other proteins involved in translation.  TOP contains a stretch of 

5-14 consecutive pyrimidine residues and provides regulation of TOP mRNAs in a 

growth-dependent manner.  The regulation of TOP mRNAs is related to both mTOR and 

PI3K signaling pathways though the detailed mechanism is controversial (207, 208).  

Recent studies suggest that RNA binding proteins TIA-1 and TIAR, two general 

translational repressors in stressed cells, are required for the translational control of TOP 

mRNAs (209).  Translational control of TOP mRNAs enables cells to coordinately 
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express proteins that are required for ribosome biogenesis in response to amino acid 

starvation or growth arrest (210). 

As discussed in section 1.1.1.6, IRES can facilitate cap-independent translation.  

The IRES elements typically found in viral transcripts assume highly ordered structures 

within the 5’-UTR (211).  IRES can recruit the 43S PIC to the mRNA without the 5’ cap 

structure and even without initiation factors (212-214).  HIV-2 genomic RNA can 

initiate translation by using IRES elements located downstream of the AUG start codon 

(215).  IRES elements in cellular mRNAs increase the expression of several proteins, 

including oncogenes, growth factors and proteins involved in programmed cell death 

(214, 216-221). 

1.2.2.2. Regulation by 3’-untranslated region (3’-UTR)  

A cytoplasmic polyadenylation element (CPE) in the 3’-UTR of c-mos mRNA 

interacts with the cytoplasmic polyadenylation element binding protein (CPEB) to 

regulate translation during vertebrate oocyte maturation and early development (222).  

When CPEB binds to Maskin, a 4E-BP that regulates translation of target mRNAs, 

formation of CPE·CPEB·Maskin·eIF4E complexs repress translation.  Following 

maturation, CPEB is phosphorylated, triggering elongation of the poly(A) tail, binding 

of PABP and the dissociation between Maskin and eIF4E.  As a result, translation is 

activated (223, 224).  

In Drosophila melanogaster embryogenesis, CUP functions similarly to Maskin 

in vertebrte oocyte development to bind with eIF4E and block the recognition of eIF4E 

by eIF4G.  CUP is recruited to the 3’-UTR of nanos and oskar mRNAs by RNA binding 
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proteins Smaug and Bruno, respectively.  nanos and oskar mRNAs encode the posterior 

determinant during the specification of the anteroposterior axis.  This provides an 

example in which a group of functionally related genes is coordinately regulated during 

development (225, 226).  

In D. melanogaster, male specific lethal 2 (MSL-2) protein is a crucial 

component of the dosage compensation complex.  msl-2 mRNA can be found in both 

females and males, while its expression is lethal in females.  The regulation of MSL-2 is 

achieved by sex-lethal (SXL) protein.  In females, SXL binds to poly(U) tracts in both 

the 5’- and 3’-UTRs of msl-2 mRNA (227, 228).  The mechanisms of repression are 

different for the 5’- and 3’-UTRs. In the 5’-UTR, SXL provides a physical block to 

interfere with ribosome scanning and the recognition of AUG start codons.  SXL binding 

to the 3’-UTR recruits co-repressors(s) and inhibits translation by preventing the stable 

association of 43S PIC with mRNA (229).  

1.2.2.3. Regulation by miRNAs  

microRNAs (miRNAs) are 20-22 nucleotide small noncoding RNAs that can 

regulate gene expression by binding complementary sequences in mRNAs.  Multiple 

biological processes are affected by miRNAs, such as cell metabolism, cell 

differentiation, cell growth and apoptosis (230-232).  In plants, the complementary sites 

of miRNAs reside in both coding regions and non-coding regions. A limited number of 

mRNAs are regulated by miRNAs, which show a higher degree of complementarity to 

target mRNAs than animal miRNAs (233, 234).   
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In animals, it is estimated that 30% of protein-coding genes are regulated by 

miRNAs (235, 236).  Most target sites reside in the 3’-UTRs of target mRNAs and 

multiple sites exist to improve the strength of regulation (237-241).  miRNA can alter 

expression by promoting mRNA decay and inhibiting translation (234, 242-247).  

Ribosome profiling studies in mammals indicate that mRNA decay is the major force 

driving miRNA-mediated gene silencing (248).  However, kinetic analyses suggest that 

translational repression occurs first, followed by mRNA deadenylation and decay (249).  

Alternative polyadenylation can increase gene expression by generating a 

truncated 3’UTR lacking certain miRNA target sites (250).  Enhanced mRNA stability 

and translatability usually results from deletion of these elements.  Increased oncogene 

expression is related to 3’UTR shortening in cancer cells that is mediated by alternative 

polyadenylation (251).  

Recent studies revealed a correlation between the presence of secondary 

structures in the 5’UTR and miRNA target sites. Unstructured 5’ UTRs are refactory to 

miRNA repression. These data support that during miRNA-mediated gene regulation, 

translational repression via eIF4A2 is required first, followed by mRNA destabilization 

(252). 	
  

 Translational control mediated by upstream open reading frames (uORFs) 1.3.

In eukaryotes, cap-dependent translation initiation in eukaryotes requires 

ribosomes to scan from the 5’-cap structure to the 3’-end of mRNA to locate the start 

site (typically an AUG codon) (69).  Some eukaryotic mRNAs contain AUG codons 
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upstream of the main AUG codon.  These codons can serve as translation start sites in 

some circumstances (253). uAUGs are present in two-thirds of genes related in cancer 

and are common in genes involved in cellular growth and differentiation (254, 255). 

uAUGs in the 5’-UTR generally decrease the efficiency of initiation from the start codon 

of the main (genic) open reading frame (ORF). An upstream open reading frame (uORF) 

is defined as an upstream start codon (typical uAUG), at least one sense codon, and a 

termination codon.  An evolutionary selection of functional uORFs is suggested by their 

higher conservation and lower frequency of appearance than expected by chance (256, 

257).  Bioinformatics studies indicate 49% of human and 44% of mouse mRNAs contain 

at least one uORF.  An negative correlation between the prevalence of one or multiple 

uORF(s) in a transcript and the abundance of the respective protein has been established 

(2), consistent with uORFs generally reducing downstream translation.  

uAUG and the main AUG are recognized to start translation using the same 

mechanism.  The efficiency of initiation can be influenced by the initiation context, 

which is defined by the specific nucleotides flanking translation initiation codons (68, 

253, 258).  There are four major ways for uORFs to affect downstream ORF initiation.  

Firstly, a uORF could initiate translation and therefore reduce the possibility of initiation 

at a downstream start codon because ribosomes scan from the mRNA cap.  Some 43S 

PICs will pass the uAUG codon, especially if it is in a poor initiation context, and reach 

the downstream AUG codon by leak scanning.  Secondly, uORFs can control ribosome 

reinitiation.  In the reinitiation model, the small ribosomal subunit remains associated 

with the mRNA after termination at the uORF stop codon and continues to scan.  The 
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efficiency of reinitiation decreases as the length of the uORF increases, the rate of 

translation elongation decreases, and the distance between the uORF termination codon 

and the downstream start codon increases (259, 260).  Thirdly, some uORF-encoded 

nascent peptides can arrest translating ribosomes at their termination codons.  The stalled 

ribosome acts as a blockade to the scanning ribosome to prevent ribosomes from 

reaching the downstream initiation codon (261-264).  In addition, translating ribosomes 

can stall within the uORF coding regions. The arrest stalls uORF translation and blocks 

ribosome scanning, thus reducing the translation of the main ORF (265-267). 

Accumulating evidence indicates that eukaryotic uORFs can also influence 

translation by affecting mRNA stability (261). Nonsense-mediated mRNA decay (NMD) 

pathway is triggered by the uORF termination codon to decay mRNAs containing 

uORFs.  In plants, a 50 amino acid long uORF can induce NMD efficiently while shorter 

uORFs (31 and 15 aa long) cannot, suggesting that uORFs trigger NMD in a size-

dependent manner in plants (268). Ribosome stalling at the N. crassa arg-2 uORF 

termination codon activates NMD to decay the arg-2 transcript (269).  Depletion of a 

factor essential for NMD increases the abundance of transcripts with uORFs in 

mammalian cells (270).  In Caenorhabditis elegans, gna-2 mRNA, containing two 

uORFs, is targeted by NMD (271).  

1.3.1. Genes regulated by uORFs  

A number of uORFs have been identified and their functions investigated.  

Several well characterized examples will be discussed here to demonstrate the molecular 

mechanisms of uORF function.  
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1.3.1.1. Mammalian AdoMetDC  

Mammalian S-Adenosylmethionine decarboxylase (AdoMetDC) catalyzes a rate-

limiting step in the synthesis of spermidine and spermine (both are polyamine 

compounds) (272).  A uORF that starts only 14 nucleotides downstream of the 5’-cap is 

responsible for regulating the translation of AdoMetDC.  This uORF encodes a short 

peptide with the sequence MAGDIS (273, 274).  The amino acid sequence, especially 

Asp-4 and Ile-5, is crucial to translational control (274).  The expression of AdoMetDC 

changes in response to the level of polyamine (275).  When the concentration of 

polyamine is low, the scanning ribosome bypasses uORF initiation codon and initiates at 

the AdoMetDC ORF to induce the production of polyamine. When the concentration of 

polyamine rises, polyamine promotes the initiation of the uORF and causes ribosome 

stalling at uORF termination codon by impairing the hydrolysis of the peptidyl-tRNA 

upon termination (276).  The stalled ribosome further prevents the initiation from 

AdoMetDC start codon to downregulate the polyamine synthesis (273, 275, 277).  

1.3.1.2. Mammalian her-2  

Oncogene her-2 encodes a transmembrane receptor tyrosine kinase (278, 279).  

Overexpression of Her-2 protein occurs in many primary human tumors and contributes 

to approximately 30% of breast and ovarian carcinomas.  A uORF is present in her-2 

mRNA and represses downstream HER-2 expression in multiple cell types (280, 281).  

This uORF affects the selection of downstream initiation site by interfering with the 

interaction between the ribosome and the primary her-2 AUG codon (282). The 

translational derepression element (TDE) in the 3’-UTR in specific tumor cells abolishes 
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the repression effect of her-2 uORF by allowing efficient translation reinitiation from the 

downstream ORF start codon (283).  

1.3.1.3. Human cytomegalovirus gp48 

The human cytomegalovirus gp48 gene encodes a structural glycoprotein (284).  

Three uORFs are found in the 5’-UTR of gp48 and the 22-codon uORF2 is responsible 

for regulating the expression of gp48 (285).  The AUG codon of uORF2 is poorly 

recognized by the scanning ribosomes.  Most ribosomes will pass it and initiate 

translation at the AUG codon of gp48 (286, 287).  However, once the uORF2 is 

translated, it cause ribosomes to stall and strongly inhibit the translation of gp48 (286). 

The uORF2-encoded peptide inhibits translation at its own termination codon, resulting 

in a ribosome-peptidyl-tRNA complex (288).  This complex forms a blockade to 

scanning ribosomes from reaching the gp48 initiation codon, thus obstructing the 

downstream translation (289).  The inhibition of uORF2 translation is amino acid 

sequence-dependent and results from the impaired hydrolysis of peptidyl-tRNA (289).  

1.3.1.4. S. cerevisiae GCN4, N.crassa cpc-1, Aspergillus nidulans cpcA and 

mammalian ATF4 

Yeast GCN4 is the best-studied example of translational control mediated by 

reinitiation (185, 290, 291).  GCN4p, a bZIP transcription factor, mainly functions to 

activate the transcription of the majority of amino acid biosynthetic genes in response to 

amino acid starvation.  Expression of GCN4 is low in standard laboratory media.  The 

translation of GCN4 mRNA is activiated during amino acid limitation. 
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The induction of GCN4 translation in response to amino acid limitation is 

performed by four small uORFs in the 590-nt 5’-UTR of GCN4 mRNA.  Without these 

four uORFs, the efficiency of initiation at GCN4 start codon is low as a result of the long 

5’-UTR.  uORF1 and uORF4 together are sufficient to control regulation (185, 291).  

uORF1 is efficiently translated under both nutrient-replete and starvation conditions 

(292).  Translation of uORF1 promotes downstream initiation via reinitiation either at 

another uORF start codon (typically uORF4) or at the GCN4 start codon (293, 294).  

Sequences immediately downstream of the uORF1 termination codon are crucial for 

reinitiation (295).  uORF4 decreases the translation of GCN4.  Without uORF1, the 

translation of uORF4 by itself inhibits the initiation at the GCN4 start codon by 

approximately 99% (185).  eIF3b functions between 48S assembly and subunit joining to 

influence reinitiation on GCN4 mRNA(296). 

Through the general amino acid control pathway (GAAC), amino acid starvation 

results in an increased level of uncharged tRNAs, which activates GCN2, a kinase that 

phosphorylates the α subunit of eIF2 (297) (298).  The phosphorylated eIF2α is a 

competitive inhibitor of eIF2B, which is required in the recycle of eIF2·GDP to 

eIF2·GTP.  Thus amino acids starvation reduced the level of eIF2·GTP, decreases the 

formation of TC and slows the rate of overall protein synthesis.   

The mechanism of GCN4 translational control was elucidated by genetic 

methods and in vitro studies (299).  Ribosomes that scan from the 5’ cap will translate 

uORF1 and in approximately 50% of the 40S ribosome resume the scanning process 

after translation termination of uORF1.  Normally, the level of eIF2α phosphorylation is 
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low and the active TC is available soon enough to bind 40S ribosome to reinitiate 

translation at downstream inhibitory uORFs.  The expression of GCN4 is then repressed.  

Under amino acid starvation conditions, the TC level is reduced in response to eIF2α 

phosphorylation via GCN2.  Some 40S subunits that resume scanning do not bind TC 

soon enough to translate uORFs.  Instead, ribosomes reinitiate at the start codon of 

GCN4 (290, 300).  Consistent with this model, extending the distance between uORF1 

and uORF4 reduces the expression of GCN4 under starvation conditions (301).  uORF-

mediated control of GCN4 expression can also be regulated by mechanism that are 

independent of eIF2α phosphorylation under conditions such as nitrogen starvation (302).  

The N. crassa and Aspergillus nidulans homologs of S.cerevisiae GCN4 are cpc-

1 and cpcA, respectively.  Both cpc-1 and cpcA have roles similar to GCN4 in 

controlling the amino acid biosynthesis pathway, which is called cross-pathway control 

in filamentous fungi (303).  In addition to amino acid biosynthesis genes,  microarray 

studies in N. crassa and S. cerevisiae also identify other genes in other pathways that are 

affected by cpc-1 and GCN4, suggesting a broader role of cpc-1 and GCN4 (304, 305). 

Both cpc-1 and cpcA transcripts contain two uORFs, with the second uORF considerably 

longer than uORF2-4 found in yeast GCN4.  Translation of cpc-1 and cpcA are 

controlled by uORFs in their 5’UTR (303, 306, 307). Translational regulation performed 

by cpcA is supported by the evidence that the removal of uORFs leads to an increased 

expression under normal condition and a reduced regulation in response to stress (308).  

In response to amino acid limitation, native cpc-1 mRNA moves to the polysomes 

fraction, indicating the existence of translational regulation (309).  In this thesis, 
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CHAPTER 4 will discuss the translational control mediated by uORFs in N. crassa cpc-

1 transcript. 

In mammals, ATF4 (activating transcription factor 4) is a stress response gene 

with multiple downstream targets.  There are two uORFs in the 5’-UTR of the ATF4 

mRNA, with the second uORF overlapping with the ATF4 coding sequence (310, 311).  

Translation of ATF4 is activated by eIF2α phosphorylation (312).  Under normal cell 

conditions, after translation of the first uORF, TCs are most often recruited to the 

initiation codon of the second uORF.  Since the second uORF overlaps the ATF4 coding 

sequence, the expression of ATF4 is strongly inhibited.  Under stress conditions, eIF2α is 

phosphorylated, TC availability is reduced, and there is less chance of recruiting TCs to 

start initiation at the second uORF.  The start codon of ATF4 is used instead and 

translation is thus activated (311). The ATF4 uORFs thus function similarly to the yeast 

GCN4 uORFs: uORF1 controls downstream translation by reinitiation and ATF4 uORF2 

and GCN4 uORF4 strongly inhibit the translation of the main ORFs (310). 

1.3.2. N. crassa arg-2 and S. cerevisiae CPA1 

In N. crassa, the arg-2 gene specifies the small subunit of arginine-specific 

carbomoyl phosphate synthetase (CPS-A), which is the first protein in the Arg-specific 

biosynthesis pathway (313).  This small subunit functions as a glutamine 

amidotransferase to transfer the glutamine amide nitrogen to the large subunit, where 

carbamoyl phosphate is synthesized.  The ARG-2 polypeptide contains a mitochondrial 

signal for its subcellular location (314).  arg-2 is the only gene that is known to be 

negatively regulated by Arg in N. crassa.  The expression of arg-2 is controlled by a 
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uORF in the 5’-UTR of arg-2 mRNA.  This uORF encoded a 24-amino acid peptide, 

named the arginine attenuator peptide (AAP).  The AAP is highly evolutionarily 

conserved among many fungal species (314-317).  

The regulation of arg-2 expression occurs at both the transcriptional and 

translational level.  Short exposure of N. crassa to high levels of Arg decreases the 

synthesis of ARG-2 to 50% without changing the level of the arg-2 transcript, while 

long exposure will reduce the level of the arg-2 transcript (309).  Polysome profile 

studies reveal that a high concentration of Arg in the media shifts arg-2 mRNA to the 

monosome fraction (318).  In vivo analyses also indicate that the removal of uORF start 

codon abolishes Arg-specific regulation (309).  Forward genetic selection indentifies 

Asp-12 as a crucial residue in the AAP to negatively regulate arg-2 expression.  The Asp 

to Asn mutation (D12N) eliminates Arg-specific regulation (319). 

The uORF-mediated translational control of ARG-2 synthesis has been studied 

using an N. crassa cell-free translation system.  Synthetic transcript containing wild type 

AAP coding sequence upstream of the firefly luciferase reporter gene shows negative 

regulation of luciferase (LUC) synthesis in response to Arg.  This regulation is not 

observed for transcripts in which the uORF start codon is eliminated (ΔAUG) or for the 

D12N uORF (320). By toeprint assay, ribosomes are observed at the wild-type uORF 

termination codon but not the ΔAUG or D12N uORF termination codon in response to a 

high concentration of Arg (320).  Under the same conditions, the signal that corresponds 

to ribosomes associated with the downstream LUC initiation codon decreases for 

transcripts containing the wild-type AAP (315).  These results indicate that wild-type 
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uORF has the ability to stall ribosomes at its termination codon in response to Arg and 

the stalled ribosome prevents scanning ribosomes from reaching the downstream 

initiation codon.  Direct in-frame fusion of the AAP coding sequence to the LUC coding 

sequence retains AAP’s capacity of stalling ribosome, indicating that the AAP can stall 

either terminating or elongating ribosomes to regulate translation (321).  The amino acid 

sequence of the AAP determines its regulatory activity regardless the mRNA sequence 

and the charging status of arginyl-tRNAs (322, 323).  The core region within the AAP 

amino acid sequence that is important for Arg-specific regulation is identified by in vitro 

assays and a comparative bioinformatic analysis (317). The AAP stalls plant, fungal and 

animal ribosomes, suggesting that AAP’s function requires highly conserved feature of 

translation (317, 321).  

Photo-crosslinking experiments show that probes place at Val-7 of the AAP 

crosslink more to ribosomal protein L4 and less to L17 in response to a high 

concentration of Arg, suggesting that Arg changes the conformation of AAP relative to 

the ribosomal tunnel (324).  Cryo-EM structural studies of the AAP in the absence of 

Arg indicate that the C-terminal end of the AAP could exist as an alpha-helix structure in 

the ribosome exit tunnel and the nascent AAP interacts with residues of ribosomal 

proteins L4 and L17 at the tunnel constriction (325).  The CCA end of peptidyl-tRNA 

may make direct contact with the ribosome peptidyl-transferase center (PTC) to silence 

its function (325).  In this thesis, CHAPTER 3 will discuss the detailed study of Arg and 

AAP’s effects on the PTC. 
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In S. cerevisiae, the AAP is 25 amino acids in length and is encoded by a uORF 

in the CPA1 mRNA (326).  It controls the Arg-specific regulation of CPA1 in vivo and in 

vitro.  The D13N mutation abolishes AAP’s regulatory function, similarly to the D12N 

mutation in the N. crassa AAP (269, 327, 328).  AAP mediated regulation of CPA1 is 

dependent on the peptide sequence but not the nucleotide sequence, with the active 

domain spanning from codon 6 to codon 23 (329, 330).  

Yeast grown in Arg-supplemented medium shows a shorter half-life of the CPA1 

mRNA, suggesting that the level of CPA1 transcripts is also regulated (331).  The 

uORF-mediated nonsense mediated mRNA decay (NMD) pathway confers the 

regulation of CPA1 at the mRNA level.  NMD, including regulatory factors UPF1, 

NMD2 (UPF2) and UPF3 in yeast, targets mRNAs containing premature translation 

termination codons (332). In the wild-type yeast, the half-life of CPA1 mRNA is 3 min.  

However, in an isogenic upf1Δ strain, the half-life increases to approximately 18 min, 

indicating that CPA1 is a direct NMD target (333). UPF1 is shown to bind CPA1 mRNA, 

suggesting that CPA1 mRNA is a direct substrate of NMD (334).   

The ability of CPA1 to trigger NMD pathway is related to AAP’s efficient 

translation (269).  The wild-type AAP can trigger NMD pathway to degrade the CPA1 

transcript.  The D13N AAP, which abolished ribosome stalling, cannot induce NMD in 

response to Arg.  However, when the initiation context is improved, D13N AAP can 

efficiently trigger NMD pathway, the mechanism of which cannot be attributed to 

ribosome stalling.  These results suggest that NMD is triggered by increased ribosomal 

occupancy of the uORF termination codon (269).  Thus, translation of the uORF-
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encoded AAP is required for reducing CPA1 expression by affecting both translation 

efficiency and mRNA stability (269).  

 Translational control mediated by nascent peptide 1.4.

The Arg- and AAP-mediated translational control of arg-2 and CPA1 depends on 

AAP’s peptide sequence but not its mRNA sequences.  Eliminating the initiation codon 

of the AAP abolishes its regulatory effect (320).  However, when the C-terminus is 

extended or AAP is directly fused in-frame with downstream reporter genes, the 

ribosome stalling activity after the AAP’s coding sequence retains (322, 323).  The AAP 

can also exert its regulatory function as an internal domain within a large polypeptide 

and stall ribosomes during elongation (317, 321).  These results suggest that the 

termination codon of the AAP is not crucial for its regulatory effect and the AAP 

functions as a nascent peptide in the ribosome exit tunnel.  Other nascent peptides that 

control gene expression in eukaryotes and prokaryotes can help a better understanding of 

AAP-mediated control of the ribosome movement.  Several representative nascent 

peptides are discussed below.  

1.4.1. Arabidopsis thaliana CGS1 

Arabidopsis CGS1 encodes cystathionine γ-synthase, which catalyzes the first 

committed step of methionine biosynthesis (335). The expression of CGS1 gene is 

negatively regulated by methionine or its direct metabolite S-adenosyl-L-methionine 

(AdoMet).  When the concentration of AdoMet is high, due to the mRNA degradation 

from the 5’ end, the level of full-length CGS1 mRNA decreases, and the amount of 5’-



 

 40 

truncated mRNA increases.  The change of mRNA stability is mediated by a short 

peptide stretch 77RRNCSNIGVAQIVA90 designated MTO1, which is encoded within the 

first exon of CGS1.  The translation of MTO1 is crucial for the regulation of CGS1 gene 

at the post-transcriptional level.  Mutations in the MTO1 amino acid sequence or 

chemicals inhibiting translation abolish the regulation (266, 336, 337).  In vitro 

experiments indicate that, in response to AdoMet, the nascent peptide forms a compact 

conformation within the ribosome exit tunnel (338).  MTO1 induces a ribosome 

elongation-arrest immediately downstream of its coding region.  The stalling ribosome 

contains Trp93 and Ser94 in the P and A sites respectively (267).  The translation arrest 

and the mRNA degradation are closely related.  When the ribosome is stalled, the 5’-end 

of CGS1 mRNA is accessible for the RNA decay machinery (267).  

1.4.2. Escherichia coli SecM 

The E. coli secMA operon encodes two proteins, SecM (secretion monitor) and 

SecA (secretion driving ATPase).  The latter drives the movement of preproteins and 

internal membrane complexes (339, 340).  Translation of secM is responsible for the 

translation regulation of the downstream secA gene (341, 342).  Under normal conditions, 

ribosomes stall transiently at the C-terminus of SecM during elongation, inducing 

mRNA structural changes to expose the Shine-Dalgarno sequence preceding the secA 

ORF.  Other ribosomes engage in translation initiation at the secA gene to produce a 

basal level of SecA (339, 343).  Conditions that inhibit SecM targeting prolong 

translation arrest and induce an overexpression of SecA. Translocation of SecM into the 

periplasm relieves the secretion stress and abolishes ribosome stalling (344).  During the 
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time window of translation arrest, SecM polypeptide is co-translationally targeted by 

signal recognition particle to the cellular membrane.  Translation arrest thus ensures that 

SecA is synthesized near the cellular membrane.  The signal peptide in SecM functions 

as a molecular timer to co-ordinate member targeting with translation arrest (345). 

SecM is 170 residues in length.  The amino acid sequence 

F150XXXXXWIXXXXGIRAGP166 at the C-terminal region is crucial for SecM’s 

ribosome stalling activity (263, 340, 346, 347).  SecM-mediated stalling requires Pro-

166, which inhibits the formation of peptide bond between the peptidyl-tRNAGly in the P 

site and prolyl-tRNAPro in the A site (346).  When the A site is occupied by prolyl-

tRNAPro, the arrested peptidyl-tRNA is resistant to the peptide release induced by 

puromycin (346).  Mutations that decrease or abolish the regulatory function of SecM 

have been identified in SecM itself, ribosomal protein L4, L22 and 23S rRNA (347, 348).  

These mutations are located either close to the narrowest constriction of the exit tunnel 

or near the PTC.   

Cyro-EM analysis reveals structural rearrangements in both the large and small 

subunits of ribosomes during SecM-mediated translation arrest (349).  Crosslinking and 

fluorescence resonance energy transfer (FRET) studies suggest that, when the synthesis 

of the arrest motif is complete, SecM adopts a compact conformation induced by the 

ribosome (350, 351).  Specific interactions between SecM residues and ribosomal 

components may be responsible for the structural changes in both and the silenced PTC 

function.  
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1.4.3. E. coli TnaC  

The tnaCAB operon contains tnaC (a 24-residue leader peptide), tnaA (a 

tryptophanase), and tnaB (a tryptophan-specific permease) (352).  The transcription of 

tnaA and tnaB depends on the level of Trp in the cell. When the concentration of Trp is 

low, ribsosomes are dissociated from the mRNA after translating tnaC, allowing Rho 

termination factor to access the rut site adjacent to the tnaC stop codon.  As a result, the 

transcription terminates before the RNA polymerase reaches the downstream tnaA and 

tnaB genes. When the concentration of Trp is high, the translation termination of tnaC is 

inhibited (353, 354).  The nascent TnaC-tRNA remains uncleaved within the ribosome 

and the stalled ribosome prevents Rho factor from accessing its binding sites, thus 

allowing the transcription and expression of tnaA and tnaB (355). 

