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ABSTRACT

Stochastic Dynamic Demand Inventory Models with Explicit Transportation Costs

and Decisions. (August 2011)

Liqing Zhang, B.S.; M.S., Tsinghua University, P.R. China

Chair of Advisory Committee: Dr. Sıla Çetinkaya

Recent supply chain literature and practice recognize that significant cost sav-

ings can be achieved by coordinating inventory and transportation decisions. Al-

though the existing literature on analytical models for these decisions is very broad,

there are still some challenging issues. In particular, the uncertainty of demand in a

dynamic system and the structure of various practical transportation cost functions

remain unexplored in detail. Taking these motivations into account, this disserta-

tion focuses on the analytical investigation of the impact of transportation-related

costs and practices on inventory decisions, as well as the integrated inventory and

transportation decisions, under stochastic dynamic demand.

Considering complicated, yet realistic, transportation-related costs and practices,

we develop and solve three classes of models: (1) Pure inbound inventory model im-

pacted by transportation cost; (2) Pure outbound transportation models concern-

ing shipment consolidation strategy; (3) Integrated inbound inventory and outbound

transportation models. In broad terms, we investigate the modeling framework of

vendor-customer systems for integrated inventory and transportation decisions, and

we identify the optimal inbound and outbound policies for stochastic dynamic supply

chain systems.

This dissertation contributes to the previous literature by exploring the impact

of realistic transportation costs and practices on stochastic dynamic supply chain
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systems while identifying the structural properties of the corresponding optimal in-

ventory and/or transportation policies. Placing an emphasis on the cases of stochastic

demand and dynamic planning, this research has roots in applied probability, optimal

control, and stochastic dynamic programming.
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CHAPTER I

INTRODUCTION

It is believed that quality supply chain management keeps the company ahead of

his competitors in the highly competitive world of today. To satisfy the customer

demands in a timely and cost effective way, supply chain management takes into ac-

count every entity that has an impact on cost and plays a role in making the product

conform to customer requirements. Indeed, total system-wide costs, from purchas-

ing raw materials, producing items, holding inventory, to distributing finished goods,

should be minimized. Therefore, the concentration is not on simply improving pro-

duction planning, reducing inventories or minimizing transportation cost, but rather,

on taking a systems approach of optimization (Simchi-Levi et al., 2007).

Improvement in supply chain can be particularly realized through coordinating

its two main activities: inventory and transportation. The data from the 19th annual

State of Logistics Report (Wilson, 2008), sponsored by the Council of Supply Chain

Management Professionals, suggests that the cost of the U.S. business logistics system

has continued to increase during the last decade, and it climbed to $1.397 trillion

in 2007, which doubles 1990’s total logistics cost. Table 1 gives the growth in total

logistics cost and its components in relation to Gross Domestic Product (GDP). From

the historical data, it can be found that the combination of transportation costs and

inventory costs consistently account for more than 96% of the total logistics costs, as

well as around 9% of the U.S. GDP. As a result, substantial savings can be achieved

through better system-wide optimization.

Coordination and integration of the inventory and transportation operations be-

This dissertation follows the style and format of Operations Research.
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Table 1: The Cost of the Business Logistics System in Relation to Gross Domestic

Product (in $ Billion)

Year
Inventory

Costs

Transportation

Costs

Administrative

Costs

Total

Cost

Total Cost

% of GDP

1990 283 351 25 659 11.4

1991 256 355 24 635 10.6

1992 237 375 24 636 10.0

1993 239 396 25 660 9.9

1994 265 420 27 712 10.1

1995 302 441 30 773 10.4

1996 303 467 31 801 10.2

1997 314 503 33 850 10.2

1998 321 529 34 884 10.1

1999 333 554 35 922 9.9

2000 374 594 39 1007 10.3

2001 320 609 37 966 9.5

2002 300 582 35 917 8.8

2003 304 607 36 947 8.6

2004 337 652 39 1028 8.8

2005 395 739 46 1180 9.5

2006 447 809 50 1306 9.9

2007 487 856 54 1397 10.1

comes especially essential when oil prices increase, as they have recently. Since oil

provides the fuel that powers the majority of transportation vehicles, it plays an

important role in supply chain efficiency, particularly in the transportation portion.

The increase in oil prices introduces inefficiencies in terms of low capacity utilization

of transportation vehicles and high unit freight cost. Simchi-Levi et al. (2008) of

MIT outlines the impacts of this change. According to his analysis, when oil prices

increase, transportation costs are impacted greatly. Due to the higher transporta-

tion costs, many companies prefers to shipping in larger lot sizes and less frequently;

consequently, they need to pay for higher inventory carrying costs, or locate more
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distribution centers. Data from the annual State of Logistics Report also demon-

strated this influence. Table 1 shows that the transportation related portion of the

U.S business logistics costs rose 6% in 2007 due to high fuel costs and lower demand.

An accompanying phenomenon is that there is an increase of $40 billion increase in

the inventory carrying costs from 2006 to 2007 (an increase of 9%).

Ballou (1992) stated that if the inventory can be sufficiently large, the upstream

replenishment and downstream transportation functions can be completely decou-

pled. However, in the trend towards Just-In-Time (JIT) manufacturing and Lean

Production, more and more companies are trying to keep their inventory at a low

level, and this again raises the importance of integrating inventory and transporta-

tion functions.

In line with this trend, this dissertation concentrates on supply chain models

that involve two sets of management concerns: those related to inventory decision

and those related to transportation decision. Usually, inventory and transportation

decisions can be classified into three levels: (1) The strategic level decisions specify

where and how many facilities or warehouses should be built, or how the material

should be flow through the supply chain network; (2) The tactical level decisions in-

cludes replenishment and production decisions, inventory policies and transportation

strategies that are updated once every moderate length of time; (3) The operational

level decisions determine the day-to-day operations like scheduling, routing, or truck

loading.

In the last two decades, the integration of inventory and transportation decisions

has been investigated in both industry and academia (e.g., Bell et al., 1983; Feder-

gruen and Zipkin, 1984; Çetinkaya and Lee, 2000; Toptal et al., 2003; Chen et al.,

2005; Schwarz et al., 2006; Çetinkaya et al., 2006). According to the levels of integra-

tion, the current research works can be classified into three groups that respectively
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focus on:

• Evaluating the impact of transportation costs on inventory decisions;

• Integrating inventory and transportation decisions;

• Incorporating the transporters into supply chain coordination.

The first group of research places a particular emphasis on the inclusion of trans-

portation costs, without explicitly optimizing and coordinating inventory decisions

(e.g., Lippman, 1971; Lee, 1986; Hwang et al., 1990; Ben-khedher and Yano, 1994;

Mendoza and Ventura, 2008). The second group of research proposes integration, i.e.,

simultaneous optimization, of inventory and transportation decisions (e.g., Çetinkaya

and Lee, 2000; Axsäter, 2001; Cheung and Lee, 2002; Kleywegt et al., 2004; Çetinkaya

et al., 2006; Guan and Zhao, 2010; Kaya et al., 2010). In the third group, the trans-

porters are modeled as crucial entities in the supply chain (e.g., Mutlu, 2006). In

order to decrease the system-wide operating costs, the transporters have to work in

coordination with their shippers. Research in the last group is still new. However,

as the oil prices remain high, supply chain members tend to increase their use of

third party transportation operators that are able to consolidate shipments across

companies.

Although the literature on integration of inventory and transportation decisions

is very broad, there are still some challenging issues remaining:

1. The Uncertainty of Demand in a Dynamic System

In most existing literature that considers the integration of inventory and trans-

portation decisions, it is assumed that either the demand is deterministic, al-

though it can be non-stationary, or the demand follows a stationary random

distribution. Theory exists mainly for the deterministic problems. For the
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stochastic problems, although the stationary policies discussed in existing pa-

pers are easy to implement and compute in practical situations, they may be

suboptimal in the class of all feasible policies as they focus on steady-state be-

havior. In fact, uncertainty is inherent in every supply chain system, and it

is caused by supply chain dynamics. In practice, most supply chain problems

arise over shorter planning horizons and are non-stationary; in other words, the

economic and/or distributional parameters of the system may change over time.

Under such circumstances, a dynamic formulation is more appropriate.

2. The Structure of Transportation Cost

One feature that is not commonly treated in the logistic systems but is often

observed in the real-life situation is the presence of various transportation al-

ternatives. The form of the transportation cost usually depends on the type

of vehicles used for transportation (Higginson, 1993). In the traditional inven-

tory models, the transportation cost is implicitly considered to be a part of the

production cost, i.e. either as a constant sum in the fixed cost, or proportional

to the quantity of produced items included in the variable ordering cost. How-

ever in practice, the transportation cost usually includes both a fixed setup cost

and a variable cost. The fixed setup cost consists of the administrative cost of

processing an order for both members between whom the transportation takes

place, and the variable cost depends on the quantity of products shipped.

The variable cost is proportional to the shipment quantity in some cases, for

example, when the delivery is conducted by privately owned trucks (private

carriage). With private carriage, the logistics provider uses her own fleet to dis-

patch the retailer orders. The main incentive for using a private fleet is to realize

a more controllable and reliable transportation together with an increased vis-
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ibility of the products in transit. And under some circumstances, specifically

designed vehicles are required. For example, in the cold chain logistics fresh

food needs to be transported in a specific climate-controlled vehicle.

Most of the time, the variable cost is not linear. For example, when transport is

performed by a public, for-hire trucking company (common-carriage), a quan-

tity discount for shipping larger lot sizes is available, and the unit freight cost

decreases as the shipment quantity increases. Compared with private carriage,

common carriage has the advantage of increasing efficiency in fleet utilization

and maintenance as well as reducing overhead expense.

Another example is when the transportation cost mainly depends on the number

of vehicles used. In other words, no matter if the transportation vehicles are fully

or partly loaded, the cost is unaffected. Hence, considering real situations, great

opportunities for cost savings are missing if we assume that the transportation

cost is proportional to the shipment quantity or even assume it is a constant

sum.

3. Exact Optimal Integrated Inventory-Transportation Policies

Since the early 1980’s, integrated inventory-transportation policies have been

successfully implemented in many industries. It has been demonstrated that

significant savings can be realized when inventory and transportation concerns

are considered jointly. To achieve the economies of scale possible in transporta-

tion, other than those in inventory, a strategy for shipment consolidation can

be included. Shipment consolidation is the policy where several small loads will

be dispatched as a single, combined load. From an inventory-modeling perspec-

tive, the integrated inventory-transportation problems add dispatch quantities

as decision variables to the stochastic dynamic inventory models with general
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ordering cost structure, which are already known to be very difficult to optimize.

Relevant existing research focuses on performing cost optimization over a subset

of feasible policies. These policies are easier to implement and compute for

practical purposes, nevertheless, they are probably sub-optimal in the class of

all feasible policies. In order to characterize exact optimal policies, Dynamic

Programming techniques are required.

Recognizing these challenges and opportunities, we have the following objectives

in this dissertation:

1. To build on the theoretical framework of the existing literature in the context

of integrated inventory and transportation decisions.

2. To evaluate the impact of transportation costs on inbound and outbound logis-

tics decisions.

3. To identify optimal policies for integrated inventory and transportation deci-

sions.

Inventory decisions are tactical level decisions, whereas transportation decisions

are operational level decisions. Therefore, our research in this dissertation contributes

to the literature by investigating opportunities for the coordination of tactical and

operational decisions.

I.1. Scope of the Dissertation

The analysis and operation of a supply chain system varies significantly depending

on its characteristics. Demands at the buyers may be deterministic or stochastic.

Private fleet or common carriage may be used for transportation. The private fleet

transportation may be capacitated or uncapacitated. There could be one or multiple
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buyers, and consequently one or multiple products distributed through the system.

The planning horizon can be of one, many or an infinite number of periods. We

restrict ourselves to a single product originating at a single supplier and distributed

through the vendor to one or multiple buyers so as to satisfy stochastic demand over

a periodic review, finite planning horizon.

More specifically, we study the following classes of problems:

1. Pure Inbound Inventory Model (PI): The vendor makes the inventory replen-

ishment decisions on how much to order from the outside supplier.

2. Pure Outbound Transportation Models (PO): The collection depot makes the

delivery schedules of order dispatches to the buyer(s).

3. Integrated Inbound Inventory and Outbound Transportation Model (IIO): The

two decisions of inventory replenishment and order dispatches are coordinated.

I.1.1. Pure Inbound Inventory Model

As we discuss in detail in Chapter II, the existing literature overlooks important

transportation considerations. In particular, the impact of cargo capacity and cargo

cost are rarely evaluated in previous work. However, substantial savings are realizable

in supply chain system when such transportation consideration is incorporated with

the inventory decisions.

In Chapter III, we focuses on the economies of scale possible in the vendor’s

inbound replenishment. We consider a single echelon inventory system composed of

a single vendor that receives a single product from an outside supplier and serves a

single customer with random demand. To consider the transportation costs associated

with using private trucks with cargo capacity, we model the replenishment costs in
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the form of

W (a) = KI[a>0] +
⌈ a

C

⌉
∆, (1.1)

where the first term (i.e., K) is a fixed cost and the second term is the total truck

cost in proportion to the number of trucks used. Here C is the cargo capacity; ∆ is

the cargo cost; and a is the replenishment quantity. This type of cost structure is

also known as multiple setup cost structure in the literature. The system is planned

over a discrete and finite time horizon. The objective is to find the structure of the

optimal replenishment policy so as to minimize the total expected transportation,

holding and penalty costs over the finite planning horizon.

Actually, this model is a significant extension of the classic stochastic dynamic

inventory model of Scarf (1960) in that it generalizes the replenishment cost function

by including the multiple setup cost term which represents the inbound transportation

cost. Although there are some existing studies considering the multiple setup costs

in inventory systems, one common characteristic of the previous studies is that they

either focus mainly on quantity policies for deterministic demand, or focus on single

period problems. All works with stochastic dynamic settings fail to characterize the

complete structure of the exact optimal policy.

Based on the concept of non-K-decreasing of Porteus (1971), we first introduce

two new concepts non-∆-decreasing and non-(∆, C)K
N
-decreasing in Chapter III. Then

the optimal policy for any given period can be identified provided that the major

part of the recursive optimality equation satisfies certain conditions. We name the

optimal policy as (Q,~s, ~S) policy. Using the single period result, we provide sufficient

conditions under which the new policy is optimal.



10

I.1.2. Pure Outbound Transportation Models

Usually, transportation costs depend on the volume and size of specific shipments.

Similar to inventory and production operations, economies of scale also exist in trans-

portation. An ideal strategy would be to stock sufficient items at the collection depot

so that small orders requested by a customer or geographic area can be consolidated

before a delivery is made. The corresponding savings in transportation may more

than offset the increased cost of holding the inventory.

Three types of consolidation policies, i.e., time-, quantity- and time-and-quantity-

based consolidation polices, have been identified in the literature and widely adopted

in industry. In Chapter II, we present an overview of the related research with explicit

shipment consolidation considerations. Although these shipment consolidation are

easy to understand and use, they are defined by the practitioners and researchers

according to their experience, and might not be optimal from the perspective of

cost optimization. In Chapter IV, we examine the exact structural properties of the

optimal shipment consolidation policies under four different transportation scenarios.

Scenario 1: The collection depot serves a group of retailers located in close

proximity. The retailers are willing to wait to receive their orders at an additional

expense for the vendor to include retailer waiting and inventory holding costs. The

depot consolidates the orders in order to benefit from the scale economies of trans-

portation. It is assumed that the outbound transportation is performed by private

fleet with unlimited capacity. Thus, the transportation cost is expressed as

C̃P (t, d) = KD · I[t>0,d>0] + KSd + ct, (1.2)

where the first term represents the fixed cost for a vehicle dispatch, the second term

represents the fixed cost for an order delivery and the last term represents the marginal
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cost. d is the number of random orders waiting to be dispatched, and t is the total

weight of the consolidated load. Consider this system for finite multiple periods, we

showed that a state-dependent threshold policy is analytically optimal for this model.

Scenario 2: In the previous scenario, the transportation capacity is assumed to

be infinite. However, this is not the case in most industrial practices. To address the

specific consideration of cargo capacity, we replace the transportation cost by

C̃S(t) = K · I[t>0], 0 ≤ t ≤ C. (1.3)

Here, we assume the depot has only one truck with capacity C, hence, the maximum

dispatch quantity is C. The cost for dispatching a shipment is fixed at K regardless

of whether the truck is fully or partially loaded. Since all types of costs concerned

are irrelevant with the number of consolidated orders d, d is trivial in this model,

and hence, can be ignored. We develop the model as a stochastic dynamic program,

analyze it for multiple periods, and characterize the optimal consolidation policy as

a threshold policy.

It is worth noting that the optimal dispatch quantities in scenarios 1 and 2 are

either zero or the maximal possible dispatch quantity. That is to say, when there is

no cargo capacity constraint, the optimal policy possesses the “clearing property”.

When the cargo capacity constraint is imposed and a dispatch should be made, the

optimal dispatch quantity is equal to the consolidated load, if the load does not exceed

the truck capacity; otherwise, dispatch a fully loaded truck is optimal.

Scenario 3: As mentioned above, scenario 1 and 2 both assume the employment

of private trucks for transportation. However, many companies in reality use common

carriers to make such shipments. Common carrier freight rates also exhibit economies
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of scale in transportation. A typical common carrier transportation cost is of the form

C̃C(t) =






cN t, t ≤ WBT,

cV MWT, WBT < t ≤ MWT,

cV t, t > MWT,

(1.4)

where cN > cV denote non-volume and volume freight rates. MWT is the stated

minimum weight to obtain the quantity discount and WBT is the weight at which

the bumping clause comes into play. An exact characterization of the optimal con-

solidation policy for the common carrier case is challenging due to the complexity

of the transportation cost. Therefore, assuming a “clearing property”, we examine

the optimality of three practical consolidation policy and provide sufficient conditions

under which they are optimal for a multiple-period dynamic distribution system.

Scenario 4: We revisit the consolidation systems discussed previously, and in-

vestigate the optimal policy for the case where the depot owns sufficient trucks and

each truck is capacitated. Similar to the pure inbound inventory model, the trans-

portation cost is expressed in the form of multiple setup costs, that is

C̃M(t) = KD · I[t>0] + ct + ∆

⌈
t

C

⌉
, (1.5)

where KD is the fixed cost for a vehicle dispatch from the depot to the retailers,

c is the transportation cost per unit weight, C and ∆ are the cargo capacity and

cargo cost, respectively. This cost structure particularly represents the situation

where the collection depot relies on private truck fleets to deliver orders in virtue

of the advantages of guaranteed capacity, flexible scheduling and enhanced customer

service. Again, we examine the structure of the optimal consolidation policy via a

stochastic dynamic programming approach.
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I.1.3. Integrated Inbound Inventory and Outbound Transportation Model

The previous models study either the pure inbound replenishment decision or the pure

outbound shipment scheduling. Although the transportation and inventory costs are

explicitly incorporated, the decisions are optimized separately. Consider a vendor-

managed inventory (VMI) system where the vendor has flexibility over the timing and

quantity of resupply at a group of retailers with stochastic demand and located in

a given geographical region. Under a VMI contract of interest, employing temporal

shipment consolidation strategy allows the vendor to hold smaller orders (realized

stochastic demands) from the retailers and to release them in a combined shipment

to realize transportation scale economies.

In the literature, the typical VMI system that requires making joint stock re-

plenishment and shipment scheduling decisions is assumed stationary in the long run.

Researchers usually focus on finding the optimal parameter values for a predefined

joint policy (Çetinkaya and Lee, 2000; Axsäter, 2001). The exact optimal policy re-

mains unknown. To fill the gap, we consider a joint stock replenishment and shipment

scheduling problem in Chapter V. We formulate the problem via a stochastic dynamic

programming approach and examine the exact optimal joint policies specifying, si-

multaneously, the vendor’s inbound replenishment and outbound dispatch quantities

in successive periods so that transportation economies of scale due to shipment con-

solidation are realized without excessive inventory holding and/or order delay. We

characterize the structure of the optimal policy as a zoned, state-dependent threshold

policy which is a new class of policies in multi-echelon stochastic inventory control

theory.
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I.2. Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter II, we present an

overview of the literature on integration of inventory and transportation considera-

tion in relation to the models discussed in this dissertation. In Chapter III, we study

an important generalization of the classical stochastic dynamic inventory problem

where privately owned trucks with limited cargo capacity are used to transport the

replenishment quantity. We develop a new replenishment policy and provide the con-

ditions under which the new policy is optimal. In Chapter IV, we address the issues

regarding outbound shipment consolidation policies. We consider different types of

transportation costs aiming at four transportation modes and examine the structures

of optimal policies for each mode. In Chapter V, a joint stock replenishment and

shipment scheduling problem under a vendor-managed inventory contract is inves-

tigated. Assuming the vendor has the authority to consolidate orders requested by

the retailers, we characterize the structure of the optimal joint policy. Finally, con-

cluding remarks, potential impact of this research, and possible future research are

summarized in Chapter VI.
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CHAPTER II

LITERATURE REVIEW

The efficiency of transportation systems has become particularly important with in-

creased competition in the market. In today’s highly competitive environment, com-

panies are utilizing every possibility for decreasing their cost and making their systems

more efficient.

Since the early 1980’s, researchers and practitioners have demonstrated that

substantial savings are realizable through coordinating transportation and inventory

operations in supply chain systems. There are a variety of studies in the litera-

ture about the integration of inventory and transportation; however, among these

studies a significant amount of work focuses on large scale optimization problems

that include Facility Location-Allocation problems, Network Design problems, and

Location-Routing problems, etc (Bell et al., 1983; Golden et al., 1984). The main

goal of this group of research is to develop effective heuristic algorithms to solve

the large scale Mixed Integer Programming (MIP) problems. Usually, this literature

only considers deterministic demand and linear transportation cost structures (the

transportation cost is proportional to the shipment quantity). The transportation

policies is also defined in advance. Thus, it does not render general managerial in-

sights into operational decisions under conditions of uncertainty or related system

design issues. Since this dissertation focuses on analytical models that examine the

coordination of inventory and outbound shipment decisions, theoretical studies of in-

ventory and transportation policies in single- or multi- echelon supply chain systems,

in this chapter, we present a critical review on analytical models that concentrate on

production/inventory decision, transportation decision, and their coordination. This

literature provides insightful tools for operational decision-making and distribution
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system design. Extensive literature surveys on the inventory and routing models for

the freight distribution problem were given by Baita et al. (1998) and Erengüç et al.

(1999).

Consider a vendor, serving one (a group of) retailer(s), i.e., customers: the ven-

dor’s inventory is depleted by the orders coming from the customer(s) and the vendor

needs to decide (1) when and how much to replenish her inventory, and (2) when

and how much to deliver the orders to his downstream customer(s). Analyzing such

a vendor-customer system, this dissertation is related to two streams of literature.

From modeling perspective, the first stream concentrates on the incorporation of

transportation costs, either implicitly or explicitly, into the inventory systems. In

this review, we discuss and compare the research works for the following, but not

limited to, model characteristics.

Demand: In the supply chain systems of interest, the retailers/customers are con-

sidered as the ultimate destinations with either deterministic (i.e., fixed and known)

or stochastic (i.e., random variables with known probability distributions) orders.

For multi-retailer system, the demand distribution can be either i.i.d. across the re-

tailers/customers or retailer/customer specific. The multi-product case is similarly

treated.

Decision(s): The concerned models can be optimizing the pure inventory policy,

pure transportation policy, or attempting to jointly optimizing these two policies.

Review schedule: Period-review models divide time into one or more discrete

time periods. Correspondingly, information is provided and decisions are made and

implemented periodically. Continuous-review models represent information, decision-

making and implementation in continuous time.

Horizon: The planning horizon in the supply chain system can be either finite or

infinite. Some other models involve only a single planning period.
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Number of items: Although most of the literature considers the distribution of

only a single item, some models incorporate multiple items.

From the perspective of methodology, the second stream concentrates on a set of

inventory control problems solved by stochastic dynamic programming approaches.

Although transportation issues are not considered in these problems, their technical

solution procedures provide insight and support to the current research. Furthermore,

the inventory costs considered in this stream of literature, in some sense, can be

translated into transportation cost with no problems. Therefore, it is worthy to

review them in this chapter.

The remainder of this chapter is organized as follows. In Sublevel II.1, we present

a review on the literature that considers the integration of inventory and transporta-

tion policies. This literature is discussed in three groups: (1) models employing an

shipment consolidation strategy; (2) models investigating inventory policies with the

consideration of transportation costs; (3) models simultaneously optimize the inven-

tory and transportation policies. In Sublevel II.2, the stream of stochastic dynamic

inventory models is reviewed.

II.1. Integration of Inventory and Transportation Policies

The integration of inventory and transportation operations has been attracting at-

tentions recently. According to the levels of integration, the current research works

can be classified into three groups that respectively focus on:

1. Shipment consolidation policy;

2. Inventory policy considering transportation cost;

3. Integrated inventory and transportation policy.
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The literature review in this stream is presented as below.

II.1.1. Shipment Consolidation Policy

Transportation related issues, such as the type of the carrier and the associated trans-

portation costs, have been extensively discussed in the literature. The broad range

of this literature makes it virtually impossible to present a complete review in this

dissertation. Focusing on the impact of shipment scheduling decisions, our research is

most related to the distribution systems employing a shipment consolidation strategy.

In a traditional distribution system, merchandise is dispatched immediately to

the customer when the order is received. Rapid delivery service is provided in this

way; however, possible savings due to the economies of scale in transportation are

missing. Recognizing this, researchers and practitioners started to investigate the

shipment scheduling problems with consolidation strategies in the 1980s (Masters,

1980; Jackson, 1985). Shipment consolidation can be implemented at a Third Party

Logistics (3PL) provider, a consolidating warehouse or a delivery terminal on a supply

chain. Under a shipment consolidation strategy, multiple orders/shipments arrived

at different times, from different origins, or for different customers can be combined

into single larger dispatch loads. Subsequently, total logistics costs are reduced.

There exists a significant amount of shipment consolidation literature. The ma-

jority of the early research focuses on discussing the timing of load dispatches and pro-

poses some practical policies (e.g., Newbourne and Barrett, 1972; Pollock, 1978). The

most popular policies of consolidation programs include time-based, quantity-based,

and hybrid, i.e., time-and-quantity-based policies. A time-based policy releases a

shipment on regular intervals, and a quantity-based policy releases a shipment when-

ever an economical dispatch quantity is available. Under a hybrid policy, a shipment

is released either upon a predetermined shipping date or upon the accumulation of
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a dispatch quantity, whichever occurs first (Higginson and Bookbinder, 1994, 1995;

Çetinkaya, 2005). It is worth noting that although various shipment consolidation

policies have been proposed and adopted in industry, these policies are all designed

in advance. In other words, the consolidation policy that is theoretically optimal

remains unknown.

Another focus of the early literature is to examine the performance of systems

using different consolidation programs via simulation (Masters, 1980; Jackson, 1981;

Cooper, 1984; Jackson, 1985; Closs and Cook, 1987; Bagchi and Davis, 1988; Pooley

and Stenger, 1992; Higginson and Bookbinder, 1994). For example, Jackson (1981)

compares a time-based policy to a hybrid policy and indicates that the time-based

policy is more convenient to implement. Higginson and Bookbinder (1994) investigate

the performance of different consolidation policies for common carriage transportation

by adjusting the policy parameters in simulation studies. They assume that the

shipments arrive at the collection depot at random time and with random sizes, and

identify possible situations where one policy works better than the others. During

the early years, neither economic justification of the practical policies nor approaches

for computing the optimal consolidation policy parameters are provided.

Recently, research on shipment consolidation focuses on computing the optimal

policy parameters using analytical skills. Much of the research provides optimiza-

tion approaches for finding the parameters of pure consolidation practices (see, for

example, Gupta and Bagchi, 1987; Minkoff, 1993; Higginson and Bookbinder, 1995;

Bookbinder and Higginson, 2002; Çetinkaya and Bookbinder, 2003; Mutlu et al.,

2010). For continuous-review systems, Gupta and Bagchi (1987) examine the inbound

consolidation policy under a just-in-time procurement system and provide a tool to

calculate the minimum cost-effective consolidation quantity by using the stochastic-

clearing-system theory. Based on Gupta and Bagchi (1987)’s model, Bookbinder and
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Higginson (2002) study the time-and-quantity-based policy. Instead of employing

the stochastic-clearing-system theory, Çetinkaya and Bookbinder (2003) use renewal

theory to analyze the time-based and the quantity-based policies for both common

carriage and private fleet transportation. In their model, the orders are assumed to

arrive at the depot according to a Poisson process. For private carriage, they were

able to provide exact optimal solutions for the two policies. They also provide ap-

proximate solutions for common carriage, and discuss the special case with unit order

sizes and provide results. Following Çetinkaya and Bookbinder (2003)’s work, Mutlu

et al. (2010) study the hybrid, i.e., the time-and-quantity-based policy for the case of

private carriage.

Research regarding continuous-review systems is devoted to the steady-state be-

havior of consolidation systems. However, most consolidation problems in real-life

arise over shorter planning horizons and are non-stationary; in other words, the sta-

tionary policies discussed in the existing literature are practical, although they are

probably suboptimal. To identify the exact optimal consolidation policy, Markov

Decision Process (MDP) methods are adopted. Minkoff (1993) uses a MDP method

to formulate the consolidation problem and proposes a heuristic for computing the

dispatch policy values. Higginson and Bookbinder (1995) use MDP method to model

both common and private carriage situations and identify the optimal consolidation

policies via numerical study.

There are some recent papers extending the shipment consolidation schedule to a

two-echelon supply chain system. In the two-echelon models, the inbound replenish-

ment and outbound shipment consolidation decisions are simultaneously optimized.

Literature in this group is discussed in Sublevel II.1.3.



21

II.1.2. Inventory Policy Considering Transportation Cost

In this group of works, the transportation policy is assumed to be given. Although

the inventory and transportation decisions are not optimized simultaneously, the im-

pact of the transportation operations is modeled by explicitly including a cost term

representing the realistic transportation situations, for example, transportation with

quantity discount, or transportation with vehicle capacity constraints. The objective

of this group is to find the optimal production/inventory decisions that are directly

affected by the concerned transportation cost.

II.1.2.1. Models with Deterministic Demand

Corresponding to different transportation patterns, various structures of transporta-

tion cost have been investigated in supply chain systems with deterministic demand,

and they are mostly studied in single-echelon lot-sizing models. Ever since the clas-

sical dynamic lot-sizing model was introduced by Wagner and Whitin (1958), many

researchers have developed extended models (Zangwill, 1966, 1969; Florian and Klein,

1971; Love, 1973; Swoveland, 1975; Chen et al., 1994; Lee et al., 2001; Hwang and

Jaruphongsa, 2006) with various considerations, including concave costs, piecewise

concave costs, or capacitated production/transportation.

Since our research concentrates on analyzing inventory policies under explicit

general private-fleet transportation costs, we proceed with a detailed discussion of

the literature that directly considers the cost of multiple setups.

In fact, the majority of existing work on multiple setup cost structure is for single-

echelon lot-sizing models with deterministic demand. This literature can be classified

into two streams. One stream of work examines the structures of optimal policies

for periodic-review systems (e.g., Lippman, 1969a; Lee, 1989; Ben-khedher and Yano,
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1994; Alp et al., 2003; Li et al., 2004; Lee, 2004; Anily and Tzur, 2005; Jaruphongsa

et al., 2005; Anily and Tzur, 2006; Jaruphongsa and Lee, 2008; Hwang, 2009, 2010).

Among these studies, Lippman (1969a) provides the most basic model that integrates

the multiple setup costs as the inbound transportation cost. Lippman proves that

there exists an optimal solution such that in each period, either beginning inventory

is zero or the order quantity is a multiple of the full truckload. Lee (1989) generalizes

Lippman’s model by incorporating a replenishment setup cost for each order. Based

on Lee’s model, various extensions include the study of multiple setup cost function

in the context of the applications to multi-product replenishment systems (e.g., Ben-

khedher and Yano, 1994; Anily and Tzur, 2005, 2006), batch production processes

with stochastic lead times (e.g., Alp et al., 2003), the generalization of freight cost

with a truckload discount (e.g., Li et al., 2004), the selection of transportation modes

from multiple choices (e.g., Jaruphongsa et al., 2005), the consideration of constraints

on replenishment quantity and replenishment time (e.g., Lee, 2004; Jaruphongsa and

Lee, 2008; Hwang, 2009).

The other stream examines the optimal policies for models with continuous time

scale, constant demand rate and finite/infinite time horizon, i.e., in Economic Order

Quantity (EOQ) type models (e.g., Lippman, 1971; Aucamp, 1982, 1984; Lee, 1986;

Hwang et al., 1990; Mendoza and Ventura, 2008). Lippman (1971) gives mathematical

formulations for both infinite and finite planning horizons with ordering cost in form

of multiple setup cost, and characterized the form of an optimal ordering schedule for

both cases. Aucamp (1982) formulates the problem introduced by Lippman (1971)

in a traditional EOQ way and provides an algorithm for solving it. Aucamp (1984)

extends his model to consider discounted cash flows and demonstrates the equivalence

of the modified model with his earlier one. Lee (1986) incorporated freight discounts

into the model of Aucamp (1982), i.e., the cost per load decreases as the number of
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truckloads increases. Lee provides a revised solution algorithm to solve the generalized

model. Hwang et al. (1990) further extends Lee’s model by considering an all-unit

quantity discount on the purchasing cost. Recently, the case of incremental quantity

discount is also studied by Mendoza and Ventura (2008).

II.1.2.2. Models with Stochastic Demand

It is worth noting that all of the studies discussed in Sublevel II.1.2.1 within the con-

text of economic lot-sizing and transportation considerations assume deterministic

demand, i.e., ignore the stochastic nature of demand. To the best of our knowledge,

the existing literature that focuses on modeling transportation cost with cargo ca-

pacity in stochastic demand inventory systems only includes the work by Lippman

(1969b), Iwaniec (1979), Toptal (2009) and Çalışkan Demirag̃ et al. (2011). Exam-

ining a single-echelon stochastic dynamic inventory problem with multiple setup or-

dering costs, Lippman (1969b) identifies a partial characteristic of an optimal policy,

while Iwaniec (1979) provides a sufficient condition under which the full load ordering

policy is optimal for a finite horizon problem. Recently, Toptal (2009) reconsiders the

inventory system of Hwang et al. (1990) by formulating it in a more general form

and discusses its application to the single period, single-echelon stochastic demand

problem, i.e., the news-vendor problem.

Recently, Çalışkan Demirag̃ et al. (2011) revisit the classical stochastic dynamic

inventory problem while assuming the replenishment cost is W (a) = K1I[0<a≤C] +

K2I[a>C]. Here, parameters K1 and K2 satisfy 0 ≤ K1 ≤ K2 and are called quantity-

dependent fixed setup costs. They attempt to analyze the general case where 0 ≤

K1 ≤ K2 as well as a special case where K1 ≤ K2 ≤ 2K1. They rely on two concepts:

namely, a new concept called C-(K1,K2)-convexity and an existing concept known

as strong K-convexity developed by Gallego and Scheller-Wolf (2000). The authors
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conclude that five critical points (s ≤ s′′ ≤ s′ ≤ s1 ≤ S) divide the whole state space

of x, inventory level, (−∞ < x < ∞), into six regions. They prove that the optimal

replenishment policies for both the general and special cases of their problem possess

identical characteristics except for the region [s1, S). In particular, on [s1, S) the exact

value of the optimal replenishment quantity is unclear in the general case while taking

value of zero in the special case. That is, although the authors characterize a simple

property of the optimal policy over [s′′, s′) for the general case, the characterization

of the exact optimal policy remains incomplete overall.

Çalışkan Demirag̃ et al. (2011) also attempt to examine the case where W (a) =
∑n

i=1 KiI[Ci<a≤Ci+1], where Ki ≤ Kj and Ci ≤ Cj for any i < j, C1 = 0, and Cn+1 =

∞. However, they simply conclude by stating that “the optimal policy can indeed

be highly complex” without any specific results. The authors proceed with assuming

Ci+1−Ci = C, Ki+1−Ki = K, and n → ∞. Under these assumptions, their problem

is equivalent to our problem. Using an existing concept, known as (C, K)-convexity

and developed by Shaoxiang (2004), Çalışkan Demirag̃ et al. (2011) are only able to

offer a simple preliminary result that is clearly insufficient to characterize the structure

of the optimal policy leaving an important gap in the literature. In Chapter III, we

fill this gap by providing a complete characterization of a new class of policies which

we call the (Q,~s, ~S) policy. We also develop sufficient conditions for the optimality

of this policy. In order to justify the difficulty associated with the optimal policy,

Çalışkan Demirag̃ et al. (2011) solve a numerical example by complete enumeration.

They compare the result with the full truckload ordering policy developed by Iwaniec

(1979). Their numerical results are such that the optimal policy obtained through a

complete enumeration is of the form of our (Q,~s, ~S) policy whose optimality is proved

here. Clearly, the policy outperforms Iwaniec’s (1979) policy.
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II.1.3. Integrated Inventory and Transportation Policy

In addition to the single-echelon models discussed in Sublevel II.1.2, a recent line

of research analyzes the impact of transportation cost in the context of two-echelon

inventory systems. More specifically, this group of work concentrates on identify-

ing the integrated inbound inventory and outbound transportation decisions for a

vendor. Although warehouse location and vehicle routing decisions are important

subcategories of inventory and transportation decisions, in this dissertation, we are

only interested in the decisions regarding the timing and quantity of inbound order

replenishment and outbound shipment scheduling.

II.1.3.1. Models with Deterministic Demand

The integrated inventory and transportation model has its root in the multi-echelon

inventory control problem with deterministic demand. For the purpose of completion,

we review the literature on multi-echelon inventory control problems where the inven-

tory replenishment decisions of successive echelons are decided simultaneously. The

reason that we are also interested in this branch of research is that the models with

discount on the unit ordering/production cost can also be considered in the trans-

portation context. Hence, they give insights into the problems with transportation

policies.

The pioneers of the deterministic demand multi-echelon models are Schwarz

(1973) and Goyal (1976). In their models, both the supplier and the buyer incur

fixed costs for replenishing inventory and a per unit per time inventory holding cost.

Infinite production rate is assumed. Later, Goyal (1988) considers an integrated in-

ventory model with finite production rate and suggests equal sized shipments to the

buyer. Based on Goyal’s results, Lu (1995) designs heuristic algorithms to find the
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optimal equal sized shipments. However, the equal sized shipment policy is subopti-

mal among all the possible policies. Goyal (1995) suggests an unequal sized shipment

policy in which successive shipments of a lot increase by a factor equal to the ratio

of the production rate to the demand rate. Hill (1997) relaxes Goyal’s (1995) result

by allowing the increasing factor between 1 and the ratio of the production rate to

the demand rate. Goyal and Nebebe (2000) suggests a shipment policy with the first

shipment of small size followed by several equal sized shipments of larger size. Hill

(1999) derives that the globally optimal shipping policy for the single-vendor single-

buyer inventory problem is a combination of equal and unequal sized shipment policy.

Hoque and Goyal (2000) extends Hill’s (1999) results to a case where the transport

equipment between the two echelons is capacitated.

In the classical models above, the transportation costs are assumed to be con-

stant. Recently, Zhao et al. (2004) addresses the problem of deciding the optimal

ordering quantity and frequency for a system where transportation cost is assumed

to be the sum of a fixed setup cost and a variable cost. They build a modified EOQ

model and provided an algorithm for solving the model. Ertogral et al. (2007) incor-

porate transportation cost explicitly into the vendor-buyer lot-sizing problem. They

employed the equal-size shipment policy and developed optimal solution procedures

for solving the integrated models. All-unit-discount transportation cost structures

with and without over declaration have been considered.

Multiple setup cost function that represents the transportation cost from the

warehouse to the retailer is also investigated. For continuous deterministic demand,

Çetinkaya and Lee (2002) characterize the properties of the optimal integrated inven-

tory replenishment and freight consolidation policies for an inventory system consist-

ing of a single warehouse and a single retailer and over an infinite time horizon. They

provided exact solutions for the optimal shipment consolidation policy parameters
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and showed that the optimal consolidation load is not constant. Notice that in their

model, the impact of multiple setup costs is only evaluated for the outbound trans-

portation, and later, Toptal et al. (2003) and Toptal and Çetinkaya (2008) consider

this cost structure for both the inbound and outbound transportation from different

perspectives: centralized optimization and channel coordination, respectively. Con-

sidering two modes of transportation available to the warehouse, Rieksts and Ventura

(2010) proposed a heuristic algorithm for a single-warehouse multi-retailer system.

For periodic deterministic demand, Lee et al. (2003) incorporate a multiple setup

cost term into the outbound transportation cost and provide a network approach to

solve for the optimal integrated replenishment/shipment scheduling policy over a

finite time horizon. Jaruphongsa et al. (2007) study a model similar to that of Lee

et al. (2003), but they consider two modes of outbound transportation available to

the warehouse, i.e., one option with a fixed setup cost and unit dispatch cost and the

other with a multiple setup cost structure. In a recent paper, Jin and Muriel (2009)

extend the model by including multiple retailers and incorporating multiple setups

into the inbound replenishment cost. They develop exact algorithms for computing

the optimal policies for both decentralized and centralized cases.

II.1.3.2. Models with Stochastic Demand

Deterministic models help us to gain insights into the dynamics of the problem.

However, stochastic models provide better representations of real life applications. A

growing body of literature examines different aspects of VMI systems since the late

1990s. Several authors, such as Campbell et al. (1998); Çetinkaya and Lee (2000);

Axsäter (2001); Cheung and Lee (2002); Kleywegt et al. (2004); Çetinkaya et al.

(2006); Schwarz et al. (2006); Toptal and Çetinkaya (2006); Gurbuz et al. (2007); Zhao

et al. (2007); Çetinkaya et al. (2008); Mutlu and Çetinkaya (2010); Guan and Zhao
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(2010); Kaya et al. (2010); Savasaneril and Erkip (2010) focus on analyzing inventory,

shipment, and routing policies under VMI or similar multi-echelon settings. Within

this line of work, Çetinkaya and Lee (2000) are the first to examine the problem of

interest here while assuming a time-based shipment consolidation policy that clears

the entire consolidated load on a periodic time schedule. In their model, the supplier

has the power to control the inventory management of her downstream customers.

The VMI contract between the supplier and the customer enables the supplier to

hold small shipments requested by different customers and to dispatch a combined,

larger load. The orders are assumed to follow a Poisson process, and each shipment

is of unit size. Çetinkaya and Lee (2000) present analytical results for a renewal

theoretic model and provide an easy-to-implement approximate solution method for

this problem. Axsäter (2001) presents a procedure that optimally solves the problem.

Three recent papers, Chen et al. (2005), Çetinkaya et al. (2006) and Çetinkaya

et al. (2008) have revisited the model of Çetinkaya and Lee (2000). Chen et al.

(2005) investigated the integrated inventory replenishment and shipment consoli-

dation problem by comparing the two consolidation policies: quantity-based and

time-based. They showed that the quantity-based consolidation can outperform the

time-based counterpart while the reverse never occurs. Çetinkaya et al. (2006) ex-

amined the case where the vendor implements quantity-based and hybrid policies for

consolidating Poisson demands. Çetinkaya et al. (2008) generalized the demand to a

more realistic and complicated demand process of practical interest. They study the

case where a quantity-based shipment consolidation policy is in place under which

a clearing decision is triggered based on a critical dispatch quantity rather than a

time schedule. In addition, Toptal and Çetinkaya (2006) explore the issues about

channel coordination under explicit transportation consideration and solve a single

period, two-echelon inventory system where the cost structure of multiple setups is
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considered for both echelons. More recently, Mutlu and Çetinkaya (2010), and Kaya

et al. (2010) also revisit the problem of Çetinkaya and Lee (2000) focusing on the

computation of practical policies that still rely on quantity- or time-based shipment

consolidation. Such policies are not necessarily optimal within the class of all feasi-

ble policies for the simple reason that they rely on stochastic clearing assumptions.

Mutlu and Çetinkaya (2010) investigate the optimal joint policy with consideration

of common carriage for outbound shipment. Their results demonstrate that common

carriers can also benefit from shipment consolidation in integrated inventory systems.

Through numerical examples, Kaya et al. (2010) demonstrate that the exact optimal

policy is complex and non-monotonic; but, they are unable to characterize the exact

optimal policy.

II.2. Stochastic Dynamic Inventory Control Problems

The methodologically oriented literature on stochastic dynamic inventory systems

supports the analysis in this dissertation from a technical perspective. In the interest

of brevity, we review only the papers that concern the characterization of the optimal

policy in a single-product, single-echelon, periodic review inventory control setting.

For a single-period case, the news-vendor model is one of the most popular mod-

els, and the solution to the news-vendor model balances the expected inventory hold-

ing costs and the shortage cost for unsatisfied demands. When extended to multiple-

period cases, this model gives rise to the so-called base-stock or order-up-to policy.

The base-stock policy specifies a single critical parameter that determines the optimal

amount of inventory to carry in any period. The optimality of the base-stock policy

is first proved for the case of the finite planning horizon by Clark and Scarf (1960).

Following Clark and Scarf’s work, Federgruen and Zipkin (1984a,b) showed that this
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policy is still optimal in the case of the infinite planning horizon and they also pro-

vided computational methods for finding the critical parameters of the base-stock

policies. Chen and Zheng (1994) and Chen (2000) generalized the results for Clark

and Scarf’s model by giving fixed batch size at each stage. More generalizations of

Clark and Scarf’s model can be found in Chen and Song (2001), Gallego and Ozer

(2003, 2005) and van Houtum et al. (2007).

It is worth noting that in most of the above papers, the optimal policy is either a

base-stock policy or a modified base-stock policy. This is because all these models as-

sume linear replenishment/production costs with no fixed setup costs; in other words,

their models do not exhibit economies of scale. Fixed setup costs arise in the vendor-

buyer system as the sum of costs involved in setups plus the cost of processing orders.

The literature that considers the fixed setup costs in a periodic review inventory model

dates back to the early years of 1960s. Scarf (1960) studied a periodic review, finite

horizon inventory problem under the condition that the ordering cost includes a fixed

setup cost K and the one period expected holding/shortage cost is assumed to be

convex. Scarf introduced the concept of K-convexity and characterized the structure

of the optimal policy as the notable (s, S) policy. Under an (s, S) policy, whenever

the inventory level (inventory on hand plus on order minus backorders) is below s,

an order is placed to bring the inventory level up to S. The optimality of (s, S)

policy for the infinite horizon problem was proved in Iglehart (1963). Veinott (1966)

presented another proof for the (s, S) optimality result under different assumptions.

He relaxed the convexity constraint on the one period expected holding/shortage cost

to include quasi-convex functions. Building on Scarf’s model, many other researchers

have demonstrated the optimality of (s, S) policy in their specific settings (e.g., Schal

(1976), Sethi and Cheng (1997), Gallego and Scheller-Wolf (2000)). Also, Gallego and

Toktay (2004) considered a special case of the capacitated problem where all orders
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are constrained to be full-capacity orders and they showed that the optimal policy

is a threshold policy under the specific settings. From the computational perspec-

tives, Veinott and Wagner (1965) and Zheng and Federgruen (1991) provided effective

methods and algorithms for finding the optimal (s, S) inventory policy.

All the studies mentioned in the previous paragraph make the assumption that

the ordering cost consists of a fixed setup cost and a linear variable cost. However,

this is still too restrictive for some real-life inventory problems. As for generalization

of cost structure, Porteus (1971, 1972) considered the case of a concave increasing

ordering cost with a fixed setup cost and proves the optimality of a generalized (s,

S) policy for some specific demand distributions. Lippman (1969a) considered a

deterministic demand, periodic review, finite horizon inventory problem with multiple

setup ordering cost. In Lippman (1969b), the stochastic demand case with multiple

setup ordering cost was studied and a partial characterization of an optimal policy was

obtained. With the same model as Lippman (1969b), Iwaniec (1979) also studied the

stochastic dynamic inventory problem with multiple setup ordering cost structure,

and provided a sufficient condition for the optimality of a full truck load ordering

policy. Other studies for a periodic review, stochastic inventory models can be found

in Parlar and Rempala (1992); Çetinkaya and Parlar (2004); Janakiraman and Roundy

(2004); Chen et al. (2006), and van Houtum et al. (2007).

Essentially, the characterization of the structural optimal policies in stochastic

dynamic program relies on the properties of some term in the recursive optimal-

ity equation. Related to our results in Chapter III, two noteworthy papers include

Porteus’ seminal work (see Porteus (1971, 1972)) regarding the concept of non-K-

decreasing and optimality of generalized (s, S) policies under concave increasing re-

plenishment costs. Traditionally, various generalized convexity concepts have been

useful to solve stochastic dynamic inventory problems, e.g., K-convexity developed by
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Scarf (1960), CK-convexity developed by Gallego and Scheller-Wolf (2000), (C, K)-

convexity developed by Shaoxiang (2004), and C-(K1,K2)-convexity developed by

Çalışkan Demirag̃ et al. (2011). Although directly useful for other purposes, these

existing concepts do not suffice to characterize the structure of the optimal policy

under multiple setup costs. For this reason, we introduce two new concepts called,

non-(∆, C)-decreasing and non-(∆, C)K
N
-decreasing, both of which build on the con-

cept of non-K-decreasing developed by Porteus (1971). These two concepts are also

related to the concept of (C, K)-convexity developed by Shaoxiang (2004) who ex-

tends Scarf’s (1960) model to consider a finite order capacity. The results provided

by Shaoxiang (2004) require the (C, K)-convexity of the cost-to-go function over its

entire domain which is somewhat restrictive. In our approach, on the other hand,

instead of requiring our newly introduced concepts to apply on the whole domain of

cost-to-go function, we introduce a family of functions, called G in Definition 3, such

that for each member of the family the concept of non-(∆, C)-decreasing is applicable

on a subset of its domain. It is easy to verify that the functions in G preserve the

major characteristics that pertain to the concept of (C, K)-convexity, i.e., conditions

A3(a), A3(b) and the second part of condition A3(c) in our Definition 3, respectively,

correspond to parts (b), (a), and (c) in Shaoxiang’s (2004) Lemma 1. However, the

functions in G possess an extra property as specified in the first part of condition

A3(c). The inclusion of this part enables us to completely characterize the optimal

replenishment policy under multiple setup costs in Chapter III.
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CHAPTER III

STOCHASTIC DYNAMIC INVENTORY PROBLEM UNDER EXPLICIT

INBOUND TRANSPORTATION COST AND CAPACITY

In this chapter, we generalize the classical stochastic dynamic inventory problem

solved by Scarf (1960) to consider the impact of inbound transportation cost and

capacity, explicitly. In Scarf’s problem, the replenishment cost is presented as the

summation of a fixed setup cost and a linear variable cost. Clearly, this cost struc-

ture ignores the impact of transportation cost and capacity related to delivery of

replenishment orders; thereby, also ignoring possible transportation scale economies

achievable via optimization. With this observation, we modify Scarf’s model by gen-

eralizing the replenishment cost function as a means to include more information

about realistic inbound transportation issues.

Specifically, we focus on the case where a private fleet of capacitated trucks are

being used for inbound transportation of replenishment orders. Hence, we model

the inbound transportation cost as a staircase function to represent the situation

where the trucks have finite cargo capacity, denoted by C, and the transportation

cost is based on the number of trucks used. Under this condition, the cargo cost,

denoted by ∆ (the cost for using one truck) is the same regardless of whether a truck

is fully or partially loaded. This type of cost structure is also known as multiple

setup cost structure in the literature (Lee, 1986). An illustration of the generalized

replenishment cost function of interest, denoted by W (·), is provided in Figure 1.

Letting I[a>0] denote the indicator function that has value 1 if a > 0 and 0 otherwise,

we have

W (a) = KI[a>0] +
⌈ a

C

⌉
∆. (3.1)
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Hence, W (·) includes both the traditional fixed setup cost, K, and the multiple setup

cost structure representing the case of private fleet transportation considered in this

research.

Figure 1: The Generalized Replenishment Cost Function to Consider Cargo Cost

and Capacity
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It is worth noting that this particular generalization of Scarf’s model is also

investigated by Lippman (1969b) and Iwaniec (1979). However, Lippman (1969b)

fails to identify the structural properties of the optimal multi-period policy whereas

Iwaniec (1979) provides a sufficient condition for the optimality of full cargo (full

truckload) replenishment policy that is clearly suboptimal for our problem. More

recently, Çalışkan Demirag̃ et al. (2011) revisit the full truckload policy in Iwaniec

(1979) but they are also unable to provide a complete characterization of exact optimal

policies under multiple setup costs. Our results extend those developed by both

Lippman (1969b) and Iwaniec (1979) as well as by Çalışkan Demirag̃ et al. (2011)

while providing a significantly enhanced characterization of optimal policies under

multiple setup cost functions and stochastic demand.
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This chapter is organized as follows. In Sublevel III.1, we develop a stochastic

dynamic programming formulation of the problem. Several new concepts are intro-

duced in Sublevel III.2 before presenting our structural results in Sublevel III.3. To

examine the impact of system parameters, some computational study is included in

Sublevel III.4. We summarize this chapter with practical insights we obtain from the

optimal ordering policy as well as suggestions for possible future research, in Sublevel

III.5.

III.1. Notation and Problem Formulation

As explained above, our model shares the same system settings as the classical

stochastic dynamic inventory problem solved by Scarf (1960). The only difference

exists in the structure of the replenishment cost. For completeness, the problem is

described as follows: A vendor (e.g., wholesaler, distributor, retailer, etc.) faces in-

dependent and identically distributed stochastic demands during a planning horizon

of N periods (N is finite) and replenishes inventory from an ample external supplier,

i.e., the manufacturer. At the beginning of period n (n ≤ N), the vendor’s initial

inventory level xn is observed. At this time, a replenishment quantity an can be

placed. We assume the replenishment delivery lead times are negligible. There is a

fixed setup cost, K, associated with each replenishment order. In addition, the ship-

ments of replenishment orders from the manufacturer to the vendor are performed

by the vendor’s own truck fleet. The trucks have identical cargo capacity C and

cargo cost ∆. There are no constraints on the replenishment quantity in each period,

but when this quantity exceeds a full truckload, additional trucks are required for

the transportation. Accordingly, the replenishment cost for ordering an units can be
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represented as

W (an) = KI[an>0] +
⌈an

C

⌉
∆. (3.2)

After an is chosen, the demand in period n arrives at the vendor and depletes

the inventory. The demand is a nonnegative random variable Zn with the density

function f(·). All unsatisfied demands are backordered and all excessive inventories

are carried to the next period. A holding or shortage cost is charged based on the

net inventory at the end of the period, i.e., xn + an −Zn. Future costs are discounted

at a one-period discount rate β (0 < β ≤ 1), and all parameters are assumed to be

stationary. L (xn + an) denotes the expected holding and shortage cost in period n

excluding the replenishment cost. The objective is to find the optimal replenishment

policy for an so as to minimize the total expected replenishment, holding and penalty

costs over the finite planning horizon.

Figure 2: Problem Setting of the Inbound Replenishment System

V

S

an

xn xn−1

Zn ∼ f(·)

We define yn = xn + an. Thus, yn is the number of products available upon

the arrival of the order, i.e., yn is the order-up-to level. Since there is a one-to-one

correspondence between yn and an, our problem can be stated as finding the optimal

values of yn so the total expected cost is minimized. The problem can be formulated
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as a dynamic programming problem using backward recursion where the periods are

indexed in a backward order, i.e., they occur over time in the order N , N − 1,...0,

and period 0 is the end of the planning horizon. Figure 2 depicts the setting of the

dynamic system. For notational simplicity, the subscript n is omitted on x and y

in the remainder of this chapter. Before proceeding to the formulation development,

let us summarize the notation introduced so far below and define some new notation

that will be used throughout the rest of the chapter.

System Parameters:

N length of the planning horizon

n period index (n = 0, 1, ..., N)

β one-period discount factor (0 < β ≤ 1)

Zn nonnegative demand in period n (we assume {Zn}0≤n≤N forms an i.i.d.

sequence. A generic element is denoted as Z with density and distri-

bution functions f(·) and F (·))

K fixed setup cost

C cargo capacity

∆ cargo cost

W (a) replenishment cost for ordering a units

h inventory holding cost per unit per period

p backorder penalty cost per unit per period

gT (x) terminal cost for x units of ending inventory at the end of the planning

horizon

L(y) one-period expected holding and shortage cost when the order-up-to

level is y

States:
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xn inventory level at the beginning of period n, before a replenishment

order is placed

Decisions:

an the amount ordered and received instantaneously in period n

yn the order-up-to level in period n, before the demand is realized

(yn = xn + an)

Yn(x) the optimal order-up-to level of period n with its beginning inventory

x

Optimality Equation:

Vn(x) the optimal expected total cost from period n to the end, when period

n has x units of initial inventory

If the inventory level immediately after a replenishment arrives is y, then the

one-period expected holding and shortage cost is given by

L(y) =






h
∫ y

0
(y − z)f(z)dz + p

∫∞

y
(z − y)f(z)dz, y ≥ 0,

p
∫∞

0
(z − y)f(z)dz, y < 0.

(3.3)

Then the optimality equation can be written as

Vn(x) =






miny≥x

{
W (y − x) + L(y) + β

∫∞

0
Vn−1(y − z)f(z)dz

}
, n = 1, ..., N,

gT (x), n = 0.

(3.4)

Subsequently, the objective is to find the optimal order-up-to level Yn(x) that mini-

mizes the expected total cost for each period n and for any beginning inventory level

x. For our purpose, we define

Gn(y) = L(y) + β

∫ ∞

0

Vn−1(y − z)f(z)dz. (3.5)
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Then the optimality equation can be rewritten as

Vn(x) =






miny≥x {W (y − x) + Gn(y)} , n = 1, ..., N,

gT (x), n = 0.