Residues in the TnaC and components of the ribosome exit tunnel and the PTC 

are identified to affect the binding of Trp and the regulatory function of TnaC (356-361).  

Cryo-EM studies indicate that, in contrast to SecM, TnaC is mainly in an extended 

conformation inside the tunnel, although some compactions in the vestibule region of the 

tunnel could not be excluded (362).  The presence of TnaC-tRNAPro within the ribosome 

is critical for the stalling action of Trp (355).  Interactions between Trp, TnaC and 

specific ribosomal components may induce a cascade of structural changes that relay to 

the PTC, creating a Trp binding and function site in or near the PTC (352, 353, 360, 362).  

Three transmitting mechanisms are proposed, including through the nascent peptide 

itself, through interactions at the side of exit tunnel where ribosomal protein L4 resides, 
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and through interactions on the side of ribosomal protein L22 (362).  So far, the last 

route contains most mutations that affect Trp induction (363). 

1.4.4. erm 

Macrolide antibiotics can induce the expression of erm genes in erythromycin-

resistant bacteria (364).  The translation of erm-encoded methyltransferase is regulated 

by drug- and nascent peptide-mediated ribosome stalling. Macrolides bind near the 

ribosome PTC (365, 366). ermC is the best-understood example of erm genes.  It is 

controlled by ermCL, an ORF upstream of ermC (367, 368).  In the absence of 

macrolides, ermCL is constitutively translated.  The translation of ermC is repressed 

because an mRNA secondary structure produced between ermCL and ermC sequesters 

the ribosome binding site required for the ErmC synthesis.  When low levels of 

antibiotic are present, translational arrest occurs at the ninth codon of ermCL, resulting 

mRNA structural rearrangements to expose the translation initiation region of ermC (348, 

369).  Four C-terminal amino acids (IFVI) of the ermCL nascent peptide are essential for 

ermCL’s ribosome stalling function (369).  The drug and the nascent peptide are 

recognized as a complex structure by specific components in the ribosome exit tunnel. 

(370).  As a result, the properties of the ribosomal A-site change and the PTC activity is 

inhibited for specific amino acids to stall ribosomes (371).  

 Translational control mediated by non-AUG initiation codon  1.5.

In eukaryotic cells, the 43S pre-initiation complex binds to the 5’-cap of mRNA 

and scans downstream for the initiation codon. Therefore the AUG that is closest to the 
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5’-cap and in a preferred initiation context is usually selected as the translation initiation 

site.  Components in the translation initiation machinery ensure the stringency of start 

codon selection.  Strong bias exists for nucleotides in the immediate vicinity of the start 

codon.  Multiple initiation factors contribute to the stringency of start codon selection.  

However, in certain cases, translation can initiate at non-AUG codons, especially those 

that differ from AUG by a single nucleotide (near-cognate codons).  In most cases, non-

AUG initiated proteins begin with a methionine (372).  Initiation from these non-AUG 

codons may increase coding capacity and function in regulatory mechanisms.  The 

stringency of start codon selection changes in response to different physiological 

conditions, such as amino acid starvation.  

1.5.1. The initiation context and near-cognate codons  

The initiation context, which comprises six nucleotides upstream and one 

nucleotide immediately downstream of a potential initiation codon (-6 to +4, with the A 

of AUG as +1), has a strong influence on the initiation efficiency at that codon (373, 

374).  In mammalian cells, the Kozak consensus [GCC(A/G)CCAUGG] is optimal for 

initiation (253, 374).  A purine at position -3 and a ‘G’ at position +4 are most important 

for efficient initiation (374).  Mutations at position -3 can reduce initiation by more than 

an order of magnitude in mammalian cells (374).  Substitutions at positions +4, -1 and -2, 

have lesser effects on translation efficiency, while their effects are intensified when the -

3 nucleotide is suboptimal (374).  Therefore, when a 5’-proximal AUG is surrounded by 

an unfavorable context, the frequency of initiation at that site is reduced. 
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Some near-cognate codons (NCCs) support translation with efficiencies that are 

less than that observed with AUG.  The presence of a good Kozak context is crucial for 

initiation from such non-AUG codons (68, 375, 376).  The measured efficiencies of 

initiation from NCCs depend on the gene and the study.  Most efficiencies range from 

~1 to 20% compared to AUG in the same context, except for “near-cognate” AAG and 

AGG, which do not permit initiation.  That is, changing the ‘U’ at the second position to 

a purine eliminates translation initiation (372, 377, 378).  Studies in human cells reveal a 

hierarchy in initiation efficiencies at NCCs (379).  The most potent are CUG and GUG 

(19.5% and 9.2% of AUG initiated translation), while some NCCs are used at lower 

efficiencies (ACG 6.6%, AUA 3.3%, AUU 3.2%, UUG 1.9% and AUC 1.7%) (379).  In 

plant protoplasts, CUG is the most active (30%), then GUG and ACG (15%). AUA, 

AUU, UUG and AUC are less active (2-5%) (380).  In yeast, a recent in vivo assay 

demonstrates the following hierarchy: CUG (7%), GUG (5%), UUG (5%), ACG (4%), 

AUA (4%), AUU (2%) and AUC (1%) (377). However, other studies yielded different 

results, presumably because of the different initiation contexts used (377, 378, 381-383).  

1.5.2. The existence of non-AUG initiation sites 

In mouse embryonic stem cells, unannotated AUG or near-cognate initiation sites 

have been identified.  The majority of these start sites drive the translation of uORFs in 

the 5’ UTRs, potentially with regulatory function (384).  For example, Myc and Nanog, 

genes involved in pluripotency, have multiple uORFs initiated at both AUG and NCCs 

to produce alternative translation products (384).  In yeast, a genome-wide analysis 

reveals that NCC initiated uORFs can be translated at levels comparable to AUG-
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initiated uORFs (385).  Interestingly, translation of these non-AUG uORFs generally 

increases in response to amino acid starvation (385).   

In some cases, an upstream in-frame NCC supports the translation of a longer 

isoform of protein in addition to that provided by the standard AUG codon (69).  Protein 

isoforms with different N-terminal sequences can confer different functions at different 

subcellular locations (386).  In yeast, ALA1 and GRS1 use upstream in-frame UUG and 

ACG, respectively, to produce a longer isoform targeted to mitochondria (375, 381). 

Proteins identified to initiate exclusively at non-AUG codons include the 

following examples.  In yeast, the glycyl-tRNA synthetase gene initiates from a UUG 

codon (381).  Podospora anserine IDI-4 initiates at CUG (387).  In plants, the 

AGAMOUS gene in Arabidopsis uses an ACG codon to start translation and some RpoT 

genes in Nicotiana spp. use CUG codons (388-390).  Mammalian NAT1 mRNA, 

encoding eIF4G2, uses GUG to start translation (391).  Interestingly, the capsid protein 

in an insect RNA virus is initiated with glutamine encoded by a CAA codon instead of 

methionine (392).  Another polypeptide initiated with a non-Met amino acid is presented 

by major histocompatibility complex (MHC) class I molecules.  This peptide uses 

leucine-tRNA to recognize a CUG codon to start translation (393).  

1.5.3. The stringency of start codon selection  

The stringency of start codon selection can be regulated by several parameters. A 

high concentration of Mg2+ increases initiation at non-AUG codons in vitro (68).  A 

high-throughput screen conducted in S. cerevisiae identified two structurally related 

molecules isoquinoline-1-carboxylic acid and 7-amino-5-iodo-8-quinolinol that decrease 
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the stringency of start codon selection (394).  These compounds can also stimulate 

initiation at natural uORFs with near cognate start codons.  The effects of these 

compounds are suppressed by the overexpression of eIF1 (394).  

Genetic studies in yeast reveal that eIF1 (395), subunits of eIF2 (71, 396), eIF5 

(31), eIF1A (72, 397), eIF3 (398) and eIF4G (399) regulate start codon selection in vivo 

conferring either the Sui- (Suppressor of initiation codon) or Ssu- (Supressor of sui) 

phenotypes.  Sui- mutations in these initiation factors can restore the expression of a his4 

allele lacking the AUG initiation codon by enabling initiation from the third codon 

(UUG) of the his4 ORF.  The Sui- phenotype indicates increased translation efficiency 

from NCCs.  Ssu- mutations have the opposite effect, suppressing UUG-initiated 

translation conferred by Sui- mutations (71).   

Among initiation factors that change the stringency of start codon selection, eIF1 

and eIF5 are of great interest because of their auto- and cross- regulatory roles (400) 

(379).  eIF1 binds near the ribosomal P site and promotes an open conformation of the 

PIC.  This conformation favors scanning and prevents base pairing of Met-tRNAi
Met with 

non-AUG codons (44, 74, 170, 401, 402).  The release of Pi and the GAP (GTPase 

activating protein) function of eIF5 are blocked by eIF1 at non-AUG codons (78, 401, 

403).  AUG recognition triggers the dissociation of eIF1 from the 40S subunit, which is 

a critical step in start codon selection (395, 401).  The release of eIF1 induces the 

formation of a closed conformation of the PIC, which is scanning-incompatible (78, 80).  

Mutations that enhance eIF1 release at non-AUG codons decrease the stringency of start 

codon recognition (404).  Overexpression of wild-type eIF1 reduces the usage of AUG 
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codon in poor context and the usage of non-AUG start codons (379).  Overexpression of 

eIF1 can also suppress the increased initiation at non-AUG codons conferred by Sui- 

mutations in other initiation factors (397, 398).  Interestingly, eIF1 from different 

organisms initiates from its AUG codon in a poor context, which is shown to be crucial 

for an autoregulatory negative feedback loop (379).  When the level of eIF1 is high, the 

stringency of start codon selection increases, resulting in eIF1 inhibiting its own 

translation (379).  The autoregulatory function of eIF1 demonstrates that the stringency 

of start codon selection can be changed to regulate gene expression. 

eIF5 hydrolyzes eIF2-bound GTP in response to initiation codon recognition 

(405-407).  eIF5 can competitively bind to a site in the small ribosomal subunit, 

resulting the release of eIF1 (80).  In contrast to eIF1, over-expression of eIF5 leads to 

an increased level of initiation at AUG codons in poor contexts and at non-AUG start 

codons (400).  Similarly to eIF1, eIF5 auto regulates its own synthesis (400).  Many eIF5 

mRNAs contain one or more uORFs that initiate with AUG codons in poor contexts 

(400).  In human cells, high levels of eIF5 decrease the stringency of start codon 

selection, induce translation of these inhibitory uORFs and reduce initiation from the 

downstream eIF5 start codon. (400).  The auto- and cross- regulation achieved by eIF1 

and eIF5 establish a regulatory feedback loop, which provides an additional mean to 

stabilize the stringency of start codon selection (400).  

A genetic analysis in yeast also shows that deletion of the C-terminus of eIF1A 

causes Sui-, indicating eIF1A’s role in maintaining the stringency of start codon 

selection (72).  A Ssu- mutation is also identified in eIF1A to decrease the rate of eIF1 
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release from the PIC (404).  Mutations in eIF2 and its GTPase-activating protein eIF5 

can increase initiation at non-AUG codons by increasing the dissociation of eIF2·GTP 

from Met-RNAi
Met or by enhancing the rate of GTP hydrolysis (31) 

 Dissertation research 1.6.

 In my dissertation, the translational control is analyzed in N. crassa.  Puromycin 

release assay was used to show that AAP interferes with ribosome PTC in response to 

Arg (CHAPTER 2). The stringency of start codon selection was examined 

systematically both in vivo and in vitro in N. crassa (CHAPTER 3).  In vitro studies 

showed that cpc-1 uORF1 and uORF2 function similarly as GCN4 uORF1 and uORF4 

to regulate translation through reinitiation (CHAPTER 4). Four non-AUG start codons in 

the 5’UTR of cpc-1 were revealed. The utilization of these codons might provide 

additional routes for translation regulation (CHAPTER 4).
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CHAPTER II 

THE ARGININE ATTENUATOR PEPTIDE INTERFERES WITH THE RIBOSOME 

PEPTIDYL TRANSFERASE CENTER* 

 

2.1.  Introduction 

Translational control mediated by nascent peptides is demonstrated in mammals, 

fungi, plants, bacteria and viruses (338, 342, 364, 408-411). Among regulatory nascent 

peptides that control gene expression are some that are encoded by upstream open 

reading frames (uORFs) in mRNA 5’-leaders. The significance of eukaryotic uORFs is 

increasingly appreciated (261, 412-415). Translation of uORFs can reduce translation of 

downstream ORFs and also decrease mRNA stability. Regulation by eukaryotic uORFs 

and prokaryotic leader peptides (the designation for prokaryotic uORFs) has 

consequences for a variety of physiological processes (2, 256). 

Regulatory nascent peptides can control translation from within the ribosome 

tunnel by causing ribosomes to stall. In Escherichia coli, tryptophanase expression is 

controlled in response to tryptophan by the TnaC leader peptide which acts as a 

ribosome-arrest peptide (RAP) during translation termination (359). E. coli SecM and 

Bacillus subtilis MifM nascent polypeptides contain domains that interact with the 

ribosome to cause ribosome-arrest during elongation (340, 348, 416, 417). Bacterial erm 

                                                
* This material has been published in this or similar form in Molecular and Cellular Biology and is used 
here with permission of  American Society for Microbiology.  
Wei, J., Wu, C., and Sachs, M.S. (2012). The arginine attenuator peptide interferes with the ribosome 
peptidyl transferase center. Mol Cell Biol 32, 2396-2406. 
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and cml operons, which confer resistance to macrolides and to chloramphenicol, 

respectively, are regulated by nascent leader peptides that function as RAPs when the 

antibiotics are present (371, 418-420). A nascent peptide designated MTO1 within the 

Arabidopsis thaliana CGS1 coding region causes ribosomes to stall during elongation in 

response to S-adenosyl-L-methionine; the stall induces mRNA degradation (266, 267). 

In mammals, the uORF-encoded RAP “MAGDIS” regulates the synthesis of S-

adenosylmethionine decarboxylase in response to polyamines by stalling ribosomes 

(276, 421). Expression of the human cytomegalovirus gp48 gene is reduced by 

translation of its uORF2 RAP (422), which causes ribosomes to stall at the uORF2 

termination codon (287, 288). Ribosomes synthesizing the uORF-encoded fungal 

arginine attenuator peptide (AAP) stall at the uORF-termination codon in response to a 

high concentration of arginine (Arg) (315, 316, 321, 323, 423-425). 

The regulatory AAP uORF is present in the 5'-leaders of fungal mRNAs 

specifying the glutamine amidotransferase subunit of Arg-specific carbamoyl phosphate 

synthetase (316, 328). AAP-mediated stalling in response to Arg results in the reduced 

synthesis of the first enzyme specific for Arg biosynthesis (426). AAP is the best-

understood example of a eukaryotic RAP. In vivo studies of the Neurospora crassa arg-

2 mRNA, which encodes the AAP uORF, show that the rate of ARG-2 synthesis is 

reduced in Arg-supplemented medium (309). Polysome-profile analyses show that 

adding Arg to the growth medium shifts the N. crassa arg-2 and Saccharomyces 

cerevisiae CPA1 transcripts that specify the wild-type uORF-encoded AAP toward the 

monosome fraction (269, 318). Furthermore, in S. cerevisiae, ribosome stalling at the 
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uORF termination codon triggers degradation of the mRNA through the nonsense-

mediated mRNA decay pathway (269). Thus, AAP-mediated ribosome stalling can 

regulate gene expression in cis by reducing translation from a downstream start codon in 

the mRNA and by reducing the stability of this mRNA. 

In vitro experiments have contributed to understanding the mechanistic basis of 

AAP function. Toeprinting (primer-extension inhibition), which maps the positions of 

ribosomes on mRNA, shows that when the AAP functions as a uORF, ribosomes 

arrested at the AAP termination codon block scanning ribosomes from reaching the 

downstream initiation codon for the genic ORF (293). AAP can also function as an 

internal polypeptide domain to cause stalling of ribosomes during elongation (321, 424). 

AAP causes Arg-regulated stalling of fungal, plant, and animal ribosomes, establishing 

that the AAP and Arg exploit highly conserved ribosome functions to cause stalling 

(321). Ribosomal peptidyl transferase activity is a likely target, but this has not yet been 

directly demonstrated.  

Structurally, site-specific photocrosslinking experiments indicate that Arg alters 

the conformation of the wild-type AAP relative to the ribosome tunnel (324). In high 

Arg, a crosslinker placed at AAP Val-7 reacted relatively less to ribosomal protein L17 

and more to ribosomal protein L4. Consistent with these data, visualization of ribosome 

nascent chain complexes containing AAP in the absence of Arg by cryo-electron 

microscopy also indicates that the AAP interacts with ribosomal proteins L4 and L17 at 

the ribosome tunnel constriction (325). 
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A hypothesis to explain Arg-regulated ribosome stalling by AAP is that high Arg 

stabilizes a conformation of the nascent peptide relative to the ribosome that interferes 

with PTC activity, resulting in ribosome stalling. To test this, we used a puromycin-

release assay to directly examine how the AAP and Arg affect PTC activity. Puromycin 

is an aminonucleoside antibiotic in which part of the molecule resembles the 3' end of 

tyrosyl-tRNA (427). During translation, puromycin enters the PTC A site and the 

peptidyl transferase reaction transfers the nascent peptide from tRNA to puromycin. The 

rate of nascent peptide chain transfer to puromycin thus can be used as an indicator of 

PTC activity (113, 346, 350, 351, 353, 355, 428).  

Here we show that AAP functions with Arg to interfere with the PTC activity of 

N. crassa and wheat ribosomes. AAP containing the D12N mutation, which eliminates 

Arg-induced ribosome stalling, also eliminated Arg’s effect on PTC activity. 

Importantly, the AAP interfered with the PTC before full-length AAP was synthesized, 

but full-length synthesis appeared important for most efficient stalling. These data 

support a model for AAP function in which the inhibition of PTC activity is the basis for 

the AAP’s capacity to stall the ribosome. Unlike many other RAPs, specific features of 

the AAP near the ribosomal catalytic center appear relatively unimportant for stalling. 

2.2. Metarials and methods 

2.2.1. Plasmids  

Plasmids containing the coding sequences for wild-type Met9AAP (pJC102, 

Figure 2.1A) and D12N Met9AAP (pJCS102) were constructed as described (324). The 
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wild-type AAP sequence was substituted with other sequences by replacing the small 

AgeI-HindIII restriction fragments with annealed synthetic oligonucleotides by ligation 

(Table 2.1). To construct plasmid pJW201 (Figure 2.1B), which contains the uORF-

encoded AAP and a downstream luciferase reporter, synthetic complementary 

oligonucleotides JW001+ and JW001– (Table 2.2) were annealed and ligated to gel-

purified vector pR301 (322) that had been digested with MluI and NcoI. Mutations were 

introduced into the AAP-coding sequence by replacing the small SpeI-HindIII restriction 

fragment with annealed synthetic oligonucleotides by ligation (Table 2.2 and Figure 

2.1B). To construct plasmid pJF401 (Figure 2.1C), which contained the AAP fused with 

in-frame luciferase reporter (AAP-LUC), synthetic complementary oligonucleotides 

(Table 2.3) were annealed and ligated to gel-purified vector pJW201 that had been 

digested with SpeI and BstEII. Mutations were introduced into the AAP-coding sequence 

by replacing the SpeI-BstEIII restriction fragment with annealed synthetic 

oligonucleotides by ligation (Tables 2.3 and Figure 2.1C). Plasmids specifying T7LUC 

and sea pansy luciferase were described (315, 423). 
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Figure 2.1. The sequences of AAP constructs used in this study. (A) The sequences 
of pJC102-based Met9AAP constructs used for puromycin-release assays. Mutations and 
selected restriction enzyme sites are shown below the sequence. The cytosine marked 
with the first black dot was deleted and a thymine was inserted after the thymine marked 
with the second black dot to make FS AAP. (B) The sequences of pJW201-based AAP 
constructs used for toeprinting and luciferase reporter assays. (C) The sequences of 
pJF401-based AAP-LUC fusion constructs used for toeprinting and luciferase reporter 
assays. 
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Table 2.1. Oligonucleotides used to substitute wild-type AAP sequence with other 
peptide sequences in pJC102. Plus and minus strands were annealed and cloned into 
AgeI/HindIII sites as shown in Figure 2.1A. 
Oligo 
Name 

Sequence (5ʹ′ - 3ʹ′) Cloning site Vector 

FS+ CCGGTGCCCGTCAGTCTTCACTAGTCA
GGATTACCTCTCAGACCATCTGTGGAG
AGCCCTTTAACGCGTAAA 

AgeI/HindIII 
 

pJC102 
 

FS- AGCTTTTACGCGTTAAAGGGCTCTCCA
CAGATGGTCTGAGAGGTAATCCTGACT
AGTGAAGACTGACGGGCA 

gp48 
uORF2+ 

CCGGTCTGGTTCTCTCGGCGAAAAAAC
TGTCGTCTTTGCTGACTTGCAAATACA
TCCCGCCTTAAA 

AgeI/HindIII 
 

pJC102 

gp48 
uORF2- 

AGCTTTTAAGGCGGGATGTATTTGCAA
GTCAGCAAAGACGACAGTTTTTTCGCC
GAGAGAACCAGA 

ScAAP+ CCGGTTTATCGAACTCTCAATACACCT
GCCAAGACTACATATCTGACCACATCT
GGAAAACTAGCTCCCACTAAA 

AgeI/HindIII pJC102 
 

ScAAP- AGCTTTTAGTGGGAGCTAGTTTTCCAG
ATGTGGTCAGATATGTAGTCTTGGCAG
GTGTATTGAGAGTTCGATAAA 

 

 

 

 

 

 

 

 

 

 



 

 57 

Table 2.2. Oligonucleotides used to construct pJW201 and introduce mutations into 
the AAP coding sequence in pJW201. Plus and minus strands were annealed and 
cloned into MluI/NcoI or SpeI/HindIII sites as shown in Figure 2.1B.  
Oligo 
Name 

Sequence (5ʹ′ - 3ʹ′) Cloning site Vector 

JW001+ CGCGTAAAAGCTTCTCATCACCCAGCA
GCCGTACCAATCACCACCGCACCCCAT
CACCATTCAAGTCAAGCTCGAGAAC 

MluI/NcoI pR301 

JW001– CATGGTTCTCGAGCTTGACTTGAATGG
TGATGGGGTGCGGTGGTGATTGGTACG
GCTGCTGGGTGATGAGAAGCTTTTA 

D12N+ CTAGTCAGAATTACCTCTCAGACCATC
TGTGGAGAGCCCTTAACGCGTAAA 

SpeI/HindIII pJW201 

D12N- AGCTTTTACGCGTTAAGGGCTCTCCAC
AGATGGTCTGAGAGGTAATTCTGA 

AAP19+ CTAGTCAGGATTACCTCTCAGACCATC
TGTGGTAGGCCCTTAACGCGTAAA 

SpeI/HindIII pJW201 

AAP19- AGCTTTTACGCGTTAAGGGCCTACCAC
AGATGGTCTGAGAGGTAATCCTGA 

AAP20+ CTAGTCAGGATTACCTCTCAGACCATC
TGTGGAGATAGCTTAACGCGTAAA 

SpeI/HindIII pJW201 

AAP20- AGCTTTTACGCGTTAAGCTATCTCCAC
AGATGGTCTGAGAGGTAATCCTGA 

AAP21+ CTAGTCAGGATTACCTCTCAGACCATC
TGTGGAGAGCCTAGAACGCGTAAA 

SpeI/HindIII pJW201 

AAP21- AGCTTTTACGCGTTCTAGGCTCTCCAC
AGATGGTCTGAGAGGTAATCCTGA 

AAP22+ CTAGTCAGGATTACCTCTCAGACCATC
TGTGGAGAGCCCTTTAGGCGTAAA 

SpeI/HindIII pJW201 

AAP22- AGCTTTTACGCCTAAAGGGCTCTCCAC
AGATGGTCTGAGAGGTAATCCTGA 

AAP23+ CTAGTCAGGATTACCTCTCAGACCATC
TGTGGAGAGCCCTTAACTAGTAAA 

SpeI/HindIII pJW201 

AAP23- AGCTTTTACTAGTTAAGGGCTCTCCAC
AGATGGTCTGAGAGGTAATCCTGA 
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Table 2.3. PCR primers used to amplify linear DNA fragments as templates to 
generate mRNAs encoding AAPs and other peptides. 
Oligo Name Sequence (5ʹ′ - 3ʹ′) 
T7 upstream+ AGTAGGTTGAGGCCGTTGA 
AAP20 trunc- TCTCCACAGATGGTCTGAG 
AAP21 trunc- GGCTCTCCACAGATGGTCT 
AAP22 trunc- AAGGGCTCTCCACAGATGG 
AAP23 trunc- GTTAAGGGCTCTCCACAGA 
AAP24 trunc- CGCGTTAAGGGCTCTCCAC 
AAP25 trunc- GACCGCGTTAAGGGCTCTC 
A21R AAP21 trunc- ACGTCTCCACAGATGGTCT 
L22R AAP22 trunc- ACGGGCTCTCCACAGATGG 
N23R AAP23 trunc- ACGAAGGGCTCTCCACAGA 
A24R AAP24 trunc- ACGGTTAAGGGCTCTCCAC 
A24R AAP24 (CGG)trunc- CCGGTTAAGGGCTCTCCAC 
*25R AAP25 trunc- ACGCGCGTTTAAGGGCTCT 
A21R AAP24 trunc- CGCGTTAAGACGTCTCCAC 
L22R AAP24 trunc- CGCGTTACGGGCTCTCCAC 
N23R AAP24 trunc- CGCACGAAGGGCTCTCCAC 
FS_F22R AAP24 trunc- CGCGTTACGGGGCTCTCCAC 
FS_N23R AAP24 trunc- CGCACGAAAGGGCTCTCCAC 
FS_A24R AAP24 trunc- ACGGTTAAAGGGCTCTCCAC 
Sc AAP trunc- GTGGGAGCTAGTTTTCCA 
gp48 uORF2 trunc- AGGCGGGATGTATTTGCAAG 
gp48 uORF2 P22A trunc- CGCCGGGATGTATTTGCAAG 

 

 

 

2.2.2. RNA synthesis  

Capped and truncated mRNAs encoding nascent peptides were transcribed in 

vitro by T7 RNA polymerase (424) using PCR-generated DNA fragments as templates 

(primers are listed in Table 2.3). Capped and polyadenylated RNAs were transcribed in 

vitro by T7 RNA polymerase from plasmid DNA templates that were linearized with 

EcoRI (322). Aliquots of transcribed RNAs were electrophoresed in agarose gels 
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adjacent to nucleic acid standards of known quantity and stained with ethidium bromide. 