(3.6)

In period n, if the beginning inventory level is x, it is optimal to place a replenishment

order if and only if there exists some y greater than x with Gn(x) > W (y−x)+Gn(y).

If a replenishment order should be placed, it is optimal to order up to the y such that

W (y − x) + Gn(y) is minimized.

This optimization problem is challenging due to the discontinuity of the staircase

function W . By (3.5) and (3.6), W actually impacts the structure of the cost-to-go

function V and subsequently influences the function G. In order to examine the

characteristics of the function G, we define new concepts and provide basic results

in Sublevel III.2. In Sublevel III.3, we analyze the function G first then identify the

optimal replenishment policy based on G’s characteristics.

III.2. New Concepts and Basic Properties

Before proceeding with the development of new concepts, we examine the properties

of the one-period expected holding and shortage cost L(y).

Proposition 1 L(y) is a convex function with a unique minimizer denoted by P , and

P satisfies

F (P ) =
p

h + p
, (3.7)

where F is the distribution function of the random demand.

Proof of Proposition 1: By definition, the second derivative of L(y) exists and can be

derived as L′′(y) = (h+p)f(y) if y ≥ 0 and 0 otherwise. Since f is a density function,

f(y) is nonnegative for all y, hence, L′′(y) ≥ 0. In other words, L(y) is convex. Let
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the first derivative of L(y) be zero, then the equation (3.7) is obtained. �

To examine the characteristics of function Gn, we introduce two new concepts

which are analogs of the concept of non-K-decreasing of Porteus (1971).

Definition (Porteus, 1971) A function ϕ is non-∆-decreasing on a domain X if

ϕ(x) ≤ ϕ(y) + ∆ for x, y ∈ X and x ≤ y.

In other words, if a function is non-∆-decreasing, then for any point x on a

domain X, no matter how much it increases, the decrease in the function value does

not exceed ∆.

We call the first of our analogs non-(∆, C)-decreasing.

Definition 1 Given positive constants ∆ and C, a function ϕ on a domain X is

called non-(∆, C)-decreasing at a fixed point x0 ∈ X, if for y ∈ [x0, x0 + C]
⋂

X,

ϕ(x0) − ϕ(y) ≤ ∆. And the function is called non-(∆, C)-decreasing on a set B if it

is non-(∆, C)-decreasing at any point x ∈ B.

The intuitive interpretation of non-(∆, C)-decreasing is that for any point x0 on

the domain X, if increased by at most C, the decrease in the function value of ϕ

does not exceed ∆. Non-(∆, C)-decreasing can be thought of as a relaxation of non-

∆-decreasing, only requiring it to hold at points no more than C units greater than

x0. Note that the standard non-∆-decreasing corresponds to non-(∆,∞)-decreasing

in Definition 1.

We now extend this definition to what we refer as non-(∆, C)K
N

-decreasing.

Definition 2 Given a nonnegative constant K, and positive constants ∆ and C, a

function ϕ on a domain X is called non-(∆, C)K
N
-decreasing at a fixed point x0 ∈ X,

if for ∀m ∈ N and y ∈ [x0, x0 +mC]
⋂

X, ϕ(x0)−ϕ(y) ≤ K +m∆. And the function

is called non-(∆, C)K
N
-decreasing on a set B if it is non-(∆, C)K

N
-decreasing at any

point x ∈ B.
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For any point x0 on the domain X of a non-(∆, C)K
N

-decreasing function ϕ, if

one increases x0 by at most mC (m is a positive integer), the decrease in the function

value ϕ does not exceed K + m∆. The standard non-∆-decreasing also corresponds

to non-(∆,∞)0
N
-decreasing in Definition 2.

Non-(∆, C)-decreasing and non-(∆, C)K
N

-decreasing functions have several useful

properties.

Property 1 If a function ϕ is non-(∆, C)-decreasing on a domain X, then it is also

non-(∆, C)K
N
-decreasing on X for any K ≥ 0.

Proof of Property 1: Suppose ϕ is non-(∆, C)-decreasing on a domain X. Choose

any m ∈ N, ∀x, y ∈ X and y ∈ [x, x + mC], then

ϕ(x) − ϕ(y) =ϕ(x) + [−ϕ(x + C) + ϕ(x + C)] + [−ϕ(x + 2C) + ϕ(x + 2C)] + ...

+

[
−ϕ

(
x +

⌊
y − x

C

⌋
C

)
+ ϕ

(
x +

⌊
y − x

C

⌋
C

)]
− ϕ(y)

= [ϕ(x) − ϕ(x + C)] + [ϕ(x + C) − ϕ(x + 2C)] + ...

+

[
ϕ

(
x +

(⌊
y − x

C

⌋
− 1

)
C

)
− ϕ

(
x +

⌊
y − x

C

⌋
C

)]

+

[
ϕ

(
x +

⌊
y − x

C

⌋
C

)
− ϕ(y)

]
.

Since ϕ is non-(∆, C)-decreasing on X, each term within a pair of square brackets

above is less than or equal to ∆, then

ϕ(x) − ϕ(y) ≤

⌈
y − x

C

⌉
∆ ≤ m∆ ≤ K + m∆,

hence, ϕ is non-(∆, C)K
N

-decreasing for any K ≥ 0. �

Property 2 Non-(∆, C)K
N
-decreasing is equivalent to non-(∆, C)-decreasing, when

K = 0.
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Proof of Property 2: Since we have already proved Property 1, we only need

to prove that a non-(∆, C)K
N

-decreasing function is also non-(∆, C)-decreasing when

K = 0. Suppose function ϕ is non-(∆, C)K
N

-decreasing with K = 0 on the domain X.

Choose m = 1, then for ∀x ∈ X and y ∈ [x, x + C], we have ϕ(x)− ϕ(y) ≤ ∆. Thus,

ϕ is non-(∆, C)-decreasing. This completes the proof. �

Property 3 If f is a probability density function of a non-negative random variable,

and ϕ is non-(∆, C)-decreasing (or non-(∆, C)K
N
-decreasing) on R, then the convolu-

tion ϕ ∗ f is also non-(∆, C)-deceasing (or non-(∆, C)K
N
-decreasing) on R.

Proof of Property 3: First, we’ll prove the property for function ϕ that is non-

(∆, C)-decreasing. For any x, y ∈ R, and y ∈ [x, x + C], it always holds that

(ϕ ∗ f)(x) − (ϕ ∗ f)(y) =

∫ ∞

0

ϕ(x − z)f(z)dz −

∫ ∞

0

ϕ(y − z)f(z)dz

=

∫ ∞

0

[ϕ(x − z) − ϕ(y − z)] f(z)dz

≤

∫ ∞

0

∆f(z)dz = ∆.

Therefore, ϕ ∗ f is also non-(∆, C)-decreasing on R. The case of non-(∆, C)K
N

-

decreasing is proved in a similar manner. �

III.3. Model Analysis

In Sublevel III.3.1, we first discuss the structure properties of the optimal ordering

policy, then we provide sufficient conditions under which the proposed policy is opti-

mal for a finite horizon problem. In Sublevel III.3.2, we analyze a special case where

the optimal policy can be characterized in a simple form.
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III.3.1. Optimal Ordering Policy

The recursive part of the cost-to-go function (3.6) is composed of the replenishment

cost W and the function Gn. Since the structure of W is known, the crucial point to

solve this problem is to analyze the characteristics of Gn. In preparation for Theorem

1, we introduce a special family of functions of interest.

Definition 3 For given positive parameters ∆ and C, define a family G of function

G that satisfies the following conditions:

(A1) G(x) is continuous.

(A2) G(x) → ∞ as |x| → ∞.

(A3) There exists r ∈ R, such that

(A3.a) G(x) is non-(∆, C)-decreasing on [r,∞);

(A3.b) G(x) is decreasing on (−∞, r];

(A3.c) G(x − C) − G(x) is non-increasing on (−∞, r], and for any x ∈ (−∞, r],

G(x − C) − G(x) > ∆.

Conditions (A1) and (A2) guarantee the existence of an optimal order-up-to level

corresponding to each beginning inventory. Condition (A3) will be used to show the

specific features of the proposed replenishment policy.

Theorem 1 If Gn(·) ∈ G, then the optimal replenishment policy in period n can

be determined by the values of three sets of parameters: (Qn,~sn, ~Sn), where ~sn =

[s1
n, s2

n, ..., sM
n ] and ~Sn = [S1

n, S2
n, ..., SM

n ] are M-dimensional vectors. The parameters

satisfy the following condition: Qn ≤ s1
n < S1

n < s2
n < S2

n < ... < sM
n < SM

n ≤ s1
n + C.
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The optimal order-up-to level Yn(x) can be represented as:

Yn(x) =






x +
⌈

s1
n−x
C

⌉
C, if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈ [si

n, Si
n) , i = 1, ..., M,

Si
n, if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈ [Si

n, si+1
n ) , i = 1, ..., M − 1,

SM
n , if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈

[
SM

n , s1
n + C

)
,

x, if x ≥ Qn.

(3.8)

Furthermore, if K = 0, Qn = s1
n.

Proof of Theorem 1: The proof consists of two steps. In the first step we design a

procedure to find three sets of parameters for a given function that belongs to G and

name them (Qn,~sn, ~Sn). In the second step we prove that the optimal order-up-to

level Yn(x) can be represented in these parameters.

Step 1: Determine the values of (Qn,~sn, ~Sn) parameters.

For a given function Gn ∈ G, define s1
n as follows:

s1
n = min {s ∈ R : Gn(x) ≤ Gn(y) + ∆, for s ≤ x ≤ y ≤ x + C} . (3.9)

s1
n can be thought of as the smallest real number such that on [s1

n,∞) Gn is non-

(∆, C)-decreasing. Since it is assumed Gn is non-(∆, C)-decreasing on [r,∞) for

some real number r, and s1
n is the smallest such value, s1

n ≤ r. In addition, this

definition also implies

Gn(s1
n) = min

y∈(s1
n,s1

n+C]
Gn(y) + ∆. (3.10)

Furthermore, since Gn(x) is decreasing on (−∞, s1
n], limx↑s1

n
G′

n(x) ≤ 0. Actually, we

can show that limx↓s1
n
G′

n(x) ≤ 0. The proof is as follows: By (3.10), there exists

y0 ∈ (s1
n, s1

n + C], such that Gn (s1
n) = Gn(y0) + ∆. Suppose by contradiction that

limx↓s1
n
G′

n(x) > 0, we can increase s1
n by a sufficiently small value and get an s1+

n ,
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such that s1
n < s1+

n < y0 and Gn (s1
n) < Gn (s1+

n ). Therefore, Gn (s1+
n ) > Gn(y0) + ∆

which contradicts with the fact that Gn is non-(∆, C)-decreasing at s1+
n .

Also define Qn as

Qn = min {q ∈ R : Gn(x) ≤ Gn(y) + (K + m∆), for q ≤ x ≤ y ≤ x + mC, ∀m ∈ N} .

(3.11)

Similarly, Qn is the smallest value such that on [Qn,∞) Gn is non-(∆, C)K
N

-decreasing.

Since Gn is non-(∆, C)-decreasing on [s1
n,∞), by Property 1 it is also non-(∆, C)K

N
-

decreasing in this interval. It follows that Qn ≤ s1
n, and the equality holds if and only

if K = 0, because when K = 0, Property 2 implies that non-(∆, C)K
N

-decreasing is

equivalent to non-(∆, C)-decreasing.

To find all remaining parameters, we first define a set L of points such that for

any l ∈ L,

• l ∈ (s1
n, s1

n + C], where s1
n is found in (3.9) and C is the cargo capacity;

• there exists an ε > 0, such that for any x ∈ [l − ε, l + ε]∩ (s1
n, s1

n + C], Gn(x) ≥

Gn(l), and for any x ∈ [l − ε, l) ∩ (s1
n, s1

n + C], Gn(x) > Gn(l).

On way to think of the points in L is as follows: They are the local minimizers of

function Gn over the interval of (s1
n, s1

n + C]. Also, within a sufficiently small neigh-

borhood of each point, function Gn is strictly decreasing to its left. Since function

Gn is continuous and bounded on the compact set [s1
n, s1

n + C], the number of points

in L is finite. Also, since limx↓s1
n
G′

n(x) ≤ 0, L 6= ∅.

We apply the following method for determining the values of S1
n, ..., SM

n .

[ 1 ]: i = 1. Let S1
n = minL and go to [ 2 ].

[ 2 ]: Let Li+1 = {l ∈ L : l > Si
n and Gn(l) < Gn (Si

n)}. If Li+1 is empty, let M = i

and STOP. Otherwise, go to [ 3 ].
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[ 3 ]: Si+1
n = minLi+1, i = i + 1 and go to [ 2 ].

Obviously,

SM
n = arg min

y∈(s1
n,s1

n+C]
Gn(y). (3.12)

When we have the sequence of {Si
n}i=1,...,M , let

Ti =
{
x : x ∈

(
Si−1

n , Si
n

)
, Gn(x) = Gn

(
Si−1

n

)}

for i = 2, ..., M . Defining si
n = max Ti for i = 2, ..., M , we have all parameter values

determined. According to the choice of these values, it is guaranteed that Gn(x) is

non-increasing on (si
n, S

i
n] for i = 1, ..., M , and Qn ≤ s1

n < S1
n < s2

n < S2
n < ... < sM

n <

SM
n ≤ s1

n + C.

Figure 3: An illustration of value determination

+Cl

x

sn
1Sn

3Sn
2Sn

1 sn
3sn

2sn
1Qn

G  (x)n

Figure 3 gives an illustration of the value determination procedure. Given a

function Gn, we first use equations (3.9) and (3.11) to determine the values of s1
n and
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Qn. Second, we look at the region (s1
n, s1

n + C], and find set L = {l1, l2, ..., lJ}, where

J is a finite positive integer (L = {S1
n, l, S2

n, S3
n} in this example). Then applying the

methods above, we can choose all the other values shown on the figure. Note that, in

this example l is only a point of L but not chosen as one of the policy parameters.

Step 2: Identify the optimal order-up-to level.

The vendor needs to make a decision of how much to order at the beginning of

each period based on its beginning inventory level. Now suppose that the beginning

inventory is x (in the following proof, x is assumed to be fixed), let’s examine the

structure of the optimal replenishment policy by looking at the optimal order-up-to

level Yn(x).

First, let un(y|x) represent the cost of ordering up to y in period n when the

beginning inventory of period n is x and optimal decisions are made onward, i.e.,

un(y|x) = W (y − x) + L(y) + β

∫ ∞

0

Vn−1(y − z)f(z)dz = W (y − x) + Gn(y). (3.13)

Then, we can rewrite the optimality equation (3.6) as

Vn(x) =






miny≥x {un(y|x)} , n = 1, ..., N,

gT (x), n = 0.

(3.14)

We need to discuss on the value of the given number x.

Case 1: x ≥ Qn.

In this region Gn is non-(∆, C)K
N

-decreasing. If one chooses to order up to y > x,

let m =
⌈

y−x
C

⌉
, then y ∈ (x, x + mC] and Gn(x) ≤ Gn(y) + K +

⌈
y−x
C

⌉
∆. It follows

directly that un(x|x) ≤ un (y|x) for any y > x. This inequality implies that when the

initial inventory level x ≥ Qn, it is never optimal to place an order, i.e., the optimal

order up to level is Yn(x) = x.

Case 2: x < Qn.
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Case 2.1: Consider the order-up-to level y that satisfies y ∈
(
x, x +

⌊
s1
n−x
C

⌋
C
]
.

• Case 2.1.1: If x = x +
⌊

s1
n−x
C

⌋
C, this is an empty set.

• Case 2.1.2: If x 6= x +
⌊

s1
n−x
C

⌋
C, Gn(y) is decreasing in this region, because

x+
⌊

s1
n−x
C

⌋
C ≤ s1

n for all x < s1
n and s1

n ≤ r, where r is a real number to the left

of which function Gn is decreasing. Note that the replenishment cost W is a

staircase function, thus, it is piecewise constant and left continuous. It can now

be seen that for any given beginning inventory level x < Qn and order-up-to

level y ∈
(
x, x +

⌊
s1
n−x
C

⌋
C
]
, un(y|x) = W (y−x)+Gn(y) is piecewise decreasing

and left continuous. Hence, if we want to find the minimizer of un(y|x) over

this region, we only need to consider the breakpoints, i.e., the points in the set
{
y : y = x + mC, m = 1, ...,

⌊
s1
n−x
C

⌋}
.

Now, by Condition (A3.c) Gn(y−C)−Gn(y) > ∆ for y ∈
(
x, x +

⌊
s1
n−x
C

⌋
C
]
, we

have Gn (x + C)+K+∆ > Gn (x + 2C)+K+2∆ > ... > Gn

(
x +

⌊
s1
n−x
C

⌋
C
)

+

K +
⌊

s1
n−x
C

⌋
∆. Equivalently,

un(x + C|x) > un(x + 2C|x) > ... > un

(
x +

⌊
s1

n − x

C

⌋
C|x

)
.

Thus, un

(
x +

⌊
s1
n−x
C

⌋
C|x

)
≤ un(y|x) for any y ∈

(
x, x +

⌊
s1
n−x
C

⌋
C
]
, and x +

⌊
s1
n−x
C

⌋
C is a candidate for the optimal order-up-to level.

Case 2.2: Consider y ∈
(
x +

⌊
s1
n−x
C

⌋
C, s1

n

]
.

• Case 2.2.1: If s1
n = x+mC for some m, we can find that m =

⌊
s1
n−x
C

⌋
=
⌈

s1
n−x
C

⌉
.

Thus, x +
⌊

s1
n−x
C

⌋
C = s1

n, and this is an empty set.

• Case 2.2.2: If s1
n 6= x+mC for any m, we have x+

⌊
s1
n−x
C

⌋
C < s1

n and for any
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y ∈
(
x +

⌊
s1
n−x
C

⌋
C, s1

n

]

un(y|x) =Gn(y) + K +

⌈
s1

n − x

C

⌉
∆

≥Gn

(
s1

n

)
+ K +

⌈
s1

n − x

C

⌉
∆ = un

(
s1

n|x
)
.

Thus, un (s1
n|x) ≤ un(y|x) for any y ∈

(
x +

⌊
s1
n−x
C

⌋
C, s1

n

]
, and s1

n is a candidate

for the optimal order-up-to level.

Case 2.3: Consider y ∈ [s1
n,∞).

By Condition (A3.a), for y ≥ s1
n + C,

Gn(y − C) + W (y − C − x) ≤ Gn(y) + ∆ + W (y − C − x) = Gn(y) + W (y − x).

This implies that if the order-up-to level y is at least s1
n + C, we can achieve a

lower total expected cost by decreasing y by C. In other words, if the order-up-to level

has to be greater than or equal to s1
n, we only need to search the region [s1

n, s1
n + C) for

the one with an minimal cost. Furthermore, since s1
n ≤ x+

⌈
s1
n−x
C

⌉
C < s1

n +C for any

x < s1
n, and Gn is non-(∆, C)-decreasing on [s1

n,∞), for y ∈
(
x +

⌈
s1
n−x
C

⌉
C, s1

n + C
)
,

Gn

(
x +

⌈
s1
n−x
C

⌉
C
)
≤ Gn(y) + ∆. Hence, we can further shrink the search region to

the interval
[
s1

n, x +
⌈

s1
n−x
C

⌉
C
]
.

The analysis for Case 2 implies that when x ≤ Qn, the optimal order-up-to

level has to belong to the set {x} ∪
{

x +
⌊

s1
n−x
C

⌋
C
}
∪
[
s1

n, x +
⌈

s1
n−x
C

⌉
C
]
. However,

if y = x +
⌊

s1
n−x
C

⌋
C, according to Condition (A3) and the definition of s1

n, we can

find y2 ∈
[
x +

⌊
s1
n−x
C

⌋
C, x +

⌈
s1
n−x
C

⌉
C
]
, such that un(y2|x) ≤ un

(
x +

⌊
s1
n−x
C

⌋
C|x

)
.

Similarly, if y = x, we can also find y3 ∈
[
x, x +

⌈
s1
n−x
C

⌉
C
]
, such that un(y3|x) ≤

Gn(x) = un(x|x). Thus, the optimal order-up-to level should be within the region of
[
s1

n, x +
⌈

s1
n−x
C

⌉
C
]
.
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For any y ∈
[
s1

n, x +
⌈

s1
n−x
C

⌉
C
]
,

Gn(y) + W (y − x) =Gn(y) + K +

⌈
y − x

C

⌉
∆

≥ min
z∈

[
s1
n,x+

⌈
s1n−x

C

⌉
C

]Gn(z) + K +

⌈
s1

n − x

C

⌉
∆.

Consequently, for x < Qn, the optimal order-up-to level is

Yn(x) = arg min
z∈

[
s1
n,x+

⌈
s1n−x

C

⌉
C

]Gn(z)

=






x +
⌈

s1
n−x
C

⌉
C, if x +

⌈
s1
n−x
C

⌉
C ∈ [s1

n, S1
n) ,

S1
n, if x +

⌈
s1
n−x
C

⌉
C ∈ [S1

n, s2
n) ,

x +
⌈

s1
n−x
C

⌉
C, if x +

⌈
s1
n−x
C

⌉
C ∈ [s2

n, S2
n) ,

S2
n, if x +

⌈
s1
n−x
C

⌉
C ∈ [S2

n, s3
n) ,

...

SM
n , if x +

⌈
s1
n−x
C

⌉
C ∈

[
SM

n , s1
n + C

)
.

In conclusion, the optimal order-up-to level is

Yn(x) =






x +
⌈

s1
n−x
C

⌉
C, if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈ [si

n, Si
n) , i = 1, ..., M,

Si
n, if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈ [Si

n, si+1
n ) , i = 1, ..., M − 1,

SM
n , if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈

[
SM

n , s1
n + C

)
,

x, if x ≥ Qn,

and this completes the proof of Theorem 1. �
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Following Theorem 1 directly, we have the optimal replenishment quantity a∗
n(x)

and the optimal expected total cost Vn(x) as

a∗
n(x) =






⌈
s1
n−x
C

⌉
C, if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈ [si

n, Si
n) , i = 1, ..., M,

Si
n − x, if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈ [Si

n, si+1
n ) , i = 1, ..., M − 1,

SM
n − x, if x < Qn and x +

⌈
s1
n−x
C

⌉
C ∈

[
SM

n , s1
n + C

)
,

0, if x ≥ Qn,

(3.15)

and

Vn(x) =






K +
⌈

s1
n−x
C

⌉
∆ + Gn

(
x +

⌈
s1
n−x
C

⌉
C
)

,

if x < Qn and x +
⌈

s1
n−x
C

⌉
C ∈ [si

n, Si
n) , i = 1, ..., M,

K +
⌈

s1
n−x
C

⌉
∆ + Gn (Si

n) ,

if x < Qn and x +
⌈

s1
n−x
C

⌉
C ∈ [Si

n, si+1
n ) , i = 1, ..., M − 1,

K +
⌈

s1
n−x
C

⌉
∆ + Gn

(
SM

n

)
,

if x < Qn and x +
⌈

s1
n−x
C

⌉
C ∈

[
SM

n , s1
n + C

)
,

Gn (x) , if x ≥ Qn.

(3.16)

Theorem 1 states that if Gn ∈ G, then there exists a threshold value Qn such that

it is optimal to idle if the beginning inventory x is at least Qn. Otherwise, the optimal

replenishment quantity can be determined by x and the parameters of s1
n, ...sM

n and

S1
n, ..., SM

n . We call this replenishment policy (Q,~s, ~S) policy. The algorithm for

solving the values of the policy parameters can be found in the proof of Theorem 1.

Figure 4 gives an illustration of the (Q,~s, ~S) policy. In this figure, x denotes the

beginning inventory level before a replenishment order is placed. The sawtooth-like
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Figure 4: An Illustration of (Q,~s, ~S) Policy
(
m =

⌊
s1
n−Qn

C

⌋
+ 1
)

x-mC

2C

3C

-(m+1)C     -(m+2)Csn
1

0

C

Qn

sn
1

Sn
1

sn
2

Sn
2

Qnsn
1 sn

1

xQn-mC-(m+1)C     -(m+2)Csn
1 sn

1 sn
1

a*n

Yn

(a)

(b)

function in (a) represents the optimal order-up-to level and the decreasing staircase-

like function in (b) represents the optimal replenishment quantity. From this figure,

we can see that depending on the beginning inventory level x, sometimes the optimal

replenishment quantity is an integral multiple of the cargo capacity, i.e., Full Truck-

Load (FTL) quantity, and sometimes it includes one partially loaded truck, i.e., Less

than TruckLoad (LTL) quantity. On an interval of beginning inventory level x, if

the optimal replenishment decision includes an LTL quantity, then the corresponding

order-up-to level is constant.
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The (Q,~s, ~S) policy has the following interpretations: (1) Qn is the minimal be-

ginning inventory level that does not require replenishment in period n; (2) Elements

of ~sn are the threshold values of the optimal order-up-to level whose corresponding

optimal replenishment quantity changes from LTL to FTL. s1
n is the minimal order-

up-to level if a replenishment is necessary in period n; (3) Elements of ~Sn are the

threshold values of the optimal order-up-to level whose corresponding optimal re-

plenishment quantity changes from FTL to LTL. SM
n is the maximal order-up-to level

if a replenishment is necessary in period n; (4) M is the maximal number of LTL

order-up-to levels.

The sufficient condition in Theorem 1 requires function Gn to belong to the family

of functions G. However, in general, successive Gn functions are not guaranteed to

satisfy this condition. It is necessary to check the function Gn for each period to

decide whether the (Q,~s, ~S) policy is optimal for that period. In the next theorem,

we give sufficient conditions to ensure that Gn belongs to G for any period. To this

end, we introduce the following conditions:

(B1) K = 0.

(B2) gT (x) = 0.

(B3) The one-period expected holding and shortage cost L defined by (3.3) satisfies

L(P − C) − L(P ) > ∆, where P is the unique minimizer determined by (3.7).

Condition (B1) implies that the administrative cost of processing the replenish-

ment order is trivial compared with the transportation cost, hence, it can be omitted.

Condition (B2) means that if there is excess inventory or outstanding backorders at

the end of the planning horizon, no costs are incurred. Condition (B3) indicates

that the one-period expected holding and shortage cost for replenishing the inventory

level up to P is less than that for replenishing one less full truckload, where P is

the order-up-to level that minimizes the one-period expected holding and shortage
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cost. In other words, if the vendor orders up-to P instead of P − C, although the

incremental cost ∆ needs to be incurred for the usage of an extra truck, the expected

saving in current period’s holding and shortage cost is more than that.

The following three lemmas are used to prove Theorem 2. In Lemmas 2 and

Lemma 3, a point, say PT , is the “first increasing point” of function ϕ when PT is

the greatest number such that ϕ is non-increasing on (−∞, PT ].

Lemma 1 Given a continuous and convex function ϕ(x), and a positive constant C,

ϕ(x − C) − ϕ(x) is non-increasing in x.

Proof of Lemma 1: We need to prove that ϕ(x − C) − ϕ(x) is non-increasing in x

if ϕ(x) is continuous and convex.

Suppose there are two real numbers x1 and x2, and x1 < x2, then for a given

constant C,

min {x1, x2, x1 − C, x2 − C} = x1 − C and max {x1, x2, x1 − C, x2 − C} = x2.

If the four values of x1, x2, x1 − C and x2 − C are compared with each other, the

situation can only be

x1 − C < x1 ≤ x2 − C < x2 or x1 − C < x2 − C ≤ x1 < x2.

If x1 − C < x1 ≤ x2 − C < x2 is the case, let’s define two real numbers ξ and η as

follows:

ξ =
ϕ(x1) − ϕ(x1 − C)

C
and η =

ϕ(x2) − ϕ(x2 − C)

C
.

Letting (Dlϕ)(x) and (Drϕ)(x) be the left- and right- derivatives of ϕ at x defined as

(Dlϕ)(x) := lim
δ↑0

ϕ(x + δ) − ϕ(x)

δ
and (Drϕ)(x) := lim

δ↓0

ϕ(x + δ) − ϕ(x)

δ
,



55

we have

(Drϕ)(x1 − C) ≤ ξ ≤ (Dlϕ)(x1) and (Drϕ)(x2 − C) ≤ η ≤ (Dlϕ)(x2).

Since ϕ(x) is convex and x1 ≤ x2 − C as assumed,

(Dlϕ)(x1) ≤ (Drϕ)(x1) ≤ (Drϕ)(x2 − C).

Thus ξ ≤ η, which implies

ϕ(x1 − C) − ϕ(x1) ≥ ϕ(x2 − C) − ϕ(x2).

The case of x1 − C < x2 − C ≤ x1 < x2 is showed in a similar manner. Thus,

ϕ(x − C) − ϕ(x) is non-increasing in x, and Lemma 1 is proved. �

Lemma 2 If Conditions (B1)–(B3) are satisfied, and for period n, Gn ∈ G with the

critical number rn in Condition (A3) taking the value of P (the unique minimizer of

function L), then the cost-to-go function Vn(x) satisfies:

(C1) Vn(x) is continuous.

(C2) Vn(x) → ∞ as |x| → ∞.

(C3) Vn(x) is non-(∆, C)-decreasing on R.

(C4) Vn’s first increasing point Pn ≥ P , and Vn(x) is non-increasing on (−∞, Pn].

(C5) Vn(x − C) − Vn(x) = ∆ on (−∞, P ].

Proof of Lemma 2: Since Gn ∈ G, the optimal order-up-to level Yn(x) for period n

can be determined according to Theorem 1. Furthermore, with the Condition (B1)

that K = 0, we have Qn = s1
n and the optimal order-up-to level (3.8) can be rewritten
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as:

Yn(x) =






x +
⌈

s1
n−x
C

⌉
C, if x < s1

n and x +
⌈

s1
n−x
C

⌉
C ∈ [si

n, Si
n) , i = 1, ..., M,

Si
n, if x < s1

n and x +
⌈

s1
n−x
C

⌉
C ∈ [Si

n, si+1
n ) , i = 1, ..., M − 1,

SM
n , if x < s1

n and x +
⌈

s1
n−x
C

⌉
C ∈

[
SM

n , s1
n + C

)
,

x, if x ≥ s1
n.

(3.17)

The corresponding cost-to-go function is

Vn(x) = W (Yn(x) − x) + Gn(Yn(x)).

Now, let’s examine the Conditions (C1)-(C5) one by one.

Condition (C1):

The proof is developed by showing that Vn(x) is continuous on [s1
n,∞) and

(−∞, s1
n) respectively, and also continuous at the breakpoint s1

n.

(1). Vn(x) is continuous on [s1
n,∞).

According to (3.17), for x ≥ s1
n we have Yn(x) = x, thus Vn(x) = Gn(x). Obvi-

ously, Vn(x) is continuous, since Gn belongs to G and is continuous.

(2). Vn(x) is continuous on (−∞, s1
n).

Breaking this segment into pieces with length C, we have

(−∞, s1
n) =

⋃

j∈N

[
s1

n − jC, s1
n − (j − 1)C

)
. (3.18)

Consider x on any one of these pieces, say, x ∈ [s1
n − mC, s1

n − (m − 1)C) where m

is an arbitrary natural number, then m − 1 < s1
n−x
C

≤ m, hence,
⌈

s1
n−x
C

⌉
= m. Using

the policy values of ~sn, ~Sn, we can further divide [s1
n − mC, s1

n − (m − 1)C) into

(
M⋃

i=1

[si
n − mC, Si

n − mC)

)
⋃
(

M−1⋃

i=1

[Si
n − mC, si+1

n − mC)

)
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⋃[
SM

n − mC, s1
n − (m − 1)C

)
. (3.19)

Case 1: If x ∈ [si
n − mC, Si

n − mC), i = 1, ..., M , according to (3.17) we obtain

Yn(x) = x +
⌈

s1
n−x
C

⌉
C = x + mC. Then

Vn(x) = m∆ + Gn(x + mC), (3.20)

and it is continuous on this interval.

Case 2: If x ∈ [Si
n − mC, si+1

n − mC), i = 1, ..., M − 1, according to (3.17) we have

Yn(x) = Si
n. Then

Vn(x) = m∆ + Gn(Si
n), (3.21)

and Vn(x) is constant hence continuous on this interval.

Case 3: If x ∈
[
SM

n − mC, s1
n − (m − 1)C

)
, similarly, Yn(x) = SM

n . Then

Vn(x) = m∆ + Gn(SM
n ), (3.22)

and Vn(x) is also constant and continuous on this interval.

Since we have already shown that Vn(x) is continuous on each subset of (3.19),

in order to have Vn(x) continuous on (−∞, s1
n), we still need to examine its continuity

at the breakpoints {si
n − mC, Si

n − mC}i=1,...,M and m∈N
. The function ϕ is continuous

at a given point x0 if and only if the limit of ϕ(x) as x approaches x0 exists and is

equal to ϕ(x0).

Part 1: Examining breakpoints {s1
n − mC}m∈N

, by (3.22), we have the left-handed

limit of function Vn(x) at s1
n−mC as limx↑(s1

n−mC) Vn(x) = (m+1)∆+Gn

(
SM

n

)
, and by

(3.20), Vn(x) is right continuous at s1
n−mC and Vn (s1

n − mC) = limx↓(s1
n−mC) Vn(x) =

m∆ + Gn (s1
n). Substituting (3.12) in equation (3.10), we have

Gn

(
s1

n

)
= Gn

(
SM

n

)
+ ∆, (3.23)
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hence, limx↑(s1
n−mC) Vn(x) = limx↓(s1

n−mC) Vn(x) = Vn (s1
n − mC).

Part 2: For breakpoints {si
n − mC}i=2,...,M,m∈N

, (3.21) and (3.20) give us the follow-

ing results: limx↑(si
n−mC) Vn(x) = m∆ + Gn (Si−1

n ). and

Vn

(
si

n − mC
)

= lim
x↓(si

n−mC)
Vn(x) = m∆ + Gn

(
si

n

)
.

By the choice of si
n, we have

Gn

(
si

n

)
= Gn

(
Si−1

n

)
, (3.24)

hence, limx↑(si
n−mC) Vn(x) = limx↓(si

n−mC) Vn(x) = Vn (si
n − mC).

Part 3: For breakpoints {Si
n − mC}i=1,...,M,m∈N

, similarly to the previous two cases,

using (3.20), (3.21) and (3.22), we have limx↑(Si
n−mC) Vn(x) = m∆ + Gn (Si

n), and

Vn (Si
n − mC) = limx↓(Si

n−mC) Vn(x) = m∆ + Gn (Si
n). Thus, limx↑(Si

n−mC) Vn(x) =

limx↓(Si
n−mC) Vn(x) = Vn (Si

n − mC).

(3). Vn(x) is continuous at s1
n.

Still, we find the left-handed limit of Vn(x) at s1
n as limx↑s1

n
Vn(x) = Gn(SM

n )+∆.

Since Vn(x) is right continuous at s1
n, Vn(s1

n) = limx↓s1
n
Vn(x) = Gn(s1

n). By (3.23), we

have limx↑s1
n
Vn(x) = limx↓s1

n
Vn(x) = Vn(s

1
n). Thus Vn is continuous at s1

n, and hence

continuous on the whole real line.

Condition (C2):

We need to prove Vn(x) → ∞ as |x| → ∞. Since Vn(x) = Gn(x) when x ≥ s1
n,

and Gn(x) ∈ G, it is obvious that Vn(x) → ∞ as x → ∞. And when x goes to −∞,

(3.16) implies

lim
x→−∞

Vn(x) = lim
x→−∞

⌈
s1

n − x

C

⌉
∆ + Gn(x̄)

=∞ + Gn(x̄) = ∞,
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where Gn(x̄) is finite because x̄ ∈ [s1
n, s1

n + C].

Condition (C3):

We need to prove Vn(x) is non-(∆, C)-decreasing on R. Similarly to the proof of

Condition (C1), we divide the real number field into analyzable sub-pieces.

(1). Vn(x) is non-(∆, C)-decreasing on [s1
n,∞).

It is known that Gn(x) is non-(∆, C)-decreasing on [s1
n,∞). Since Vn(x) = Gn(x)

on [s1
n,∞), Vn(x) is also non-(∆, C)-decreasing on [s1

n,∞).

(2). Vn(x) is non-(∆, C)-decreasing on (−∞, s1
n).

Similarly to the arguments in proof of Condition (C1), we also break this segment

into pieces with length C, i.e.,

(
−∞, s1

n

)
=
⋃

j∈N

[
s1

n − jC, s1
n − (j − 1)C

)
. (3.25)

And each piece [s1
n − mC, s1

n − (m − 1)C) is again rewritten as (3.19) for m = 1,...,M .

Note that when x+mC ∈ (si
n, Si

n], Gn(x+mC) is non-increasing as x increases, hence,

by (3.20), (3.21) and (3.22) we see that Vn(x) is non-increasing on (−∞, s1
n).

Case 1: If x ∈ (−∞, s1
n − C), for y ∈ [x, x+C] we have Vn(x)−Vn(y) ≤ Vn(x)−Vn(x+

C) = ∆, which gives the result that Vn(x) is non-(∆, C)-decreasing on (−∞, s1
n − C).

Case 2: If x ∈ [si
n − C, Si

n − C), i = 1, ..., M , Vn(x) = Gn(x + C) + ∆. Since Vn(x)

is continuous and non-increasing on (−∞, s1
n],

min
y∈[x,x+C]

Vn(y) = min
y∈[s1

n,x+C]
Vn(y)

= min
y∈[s1

n,x+C]
Gn(y) = Gn(x + C).

Thus, Vn(x) = miny∈[x,x+C] Vn(y) + ∆ ≤ Vn(y) + ∆ for y ∈ [x, x + C], consequently,

Vn(x) is non-(∆, C)-decreasing on this region.
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Case 3: If x ∈ [Si
n − C, si+1

n − C) for i = 1, ..., M−1, or x ∈
[
SM

n − C, s1
n

)
for i = M ,

then Vn(x) = Gn (Si
n) + ∆ for i = 1, ..., M , respectively. Since Vn(x) is continuous

and non-increasing on (−∞, s1
n],

min
y∈[x,x+C]

Vn(y) = min
y∈[s1

n,x+C]
Vn(y)

= min
y∈[s1

n,x+C]
Gn(y) = Gn

(
Si

n

)
.

Thus, Vn(x) = miny∈[x,x+C] Vn(y) + ∆ ≤ Vn(y) + ∆ for y ∈ [x, x + C], consequently,

Vn(x) is non-(∆, C)-decreasing on this region. This completes the proof of Condition

(C3).

Condition (C4):

We need to show the first increasing point Pn of Vn satisfies Pn ≥ P . Since

Gn ∈ G, and on [P,∞), Gn(x) is non-(∆, C)-decreasing, we know s1
n ≤ P , because s1

n

is the smallest value that ensures Gn(x) is non-(∆, C)-decreasing on [s1
n,∞). While

from (3.17), Vn(x) = Gn(x) when x ≥ s1
n, and Vn(x) is non-increasing on (−∞, s1

n),

that means the first increasing point Pn of Vn(x) is exactly the same as that of Gn(x),

which is greater than or equal to P , hence, on (−∞, Pn), Vn(x) is non-increasing.

Condition (C5):

Since Gn(x−C)−G(x) > ∆ on (−∞, P ], P < s1
n + C. Also, the determination

procedure of S1
n guarantees that Gn(x) is decreasing on (−∞, S1

n]. Considering that

S1
n ≤ s1

n + C, we discuss two cases: (1) if S1
n < s1

n + C, then for any x > S1
n, Gn(x)

is not strictly decreasing on (−∞, x], consequently, P ≤ S1
n; (2) if S1

n = s1
n + C, then

P < S1
n. Therefore, s1

n ≤ P ≤ S1
n.

Using (3.20), (3.21), (3.22) and Vn(x) = Gn(x) for x ∈ [s1
n, P ], for any x ≤ P , we

have Vn(x − C) − Vn(x) = ∆ by simple algebra. This completes the proof of Lemma

2. �
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Lemma 3 If f(·) is the pdf of a nonnegative random variable, and for period n,

the cost-to-go function Vn(x) satisfies Conditions (C1)–(C5), then the convolution

(Vn ∗ f)(x) satisfies:

(D1) (Vn ∗ f)(x) is continuous.

(D2) (Vn ∗ f)(x) → ∞ as |x| → ∞.

(D3) Vn ∗ f is non-(∆, C)-decreasing on R.

(D4) (Vn ∗ f)’s first increasing point P f
n ≥ P .

(D5) (Vn ∗ f)(x − C) − (Vn ∗ f)(x) = ∆ on (−∞, P ].

Proof of Lemma 3: We prove this by examining Conditions (D1)–(D5) one by one.

Conditions (D1), (D2), and (D3):

Suppose f(·) is the pdf of a nonnegative random variable, since Vn is continuous

and Vn(x) → ∞ as |x| → ∞, Conditions (D1) and (D2) are immediate. Condition

(D3) is also immediate by Property 3.

Condition (D4):

Since Vn’s first increasing point Pn ≥ P , then Vn(x) ≥ Vn(y) for ∀ x < y ≤ Pn.

The difference that we are interested in is

(Vn ∗ f)(x) − (Vn ∗ f)(y) =

∫ ∞

0

[Vn(x − t) − Vn(y − t)] f(t)dt.

Note that, since the quantity of the demand is nonnegative, i.e., t ≥ 0, thus, x − t <

y−t ≤ Pn. We still have Vn(x−t) ≥ Vn(y−t), which implies (Vn∗f)(x)−(Vn∗f)(y) ≥

0. Hence, Vn ∗ f is also non-increasing on (−∞, Pn], and this implies that its first

increasing point P f
n ≥ Pn ≥ P .

Condition (D5):

For x ∈ (−∞, P ], by Condition (C5),

(Vn ∗ f)(x − C) − (Vn ∗ f)(x) =

∫ ∞

0

[Vn(x − C − t) − Vn(x − t)] f(t)dt = ∆.
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Thus, Lemma 3 is proved. �

Based on Lemmas 1 through 3, we have Theorem 2 below. Specifically, we show

that Gn preserves Conditions (A1)–(A3) for any period under assumptions (B1)-(B3).

Consequently, the (Q,~s, ~S) policy is optimal for a problem over a finite planning

horizon.

Theorem 2 If Conditions (B1)–(B3) are satisfied, then a (Qn,~sn, ~Sn) policy is op-

timal in any period for a finite horizon problem. Especially, Qn = s1
n.

Proof of Theorem 2: It is sufficient to show that for all n ≤ N , Gn ∈ G. Note

that Qn = s1
n directly follows the result of Theorem 1. To obtain Gn ∈ G, we need

to show that Conditions (A1)–(A3) of Definition 3 hold for any n. In particular, we

purposely choose P as the real number r in Condition (A3) for all periods, where P

is the unique minimizer of L. The proof is by induction.

• When n = 1, since the terminal cost gT (x) = 0, G1(x) = L(x). By the definition

(3.3) of L(·), (A1) and (A2) hold. Since P is the unique minimizer of L, by

Condition (B3) and Lemma 1, (A3.a)–(A3.c) hold with r1 = P . Hence, G1(x) ∈

G.

• Suppose Gn(x) ∈ G with rn = P for n = k, we seek to prove that Gk+1(x) ∈ G

with rk+1 = P . Since Gk ∈ G with rk = P , by Conditions (B1)–(B3) and

Lemma 2, Vk(x) satisfies Conditions (C1)–(C5), and in turn, Vk ∗ f satisfies

Conditions (D1)-(D5) by Lemma 3. By definition,

Gk+1 = L(x) + β(Vk ∗ f)(x). (3.26)

Since L(x) and (Vk∗f)(x) are both continuous and go to ∞ as |x| → ∞, Gk+1(x)

is also continuous and goes to ∞ as |x| → ∞. Thus (A1) and (A2) hold. We

show (A3.a)–(A3.c) hold with rk+1 = P one by one.



63

Condition (A3.a):

Since Vk ∗ f is non-(∆, C)-decreasing on R, it is also non-(∆, C)-decreasing on

[P,∞), i.e., for any x ∈ [P,∞) and y ∈ [x, x + C],

(Vk ∗ f) (x) ≤ (Vk ∗ f) (y) + ∆.

Since 0 < β ≤ 1,

β(Vk ∗ f)(x) ≤ β(Vk ∗ f)(y) + β∆ ≤ β(Vk ∗ f)(y) + ∆. (3.27)

On the other hand, since L(x) is increasing on [P,∞), for y ∈ [x, x + C],

L(x) ≤ L(y). (3.28)

Inequalities (3.27) and (3.28) together imply that for x ∈ [P,∞) and y ∈

[x, x + C],

L(x) + β(Vk ∗ f)(x) ≤ L(y) + β(Vk ∗ f)(y) + ∆.

Substituting (3.26) into the above inequality, we conclude that Gk+1 is non-

(∆, C)-decreasing on [P,∞).

Condition (A3.b):

We know that P is the unique minimizer of L, and the first increasing point P f
n

of Vk ∗ f is greater than P . Therefore, both L(x) and and (Vk ∗ f)(x) are non-

increasing on (−∞, P ], and L(x) is strictly decreasing on this interval. Hence,

Gk+1(x) = L(x) + β(Vk ∗ f)(x) is decreasing on (−∞, P ].

Condition (A3.c):

Since Vk ∗ f is non-increasing on (−∞, P ] and 0 < β ≤ 1, for x ∈ (−∞, P ],

β [(Vk ∗ f)(x − C) − (Vk ∗ f)(x)] ≥ 0. (3.29)
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Also, by Condition (B3) and Lemma 1, for x ∈ (−∞, P ],

L(x − C) − L(x) > ∆. (3.30)

Thus, inequalities (3.29) and (3.30) together imply that for x ∈ (−∞, P ],

[L(x − C) + β(Vk ∗ f)(x − C)] − [L(x) + β(Vk ∗ f)(x)] > ∆

By (3.26), the above inequality implies Gk+1(x−C)−Gk+1(x) > ∆ on [P,∞).

Finally, since the left hand sides of equations (3.29) and (3.30) are both non-

increasing on x ∈ (−∞, P ], then Gk+1(x − C) − Gk+1(x) is also non-increasing

on this interval. Therefore, Gk+1 ∈ G with rk+1 = P , and this completes the

proof. �

Actually, Conditions (B1)–(B3) that guarantee the optimality of the proposed

policy are encountered commonly both in practice and the existing literature. As

noted earlier, when the administrative cost for processing a replenishment is negligible

compared to the cost for using each truck, we can easily assume K = 0; and when the

terminal cost can be omitted (e.g., Veinott’s terminal Conditions hold) then we can

assume gT = 0. These assumptions are especially reasonable in the current economy

considering that oil prices remain high and, hence, transportation costs dominate the

administrative and terminal cost terms. Generally, Condition (B3) is perhaps the

most restrictive in the sense that it may or may not hold depending on the model

parameters; but, it is easy to verify nonetheless.

III.3.2. Special Case

It is worth noting that Lippman (1969b) provided an optimal replenishment policy in

his Theorem 11, for a single-period problem. Actually, the policy Lippman devised
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is a special case of the (Q,~s, ~S) policy that we proposed in this research. Specifically,

the dimension M of ~s and ~S equals to one in Lippman’s policy. A restatement of

Lippman’s theorem in our notation is expressed thus:

Theorem (Lippman, 1969b): When the replenishment cost is in the form of mul-

tiple setup cost where the cargo capacity and cargo cost are C and ∆ respectively, if

Gn is convex for any n, and the fixed setup cost K = 0, then the optimal order-up-to

level is given by

Yn(x) =






min
(
Sn, x + C

⌈
sn−x

C

⌉)
, if x < sn,

x, if x ≥ sn.

(3.31)

Where, Sn is the minimizer of Gn, and sn is the largest number less than or equal to

Sn such that

Gn(sn) = ∆ + Gn (min (sn + C, Sn)) . (3.32)

We simply call the policy with this structure (Q, s, S) policy, where Q = s.

In the following theorem, we provide a sufficient condition that guarantees the

optimality of the (Q, s, S) policy for a finite horizon problem. This necessitates a

lemma whose proof is provided.

Lemma 4 If for period n, Gn is convex, and the fixed setup cost K = 0, then Vn(x)−

Vn(x−C) is non-decreasing. Furthermore, for any positive integer m, Vn(x)−Vn(x−

mC) is non-decreasing.

Proof of Lemma 4: Since Gn is convex, and K = 0, by Theorem (Lippman, 1969b),

the optimal replenishment policy can be determined by (3.31). And the cost-to-go
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function can be expressed as:

Vn(x) =






Gn

(
min

(
Sn, x +

⌈
sn−x

C

⌉
C
))

+
⌈

sn−x
C

⌉
∆, if x < sn,

Gn(x), if x ≥ sn.

(3.33)

It is worth noting that the Sn in this lemma denotes the minimizer of the convex

function Gn(x), thus it has a different meaning than the Si
n in Theorem 1.

Case 1: When x < sn, Vn(x) − Vn(x − C) is constant.

Vn(x) − Vn(x − C)

=Gn

(
min

(
Sn, x +

⌈
sn − x

C

⌉
C

))
+

⌈
sn − x

C

⌉
∆

− Gn

(
min

(
Sn, x − C +

⌈
sn − x + C

C

⌉
C

))
−

⌈
sn − x + C

C

⌉
∆

=Gn

(
min

(
Sn, x +

⌈
sn − x

C

⌉
C

))
+

⌈
sn − x

C

⌉
∆

− Gn

(
min

(
Sn, x +

⌈
sn − x

C

⌉
C

))
−

(⌈
sn − x

C

⌉
+ 1

)
∆

= − ∆.

Case 2: When x ≥ sn, Vn(x) − Vn(x − C) is non-decreasing.

Case 2.1: sn + C ≤ Sn.

• Case 2.1.1: For x ∈ [sn, sn +C), 0 < sn−x+C ≤ C and
⌈

sn−x+C
C

⌉
= 1. Then,

Vn(x) − Vn(x − C)

=Gn(x) − Gn

(
min

(
Sn, x − C +

⌈
sn − x + C

C

⌉
C

))
−

⌈
sn − x + C

C

⌉
∆

=Gn(x) − Gn(min (Sn, x)) − ∆ = Gn(x) − Gn(x) − ∆ = −∆.

• Case 2.1.2: For x ∈ [sn +C,∞), x > sn and x−C ≥ sn, hence, Vn(x)−Vn(x−

C) = Gn(x)−Gn(x−C). Since Gn is convex, by Lemma 1 Gn(x)−Gn(x−C) is
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non-decreasing, hence Vn(x)−Vn(x−C) is also non-decreasing. In addition, by

definition (3.32) of sn, when sn +C ≤ Sn, we have Gn(sn +C)−Gn(sn) = −∆.

Thus, Vn(x) − Vn(x − C) ≥ Vn(sn + C) − Vn(sn) = −∆ which completes the

proof that Vn(x) − Vn(x − C) is non-decreasing for x ≥ sn in Case 1.

Case 2.2: Sn < sn + C.

• Case 2.2.1: For x ∈ [sn, Sn), it can be found that Vn(x) − Vn(x − C) = −∆.

• Case 2.2.2: For x ∈ [Sn, sn + C),

Vn(x) − Vn(x − C)

=Gn(x) − Gn

(
min

(
Sn, x − C +

⌈
sn − x + C

C

⌉
C

))
−

⌈
sn − x + C

C

⌉
∆

=Gn(x) − Gn(min(Sn, x)) − ∆ = Gn(x) − Gn(Sn) − ∆.

Since Gn is convex, and Sn is the global minimum, Gn(x) is non-decreasing on

[Sn,∞), and hence, Vn(x) − Vn(x − C) is non-decreasing on [Sn, sn + C) and

−∆ ≤ Vn(x) − Vn(x − C) < Gn(sn + C) − Gn(Sn) − ∆.

• Case 2.2.3: For x ∈ [sn +C,∞), x ≥ sn and x−C ≥ sn, hence Vn(x)−Vn(x−

C) = Gn(x) −Gn(x−C). Also by Lemma 1 and the assumption that Gn(x) is

convex, Vn(x)− Vn(x−C) is also non-decreasing on [sn + C,∞). By (3.32), for

x ∈ [sn + C,∞)

Vn(x) − Vn(x − C) ≥ min
x∈[sn+C,∞)

Vn(x) − Vn(x − C)

=Gn(sn + C) − Gn(sn)

=Gn(sn + C) − Gn(Sn) − ∆.
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Thus, no matter Sn ≥ sn + C or Sn > sn + C, as far as Gn(x) is convex,

Vn(x) − Vn(x − C) is non-decreasing. Furthermore,

Vn(x) − Vn(x − mC) = [Vn(x) − Vn(x − C)] + [Vn(x − C) − Vn(x − 2C)] + ...

+ [Vn(x − (m − 1)C) − Vn(x − mC)] .

It is obvious that Vn(x) − Vn(x − mC) is the sum of m non-decreasing functions,

thus, it is also non-decreasing for any positive integer m. This completes the proof of

Lemma 4 is complete. �

Theorem 3 If the demand follows a Uniform(0, mC) distribution where m ∈ N, the

terminal cost gT (x) is convex, and K = 0, for each period n, the optimal replenishment

quantity can be determined by equation (3.31), that is restated here:

Yn(x) =






min
(
Sn, x + C

⌈
sn−x

C

⌉)
, if x < sn,

x, if x ≥ sn.

Proof of Theorem 3: Since we already restated the result from Lippman (1969b),

Theorem (Lippman, 1969b), it is sufficient for us to prove that Gn is convex for all n

under the assumptions and do it by induction. Note that for a Uniform(0, mC) distri-

bution, the probability density function f(z) can be written as f(z) = 1
mC

I[0,mC](z).

• When n = 1,

G1(y) = L(y) + β

∫ mC

0

gT (y − z)
1

mC
dz.

Since L(y) and gT (y) are both convex, G1(y) is convex.

• Now, suppose Gn(y) is convex for n = k, we need to show that Gk+1(y) is also

convex. By definition

Gk+1(y) = L(y) + β

∫ mC

0

Vk(y − z)
1

mC
dz.
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Obviously, Gk+1 is differentiable. Taking the first derivative of Gk+1(y), we have

G′
k+1(y) =

d

dy

(
L(y) + β

∫ mC

0

Vk(y − z)
1

mC
dz

)

= L′(y) +
d

dy

(
β

∫ mC

0

Vk(y − z)
1

mC
dz

)

= L′(y) +
β

mC

∫ mC

0

d

dy
Vk(y − z)dz

= L′(y) +
β

mC
[Vk(y) − Vk(y − mC)] .

According to Lemma 4, Vk(y) − Vk(y − mC) is non-decreasing. In addition,

L′(y) is also non-decreasing because the first derivative of a convex function is

non-decreasing. Thus, G′
k+1(y) is non-decreasing, and hence, Gk+1(y) is convex.

Since Gn(y) is convex for all n, the optimal replenishment policy for any period

n follows (3.31). �

According to Theorem 3, there are three possible values of Yn(x). For a given

beginning inventory level x, the optimal order-up-to level Yn(x) can be x, Sn, or

x+C
⌈

sn−x
C

⌉
. As far as x is less than a threshold value sn, it is optimal for the vendor

to wait until at least the next period to replenish inventory. If x exceeds sn, then a

replenishment is necessary. The order-up-to level depends on the relation between sn

and Sn.

Case 1: Sn > sn + C

Since the operator ⌈·⌉ rounds up a number, it is always true that

sn − x

C
≤

⌈
sn − x

C

⌉
<

sn − x

C
+ 1.

Equivalently, sn ≤ x+C
⌈

sn−x
C

⌉
< sn +C. Considering that Sn > sn +C in this case,

we have

x + C

⌈
sn − x

C

⌉
< Sn.
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Consequently,

Yn(x) =






x + C
⌈

sn−x
C

⌉
, if x < sn,

x, if x ≥ sn.

The result of Case 1 can be interpreted so that when Sn > sn + C, if the vendor

needs to replenish inventory, it is always optimal to order an FTL quantity to bring

the inventory level just above sn.

Case 2: Sn ≤ sn + C

In this case, parameters sn and Sn satisfy sn − kC < Sn − kC < sn − (k− 1)C <

Sn − (k − 1)C < ... < sn < Sn. For x ∈ [sn − kC, sn − (k − 1)C), we have

k − 1 <
sn − x

C
≤ k and ⌈

sn − x

C
⌉ = k.

Case 2.1: sn − kC ≤ x ≤ Sn − kC

Since x + kC ≤ Sn, Yn(x) = x + kC = x + ⌈sn−x
C

⌉C.

Case 2.2: Sn − kC < x < sn − (k − 1)C

Since x + kC > Sn, Yn(x) = Sn.

Thus,

Yn(x) =






x + C
⌈

sn−x
C

⌉
, if x < sn, and sn ≤ x + C

⌈
sn−x

C

⌉
≤ Sn

Sn, if x < sn, and Sn < x + C
⌈

sn−x
C

⌉
< sn + C

x, if x ≥ sn.

The result of Case 2 implies that when Sn ≤ sn + C, if a replenishment is

necessary, sometimes the vendor should order an FTL quantity, and sometimes the

optimal replenishment quantity includes an LTL quantity. The optimal order-up-

to level and the optimal order quantity can be depicted as shown in Figure 5. In

addition, the size of the LTL quantity can be expressed as (Sn − x) −
⌊

Sn−x
C

⌋
C. It
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can be verified that it satisfies

(Sn − x) −

⌊
Sn − x

C

⌋
C = (Sn − x) − (k − 1)C

> Sn − sn.

This means if a truck is partially loaded, its load must exceed Sn − sn.

Figure 5: Optimal Policies for Special Case
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III.4. Numerical Analysis

In this sublevel, we first conduct a factorial design experiment to test the optimality

of (Q,~s, ~S) policy numerically, then, we proceed with numerical tests to examine the

influence of the system parameters on the values of the policy.