Gel images were obtained by a GE Typhoon Trio+ imager and analyzed by 

ImageQuantTL to determine the relative amounts of RNA. 

2.2.3. Cell-free translation analyses 

To visualize peptidyl-tRNA by [35S]Met-labeling, in vitro translation reactions 

(20 µl) were programmed with 120 ng of RNA. Either micrococcal nuclease-treated N. 

crassa extracts or micrococcal nuclease-treated wheat germ extracts were used (324). 

[35S]Met (>1000 Ci/mmol, MP Biomedicals) was added to reactions at a final 

concentration of 0.5 µCi/µl. Arg or Arg analogs were added to reactions as described in 

the text. For puromycin-release assays, translation reactions were incubated for 5 min at 

26°C and then puromycin at concentrations indicated in the text was added to reactions. 

Samples (5 µl) were taken immediately before the addition of puromycin and at 

timepoints following addition as indicated (see for example Figure 2.2A). Samples were 

mixed with 5 µl 2X NuPAGE LDS Sample Buffer (Invitrogen) and put on ice to stop 

reactions, and then analyzed using 12% NuPAGE gels (Invitrogen) with MES running 

buffer. The gels were fixed and dried, exposed to phosphor screens overnight, and 

analyzed with a GE Typhoon Trio+ imager and ImageQuantTL software. 
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Figure 2.2. Puromycin-release assay to assess the effects of AAP and Arg on PTC 
activity. (A) Synthetic truncated mRNA specifying the N. crassa AAP is translated in 
cell-free systems. Because the mRNA lacks in-frame stop codons, the full-length nascent 
peptide should remain associated with ribosomes as peptidyl-tRNA with the last encoded 
amino acid in the ribosome P site. After translation at 26°C for 5 min, puromycin is 
added to the reaction. Samples are taken immediately before the addition of puromycin 
(Time 0), or 1 and 3 min following addition. Translation products are analyzed on 12% 
NuPAGE gels. Translation reactions contained either low Arg [20 µM (–)] or high Arg 
[2 mM (+)]. (B) Puromycin-release assay to examine the functions of WT and D12N 
AAPs in wheat germ extract. Translation reactions contain either low (–) or high (+) 
Arg. Samples were taken at time 0, and 1 and 3 min after adding 1 mM puromycin. Lane 
13 is a control reaction to which no mRNA was added. Arrow: [35S]Met-labeled AAP-
tRNA that was resistant to puromycin-release in high Arg. Arrowhead: [35S]Met-labeled 
free AAP and AAP-puromycin. (C) Quantification of the puromycin-release assay of 
WT and D12N AAP-tRNAs in wheat germ extract. The signals representing AAP-
tRNAs at 1 and 3 min were normalized to the signal at time 0. Mean values and standard 
deviations from three independent experiments are given (***p < 0.001, Student's t-test). 
(D) Puromycin-release assay to compare the effect of translating truncated mRNA to 
mRNA with a 3’ poly A tail in wheat germ and N. crassa extracts. mRNAs encoding 
WT and D12N AAPs were used. Samples were taken at time 0, and 1 and 3 min after 
adding 1 mM puromycin (wheat germ extract) or 0.1 mM puromycin (N. crassa extract). 
A representative result of triplicate experiments is shown. Trunc, truncated mRNA; 3’ 
p(A), mRNA with an intact AAP stop codon and a 3’ poly A tail. (E) Puromycin-release 
assay in N. crassa extract. Samples were taken at time 0, and 1 and 3 min after adding 
0.1 mM puromycin. A24R, D12N A24R, WT and D12N AAPs were analyzed. Left 
panel: AAP-tRNA was labeled with [35S]Met. Right panel: AAP-tRNA was detected 
with [32P] labeled tRNAArg (CGU) probe. A representative result of triplicate 
experiments is shown. (F) Adding Arg after AAP synthesis to assess the regulatory 
effect on PTC activity. The puromycin-release assay was performed as in the upper 
panel. After translation in wheat germ for 5 min, edeine was added to block translation 
initiation. 2 mM Arg was added either before translation was started or after the addition 
of edeine. The effects on puromycin induced release of nascent peptide were compared 
to a reaction that did not contain high Arg. 
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To visualize peptidyl-tRNA by [32P]-probing, in vitro translation reactions (20 

µl) were prepared as described above, except that reactions contained 20 µM Met and no 

[35S]Met. Following gel electrophoresis, samples were transferred to Zeta-Probe nylon 

membranes (Bio-Rad). The procedures for electrophoretic transfer, nucleic acid fixation 

on the membrane, prehybridization, hybridization with [32P]-labeled oligonucleotide and 

washing were as described (429), except that denatured salmon sperm DNA was not 

included in the prehybridization and hybridization solutions. After washing, membranes 

were exposed to phosphor screens overnight. The DNA probe (JW02: 5’-

GATCCACCCAGGGGTCG-3’) which is the reverse complement to 56-72 of N. crassa 

tRNAArg (CGU) (430) was [32P]-labeled at its 5’ end as described (323).  

For luciferase reporter assays, the reaction conditions for in vitro translation 

using N. crassa extracts were as described (320). Translation reactions (10 µl) were 

incubated at 25 °C for 30 min, and translation was halted by adding 50 µl 1.2X Passive 

Lysis Buffer (Promega). For firefly luciferase activity measurements, equal amounts (12 

ng) of mRNA encoding firefly luciferase were used to program extracts; 2.5 ng of 

synthetic mRNA encoding Renilla (sea pansy) luciferase was added to all reactions to 

serve as an internal control (315). Firefly and sea pansy luciferase enzyme activities 

were measured using the Dual-Luciferase Reporter Assay System (Promega) with a 

VICTOR 3 Multi-task Plate Reader (Perkin Elmer).  

The primer extension inhibition (toeprint) assays were accomplished using [32P]-

labeled primer ZW4 as described (320, 431), except that when cycloheximide was added 
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to reaction after 10 min of translation, reactions were immediately processed to preserve 

signals from ribosomes stalled at termination codons.  

2.3. Results 

2.3.1. AAP interferes with PTC activity in response to Arg  

We tested whether the AAP directly interfered with PTC activity using 

puromycin-release as an assay (Figure 2.2A). Cell-free translation extracts were 

programmed with truncated synthetic mRNA specifying wild-type or mutated AAPs. 

Ribosomes that translate the AAP coding sequence are expected to accumulate at the 3’-

end of the mRNA with the last codon in the P site. The nascent AAP would thus be in 

peptidyl-tRNA form at the P site. The AAP is visualized by [35S]Met-labeling; eight 

additional Met-residues are encoded at the AAP’s N-terminus to increase labeling (425). 

After translation of the RNA for 5 minutes at 26°C in either low Arg [20 µM (-)] or high 

Arg [2 mM (+)], puromycin is added to the reactions. Samples are taken immediately 

before the addition of puromycin (Time 0), and at one-minute and three-minute time-

points following puromycin addition (Figure 2.2A). The [35S]Met-labeled reaction 

products are analyzed using 12% NuPAGE gels. AAP-tRNA and AAP released from 

tRNA can thus be resolved and the amount of [35S]Met in AAP-tRNA form can be 

quantified.  

The addition of Arg slowed the rate of puromycin-induced release of wild-type 

(WT) AAP-tRNA in wheat germ extract (Figure 2.2B). In low Arg, WT AAP-tRNA, 

which migrated with an apparent Mr ≈ 28 kDa and which was RNase sensitive (Figure 

2.3), disappeared rapidly following the addition of 1 mM puromycin (Figure 2.2B, lanes 
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3 and 5 versus lane 1; quantification is given in Figure 2.2C). The decrease in the AAP-

tRNA species in response to puromycin was accompanied by an increase in the AAP (Mr 

≈ 3.8 kDa, the AAP is expected to be linked to puromycin whose mass did not have a 

detectable impact on the AAPs’ migration in this gel system). This indicated that, in low 

Arg, the PTC relatively efficiently transferred the nascent AAP from AAP-tRNA to 

puromycin. However, in high Arg, WT AAP-tRNA did not decrease as rapidly in 

response to puromycin, indicating that Arg interfered with PTC activity (Figure 2.2B, 

lanes 4 and 6 versus lane 2; quantification in Figure 2.2C). The difference in puromycin-

release rates in low versus high Arg was significant (p < 0.001, Student’s t-test). The 

WT AAP-tRNA band was stronger and the free AAP band was weaker in high Arg even 

before puromycin treatment (Figure 2.2B, lane 2 versus lane 1), which is also consistent 

with Arg having a stabilizing effect on the nascent WT AAP-tRNA in the ribosome. In 

other words, the increased level of WT AAP-tRNA in the presence of high Arg could 

reflect reduced spontaneous hydrolysis of the peptidyl-tRNA (432). Asp-12 of AAP is 

functionally important and the D12N mutation abolishes AAP-mediated stalling in 

response to Arg (317 and reference therein). For the nonfunctional D12N AAP, AAP-

tRNA disappeared rapidly in response to puromycin in both low Arg (Figure 2.2B, lanes 

9 and 11 versus lane 7, quantification in Figure 2.2C) and high Arg (Figure 2.2B, lanes 

10 and 12 versus lane 8, quantification in Figure 2.2C), indicating that Arg did not affect 

PTC activity when ribosomes contained D12N AAP-tRNA. These data show that the 

D12N AAP did not inhibit PTC activity in response to Arg. 
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Figure 2.3. The species identified as AAP-tRNA are RNase-sensitive. Wheat germ 
extract was programmed with truncated mRNA encoding WT AAP. The puromycin-
release assay was performed as in Fig. 2.2B. Half of the translation products were treated 
with 1 µg RNaseA and incubated at 37ºC for 10 min. Untreated and RNaseA-treated 
products were analyzed on 12% NuPAGE gels. Arrow: [35S]Met-labeled AAP-tRNA 
that was resistant to puromycin-release in Arg. Arrowhead: [35S]Met-labeled free AAP 
and AAP-puromycin. 
 

 

The data in Figure 2.2B show AAP-tRNA as a doublet band. This doublet was 

RNase-sensitive (Figure 2.3), but only the upper band (arrow) was stabilized for WT 

AAP in high Arg. To assess whether the doublet occurred as a consequence of using 

truncated RNA as a template for translation and to test whether PTC activity of N. 

crassa ribosomes is also inhibited by AAP in high Arg, we compared wheat germ and N. 

crassa translation extracts programmed with truncated RNA or poly(A) mRNA (Figure 

2.2D). The poly(A) mRNA contained an AAP with a termination codon and a 3’UTR. 

Overall, the truncated mRNAs encoding the WT AAP and the D12N AAP behaved 

similarly to the corresponding poly(A) mRNAs in both extracts (Figure 2.2D): the WT 
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AAP-tRNA species but not the D12N AAP-tRNA species showed resistance to 

puromycin-release in high Arg. In wheat germ extract, the upper band of the doublet was 

most resistant to puromycin; in N. crassa extract, the lower band was more resistant. The 

difference between wheat and N. crassa extracts could be expected to reflect differences 

in the tRNAs of these organisms. Furthermore, in extracts programmed with poly(A) 

RNA, the band that was not stabilized by Arg for WT AAP in response to puromycin 

was overall reduced. Based on these results and the data described below, this second 

band might represent ribosomes whose movement is blocked by the ribosome either at 

the 3’ end of the truncated RNA or at the uORF termination codon. Regardless, as 

shown next, we confirmed that, in N. crassa extracts, the puromycin-resistant band 

(lower band) corresponded to full-length AAP-tRNA. 

We examined Arg-specific regulation of AAP-tRNA release both by [35S]Met 

labeling of the peptide and by [32P]-probing of the tRNA in N. crassa extract. [35S]Met-

labeling (Figure 2.2E) showed that A24R AAP (AAP with a CGU-encoded Arg at its C-

terminus) functioned similarly to WT AAP (AAP with a GCG-encoded Ala at its C-

terminus) to inhibit puromycin-release in high Arg. D12N A24R AAP and D12N AAP 

did not respond to Arg (Figure 2.2E). Thus, consistent with observations that A24R AAP 

is functional for stalling (317), the A24R mutation at the C-terminus of the AAP did not 

affect the AAP’s ability to regulate PTC activity. Next, samples that lacked [35S]Met 

were probed with a [32P]-labeled oligonucleotide, complementary to N. crassa tRNAArg 

(CGU) (430). The peptidyl-tRNA bands of A24R AAP and D12N A24R AAP but not 

WT AAP were detected (Figure 2.2E) and A24R AAP-tRNA was resistant to 
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puromycin-release in high Arg. These data showed that Arg stabilized the functional 

AAP that was fully synthesized from truncated RNA. AAP-tRNA appeared as a single 

band by tRNA-probing, not as a doublet, and based on its position relative to 

polypeptide size-markers, this band corresponded to the lower band of the doublet 

observed by [35S]Met-labeling in N. crassa extract. We confirmed specificity of the 

CGU-probe by showing it did not recognize AAP-tRNA with a C-terminal CGC Arg-

codon (Figure 2.4).  

We next examined the effect on puromycin-release of adding high Arg to 

reactions in which full-length AAP was synthesized in low Arg (Figure 2.2F). Previous 

work indicates that the relative conformation of the AAP changes with respect to the 

ribosome under these conditions (324). We added edeine, which blocks translation 

initiation, after 5 min of translation to stop new synthesis of AAP. One minute later, 2 

mM Arg was added, and five minutes after that, the puromycin-release assay was 

performed. The results of adding 2 mM Arg after edeine addition were similar to those 

of adding 2 mM Arg at the beginning of translation; in each case, PTC activity was 

inhibited relative to a reaction containing low Arg (Figure 2.2F). These data indicate that 

a high concentration of Arg can induce a change in PTC activity of ribosomes that have 

synthesized AAP in low Arg. 
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Figure 2.4. The specificity of Arg-tRNA detection with tRNAArg (CGU)-specific 
probe. Truncated mRNAs specifying A24R AAP with either an Arg (CGU) codon or an 
Arg (CGC) codon at position 24 were used to program N. crassa extract as in Figure 
2.2E. AAP-tRNA was detected by [35S]Met labeling (upper panel) or by [32P] labeled 
tRNAArg (CGU)-specific probe (lower panel). When the AAP ends with Arg (CGU) but 
not Arg (CGC), the AAP-tRNAArg was detected by the probe. 

 

 

2.3.2. Parameters that affect Arg- and AAP-mediated inhibition of PTC activity 

We next examined effects of different parameters on the efficiency of 

puromycin-release in wheat germ and N. crassa extracts. The effects of different 

puromycin concentrations were tested (Figure 2.5A). In both extracts, 25 µM puromycin 

appeared sufficient in low Arg to effectively release the nascent AAP from the tRNA at 

the 3-min time point. In wheat germ extract, varying the concentration of puromycin 

from 0.025 mM to 1 mM had little impact on Arg’s inhibitory effect on puromycin-

release. However, in N. crassa extract, when the concentration of puromycin was greater 

than 0.1 mM, we did not observe an effect of Arg possibly because the release was too 

rapid relative to the time-points that were sampled. This difference in sensitivity of 

puromycin-release might be due to differences in the overall sensitivity of these 

translation extracts to puromycin. The N. crassa extract was more sensitive than the 

wheat germ extract to puromycin based on the ability to synthesize luciferase in the 
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presence of increasing amounts of puromycin (Figure 2.5B). We used 1 mM puromycin 

with wheat germ extract and 0.1 mM puromycin with N. crassa extract.  

 

 

 

Figure 2.5. The effect of increasing puromycin concentration on translation in 
wheat germ and N. crassa extracts. (A) The effect of increasing puromycin 
concentration on the release of WT AAP-tRNA in wheat germ and N. crassa extracts. 
Reactions were performed in low (-) or high (+) Arg. Samples were taken at time 0 and 3 
min after adding the indicated concentrations of puromycin. Arrows: [35S]Met-labeled 
AAP-tRNA that was resistant to puromycin-release in the presence of high Arg. A 
representative result of triplicate experiments is shown. (B) The effect of increasing 
puromycin concentration on the synthesis of firefly luciferase reporter enzyme. 
Translation reactions were programmed with T7 LUC mRNA (mRNA encoding firefly 
LUC reporter only), and different concentrations of puromycin as indicated were added 
to reaction mixtures prior to the start of translation. Translation reactions were incubated 
for 30 min and the luciferase synthesis quantified by assay of luciferase activity. 
Luciferase synthesis in the presence of puromycin was normalized to the synthesis in the 
absence of puromycin and plotted versus puromycin concentration. The X axis is log-
scale. 
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The effect of Arg concentration on puromycin-release was tested next (Figure 

2.6A). We observed increased inhibition of WT AAP-tRNA release as the concentration 

of Arg increased from 0.25 mM to 2 mM in wheat germ extract. Was this due to 

nonspecific electrostatic effects of Arg? To test this, we compared the effects of adding 

either 2 mM Arg or 2 mM of the stereoisomer D-Arg on puromycin-release. D-Arg, 

which does not induce stalling (317), also had no discernible impact on puromycin-

induced release (Figure 2.6B), showing that the effect of Arg on PTC activity required l-

Arg.  

Although D-Arg did not directly induce regulation by the AAP, it was possible 

that it could competitively inhibit Arg’s capacity to induce regulation. We tested this in 

N. crassa extract by analyzing the effects of increasing concentrations of Arg on the 

synthesis of a firefly luciferase reporter in the presence or absence of 2 mM D-Arg 

(Figure 2.6C). The ability of the uORF-encoded AAP to down-regulate firefly luciferase 

reporter synthesis is a measurement of ribosome stalling at the uORF (423). As observed 

previously, Arg-regulation by AAP was relatively efficient, and addition of Arg at 

concentrations ranging from 0.25 mM to 2 mM significantly reduced luciferase synthesis 

(p<0.001, Student’s t-test). Addition of 2 mM D-Arg as a competitive inhibitor at each of 

these Arg concentrations did not interfere with regulation. In addition, when D-Arg was 

added to translation reactions with 0.5 mM Arg or 2 mM Arg, puromycin-induced 

release of AAP-tRNA was not affected (Figure 2.6D, lanes 6, 9, 15, 18 versus lanes 5, 8, 

14, 17). Therefore, the effects of Arg on AAP-specific regulation were stereo-specific, 

and the site(s) at which Arg functioned were not blocked by D-Arg. 
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Arg-regulated stalling by the AAP requires that Arg has a free N-terminus (317). 

Arg-Gly-Asp (RGD) tripeptide, which can induce AAP-mediated ribosome stalling 

(317) and induce a change in the AAP’s relative conformation in the ribosome (324), 

also was inhibitory to puromycin-release, albeit more weakly that Arg (Figure 2.6B). 

Gly-Arg-Gly (GRG) tripeptide and Gly-Arg-Gly-Asp (GRGD) tetrapeptide did not 

inhibit puromycin-release (Figure 2.6B). These data indicate that the free amino group of 

Arg is important for the AAP-mediated inhibition of PTC activity. 
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Figure 2.6. The effects of Arg concentration and Arg-analogs on the puromycin-
release assay. (A) Wheat germ extract supplemented with different concentrations of 
Arg (0, 0.25, 0.5 and 2 mM) was programmed with truncated mRNA specifying WT 
AAP. Samples were taken at time 0, and 1, and 3 min after adding 1 mM puromycin. 
Arrows: [35S]Met-labeled AAP-tRNA that was resistant to puromycin-release in high 
Arg. In the low panel, the signals representing peptidyl-tRNAs at 1 and 3 min were 
normalized to the signal at time 0 in different concentrations of Arg. Mean values and 
standard deviations from three independent translation reactions are shown (*p < 0.05, 
**p < 0.01, ***p < 0.001, Student’s t-test). (B) The effect of Arg-analogs on the 
puromycin-release in wheat germ extract programmed with truncated mRNA encoding 
WT AAP. (–): the translation reaction contained low Arg; (+) the translation reaction 
contained 2 mM of Arg or the following Arg-analogs as indicated: D-Arg, RGD, GRGD 
and GRG. In the lower panel, the signals representing AAP-tRNAs at 1 and 3 min were 
normalized to the signal at time 0. Mean values and standard deviations from three 
independent translation reactions are shown (*p < 0.05, ***p < 0.001, Student’s t-test). 
(C) The effect of Arg concentration on AAP-mediated regulation of luciferase reporter 
synthesis. Equal amounts of AAP-LUC mRNA were translated in N. crassa extract 
supplemented with 0.02, 0.25, 0.5, 1 or 2 mM Arg in the absence or presence of 2 mM 
D-Arg. All reactions contained mRNA for sea pansy luciferase. Firefly luciferase 
synthesis was first normalized to sea pansy luciferase synthesis. The relative levels of 
synthesis are shown relative to the extract containing 0.02 mM Arg and no D-Arg. Mean 
values and standard deviations from three independent experiments, each performed in 
triplicate, are given. (D) The effect of D-Arg on the release of peptidyl-tRNA by 
puromycin. Samples were taken at time 0, and 1 and 3 min after adding 1 mM 
puromycin to wheat germ extract. D-Arg and Arg were present as indicated. A 
representative result of triplicate experiments is shown. 
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2.3.3. The regulatory functions of extended and shortened AAPs  

Toeprinting analyses indicated that Arg-specific ribosome-stalling was 

considerably diminished when the N. crassa AAP was shortened by a single residue at 

its C-terminus (322). However, C-terminally shortened AAPs still undergo a change in 

conformation relative to the ribosome in response to Arg (324). Since puromycin-
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induced release is a direct assay of PTC activity, we used this assay to examine the 

function of C-terminally extended and shortened AAPs. 

Programming wheat germ extracts with truncated mRNAs specifying AAPs 

ending at Val-25 (AAP25, which the AAP stop codon is changed to a valine codon), Ala-

24 (AAP24, the WT AAP), Asn-23 (AAP23), and Leu-22 (AAP22) showed that each AAP 

inhibited puromycin-induced release of the nascent chain in high Arg (Figure 2.7A). 

However, AAPs ending at Ala-21 (AAP21) or Arg-20 (AAP20) did not inhibit 

puromycin-release (Figure 2.7A). These results indicate that AAPs extended by one 

residue or shortened at the C-terminus by one or two residues regulated PTC activity in 

response to Arg, but further shortening eliminated this regulatory function.  

We tested whether C-terminally shortened AAPs were capable of regulating 

translation in response to Arg when encoded as uORFs in the 5’UTRs of capped and 

polyadenylated luciferase reporter mRNAs (Figure 2.7B). In N. crassa extract, the full-

length wild-type AAP (AAP24) conferred approximately 5-fold regulation; AAP23 and 

AAP22 conferred approximately 2-fold regulation. AAPs truncated further (AAP21 and 

AAP20) showed no regulatory function in response to Arg. Similarly, mRNAs that 

lacked the uORF-encoded AAP (T7 LUC) or that contained the D12N AAP did not 

show Arg-regulated synthesis of luciferase (Figure 2.7B). These results are consistent 

with those obtained from the puromycin-release assay (Figure 2.7A) and indicate that 

AAPs shortened by one or two residues still confer regulation in response to Arg.  
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Figure 2.7. The effects of truncating AAP on Arg-specific translational control. (A) 
The effect of AAP truncation or extension on puromycin-release in wheat germ extract. 
Samples were taken at time 0, and 1 and 3 min after adding 1 mM puromycin. 
Translation reactions were performed in low (–) or high (+) Arg. For the truncated AAP 
mRNAs used in these experiments, the numbers in subscripts indicate the length of the 
AAP (e.g., AAP24 indicates AAP was truncated after position 24). AAP25 changes the 
wild-type stop codon to a valine codon. A representative result of triplicate experiments 
is shown. Arrows: [35S]Met-labeled AAP-tRNA that was resistant to puromycin-release 
in high Arg. (B) The regulatory effects of wild-type and C-terminally truncated AAPs 
positioned as uORFs in a capped and polyadenylated luciferase reporter. uORFs were 
created with stop codons at AAP positions 20-25 as indicated (e.g., AAP24 contains a 
stop codon at position 25). Equal amounts of each mRNA were translated in N. crassa 
extract containing low or high Arg. As controls, equal amounts of mRNA encoding 
firefly LUC reporter only (T7 LUC) or mRNA containing the D12N AAP uORF were 
translated in parallel. All reactions contained mRNA for sea pansy luciferase to serve as 
an internal control for translation. Firefly luciferase synthesis was normalized to sea 
pansy luciferase synthesis and then luciferase synthesis in high Arg was calculated 
relative to synthesis in low Arg. Mean values and standard deviations from three 
independent experiments, each performed in triplicate, are given. (C) Toeprint analysis 
to assess Arg-regulation by WT, D12N and truncated AAPs. N. crassa extract was 
programmed with equal amounts (60 ng) of mRNA specifying D12N, AAP24 (WT), 
AAP23, AAP22 or AAP21 in the 5’-leader. mRNAs were those used for luciferase 
measurements in (B). Cycloheximide was added either prior to incubation (T0) or after 
10 min of incubation (T10). Radiolabeled primer ZW4 was used for primer extension 
analysis and for sequencing the AAP24 template (lanes 1-4). The nucleotide 
complementary to the dideoxynucleotide added to each sequencing reaction for the 
AAP24 template is indicated above the corresponding lane so that the sequence of the 
template can be directly deduced. Asterisks: toeprint products corresponding to 
ribosomes stalled at the termination codon of AAP. Arrowheads: toeprint products 
corresponding to ribosomes bound at the initiation codons. Boxes (top to bottom): AAP 
initiation codon, AAP termination codon and LUC initiation codon. No EXT, RNA 
without extract. No RNA, extract without RNA. 
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We next directly examined the capacity of these uORF-encoded AAPs to stall 

ribosomes in N. crassa extracts using the toeprinting assay, which shows the positions of 

ribosomes engaged in the translation of mRNA (Figure 2.7C). Cycloheximide (CYH) 

was added at 0 min (T0) or 10 min (T10) to increase the signals from ribosomes at 

translation initiation sites (269). When CYH was added at T0, both D12N and WT 

(AAP24) mRNAs showed similar levels of ribosomes at the uORF and luciferase (LUC) 

initiation codons, either in low or high Arg (Figure 2.7C, lanes 5 and 6, and lanes 9 and 

10). This is consistent with leaky-scanning of ribosomes past the uORF initiation codon 

(269). When CYH was added after 10 min, an increased toeprint signal that 

corresponded to ribosomes stalled at the AAP24 uORF termination codon and a reduced 
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signal corresponding to ribosomes at the LUC initiation codon were observed in extracts 

containing high Arg (Figure 2.7C, lane 12 versus lane 11). Neither difference in signal 

intensity was observed for D12N AAP, which lacks regulatory activity (Figure 2.7C, 

lane 8 versus lane 7). This is consistent with ribosomes stalled at the AAP24 termination 

codon acting to block leaky-scanning to the downstream LUC initiation codon. As 

expected, signals corresponding to ribosomes at initiation or termination codons were 

not observed in toeprint analyses of RNA alone (Figure 2.7C, lane 20) or of extract alone 

(Figure 2.7C, lane 19). Importantly, when CYH was added at 10 min, stalling occurred 

at the termination codons for AAP23 and AAP22 in high Arg but at a reduced level 

compared to stalling at the termination codon for AAP24 (Figure 2.7C, lanes 11-16). 