72

III.4.1. Factorial Design Experiment

Considering a problem of 5 periods, we conducted a factorial design experiment for

four types of demand distributions, including Uniform (0, b) distribution, Exponential

(α) distribution, Poisson (λ) distribution and Gamma (k, θ) distribution. The data

we use is shown in Table 2, where µ represents the mean of the random demand.

Obviously, the parameters of the Uniform, Exponential and Poisson distributions

can be uniquely determined by µ, due to the fact that each of them has only one

parameter. Since the Gamma distribution has two parameters, i.e., k the shape

parameter and θ the scale parameter, we let θ = 1 be fixed and choose value of k to

make kθ = µ.

Table 2: Data Set for Factorial Design Experiment

Parameters Values

K 0 75 150 300

C 100 200 400

∆ 45 90 180

h 1 2 4

p 8 16 32

µ 10 20 40

We generated 4 × 35 = 972 instances for each type of demand distribution. We

use complete enumeration to find the optimal values of the decision variables for each

period and each instance. In all the cases we studied, the optimal policy is in form of

(Q,~s, ~S) policy, even if the fixed setup cost K takes positive value. In Sublevel 4, we

have provided a sufficient condition for the optimality of (Q,~s, ~S) policy, however, we
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cannot obtain a sufficient condition for the most general setting here currently, and

the parameter values of the optimal policy cannot be presented in closed form yet.

There’s an interesting observation that, both ~sn and ~Sn are always 1-dimensional

if the demand is Exponentially distributed or Uniformly distributed. Since the opti-

mal order policies for these two types of distributions show a simpler form, we tried

to analyze the results of the factorial design experiments in order to find out the

upper bound and lower bound for the (Qn, sn, Sn) parameters, for these two types of

demand distributions. And we found that the values of Qn, sn, Sn are not monotoni-

cally decreasing or increasing in n. However, when the terminal cost is 0, we have all

the Qn, sn, Sn values greater than or equal to their counterparts in the last period,

i.e., period 0.

III.4.2. Impact of System Parameters on Policy Values

We also conducted some numerical tests to analyze the influence of the system pa-

rameters on the (Qn, sn, Sn) policy values for demand distribution of Uniform(0, b),

where b = 80. We generated a basic problem and a set of compare problems. The

basic problem uses the parameters in the second column of the Table 3, and all the

compare problems use the same parameter values as the basic problem except one

that uses the value range in the third column.

It is worth mentioning that, in most cases the optimal policy converges very fast,

and after some iterations the optimal policy for the starting period, i.e., period 5,

seems to be a reasonably good approximation for a stationary optimal policy for a

system with much more planning periods. Therefore, in this sublevel, we examine

the impact of the economic parameters on the values of the optimal policy for period

5. We use the terms ‘increasing’ and ‘decreasing’ in the weak sense that they refer to

‘non-decreasing’ and ‘non-increasing’, respectively, in the following discussion.
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Table 3: Data Set for System Parameter’s Impact

Parameters Basic Problem Analyzed problem

Fixed setup cost: K 50 0-200

Truck capacity: C 400 1-400

Unit truck cost: ∆ 180 50-200

Inventory holding cost: h 4 0-50

Back-order penalty cost: p 16 0-50

• Fixed setup cost: K

Figure 6: Influence of Parameter K
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In Figure 6, we provide the optimal values of (Q, s, S) policy for different values

of fixed setup cost K. We observe that when the fixed setup cost K increases,

the value of Q decreases, and s, S increase, all in a roughly linear relation. As

known, if the fixed setup cost K increases, ordering more products each time can

compensate the increments in the average fixed setup cost per item. Since all

other parameters remain unchanged, especially the distribution of the demand

is the same, when the quantity of each order increases, the order frequency needs

to decrease. Such adjustment can be realized by decreasing the threshold value
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Q for non-ordering, and at the same time increasing the minimal order-up-to

level s and the maximal order-up-to level S. We also note that a higher value

of K prefers full truck load to less than truckload.

• Truck capacity: C

Figure 7: Influence of Parameter C
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In Figure 7, the impact of the truck capacity C on the optimal policy is given.

When C increases, both Q and s increase first and then decrease. The maximal

order-up-to level S decreases as a response to a larger truck capacity. When

C is very small compared with the expected demand, an ordering policy with

only full truckload is more likely to be optimal. While when C is sufficiently

large, all the values of (Q, s, S) converges to their limits respectively. Under

such circumstances, the problem is very similar to a classic stochastic inventory

problem where the ordering cost is linear with a fixed setup cost K + ∆, and

the famous (s, S) policy is known to be optimal for such a classic problem.

Hence, for our problem with large truck capacity, a less than full truckload

order quantity is optimal for most of the time and the order-up-to level S does

not depend on the value of C.

• Unit truck cost: ∆
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Figure 8: Influence of Parameter ∆
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Figure 8 depicts how the optimal policy parameters (Q, s, S) change for different

values of unit truck cost ∆. We note that as ∆ gets larger, the reorder point

Q and the minimal order-up-to level s decrease, while the maximal order-up-

to level S increases. Since we assume the truck capacity C = 400 which is

sufficiently large, it is guaranteed the optimal ordering policy is a combination

of full truckload and less than truckload order decisions. Figure 8 suggests that

the differences S − s and S − Q both increase, which implies a higher value of

unit truck cost prefers full truckload, similarly to the fixed setup cost K.

• Inventory holding cost: h

Figure 9: Influence of Parameter h
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From Figure 9, we observe that all values of (Q, s, S) decrease as the inventory
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holding cost h increases. That is because when the inventory holding cost

increases, it is better to decrease the order-up-to level in order to avoid the

excessive carrying cost. When h is sufficiently large, the (Q, s, S) policy is

similar to an order-up-to 0 policy, which means we always order the quantity

that is backordered in the previous period.

• Backorder penalty cost: p

Figure 10: Influence of Parameter p
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Figure 10 shows the influence in the policy values by increasing the backorder

penalty cost p. Opposite to the case of increasing the inventory holding cost

h, Q, s, S all increase as p increases. When the penalty cost for delayed order

increases, it is better to increase the order-up-to level to avoid high penalty

cost. And if p is sufficiently large, the values of Q, s, S will be very close to each

other, then the (Q, s, S) policy is similar to a base stock policy.

III.5. Summary

In this chapter, we study a single-echelon, single-product stochastic dynamic inven-

tory problem, with the replenishment cost consisting of a fixed ordering setup cost

and an inbound transportation cost. The inbound transportation cost only depends
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on the number of capacitated trucks that are used for shipping products, hence it is a

staircase function. We propose a new ordering policy: (Q,~s, ~S) policy. We provide a

sufficient condition and prove the optimality of the proposed policy under this condi-

tion. During the proof, we introduce a new concept non-(∆, C)-decreasing, which is

analogous to the existing concept of non-K-decreasing. For a more special case when

the demand is uniformed distributed on (0, mC) where m is an integer and C is the

truck capacity, we prove the optimality of the (Q,~s, ~S) policy that shows in a simple

form. We also conduct tests to numerically verify that under general conditions, the

optimal inventory policies still have a structure of the (Q,~s, ~S) policy. Sensitivity

analysis is performed to evaluate the impact of system parameters on the values of

the policy parameters.
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CHAPTER IV

EXACT MODELS AND OPTIMAL POLICIES FOR SHIPMENT

CONSOLIDATION: A STOCHASTIC DYNAMIC PROGRAMMING APPROACH

In Chapter III, we model the inbound inventory control of a vendor who uses vehicles

with limited capacity to transport replenishment orders from the outside supplier

to its own warehouse. In this chapter, we investigate the outbound distribution

schedules under different transportation situations. As mentioned in Chapter II,

economies of scale in transportation are particularly realizable under a shipment

consolidation strategy. Although various shipment consolidation policies, e.g., time-

, quantity- and time-and-quantity- based consolidation polices, have been proposed

and adopted in industry, these policies are all designed in advance. And the existing

research results on shipment consolidation either rely on the predetermined practical

policies or come from numerical studies. Therefore, the consolidation policy that is

theoretically optimal remains unknown. The objectives of the current research are

to develop the consolidation models by using the stochastic dynamic programming

approach and to characterize the structural properties of the optimal consolidation

policies. Different from the stationary and practical consolidation policies, both the

time and quantity parameters are implicit in our model; in other words, a consolidated

load may be dispatched with a larger amount than the maximum holding quantity

earlier than the predetermined shipping date.

Specifically, we consider a periodic-review distribution system. In the system, a

collection depot is responsible for delivering orders to a number of retailers located

in a geographical region over a discrete and finite time horizon. During each period,

random orders/shipments from the retailers arrive at the collection depot and gather
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into a large load. At the end of that period, the depot reviews the size of the consoli-

dated load and decides how much to dispatch to the retailers. There are two types of

costs associated with this system, the transportation cost for delivering the retailer

orders and the customer waiting cost for delaying their fulfillments.

We concentrate on the theoretical analysis for four models with different trans-

portation modes: the private fleet transportation with unlimited cargo capacity, the

single-truck transportation with cargo capacity and fixed cost, the common carriage

transportation, and the multiple-truck transportation with cargo capacity. The trans-

portation cost structures in the first and the third models are the same as used in

models of Çetinkaya and Bookbinder (2003). To model the cargo capacity and cargo

cost in the last model, the transportation cost is presented in the term of multiple

setup costs. We show the structures of the exact optimal consolidation policy for the

first two models, provide sufficient conditions of some practical policies for the third

model with the “clearing property” assumption, and characterize the rough structure

of the optimal policy for the last model.

The plan of this chapter is as follows. Common system settings of the four

models are provided in Sublevel IV.1. In Sublevel IV.2, we formulate the optimal

control problem for private fleet transportation with unlimited cargo capacity and

provide the structural results of the optimal consolidation policy. The model of single

capacitated truck with fixed cost is studied in Sublevel IV.3. In Sublevel IV.4, we

proceed with analyzing the scenario of common-carriage. We analytically investigate

the optimality of some practical policies, and provide sufficient conditions under which

these policies are optimal. Computational studies are presented to illustrate the

complexity of the exact optimal policy. In Sublevel IV.5, we investigate the model of

multiple-truck transportation with limited cargo capacity. Conclusions and directions

for future research are given in Sublevel IV.6.
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IV.1. Common System Settings and Modeling Assumptions

As is mentioned, the four models studied in this chapter share the same system

settings. The only difference exists in the structure of the transportation cost. For

this reason, we provide the common setting and modeling assumptions in this sublevel.

Figure 11: System Settings of the Outbound Consolidation System

D

R1

R2 R3

(tn, dn)

∑Un

i=1 Zni

Un ∼ θ(·)
Zni ∼ f(·)

(an, ln)

(tn−1, dn−1)

In this chapter we study a periodic-review consolidation system where a depot

collects and delivers random orders of a single-product to multiple retailers over a

finite horizon of N periods. An illustration is given in Figure 11, and a summary of

basic notation is provided below.

System Parameters:

N length of the planning horizon

n period index (n = 0, 1, ..., N)
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Un random number of orders received in period n (we assume {Un}0≤n≤N

forms an i.i.d. sequence with a generic element denoted by U . The

density and distribution functions of U are θ(·) and Θ(·))

Zni random weight of the ith order in period n (we denote Zi as a generic

element with density and distribution functions f(·) and F (·))

C̃(t, d) transportation cost for delivering d orders with total weight t

w waiting cost of consolidated load per unit weight per period

States:

tn the total weight of consolidated orders in period n

dn the total number of orders consolidated in period n

Decisions:

an weight of consolidated load dispatched in period n

ln number of consolidated orders dispatched in period n

Optimality Equation:

Vn(t, d) the optimal expected total cost from period n to the end, when period

n has d orders with total weight t before a dispatch decision is made

In Figure 11, D and Ri represent the collection depot and the retailers, respec-

tively. During period n (n ≤ N), a random number Un of orders to be shipped to

retailers arrive at the depot. The number Un has a discrete distribution with a density

function θ(·) and a distribution function Θ(·). Uns are independent and identically

distributed (i.i.d). Furthermore, each order weighs a random quantity. We denote

the weight of the ith order in period n as Zni, which follows a distribution function

F (·) and a probability density function f(·). Znis are also i.i.d. and independent of

Un. That is, the weight of each order is independent of the number of orders received.
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By the end of period n, the depot reviews the number of consolidated orders dn and

the total weight tn. Based on dn and tn, the depot needs to determine the dispatch

number ln and dispatch weight an of consolidated orders. A transportation cost C̃(·)

is incurred for a positive dispatch quantity. All remaining consolidated load incurs

a linear waiting cost w per unit weight per period. The waiting cost represents an

opportunity loss in delayed receipt of revenue as well as a goodwill penalty. It is

assumed that by the end of the planning horizon, the depot should satisfy as many

consolidated orders as possible.

The objective of the research is to identify the structure of the optimal consol-

idation policies that minimize the total expected transportation and waiting costs

over a finite planning horizon. In the following four sublevels, we discuss the mod-

els with different modes of transportation, i.e., private fleet transportation without

cargo capacity constraint, single-truck transportation with cargo capacity and fixed

cost, common carriage transportation, and multiple-truck transportation with cargo

capacity.

IV.2. Private Fleet Transportation without Cargo Capacity

In this sublevel, we consider the model where the orders are delivered to the retailers

by the depot’s private truck. We assume the truck has unlimited capacity, so that all

the orders can be loaded on a single truck.

IV.2.1. Problem Formulation

Borrowed from Çetinkaya and Bookbinder (2003), the transportation cost under pri-

vate carriage includes a fixed cost KD for a vehicle dispatch from the depot to the

retailers, a fixed cost KS for an order delivery, and a variable transportation cost c
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per unit weight. Thus, the transportation cost for shipping d units of orders with

total weight t can be expressed as equation (4.1) and illustrated as Figure 12.

C̃P (t, d) = KD · I[t>0,d>0] + KSd + ct. (4.1)

Figure 12: Private Fleet Transportation Cost without Cargo Capacity
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With its system setting described in Sublevel IV.1, this model can be formulated

as a dynamic program by using a backward recursion method. Backward recursion

means that period N is done first, and period 0 is the end of the planning horizon.

For notational simplicity, the subscript of n is omitted on tn and dn in the remaining

part of this chapter. Notice that when there is no order consolidated at the depot

(d = 0), the total weight t must be 0 and vice versa. Therefore, the values of t and d

must satisfy conditions: t = d = 0, or t ∈ (0,∞) and d ∈ N. Denoting Ω(t,d) as the

decision space for a given state (t, d), we have Ω(t,d) = {(0, 0)}
⋃

{(0, t] × {1, ..., d}}.
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Then the optimality equation can be written as

Vn(t, d) =






min(a,l)∈Ω(t,d)






C̃P (a, l) + w(t− a)

+E
(
Vn−1

(
t − a +

∑U
i=1 Zi, d − l + U

))





,

n = 1, ..., N,

C̃P (t, d), n = 0,

(4.2)

where

E

(
Vn−1

(
t − a +

U∑

i=1

Zi, d − l + U

))

=
∞∑

u=0

[∫ ∞

0

Vn−1 (t − a + z, d − l + u) fu(z)dz

]
θ(u).

fu(x) is the density function of the random variable
∑u

i=1 Zi which represents

the total weight of u orders. The distribution function of
∑u

i=1 Zi, Fu(x), is obtained

by taking u-fold convolution of F (x) with itself.

Let

vn(a, l|t, d) := C̃P (a, l) + w(t− a) + E

(
Vk−1

(
t − a +

U∑

i=1

Zi, d − l + U

))

represent the expected cost for dispatching l orders with total weight a in period

n, when there are d orders with total weight t consolidated at the depot. Notice

that when a > 0 and l > 0, vn(a, l|t, d) represents the cost for dispatching a positive

quantity. When a = l = 0, vn(a, l|t, d) represents the cost for consolidating the

orders. Based on this observation, we define the decision space Ω(t,d) as the union

of two disjoint sub-spaces. Specifically, Ω(t,d) = Ω1
(t,d)

⋃
Ω2

(t,d), where Ω1
(t,d) = {(0, 0)}

denotes the decision space for consolidating the orders, and Ω2
(t,d) = (0, t] × {1, ..., d}
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denotes the decision space for dispatching a positive quantity. Accordingly, we define

u1
n(t, d) = min

(a,l)∈Ω1
(t,d)

vn(a, l|t, d) = vn(0, 0|t, d), for t ≥ 0, d ∈ Z
+

and

u2
n(t, d) = min

(a,l)∈Ω2
(t,d)

vn(a, l|t, d), for t > 0, d ∈ N.

It follows that u1
n(t, d) represents the minimum expected accumulated cost for con-

solidating orders in period n and planning optimally onward, and u2
n(t, d) represents

the minimum expected accumulated cost for dispatching the consolidated load. In

fact, the optimal decision of period n can be obtained by optimizing these two cases

individually and choosing the one which gives a lower cost, i.e., for n = 1, ..., N ,

Vn(t, d) =






u1
n(t, d), if t = 0, d = 0,

min {u1
n(t, d), u2

n(t, d)} , if t > 0, d ∈ N.

(4.3)

In period n (n = 1, ..., N), if Vn(t, d) = u1
n(t, d), then it is optimal to consolidate the

load, i.e., the optimal dispatch quantity a∗
n = 0 and l∗n = 0. Otherwise, the collection

depot should deliver a shipment to the retailers.

IV.2.2. Exact Optimal Policy

Before the consolidation decision is made in period n, if no order is consolidated (t =

d = 0), we obviously choose to consolidate the orders. For cases where t ∈ (0,∞) and

d ∈ N, a careful examination is required. To analyze the exact optimal consolidation

policy, we identify a set of conditions such that if the two-dimensional value function

Vn−1(t, d) satisfies these conditions, then the structure of the optimal dispatch policy

in period n can be characterized.

Proposition 2 If Vn−1(t, d), the value function of period n−1 satisfies the following
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condition:

(A1) Vn−1(t, d) is jointly concave in t and d.

(A2) For any fixed t > 0, Vn−1(t, d) is non-decreasing in d ∈ N and limd→∞ Vn−1(t, d)−

Vn−1(t, d − 1) = KS. For any fixed d > 0, Vn−1(t, d) is non-decreasing in t > 0

and limt→∞
∂Vn−1(t,d)

∂t
= c.

(A3) For any fixed t > 0, Vn−1(t, d) − KSd is non-decreasing in d. For any fixed

d > 0, Vn−1(t, d) − ct is non-decreasing in t.

then u2
n(t, d) = vn(t, d|t, d). Furthermore, the threshold policy {(a, l)∗n(t, d)} given by

(a, l)∗n(t, d) =






(0, 0), if d < Sn
t ,

(t, d), if d ≥ Sn
t ,

(4.4)

where Sn
t is a function of t, is optimal for period n.

Proof of Proposition 2 According to Condition (A1), since Vn−1(t, d) is jointly

concave in t and d, its partial derivative (with respect to t) and difference (with

respect to d) are both non-increasing. Due to Condition (A2), for any given state

(t, d), we have

Vn−1(t, d) − Vn−1(t, d − 1) ≥ lim
i→∞

Vn−1(t, i) − Vn−1(t, i − 1) = KS, (4.5)

and

∂Vn−1(t, d)

∂t
≥ lim

t→∞

∂Vn−1(t, d)

∂t
= c. (4.6)

If l orders with total weight a ((a, l) ∈ Ω2
(t,d)) are dispatched, then
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vn(a, l|t, d) − vn(a, l − 1|t, d) =KS + E

(
Vn−1

(
t − a +

U∑

i=1

Zi, d − l + U

)

−Vn−1

(
t − a +

U∑

i=1

Zi, d − (l − 1) + U

))

=KS +

∞∑

u=0

[∫ ∞

0

(Vn−1(t − a + z, d − l + u)

−Vn−1 (t − a + z, d − (l − 1) + u)) fu(z)dz] θ(u)

≤KS −
∞∑

u=0

[∫ ∞

0

KSfu(z)dz

]
θ(u) = 0,

and

∂vn(a, l|t, d)

∂a
= c − w +

∂E
(
Vn−1

(
t − a +

∑U
i=1 Zi, d − l + U

))

∂a

=c − w +

∞∑

u=0

[∫ ∞

0

∂Vn−1(t − a + z, d − l + u)

∂a
fu(z)dz

]
θ(u)

≤c − w −
∞∑

u=0

[∫ ∞

0

cfu(z)dz

]
θ(u) = −w.

The above inequalities hold because of (4.5) and (4.6), respectively. Therefore,

vn(a, l|t, d) is non-increasing in l for a fixed a and also non-increasing in a for a fixed

l on the bounded domain Ω2
(t,d). This implies that vn(a, l|t, d) takes its minimum at

a = t and l = d, i.e., u2
n(t, d) = min(a,l)∈Ω2

(t,d)
vn(a, l|t, d) = vn(t, d|t, d).

Based on the previous analysis, we can write u1
n(t, d) and u2

n(t, d) explicitly as

u1
n(t, d) = wt + E

(
Vn−1

(
t +

U∑

i=1

Zi, d + U

))

u2
n(t, d) = C̃P (t, d) + E

(
Vn−1

(
U∑

i=1

Zi, U

))
.



89

For a fixed t > 0,

u1
n(t, d) − KSd = wt + E

(
Vn−1

(
t +

U∑

i=1

Zi, d + U

))
− KSd

= wt + E

(
Vn−1

(
t +

U∑

i=1

Zi, d + U

)
− KSd

)

is non-decreasing in d according to Condition (A3). However, it is obvious that

u2
n(t, d) − KSd = KD + ct + E

(
Vn−1

(∑U
i=1 Zi, U

))
is constant in d for a fixed t >

0. Since Vn(t, d) − KSd = min {u1
n(t, d) − KSd, u2

n(t, d) − KSd}, there must exist a

critical point Sn
t ≥ 0 such that

Sn
t = min{d ∈ Z

+ : u1
n(t, d) − KSd ≥ u2

n(t, d) − KSd}.

For all d < Sn
t , u1

n(t, d) < u2
n(t, d) and consolidating the orders in period n is optimal,

i.e., (a, l)∗n(t, d) = (0, 0). For all d ≥ Sn
t , u1

n(t, d) ≥ u2
n(t, d), which means it is optimal

to dispatch the consolidated load, i.e., (a, l)∗n(t, d) = (t, d). In summary, the optimal

consolidation policy is given by equation (4.4). Then Proposition 2 is proved. �

Proposition 2 tells us that if the value function of period n−1 satisfies Conditions

(A1)–(A3), and a positive size of shipment has to be dispatched, then the optimal

dispatch decision in period n is to dispatch the entire consolidated load. As a result,

a threshold policy is optimal for period n. In detail, for any state (t, d), we can find a

state-dependent threshold value Sn
t , so that if d < Sn

t , it is optimal to consolidate the

orders; otherwise, dispatching the entire load is optimal. Equivalently, we can also

find a threshold value Sn
d so that if t ≥ Sn

d , it is optimal to dispatch all the orders;

otherwise, consolidating is more preferable. In fact, such a threshold policy is optimal

under a multiple-period setting, regardless of the parameter settings.

Theorem 4 For the finite horizon problem, the threshold policy {(a, l)∗n(t, d)} given

by (4.4) is optimal for period n.
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Proof of Theorem 4 It is sufficient to prove Vn(t, d) satisfies Conditions (A1)–(A3),

for n = 0, ..., N . We prove this by induction.

• When n = 0, V0(t, d) = C̃P (t, d) = KD · I[t>0,d>0] + KSd + ct.

Condition (A1):

To show that V0(t, d) is jointly concave in t and d, we need to show that for any

two different points (t1, d1) and (t2, d2) in Ω = {(0, 0)}
⋃

[(0,∞) × N], and any

λ ∈ [0, 1],

V0 ((1 − λ) (t1, d1) + λ (t2, d2)) ≥ (1 − λ)V0 (t1, d1) + λV0 (t2, d2) .

Case 1: When neither of (t1, d1) and (t2, d2) equals to (0, 0),

V0((1 − λ)(t1, d1) + λ(t2, d2)) = V0((1 − λ)t1 + λt2, (1 − λ)d1 + λd2))

=KD + KS((1 − λ)d1 + λd2) + c((1 − λ)t1 + λt2)

=(1 − λ)V0(t1, d1) + λV0 (t2, d2) .

Case 2: When one of (t1, d1) and (t2, d2), say (t2, d2), is equal to (0, 0),

V0((1 − λ)(t1, d1) + λ(0, 0)) = V0((1 − λ)t1, (1 − λ)d1)

=KD + KS((1 − λ)d1) + c((1 − λ)t1) > (1 − λ)V0(t1, d1) + λV0(0, 0).

Hence, V0(t, d) is jointly concave in t and d.

Condition (A2):

For a fixed t > 0, V0(t, d) = KD + ct + KSd is obviously increasing in d,

and limd→∞ (V0(t, d) − V0(t, d − 1)) = KS. And for a fixed d > 0, V0(t, d) =

KD + KSd + ct is obviously increasing in t, and limt→∞
∂V0(t,d)

∂t
= c.

Condition (A3):

For any fixed consolidated weight t > 0, V0(t, d)−KSd = KD+ct is constant, and



91

hence, non-decreasing in d. Similarly, for any fixed number d > 0, V0(t, d)−ct =

KD + KSd is constant, and hence, non-decreasing in t.

• Suppose the statements hold for n = k − 1. We need to show for n = k. Since

Vk−1(t, d) satisfies Conditions (A1)–(A3), by Proposition 2,

u1
k(t, d) = vk(0, 0|t, d) = wt + E

(
Vk−1

(
t +

U∑

i=1

Zi, d + U

))
,

u2
k(t, d) = vk(t, d|t, d) = C̃P (t, d) + E

(
Vk−1

(
U∑

i=1

Zi, U

))
.

Condition (A1):

It is easy to see that both u1
k(t, d) and u2

k(t, d) are jointly concave in t and d;

therefore, their minimum Vk(t, d) is also jointly concave in t and d.

Condition (A2):

Obviously, both u1
k(t, d) and u2

k(t, d) are non-decreasing in t for a fixed d > 0,

as well as non-decreasing in d for a fixed t > 0. As a result, Vk(t, d) =

min {u1
k(t, d), u2

k(t, d)} is also non-decreasing in t for a fixed d > 0 and non-

decreasing in d for a fixed t > 0. We still need to find the limits of Vk(t, d)’s

partial derivative and difference. Since we assume Vk−1(t, d) satisfies Condi-

tions (A1)–(A3), by Proposition 2, when t is fixed and d is sufficiently large,

it is always optimal to dispatch the consolidated load, i.e., limd→∞ Vk(t, d) =

limd→∞ u2
k(t, d). Thus,

lim
d→∞

(Vk(t, d) − Vk(t, d − 1)) = lim
d→∞

(
u2

k(t, d) − u2
k(t, d − 1)

)

= lim
d→∞

(vk(t, d|t, d) − vk(t, d − 1|t, d − 1)) = KS.

Similarly, when d is fixed and t goes to ∞, it is always optimal to dispatch the

entire load, i.e., limt→∞ Vk(t, d) = limt→∞ u2
k(t, d), and limt→∞

∂Vk(t,d)
∂t

= c.
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Condition (A3):

For a fixed t > 0, Vk(t, d)−KSd = min {u1
k(t, d) − KSd, u2

k(t, d) − KSd}. It can

be computed that u1
k(t, d)−KSd = wt+E

(
Vk−1

(
t +
∑U

i=1 Zi, d + U
)
− KSd

)

is non-decreasing in d while u2
k(t, d)−KSd = KD + ct+E

(
Vk−1

(∑U
i=1 Zi, U

))

is constant in d for fixed t > 0. Therefore, in period k, for any fixed consolidated

weight t > 0, Vk(t, d) − KSd is non-decreasing in d. Similarly, it can be proved

that for any fixed number of consolidated orders d > 0, Vk(t, d) − ct is non-

decreasing in t.

Thus, Vk(t, d) also satisfies Conditions (A1)–(A3), and the proof is complete. �

It is interesting to find that according to Theorem 4, the optimal decision of

any period is either not to dispatch or to dispatch all. In other words, the optimal

policy possesses the “clearing property”. Dispatching partial of the consolidated load

is never economical, because in the case of private fleet transportation with unlimited

cargo capacity, the major influential part of the transportation cost is the fixed cost

for a vehicle dispatch. Hence, separately dispatching a consolidated load only incurs

additional waiting cost and does not lead to any savings.

IV.3. Single-Truck Transportation with Cargo Capacity and Fixed Cost

In Sublevel IV.2, we consider the stochastic dynamic distribution system with out-

bound transportation performed by the private fleet owned by the collection depot.

It is worth noting that the transportation capacity in that model is assumed to be

infinite, which might not be realistic for industrial practices. Therefore, it is crucial

for successful decision-makers to explicitly take into account the capacity constraint

on the truck. In this sublevel, we consider the case where the shipment is delivered

on a single capacitated truck. When the truck is used, no matter whether it is fully
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or partially loaded, a fixed cost is incurred. We examine the optimal consolidation

policy.

IV.3.1. Problem Formulation

We assume the single truck has a finite capacity C with a fixed usage cost K for

dispatching a shipment, regardless of the dispatch quantity and the corresponding

number of orders. Since the customer waiting cost only depends on the weight of the

consolidated load t, the number of consolidated orders d is trivial in this case, and

hence, can be ignored in this model. Then the transportation cost for dispatching t

units of consolidation load is given by equation (4.7) and illustrated as Figure 13.

C̃S(t) = K · I[t>0], 0 ≤ t ≤ C. (4.7)

Figure 13: Single-Truck Transportation Cost with Cargo Capacity

K

C0 t

C̃S(t)

Due to the existence of the capacity constraint, the dispatch quantity can only

be within 0 and C, and any quantity exceeding C is infeasible. Therefore, it is not

always viable to satisfy all retailer demands by the end of the planning horizon. For

this reason, we assume that at the end of the planning horizon, as many as possi-

ble consolidated orders should be dispatched, and all the remaining load still incurs

waiting cost w per unit weight like any earlier period. Considering this distribution

system for N periods, we are interested in the optimal dispatch quantity in each
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period. Since the number of consolidated orders is ignored, multiple orders received

during one period can be considered as a single combined order. Denoting Z as the

weight of a random combined order and letting f(·) and F (·) be the density and

distribution functions, we can write the optimality equation as follows:

Vn(t) =






min0≤a≤min(t,C)

{
C̃S(a) + w(t − a) + E(Vn−1(t − a + Z))

}
, n = 1, ..., N

C̃S(t) + w · (t − min(t, C)), n = 0.

(4.8)

For period n = 1, ..., N , when the consolidated load t = 0, there is nothing to

dispatch, hence, the decision is to be idle. For t > 0, a consolidation decision needs

to be made. Similar to the discussion in Sublevel IV.2, we can examine two cases:

do not dispatch and dispatch, separately, and then choose the one with a lower cost.

Denote vn(a|t) = C̃S(a) +w(t− a)+ E(Vn−1(t− a +Z)), we define the corresponding

minimum expected accumulated cost functions as

u1
n(t) = vn(0|t) = wt + E(Vn−1(t + Z)), for t ≥ 0, (4.9)

u2
n(t) = min

0<a≤min(t,C)
vn(a|t)

= min
0<a≤min(t,C)

{K + w(t − a) + E(Vn−1(t − a + Z))} , for t > 0. (4.10)

Then, the optimality equation of period n can be rewritten as

Vn(t) =






u1
n(t), if t = 0,

min {u1
n(t), u2

n(t)} , if t > 0.
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IV.3.2. Exact Optimal Policy

Since the optimality equation is in a recursive form, it is essential to examine the

properties of the value function in each period in order to identify the exact optimal

consolidation policy.

Proposition 3 If Vn−1(t), the value function of period n − 1 satisfies the following

conditions:

(B1) Vn−1(t) is non-decreasing in t for any n;

(B2) Vn−1(t) − Vn−1(t + C) is non-increasing in t for t > 0;

(B3) limt→∞ Vn−1(t) − Vn−1(t + C) = −n · wC,

then the optimal decision in period n can be determined as follows: (1) if K − (n +

1)wC ≥ 0, then to consolidate the orders for any observed size of load is optimal; (2)

if K − (n + 1)wC < 0, then the optimal policy is in the form of a threshold policy

defined by a parameter Sn, such that it is optimal to consolidate when t < Sn and to

dispatch min(t, C) otherwise.

Proof of Proposition 3 Since for t > 0,

Vn(t) = min
{
u1

n(t), u
2
n(t)

}
= min

{
0, u2

n(t) − u1
n(t)

}
+ u1

n(t),

when u2
n(t) − u1

n(t) > 0, Vn(t) = u2
n(t); otherwise, Vn(t) = u1

n(t). Therefore, we can

identify the optimal consolidation policy by examining the value of u2
n(t) − u1

n(t).

First, according to Condition (B1), the cost K + w(t− a) + E(Vn−1(t− a + Z))

associated with dispatching quantity a for consolidated load t is non-increasing in a

for a given state t, therefore a∗ = min(t, C). This implies that if a shipment has to

be dispatched, then the larger the dispatch quantity, the lower the cost. And u2
n(t)

can be rewritten as u2
n(t) = vn(min(t, C)|t).
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Case 1: When 0 < t ≤ C, u2
n(t) = K + E(Vn−1(Z)), then

u2
n(t) − u1

n(t) = K + E(Vn−1(Z)) − tw − E(Vn−1(t + Z)).

By Condition (B1), Vn−1(t+z) is non-decreasing in t for a known z. Since expectation

is a linear operator, u2
n(t) − u1

n(t) is non-increasing in t.

Case 2: When t > C, u2
n(t) = K + w(t − C) + E(Vn−1(t − C + Z)), then

u2
n(t) − u1

n(t) = K + w(t − C) + E(Vn−1(t − C + Z)) − tw − E(Vn−1(t + Z))

= K − wC + [E(Vn−1(t − C + Z)) − E (Vn−1(t + Z))]

By Condition (B2) and the linearity of the expectation operator, E(Vn−1(t − C +

Z)) − E(Vk−1(t + Z)) is non-increasing in t and so is u2
n(t) − u1

n(t).

Summarizing Case 1 and 2, we obtain that u2
n(t) − u1

n(t) is non-increasing in t

for t > 0. Since both u1
n(t) and u2

n(t) are continuous in t, u2
n(t) − u1

n(t) is continuous

in t, too. In addition, notice that by Condition (B3),

lim
t→∞

u2
n(t) − u1

n(t) = K − wC + (−n · wC) = K − (n + 1) · wC,

lim
t→0

u2
n(t) − u1

n(t) = K + E(Vn−1(Z)) − E(Vn−1(Z)) = K > 0.

Therefore, u2
n(t) − u1

n(t) is non-increasing on t ∈ (0,∞) with inft>0(u
2
n(t) − u1

n(t)) =

K − (n + 1) · wC and supt>0(u
2
n(t) − u1

n(t)) = K.

Considering that when t = 0, Vn(t) = u1
n(t). When K−(n+1)·wC ≥ 0, it means

u2
n(t) ≥ u1

n(t) for any t > 0, therefore, to consolidate the load is always optimal. On

the other hand, when K−(n+1) ·wC < 0, there must exist a critical number Sn > 0,

such that u1
n(t) < u2

n(t) for 0 < t < Sn and u1
n(t) ≥ u2

n(t) for t ≥ Sn. Therefore, a

threshold policy is optimal, and when a shipment should be released, a∗
n = min(t, C).

The proof is complete. �
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Proposition 3 identifies the optimal policy for a specific period n under some

assumptions of the value function of period n − 1. There are two possible structures

for the optimal policy. One is to consolidate the orders regardless of its size, and

the other is a threshold policy. Which structure is optimal in period n depends on

the value of K − (n + 1)wC. If K − (n + 1)wC ≥ 0, then to consolidate is optimal,

otherwise, a threshold policy is optimal. It is worth mentioning that this result is

built on the structural assumptions of the value function in period n−1, which seems

restrictive and complicated to examine. However, under careful analysis, we can prove

that the value function of each period always satisfies those conditions in Proposition

3. Therefore, in each period of a finite horizon problem, the optimal consolidation

decision follows the results of Proposition 3.

Theorem 5 For a finite horizon problem, the optimal consolidation policy for period

n can be described as: (1) if K − (n + 1)wC ≥ 0, then to consolidate the orders for

any observed size of load is optimal; (2) if K−(n+1)wC < 0, then the optimal policy

is in the form of a threshold policy defined by a parameter Sn, such that it is optimal

to consolidate when t < Sn and to dispatch min(t, C) otherwise.

Proof of Theorem 5 It is sufficient to prove that the value function Vn(t) satisfies

Conditions (B1)–(B3) for n = 0, ..., N . We prove this by induction.

• when n = 0, V0(t) = K · I[t>0] +w · (t−min(t, C)) = K · I[t>0] +w ·max(0, t−C).

Condition (B1):

Obviously, V0(t) is non-decreasing in t.

Conditions (B2) and (B3):

For t > 0, Vn(t) = K + w · max(0, t − C). Particularly, when 0 < t ≤ C,

V0(t) − V0(t + C) = K − K − wt = −wt which is decreasing in t. When
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t > C, V0(t) − V0(t + C) = K + w(t − C) − K − wt = −wC which is also

non-increasing in t. Therefore, V0(t)−V0(t+C) is non-increasing in t for t > 0.

And, limt→∞ V0(t) − V0(t + C) = limt→∞ K + w(t − C) − K − wt = −wC.

• Suppose the value function of period k − 1 satisfies Conditions (B1)–(B3), we

need to examine the value function of period k. According to Proposition 3,

either consolidating orders or a threshold policy is optimal in period k.

Condition (B1):

Since Vk−1(t) is non-decreasing in t by hypothesis, u1
k(t) in (4.9) is strictly

increasing in t. Also, in the proof of Proposition 3 we have demonstrated that

when Vk−1(t) satisfies Conditions B1-B3, u2
k(t) = vk(min(t, C)|t) = K + w ·

max(0, t−C)+ E(Vk−1(max(0, t−C)+ Z)). Thus, u2
k(t) is also non-decreasing

in t. Thus, as the minimum of u1
k(t) and u2

k(t), Vk(t) is non-decreasing in t.

Conditions (B2) and (B3):

Case 1: When K − (k + 1)wC ≥ 0, Proposition 3 implies consolidating orders

is always optimal in period k, i.e., u1
k(t) ≤ u2

k(t) for any t ≥ 0, and Vk(t) =

u1
k(t) = wt + E(Vk−1(t + Z)). Then,

Vk(t) − Vk(t + C) = −wC + E(Vk−1(t + Z)) − E(Vk−1(t + C + Z))

is non-increasing in t for t > 0. And

lim
t→∞

Vk(t) − Vk(t + C) = lim
t→∞

−wC + E(Vk−1(t + Z)) − E(Vk−1(t + C + Z))

= −wC − k · wC = −(k + 1) · wC.

Case 2: When K − (k + 1)wC < 0, a threshold policy is optimal in period k,
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i.e., there exists an Sk such that Vk(t) =






u1
k(t), if t < Sk,

u2
k(t), if t ≥ Sk.

Case 2.1: If Vk(t) − Vk(t + C) = u1
k(t) − u1

k(t + C), Vk(t) − Vk(t + C) is

non-increasing in t like we showed in Case 1.

Case 2.2: If Vk(t) − Vk(t + C) = u2
k(t) − u2

k(t + C), we need to examine its

value on two ranges separately. (1) When 0 < t ≤ C, u2
k(t) − u2

k(t + C) =

E(Vk−1(Z)) − wt − E(vk−1(t + Z)) is non-increasing in t. (2) When t > C,

u2
k(t)−u2

k(t+C) = −wC + [E(Vk−1(t − C + Z)) − E(Vk−1(t + Z))] is also non-

increasing in t.

Case 2.3: If Vk(t) − Vk(t + C) = u1
k(t) − u2

k(t + C), Vk(t) − Vk(t + C) =

wt + E(Vk−1(t + Z)) − K − wt − E(Vk−1(t + Z)) = −K is non-increasing in t.

Thus, Vk(t) − Vk(t + C) is non-increasing in t. In addition, Since

lim
t→∞

Vk(t) − Vk(t + C) = lim
t→∞

u2
k(t) − u2

k(t + C)

= lim
t→∞

−wC + [E(Vk−1(t − C + Z)) − E(Vk−1(t + Z))]

= −wC − k · wC = −(k + 1) · wC

Then, Vk(t) satisfies Conditions (B1)–(B3), and the proof is complete. �

Theorem 5 suggests that when a set of parameters K, C and w are given, for

period i = 0, ..., ⌊ K
wC

⌋ − 1, since K − (i + 1)wC ≥ 0, the optimal decision is to

consolidate the orders regardless of the consolidated load. For period i ≥ ⌊ K
wC

⌋, the

optimal policy is a threshold policy. Particularly, when K < wC, a threshold policy

is optimal in each period of a finite horizon problem.
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IV.4. Common Carriage Transportation

For the model of private fleet transportation, savings occur basically through spread-

ing the fixed dispatch cost over a large dispatch quantity. In this sublevel, we consider

the model where the transportation is performed by a common carrier. We exam-

ine three consolidation policies and provide sufficient conditions under which these

policies are optimal.

IV.4.1. Problem Formulation

The current model modifies the one in Sublevel IV.3 by employing a common carrier

to ship the orders. A common carrier can be an outside trucking company who offers

a freight discount for dispatching in large quantities. Usually, the transportation cost

only depends on the total weight of the shipment. As a result, the number of orders

consolidated is also insignificant and can be ignored again. The cost structure we

consider in this research also comes from the model by Çetinkaya and Bookbinder

(2003). Denote C̃C(t) as the transportation cost for dispatching a shipment of total

weight t. Then the common-carrier’s tariff function in the simplest case is given by

equation (4.11) and illustrated as Figure 14.

C̃C(t) =






cN t, t ≤ WBT,

cV MWT, WBT < t ≤ MWT,

cV t, t > MWT.

(4.11)

In equation (4.11), CV and CN are the volume and non-volume freight rates,

respectively. We assume CN > CV + w, because consolidation strategy will never

perform better than an immediate dispatch policy when CN ≤ CV + w. MWT is the

stated minimum weight to obtain the quantity discount and WBT is the weight at
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Figure 14: Common Carriage Transportation Cost

C  (t)
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WBT MWT t
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0
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which the bumping clause comes into play. Denoting Z as the weight of a random

combined order and letting f(·) and F (·) be the density and distribution functions,

we can write the optimality equation as follows:

Vn(t) =






min0≤a≤t

{
C̃C(a) + w(t − a) + E (Vn−1(t − a + Z))

}
, n = 1, ..., N,

C̃C(t), n = 0.

(4.12)

For general parameter settings, the optimal policy is complicated and unknown.

We investigate the exact optimal policy with some numerical examples in Sublevel

IV.4.3. In Sublevel IV.4.2, we analyze the problem under the assumption that the

dispatch quantity is either zero or equal to the consolidated load. This assumption

allows us to examine the structure of the value function to derive some structural

results.
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IV.4.2. Analysis of the Optimal Policies

Assuming the “clearing property” of the consolidation policy, we can write the cor-

responding optimality equation as

Vn(t) =






min
{
wt + E (Vn−1(t + Z)) , C̃C(t) + E (Vn−1(Z))

}
, n = 1, ..., N,

C̃C(t), n = 0.

(4.13)

Similar to the formulation of the private fleet cases, we define

u1
n(t) = wt + E (Vn−1(t + Z)) and u2

n(t) = C̃C(t) + E (Vn−1(Z)) .

Then, the optimality equation of period n = 1, ..., N can be rewritten as

Vn(t) =






u1
n(t), if t = 0,

min {u1
n(t), u2

n(t)} , if t > 0.

(4.14)

Although the optimal consolidation policies for this problem have been numer-

ically examined by Higginson and Bookbinder (1995), the analytical results remain

unknown due to the non-linear nature of the transportation cost. In this sublevel,

we examine the optimality of some practical policies, e.g., the immediate dispatch

policy and the threshold policy. We also propose a new policy and call it the (SL, SU)

consolidation policy. Under the (SL, SU) policy, if the observed consolidated load t

is less than SL or greater than SU , it is optimal to dispatch all the waiting orders;

otherwise, it is optimal to consolidate until at least the arrival of the next combined

order. We provide a sufficient condition under which the (SL, SU) policy is optimal

for a finite horizon problem.

Before the analytical results are given, an important property of the value func-

tion for the common carriage case is described in Property 4.
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Property 4 Vn(t) is continuous and non-decreasing for n = 0, ..., N .

Proof of Property 4 We prove this by induction. Notice that, when n = 0, V0(t) =

C̃C(t), and it is obviously continuous and non-decreasing in t. Now, suppose Vk−1(t)

is continuous and non-decreasing in t. We need to show that Vk(t) is also continuous

and non-decreasing in t. Since Vk−1(t) is continuous and non-decreasing in t, u1
k(t) =

wt+E (Vk−1(t + Z)) is also continuous and strictly increasing. Also, u2
k(t) = C̃C(t)+

E(Vk−1(Z)) is continuous and non-decreasing. Hence, Vk(t) = min{u1
k(t), u

2
k(t)} is

continuous and non-decreasing in t. Therefore, the proof is complete. �

IV.4.2.1. Optimality of the Immediate Dispatch Policy

In this sublevel, we will provide a sufficient condition under which dispatching all

outstanding demands is preferable to consolidating orders in all periods of a finite

horizon problem.

Proposition 4 Let Z denote the weight of a random combined order received in a

single period. If

C̃C(t) + E
(
C̃C(Z)

)
≤ wt + E

(
C̃C(t + Z)

)
(4.15)

for ∀t ∈ [0, WBT ], dispatching the consolidated load is always the optimal decision

in each period no matter how many demands are held at the end of that period. In

other words, shipment consolidation strategy is not favorable under this condition.

Proof of Proposition 4 Since all outstanding demands should be dispatched by the

end of the planning horizon, V0(t) = C̃C(t) and a∗
0(t) = t. Therefore, we only need to

examine the dispatch decisions for periods 1 through N by induction.

• When n = 1, we have u1
1(t) = wt + E

(
C̃C (t + Z)

)
and u2

1(t) = C̃C(t) +

E
(
C̃C(Z)

)
. By examining the first derivatives of u1

1(t) and u2
1(t) on t ∈



104

(WBT,∞), we see that (u1
1)

′
(t) > (u2

1)
′
(t) on (WBT,∞). Specifically,

Case 1: When t ∈ (WBT, MWT ), u2
1(t) is constant, so that (u2

1)
′
(t) = 0.

On the other hand, since C̃C(t) is non-decreasing in t, E
(
C̃C(t + Z)

)
is also

non-decreasing in t, hence, (u1
1)

′
(t) = w +

(
E
(
C̃C(t + Z)

))′
≥ w. Thus,

(u1
1)

′
(t) > (u2

1)
′
(t) on (WBT, MWT ).

Case 2: When t ∈ [MWT,∞), (u1
1)

′
(t) = w +

(
E
(
C̃C(t + Z)

))′
= w + CV

and (u2
1)

′
(t) = CV . Therefore, (u1

1)
′
(t) > (u2

1)
′
(t) on [MWT,∞).

In fact, equation (4.15) implies u1
1(t) ≥ u2

1(t) on (0, WBT ]. Provided that

u1
1(WBT ) ≥ u2

1(WBT ) and (u1
1)

′
(t) > (u2

1)
′
(t) on (WBT,∞), it can be derived

that u1
1(t) ≥ u2

1(t) on (WBT,∞). As a result, u1
1(t) ≥ u2

1(t) for t ∈ (0,∞).

Also, u1
1(0) = u2

1(0), and hence, V1(t) = min {u1
1(t), u

2
1(t)} = u2

1(t). In other

words, it is always optimal to dispatch the consolidated load in period 1.

• Suppose that dispatching all the consolidated load is always optimal in period

k− 1, i.e., Vk−1(t) = C̃C(t) +E(Vk−2(Z)), we need to show the optimality of an

immediate dispatch policy for period k. Notice that,

u1
k(t) =wt + E(Vk−1(t + Z))

=wt + E
(
C̃C(t + Z)

)
+ E (Vk−2(Z)) = u1

1(t) + E (Vk−2(Z)) ,

u2
k(t) =C̃C(t) + E(Vk−1(Z))

=C̃C(t) + E
(
C̃C(Z)

)
+ E (Vk−2(Z)) = u2

1(t) + E (Vk−2(Z)) .

Therefore, Vk(t) = min {u1
k(t), u

2
k(t)} = u2

1(t) + E(Vk−2(Z)) = u2
k(t), and to

dispatch the consolidated load is always optimal for period k, too.
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Therefore, with the assumption (4.15), the depot should dispatch the consolidated

demands in each period. �

According to equation (4.14), the optimality equation for period 1 can be written

as

V1(t) = min
{

wt + E
(
C̃C(t + Z)

)
, C̃C(t) + E

(
C̃C(Z)

)}
. (4.16)

Within the braces of expression (4.16), the first term represents the expected cost-to-

go for dispatching the entire consolidated load, and the second term represents the

expected cost-to-go for continuing to consolidate the orders. Proposition 4 says that

if dispatching the consolidated load is optimal in period 1 for the weight less than or

equal to WBT , then it is optimal to dispatch the consolidated load in each period

and disregard how many demands are held at the end of that period.

For special cases of random demands, the sufficient conditions can be expressed

explicitly. For example,

(1). Bernoulli (p) Demand

When the weight of random demands in all periods are i.i.d. and follow the

Bernoulli(p) distribution, i.e., each order includes one unit with a possibility

of p, and the possibility of no order arriving in the period is (1 − p). For

∀t ∈ [0, WBT ], we have






wt + E
(
C̃C(t + Z)

)
= wt + p · C̃C(t + 1) + (1 − p) · C̃C(t).

C̃C(t) + E
(
C̃C(Z)

)
= C̃C(t) + p · C̃C(1),

In order to satisfy the condition (4.15), we require

C̃C(t) + p · C̃C(1) ≤ wt + p · C̃C(t + 1) + (1 − p) · C̃C(t).
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Thus,

C̃C(t + 1) − C̃C(t) +
wt

p
≥ C̃C(1) = CN

When t ∈ [0, WBT − 1], the left hand side is at least CN , so the inequality

holds. When t = WBT , the left hand side is w·WBT
p

, then we have the sufficient

condition for optimality of the immediate dispatch policy in a finite horizon

problem with Bernoulli(p) random demand as:

w · WBT

CN
≥ p. (4.17)

(2). Uniform (0,b) Demand

A complete analysis of the uniform distributed demand is computationally chal-

lenging due to the relationship between the parameters b, WBT and MWT .

Here, we only analyze the simplest case where b ≤ min{WBT, MWT −WBT}.

For ∀t ∈ [0, WBT ],






u1
1(t) = wt + E

(
C̃C(t + Z)

)
= wt +

∫ b

0
C̃C(t + z)1

b
dz.

u2
1(t) = C̃C(t) + E

(
C̃C(Z)

)
= CN t +

∫ b

0
C̃C(z)1

b
dz,

u2
1(t) − u1

1(t) = (CN − w)t−

∫ b

0

C̃C(t + z)
1

b
dz +

∫ b

0

C̃C(z)
1

b
dz.

Case 1: 0 ≤ t ≤ WBT − b

u2
1(t) − u1

1(t) = (CN − w)t −

∫ b

0

CN(t + z)
1

b
dz +

∫ b

0

CNz
1

b
dz

= (CN − w)t −

∫ b

0

CN t
1

b
dz

= (CN − w)t − CN t = −wt ≤ 0.
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Case 2: WBT − b < t ≤ WBT

u2
1(t) − u1

1(t) =(CN − w)t +

∫ b

0

CNz
1

b
dz −

∫ WBT−t

0

CN(t + z)
1

b
dz

−

∫ b

WBT−t

CN · WBT
1

b
dz

=(CN − w) t +
CN

2b

[
b2 −

(
WBT 2 − t2

)
− 2WBT (b − WBT + t)

]

=
CN

2b

(
[t − (WBT − b)]2 −

2bwt

CN

)
.

Solve the equation [t − (WBT − b)]2 − 2bwt
CN

= 0 to obtain two roots for t as

t∗1 = (WBT − b) +
bw

CN
+

√
b2w2

C2
N

+ 2(WBT − b)
bw

CN
,

t∗2 = (WBT − b) +
bw

CN
−

√
b2w2

C2
N

+ 2(WBT − b)
bw

CN
.

When u2
1(t)−u1

1(t) ≤ 0, it is sufficient to have t∗2 ≤ WBT − b < t ≤ WBT ≤ t∗1.

And it is easy to verify that the left inequality always holds, and the right

inequality holds if and only if b ≤ 2·WBT ·w
CN

. Thus, we have a sufficient condition

for the uniform demand case as

b ≤ min

{
WBT, MWT − WBT,

2 · WBT · h

CN

}
.

IV.4.2.2. Optimality of the Threshold Policy

A threshold policy is easy to understand and convenient to apply in practice. Under

certain conditions, a threshold policy is optimal for the common carriage consolidation

problems.

Lemma 5 Suppose f1(x) and f2(x) are two continuous and non-decreasing functions

on [0,∞). If the following conditions:

(C1) f2(x) = C̃C(x) + M , where M is a nonnegative constant;
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(C2) f1(0) = f2(0);

(C3) CN = f ′
2(x) ≥ f ′

1(x) on [0, WBT ];

(C4) f ′
2(x) ≤ f ′

1(x) ≤ CN on (WBT,∞);

(C5) f1(x) ≥ f2(x) on [MWT,∞),

are satisfied, then g(x) = min {f1(x), f2(x)} is continuous and non-decreasing in x.

Furthermore, there exists a number S ∈ [WBT, MWT ], such that,

g(x) =






f1(x), if x ∈ [0, S],

f2(x), if x ∈ (S,∞).

(4.18)

Proof of Lemma 5 Since f1(x) and f2(x) are both continuous and non-decreasing,

obviously, g(x) is continuous and non-decreasing. Divide the real line into three

segments as follows and examine the function g(x) on each segment:

Segment 1: On [0, WBT ], by Conditions (C2) and (C3), f1(x) ≤ f2(x), and hence,

g(x) = f1(x).

Segment 2: On (WBT, MWT ], f1(x) is non-decreasing while f2(x) is constant (by

Condition (C1)). Since f1(MWT ) ≥ f2(MWT ) (by Condition (C5)) and f1(WBT ) ≤

f2(WBT ), there must exist a value S ∈ [WBT, MWT ] such that on (WBT, S],

f1(x) < f2(x) and g(x) = f1(x); on (S, MWT ], f1(x) ≥ f2(x) and g(x) = f2(x).

Segment 3: On (MWT,∞), according to Condition (C5), g(x) = f2(x).

In summary, g(x) can be described by f1(x) and f2(x) as equation (4.18). �

In Lemma 5, if we replace f1(x) and f2(x) with the two value functions for

dispatching the orders or consolidating in period n, then g(x) actually represents the

optimality equation of period n. And following equation (4.18), we can determine

that in this period, a threshold policy is optimal for the system. Although Lemma 5

only gives the structure of the optimal policy for a single period problem, Proposition
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5 provides a sufficient condition under which the threshold policy is optimal for a

finite horizon problem.

Proposition 5 If the following inequalities are satisfied, i.e.,

E
(
C̃C(Z)

)
− CV · µZ ≤ w · MWT, and (4.19)

1 − F (MWT ) ≥
w

CN − CV
, (4.20)

where Z denotes the weight of a random combined order received in a single period,

and µZ represents the mean, then for a finite horizon problem, a threshold policy is

optimal in each period. That is, for any period n, there exists a value Sn
T such that if

the weight of the consolidated load tn ≥ Sn
T , it is optimal to dispatch the entire load;

otherwise, continuing to consolidate the demands is preferable.

Proof of Proposition 5 The main idea is to show that if the costs for two alter-

native decisions (consolidate or dispatch) are denoted by f1 and f2, they satisfy the

Conditions (C1)–(C5) in Lemma 5. The proof is conducted by induction.

• When n = 0, V0(t) = C̃C(t). Without violating the definition of V0(t), let

u1
0(t) = CN · t and u2

0(t) = C̃C(t). Then u1
0(t) and u2

0(t) are both continuous

and non-decreasing on [0,∞). It is easy to see that Conditions (C1)–(C5) are

all satisfied.

• Suppose u1
k−1(t) and u2

k−1(t), the cost functions of two alternatives in period

k − 1, satisfy Conditions (C1)–(C5). We need to show that the conditions are

also satisfied by u1
k(t) and u2

k(t). First,






u1
k(t) = wt + E (Vk−1(t + Z)) = wt +

∫∞

0
Vk−1(t + z)f(z)dz,

u2
k(t) = C̃C(t) + E (Vk−1(Z)) = C̃C(t) +

∫∞

0
Vk−1(z)f(z)dz.
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By Property 4, it is immediate that u1
k(t) and u2

k(t) are both continuous and

non-decreasing.

Conditions (C1) and (C2):

Let M =
∫∞

0
Vk−1(z)f(z)dz. Then M is nonnegative and and u2

k(t) = C̃C(t) +

M . Also, u1
k(0) =

∫∞

0
Vk−1(z)f(z)dz = u2

k(0).