High Arg also reduced the signal corresponding to ribosomes at the LUC initiation 

codon. The AAP21 mRNA in parallel reactions showed no effect of Arg on stalling at the 

uORF termination codon or LUC initiation codon (Figure 2.7C, lane 18 versus lane 17). 

Thus, with respect to regulating activity for truncated AAPs, toeprinting data was 

qualitatively similar to the luciferase reporter data (Figure 2.7B). The toeprinting signal 

showed ribosomes stalled with the stop codon in the A site, indicating that the 

translocation reaction, which transferred the peptidyl-tRNA from the A site to the P site 

had occurred in the stalled ribosomes.  

The observations that truncated AAPs interfered with PTC activity suggested that 

the AAP could inhibit PTC activity prior to its complete synthesis. We directly 

examined this possibility in N. crassa extract using tRNAArg-probing. Arg (CGU) 

codons were strategically placed in mRNAs specifying different truncated AAPs. As 
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expected, when the last codon was Arg (CGU), L22R AAP22, N23R AAP23, A24R 

AAP24 and *25R AAP25 all showed regulation in response to Arg based on both 

[35S]Met and tRNAArg-probing, while A21R AAP21 showed no regulation by either 

measurement (Figure 2.8A). These data are consistent with the results obtained for 

wheat germ extract using [35S]Met labeling (Figure 2.7A). In parallel experiments we 

observed that for truncated mRNA encoding L22R AAP24 or N23R AAP24, AAP-

tRNAArg was detected and was resistant to puromycin-release in high Arg but not low 

Arg. These data indicate that Arg-regulation of PTC activity occurred prior to full 

synthesis of the AAP. This was not the case for A21R AAP24, which showed regulation 

by [35S]Met labeling but for which tRNAArg was not detected (Figure 2.8A). This 

indicated that translation proceeded efficiently past codon 21 and that a regulatory 

“window” in which Arg could affect PTC activity spanned from codon-22 to codon-25 

of the AAP. 

Interestingly, the peptidyl-tRNA of D12N N23R AAP24 was detected by tRNAArg 

probe (Figure 2.8A), indicating that translation was slowed prior to the complete 

synthesis of this AAP. This suggested that, independent of the capacity of the AAP to 

elicit Arg-regulated stalling, slowing occurs near the AAP C-terminus. This could reflect 

a general inability of the translation system to decode truncated RNA, or it could reflect 

intrinsic stalling activity of the AAP that was independent of Arg-regulation (e.g., that 

occurred in the presence of the D12N mutation which eliminates regulation). To 

examine this, we made a construct specifying a frame-shift AAP (FS AAP) in which 

only residues 1-3 and 23-24 were identical to those in the AAP (Figure 2.8B). An Arg 
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(CGU) codon was placed at residues 22, 23 or 24 of WT, D12N and FS AAPs. Intrinsic 

stalling activity was measured by translation of equal amounts of each RNA in low Arg 

(Figure 2.8B, lower panel) followed by northern analysis to detect peptidyl-tRNA 

(Figure 2.8B, upper panel). As expected for ribosome nascent chain complex formation 

on truncated RNA, each mRNA showed a strong signal when the Arg-codon was the 

final codon (AAP codon-24) of the truncated RNA (Figure 2.8B, lanes 3, 6 and 9). When 

the Arg-codon was at AAP codon-22 or codon-23, stronger signals were detected for 

WT and D12N AAP relative to the FS AAP (Figure 2.8B, lanes 2, 5 versus lane 8 and 

lanes 1, 4 versus lane 7), with WT AAP showing the strongest signals overall. These 

data showed that WT and D12N AAP exhibited greater intrinsic stalling activity than FS 

AAP and indicate that evolutionarily conserved elements in the AAP contribute to 

intrinsic stalling activity even in the absence of Arg-stimulated stalling activity. 
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Figure 2.8. Ribosome stalling prior to complete AAP synthesis. (A) A21R, L22R, 
N23R, A24R and *25R indicate that the original codons at AAP positions 21, 22, 23, 24 
or 25 were changed respectively to CGU Arg-codons. AAP25, AAP24, AAP23, AAP22 and 
AAP21 indicate that AAP was truncated after position 25, 24, 23, 22 or 21. N. crassa 
extracts were programmed with the indicated RNAs in either low (–) or high (+) Arg. 
Samples were taken at time 0, and 1 and 3 min after adding 0.1 mM puromycin. Arrows 
indicate the position of peptidyl-tRNA. Left panel: AAP-tRNA labeled with [35S]Met. 
Right panel: AAP-tRNA detected with [32P] labeled tRNAArg (CGU) probe. (B) 
Truncated mRNAs encoding WT AAP, D12N AAP or frame-shift (FS) AAPs, which 
contained Arg (CGU) codons at the indicated positions, were translated in N. crassa 
extract for 10 min at 26°C. Upper panel: peptidyl-tRNA (arrow) detected with [32P] 
labeled tRNAArg (CGU) probe. Lower panel: Gel analysis to establish similar amounts of 
input mRNAs were used in translation reactions shown in the upper panel. 
 

 

A question that arises is whether the addition of Arg codons creates new stalling 

sites and this accounts for the detection of peptidyl-tRNA corresponding to internal stall 

sites with the probe. We tested this by making constructs in which the AAP was fused 

in-frame with the luciferase coding region. In such constructs, for the wild-type AAP, 

the primary stalling signals observed by toeprinting are in the region downstream of 

AAP-codon 24. We used toeprinting to analyze ribosome-stalling in constructs that 
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contained wild-type AAP sequence, or contained mutations D12N, A21R, L22R, N23R, 

A24R or *25R (the latter representing an additional codon in the construct) (Figure 2.1C 

and Figure 2.9). In each construct, except for the D12N mutation, increased stalling 

corresponding to ribosomes downstream of codon-24 was observed. Additional Arg-

regulated stall sites in the AAP coding region approximately 30 nt upstream could be 

attributed to ribosomes stalled behind those primarily stalled by Arg. Importantly, no 

toeprint signals that would correspond to ribosomes stalled at internal positions in the 

AAPs substituted with Arg were observed; thus, these Arg-codons did not create new 

stalling sites. 
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Figure 2.9. Toeprint analysis to indentify ribosome stalling sites for AAP-LUC 
fusion constructs. N. crassa extract was programmed with equal amounts (60 ng) of 
mRNA specifying WT, D12N, A21R, L22R, N23R, A24R and *25R AAPs fused with 
in-frame luciferase coding sequence. Cycloheximide was added after 10 mins of 
incubation. Radiolabeled primer ZW4 was used for primer extension analysis and for 
sequencing the WT AAP template (lanes 1-4) and *25R AAP template (lanes 21-24). the 
nucleotide complementary to the dideoxynucleotide added to each sequencing reactions 
for the template is indicated above the corresponding lane so that the sequence of the 
template can be directly deduced. Boxes: AAP-codon 24. Brackets (top to bottom): 
Toeprint products corresponding to ribosomes stalled approximately 30 nt upstream 
those primarily stalled by Arg and primary toeprint products corresponding to ribosomes 
stalled in the region downstream of AAP-codon 24. No EXT, RNA without extract. No 
RNA, extract without RNA. 
 

 
2.3.4. The effects of other RAPs on peptidyl transferase activity  

We compared the function of the S. cerevisiae AAP (Sc AAP) to the N. crassa 

AAP (Nc AAP) using wheat germ extracts (Figures 2.10A and 2.10B). In low Arg, both 
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Sc WT AAP-tRNA and Nc WT AAP-tRNA disappeared rapidly following the addition 

of puromycin. In high Arg, for both Sc WT AAP-tRNA and Nc WT AAP-tRNA, the 

rates of peptidyl-tRNA disappearance were slowed, suggesting that Sc AAP functioned 

similarly to Nc AAP to inhibit PTC activity in response to Arg. Synthesis of 

cytomegalovirus gp48 is inhibited by translation of a 22-codon uORF (gp48 uORF2); 

the gp48 uORF2 nascent peptide stalls ribosomes at the uORF2 termination codon (288). 

gp48 uORF2 was translated in wheat germ extract and its effects on the PTC were tested 

using the puromycin-release assay (Figure 2.10C). WT gp48 uORF2-tRNA did not 

disappear rapidly following the addition of puromycin (Figure 2.10C, lanes 2 and 3 

versus lane 1), indicating that WT gp48 uORF2 inhibited PTC activity. However, in 

striking contrast, for the nonfunctional gp48 uORF2 containing the P22A mutation, 

uORF2-tRNA was released rapidly by puromycin (Figure 2.10C, lanes 5 and 6 versus 

lane 4). Thus, in contrast to results with the AAP, where the identity of the C-terminal 

amino acid had little impact on inhibition of puromycin-release, gp48 uORF2 Pro-22 

was crucial for this function. The inhibition of nascent chain release by AAP in high Arg 

and gp48 uORF2 was directly compared for an extended period of incubation (up to 30 

min) in the presence of puromycin. The gp48 uORF2 was more inhibitory than the AAP 

(Figure 2.11). These analyses of gp48 uORF2 indicate an effect of this RAP on PTC 

activity beyond its known effect on inhibiting the function of eukaryotic eRF1 (422). 

Preparation of samples for cryo-EM studies by others also indicated that the gp48 

uORF2-induced ribosome stall was highly stable (325). However, the possibility that the 

gp48 uORF2-tRNA is released from the P site but remains associated with ribosomes is 
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another potential explanation for the observed resistance of gp48 uORF2-tRNA to 

cleavage by puromycin (433).  

One difference between gp48 uORF2 and AAP is that gp48 uORF2 ends with a 

Pro residue, and the presence of a Pro residue in the ribosome P site has been associated 

with reduced reactivity toward puromycin.  We tested the A24P AAP and D12N A24P 

AAP in the puromycin release assay (Figure 2.11). The AAP A24P mutation did not 

decrease reactivity to puromycin in either the wild-type or D12N AAP context. 
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Figure 2.10. The S. cerevisiae AAP and CMV gp48 uORF2 peptide interfere with 
puromycin-release. (A) Truncated mRNAs specifying S. cerevisiae (Sc) AAP and N. 
crassa (Nc) AAP were translated in wheat germ extract. Samples were taken at time 0, 
and 1 and 3 min after adding 1 mM puromycin. Translation reactions contained low (–) 
or high (+) Arg. Arrows: [35S]Met-labeled AAP-tRNA. (B) Quantification of 
puromycin-release assay of Sc AAP-tRNA and Nc AAP-tRNA in wheat germ extract. 
The signals representing peptidyl-tRNAs at 1 and 3 min were normalized to the signal at 
time 0. Mean values and standard deviations from three independent translation 
reactions are given (**p < 0.01, ***p < 0.001, Student’s t-test). (C) The effect of CMV 
gp48 uORF2 on peptidyl-tRNA release by puromycin. WT gp48 uORF2 peptide and the 
nonfunctional mutated P22A gp48 uORF2 were tested in wheat germ extract. Samples 
were taken at time 0, and 1 and 3 min after adding 1 mM puromycin. Arrow: [35S]Met-
labeled gp48 uORF2-tRNA. Arrowhead: [35S]Met-labeled free gp48 uORF2 and gp48 
uORF2-puromycin. (D) The signals representing gp48 uORF2-tRNAs at 1 and 3 min 
were normalized to the signal at time 0. Mean values and standard deviations from three 
independent translation reactions are given. 
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Figure 2.11. Inhibition of puromycin-release of peptidyl-tRNA by the AAP and 
CMV gp48 uORF2. (A) Truncated mRNAs specifying A24P AAP and D12N A24P 
AAP were translated in wheat germ extract. Samples were taken at time 0, and 1 and 3 
min after adding 1 mM puromycin. Translation reactions contained low (-) or high (+) 
Arg. Arrows: [35S]Met-labeled AAP-tRNA. (B) Quantification of puromycin-release 
assay of A24P AAP-tRNA and D12N A24p AAP-tRNA in wheat germ extract. the 
signals representing peptidyl-tRNAs at 1 and 3 min were normalized ot the signal at time 
0. Mean values and standard deviations from three independent translation reactions are 
given (***p < 0.001, Student’s t-test). (C) Inhibition of puromycin-release of peptidyl-
tRNA by the AAP and CMV gp48 uORF2 assessed over an extended time-frame. Wheat 
germ extract was programmed with truncated mRNA encoding either the WT AAP or 
CMV gp48 uORF2 as in Figure 2.10. For the WT AAP, translation reactions were 
supplemented with 2mM Arg. Samples were taken at time 0, and 5, 10, 15, 20 and 30 
min after adding 1 mM puromycin. A representative result of triplicate experiments is 
shown. (D) Quantification of puromycin-release of WT AAP-tRNA and gp48 uORF2-
tRNA. The signals representing peptidyl-tRNAs at 5, 10, 15, 20, 25 and 30 min were 
normalized to the signal at time 0. Mean values and standard deviations from three 
independent translation reactions are given. 
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2.4. Discussion 

The nascent AAP interferes with PTC activity in the presence of high Arg. Arg-

regulated inhibition of PTC activity was observed for full-length AAP, for AAP 

extended by one amino acid at its C-terminus (AAP25) and for AAP truncated by one or 

two amino acids at its C-terminus (AAP23 and AAP22) (Figures 2.7A and 2.8A). These 

truncated AAPs, like the full length AAP, caused regulatory ribosome stalling in 

response to Arg, albeit with reduced efficiency (Figures 2.7B and 2.7C). Analyses of 

tRNA-identity also showed the AAP regulated PTC activity prior to its complete 

synthesis. These results demonstrate that the AAP has the unusual property of interfering 

with PTC activity across a window spanning at least four consecutive codons (AAP 

codons 22-25). We also obtained data indicating that both wild-type AAP and D12N 

AAP (which lacks regulatory function) had higher intrinsic stalling activity than a frame-

shifted peptide. Thus the AAP appears to have intrinsic stalling activity detectable even 

in the absence of Arg-regulated stalling. 

Ribosomes containing AAP24 synthesized in low Arg, but then subsequently 

incubated with high Arg, show a change in the relative conformation of the AAP with 

respect to the ribosome (324) and a reduction in PTC activity (Figure 2.2F). These data 

support the idea that the Arg-induced change in relative conformation of AAP with 

respect to the ribosome is necessary to provide the capacity for AAP to interfere with 

PTC activity. 

Why does the full-length AAP stall ribosomes more efficiently than AAPs 

truncated at their C-termini? It is not the absolute length of the nascent AAP, because 
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while C-terminal truncations AAP23 and AAP22 reduced the efficiency of ribosome 

stalling based on reporter synthesis and toeprint assays (Figures 2.7B and 2.7C), N-

terminal truncations yielding even shorter AAPs do not (322). Possibly, in high Arg, 

when the ribosome translating AAP22 or AAP23 is stalled because the ribosome has 

reached the 3’-end of a truncated mRNA, AAP22 or AAP23 nascent peptides have 

sufficient opportunity to obtain proper register with respect to the ribosome so that, like 

AAP24, they can interfere with PTC activity. Important in this regard, the relative 

conformation of each of these C-terminally truncated AAPs also changes with respect to 

the ribosome in response to Arg (324). However, if the mRNA extends past codon-22 or 

codon-23, because AAP22 and AAP23 might not adapt or maintain register as efficiently 

as AAP24, the ribosome translates past codon-22 and codon-23. There is some stalling of 

ribosomes that are engaged in elongation at these codons, however, as determined by the 

detection of stabilized AAP-tRNAArg for L22R AAP24 and N23R AAP24 (Figure 2.8). In 

contrast, AAP21, which undergoes a Arg-dependent conformational change with respect 

to the ribosome (324), cannot find proper resister to interfere with PTC activity (Figures 

2.7 and 2.8). These data suggest a model for AAP-mediated stalling in response to Arg 

in which the AAP undergoes a change in relative conformation with respect to the 

ribosome, and this altered conformation must be in proper register with the ribosome to 

efficiently interfere with PTC activity. In this model, there is a window of AAP chain-

lengths for which AAP can find register (with respect to the ribosome and possibly with 

respect to Arg), with the wild-type AAP length being most efficient at achieving and/or 

remaining in register. Consistent with this idea, of 120 uORF-encoded AAPs identified 
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by evolutionary conservation, the C-terminal regions of 119 are at least as long as the N. 

crassa AAP C-terminus, and none are more than two residues longer (317). 

How is PTC activity affected by AAP and Arg to inhibit the function of 

puromycin? There are at least several ways that access of puromycin to the ribosome A 

site could be restricted. There could be failure of translocation (Figure 2.12, step 2 and 

3), or the structure of the ribosome could be altered such that access to the empty A site 

is blocked (Figure 2.12D, step 4). Alternatively, puromycin could enter the ribosome A 

site (Figure 2.12E), but the peptidyl transferase reaction is inhibited (Figure 2.12, step 

5). Toeprint analyses of mRNAs on which the AAP stalls ribosomes at its termination 

codon show that the termination codon is in the A site, indicating stalling occurs with a 

configuration of the ribosome depicted in Figure 2.12D. Furthermore, AAP can be fully 

synthesized in low Arg and still interfere with PTC activity when Arg is subsequently 

added (Figure 2.2F). These data indicate that Arg’s inhibitory effect on PTC activity 

occurs after translocation (after Figure 2.12, step 3). Thus, the relative conformation of 

the AAP in the ribosome in high Arg could restrict access to the empty A site (Figure 

2.12, step 4) and/or could interfere with the peptidyl transferase reaction (Figure 2.12, 

step 5). The cryo-EM model of the wheat ribosome containing AAP in the absence of 

Arg raises the possibility that an altered position of ribosomal protein L10e could be 

responsible for inhibiting PTC activity (325). 
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Figure 2.12. Schematic representation of PTC activity and potential steps affected 
by the AAP and Arg. (A) The peptidyl-tRNA and aminoacyl-tRNA are in the P and the 
A sites, respectively, of the peptidyl transferase center of the ribosome. (B) Immediately 
after peptide-bond formation, a peptidyl-tRNA is in the A site and an uncharged tRNA is 
in the P site. (C) The aminoacyl end of the tRNA moves to the P site, resulting in 
peptidyl-tRNA in a P/A hybrid site and uncharged tRNA in an E/P hybrid site. (D) The 
peptidyl-tRNA translocates to the P/P site and deacylated tRNA to the E/E site, together 
with the movement of the associated mRNA by one codon. (E) Puromycin can enter an 
empty A site as depicted. (F) The peptidyl transferase reaction transfers the peptide from 
peptidyl-tRNA to puromycin resulting in release of the nascent peptide from tRNA. In 
this figure, tRNAs are shown as black and gray bars. The amino acids are depicted as 
circles and triangles. Puromycin is depicted shown as a star. Steps potentially inhibited 
by AAP and Arg (see text) are indicated. 
 

 

Unlike many other RAPs, specific residues of the AAP are not required at or near 

the PTC for the AAP to cause ribosome-arrest. For example, the C-terminal Pro-22 of 

CMV uORF2 is crucial for stalling (289) and for inhibiting PTC activity based on the 

puromycin-release assay (Figure 2.10B). SecM, MifM, TnaC and ErmAL1 each require 

specific amino acids at the PTC for stalling to occur (346, 355, 371, 434). ErmCL, 

ermAL1 and SecM each also require nearby amino acids (-2 relative to the nascent 

peptide C-terminus) for stalling to occur (351, 371). In contrast, AAP residues 9-20 are 

and sufficient to confer regulatory function and AAP residues 21-24 can all be 

substituted with Ala and AAP function retained (317). Furthermore, the evolutionary 

conservation of residues of the AAP beyond Arg-20 is relatively low. 
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In summary, we show here that the AAP interferes directly with PTC activity in 

response to Arg. The AAP is an evolutionarily conserved, uORF-encoded regulatory 

peptide and there is expanding appreciation of the wider roles for uORFs in controlling 

gene expression. The AAP represents an unusual example of nascent peptide control of 

ribosome activity because there is no evident requirement for specific nascent peptide 

residues to be at or near the PTC for stalling to occur. The AAP stalls ribosomes from 

fungal, plant, and mammalian sources and thus must exert a regulatory effect through 

conserved regions of the eukaryotic ribosome. Understanding the function of the AAP 

provides a basis for gaining insight into fundamental processes by which nascent 

peptides and metabolites regulate gene expression. 
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CHAPTER III 

THE STRINGENCY OF START CODON SELECTION IN THE FILAMENTOUS 

FUNGUS NEUROSPORA CRASSA*  

 

3.1.  Introduction 

In standard eukaryotic translation initiation, the preinitiation complex that is 

formed by the small ribosomal subunit, initiator tRNA and multiple initiation factors 

binds at the mRNA 5’-cap and scans downstream for an initiation codon (81). The AUG 

codon that is closest to the mRNA 5’-cap and that is in a preferred context is typically 

selected as the initiation site (69). Start codon selection is aided through biases in the 

nucleotides surrounding the start codon and through the actions of initiation factors (21). 

In certain cases, initiation occurs at non-AUG codons, especially near-cognate codons 

(NCCs) that differ from AUG by a single nucleotide (372, 377-380). In most cases, 

initiation from NCCs uses Met-tRNAi
Met (372). There are specific cases where viral 

internal ribosome entry sites use a different mechanism for non-AUG initiation (435), 

and recently, it was established that leucyl-tRNA can be used for translation initiation at 

a CUG codon of a mammalian mRNA (393). Initiating translation from NCCs may 

increase coding capacity of transcripts or contribute regulatory functions.  

                                                
* This material has been published in this or similar form in The Jounral of Biological Chemistry and is 
used here with permission of  American Society for Biochemistry and Molecular Biology.  
Wei, J., Zhang, Y., Ivanov, P.I., and Sachs, M.S. (2013). The stringency of start codon selection in 
Neurospora crassa. J Biol Chem 288, 9549-9562. 
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The initiation context surrounding the start codon, which is generally defined by 

nucleotides from -6 to +4 (the A of AUG is +1), has strong influence on initiation 

efficiency (373, 374). The Kozak consensus [GCC(A/G)CCxxxG] is optimal for 

initiation in mammalian cells (374, 436). A purine at position -3 and a ‘G’ at position +4 

are most important for efficient initiation (21, 374). Substitutions at positions -1 and -2 

have less impact on translation efficiency, but the effects of changes at these positions 

are intensified when the -3 nucleotide is also suboptimal. 

Codons other than AUG are generally less efficient initiation codons in vivo; 

however, codons differing from AUG in a single position, collectively referred to as 

near-cognate initiation codons, are known to support translation initiation in eukaryotes 

(68, 372). The presence of a good Kozak context is crucial for efficient use of near-

cognate initiation codons in mammals, plants and yeast (68, 437, 438). In these studies, 

the measured efficiencies of initiation from functional NCCs vary, and values between 

~1 to 20% of initiation from AUG are reported. AAG and AGG do not serve as initiation 

codons: a purine at +2 evidently eliminates function as an initiation codon (372, 377, 

378). A recent study in human cells reveals a hierarchy in initiation efficiencies at NCCs 

(379). The most efficient NCCs are CUG and GUG (19.5% and 9.2% of AUG-initiated 

translation). ACG (6.6%), AUA (3.3%), AUU (3.2%), UUG (1.9%) and AUC (1.7%) are 

used as initiation codons at lower efficiencies (379). A recent analysis in Saccharomyces 

cerevisiae demonstrated the hierarchy CUG>GUG≈UUG>ACG≈AUA>AUU>AUC 

(377), with efficiencies comparable to those observed in human cells. In plant 
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protoplasts, CUG is the most active (30%), following by GUG and ACG (each 15%), 

while AUA, AUU, UUG and AUC are less active (2-5%) (380).  

Initiation from NCCs increases the capacity to generate protein isoforms with 

different regulatory functions (386). In some cases, initiation from an upstream in-frame 

NCC produces an alternative N-terminally extended isoform of protein in addition to 

that produced by initiation at the downstream AUG (69 and references therein). Protein 

isoforms with different N-terminal sequences can serve different functions and/or be 

targeted to different locations (439-442). The synthesis of some proteins is thought to 

start exclusively at non-AUG codons. These include mammalian eIF4G2, which uses 

GUG (443); Podospora anserina IDI-4, which uses CUG (387); yeast glycyl-tRNA 

synthetase, which uses UUG (56); Arabidopsis AGAMOUS, which uses ACG (444), 

Arabidopsis FCA, which uses CUG (445); and some RpoT genes in Nicotiana spp., 

which use CUG (62, 389). In yeast, genome-wide analysis reveals that NCC-initiated 

upstream open reading frames (uORFs) can be translated at levels comparable to AUG-

initiated uORFs (385). Data indicate that, in response to amino acid starvation, levels of 

translation of these non-AUG yeast uORFs generally increase relative to levels of 

translation of the downstream coding sequences. Studies in mouse embryonic stem cells 

identified many unannotated initiation sites started by AUG or NCCs that direct the 

translation of uORFs with regulatory potential (384).  

The stringency of start codon selection can affect both the efficiency of initiation 

at AUG codons in different contexts and the efficiency of initiation at NCCs. Stringency 

can be modulated by different physiological conditions, such as amino acid starvation 
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(385). eIF1 and eIF5 play important roles in regulating the stringency of start codon 

selection (81, 379, 446, 447). The auto- and cross- regulatory functions of eIF1 and eIF5 

that themselves utilize stringency of start codon selection demonstrates that varying the 

stringency of start codon selection can be used for gene regulation in eukaryotes.  

The stringency of start codon selection can also be regulated by other parameters. 

Two structurally related molecules isoquinoline-1-carboxylic and 7-amino-5-iodo-8-

quinolinol were identified in a high throughput screen to decrease the stringency of start 

codon selection in yeast (448). These compounds can also increase initiation at natural 

uORFs initiated by NCCs. Their mechanism of action is currently not known. The 

concentration of Mg2+ can influence the fidelity of translation initiation: a high 

concentration of Mg2+ increases initiation at non-AUG codons in vitro (68). 

Here, we used a firefly luciferase reporter that was codon-optimized for 

expression in N. crassa to determine the efficiency of translation initiation at NCCs. We 

stably integrated luciferase reporter genes that initiated with AUG or each of the nine 

NCCs in preferred context at the N. crassa his-3 locus and determined luciferase levels 

in vivo. CUG and GUG were the most efficient NCCs, with 11% and 7% of the 

efficiency of AUG. AUA, AUU, UUG and AUC were less active (1-5%), while AAG 

and AGG did not function. The hierarchy of initiation efficiency at NCCs was similar to 

that in human cells. Cell-free translation extracts of N. crassa were also used to analyze 

translation initiation at NCCs. The hierarchy of utilization of NCCs was similar to that 

observed in vivo, but overall efficiency was strongly dependent on the concentration of 

Mg2+. Our studies, which are one of a handful of analyses that systematically examine 
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NCC initiation in eukaryotes, and are the first for filamentous fungi, demonstrate that 

such initiation could substantially increase the coding capacity of mRNAs. 

3.2. Materials and methods 

3.2.1. Logogram generation  

The frequencies for nucleotide occurrence at each position of the N. crassa 

initiation context, which were used to generate the logogram in Figure 3.1, were 

obtained from the Transterm database (449). 
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Figure 3.1. Site-specific integration and expression of luciferase (LUC) constructs. 
A. Strategy for placing LUC constructs at the N. crassa his-3 locus. The luc coding 
sequence is codon-optimized for N. crassa. It initiates with an AUG codon, one of the 
nine NCCs, or an AAA codon. All codons tested were in the same surrounding 
consensus context as indicated. The LUC coding sequence is preceded by 5’ region of 
the N. crassa cox-5 gene that has promoter activity, and followed by cox-5 3’ region, 
which provides the polyadenylation site to produce reporter transcripts with a cox-5 
3’UTR. The plasmids used for integration contain a unique PciI site for linearization. 
The “Integration left flank” on the plasmid contains the distal region of the functional 
wild-type his-3 coding sequence and additional downstream genomic sequence; the 
“Integration right flank” contains additional sequence from the chromosomal region 
downstream of his-3. The positions of the corresponding segments on the N. crassa 
chromosome (Linkage Group I) containing a non-functional his-3 allele are indicated. 
LUC coding sequence is orange; cox-5 sequences are green; Linkage Group I sequences 
are black; additional plasmid sequences are blue. Left lower panel: frequency logograms 
of the conservation of the initiation contexts, from -6 to +4, of all predicted ATG-
initiated N. crassa genes. Letter heights are proportional to the frequency of occurrence 
of each nucleotide at each position. B. Northern analysis of luc and cox-5 mRNAs [450 
ng of poly(A) mRNA/lane] shows luc mRNAs containing the indicated luc initiation 
codons are similarly expressed. The primary data for one set of three independent sets of 
transformants analyzed is shown. Lane 12 was loaded with mRNA from wild type cells 
lacking luc. For quantification, signals representing luc mRNA was normalized to 
signals representing cox-5 mRNA for all three sets of transformants. Then this ratio for 
each initiation codon was normalized to the ratio obtained for the AUG initiation codon. 
For RT-qPCR quantification, cDNA prepared from total RNA from all transformants 
was analyzed; luc mRNA was normalized to cox-5 or 25S rRNA. Then these ratios for 
each initiation codon were normalized to the ratios obtained for the AUG initiation 
codon. C. All luc-containing mRNAs are similarly polyadenylated. 3’RACE analysis 
shows proper polyadenylation at the cox-5 poly(A) site for the luc mRNA. 3’RACE was 
performed as described in methods with 50 ng poly(A) mRNA template. The major 
bands of all samples migrate at the position expected from proper polyadenylation (285 
bp) (arrow); this was further confirmed by sequencing. The primary data is shown for 
one set of three independent sets of transformants analyzed. 
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3.2.2. Strains and culture conditions  

Strains his-3 (Y234M723) mat A strain FGSC 6103 and the mat A wild-type (WT) 

reference sequenced strain FGSC 2489 (74-OR23-1V A) were obtained from the Fungal 

Genetics Stock Center (FGSC) (450). 

Firefly luciferase reporters were targeted to the N. crassa his-3 locus using his-3 

left flank and right flank integration sequences by transformation of FGSC 6103 with 

PciI-linearized plasmid DNA (pJI301-pJI311). Each plasmid contained the luciferase 

(luc) reporter with an N. crassa cox-5 promoter and 3’-region (plasmid construction is 

described below and in Figure 3.2). Transformants were obtained by electroporation 

(451) followed by selection for histidine prototrophy using plates containing Vogel’s 

minimal medium (VM)/0.05% fructose, 0.05% glucose, 2% sorbose (FGS)/2% agar at 

30°C. Homokaryons were obtained by microconidiation essentially as described 

previously (452) except that microconidia obtained by filtration were pelleted in an 

Eppendorf 5415D centrifuge at 12000xg for 2 min and, following resuspension, were 

germinated on VM/FGS/2% agar at 30°C. 

Conidia were obtained from cultures in 125 ml flasks containing 25 ml VM/2% 

sucrose/2% agar (453). Cultures were grown at 25°C with 12:12 h Light:Dark cycle for 7 

days in a Percival Environmental Chamber (Model I36VL). Conidia were harvested by 

suspension in VM/2% sucrose and filtration through two layers of cheesecloth. The 

concentration of conidia was determined using a hemacytometer.  

For RNA isolation and preparation of cell extracts to measure LUC activity 

produced in vivo, conidia were inoculated into 25 ml VM/2% sucrose in a 125 ml flask 
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at a concentration of 107 conidia/ml. Conidia were germinated under constant light at 

30°C for 6 h with 125 rpm shaking. Germlings were harvested by vacuum filtration onto 

Whatman 541 filter paper (42.5 mm circle); the pad of cells was washed with 4°C sterile 

water, cut into approximately 0.1 g pieces with a single-edged razor, transferred to 2-ml 

screw-cap Eppendorf tubes, quick-frozen in liquid nitrogen and stored at −80°C. 

3.2.3. Measurements of LUC cctivity in vivo 

For measurements of LUC activity in vivo using real-time detection of photon 

emission, conidia were inoculated into 0.15 ml VM/2% sucrose containing 25 nM 

luciferin (NanoLight Technology, Cat. #306) in a 96-well microtiter plate (Perkin Elmer 

OptiPlate-96F) and incubated as stationary cultures at 25°C in constant darkness. Light 

emission was measured with a microplate scintillation and luminescence counter 

(Topcount NXT, Packard). 

For measurements of LUC activity in soluble extracts, N. crassa extracts were 

prepared as described (309), quick frozen in aliquots, and stored at -80°C. Protein 

concentration was determined using the Coomassie Plus (Bradford) Assay Reagent 

(Thermo Scientific) with BSA as the standard (Albumin Standard, Thermo Scientific) 

using the microplate procedures (300 µl of the Coomassie Plus Reagent was added to 10 

µl of sample). The absorbance at 595 nm was measured by a Victor 3 Multitask plate 

reader. The typical yield of this method was 10 µg total protein/µl (approximately a 

yield of 0.1 mg protein/ mg of cells). 10 µl cell extract [diluted to 0.5-1 µg total 

protein/µl in breaking buffer (309)] were further diluted by adding 10 µl 2X passive 

lysis buffer (Promega) and luciferase activity was measured using a Victor 3 Multitask 
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plate reader (Perkin Elmer). Firefly luciferase assay reagents were prepared as described 

(454). 

3.2.4. Plasmids 

The N. crassa optimized firefly luc coding sequence in plasmid pRMP57 was a 

gift from Dr. Deborah Bell-Pedersen (R. de Paula and D. Bell-Pedersen, unpublished). 

Plasmids pJI301-pJI311 (data not shown and Tables 3.1 and 3.3) were used in in vivo 

experiments. Plasmids pJI201-pJI211 and pJI601-pJI606 (data not shown and Tables 3.1, 

3.2 and 3.4) were used in in vitro assays.  
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Table 3.1. Vector and oligonucleotides used to introduce different luciferase 
initiation codons. S and A strands were annealed and cloned into BamHI/ApaI sites of 
pRMP572 
Plasmid Insert Cloning site Vector 

Oligo Sequence (5’ – 3’) 
pJI001 AGG/S GATCCTAAGCCACCAGGGAGGAC

GCCAAGAACATCAAGAAGGGCC 
BamHI/Apa

I 

pRMP

572 AGG/A CTTCTTGATGTTCTTGGCGTCCTC
CCTGGTGGCTTAG 

pJI002 ACG/S GATCCTAAGCCACCACGGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572 ACG/A CTTCTTGATGTTCTTGGCGTCCTC
CGTGGTGGCTTAG 

pJI003 GUG/S GATCCTAAGCCACCGTGGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572 GUG/A CTTCTTGATGTTCTTGGCGTCCTC
CACGGTGGCTTAG 

pJI004 AUG/S GATCCTAAGCCACCATGGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572 AUG/A CTTCTTGATGTTCTTGGCGTCCTC
CATGGTGGCTTAG 

pJI005 AUA/S GATCCTAAGCCACCAUAGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572 AUA/A CTTCTTGATGTTCTTGGCGTCCTC
TATGGTGGCTTAG 

pJI006 AUU/S GATCCTAAGCCACCAUUGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572 AUU/A CTTCTTGATGTTCTTGGCGTCCTC
AATGGTGGCTTAG 

pJI007 AAA/S GATCCTAAGCCACCAAAGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572 AAA/A CTTCTTGATGTTCTTGGCGTCCTC
TTTGGTGGCTTAG 

pJI008 UUG/S GATCCTAAGCCACCUUGGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572 UUG/A CTTCTTGATGTTCTTGGCGTCCTC
CAAGGTGGCTTAG 

pJI009 CUG/S GATCCTAAGCCACCCUGGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572 CUG/A CTTCTTGATGTTCTTGGCGTCCTC
CAGGGTGGCTTAG 
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Table 3.1. continued  
Plasmid Insert Cloning site Vector 

Oligo Sequence (5’ – 3’) 
pJI010 AUC/S GATCCTAAGCCACCAUCGAGGAC

GCCAAGAACATCAAGAAGGGCC 
BamHI/Apa

I 

pRMP

572 AUC/A CTTCTTGATGTTCTTGGCGTCCTC
GATGGTGGCTTAG 

pJI011 AAG/S GATCCTAAGCCACCAAGGAGGAC
GCCAAGAACATCAAGAAGGGCC 

BamHI/Apa

I 

pRMP

572  AAG/A CTTCTTGATGTTCTTGGCGTCCTC
CTTGGTGGCTTAG 

 
 
 

 
Table 3.2. Plasmids used in in vitro assays.   
Plasmid Insert (initiation codon) Cloning site Vector 

pJI201 pJI001 (AGG) BamHI/PacI pJI101 

pJI202 pJI002 (ACG) BamHI/PacI pJI101 

pJI203 pJI003 (GUG) BamHI/PacI pJI101 

pJI204 pJI004 (AUG) BamHI/PacI pJI101 

pJI205 pJI005 (AUA) BamHI/PacI pJI101 

pJI206 pJI006 (AUU) BamHI/PacI pJI101 

pJI207 pJI007 (AAA) BamHI/PacI pJI101 

pJI208 pJI008 (UUG) BamHI/PacI pJI101 

pJI209 pJI009 (CUG) BamHI/PacI pJI101 

pJI210 pJI010 (AUC) BamHI/PacI pJI101 

pJI211 pJI011 (AAG) BamHI/PacI pJI101 
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Table 3.3. Plasmids used in in vivo assays.   
Plasmid Insert (initiation codon) Cloning site Vector 

pJI301 pJI001 (AGG) BamHI/PacI pYZ821 

pJI302 pJI002 (ACG) BamHI/PacI pYZ821 

pJI303 pJI003 (GUG) BamHI/PacI pYZ821 

pJI304 pJI004 (AUG) BamHI/PacI pYZ821 

pJI305 pJI005 (AUA) BamHI/PacI pYZ821 

pJI306 pJI006 (AUU) BamHI/PacI pYZ821 

pJI307 pJI007 (AAA) BamHI/PacI pYZ821 

pJI308 pJI008 (UUG) BamHI/PacI pYZ821 

pJI309 pJI009 (CUG) BamHI/PacI pYZ821 

pJI310 pJI010 (AUC) BamHI/PacI pYZ821 

pJI311 pJI011 (AAG) BamHI/PacI pYZ821 
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Table 3.4. Vector and oligonucleotides used to introduce different luciferase 
initiation contexts. S and A strands were annealed and cloned into BamHI/ApaI sites of 
pJI201 
Plasmid Insert Cloning site Vector 

Oligo Sequence (5’ – 3’) 

pJI601 CCCAT
G/S 

GATCCTAAGCCCCCATGGAGGACG
CCAAGAACATCAAGAAGGGCC 

BamHI/ApaI pJI201 

CCCAT
G/A 

CTTCTTGATGTTCTTGGCGTCCTCC
ATGGGGGCTTAG 

pJI602 CCCCT
G/S 

GATCCTAAGCCCCCCTGGAGGACG
CCAAGAACATCAAGAAGGGCC 

BamHI/ApaI pJI201 

CCCCT
G /A 

CTTCTTGATGTTCTTGGCGTCCTCC
AGGGGGGCTTAG 

pJI603 CCCTTG
/S 

GATCCTAAGCCCCCTTGGAGGACG
CCAAGAACATCAAGAAGGGCC 

BamHI/ApaI pJI201 

CCCTTG 
/A 

CTTCTTGATGTTCTTGGCGTCCTCC
AAGGGGGCTTAG 

pJI604 TCCAT
G/S 

GATCCTAAGCCTCCATGGAGGACG
CCAAGAACATCAAGAAGGGCC 

BamHI/ApaI pJI201 

TCCAT
G /A 

CTTCTTGATGTTCTTGGCGTCCTCC
ATGGAGGCTTAG 

pJI605 TCCCTG
/S 

GATCCTAAGCCTCCCTGGAGGACG
CCAAGAACATCAAGAAGGGCC 

BamHI/ApaI pJI201 

TCCCTG 
/A 

CTTCTTGATGTTCTTGGCGTCCTCC
AGGGAGGCTTAG 

pJI606 TCCTTG
/S 

GATCCTAAGCCTCCTTGGAGGACG
CCAAGAACATCAAGAAGGGCC 

BamHI/ApaI pJI201 

TCCTTG 
/A 

CTTCTTGATGTTCTTGGCGTCCTCC
AAGGAGGCTTAG 

 

 

 

3.2.5. RNA isolation 

Cells were kept at -80°C until immediately prior to breakage; cells were not 

thrawed on ice prior to breaking total RNA from cells was isolated by modification of 
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the procedure previously described (309) using 1 g Zirconia/Silica Beads (Biospec 

Products, baked at 180°C overnight prior to use) and a Mini-BeadBeater 8 (Biospec 

Products) with ice-cold 0.5 ml freshly prepared extraction buffer [100 mM Tris-HCl, pH 

7.5, 100 mM LiCl, 20 mM DTT in diethylpyrocarbonate (DEPC)-treated water], 0.36 ml 

phenol, 0.36 ml chloroform, 0.072 ml 10% SDS. Cells (approximately 0.1 g) were 

extracted by 1 min breakage using the bead-beater at full speed. Tubes were rotated end-

over end-for 4 min (New Brunswick TC-6) and then centrifuged (Eppendorf 5415D) at 

12,000 xg at 4 ºC for 1 min to separate phases. The aqueous phase was removed and was 

extracted once with 0.69 ml phenol/chloroform, once with 0.69 ml chloroform, 

precipitated with 0.875 ml ethanol and 0.057 ml 3 M sodium acetate, washed with 80% 

ethanol twice and dissolved in sterile and filtered DEPC-treated water. RNA 

concentration was determined using a Nanodrop spectrophotometer. The typical yield of 

total RNA was 500-1000 µg/ 0.1 g cells. DNA contamination was removed by DNaseI 

treatment using the Turbo DNA-Free Kit (Ambion). Poly(A) RNAs were purified from 

150 µg total RNA using Poly(A) Purist MAG Kit (Ambion) and stored at -80ºC. The 

yield of poly(A) mRNA was determined using RiboGreen (Invitrogen). 

3.2.6. Northens 

Northerns were performed as described (455) except that dextran sulfate was 

omitted from the hybridization buffer. [32P]-labeled probes were obtained from the cox-5 

and luc templates by random priming and then purified with Mini Quick Spin Columns 

(Roche). 
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3.2.7. cDNA synthesis 

1.5 µg DNA-free total RNA was used as template to synthesize first-strand 

cDNA using SuperScript III Reverse Transcriptase (Invitrogen). First, 1.5 µg total RNA, 

5 nmol dNTP mix, 125 ng oligo(dT)18 and 50 ng random hexamer were mixed together 

in water to a total volume of 6.3 µl. These components were incubated at 65°C for 5 min 

and transferred to ice for 2 min. Then the reaction mixture was adjusted to a final 

volume of 10 µl containing 1X First-Strand Buffer (Invitrogen), 5 mM DTT and 40 units 

SuperScript III Reverse Transcriptase, and then incubated at 25°C for 5 min and then 

50°C for 50 min. The reverse transcriptase was inactivated at 70°C for 15 min, and the 

cDNA stored at -80°C. 

3.2.8. Quantitative PCR (qPCR) 

Aliquots of cDNA representing 8 ng and 16 ng of total RNA were used as qPCR 

templates in triplicate 10 µl reactions containing 1X Platinum Taq PCR Buffer (200 mM 

Tris-HCl pH 8.4, 500 mM KCl), 2.5 mM MgCl2, 0.2 mM dNTPs, 1X ROX Reference 

Dye (Invitrogen), 1 unit Platinum Taq DNA Polymerase (Invitrogen), 1X SYBR Green I 

(Invitrogen), 500 nM each primer (chosen using Primer Express software). Thermal 

cycling performed using an ABI 7300 real-time PCR machine (Applied Biosystems) as 

follows: 50°C 2 min, 95°C 10 min followed by 40 cycles 95°C 15 s 60°C 1 min.  

3.2.9. 3’RACE 

First stand cDNA was first synthesized from poly(A) RNA using the Clontech 

SMART RACE Kit protocol. A 5µl mixture containing 50 ng poly(A) RNA and 1.2 µM 
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3'–RACE CDS Primer A (oYZ291: 5'-

AAGCAGTGGTATCAACGCAGAGTAC(T)30VN-3’, N=A, C, G, or T; V=A, G or C) 

in water was denatured at 65°C for 5 min. The mixture was cooled on ice for 2 min and 

combined with 2 µl 5X First-Strand Buffer (250 mM Tris-HCl pH 8.3, 375 mM KCl, 30 

mM MgCl2), 0.5 µl 0.1M DTT, 1 µl 10 mM dNTPs and 0.5 µl 200U/µl SuperScript III 

Reverse Transcriptase (Invitrogen) in a final volume of 10 µl. First strand cDNA was 

synthesized at 55°C for 1 hr. The reverse transcriptase was inactivated at 70°C for 15 

min and the reaction mixture was diluted with 90 µl 10 mM Tris-HCl pH 7.5. Rapid 

amplification of cDNA Ends (RACE) was performed with 1 µl first strand cDNA as 

template in a 20 µl reaction containing: 1X TaKaRa PCR Buffer (10 mM Tris-HCl pH 

8.3, 50 mM KCl, 1.5 mM MgCl2), 0.2 mM dNTP mix, 0.25 units rTaq DNA polymerase 

(TaKaRa), 0.5 µM luc mRNA specific primer_1 (MSP_1: oYZ365 5’-

CGTCTTCGTCGACGAGGTCC-3’) and 0.5 µM nested universal primer (NUP: 

oYZ294 5'-AAGCAGTGGTATCAACGCAGAGT-3'). First-round PCR was 

accomplished by (i) denaturing at 94 ºC for 30 sec, then (ii) 25 cycles of 94ºC for 30 sec, 

55ºC for 30 sec and 72ºC for 60 sec, (iii) a final extension step at 72ºC for 10 min. Then 

1 µl of this reaction mixture containing the PCR products was mixed with 99 µl of water 

and 1 µl of this 100-fold diluted first round PCR product was used as the template for a 

second round of PCR with different primers using the same reaction components and 

PCR conditions as the first round. The primers used in the second round were oYZ294 

and luc mRNA-specific primer_2 (MSP_2: oYZ287 5’-
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GGCCAAGAAGGGCGGCAAGATCGCCGTC-3’), which is complementary to the luc 

mRNA 3’ distal to the region complementary to oYZ365. After the second round of 

PCR, 5 µl of the reaction mixture was examined by electrophoresis in a 2% TAE agarose 

gel. For sequencing, bands of interest were excised from a 2% TAE agarose gel 

containing 1 mM guanosine to protect DNA from UV damage (456). The PCR product 

representing the equivalent of 30 µl of the reaction mixture was purified from the gel 

using the QIAquick Gel Extraction Kit (Qiagen), the concentration of recovered DNA 

determined by A260/A280 measurement (Nanodrop) and sequenced with primer 0YZ287 

to determine the mRNA 3’ sequence including the poly(A) site. 

3.2.10. Cell-free translation analysis 

Capped and polyadenylated RNAs were transcribed in vitro by T7 RNA 

polymerase from plasmid DNA templates (pJI201-pJI211) that were linearized with 

HindIII (322). The relative amount of RNA was determined as described (CHAPTER 2). 

Equal amounts (60 ng) of each luc mRNA were used to program N. crassa extracts as 

described (CHAPTER 2) except that Mg2+ and K+ concentrations were varied as 

specified in the Results.  

For in vitro translation using rabbit reticulocyte lysate (Invitrogen), translation 

reaction mixtures (10 µl) were incubated at 30°C for 30 min, and translation was halted 

by adding 50 µl of 1.2X passive lysis buffer (Promega). Equal amounts of each luc 

mRNA (6 ng) were used to program extracts.  

For cell-free translation in N. crassa and in rabbit reticulocyte lysate, 15 µl 

samples containing 2.5 µl translation reaction and 12.5 µl 1.2X passive lysis buffer were 
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used to measure luciferase activity with a Victor 3 Multitask plate reader. Firefly 

luciferase assay reagents were prepared as described (454). 

Primer extension inhibition (toeprint) assays to map ribosomes at initiation 

codons were accomplished using 32P-labeled primer oJI105 as described (320, 431), 

except that 0.5 mg/ml cycloheximide or 2 µg/ml harringtonine (Santa Cruz 

Biotechnology) were added to the reactions as indicated in the results.  

3.2.11. Bioinformatica analysis of near-cognate initiated N-terminal extensions in N. 

crassa  

The starting point of the analysis was a FASTA file of the N. crassa mRNA 

transcriptome (M. Sachs et. al., unpublished). Genes represented by multiple transcripts 

were eliminated from the analysis because a pilot indicated they were generating a large 

number of false positives. As a result only the 6,804 genes represented by unique 

transcripts were subjected to systematic analysis. In the first step the sequence starting 

with the annotated AUG start codon of each mRNA and extending 5’ to the nearest in-

frame stop codon (UAA, UAG or UGA) was extracted. In the next step the coordinates 

of all in-frame functional near-cognate start codons (i.e. CUG, GUG, UUG, ACG, AUA, 

AUC and AUU) in these sequences were determined. Finally, the coordinates of those 

in-frame near-cognate sequences that have A at position -3, or G at position -3 in 

combination with G at position +4, were extracted. For identifying conserved N-terminal 

near-cognate initiated extensions to existing N. crassa ORFs an approach similar to one 

previously used to identify such sequences in humans (457) was employed. Briefly, all 

5’ UTRs which in the previous step were shown to have an in-frame near-cognate start 
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codon in good context at least 25 codons 5’ of the annotated AUG start were extracted 

(representing a total of 1,185 mRNAs). These 5’ UTRs were subjected to conceptual 

translation starting with the annotated AUG start site and extending 5’ to the nearest in-

frame stop codon. The conceptually translated peptides were then used as query in a 

BLAST search (458) against the genomic sequence of the filamentous fungus 

Chaetomium globosum. It was empirically determined that C. globosum was suitably 

close evolutionarily to allow sufficient sensitivity and at the same time was adequately 

distant to allow desired selectivity. BLAST hits with expected values of 0.001 or lower 

were then subjected to manual inspection. In this step all available orthologous 

sequences from other filamentous fungi (i.e. Pezizomycotina) were obtained and 

analyzed both for the presence of a homologous N-terminal extension and also for the 

conservation of the putative near-cognate start codon in good context. For alignment of 

conserved extensions from Sordariomycetidae species the N. crassa sequence (the 

extension plus 50 to 100 amino acids of the main ORF) were used as queries in a 

BLAST (tblastn) search in the “whole-genome shotgun contigs” (wgs) databank 

restricted to Sordariomycetidae. The nucleotide sequences of the positive hits were 

extracted and then conceptually translated into amino acid sequences. These back-

translated sequences were then aligned with ClustalX2, and subjected to minor manual 

realignment.  
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3.3. Results 

3.3.1. In vivo luc reporters containing AUG or near-cognate initiation codons 

produce similar levels of mRNA 

To examine the stringency of start codon selection in N. crassa in vivo, plasmids 

containing N. crassa codon-optimized luciferase (luc) coding sequences were 

constructed to enable site-specific integration of luc reporter genes at the N. crassa his-3 

locus (Figure 3.1A). In these constructs, either an AUG codon, one of nine NCCs, or an 

AAA codon was placed at the start of the luc coding sequence (Figure 3.1A). The AAA 

codon serves as a negative control, since it differs by two nucleotides from AUG and is 

not normally used as an initiation codon. All eleven codons were placed in the most-

preferred consensus sequence “GCCAACCxxxG” determined from census of N. crassa 

sequences surrounding the genic start codon (Figure 3.1A); this preferred sequence is 

nearly identical to the most-preferred consensus sequence for human genes (436, 459). 

All in vivo data reported here represent the results of analyses from three independent 

transformants of each construct.  

The luc transcripts from N. crassa strains containing luc genes initiated with 

different codons were examined by northern blot and RT-qPCR (Figure 3.1B). Northern 

analysis, using cox-5 mRNA as internal control, indicated that luc mRNA was of the 

predicted size (1850 nt) and the ratios of luc mRNA to cox-5 mRNA were similar in all 

eleven strains. The wild-type (WT) strain, which does not contain a luc gene, expressed 

cox-5 mRNA but not luc mRNA as expected (Figure 3.1B lane 12). The similarities in 
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relative luc mRNA levels among strains expressing different genes were confirmed by 

RT-qPCR, using either cox-5 mRNA or 25S rRNA for normalizing RNA levels.  

To determine that all luc transcripts were similarly processed at their 3’ends, 

poly(A) mRNA was isolated and 3’ RACE was performed for all eleven strains 

containing luc mRNAs and for WT. The major 3’RACE product for all luc-containing 

strains, but not the WT strain lacking luc, migrated with the size expected (285 bp) for 

proper polyadenylation in the reporter genes’ cox-5 3’UTR; this was confirmed directly 

by sequencing selected 3’RACE products.  