Condition (C3):

Since we assume that u1
k−1(t) and u2

k−1(t) satisfy Conditions (C1)–(C5), by

Lemma 5 there exists a number Sk−1 ∈ [WBT, MWT ] such that Vk−1(t) =

u1
k−1(t) if t ∈ [0, Sk−1], and Vk−1(t) = u2

k−1(t) otherwise. Then for t ∈ [0, WBT ],

the first derivative of u1
k(t) is

(
u1

k

)′
(t) = w +

∫ ∞

0

V ′
k−1(t + z)f(z)dz

= w +

∫ Sk−1−t

0

V ′
k−1(t + z)f(z)dz +

∫ ∞

Sk−1−t

V ′
k−1(t + z)f(z)dz

= w +

∫ Sk−1−t

0

(
u1

k−1

)′
(t + z)f(z)dz +

∫ ∞

Sk−1−t

(
u2

k−1

)′
(t + z)f(z)dz

= w +

∫ Sk−1−t

0

(
u1

k−1

)′
(t + z)f(z)dz +

∫ ∞

MWT−t

(
u2

k−1

)′
(t + z)f(z)dz

(
Since

(
u2

k−1

)′
(t) = 0 on (WBT, MWT )

)

≤ w +

∫ MWT−t

0

(
u1

k−1

)′
(t + z)f(z)dz +

∫ ∞

MWT−t

(
u2

k−1

)′
(t + z)f(z)dz

≤ w +

∫ MWT−t

0

CNf(z)dz +

∫ ∞

MWT−t

CV f(z)dz

= w +

∫ MWT

0

CNf(z)dz +

∫ ∞

MWT

CV f(z)dz −

∫ MWT

MWT−t

(CN − CV )f(z)dz

≤ w +

∫ MWT

0

CNf(z)dz +

∫ ∞

MWT

CV f(z)dz

= w + CN −

∫ ∞

MWT

(CN − CV )f(z)dz ≤ w + CN − w

(by equation (4.20) )
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= CN =
(
u2

k

)′
(t).

Condition (C4):

We examine the relationship between (u1
k)

′
(t) and (u2

k)
′
(t) on two mutually

disjoint complementary subsets of (WBT,∞).

Case 1: For t ∈ (WBT, MWT ), by the definition of u2
k(t), (u2

k)
′
(t) = 0. And

(u1
k)

′
(t) = w +

∫∞

0
V ′

k−1(t + z)f(z)dz ≥ w. Thus, (u1
k)

′
(t) ≥ (u2

k)
′
(t).

Case 2: For t ∈ [MWT,∞), (u2
k)

′
(t) = CV . And

(
u1

k

)′
(t) =w +

∫ ∞

0

V ′
k−1(t + z)f(z)dz

=w +

∫ ∞

0

(
u2

k−1

)′
(t + z)f(z)dz = w + CV .

Thus, (u1
k)

′
(t) ≥ (u2

k)
′
(t).

At this point we have proved the inequality (u1
k)

′
(t) ≥ (u2

k)
′
(t) on (WBT,∞).

To complete the examination of Condition (C4), we still need to show (u1
k)

′
(t) ≤

CN on (WBT,∞). Note that, (u1
k)

′
(t) = w +

∫∞

0
V ′

k−1(t + z)f(z)dz, then

Case 1: If t ∈ (WBT, Sk−1), we have

(
u1

k

)′
(t) = w +

∫ Sk−1−t

0

V ′
k−1(t + z)f(z)dz +

∫ ∞

Sk−1−t

V ′
k−1(t + z)f(z)dz

= w +

∫ Sk−1−t

0

(
u1

k−1

)′
(t + z)f(z)dz +

∫ ∞

Sk−1−t

(
u2

k−1

)′
(t + z)f(z)dw

= w +

∫ Sk−1−t

0

(
u1

k−1

)′
(t + z)f(z)dz +

∫ ∞

MWT−t

(
u2

k−1

)′
(t + z)f(z)dz

≤ w +

∫ MWT−t

0

(
u1

k−1

)′
(t + z)f(z)dz +

∫ ∞

MWT−t

(
u2

k−1

)′
(t + z)f(z)dz

≤ w +

∫ MWT−t

0

CNf(z)dz +

∫ ∞

MWT−t

CV f(z)dz

= w +

∫ MWT

0

CNf(z)dz +

∫ ∞

MWT

CV f(z)dz −

∫ MWT

MWT−t

(CN − CV )f(z)dz
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≤ w +

∫ MWT

0

CNf(z)dz +

∫ ∞

MWT

CV f(z)dz

= w + CN −

∫ ∞

MWT

(CN − CV )f(z)dz ≤ w + CN − w = CN .

Case 2: If t ∈ [Sk−1, MWT ), we have

(
u1

k

)′
(t) = w +

∫ MWT−t

0

V ′
k−1(t + z)f(z)dz +

∫ ∞

MWT−t

V ′
k−1(t + z)f(z)dz

= w +

∫ MWT−t

0

(
u2

k−1

)′
(t + z)f(z)dz +

∫ ∞

MWT−t

(
u2

k−1

)′
(t + z)f(z)dz

= w + 0 +

∫ ∞

MWT−t

CV f(z)dz =≤ w + CV < CN .

Case 3: If t ∈ [MWT,∞), we have

(
u1

k

)′
(t) = w +

∫ ∞

0

V ′
k−1(t + z)f(z)dz = w +

∫ ∞

0

CV f(z)dz = w + CV < CN .

Hence, (u1
k)

′
(t) ≤ CN on (WBT,∞).

Condition (C5):

Since we have already shown that on (WBT,∞), (u1
k)

′
(t) ≥ (u2

k)
′
(t), in order

to show u1
k(x) ≥ u2

k(x) on [MWT,∞), it is sufficient to show u1
k(MWT ) ≥

u2
k(MWT ).

u1
k(MWT ) − u2

k(MWT )

= w · MWT +

∫ ∞

0

Vk−1(MWT + z)f(z)dz − CV · MWT −

∫ ∞

0

Vk−1(z)f(z)dz

≥ w · MWT +

∫ ∞

0

Vk−1(MWT + z)f(z)dz − CV · MWT −

∫ ∞

0

u2
k−1(z)f(z)dz

= w · MWT +

∫ ∞

0

u2
k−1(MWT + z)f(z)dz − CV · MWT −

∫ ∞

0

u2
k−1(z)f(z)dz

= w · MWT +

∫ ∞

0

[
CV (MWT + z) + u2

k−1(0)
]
f(z)dz − CV · MWT

−

∫ ∞

0

[
C̃C(z) + u2

k−1(0)
]
f(z)dz
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= w · MWT −

∫ ∞

0

[
C̃C(z) − CV · z

]
f(z)dz ≥ 0.

The last inequality holds due to the inequality (4.19). Therefore, u1
k(t) ≥ u2

k(t)

on [MWT,∞).

In summary, the cost functions u1
n(t) and u2

n(t) of two alternatives in each period

always satisfy the Conditions (C1)–(C5). By applying Lemma 5 to each period, the

optimality of a threshold policy in a finite horizon setting is demonstrated. �

In inequality (4.19), E
(
C̃C(Z)

)
is the expected cost for shipping a combined

random demand if the cost structure (4.11) is employed. CV · µZ is the expected

cost if this demand is shipped at the volume freight rate CV . Since CV is the lowest

feasible freight rate, the term on the left hand side of the inequality (4.19) represents

the saving if a random demand is dispatched at the volume rate instead of following

the cost scheme (4.11). Condition (4.19) in Proposition 5 requires such saving should

not exceed the cost of holding MWT weight of retailer orders for one period.

Condition (4.20) means that the probability for the random order’s weight ex-

ceeding MWT should be at least w
CN−CV

. Obviously, we need to make sure that the

right-hand side of inequality (4.20) is less than 1. Fortunately, w < CN − CV is

assumed for practical purposes. In detail, CN is the highest cost for dispatching one

unit weight of demand if it is dispatched without being held, and w+CV is the lowest

cost for dispatching that unit if it has to be consolidated. If w + CV ≥ CN , shipment

consolidation strategy is never financially justifiable, i.e., it will never perform better

than an immediate dispatch policy.

For special cases of random demands, the sufficient conditions also can be ex-

pressed explicitly. For example,

(1). Discrete demand with density P (Z = b) = p and P (Z = 0) = 1 − p

In order to validate the inequality (4.20), we must have b ≥ MWT . Then



114

conditions (4.19) and (4.20) can be written as:

C̃C(b) · p − CV b · p ≤ w · MWT,

and

(CN − CV )p ≥ w.

Therefore, we have the sufficient condition

b ≥ MWT and (CN − CV )p ≥ w.

(2). Uniform (0,b) demand

Same as the previous case, b should be at least MWT , and we can rewrite the

condition (4.19) as 1
MWT

∫∞

0
C̃C(z)f(z)dz −

∫∞

0
CV zf(z)dz ≤ w. The left hand

side of the inequality is

LHS =
1

MWT

[∫ WBT

0

(CN − CV )z
1

b
dz +

∫ MWT

WBT

CV (MWT − z)
1

b
dz

]

=
1

MWT

[
CN − CV

2b
· WBT 2 +

CV (MWT 2 − MWT · WBT )

b

−
CV

2b
(MWT 2 − WBT 2)

]

=
1

2b · MWT

[
CV · MWT 2 − CN · WBT 2

]

=
CV

2b
(MWT − WBT ) .

Similarly, we rewrite (4.20) as
∫∞

MWT
(CN − CV ) f(z)dz ≥ w. Then its left hand

side is

LHS =

∫ b

MWT

(CN − CV )
1

b
dz =

CN − CV

b
(b − MWT ).



115

Hence, we obtain the sufficient conditions as






b ≥ MWT,

CV

2b
(MWT − WBT ) ≤ h,

CN−Cv

b
(b − MWT ) ≥ h.

IV.4.2.3. Optimality of (SL, SU) Policy

For the common carriage consolidation problem, Higginson and Bookbinder (1995)

identify the triangularity of the optimal policies numerically. The triangular property

means “shipment is the preferred action with very large or very small accumulated

weights.” In the current research, we define a policy with such feature as the (SL, SU)

policy. Specifically, if the consolidated load t in period n satisfies t < Sn
L or t ≥ Sn

U ,

then it is optimal to dispatch all the held demands; otherwise, it is optimal to continue

to consolidate until at least the arrival of the next order. We provide sufficient

conditions under which the (SL, SU) policy is optimal for a finite horizon problem.

Lemma 6 Suppose f1(x) and f2(x) are two continuous functions on [0,∞). If the

following conditions:

(Ĉ1) f2(x) = C̃C(x) + M , where M is a nonnegative constant;

(Ĉ2) f1(x) is strictly increasing and f1(0) = f2(0);

(Ĉ3) there exists a value x̄ ∈ [WBT, MWT ], s.t.

(Ĉ3.a) f1(x) is concave on [0, x̄],

(Ĉ3.b) f1(x̄) ≥ f2(x̄) = M + CN · WBT , and

(Ĉ3.c) f ′
1(x) ≥ f ′

2(x) for x ∈ [x̄,∞);

are satisfied, then the function g(x) = min{f1(x), f2(x)} is continuous and non-

decreasing in x and also concave on [0, MWT ]. In addition, there exist two values of
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SL and SU such that 0 ≤ SL ≤ SU ≤ x̄ and

g(x) =






f2(x), if x ∈ [0, SL),

f1(x), if x ∈ [SL, SU ],

f2(x), if x ∈ (SU ,∞).

(4.21)

Proof of Lemma 6 By Conditions (Ĉ1) and (Ĉ2), f1(x) and f2(x) are both non-

decreasing and continuous, thus, their minimum g(x) is obviously non-decreasing and

continuous.

By Conditions (Ĉ1) and (Ĉ3.a), f1(x) and f2(x) are both concave on [0, x̄], then

g(x) is also concave on [0, x̄]. In addition, Conditions (Ĉ3.b) and Ĉ3.c together imply

that for x ∈ (x̄, MWT ], f1(x) ≥ f2(x). Since f2(x) is constant on (x̄, MWT ], we

have g(x) = f2(x) and g(x) is constant on (x̄, MWT ]. Therefore, g(x) is concave on

[0, MWT ].

To show the existence of SL and SU , we first show that other than at the origin,

f1(x) and f2(x) have at most two intersections. Using values of WBT and x̄, we

divide the region (0,∞) into three segments and examine each segment for possible

occurrence of intersections.

Segment 1: On (0, WBT ], f2(x) is linear according to Condition (Ĉ1) and the

definition of C̃C(·). Also, by Condition (Ĉ3.a), f1(x) is concave on [0, WBT ], hence,

(f1 − f2)(x) := f1(x) − f2(x) is concave on [0, WBT ]. Since a concave function can

take value of 0 at most twice, and we already have (f1 − f2)(0) = 0, there exists at

most ONE point x∗ ∈ (0, WBT ] such that (f1 − f2)(x
∗) = 0. Thus, f1(x) and f2(x)

intersect at most once on (0, WBT ].

Segment 2: On (WBT, x̄], f2(x) is constant. According to Condition (Ĉ2), f1(x)

is strictly increasing, hence, (f1 − f2)(x) is also strictly increasing on (WBT, x̄]. For

this reason, it can take value of 0 at most once, which means on this segment f1(x)
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and f2(x) intersect at most once.

Segment 3: On (x̄,∞), by Conditions (Ĉ3.b) and (Ĉ3.c), we have f1(x) ≥ f2(x) on

(x̄,∞). Hence, they do not intersect on this segment.

Therefore, on (0,∞), f1(x) and f2(x) intersect at most twice. There are three

possible cases necessary to be examined:

Case 1: If f1(x) and f2(x) do not intersect other than at the origin, by Condition

(Ĉ3.b) it must be f1(x) > f2(x) on (0,∞). Then g(x) = f2(x). If we let SL = SU = 0,

equation (4.21) holds.

Case 2: If f1(x) and f2(x) intersect once on (0,∞), by Conditions (Ĉ3.a) and (Ĉ3.b),

the intersection must occur at a point located in [WBT, x̄] such that on its left hand

side f1(x) < f2(x) and on its right hand side f1(x) > f2(x). If we let SU be the

intersection point, and let SL = 0, then equation (4.21) holds.

Case 3: If f1(x) and f2(x) intersect twice on (0,∞), then just let SL be the first

intersection point (0 < SL ≤ WBT ) and SU be the second one (WBT < SU ≤

x̄). Guaranteed by Condition (Ĉ3.b), the equation (4.21) again holds. The proof is

complete. �

Similar to Lemma 5, Lemma 6 proves the optimality of a (SL, SU) policy for a

single period problem under certain conditions. Sufficient conditions that guaran-

tee the optimality of the (SL, SU) policy in a multi-period problem is provided in

Proposition 6.

Proposition 6 If the demand has a Uniform[0,α] distribution, and the parameter α

satisfies

α ≤ min

{
w · MWT

w + CN/2
, MWT − WBT, WBT

}
, (4.22)

then for a finite horizon problem, an (SL, SU) policy is optimal in each period. That

is, for any period n, there exists a pair of parameters Sn
L and Sn

U such that if the
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weight of the consolidated load t < Sn
L or t > Sn

U , it is optimal to dispatch the entire

load; otherwise, continuing to consolidate the orders is preferable.

Proof of Proposition 6 We need to show that for any n = 0, ..., N , the costs for

two alternatives, i.e., u1
n(t) and u2

n(t) always satisfy the Conditions (Ĉ1)–(Ĉ3). We

prove this by induction.

• When n = 0, the terminal cost V0(t) = C̃C(t) can be rewritten as V0(t) =

min {u1
0(t), u

2
0(t)}, where u1

0(t) = 2CN · t and u2
0(t) = C̃C(t). It is obvious that

both u1
0(t) and u2

0(t) are continuous.

Conditions (Ĉ1) and (Ĉ2):

u2
0(t) = C̃C(t) + M , here M = 0 is nonnegative. u1

0(t) = 2CN · t is strictly

increasing and u1
0(0) = 0 = u2

0(0).

Condition (Ĉ3):

Let t̄ = MWT − α. Since α ≤ MWT − WBT , t̄ = MWT − α ≥ WBT , so

t̄ ∈ [WBT, MWT ] is satisfied, and

– Condition (Ĉ3.a): u1
0(t) = 2CN · t on [0, t̄]. (u1

0)
′′
(t) = 0, thus u1

0(t) is

concave on [0, t̄];

– Condition (Ĉ3.b): u1
0(t̄) = 2CN · t̄ > CN · t̄ ≥ CN · WBT = u2

0(t̄);

– Condition (Ĉ3.c): For t ∈ [t̄,∞), (u1
0)

′
(t) = 2CN > CN > CV ≥ (u2

0)
′(t).

• Suppose in period k − 1, u1
k−1(t) and u2

k−1(t) satisfy Conditions (Ĉ1)–(Ĉ3), we

want to show u1
k(t) and u2

k(t) also satisfy Conditions (Ĉ1)-(Ĉ3). First, by their

definition, u1
k(t) and u2

k(t) are both continuous.

Conditions (Ĉ1) and (Ĉ2):

u2
k(t) = C̃C(t)+E(Vk−1(Z)), where M = E(Vk−1(Z)) is a nonnegative constant.
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By Property 4, Vk−1(t) is non-decreasing, then E (Vk−1(t + Z)) is also non-

decreasing. Since wt is strictly increasing, u1
k(t) = wt + E(Vk−1(t + Z)) is

strictly increasing and u1
k(0) = E(Vk−1(Z)) = u2

k(0).

Condition (Ĉ3):

In each period, we always let t̄ = MWT − α. Then,

– Condition (Ĉ3.a): By Lemma 6, when u1
k−1(t) and u2

k−1(t) satisfy Condi-

tions (Ĉ1)–(Ĉ3), Vk−1(t) is concave on [0, MWT ], hence, its first derivative

V ′
k−1(t) is decreasing on [0, MWT ]. Hence, (u1

k)
′
(t) = w+

∫ α

0
V ′

k−1(t+z) 1
α
dz

is also decreasing in t, which implies that u1
k(t) is concave on [0, t̄].

– Condition (Ĉ3.b): We can compute the function values of u1
k(t) and u2

k(t)

at t̄ as follows. Note that t̄ = MWT − α.

u1
k(t̄) = wt̄ +

∫ α

0

Vk−1(t̄ + z)
1

α
dz

= wt̄ +

∫ α

0

(Vk−1(0) + CN · WBT )
1

α
dz

(
Since Vk−1(t) = u2

k−1(t) on [t̄, MWT ]
)

= w · (MWT − α) + Vk−1(0) + CN · WBT.

Since α ≤ w·MWT
w+CN/2

, we have w · (MWT − α) ≥ CN ·α
2

=
∫ α

0
CN · z · 1

α
dz.

Thus,

u1
k(t̄) ≥ Vk−1(0) + CN · WBT +

∫ α

0

CN · z ·
1

α
dz

= CN · WBT +

∫ α

0

(Vk−1(0) + CN · z)
1

α
dz

= CN · WBT +

∫ α

0

(u2
k−1(0) + CN · z)

1

α
dz

= CN · WBT +

∫ α

0

u2
k−1(z)

1

α
dz ≥ CN · WBT +

∫ α

0

Vk−1(z)
1

α
dz
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= u2
k(t̄).

– Condition (Ĉ3.c): We examine this on two segments. On [t̄, MWT ],

we have (u2
k)

′(t) = 0 and (u1
k)

′
(t) ≥ w > 0, thus, (u1

k)
′
(t) ≥ (u2

k)
′
(t).

On [MWT,∞), (u2
k)

′
(t) = CV , and (u1

k)
′
(t) = w +

∫ α

0
V ′

k−1(t + z) 1
α
dz =

w +
∫ α

0
CV

1
α
dz = w + CV > (u2

k)
′(t).

Thus, u1
k(t) and u2

k(t) also satisfy Conditions (Ĉ1)–(Ĉ3), and hence, a (SL, SU)

policy is optimal for the dispatch decision in each period. �

For the case of uniformly distributed demand, Proposition 6 gives a sufficient

condition under which the (SL, SU) policy is optimal for a finite horizon problem. For

the (SL, SU) policy, 0 ≤ SL ≤ SU < ∞, where SL and SU can be 0. It is worth noting

that the (SL, SU) policy becomes a threshold policy when SL = 0 and SU > 0. And

when SL = SU = 0, the policy is equivalent to an immediate shipment policy. In the

(SL, SU) policy with 0 < SL < SU , sometimes it is optimal to dispatch a consolidated

load with weight less than SL. The reason is that when the reviewed consolidated

load is so low that a large weight that is good enough to receive shipment discount

cannot be attained within a reasonable holding periods, it is preferable to ship this

small load at a higher cost immediately.

IV.4.3. Computational Studies

In Sublevel IV.4.2, the optimal consolidation policies are examined under the assump-

tion that at each decision epoch, the depot should choose between dispatching the

entire consolidated load immediately, or continuing to consolidate until at least next

period. The structural (SL, SU) policies we identify is defined by two parameters SL

and SU . With some special values of SL and SU , this policy is reduced to the imme-
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diate shipment policy or a threshold policy. These policies are reasonable and easy to

implement, however, the “clearing property” is restrictive and the limitation on the

dispatch quantity can be suboptimal. Allowing partial load dispatch in this sublevel

(corresponding to the formulation (4.12)), we show with numerical examples that the

exact optimal policy for common carriage can be very complex.

Example 1 We demonstrate in this example that the policies discussed in Sublevel

IV.4.2 can also be exactly optimal for formulation (4.12)). Considering a 4-period

stochastic dynamic system, we compute the optimal policy through complete enu-

merations for state space on the interval [0, 200] for three sets of parameters:

(a). CN = 8, CV = 4, MWT = 80, WBT = 40, w = 3, Demand ∼ Uniform[0, 25];

(b). CN = 8, CV = 4, MWT = 80, WBT = 40, w = 3, Demand ∼ Uniform[0, 50];

(c). CN = 16, CV = 8, MWT = 80, WBT = 40, w = 3, Demand ∼ Uniform[0, 50].

For setting (a), an immediate shipment policy is optimal for each period. Setting

(b) only changes setting (a)’s order distribution from Uniform[0, 25] to Uniform[0, 50].

However, the optimal policy becomes a (SL, SU) Policy for each period. Modified from

setting (b) by doubling the freight transportation cost CN and CV , setting (c) exhibits

a threshold policy at optimality. The optimal dispatch quantity in period 4 for each

setting is illustrated in Figure 15, where the horizontal coordinate represents the

consolidated load t and the vertical coordinate represents the dispatch quantity. In

these settings, the exact optimal policies do possess the “clearing property” although

it is not assumed.

Example 2 For this example, we assume CN = 16, CV = 8, MWT = 80, WBT =

40, w = 1, order weight ∼ Uniform[0, 50]. The only difference between setting

(c) of Example 1 and this setting is the per-unit, per-period waiting cost w. Also
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Figure 15: Example 1 of Optimal Policies for Common Carriage Transportation
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testing this system for N = 4 periods, we find that the optimal policies for different

periods actually have different structures. Figure 16 depicts the dispatch quantities

of period 2, 3 and 4 respectively (the optimal policies for period 1 and 2 have the

same structure).

Figure 16: Example 2 of Optimal Policies for Common Carriage Transportation
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Period 2 Period 3 Period 4

In Example 2, when the consolidated load is of smaller size, in each period, it

is optimal to be idle. However, when the consolidated load is relatively large, the

dispatch policy differs period by period. And the “clearing property” is obviously not

satisfied in period 2 and 3, because there exist ranges of consolidated load on which

the optimal dispatch quantity is constant. That means part of the load is left at the
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depot and to be delivered together with some later orders in a later period.

From Example 1 and 2, we observe that the optimal policy structure can be

very different from one instance to another. After testing many additional parameter

settings, we fail to provide an explicit characterization of the optimal policy. The

existence of multiple possible optimal policy structures is due to the complexity of

the common carriage transportation cost.

IV.5. Multi-Truck Transportation with Cargo Capacity

In Sublevel IV.3, we consider the stochastic dynamic distribution system where the

transportation is performed by a single capacitated truck. However, in other cases,

the collection depot may possesses a fleet of trucks that are available to deliver the

shipments. Hence, in this sublevel, we consider the situation of multiple trucks.

Formulating the transportation cost in the structure of multiple setup costs like we

do in Chapter III, we examine the optimal consolidation policy of interest.

IV.5.1. Problem Formulation

Note that the dispatch quantity of the model in Sublevel IV.3 is restricted below

the cargo capacity C. In this sublevel, whenever the dispatch quantity exceeds the

cargo capacity, another identical truck is available for shipping the extra load. There-

fore, the transportation cost only depends on the number of the trucks used. The

transportation cost for dispatching a shipment of total weight t can be presented as

C̃M(t) = KD · I[t>0] + ct + ∆

⌈
t

C

⌉
, (4.23)

where KD is the fixed cost for a vehicle dispatch from the depot to the retailers, c

is the transportation cost per unit weight, and ∆ is the cost for using one truck.
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We assume the trucks are identical with truck capacity C. Figure 17 illustrates the

structure of this transportation cost.

Figure 17: Multi-Truck Transportation Cost with Cargo Capacity
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In addition, since all demands should be satisfied by the end of the planning

horizon, and the dispatch decision is made after the arrival of each demand, the unit

transportation cost c will not affect the decision. Thus, we assume c = 0 to simplify

the analysis, and hence, C̃M(t) can be represented as

C̃M(t) = KD · I[t>0] + ∆

⌈
t

C

⌉
. (4.24)

Letting t be the total weight of consolidated orders just before the dispatch

decision is made, we can write the optimality equation as:

Vn(t) =






min0≤a≤t

{
C̃M(a) + w(t− a) + E(Vn−1(t − a + Z))

}
, n = 1, ..., N,

C̃M(t), n = 0.

(4.25)
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This stochastic dynamic problem is challenging due to the fact that the term
⌈

t
C

⌉
in the transportation cost introduces a piecewise component with discontinuities

at the integer multiples of C. Hence, we also consider the case where the depot either

dispatches all the consolidated demands or does not make a shipment. Then the

optimality equation under the assumption can be written as follows.

Vn(t) =






min
{
wt + E(Vn−1(t + Z)), C̃M(t) + E(Vn−1(Z))

}
, n = 1, ..., N,

C̃M(t), n = 0.

(4.26)

Denote u1
n(t) and u2

n(t) as the cost-to-goes for dispatching and consolidating

demands in period n, respectively, i.e.,

u1
n(t) = wt + E(Vn−1(t + Z)), and u2

n(t) = C̃M(t) + E(Vn−1(Z)).

We can rewrite the optimality equation of period n = 1, ..., N as

Vn(t) =






u1
n(t), if t = 0,

min {u1
n(t), u

2
n(t)} , if t > 0.

(4.27)

IV.5.2. Analysis of the Optimal Policy

Since E(Vn−1(Z)) is constant, it is obvious that u2
n(t) is a step function and is left

continuous at any break point mC where m is a nonnegative integer. Important

properties of the value function Vn(t) are provided below. Based on these properties,

we develop the analysis on the structure of the optimal consolidation policy.

Property 5 For any period n, Vn(t) is non-decreasing in t and Vn(t+C)−Vn(t) ≥ ∆

for any t.

Proof of Property 5: We prove this by induction.
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• When n = 0, V0(t) = C̃M(t) = KD · I[t>0] +
⌈

t
C

⌉
· ∆. Obviously, V0(t) is non-

decreasing in t. In addition, when t = 0, V0(t + C) − V0(t) = V0(C) − V0(0) =

KD + ∆. When t > 0, V0(t + C)− V0(t) = ∆. Therefore, V0(t + C)−V0(t) ≥ ∆

for any t.

• Suppose Vk−1(t) possesses the properties described in Property 5, we need to

show for Vk(t). First, recall that u1
k(t) = wt + E(Vk−1(t + Z)) and u1

k(t) =

KD ·I[t>0] +
⌈

t
C

⌉
·∆+E(Vk−1(Z)). Since u1

k(t) and u2
k(t) are both non-decreasing

in t, Vk(t) = min (u1
k(t), u

2
k(t)) is also non-decreasing in t. Second, since we have

Vk−1(t + C) − Vk−1(t) ≥ ∆ for any t,

u1
k(t + C) − u1

k(t) = wC + E(Vk−1(t + C + Z) − Vk−1(t + Z)) ≥ wC + ∆.

and

u2
k(t + C) − u2

k(t) =






KD + ∆, if t = 0,

∆, if t > 0,

Then,

Vk(t + C) − Vk(t) = min
(
u1

k(t + C), u2
k(t + C)

)
− min

(
u1

k(t), u
2
k(t)
)

≥ min
(
u1

k(t) + ∆, u2
k(t) + ∆

)
− min

(
u1

k(t), u
2
k(t)
)

= min
(
u1

k(t), u
2
k(t)
)

+ ∆ − min
(
u1

k(t), u
2
k(t)
)

= ∆.

Thus, for any period n, Vn(t) is non-decreasing in t and Vn(t + C) − Vn(t) ≥ ∆ for

any t. The proof is complete. �

Property 5 means that at the end of period n, when the total weight of the

consolidated load is observed, the extra cost for having another full-truck load (C

units) of outstanding demands exceeds the cargo cost ∆. Due to Property 5 and the
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definitions of u1
n(t) and u2

n(t), for t > 0,






u1
n(t + C) − u1

n(t) > ∆,

u2
n(t + C) − u2

n(t) = ∆.

(4.28)

Expression (4.28) means that if the depot chooses to consolidate the orders, then

the extra cost-to-go for consolidating exactly one more truck load is greater than the

cargo cost. If the depot has to dispatch a shipment with a positive quantity, then

the extra cost-to-go for dispatching exactly one more truck load is equal to the cargo

cost. Furthermore, we have the following result.