3.3.2. The stringency of selection of NCCs determined by real-time measurements 

of LUC enzyme activity in N. crassa cultures 

LUC production in vivo was measured using real-time detection of photon 

emission by growing cells in microtiter plates with luciferin included in the growth 

medium and imaging with a CCD camera. Different concentrations of conidia (107 

conidia/ml in Figure 3.2A; 104-107 conidia/ml in Figure 3.2B) from strains containing 

AUG-initiated or NCC-initiated luc were inoculated into wells containing 0.15 ml 

medium. During growth at 25°C in constant darkness, LUC activity accumulated, 

reached a peak value, and then fell-off (Figure 3.2A and B). The magnitude of the peak 

values depended on the initiation codon of luc coding sequence, with an approximately 

10-fold higher value for AUG than for CUG. The LUC activity value peaked earlier 

when more conidia were used for inoculation but the maximum value for each construct 

did not differ markedly with different amounts of conidia inoculated (Figure 3.2B). We 
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presume that the falloff in LUC activity arises from depletion of luciferin reagent as a 

consequence of cell growth but this was not tested. 

The real-time assay was used to compare all eleven luc-containing strains in 

parallel inoculated at 107 conidia/ml (Figure 3.2A). Eight strains showed the 

accumulation of LUC enzyme activity and reached peak values between 20 and 24 hours 

of incubation (Figure 3.2A). The three strains whose luc coding sequences initiated with 

AAG, AGG and AAA did not show detectable LUC production, indicating that these 

three codons were not used as initiation codon to translate luc. Peak values from the 

eight strains expressing LUC were used to calculate the efficiency of NCC initiation 

(Figure 3.3C, white bars) by normalizing levels of LUC produced from NCCs to that 

from the AUG codon. Mean values and standard deviations were derived from three 

independent experiments, each using one set of independent transformants and 

performed in triplicate. The real-time detection of LUC activity revealed the following 

hierarchy: AUG >> CUG (11.6%) > GUG (8.9%) > ACG (5.9%) > AUA (2.9%) ≈ UUG 

(2.7%) > AUU (1.9%) > AUC (0.7%).  
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Figure 3.2. Translation initiation efficiency in vivo at different initiation codons. A-
B. Measurements of LUC levels in vivo using real-time detection of photon emission. 
The lines represent triplicate measurements of one set of three independent sets of 
transformants. A. Conidia (107 conidia/ml) from strains expressing luc with initiation 
codons as indicated were incubated into 0.15 ml of luciferin-containing media in 
microtiter dish wells and incubated as stationary cultures at 25°C in constant darkness. 
Light emission was measured with a microplate scintillation and luminescence counter; 
Relative light units (RLU) are plotted versus hours of incubation time. Left panel: CUG 
and GUG compared with AUG. Middle panel: ACG, UUG, AUA, AUU and AUC 
compared with AUG. Right panel: AGG, AAA and AAG compared with AUG. Cultures 
representing all codons were grown in parallel. B. Different amounts of conidia (104-107 
conidia/ml) from strains expressing LUC were inoculated. Left panel: Cultures 
expressing AUG-initiated luc; Right panel: cultures expressing CUG-initiated luc. C. 
Translation initiation efficiencies of non-AUG codons are calculated relative to the 
efficiency of the AUG codon using N. crassa strains with luc reporter genes containing 
AUG or the indicated codons at the initiation site. White bars: relative real time LUC 
activities measured in vivo using CCD imaging. The mean peak value from triplicate 
cultures of a given strain inoculated at 107 conidia/ml was used for calculation. Black, 
dark gray, and light gray bars: LUC activities measured from cell extracts normalized in 
different ways. Black bar, normalized to total extracted protein (determined by Bradford 
assay); dark gray bar, normalized first to total protein and then calculated relative to the 
luc mRNA/25S rRNA level (determined by qPCR, Figure 3.1B); light gray bar, 
normalized first to total protein and then calculated relative to luc mRNA/cox-5 mRNA 
level (determined by qPCR, Figure 3.1B). Mean values and standard deviations for all 
measurements are derived from three independent experiments, each using one set of 
independent transformants. 
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3.3.3. The stringency of selection of NCCs in vivo determined by measurements of 

LUC enzyme activity in N. crassa extracts 

The stringency of start codon selection in N. crassa was also analyzed by a 

measurement of LUC activity in soluble cell-extracts prepared from all eleven luc-

containing strains (Figure 3.2C). N. crassa cells were harvested after 6 hours of 

germination and a portion of cells was used to make extracts for measuring LUC activity 

and protein concentration and a portion of cells was used for RNA isolation. LUC 

enzyme activity was normalized to protein concentration for each extract (LUC/mg 

protein). The expression of LUC produced from genes containing non-AUG codons was 

then calculated relative to that from the AUG codon (Figure 3.2C, black bars). To 

account for (the rather small) differences in luc mRNA levels found in these cells 

(Figure 3.1B), we also calculated differences in the synthesis of luciferase after 

normalization of the values of LUC/mg protein to relative cellular luc mRNA levels 

(using either 25S rRNA or cox-5 mRNA as internal RNA controls) (Figure 3.3C, dark-

gray and light-gray bars). All of these measurements of relative expression of LUC using 

soluble extracts (Figure 3.2C, black, dark-gray and light-gray bars) corresponded closely 

to those obtained by direct measurement of LUC activity in living cells (Figure 3.2C, 

white bars). 

3.3.4. The stringency of selection of NCCs in N. crassa cell-free translation extracts 

Plasmids were constructed to produce mRNA to test initiation from NCCs in N. 

crassa cell-free translation extracts. The eleven plasmid templates used for in vitro 

studies contain the same luc coding and initiation-contexts used for in vivo assays. 
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Synthetic capped and polyadenylated mRNAs produced from linearized templates were 

used to program translation extracts. Mg2+ and K+ concentrations can potentially affect 

the efficiency of translation and/or the stringency of start codon selection (68, 424). All 

combinations of five different Mg2+ concentrations and four different K+ concentrations 

were tested in parallel in triplicate in the N. crassa cell-free translation system using 

AUG-initiated luc mRNA (Figure 3.3A). The overall production of LUC was highest 

when 110 mM K+ and 2.7 mM Mg2+ were added. Next, the same amounts of CUG-

initiated luc mRNA and AUG-initiated luc mRNA were directly compared with the 

same combinations of Mg2+ and K+ concentrations to determine the effects of these 

cations on the stringency of start codon selection (Figure 3.3B). The CUG/AUG ratio 

was plotted for each condition used. When reaction mixtures contained 110 mM K+ and 

1.5 mM Mg2+, the efficiency of CUG-initiated translation was 12% of AUG-initiated 

translation. However, when the concentration of Mg2+ increased to 3.1 mM and K+ was 

not changed, the efficiency of CUG-initiated translation increased to 80% of AUG-

initiated translation. Three different Mg2+ concentrations and a fixed K+ concentration 

(110 mM) were chosen to represent high stringency (1.5 mM Mg2+), intermediate 

stringency (2.7 mM Mg2+) and low stringency (3.1 mM Mg2+) conditions for subsequent 

analyses of start codon selection in vitro.  
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Figure 3.3. Analyses of initiation efficiency using cell-free translation systems. Mean 
values and standard deviations from three independent experiments, each performed in 
triplicate, are given. A. Effects of Mg2+ and K+ concentrations on LUC synthesis from 
the AUG codon. Capped and polyadenylated luc mRNA (60 ng) was used to program N. 
crassa translation reactions (10 µl) with all combinations of five different Mg2+ and four 
different K+ concentrations. Mg2+ and K+ concentrations representing high, intermediate, 
and low stringency start-codon selection conditions in subsequent experiments are 
indicated. LUC activity obtained after 30 min incubation at 26°C is given in RLU 
(relative light units). Low stringency conditions are similar to previously established 
standard conditions (315, 322). B. Effects of Mg2+ and K+ concentrations on the 
stringency of start codon selection. Translation reactions were programmed and 
incubated as described in (A) using either CUG or AUG as the LUC initiation codon. 
The CUG/AUG ratio was plotted as a function of Mg2+ and K+ concentrations. 
 

 

Equal amounts of all eleven mRNAs were tested in parallel in N. crassa 

translation extracts at salt concentrations conferring high, intermediate and low 

stringency conditions for start codon selection (Figure 3.4A). Similar to the results 

obtained in vivo, the use of AAG, AGG and AAA as start codons was not detected under 

any condition. While changing [Mg2+] changed the extent of translation from functional 

NCCs relative to AUG, the relative hierarchy of start codon utilization was not changed. 

The most efficient NCC was CUG, followed by GUG; codons ACG, AUA, UUG, AUU 
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and AUC were less efficient as start codons. Under high stringency conditions, the 

efficiency of utilization of NCCs was generally comparable to those observed in vivo. 

When conditions changed from high to intermediate stringency, and from high to 

low stringency, translation from the AUU codon increased 11- and 17.1-fold, 

respectively; in comparison, ACG initiated luc increased 3.8- and 6.8-fold, respectively 

(Figure 3.4A). This result suggested that different NCCs responded differently to 

conditions that altered stringency, a phenomenon also observed in human cells (379). 

The biological bases for this differential response are unknown.  
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Figure 3.4. Analyses of initiation efficiency and stringency of start codon selection 
using cell-free translation systems. A. Relative initiation efficiency of non-AUG start 
codons at different Mg2+ concentrations (high, intermediate and low stringency 
conditions). On the right, the black, gray and white bars represent relative initiation at 
high, intermediate, and low stringency based on LUC activity assays. LUC synthesis 
from non-AUG codons was calculated relative to synthesis from the AUG codon. On the 
left, gray and white bars represent the ratios of LUC synthesis between intermediate and 
high stringency conditions, and low and high stringency conditions, respectively. The 
ratios for AAG, AGG and AAA are not given because these codons at the luc initiation 
site did not yield detectable LUC. B. Toeprint analysis to assess initiation at AUG, CUG 
and AAG. N. crassa extract was programmed with equal amounts (60 ng) of the 
indicated luc mRNAs. Cycloheximide or harringtonine were omitted (-) or added (+) 
prior to incubation of translation reactions for 5 min at 26°C. Radiolabeled primer 
oJI105 was used for primer extension analysis and for sequencing the AUG template 
(lanes 1-4 and 13-16). The nucleotide complementary to the dideoxynucleotide added to 
each sequencing reaction is indicated above the corresponding lane. Arrowheads: 
toeprint products corresponding to ribosomes at the luc initiation codon. Signals from 
CUG were normalized to signals from AUG and the results are shown in parentheses. 
Values were calculated from two independent experiments (cycloheximide 0.24±0.06 
and harringtonine 0.24±0.02). Asterisks: toeprint products corresponding to ribosomes at 
the first downstream AUG codon within the luc coding region. Boxes (top to bottom): 
luc initiation codon, and the first downstream AUG codon. EXT, extract alone; RNA, 
RNA alone. C. Translation initiation efficiency in rabbit reticulocyte lysate. Equal 
amounts of each luc mRNA (6 ng) were translated in rabbit reticulocyte lysate (10 µl 
translation reaction incubated for 30 min at 30°C). LUC synthesis from non-AUG 
codons was calculated relative to synthesis from the AUG codon. D. Relative initiation 
efficiency of AUG, CUG and UUG in preferred context versus poor contexts in N. 
crassa under high (black bars) and intermediate (gray bars) stringency conditions. E. 
Relative initiation efficiency of AUG, CUG and UUG in preferred context versus poor 
contexts in rabbit reticulocyte lysate. LUC synthesis from non-AUG codons and AUG 
codon in poor contexts was calculated relative to synthesis from the AUG codon in the 
preferred context. For (A), (C), (D), and (E), mean values and standard deviations from 
three independent experiments, each performed in triplicate, are given. 
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We next directly examined the capacity of AUG, CUG and AAG to initiate 

translation in N. crassa extracts under high stringency conditions using the toeprinting 

assay, which shows the positions of ribosomes engaged in the translation of mRNA 

(Figure 3.4B). Cycloheximide (CYH), which blocks translation elongation, was added 

before the translation reaction started to increase the signals from ribosomes at 

translation initiation sites (293). When CYH was added, mRNA encoding AUG-initiated 
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luc showed a strong toeprinting signal corresponding to that start codon (Figure 3.4B, 

lane 6). A weaker signal (24% of the signal from AUG) was observed for the CUG 

codon at the corresponding position (Figure 3.4B, lane 8). For AAG-initiated luc, a 

signal corresponding to ribosomes at the corresponding position was not detected 

(Figure 3.4B, lane 10), consistent with AAG not serving as an initiation codon. For 

CUG- and AAG-initiated luc, another signal corresponding to ribosomes at the first 

downstream AUG codon (which is in the 0 frame) within the luc coding region was 

observed (Figure 3.4B, lanes 8 and 10) consistent with ribosomes scanning pass the 

CUG and AAG codons, and initiating at the first downstream AUG codon. As expected, 

none of these signals were observed in with extract alone (Figure 3.4B, lane 11) or RNA 

alone (Figure 3.5B, lane 12). Thus, with respect to the stringency of start codon 

selection, toeprinting data were similar to the luciferase reporter data both in vivo and in 

vitro (Figures 3.2C and 3.4A). 

Harringtonine blocks initiation by inhibiting elongation during the first rounds of 

peptide bond formation following subunit joining, causing ribosomes to accumulate at 

sites of translation initiation (460, 461). We examined AUG, CUG and AAG codons as 

initiators using harringtonine in the toeprinting assay in parallel with CYH (Figure 3.4B, 

lanes 17-22). The results were similar to the results obtained for CYH, except that the 

signals corresponding to ribosomes at initiation codons were weaker than when CYH 

was used. 
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3.3.5. The stringency of selection of near-cognate codons in reticulocyte lysate 

To examine the stringency of selection of NCCs in a mammalian system, we 

used rabbit reticulocyte lysate (Invitrogen), which the manufacturer reports to be a high 

fidelity system with respect to initiation. Similar to the results obtained with N. crassa, 

CUG was the most efficient NCC, followed by GUG. ACG, AUA, UUG, AUU and 

AUC conferred intermediate translation efficiency and AAG, AGG and AAA yielded no 

detectable LUC activity (Figure 3.4C). 

3.3.6. The effect of altering the initiation context on stringency of start codon 

selection 

To examine the effect of poor initiation context on selection of AUG, CUG and 

UUG start codons, the nucleotide A at the -3 position, which is the most important 

upstream position for a preferred context, was mutated to C or U. These poor initiation 

contexts were compared in parallel to the preferred initiation context in N. crassa 

translation extract under high stringency conditions (Figure 3.4D). As expected, 

mutating the -3 A to C or U decreased the efficiency of translation initiation from AUG, 

CUG and UUG codons. The efficiency of LUC synthesis from CUG and UUG 

decreased more compared to AUG in these poor contexts. Under intermediate stringency 

conditions, the efficiency of translation initiation increased for AUG in poor contexts 

and for CUG and UUG in the preferred context. However, translation from CUG and 

UUG in poor contexts barely improved. In rabbit reticulocyte lysate, similar results were 

observed (Figure 3.4E). Mutating the -3 A to C or U decreased the efficiency of 
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translation initiation for CUG and UUG more than for AUG. These results indicated that 

a preferred context is crucial for efficient translation initiation from NCCs.  

3.3.7. Prevalence and relevance of potential initiation at NCCs in N. crassa 

Experimentally verified or bioinformatically predicted cases of translation 

initiation at NCCs have been described in animals, plants and fungi, including 

filamentous fungi (387, 462, 463). However, the prevalence of initiation at NCCs in N. 

crassa has not been previously investigated. This is important to consider given the 

results presented here. When examined systematically, for example by taking advantage 

of ribosome profiling to identify initiation codons (384, 464, 465), initiation at NCCs is 

seen mostly 5’ of the previously annotated AUG start codons. These NCCs either initiate 

a uORF or an N-terminal extension to the main ORF. Individual examples of conserved 

non-AUG initiated uORFs are known (466), however, a systematic bioinformatics 

search for such uORFs is complex. Identifying N-terminally extended conserved ORFs 

initiated with NCCs is a more tractable problem (457).  

RNA-Seq has been used to determine the N. crassa mRNA transcriptome (M. 

Sachs et. al., unpublished). This data set includes sequences of 10,785 different N. 

crassa mRNA transcripts. Genes represented by more than one transcript were removed 

from further analysis to avoid redundancy. This yielded a total of 6,804 genes 

represented by unique transcripts. Using these data, we investigated bioinformatically 

the prevalence of potential translation initiation at NCCs in N. crassa. We defined 

“optimal” context as having A at position -3, regardless of the identity of position +4, or 

having G at position -3 in combination with G at position +4. All other contexts were 
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considered suboptimal. AAG and AGG codons were considered incompatible with 

initiation. Using these criteria we identified 5,688 NCCs 5’ of the annotated starting 

AUG and in-frame with it, in optimal context and without intervening in-frame stop 

codons. Because in some instances more than one of these NCCs is present in an mRNA, 

there are a total of 3,030 (45% of all examined) ORFs with potential N-terminal 

extensions. Of these, 2,172 in-frame NCCs from 1,185 genes could yield extensions of at 

least 25 amino acids, with 163 in-frame near codons from 73 genes able to initiate 

extensions of at least 100 amino acids (data not shown). 

We next asked whether cases of physiologically relevant near-cognate initiated 

N-terminal extensions might be identifiable in this set. We reasoned that many 

physiologically relevant near-cognate initiated extensions will be conserved, even in 

more distant relatives of N. crassa. We applied a comparative genomics approach 

similar to one which allowed the identification of conserved near-cognate initiated N-

terminal extensions in mammals to search for such extensions in N. crassa (Ref. 457, 

also see Materials and Methods). We limited the search to extensions that are at least 25 

amino acids long. Using a conservative approach, we identified six N. crassa genes with 

conserved near-cognate initiated N-terminal extensions. The genes (and annotations in 

N. crassa genome release NC10 at 

http://www.broadinstitute.org/annotation/genome/neurospora) are: NCU00434 (protein 

phosphatase 2C isoform beta); NCU01220 (BAG domain-containing protein); 

NCU01813 (high affinity glucose transporter); NCU04050 (cross-pathway control 

protein 1, cpc-1); NCU06882 (RING-5); and NCU09104 (hypothetical protein). The 
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predicted extensions add 18, 88, 91, 153, 71, and 262 N-terminal amino acids, 

respectively. The identified NCCs are CUG, GUG, AUC, ACG, AUU, and ACG, 

respectively, and each is highly conserved in the orthologs whose sequences are 

available. An interesting exception is the N-terminal extension of NCU01813, which is 

mostly initiated by AUU in homologs, but in a minority of filamentous fungi, for 

example Cryphonectria parasitica, is initiated by a conventional AUG. In all cases the 

putative N-terminal extensions show phylogenetic conservation in almost all or all 

Pezizomycotina orthologs for which sequences are available. The conservation of the 

identified extensions from subclass Sordariomycetidae is shown in Figure 3.5. In all but 

one case, NCU04050, no out-of-frame AUG codon is located between the conserved in-

frame near-cognate and conventional initiation codon of the main ORF. This indicates 

that both the near-cognate and the conventional initiation codons could potentially be 

used for initiation, resulting in distinct long and short isoforms of the given protein. 
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Figure 3.5. Amino acid conservation of the newly predicted non-AUG initiated N-
terminal extensions from Pezizomycotina, subclass Sordariomycetidae. The 
alignments were generated with ClustalX2 using available sequences form 
Sordariomycetidae. In each case the N. crassa sequence is presented on the top row. 
Amino acids with similar chemical properties are highlighted with the same color. The 
alignment clusters are as follows: A. NCU00434; B. NCU06882; C. NCU01813; D. 
NCU01220; E. NCU04050; F. NCU09104. The level of conservation for the amino acids 
in each column, expressed as a percentage, is indicated on the right side of each 
alignment. In each case it is assumed that the near cognate start codon is initiated with 
methionine. This amino acid is indicated by a red arrow. The position of the 
predominant methionine corresponding to the first in-frame AUG of the main open 
reading frame is indicated by blue arrow above it. In each case only alignment for the 
first 15 to 35 amino acids on the main open reading frame is shown. Species name 
abbreviations (shown on the left of each alignment) are as follows: “Ne cr” = 
Neurospora crassa; “Ne te” = Neurospora tetrasperma; “Ma or” = Magnaporthe oryzae; 
“Ma po”= Magnaporthe poae; “Ch gl” = Chaetomium globosum; “Ch th” = Chaetomium 
thermophilum; “Gr cl” = Grosmannia clavigera; “So ma” = Sordaria macrospora; “Op 
no” = Ophiostoma novo-ulmi, “Ga gr” = Gaeumannomyces graminis.  
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3.4. Discussion 

We examined the stringency of start codon selection in N. crassa in vivo and in 

vitro using a codon-optimized firefly luciferase reporter gene. Translation initiation from 

the nine NCCs in the preferred initiation context was compared in parallel with AUG. 

CUG and GUG are the most efficient NCCs, followed by ACG, AUA, UUG, AUU and 

AUC; AAG and AGG are not used for initiation.  The efficiency of near-cognate start-

codon selection in vitro was affected by Mg2+ concentration; under the most stringent 

conditions examined, translation from CUG in a preferred context was approximately 

12-15% compared to AUG, similar to the level observed in vivo. Additional analyses in 

vitro showed that the preferred -3 nucleotide was important for maintaining translation 

initiation efficiency, particularly for near-cognate start codons. 

There is a good correlation between the efficiency of initiation from NCCs in N. 

crassa and human cells [compare Figure 3.3C with Figure 3B in (Ref. 379)]. In each 

case, the efficiency of the NCCs can be grouped in three categories: high – CUG and 

GUG; intermediate – ACG, AUA, UUG, AUU and AUC; and inactive – AAG and AGG. 

The difference in initiation efficiency between the most active (CUG) and least active 

(AUC) NCC in N. crassa and human cells is approximately 10-fold. In each case, the 

context for comparing NCC initiation was GCCACCxxxG. In contrast, one recent 

analysis in S. cerevisiae shows that the efficiencies of the different NCCs do not differ as 

greatly, with only the least active (also AUC) showing a substantial difference from the 

others (377). The reasons why N. crassa more closely resembles mammals than does S. 

cerevisiae in this regard remains to be determined. For at least some initiation factors, 
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such as eIF3, N. crassa more closely resembles mammals than does S. cerevisiae (467); 

this might be important for determining initiation efficiency at different start codons. 

Possibly, additional considerations can impact choice of NCCs as initiation codons. The 

differences in initiation among NCCs can depend on the specific initiation context (383). 

Earlier studies in S. cerevisiae yielded different results with respect to the relative 

efficiencies of different NCCs (378, 468). Thus, some differences may arise because 

different initiation contexts were used. For example, the respective contexts used in S. 

cerevisiae studies were: CUCUCUxxxC (377), GACAAGxxxA (383), GAAAAAxxxU 

(56, 383), UGAAUAxxxG (468), and CAAAACxxxG (378).  

Firefly luciferase has been used in N. crassa for circadian studies, but has not 

been used quantitatively. Few reporters have been used quantitatively in this organism. 

Here we showed that independent transformants containing this reporter integrated as a 

fusion with cox-5 5’ promoter and 3’ regions showed similar relative levels of 

expression by both real-time luciferase measurements and assays using cell-free extracts. 

The luc reporter we used can be exchanged between vectors for in vivo and in vitro 

expression. The in vivo reporter construct is designed to enable exchange of promoter, 

5’UTR, and 3’-sequences. This system should thus be adaptable for analyses of other 

elements that control translation as well as other processes affecting gene expression.  

When N. crassa extracts are optimized by titrating [Mg2+] for overall 

translational yield from the AUG-initiated luciferase reporter mRNA (Figure 3.4A), 

higher concentrations of Mg2+ both increase yield and reduce the stringency of start 

codon selection (Figure 3.4B). It is known that Mg2+ levels in cell-free extracts affect 
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stringency (68 and references therein). While the overall hierarchy of NCC utilization 

did not change, UUG and AUU were used relatively more efficiently under reduced 

stringency conditions (Figure 3.4A). In cultured human cells, UUG responded similarly 

to reduced stringency, which was achieved by eIF1 overexpression (379). In vitro 

experiments demonstrate that eIF1 is crucial for the stringency of start codon selection, 

impacting both discrimination between AUG and NCCs and bias between good and poor 

initiation contexts (74). Genetic, biochemical and molecular studies suggest that 

increased levels of eIF5 can cause eIF1 to be dissociated from the preinitiation complex, 

decreasing the stringency of start codon selection (80, 447, 469-471). We speculate that 

higher [Mg2+] could increase release of eIF1 from the preinitiation complex N. crassa 

extracts, resulting in increased initiation from NCCs. Increased intracellular Mg2+ in S. 

cerevisiae is known to affect the fidelity of translation termination (472); effects of Mg2+ 

levels in vivo on stringency of initiation have yet to be determined. It is possible that the 

changes of Mg2+ concentration in response to different physiological conditions (473) 

may provide regulatory function by impacting the stringency of start codon selection and 

therefore gene expression. 

In the preferred consensus [GCC(A/G)CCxxxG] that is optimal for initiation 

(374, 436), a purine at position -3 and a G at position +4 are most important (374). 

Mutations that depart from the consensus at position -3 can reduce initiation by more 

than an order of magnitude in mammalian cells (374). The comparison of initiation from 

AUG, CUG and UUG in the preferred versus poor contexts using N. crassa extract 

indicated that mutation at position -3 reduced translation initiation from each codon. The 
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reduction of initiation from CUG and UUG was greater than from AUG, indicating that 

a preferred context is crucial for initiation at non-AUG codons [Figure 3.4D and Refs. 

(68, 375, 376)]. When the stringency of initiation is relaxed by increasing [Mg2+], the 

efficiency of initiation from these NCCs in poor contexts did not improve although 

efficiency improved when these codons were in a good context. A possible explanation 

for this is that NCCs in poor contexts are below a threshold for conversion of the open 

preinitiation complex (PIC) to a closed PIC, independent of Mg2+. For example, the 

scanning PIC might fail to recognize NCCs in poor contexts; but when NCCs in a 

preferred context are recognized, Mg2+ levels would increase the likelihood of formation 

of a closed PIC.  

The ramifications of initiation from near-cognate start codons for the biology of 

eukaryote organisms are beginning to be widely appreciated. Seven of the nine NCCs in 

a preferred context demonstrably initiated translation in N. crassa in vivo, showing that, 

in this organism, non-AUG codons initiate translation. NCCs can initiate translation of 

uORFs (474) and synthesis of alternative N-terminally extended protein isoforms (69). 

Some proteins are synthesized exclusively from NCCs, including mammalian eIF4G2 

(443), P. anserina IDI-4 (387) and S. cerevisiae glycyl-tRNA synthetase (56). Ribosome 

profiling has revealed a multitude of eukaryotic near-cognate initiation events (384, 385, 

464). In S. cerevisiae, there is evidence for widespread regulated initiation at non-AUG 

codons (385). Studies using mouse embryonic stem cells provide evidence that NCCs 

initiate translation of longer and shorter forms of proteins as well as uORFs and that 

initiation at these codons changes during differentiation (384). Our studies, which 



 

 134 

demonstrate that NCCs can substitute for AUG to initiate synthesis of a luciferase 

reporter at substantial levels, provide additional direct experimental support that the 

traditional view that AUG is the translation initiation codon must be expanded. 

Evolutionarily speaking, NCC initiation, while generally less efficient than AUG 

initiation, could serve important roles. Consistent with the idea that high efficiency is not 

always evolutionarily preferred and low efficiency can be advantageous, recently, it was 

demonstrated that non-optimal codon preference in the elongation phase is crucial for 

the synthesis of a functional eukaryotic protein central to establishing a circadian rhythm 

(475). The potential functions of 5’ proximal NCCs need to be considered in evaluating 

the coding capacity of mRNA. 

 

 

 

 

 

 

 

 

 

 



 

 135 

CHAPTER IV 

NON-CONONICAL FEATURES IMPACTING THE TRANSLATION OF 

FILAMENTOUS FUNGAL HOMOLOGS OF GCN4  

 

4.1.  Introduction 

General amino acid control (GAAC) in fungi activates amino acid biosynthetic 

gene expression in response to amino acid limitation (290, 476). This regulatory 

pathway was originally called cross-pathway control in Neurospora crassa and general 

control in Saccharomyces cerevisiae (303).  N. crassa cpc-1 and S. cerevisiae GCN4 

specify homologous bZIP transcription factors that were identified using forward 

genetics based on their function to transcriptionally activate amino acid biosynthetic 

genes in response to amino acid limitation or imbalance.  

Both N. crassa CPC1 and yeast GCN4 contain a transcription activation domain, 

a leucine zipper region involved in dimerization, and a basic DNA binding domain. 

Genes regulated by CPC1 or GCN4 contain the general control response element 

(GCRE) sequence TGA(C/G)TCA or a related sequence (303, 477).  A comparative 

study of genes regulated by S. cerevisiae GCN4, Candida albicans GCN4 and N. crassa 

CPC1 revealed that many genes were regulated by these factors in each organism, and 

that the common core of regulated genes were mostly amino acid biosynthetic genes 

(304). N. crassa cpc-1, like A. nidulans cpcA and C. albicans GCN4, but unlike S. 

cerevisiae GCN4, appears transcriptionally autoregulated in response to amino acid 
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limitation (304, 308, 478, 479), and these fungal cpc-1 genes contain GCRE sequences 

in their 5’ regions implicated in transcriptional autoregulation. 

The translational control of GCN4 in response to amino acid limitation is the 

canonical example of how upstream open reading frames (uORFs) mediate regulation of 

translation via the control of reinitiation (21, 290, 480).  Four uORFs affect the 

progression of ribosomes through the 5’-leader of GCN4 mRNA to regulate GCN4 

expression in response to amino acid limitation.  uORF1 acts as a positive regulatory 

element to facilitate reinitiation, while uORF4 strongly inhibits the translation of GCN4. 

uORF2 and uORF3 play relatively minor roles.  In vivo experiments (294) and cell-free 

translation assays (293) confirm that translation of uORF1 generates reinitiating 

ribosomes that can start translation either at uORF4 or GCN4 and that translation of 

uORF4 is incompatible with reinitiation at the GCN4 start codon. Phosphorylation of 

initiation factor eIF2α by the GCN2 kinase in response to amino acid limitation results in 

ribosome scanning past uORF2 and increased reinitiation at the GCN4 start codon 

instead.  Homologs of GCN4 in model fungi described to date contain at least two 

uORFs and it is generally thought that these perform similar functions to GCN4 uORF1 

and uORF4. ATF4, a mammalian homolog of GCN4, also contains two uORFs and these 

are demonstrated to function similarly to GCN4 uORF1 and uORF4 (310).  

N. crassa cpc-1 expression is known to be translationally controlled in response 

to histidine limitation as determined by polysome association analyses (309). Also, N. 

crassa cpc-3, the functional homolog of S. cerevisiae GCN2, is required for the GAAC 

response and disruption of cpc-3 abolishes the increase of CPC1 protein in response to 
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amino acid starvation (481). These studies are consistent with translational regulation of 

cpc-1 through its uORFs occurring similarly to S. cerevisiae GCN4. 

An additional consideration for regulation of cpc-1 is the recent discovery that 

the CPC1 reading frame could be extended at its amino terminus if a near cognate non-

AUG start codon (NCC) were used to initiate translation (CHAPTER 3). NCCs are 

known to be used as initiation codons and their significance is actively being explored.  

In other organisms, the use of NCCs appears to increase in response to conditions that 

reduces the stringency of start codon selection (379, 385, 447).  

Here we used N. crassa cell-free translation to show that N. crassa cpc-1 uORF1 and 

uORF2 act analogously to uORF1 and uORF4 in S. cerevisiae GCN4 in that ribosomes 

reinitiate efficiently after translating uORF1 but not uORF2. We also discovered and 

identified conserved potential N-terminal extensions in the cpc-1 homologs from a much 

larger group of fungi including Pezizomycotina and Basidiomycota, but not yeast. 

Mutiple NCCs, some well conserved and in optimal initiation contexts, which potentially 

initiate the extension of the N. crassa cpc-1 homolog were examined both in vitro and in 

vivo.  The positions of these NCCs indicate that their utilization could bypass the 

translational inhibitory effect of uORF2.  We observed that four of the identified NCCs 

were used in vitro and that, as predicted, their use abrogated the inhibitory effect of 

uORF2.  Evidence for NCC utilization in vivo was also obtained. These findings indicate 

that, in addition to translational control via uORFs, the filamentous fungi possess 

additional translational mechanisms to produce different CPC1 isoforms. 
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4.2. Materials and methods 

4.2.1. Sequence assembly and analysis 

All cpc-1 sequences were obtained from GenBank using the BLAST algorithm 

using the N. crassa cpc-1 sequence as the starting point. In most cases, the sequences 

were derived from the whole-genome shotgun contigs (WGS) database. WGS sequences 

were processed manually to predict intron/exon junctions for the mRNA sequence. In a 

minority of cases, sequences were available from expressed sequence tags (ESTs). EST 

data were manually assembled into contigs. Additional sequences were obtained from 

the transcriptome shotgun assembly (TSA) database. All alignments in this study were 

performed with the ClustalX2 and ClustalW algorithms. Sequences used in this study are 

available upon request. 

4.2.2. Plasmids  

The starting point for all constructs was plasmid pPC01 (Z. Wang and M. Sachs, 

unpublished), which has the 5’ UTR of N. crassa cpc-1 cloned between BamHI and XhoI 

sites (the latter located at the 5’ end of the firefly luciferase cassette). First, the sequence, 

GTCTTC, just upstream of NCC8 ACG codon in the 5’ UTR was changed by two-step 

PCR to a SacI GAGCTC sequence to facilitate making subsequent mutations. This 

derivative is named pPC100 and is referred to “WT” (i.e. wild-type). 

Specifics about plasmids are provided in Table 4.1 and Table 4.2. For in vitro 

experiments, pPC-series plasmids which contained luciferase which was not codon-

optimized were used.  When two PCR primers are shown in a cell in Table 4.1, one-step 
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PCR was used to generate inserted regions from corresponding PCR templates.  When 

four PCR primers are shown, two-step PCR was used to generate inserted regions.  PCR 

products and vectors were digested by restriction enzymes, gel-purified and ligated.  For 

pPC176, synthetic complementary oligonucleotides were annealed and ligated to gel-

purified vector pPC100 that had been digested with AgeI and XhoI. For in vivo assays 

which contained codon-optimized luciferase, plasmids pJI500, pJI502, pJI501 and 

pJI576 were made by replacing the small BamHI-NsiI fragment of pJI401 with the small 

BamHI-NsiI fragments of pPC100, pPC102, pPC101 and pPC176, respectively.  
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Table 4.1. Plasmids used in the study. 
Description  Plasmid PCR 

Template 
PCR primer Cloning site  Vector  

WT pPC100 pPC01 BGLIIS, SACIA, 
SACIS, PSTIA 

BglII/PstI pPC01 

UAA pPC102 pPC100 SACIS; UAA SacI/XhoI pPC100 
∆uORF1_UAA pPC187 pPC182 BamHI/S BglII/A BamHI/BglII pPC102 
∆uORF2_UAA pPC113 pPC100 AUG/ACA; UAA SacI/XhoI pPC100 
∆uORF1_uOR
F2_UAA 

pPC188 pPC182 BamHI/S BglII/A BamHI/BglII pPC113 

∆uORF2 pPC104 pPC100 AUG/ACA; PSTIA SacI/PstI pPC100 
∆mORF pPC101 pPC100 SACIS; 

mAUG/ACA 
SacI/XhoI pPC100 

∆mORF_UAA pPC176 AgeI/XhoI_UAA_mORF/S 
AgeI/XhoI_UAA_mORF/A 

AgeI/XhoI pPC100 

∆8 pPC103 pPC100 ACG/ACA; PSTIA SacI/PstI pPC100 
∆5_UAA pPC175 pPC102 Ppc1/S 

AUU1UUU/A 
AUU1UUU/S 
SACIA 

BamHI/BglII pPC102 

∆6_UAA pPC117 pPC100 CUG/CUC; UAA BglII/XhoI pPC100 
∆7_UAA pPC116 pPC100 BGLIIS; 

AUU/UUU 
BglII/SacI pPC102 

∆8_UAA pPC114 pPC100 ACG/ACA; UAA SacI/XhoI pPC100 
 8AUG_UAA pPC115 pPC100 ACG/ATG; UAA SacI/XhoI pPC100 
∆uORF1_∆5_
UAA 

pPC179 pPC175 BamHI/S uORF1/A 
uORF1/S BglII/A 

BamHI/BglII pPC102 

∆uORF1_∆6_
UAA 

pPC180 pPC102 BamHI/S uORF1/A 
uORF1/S BglII/A 

BamHI/BglII pPC117 

∆uORF1_∆7_
UAA 

pPC181 pPC102 BamHI/S uORF1/A 
uORF1/S BglII/A 

BamHI/BglII pPC116 

∆uORF1_∆8_
UAA 

pPC182 pPC102 BamHI/S uORF1/A 
uORF1/S BglII/A 

BamHI/BglII pPC114 

∆uORF1_8_U
AA 

pPC183 pPC102 BamHI/S uORF1/A 
uORF1/S BglII/A 

BamHI/BglII pPC115 

∆uORF1_∆567
8_UAA 

pPC184 pPC114 CTG/CTC_ATT2/T
TT/S XhoI/A 

BglII/XhoI pPC179 

∆uORF1_∆567
8 

pPC185 pPC103 CTG/CTC_ATT2/T
TT/S XhoI/A 

BglII/XhoI pPC179 

∆5678 pPC186 pPC103 CTG/CTC_ATT2/T
TT/S XhoI/A 

BglII/XhoI pPC175 

In vivo WT pJI500 pPC100 BamHI/NsiI pJI401 
In vivo UAA pJI502 pPC102 BamHI/NsiI pJI401 
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Table 4.1. continued 
Description  Plasmid PCR 

Template 
PCR primer Cloning site  Vector  

In vivo 
∆mORF 

pJI501 pPC101 BamHI/NsiI pJI401 

In vivo 
∆mORF_UAA 

pJI576 pPC176 BamHI/NsiI pJI401 

Vector pJI401 pJI304 BamHI_LUC/S 
BstBI/A BstBI/S 
NsiI/A 

BamHI/NsiI pJI400 

Vector  pJI400 Remove BstBI site in pJI304 by BstBI digestion, followed 
by end-repire and self-ligation  

 
 
 

Table 4.2. Primers used in the study. 
Oligo Sequence (5’ – 3’) 

BGLIIS CCCTTCAGCTCTTCCTTCACAGGT 
SACIS GCCAAGACTTTCCAGAGCTCACCACGGATTCCC 
SACIA GGGAATCCGTGGTGAGCTCTGGAAAGTCTTGGC 
PSTIA GCCTGGATAATGTTTGCAACTCGCTG 
ACG/ACA TCCAGAGCTCACCACAGATTCCCAAC 
AUG/ACA TCCAGAGCTCACCACGGATTCCCAACAGTCAACACAGCT

TCCCTCC 
mAUG/ACA GTGACTCGAGTGAATGTCTTGTTGCCCT 
UAA GTGACTCGAGTGAACATCTTGTTGCCTTACTTTCCGTGCG 
ACG/ATG TCCAGAGCTCACCATGGATTCCCAAC 
CUG/CUC GGTAGATCTCAACTTCAGCACCCAG 
AUU/UUU GGTGAGCTCTGGAAAGTCTTGGCCGTGAAAGGTGGCGG 
BamHI/S TATAGATCGGATCCTTCCTTTCTCTTCTCTG 
BglII/A GAAGTTCAGATCTACCTGTGAAGGAAGAG 
uORF1/S ATCCATCAAGATGCGTTAAATCGCTCCCA 
uORF1/A TGGGAGCGATTTAACGCATCTTGATGGATGCTTC 
CTG/CTC_ATT
2/TTT/S 

ACAGGTAGATCTGAACTTCAGCACCCAGCTTCGTAGCTCG
CGCTCAAGTTCTCTTACCCCCCACCGCCACCATTCACGGC
CA 

XhoI/A TCGAGTGAACATCTTGTTGCCCTGCTTTCCGTGCGAAATA
CTA 

AgeI/XhoI_UA
A_mORF/S 

CCGGTAGTATTTCGCACGGAAAGTAAGGCAACAAGACAT
TCAC 

 



 

 142 

Table 4.2. continued 
Oligo Sequence (5’ – 3’) 

AgeI/XhoI_UA
A_mORF/A 

TCGAGTGAATGTCTTGTTGCCTTACTTTCCGTGCGAAATA
CTA 

BamHI_LUC/S AACTAGTGGATCCTAAGCCACCAT 
BstBI/S CGAGTACTTCGAAATGTCCGTCC 
BstBI/A GGACGGACATTTCGAAGTACTCG 
NsiI/A AATGATAATGCATTGTCAGCTGTACAGTATTTAC 
Ppc1/S GGTGCATGCTAATACGACTCACTATAG 
AUU1UUU/S AATCGTCAACTTTAAACAATTTTACGTTC 
AUU1UUU/A AAATTGTTTAAAGTTGACGATTACCGAAC 
SACIA GGGAATCCGTGGTGAGCTCTGGAAAGTCTTGGC 
 

4.2.3. RNA synthesis and cell-free translation  

Capped and polyadenylated RNAs were transcribed in vitro by T7 RNA 

polymerase from plasmid DNA templates that were linearized with EcoRI and the 

relative amounts of RNA determined as described (CHAPTER 3). In vitro translation 

and gel analysis for visualizing [35Met]-labeled proteins using N. crassa extracts and 

wheat germ extract was accomplished as described (CHAPTER 3), except that 10 µl of 

translation reactions were incubated for 30 min at 25˚C and samples were mixed with 10 

µl 2X NuPAGE LDS Sample Buffer (Invitrogen) and put on ice to stop reactions. In 

vitro translation for luciferase activity assays using N. crassa extracts was accomplished 

as described (CHAPTER 3) using 6 ng of each mRNA to program extracts. Primer 

extension inhibition (toeprint) assays were accomplished using 32P-labeled primers 

CPC101 and ZW4 as described (CHAPTER 3) except that 0.5 mg/ml cycloheximide 

were added to the reactions as indicated in the Results.  
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4.2.4. Strains, culture conditions, and in vivo measurements 

Strain FGSC 6103 (his-3 (Y234M723) mat A) and the wild type (WT) reference 

strain FGSC 2489 (74-OR23-1V mat A) were obtained from the Fungal Genetics Stock 

Center (FGSC) (450). Targeting of firefly luciferase reporters to the N. crassa his-3 

locus by transformation of FGSC 6103 with PciI-linearized plasmid DNA (pJI301-

pJI311), culture conditions, and conditions for luciferase assays, were as described 

(CHAPTER 3). Total RNA was prepared from cells, cDNA prepared, and RT-qPCR 

performed as described (CHAPTER 3).  

4.3. Results 

While studying the regulation of cpc-1 by its uORFs in N. crassa extracts, using 

a construct in which the wild-type 5’ UTR of cpc-1 was fused with the open reading 

frame of firefly luciferase, we observed a band of predicted size and a band ~20 kDa 

larger than predicted (Figure 4.1A). This prompted a more careful examination of the 

mRNA 5’UTR sequence. We found the CPC1 reading frame extended all the way 

upstream (Figure 4.1B), without any in-frame stop codons, to the major mapped 

transcription initiation site, located 703 nt 5’ of the predicted AUG for the main open 

reading frame (designated mAUG and mORF, respectively). Published results reporting 

the presence of putative N-terminal extentions in N. crassa cpc-1 postdate these findings 

(CHAPTER 3). We next compiled partial or complete sequences of cpc-1 homologs 

from 108 Pezizomycotina species. 100 of these sequences that include the region 

spanning from uORF1 to a position downstream of the mORF AUG were analyzed 
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further. All homologs contain two AUG-initiated uORFs, with uORF1 spanning 3 to 6 

codons and uORF2 spanning 35 to 70 codons, including their stop codons. Surprisingly, 

in all cases, the reading frame for CPC1 could be substantially N-terminally extended 

without encountering an in-frame stop. We note that some recent automated annotations 

of CPC1 homologs include this N-terminal extension but do not resolve how initiation 

occurs. The presence of this feature in both Sordariomycetes and Eurotiomycetes 

suggests that it was present in their last common ancestor and possibly earlier; the last 

common ancestor of all Pezizomycotina is estimated to have lived at least 320 million 

years ago (482). The shortest extension of the CPC1 ORF without encountering an in-

frame stop codon is 160 codons (Leptosphaeria maculans). 
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Figure 4.1. N-terminal extensions of Pezizomycotina CPC1. (A) cpc-1-luc mRNA 
produces a larger product in vitro than luc mRNA.  mRNA templates were used to 
program N. crassa in vitro translation extracts and  [35S]Met-labeled products were 
analyzed on a 12% NuPAGE gel. Translation of mRNA for N. crassa cpc-1-luc and luc 
were compared to a no mRNA control. The positions of full-length firefly LUC 
(arrowhead) and the larger CPC1-LUC product (bracket) are indicated. (B) Schematic 
diagram of the N. crassa cpc-1 mRNA. Each reading frame is on a separate line. Frame 
1 specifies CPC1 (black rectangle). uORF1and uORF2 (blue rectangles) initiate from 
uAUG1, and uAUG2, respectively, in other reading frames. AUG codons are indicated 
by green bars and stop codons by red bars. NCCs in frame 1 upstream of uORF2 are 
indicated by magenta bars and are numbered 1-8. The approximate position of the 3’-
most stop codon upstream of uORF2 and in-frame with the main ORF (present in 
Cordyceps bassiana) is indicated (dashed red bar). The number of sequences used for 
comparisons is shown in parentheses. Features are drawn to scale. The nucleotide 
sequence of the N. crassa cpc-1 5’UTR is given in Spplemental Figure. 7. (C-J) 
Frequency logograms of the conservation of the initiation contexts, from -6 to +4, of: (C) 
all N. crassa genes initiated with AUG; (D) all A. nidulans genes initiated with AUG; 
(E) Pezizomycotina cpc-1 uAUG1; (F) Pezizomycotina cpc-1 uAUG2; (G) 
Pezizomycotina cpc-1 mAUG; (H) Pezizomycotina NCC 6 (CUG); (I) Pezizomycotina 
NCC 7 (AUU); (J) Pezizomycotina NCC 8 (ACG). Letter heights are proportional to the 
frequency of occurrence of each nucleotide at each position. The crucial positions -3 and 
+4 are indicated in red underneath the frequency plots. 
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Based on the mechanism of translational control of S. cerevisiae GCN4, control 

of cpc-1 would involve ribosomes initiating at uORF1 and reinitiating at uORF2 under 

amino acid sufficient conditions. When eIF2α phosphorylation levels increase in 

response to amino acid limitation, ribosomes would reinitiate at the downstream cpc-1 

mAUG instead of uORF2. Remarkably, without exception in the Pezizomycotina, there 

is no stop codon in the reading frame of the mORF between the uORF2 AUG and the 

mAUG. The in-frame stop codon closest to uAUG2 (Cordyceps bassiana) is 101 nt 

upstream of it. Thus, the potential amino terminal extensions of CPC1 end upstream of 

uORF2 (Figure 4.1B). 

Initiation upstream of the uORF2 AUG could produce N-terminally extended 

isoforms of CPC1, whose synthesis would not be subject to inhibition by uORF2. We 

searched for potential start codons in this region of N. crassa cpc-1 mRNA that were in-

frame with the predicted mAUG. Eight NCCs fulfilling these criteria were identified - 

three AUC (NCCs 1, 3 and 4), two ACG (NCCs 2 and 8), two AUU (NCCs 5 and 7) and 

one CUG codon (NCC 6) (Figure 4.1B). We next searched for potential NCCs in similar 

regions of cpc-1 transcripts from all Pezizomycotina (Figure 4.2) and compared their 

conservation. Three NCCs in N. crassa showed particularly deep conservation – the 

closest to the CPC1 AUG, an ACG (NCC 8), is perfectly conserved in 98 of 100 species; 

the next closest, an AUU (NCC 7), is conserved in 74 of 100 (as AUU in 64 and AUC or 

AUA in 10); the next closest, a CUG (NCC 6), is conserved in 77 of 100 (as CUG in 73 

and UUG in 4) (Figure 4.2 and data not shown). Notably, in no case was there an in-

frame stop codon between these three conserved NCCs and the mAUG. The three 
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conserved NCCs also show a clear pattern of fungal branch-specific distribution: the 

minority of homologs lacking both AUU and CUG NCCs clustered separately from the 

other homologs (Figure 4.2). The other five NCCs showed only sporadic conservation 

and were found only in species that were more closely related to N. crassa. None of the 

N. crassa NCCs appeared conserved in the two most distant Pezizomycotina, A. 

oligospora and T. melanosporum, (Figure 4.2). However, even these two species’ CPC1 

homologs contain multiple NCCs upstream of uORF2 and in-frame with the mORF – 6 

NCCs in A. oligospora and 7 NCCs in T. melanosporum (data not shown). 
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Figure 4.2. Phylogeny of Pezizomycotina based on CPC1 amino acid sequences and 
conservation of NCCs 6, 7 and 8. The unrooted phylogenetic tree is based on the amino 
acid sequences (from the 5’ end to the mORF stop codon when no in-frame stop codon 
is present, or from the stop codon in the 5’ region to the mORF stop codon) of the cpc-1 
homologs from the Pezizomycotina species indicated on the right of each branch. The 
tree was generated using ClustalX. Bootstrap values are given for key nodes. The scale 
represents the divergence rate at each residue. Species names are coded with respect to 
which NCCs are identical to N. crassa: black, NCCs 6, 7 and 8; blue: 7 and 8; green: 6 
and 8; red: 8; orange: no identical NCCs. 
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We next examined the conservation of the initiation contexts for the three 

conserved NCCs and for the uORF1 AUG (uAUG1), uORF2 AUG (uAUG2) and 

mAUG. The preferred initiation context in N. crassa (Figure 4.1C), which is considered 

optimal, is similar to the preferred context in the relatively distant A. fumigatus (459) 

and A. nidulans (as we tabulated as shown in Figure 4.1D). uAUG1 and uAUG2 are in 

conserved optimal contexts (Figures 4.1E and F and data not shown), consistent with 

their presumed roles in regulating CPC1 translation through controlling reinitiation. The 

conservation of the context of the mAUG is weaker but the consensus is still near 

optimal (Figure 4.1G). Of the three conserved NCCs, NCC8, which is closest to the 

mAUG and is the most conserved, also showed the highest context conservation (Figure 

4.1J and data not shown). The consensus initiation context of NCC8 in examined species 

is in a nearly optimal context for initiation (nucleotides -4, -3, -1 and +4 match the 

consensus). The most important nucleotides, A at position -3 and the G at position +4, 

are perfectly conserved in all Pezizomycotina species that have NCC8. Lower context 

conservation is observed for NCC7 and NCC6 (Figures 4. 1H and I) although their 

consensus initiation contexts remain near-optimal.  

To investigate the effects of uORF1, uORF2 and upstream NCCs on the 

translation of N. crassa CPC1 in cell-free extracts, the 5’UTR of cpc-1, including the 

first two codons of the mORF, was fused in frame to firefly luciferase (cpc1-luc, 

designated as WT, Figure 4.3). The functions of initiation codons identified by 

bioinformatics approaches were tested by mutational analyses of this construct. A UAA 

mutation was introduced in-frame 12-nt upstream of mAUG to terminate translation and 
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therfore truncate translation products that initiated from upstream NCCs (designated as 

UAA).  The start codon of uORF1 was mutated to AAA (∆uORF1), that of uORF2 to 

ACA (∆uORF2), and that of the mORF to CTC (∆mAUG), to eliminate their initiation. 

   

 

Figure 4.3. The sequences of cpc1-luc fusion construct used for in vitro experiments. 
Mutations and selected unique restriction sites are shown below the sequence. uORF1, 
uORF2 and the beginning of the main ORF (mORF)  are shaded gray. NCCs are shaded 
magenta and are numbered 1-8. The position of the introduced TAA mutation that 
terminates the translation from NCCs is indicated by a red box. Luciferase was placed 
in-frame with CPC1 at the XhoI site. 
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The functions of uORF1 and uORF2 were examined by mutating their start 

codons separately or together. First, we examined these mutations in constructs 

containing the UAA mutation to look specifically at luciferase synthesis from the 

mAUG.  Luciferase synthesis was measured by enzyme activity assay and by [35S]-Met 

labeling (Figure 4.4). Compared to a construct containing both uORFs, the ∆uORF1 

mutation diminished translation of the mORF as indicated by a reduced level of 

luciferase activity (15%) and decreased production of [35S]-Met labeled polypeptides 

(compare lanes 1 and 2, Figure 4.4). The ∆uORF2 mutation increased translation from 

the mAUG approximately 2.9 fold (compare lanes 1 and 3, Figure 4.4).  For the ∆uORF1 

∆uORF2 double mutant, the synthesis of luciferase increased (compare lanes 1 and 4, 

Figure 4.4), but this increase was less than for ∆uORF2 alone. These data suggest 

reinitiation occurs after translation of uORF1, that translation of uORF2 is inhibitory, 

and that a fraction of ribosomes that translate uORF1 reinitiate at uORF2. In the absence 

of uORF1 and uORF2, synthesis of luciferase is lower than in the absence of uORF2 

alone. This could be explained if the NCCs are used more efficiently in the absence of 

uORF1 (see below).  
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Figure 4.4. The effects of eliminating cpc-1 uORF1 and uORF2 on the translation 
from the mAUG in N. crassa cell-free extracts. Constructs (numbered 1-4) contained 
the UAA stop codon (red bar) to eliminate translation from upstream in-frame NCCs, 
and the indicated mutations to uORF start codons to eliminate initiation from them 
(uORF1 AUG to AAA and/or uORF2 AUG to ACA). Capped and polyadenylated 
mRNA (6 ng) was used to program N. crassa translation reactions (10 µl).  LUC activity 
produced from mRNAs 2-4 obtained after 30 min incubation at 26°C was calculated 
relative to the activity produced from mRNA 1.  Mean values and standard deviations 
from three independent experiments, each performed in triplicate, are given as 
normalized RLU.  In addition, [35S]Met-labeled translation products from translation 
reactions programmed with mRNAs 1-4 or with no mRNA were analyzed on 12% 
NuPAGE gels and a representative gel is shown. The position of radiolabeled LUC 
produced from the mAUG is indicated.   
 

 

In earlier studies on S. cerevisiae GCN4, we used toeprint analyses to 

demonstrate reinitiation following uORF1 but not uORF4 translation in S. cerevisiae 

extracts (293). We adapted a similar approach to examine cpc-1 uORF1 and uORF2 in 

N. crassa extracts (Figures 4.5 and 4.6). Adding cycloheximide (CYH) to reactions at 

time 0 (T0) allows toeprint mapping of initiation codons where 80S ribosomes first 

initiate translation following initial scanning. Adding CYH at ten minutes after 

transalation (T10) allows toeprint mapping of initiation sites in the steady state, for 
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example at additional sites where ribosomes have reinitiated. At T0 and T10, ribosomes 

are seen at the uORF AUG start codon; mutation to AAA eliminated this signal. This is 

as expected since the uORF1 AUG is in an optimal initiation context. At T0, a reduced 

toeprint signal is seen at the uORF2 AUG relative to the signal at the uORF1 AUG. 

When the uORF1 AUG is mutated, the uORF2 AUG signal increased substantially; 

mutation of the uORF2 AUG to ACA eliminated this signal. These data indicate that 

most ribosomes initiate at uORF1, but when it is absent, they scan to uORF2. At T0, a 

relatively low signal was observed at the mORF AUG except when uORF1 and uORF2 

AUGs were mutated, as expected from scanning.  When CYH was added at T10, the 

most dramatic change in signal was an increase at the mAUG in the ∆uORF2 construct. 

This increase of the mAUG was not seen in the ∆uORF1 construct or the ∆uORF1 

∆uORF2 construct. These data are consistent with ribosomes reinitiating at the mAUG 

following uORF1 translation in vitro. They suggest that uORF1 and uORF2 of N. crassa 

cpc-1 function similarly to uORF1 and uORF4 of S. cerevisiae GCN4.   
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Figure 4.5. Toeprint analysis indicates reinitiation following translation of cpc-1 
uORF1 but not uORF2.  cpc1-luc mRNA (60 ng) were used to program 20 µl N. 
crassa cell-free translation reactions. WT mRNA containing the wild-type cpc-1 5’UTR, 
and the mRNAs used in Fig. 3, were analysed in parallel along with controls. Reactions 
were incubated at 26°C min with cycloheximide (CYH) added either prior to incubation 
(T0) or after 10 min of incubation (T10) as indicated.  Radiolabeled primer CPC101 was 
used to examine ribosomes at uORF1 and uORF 2; primer ZW4 was used to examine 
ribosomes at the mORF. The original data from which the toeprint signals were excised 
are shown in Figure 4.6. 
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Figure 4.6. Toeprint analysis indicates reinitiation following translation of cpc-1 
uORF1 but not uORF2 (primary data for Figure 4.5). The description of the 
experiment is given in the text. For markers, either primer CPC101 (upper panel) or 
ZW4 (lower panel) was used to sequence the WT template (the four left-most lanes).  
The nucleotide complementary to the dideoxynucleotide added to each sequencing 
reaction for the wild-type cpc1-luc template is indicated above the corresponding lane so 
that the sequence of the template can be directly deduced; the 5’-to-3’ sequence reads 
from top to bottom.  Asterisks (top to bottom): toeprint products corresponding to 
ribosomes bound at uAUG1, uAUG2 and mAUG on the cpc1-luc RNA.  Boxes (top to 
bottom): uAUG1, uAUG2 and mAUG in the sequence markers. The ribosome protects 
approximately 16-nt 3’ of a start codon in the ribosome P-site. 
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We next compared luciferase activity obtained from constructs with and without 

the introduced in-frame UAA stop codon to examine translation from NCCs upstream of 

the mAUG (Figure 4.7). The production of luciferase decreased when the UAA was 

present, indicating that polypeptides with luciferase activity were produced using NCCs 

upstream of the mORF (compare 1 and 3, 2 and 4, and 3 and 6, Figure 4.7). The UAA 

mutation decreased luciferase synthesis in the presence or absence of uORF2 (compare 1 

and 2, and 3 and 4, Figure 4.7). Elimination of uORF2 resulted in overall increased 

luciferase synthesis as expected from its proposed inhibitory role on initiation at mAUG.  

As expected, NCCs and the mAUG have separate roles in initiation, combining ∆mAUG 

and UAA mutations yielded no detectable luciferase (Figure 4.7).   

Interestingly, ∆mAUG showed a relatively small decrease in luciferase activity 

compared to WT (∆mAUG 71% of WT; compare 1 and 5, Figure 4.7). This observation 

is consistent with the differences between the WT and the UAA constructs (UAA 22% 

of WT; compare 1 and 3, Figure 4.7). These data indicate that upstream NCCs are used 

to initiate translation efficiently in vitro.   
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Figure 4.7. Discriminating translation from N. crassa cpc-1 NCCs and mAUG in 
vitro. Capped and polyadenylated mRNA (6 ng) was used to program N. crassa 
translation reactions (10 µl) with the indicated constructs.  Firefly luciferase activity 
from each mRNA obtained after 30 min incubation at 26°C was calculated relative to 
synthesis from the WT construct.  Mean values and standard deviations from three 
independent experiments, each performed in triplicate, are plotted. 
 

 

The eight NCCs identified bioinformatically (Figure 4.3) were individually 

eliminated and the consequences examined by [35S]-Met labeling in N.crassa and wheat 

germ extracts (Figure 4.8 and 4.9). These mutations were also combined with the UAA 

mutation so the resulting polypeptides produced from upstream initiation could be better 

resolved by SDS-PAGE. Elimination of NCC 1, NCC 2, NCC 3 or NCC 4 did not yield 

any detectable differences compared to UAA (Figure 4.9, lanes 3-7). In contrast, 

elimination of  NCC 5, NCC 6, NCC 7 or NCC 8 resulted in disappearance of specific 

truncated polypeptides (Figure 4.9, lanes 8-11 and 3, and Figure 4.8, lanes 8-11 and 3), 
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indicating that NCCs 5-8 initiated translation in N. crassa and wheat germ systems.  

When NCC 8 (ACG) was changed to AUG, the signal in the corresponding band 

increased as expected (lanes 12 and 3, Figure 4.9, and lanes 8 and 3, Figure 4.8).   

Cell-free translation extracts programmed with CPC1-LUC (WT) produce 

polypeptides migrating more slowly than luciferase synthesized from an mRNA 

specifiying LUC alone, or a CPC1-LUC mRNA with the UAA mutation (Figure 4.1A, 

Figure 4.8 and Figure 4.9). When NCCs 5, 6, 7 and 8 were eliminated together in the 

absence of the UAA mutation, polypeptides larger than luciferase were still observed, 

although the amount was reduced compared to WT (Figure 4.8, compare lanes 10, 11 

and 3). This suggests that other upstream codons in the cpc-1 upstream region can be 

used to initiate polypeptide synthesis. This was observed in the presence or absence of 

uORF1 (lanes 10 and 11, Figure 4.8).  
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Figure 4.8. Evidence that N. crassa NCCs 5-8 initiate translation in vitro.  Synthetic 
RNAs (60 ng) for the indicated constructs were used to program 10 µl of cell-free 
translation systems from ( A) N. crassa or (B) wheat germ.  Reactions were incubated 
for 30 min at 26°C. Radiolabeled products were analyzed on 12% NuPAGE gels. Open 
circles: translation products eliminated upon mutation of NCCs 5-8; the product 
predicted to be initiated from NCC 8 also increased when NCC 8 was changed to AUG 
(Lane 8). Arrowhead: position of mAUG-initiated translation product (mORF).  
Brackets: translation products larger than the mORF produced in the absence of an in-
frame UAA stop codon. 
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Figure 4.9. Evidence from [35S]Met labeling showing that NCCs 5-8, but not 1-4,  
initiate translation in an N. crassa cell-free system.  Synthetic RNAs (60 ng) for the 
indicated constructs were used to program 10 µl of cell-free translation reactions from 
( A) N. crassa or (B) wheat germ.  Reactions were incubated for 30 min at 26°C. 
Radiolabeled products were analyzed on 12% NuPAGE gels. Open circles: translation 
products eliminated upon mutation of NCCs 5-8; the product predicted to be initiated 
from NCC 8 also increased when NCC 8 was changed to AUG (Lane 8). Arrowhead: 
position of mAUG-initiated translation product (mORF).  Brackets: translation products 
larger than the mORF produced in the absence of an in-frame UAA stop codon. 
 

 

To examine the roles of upstream NCCs in translation in vivo in N. crassa, 

strains containing N. crassa codon-optimized luciferase fused in-frame with wild type or 

mutated cpc-1 5’ sequences were constructed. Three independent transformants 

containing each construct were used to measure LUC activity and LUC mRNA levels. 

We examined WT, UAA, ∆mAUG, and the ∆mAUG UAA double mutant. Luciferase 

activity was measured and normalized to reporter mRNA levels to account for the small 
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differences in luciferase mRNA levels observed. As shown in Figure 4.10, expression 

levels of WT and UAA reporters were similar. Luciferase activity from ∆mAUG was 

much lower but this activity was higher than for the ∆mAUG UAA construct. For the 

∆mAUG construct, higher luciferase activity was observed than for the ∆mAUG UAA 

double mutant. Thus, although the amount of luciferase activity derived from upstream 

NCCs was less than 1% of activity from the mAUG in vivo, detectable luciferase was 

nevertheless observed (compare 3, 1 and 2 in Figure 4.10 and compare 5, 1 and 3 in 

Figure 4.7). Possibly, NCCs were not used as efficiently in vivo as in vitro. Alternatively, 

N-terminally extended luciferases are less stable in vivo. 
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Figure 4.10. Discriminating translation from N. crassa cpc-1 NCCs and mAUG in 
vivo.  Constructs 1-4 were placed at the N. crassa his-3 locus (three independent 
transformants of each). LUC activities were measured and values plotted relative to WT.  
Black bars: LUC activities normalized to total extracted protein; gray bars, LUC 
activities normalized first to total protein and then normalized to luc mRNA/cox-5 
mRNA levels. Mean values and standard deviations for all measurements are derived 
from three independent experiments, each using all independent transformants. 
 

4.4. Discussion 

We examined the structures of N. crassa cpc-1 homologs in fungi for which 

sequence was available. In the Pezizomycotina, all cpc-1 genes could specify two 

uORFs, uORF1 and uORF2, within long mRNA 5’ UTRs. The data obtained here with 

N. crassa are consistent with uORF1 and uORF2 functioning analogously to S. 

cerevisiae GCN4 uORF1 and uORF4, respectively, to control initiation at the predicted 

mAUG start codon. Surprisingly, a long, conserved coding region upstream of this AUG 

start codon that was in-frame with CPC1 was present in all homologs from 
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Pezizomycotina, and in some cases this open reading frame extended to the predicted 

mRNA 5’ ends. While no AUG codons were observed that could produce N-terminally 

extended isoforms of CPC1 (excepting the possibility of frameshifting from a uORF 

AUG), near-cognate start codons (NCCs), some well conserved, were present in the 

CPC1 reading frame that potentially could initiate translation of such isoforms. 

Translation initiating from four conserved NCCs in the N. crassa cpc-1 5’UTR was 

observed in vitro in N. crassa and wheat germ translation extracts. Such utilization of 

NCCs in vivo would result in synthesis of alternative isoforms of CPC1; these isoforms 

might have similar or different functions than CPC1 produced from the main AUG. N-

terminal extensions could also influence protein stability. The synthesis of these 

alternative isoforms from NCCs upstream of uORF2 would also bypass the inhibitory 

effect of uORF2, which reduces synthesis of CPC1 from the downstream main AUG. 

These findings suggest a model for additional translational regulation of Pezizomycotina 

cpc-1 through the use of NCCs, which could be independent of the uORF-control model 

elucidated for S. cerevisiae GCN4.  

We found no fungal homologs of cpc-1/GCN4 outside of Pezizomycotina and 

Basidiomycota that have NCC- initiated N-terminal extensions with the potential to 

preempt the effect of translating a long and inhibitory uORF.  Since the other two sub-

phyla of Ascomycota, Saccharomycotina and Taphrinomycotina, do not have potential 

for NCC-initiated extensions, it not entirely clear if the conserved extensions present in 

Pezizomycotina and in Basidiomycota (a sister phylum of Ascomycota in the 

subkingdom Dikarya) are homologous and were present in the last common ancestor of 
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Dikarya, which lived around 500 million years ago (Lucking et al., 2009), or whether 

they are examples of convergent evolution. 

In the studies reported here, there is a discrepancy between luciferase activity 

produced in vitro and in vivo from the cpc-1 NCCs. At face value, this would mean that 

in vitro there is more initiation from NCCs than from the mAUG, while in vivo the 

situation is reversed. For the in vitro experiments, we used intermediate [Mg2+] which 

favors AUG over NCC initiation, but the in vitro conditions used here are not expected 

to be stringent as in vivo (CHAPTER 3). Thus, we expect that the in vitro conditions 

would yield more NCC-initiated products than occurs in vivo, but the discrepancy in 

levels of CPC1-LUC activity ovserved in vitro compared to in vivo still seems too large 

to be simply accounted for by known initiation efficiencies in vivo and in vivo. It is 

possible that the N-terminally extended forms of the luciferase reporter are unstable in 

vivo. That is, even if NCC translation were high, the level of protein would be low. The 

luciferase reporter data may thus be providing accurate information on the relative level 

of N-terminally extended CPC1 isoforms in vivo. This level, while low, could 

nevertheless be all the cell requires for these forms to fulfill their physiological 

functions.  

Taken together, the data from in vitro analyses show that conserved CPC1 NCCs 

can be used to initiate translation and data from ribosome profiling and luciferase 

reporters indicate that ribosomes are translating extended N-terminal isoforms of CPC1 

in N. crassa under standard culture conditions. These data raise important new questions 

regarding the functions of these isoforms and their regulation. 
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It is worth considering that the translation of another fungal bZIP transcription 

factor, Podospora anserina IDI-4, requires initiation from a CUG and not an AUG (387). 

This is additional evidence supporting the possibility that fungal bZIP transcriptional 

factors may use NCCs to initiate their translation more generally.   

 A mammalian bZIP transcription factor family, the CCAAT/enhancer binding 

proteins (C/EBPs)  C/EBPα, C/EBPβ and C/EBPγ may also be instructive to consider 

with respect to CPC1 in terms of providing a potential paradigm for the function of 

different CPC1 isoforms. An in-frame AUG in a poor initiation context (C/EBPα) or an 

NCC in a good context (C/EBPβ) initiates the longest protein isoform (483). Leaky 

scanning past this initiation codon leads to initiation at an out-of-frame AUG codon in 

good context, producing a short (5-11 codons long) ORF. Two additional C/EBP 

isoforms (LAP and LIP) are generated by initiation from in-frame AUG codons 

downstream of this short ORF. The expression of these two isoforms is governed by 

reinitiation following translation of the short ORF and the relative levels can be altered 

by changes in eIF2α phosphorylation. LAP functions as a transcriptional activator and 

LIP as a transcriptional repressor and thus modulate different transcriptional outcomes 

under “normal” and stress conditions. 

The physiological conditions that govern initiation at NCCs are an emerging area 

of investigation. In S. cerevisiae, amino acid limitation increases initiation at NCCs 

(385), as does the shift to the meiotic developmental program (415). A chemical screen 

identified several compounds that increase the efficiency of initiation at NCCs (394). 

The concentration of free polyamines affects initiation from a conserved AUU start 
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codon of a uORF within the mRNA encoding AZIN1 in mammalian cells (466). A 

number of cellular factors are known to be involved in discrimination between 

favourable and unfavourable initiation codons and contexts. Changes in the activity or 

cellular levels of eIF1 or eIF5 have profound effects on translation initiation at NCCs or 

AUG codons in poor context (21). Understanding the physiological conditions that 

control initiation at NCCs has broad implication for gene regulation and protein 

synthesis as well as for specific understanding of these aspects of CPC1. 

The pivotal role played by CPC1 in transcriptional regulation in N. crassa, 

combined with its known translational regulation and the suspected modularity of 

stringency of start codon selection strongly raise the exciting possibility that NCC-

mediated initiation might provide additional routes for translation regulation and the 

diversity of mechanism by which CPC1 control gene expression.  
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1. Summary of research 

This research has focused on understanding translational control in the model 

filamentous fungus N. crassa, particularly on processes impacting translation 

termination and initiation.  

The mechanism of uORF-mediated regulation was examined for the N. crassa 

uORF-encoded AAP.  Studies in cell-free extracts from N. crassa and wheat germ using 

puromycin-release assays indicated that inhibition of PTC activity by the AAP in 

response to Arg is the basis for the AAP’s function to stall ribosomes at the uORF 

termination codon. The mode of PTC inhibition appears unusual because neither a 

specific amino acid nor a specific nascent peptide chain length was required for AAP to 

inhibit PTC activity.  

The use of non-canonical start codon to initiate translation was studied 

systematically in vivo and in vitro. A codon-optimized firefly luciferase reporter initiated 

with AUG or each of the nine NCCs in preferred context was used to examine the 

stringency of start codon selection in N. crassa. In vivo and in vitro results indicated that 

the hierarchy of initiation at start codons in N. crassa is similar to that in human cells. 

Analyses of the 5’-leader regions in the N. crassa transcriptome revealed examples of 

highly conserved NCCs in preferred contexts that could extend the N-termini of the 
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predicted polypeptides. Near-cognate start codons, some well conserved, that potentially 

initiate conserved N-terminal extensions of the N. crassa cpc-1 homolog, were identified 

and their potential use investigated. 

The regulatory function of two uORFs in the N. crassa cpc-1 transcript was also 

investigated.  In vitro studies show that cpc-1 uORF1 and uORF2 are functionally 

analogous to uORF1 and uORF4 in S. cerevisiae GCN4.  uORF1 acts as a positive 

regulatory element to facilitate reinitiation, while uORF2 strongly inhibits the translation 

of cpc-1.  The used of NCCs might bypass the translational inhibitory effect of uORF2 

of cpc-1 to regulate translation. 

These studies provide evidence for translational control mechanisms in which 

uORF and NCCs regulate gene expression. The successful use of N. crassa to study 

these cases in vivo and in vitro establishes N. crassa as a powerful system that enables 

genetic and biochemical approaches to be used to understand the factors and 

mechanisms contributing to translational processes. 

5.1.1. The nascent N. crassa arg-2 AAP interferes with PTC activity in response to 

Arg  

The nascent AAP functions with Arg to interfere with the PTC activity of N. 

crassa and wheat ribosomes. AAP containing the D12N mutation, which eliminates Arg-

induced ribosome stalling, also eliminated Arg’s effect on PTC activity. Arg-regulated 

inhibition of PTC activity was observed for full-length AAP, for AAP extended by one 

amino acid at its C-terminus and for AAP truncated by one or two amino acids at its C-

terminus. Toeprinting and luciferase activity analyses indicated the truncated AAPs 
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function to stall ribosomes, albeit with reduced efficiency. Analyses of tRNA-identity 

also showed the AAP regulated PTC activity prior to its complete synthesis. 

Evolutionarily, AAPs in other species identified to date are all at least the size of the N. 

crassa full-length AAP and our data indicate that truncated AAPs do not function as 

efficiently as the full-length AAP. These results demonstrate the inhibition of PTC 

activity is the basis for the AAP’s capacity to stall the ribosome. Unlike many other 

ribosome stalling peptides, specific features of the AAP near the ribosomal catalytic 

center appear relatively unimportant for stalling.  

We also obtained data indicating that both wild-type AAP and D12N AAP 

(which lacks regulatory function) had higher intrinsic stalling activity than a frame-

shifted peptide. Thus the AAP appears to have intrinsic stalling activity detectable even 

in the absence of Arg-regulated stalling.  

While AAP truncated by one or two amino acids at its C-terminus still functions 

to stall ribosomes, full-length AAP synthesis appeared important for most efficient 

stalling. Combined with structural analyses of AAP in the ribosome exit tunnel (324), 

these data suggest a model for AAP-mediated stalling in response to Arg in which the 

AAP undergoes a change in relative conformation with respect to the ribosome, and this 

altered conformation must be in proper register with the ribosome to efficiently interfere 

with PTC activity. In this model, there is a window of AAP chain-lengths for which 

AAP can find register (with respect to the ribosome and possibly with respect to Arg), 

with the wild-type AAP length being most efficient at achieving and/or remaining in 

register. 
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5.1.2. Use of  near-cognate initiation codons in N. crassa  

Codon-optimized firefly luciferase reporters initiated with AUG or each of the 

nine NCCs in preferred context were used to study the stringency of start codon 

selection in N. crassa. The luciferase reporter genes were incorporated at the N. crassa 

his-3 locus. In vivo studies to measure initiation activity by measuring LUC enzyme 

activity indicated that the hierarchy of initiation at start codons is similar to that in 

human cells (379). CUG and GUG were the most efficient NCCs, with 11% and 7% of 

the efficiency of AUG. AUA, AUU, UUG and AUC were less active (1-5%), while 

AAG and AGG did not function. Similar results were obtained by translating mRNAs in 

a homologous N. crassa in vitro translation system or in rabbit reticulocyte lysate. The 

efficiency of initiation at AUG, CUG and UUG codons in a context other than the 

preferred context was also examined in vitro. The results show that the preferred context 

was more important for efficient initiation from NCCs than from AUG.  

Bioinformatic analyses of the 5’-leader regions in the N. crassa transcriptome 

revealed examples of highly conserved NCCs in preferred contexts that could extend the 

N-termini of the predicted polypeptides. Additional NCCs in all three reading frames are 

also evident, but they were not analyzed further.  

In summary, these studies demonstrated that NCCs can be used for initiation in 

N. crassa and identified potential examples for which initiation at NCCs may have 

physiological significance. 
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5.1.3. Near-cognate codons are identified to initiate translation of N. crassa CPC1 

In vitro studies using N.crassa and wheat germ extracts suggest that N. crassa 

cpc-1 uORF1 and uORF2 behave analogously to uORF1 and uORF4 in S. cerevisiae 

GCN4. That is cpc-1 uORF1 and uORF2 would control translation by facilitating 

reinitiation and by inhibiting the translation of the CPC1 mORF, respectively. Conserved 

N-terminal extensions in the cpc-1 reading frame from Pezizomycotina species were 

identified using bioinformatic approaches. NCCs, some well conserved and in optimal 

initiation contexts, which potentially initiate translation of extended CPC1 polypeptides, 

were examined both in vitro and in vivo. Four identified near-cognate start codons were 

demonstrated to initiate translation in vitro to produce N-terminally extended CPC1 

polypeptides. The positions of these near-cognate start codons enable their utilization 

bypass the translational inhibitory effect of uORF2. These findings suggested that in 

addition to control of translation through uORFs, as exemplified in S. cerevisiae GCN4, 

the 5’ UTRs of N. crassa and other fungal homologs of CPC1 may use a separate 

mechanism, which responds to physiological conditions that change the stringency of 

start codon selection. 

5.2. Future directions 

5.2.1. The function of C-terminally shortened and lengthened AAPs in vivo 

The level of a eukaryotic mRNA can be controlled by linking its stability to its 

translation. The nonsense mediated mRNA decay (NMD) pathway targets mRNA for 

degradation through the recognition of premature termination codons (484). Our lab 
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used metabolic labeling with 4-thiouracil (4TU) and a pulse-chase procedure to assess 

the roles of NMD factors in controlling mRNA stability in N. crassa (Ying and Sachs, 

unpublished data). The arg-2 mRNA, which contains AAP that causes ribosomes to stall 

during translation termination, was stabilized in mutants lacking NMD factors UPF1 or 

UPF2. Analyses of luciferase reporter genes containing wild type AAP demonstrated 

that the arg-2 uORF conferred NMD-sensitivity to reporters. The D12N AAP that does 

not stall ribosomes did not confer NMD-sensitivity, suggesting functional AAP was 

responsible for triggering NMD of the arg-2 mRNA.  

The present in vitro data indicate that AAPs shortened at the C-terminus by one 

or two residues retain their regulatory function to stall ribosomes in response to Arg. 

However, it is not clear whether these truncated AAPs can function in vivo. To test this, 

luciferase reporter genes containing C-terminally shortened AAPs can be used to 

determine their functions in triggering NMD in vivo. If NMD mutations (Δupf1 and/or 

Δupf2) increased the stability of these transcripts, this would indicate that shortened 

AAPs cause substantial stalling in vivo. Similarly, C-terminal lengthened AAPs can also 

be tested for their functions in vivo by examining whether they are regulated by the 

NMD pathway. Stalling during elongation in the C-terminal regin of extended AAPs 

shoud not trigger NMD, but stalling at the termination codon should trigger NMD.  

5.2.2. The conditions that change the stringency of start codon selection  

Ribosome profiling studies in yeast revealed that NCC initiated uORFs can be 

translated at levels comparable to AUG-initiated uORFs and translation of these non-

AUG uORFs generally increases in response to amino acid starvation (385). The 
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compound 3-aminotriazole (3-AT) induces histidine starvation in N. crassa and other 

fungi. However, testing for changes in stringency in response to 3-AT using luciferase 

reporter genes initiated with AUG or NCCs did not yield conclusive results in 

preliminary N. crassa studies (data not shown). The effects of amino acid starvation 

could be tested more systematically by ribosome profiling studies in N. crassa grown in 

the presence and absence of 3-AT. If amino acid starvation decreases the stringency of 

start codon selection in N. crassa, we expect that one or more of the four NCCs we 

identified upstream of the cpc-1 mAUG could be used at higher levels. This would 

further support the model that the use of NCCs could response to conditions that change 

the stringency of start codon selection and bypass the inhibitory effect of uORF2 to 

create another layer of translational control that regulates cpc-1 gene expression.  

In mammalian cells, overexpression of wild-type eIF1 reduces the use of AUG 

codons in poor context and the use of non-AUG start codons (379).  In contrast to eIF1, 

over-expression of eIF5 decreases the stringency of start codon selection (400).  In N. 

crassa, expressions of eIF1 and eIF5 could be regulated by placing their expression 

under the control of a conditional promoter into the genome. cis-elements in eIF1 and 

eIF5 for their auto-regulation need to be removed to increase/decrease the expression of 

eIF1 and eIF5 with more dramatic effects. Testing the use of NCCs under these 

conditions might lead to a better understanding of the effects of eIF1 and eIF5 on the 

stringency of start codon selection in N. crassa. Similarly to the 3-AT treatment, if 

stringency is altered in response to changes in eIF1 or eIF5 and this effects cpc-1 
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expression, then eIF1/5 control is considered to be another way of translational control 

in cpc-1 gene in addition to the eIF2α-mediated regulation.  
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