Lemma 7 Suppose m is a positive integer,

(1). If u1
n((m − 1)C) < u2

n(mC) ≤ u1
n(mC), then

u2
n((m + 1)C) ≤ u1

n(mC) < u1
n((m + 1)C)

or

u1
n(mC) < u2

n((m + 1)C) ≤ u1
n((m + 1)C);

(2). If u1
n((m − 1)C) ≥ u2

n(mC), then

u1
n(mC) ≥ u2

n((m + 1)C).

Proof of Lemma 7:

(1). By (4.28), when m is a positive integer, u2
n((m + 1)C) = u2

n(mC) + ∆. Since

u1
n((m − 1)C) < u2

n(mC) ≤ u1
n(mC), equivalently,

u1
n((m − 1)C) + ∆ < u2

n((m + 1)C) ≤ u1
n(mC) + ∆.
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Case 1: If u2
n((m + 1)C) ≤ u1

n(mC), obviously,

u2
n((m + 1)C) ≤ u1

n(mC) < u1
n((m + 1)C).

Case 2: If u2
n((m + 1)C) > u1

n(mC), since u1
n(mC) ≥ u2

n(mC) and u2
n((m +

1)C) = u2
n(mC)+∆, it follows that u2

n((m+1)C) ≤ u1
n(mC)+∆. However, by

(4.28), u1
n((m + 1)C) > u1

n(mC) + ∆, thus,

u1
n(mC) < u2

n((m + 1)C) ≤ u1
n((m + 1)C).

(2). By (4.28), u1
n(mC) > u1

n((m − 1)C) + ∆ ≥ u2
n(mC) + ∆ = u2

n((m + 1)C). �

Lemma 7 gives the relationship between costs of alternatives with full truck loads

of consolidated demands. Specifically, in period n, if dispatching m fully loaded trucks

realizes a lower cost-to-go than holding them, then the cost-to-go for dispatching m+1

fully loaded trucks will not exceed the cost-to-go for holding the same amount. In

addition, if dispatching m fully loaded trucks costs more than holding (m−1)C units

of demands (holding one less truck load), then the comparison between the cost-to-

goes of dispatching (m + 1)C units and holding mC units is inconclusive. On the

other hand, if dispatching m fully loaded trucks costs less than holding one less truck

load, then dispatching m+1 fully loaded trucks also costs less than holding mC units.

For a positive consolidated load, we can divide the range into pieces with equal

length of C, i.e., (0,∞) = ∪∞
i=1((i − 1)C, iC]. Compare the cost-to-goes of two

options: u1
n(t) (consolidating the orders) and u2

n(t) (dispatching the consolidated

load) on interval ((m − 1)C, mC], where m is a natural number. It is worth noting

that we only need to compare three values u1
n(mC), u2

n((m−1)C) and u2
n(mC). That

is because u1
n(t) is constant and u2

n(t) is strictly increasing on this interval. There are

three cases:
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Case 1: u1
n((m − 1)C) < u2

n(mC) ≤ u1
n(mC).

Since u2
n(t) = u2

n(mC) on this interval, and u1
n(t) is continuous and strictly increasing,

there exists a critical point S such that on ((m−1)C, S], u2
n(t) ≥ u1

n(t) and on (S, mC],

u2
n(t) ≤ u1

n(t). Hence, it is optimal to consolidate the order on ((m − 1)C, S] and to

dispatch the load on (S, mC].

Case 2: u2
n(mC) ≤ u1

n((m − 1)C) < u1
n(mC).

This implies u2
n(t) ≤ u1

n(t) for any t ∈ ((m−1)C, mC]; hence, it is optimal to dispatch

the load.

Case 3: u1
n((m − 1)C) < u1

n(mC) ≤ u2
n(mC).

This implies u1
n(t) ≤ u2

n(t) for any t ∈ ((m − 1)C, mC]; hence, it is optimal to

consolidate the demands.

Consequently, statement (1) of Lemma 7 says that if on interval ((m−1)C, mC],

u1
n(t) and u2

n(t) satisfy the condition of Case 1, then on (mC, (m + 1)C], their rela-

tionship can be either Case 1 or Case 2. Meanwhile, statement (2) of Lemma 7 says

that if on ((m − 1)C, mC], u1
n(t) and u2

n(t) satisfy the condition of Case 2, then on

(mC, (m + 1)C], their relationship can only be Case 2. In this way, the property of

the optimal dispatch policy is characterized in Proposition 7.

Proposition 7 For any period n, there exist parameters TLn and TUn, such that

TLn ≤ TUn and 




u1
n(t) ≤ u2

n(t), if 0 < t ≤ TLn,

u1
n(t) ≥ u2

n(t), if t ≥ TUn.

(4.29)

Proof of Proposition 7: For n = 0, simple let TL0 = TU0 = 0. For n = 1, ..., N ,

we prove Proposition 7 by induction.
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• When n = 1,






u1
1(t) = wt + E

(
KD · I[t+Z>0] +

⌈
t+Z
C

⌉
· ∆
)
.

u2
1(t) = KD · I[t>0] +

⌈
t
C

⌉
· ∆ + E

(
KD · I[Z>0] +

⌈
Z
C

⌉
· ∆
)
,

Since u1
1(0) = u2

1(0), we are only interested in the optimal decision for the

consolidated load t ∈ (0,∞). Notice that when t > 0, the indicator function

I[t>0] and I[t+Z>0] are both equal to 1. Therefore, when t > 0,






u1
1(t) = wt + KD + E

(⌈
t+Z
C

⌉)
· ∆

u2
1(t) = KD +

⌈
t
C

⌉
· ∆ + KD · P (Z > 0) + E

(⌈
Z
C

⌉)
· ∆

It is obvious that
⌈

t+Z
C

⌉
≤
⌈

t
C

⌉
+
⌈

Z
C

⌉
, and hence, E

(⌈
t+Z
C

⌉)
≤
⌈

t
C

⌉
+ E

(⌈
Z
C

⌉)
.

Define

TL1 :=
KD · P (Z > 0)

w
, (4.30)

then, if 0 < t ≤ TL1, u1
1(t) ≤ u2

1(t).

On another hand, when the consolidated load t is not an integer multiple of the

cargo capacity C, we can write t = mC + ε, where m is a non-negative integer

and 0 < ε < C. Accordingly,

⌈
t

C

⌉
+

⌈
Z

C

⌉
= (m + 1) +

⌈
Z

C

⌉
=

⌈
mC + Z

C

⌉
+ 1 ≤

⌈
t + Z

C

⌉
+ 1.

It directly follows that,
⌈

t
C

⌉
+E

(⌈
Z
C

⌉)
≤ E

(⌈
t+Z
C

⌉)
+1. Therefore, if we define

TU1 :=
KD · P (Z > 0) + ∆

w
, (4.31)

when t ≥ TU1, u1
1(t) ≥ u2

1(t).

• Suppose equation (4.29) holds for period k − 1, we need to prove for period k.
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By the assumption on period k − 1, when t ≥ TUk−1, u1
k−1(t) ≥ u2

k−1(t). Then

we have

Vk−1(t) = u2
k−1(t) = KD +

⌈
t

C

⌉
· ∆ + E (Vk−2(Z)) .

Then let us consider period k for t > TUk−1,

u2
k(t) =KD +

⌈
t

C

⌉
· ∆ + E(Vk−1(Z)), and

u1
k(t) =wt + E(Vk−1(t + Z)) = wt +

∫ ∞

0

Vk−1(t + z)f(z)dz

=wt +

∫ ∞

0

[
KD +

⌈
t + z

C

⌉
∆ + E(Vk−2(Z))

]
f(z)dz

=wt + KD + E(Vk−2(Z)) +

∫ ∞

0

⌈
t + z

C

⌉
∆f(z)dz

=wt + KD + E(Vk−2(Z)) +

∫ ⌈ t
C ⌉C−t

0

⌈
t

C

⌉
∆f(z)dz

+

∞∑

i=1

∫ ⌈ t
C ⌉C−t+iC

⌈ t
C⌉C−t+(i−1)C

(

⌈
t

C

⌉
+ i)∆f(z)dz

=wt + KD + E(Vk−2(Z)) +

∫ ∞

0

⌈
t

C

⌉
∆f(z)dz +

∞∑

i=0

∫ ∞

⌈ t
C ⌉C−t+iC

∆f(z)dz

=wt + KD + E(Vk−2(Z)) +

⌈
t

C

⌉
∆ + ∆ ·

∞∑

i=0

∫ ∞

⌈ t
C⌉C−t+iC

f(z)dz.

To examine the value of u1
k(t), it is worth noting that

∫ ∞

(i+1)C

f(z)dz ≤

∫ ∞

⌈ t
C⌉C−t+iC

f(z)dz ≤

∫ ∞

iC

f(z)dz.

In addition,

∞∑

i=0

∫ ∞

iC

f(z)dz =

∞∑

i=1

∫ iC

(i−1)C

i · f(z)dz ≤

∫ ∞

0

z

C
f(z)dz + 1 =

µZ

C
+ 1,

and

∞∑

i=0

∫ ∞

(i+1)C

f(z)dz =

∞∑

i=1

∫ iC

(i−1)C

(i − 1) · f(z)dz ≥

∫ ∞

0

z

C
f(z)dz − 1 =

µZ

C
− 1
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together imply

µZ

C
− 1 ≤

∞∑

i=0

∫ ∞

⌈ t
C⌉C−t+iC

f(z)dz ≤
µZ

C
+ 1. (4.32)

Examine the difference between the costs of two choices, we have

u1
k(t) − u2

k(t) = wt + E(Vk−2(Z)) − E(Vk−1(Z)) + ∆ ·
∞∑

i=0

∫ ∞

⌈ t
C⌉C−t+iC

f(z)dz.

Since the term [E(Vk−1(Z0)) − E(Vk(Z))] is constant,
∑∞

i=0

∫∞

⌈ t
C ⌉C−t+iC

f(z)dz

is bounded according to (4.32), and wt is strictly increasing, u2
k(t) − u1

k(t) is

positive when t is sufficiently large. In other words, TUk exists. On the other

hand, Since u1
k(0) = u2

k(0) and

lim
t→0+

u2
k(t) = KD + ∆ + E(Vk−1(Z)) > E(Vk−1(Z)) = u1

k(0
+),

TLk exists such that for 0 < t ≤ TLk, u1
k(t) ≤ u2

k(t). The proof is complete. �

Proposition 7 specifies the optimal dispatch decision for the consolidated load

that is less than TLn or greater than TUn. To characterize the optimal decision

for the load located within TLn and TUn, let Sn,1
C be the greatest value such that

whenever t ≤ Sn,1
C , u1

n(t) ≤ u2
n(t). Then we can locate Sn,1

C in a unique interval

((m− 1)C, mC] for some integer m. By Lemma 7, there exist a sequence of numbers

Sn,1
C , Sn,2

C , ..., Sn,M
C , such that

Sn,1
C ≤

⌈
Sn,1

C

C

⌉
C < Sn,2

C ≤

⌈
Sn,2

C

C

⌉
C < ... < Sn,M

C ,
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and the optimal dispatch decision of period n can be expressed as

a∗
n(t) =






0 (consolidate the demands), t ≤ Sn,1
C

t (dispatch the demands), Sn,i
C < t ≤

⌈
Sn,i

C

C

⌉
C, i = 1, .., M − 1

0 (consolidate the demands),
⌈

Sn,i

C

C

⌉
C < t ≤ Sn,i+1

C , i = 1, .., M − 1

t (dispatch the demands), t ≥ Sn,M
C .

(4.33)

M is finite because of the existence of TUn. By the definition of Sn,1
C , Sn,1

C ≥ TLn.

Similarly, Sn,M
C ≤ TUn. From expression (4.33), the optimal decision shifts between

“consolidate the demands” and “dispatch the demands” in between TLn and TUn.

IV.5.3. Single Period Problem

A single period problem is examined in order to find the strict upper bound and

lower bound for parameters M , S1,1
C and S1,M

C . In the proof of Proposition 7, we

have shown that when t ≤ KD·P (Z>0)
w

, u1
1(t) ≤ u2

1(t), and when t ≥ KD·P (Z>0)+∆
w

,

u1
1(t) ≥ u2

1(t). Thus we need to examine the values of u1
1(t) and u2

1(t) for t ∈
(

KD·P (Z>0)
w

, KD·P (Z>0)+∆
w

)
.

Recall that at t = mC where m is a positive integer, E
(⌈

t+Z
C

⌉)
=
⌈

t
C

⌉
+E

(⌈
Z
C

⌉)
.

Since t > KD·P (Z>0)
w

,

KD + wt + E

(⌈
t + Z

C

⌉)
· ∆ > KD + KD · P (Z > 0) +

⌈
t

C

⌉
∆ + E

(⌈
Z

C

⌉)
∆.

Equivalently, u2
1(t) < u1

1(t). Hence, it is optimal to dispatch the consolidated load.

In fact, the weight of a full-truck consolidated load (in the form of mC) within

the range
(

KD·P (Z>0)
w

, KD·P (Z>0)+∆
w

)
always belongs to the set below:

L =

{(⌊
KD · P (Z > 0)

wC

⌋
+ 1

)
C, ...,

(⌈
KD · P (Z > 0) + ∆

wC

⌉
− 1

)
C

}
.
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If ⌈
KD · P (Z > 0) + ∆

wC

⌉
− 1 <

⌊
KD · P (Z > 0)

wC

⌋
+ 1, (4.34)

there is no full-truck consolidated load in this range. Therefore, the optimal policy is

actually a threshold policy, and M = 1.

If (4.34) does not hold, the range
(

KD·P (Z>0)
w

, KD·P (Z>0)+∆
w

)
can be divided into

several pieces by the points of L. (If there are I points in L, then this range can be

divided into I + 1 pieces). On each piece, the transportation cost are the same, i.e.,
⌈

t
C

⌉
is constant. As a result, u2

1(t) is constant. Since u1
1(t) is continuous and strictly

increasing, u1
1(t) = u2

1(t) has at most 1 solution on each piece.

Consider one piece. Denote tl and tr as the end points where tl < tr. From the

above analysis, whether the end point tr is in the form of mC or KD·P (Z>0)+∆
w

, we

always have u1
1(tr) ≥ u2

1(tr). And at the end point tl, then

• if tl = KD·P (Z>0)
w

,

u1
1(tl) = KD · P (Z > 0) + KD + E

(⌈
tl + Z

C

⌉)
∆.

and

u2
1(tl) = KD +

⌈
tl
C

⌉
∆ + KD · P (Z > 0) + E

(⌈
Z

C

⌉)
∆,

Thus, u1
1(tl) ≤ u2

1(tl). It follows that there exists a critical value that divides

this piece into two parts. On the first part, u1
1(t) ≤ u2

1(t). On the second part,

u1
1(t) > u2

1(t).

• if tl = mC for some integer m then u2
1(t

+
l ) = u2

1(tl)+∆ = u2
1(tl +C). Explicitly,

u2
1(tl) =KD +

⌈
tl
C

⌉
∆ + KD · P (Z > 0) + E

(⌈
Z

C

⌉)
∆

=KD + m∆ + KD · P (Z > 0) + E

(⌈
Z

C

⌉)
∆,
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and

u2
1(t

+
l ) = KD + m∆ + KD · P (Z > 0) + ∆ + E

(⌈
Z

C

⌉)
∆.

On the other hand, u1
1(t) is continuous and

u1
1(t

+
l ) =u1

1(tl) = wtl + KD + E

(⌈
t + Z

C

⌉)
∆ = wtl + KD + m∆ + E

(⌈
Z

C

⌉)
∆.

Since tl ∈
(

KD·P (Z>0)
w

, KD·P (Z>0)+∆
w

)
,

KD · P (Z > 0) < wtl < KD · P (Z > 0) + ∆.

Thus,

u2
1(tl) < u1

1(tl) = u1
1(t

+
l ) < u2

1(t
+
l ).

This implies that on a piece (tl, tr], u2
1(t) is constant, u1

1(t) is increasing, and u1
1(t) =

u2
1(t) has exactly one solution. Therefore

M =

⌈
KD · P (Z > 0) + ∆

wC

⌉
−

⌊
KD · P (Z > 0)

wC

⌋
,

KD · P (Z > 0)

w
< S1,1

C ≤

(⌊
KD · P (Z > 0)

wC

⌋
+ 1

)
C,

and (⌈
KD · P (Z > 0) + ∆

wC

⌉
− 1

)
C < S1,M

C ≤
KD · P (Z > 0) + ∆

w
.

Especially when the demand in each period is uniformly distributed over [0, b],

it can be seen that

u1
n(t) = wt +

1

b

∫ b

0

Vn−1(t + x)dz.

Taking the first derivative of u2
n(t), we have

du1
n(t)

dt
=w +

1

b
·

d

dt

∫ b

0

Vn−1(t + z)dz = w +
1

b
· (Vn−1(t + b) − Vn−1(t)) .
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It can be demonstrated that,

w +
∆

b
·

⌊
b

C

⌋
≤ w +

1

b
·

(
Vn−1(t +

⌊
b

C

⌋
C) − Vn−1(t)

)
≤

du1
n(t)

dt
≤ w +

∆

b
·

⌈
b

C

⌉
.

Then the bounds of Mn can be determined as follows: If there exist some integers

m1 and m2 such that

∆

C
(1 +

1

m1
) ≤ w +

∆

b

⌊
b

C

⌋
<

∆

C
(1 +

1

m1 − 1
) (4.35)

and

∆

C
(1 +

1

m2
) ≤ w +

∆

b

⌈
b

C

⌉
<

∆

C
(1 +

1

m2 − 1
), (4.36)

then

Mmax
n = m1 + 1, and Mmin

n = m2.

Reorganize (4.35), we have

1

m1

≤
wC

∆
+

C

b

⌊
b

C

⌋
− 1 <

1

m1 − 1
,

and hence

(
wC

∆
+

C

b

⌊
b

C

⌋
− 1

)−1

≤ m1 <

(
wC

∆
+

C

b

⌊
b

C

⌋
− 1

)−1

+ 1.

Therefore,

Mmax
n =

⌈(
wC

∆
+

C

b

⌊
b

C

⌋
− 1

)−1
⌉

+ 1.

Similarly,

Mmin
n =

⌈(
wC

∆
+

C

b

⌈
b

C

⌉
− 1

)−1
⌉

.

IV.6. Summary

The focus of this chapter is on the theoretical analysis of the exact optimal policies

for outbound shipment consolidation. By using a stochastic dynamic programming
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approach, we study a periodic-review consolidation problem where a single collection

depot serves multiple retailers located in a given market area. Four different options

including the private carriage without cargo capacity and cost, single-truck trans-

portation with cargo capacity and fixed cost, common carriage, and multi-truck fleet

with cargo capacity are considered for the transportation.

After examining the properties of the value functions of the stochastic dynamic

models, we demonstrate that the structure of the optimal policies for the private fleet

transportation without cargo capacity, is in the form of a state-dependent threshold

policy. Specifically, when the total weight of consolidated orders is observed, there

exists a critical amount such that if the observed total weight is higher than this

amount, it is optimal to dispatch all the waiting demands; otherwise, it is optimal

to continue to consolidate the orders. For the capacitated private fleet transporta-

tion model, the optimal policy is also a threshold policy. For the common carriage

model, the exact optimal policy is difficult to identify due to the special structure of

transportation cost. With different parameter settings, the optimal policy can be an

immediate dispatch policy (no matter how many orders are consolidated, it is always

optimal to satisfy them immediately in each period), or a threshold policy (there

exists a threshold value so that whenever the consolidated weight exceeds the thresh-

old, it is optimal to release all waiting orders; otherwise, continue to consolidate), or

a more complicated and named as (SL, SU) policy (when the consolidated weight is

less than SL or greater than SU , dispatch the load; otherwise, consolidate). We pro-

vide sufficient conditions under which these policies are optimal. For the multi-truck

model, the exact optimal policy is also complicated. And some preliminary results

are provided.
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CHAPTER V

THE VENDOR’S OPTIMAL STOCK REPLENISHMENT AND SHIPMENT

SCHEDULING POLICY UNDER TEMPORAL SHIPMENT CONSOLIDATION

In Chapter III and Chapter IV, we examine the optimal inventory replenishment de-

cision and the optimal consolidation dispatch schedule separately. Numerous theoret-

ical results and practical experiences demonstrate that the efficient management of a

supply chain system requires coordination between inventory control and transporta-

tion scheduling. Such integration is particularly implementable in a Vendor-Managed

inventory (VMI) system.

VMI practices have been increasingly popular over the past decade following their

widespread implementation by major manufacturers, such as Proctor and Gamble,

and mass-retailers, such as Wal-Mart. In this chapter, we consider a joint stock

replenishment and shipment scheduling problem applicable in the context of a VMI

contract under stochastic demand. Çetinkaya and Lee (2000) are the first to introduce

the problem of interest in the current research while focusing on a practical–but clearly

suboptimal–policy. Our objective on the other hand is to identify the structural

properties of the vendor’s optimal joint policies and, to the best of our knowledge,

the current research is the first attempt to this end.

More specifically, we examine a single-product, stochastic demand, periodic-

review, two-echelon inventory model for a vendor who makes inbound stock replen-

ishment and outbound shipment scheduling decisions, simultaneously, in the VMI

setting of interest. This setting is further characterized by the vendor’s flexibility

to consolidate smaller orders over time from a group of retailers located in a given

geographical region to realize transportation scale economies.
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The retailers are willing to wait to receive their orders at an additional expense

for the vendor to include retailer waiting (order delay) and inventory holding costs

due to shipment consolidation. It is worth noting that such a shipment consolidation

practice is known as temporal consolidation which makes practical sense if it can offer

acceptable customer service without excessive order delay and economical sense when

immediate order deliveries are expensive.

We assume that the vendor operates a private truck with ample capacity to

transport the merchandise from its supplier (manufacturer) to her warehouse as well

as from the warehouse to the retailers’ locations. As a result, both the inbound re-

plenishment cost and the outbound transportation cost are composed of a fixed and

a linear term. This type of cost function has been used very often in the literature

because of its simple structure representing the economies of scale in production,

procurement, and transportation. Considering the vendor’s inbound replenishment,

inventory holding, outbound transportation, and customer waiting costs, we propose

a stochastic dynamic programming approach for the purpose of computing the opti-

mal joint policy specifying the optimal (i) inbound replenishment and (ii) outbound

dispatch quantities.

Our first main result identifies the structure of the optimal policy for a single-

period problem for an arbitrary period (i.e., not necessarily the last period), provided

that the cost-to-go function of the next period belongs to a specific family of functions

characterized explicitly. The optimal policy is basically a zoned, state-dependent

threshold policy. We characterize the optimal policy based on the difference between

the two state variables, i.e., the consolidated load waiting to be released minus the

on-hand inventory. This quantity is instrumental for our analysis and represents the

consolidated load excess of on-hand inventory when it is positive, and it stands for the

inventory excess of consolidated load when it is negative. We call this quantity the



140

“excess position” in the remaining part of this chapter. “Load excess” and “inventory

excess” are also respectively used to denote the absolute values of the positive or

negative excess position when necessary. Depending on the excess position, the two-

dimensional state space can be divided into three zones, and hence, the optimal policy

characterizing the vendor’s optimal inbound replenishment and outbound dispatch

quantities can be described as follows: On each zone, the optimal inbound stock

replenishment and outbound shipment scheduling decisions can be specified by a

threshold policy. As a result, in each period the optimal decisions are based on the

following four options: (1) do not replenish and do not dispatch; (2) do not replenish

and dispatch the entire consolidated load; (3) do not replenish and dispatch the

entire on-hand inventory; (4) replenish an amount so that after dispatching the entire

consolidated load, the remaining inventory level is equal to a critical target value.

It is worth noting that when option (3) is the optimal decision for a given state,

the on-hand inventory must be less than the consolidated load. After the decision

is executed, the on-hand inventory level drops to zero, and the consolidated load

remains positive. This phenomenon indicates that this joint policy does not have

the clearing property. We show that when the replenishment quantity is given and

fixed, the optimal dispatch decision is either to dispatch as much as possible or not

to dispatch. Of course, if the vendor replenishes sufficient inventory to satisfy the

entire consolidated load when an outbound shipment needs to be made, then the

clearing property will be satisfied. However, due to the economies of scale in the

inbound replenishment represented by the fixed replenishment cost, it is possible

that the most economical replenishment quantity necessitating the clearance of the

consolidated load is small. Then, replenishing a small quantity to clear the load may

cost more than paying some waiting cost for delaying the fulfillment of part of the

consolidated load without stock replenishment.
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Our second main result provides a formal proof that the cost-to-go function of

each period always belongs to the specific family of functions characterized, regardless

of the parameter settings. It follows that in any period during a finite horizon prob-

lem, the optimal policy is in the form of a zoned, state-dependent threshold policy

described above. For any specific period, the vendor should replenish her inventory if

and only if the vendor’s load excess exceeds a certain level and the on-hand inventory

level is above a threshold value. The corresponding optimal replenishment quantity

is equal to the summation of the load excess and a critical value. In all other situ-

ations, the lowest cost is achieved when there is no inventory replenishment at the

vendor. For the cases when the size of consolidated load is small, or both the on-hand

inventory level and the load excess are low, it is preferable to choose to be idle in that

period, i.e., do not replenish and do not dispatch. When the load excess is lower than

a quantity or there is inventory excess, if the on-hand inventory level is higher than

a state-dependent threshold value, then it is optimal to dispatch as much as possible

consolidated load.

We find that the optimal policy has the following interesting characteristics:

• From our common intuition, inbound replenishment is not required when the on-

hand inventory level is high, and an outbound shipment needs to be made when

the consolidated load is large. However, the optimal joint policy structure we

characterized relies more on the difference between the two states (the excess

position) instead of the values of the states themselves. For example, when

both the on-hand inventory level and the size of the consolidated load are large,

people would think to make an outbound dispatch without replenishing the

inventory. But in fact, as far as the load excess (a positive excess position)

exceeds a critical level, the vendor still needs to replenish her stock. On the
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contrary, when both amounts are small, as far as their difference is also small,

it is still possible to make an outbound dispatch without replenishment.

• In the literature, when the inbound replenishment cost includes a fixed term,

usually the replenishment policy consists of one parameter denoting an order-up-

to level. In our problem, when the outbound dispatch scheduling is integrated

with the inbound replenishment, the optimal replenishment quantity actually

varies case by case, and a common order-up-to level does not exists. However,

whenever the inventory is replenished, after the consolidated load is dispatched,

the remaining on-hand inventory is always equal to a critical value.

• When the vendor has a large amount of on-hand inventory that is sufficient

to satisfy the consolidated load, it is not always optimal to dispatch the load.

That is to say, in some situations, paying for some extra holding cost and

order waiting cost is still more preferable to paying a transportation cost for

dispatching the load. Due to the fixed transportation cost, when the size of the

consolidated load is small, it is justified to wait until an economical dispatch

quantity is accumulated in a later period.

• When the consolidated load exceeds the on-hand inventory level, and the ven-

dor chooses to make an outbound dispatch, it is not necessary to satisfy all the

waiting orders. Therefore, “clearing policy” may not be optimal for the joint

inventory replenishment and outbound dispatch scheduling problem. The con-

solidated load is only cleared under two situations: on-hand inventory is more

than the consolidated load, and the load excess is vast.

The remainder of this chapter is organized as follows: In Sublevel V.1, we discuss

the details of the problem setting and present the problem formulation; in Sublevel
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V.2, we examine the properties of the terminal cost, solve a “single-period” problem

and propose a new joint inventory replenishment and shipment scheduling policy;

in Sublevel V.3, we analyze the optimality of the new policy for multiple-period

models; and in Sublevel V.4, we provide summary and recommend the focus for

future research.

V.1. Notation and Problem Formulation

In our model, a single vendor receives orders from a group of retailers and replenishes

her own inventory from an ample supplier over a discrete and finite time-horizon. In

contrast to the traditional inventory systems where orders are satisfied as they arrive

at the vendor, we assume that the vendor controls the retailer’s resupply under a

VMI contract, thus, the vendor has the autonomy to consolidate small orders until

a dispatch quantity that economizes shipping costs is accumulated. In this setting,

the vendor has the authority to coordinate the inbound inventory replenishment and

the outbound shipment scheduling to achieve the maximum cost savings. The cost

involved in this model consists of inbound replenishment cost, holding cost for excess

inventory items, outbound transportation cost, and waiting cost for delayed orders.

We consider the system over N periods. Adopting the standard dynamic pro-

gramming approach, we index the periods in a backward order so that they occur

over time in the order N , N − 1,...0, and period 0 is the end of the planning horizon.

An illustration is given in Figure 18, and a summary of basic notation is provided

below. However, notation is also introduced throughout this chapter when needed.

System Parameters:

N length of the planning horizon

n period index
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Zn random quantity of retailer orders in period n (we use Z to denote a

generic element with density and distribution functions f(·) and F (·))

AR fixed cost of inbound replenishment

AD fixed cost of outbound transportation

cR unit inbound replenishment cost

cD unit outbound transportation cost

h inventory holding cost per unit per period

w customer waiting cost per unit per period

W (a) inbound replenishment cost for replenishing a units

W (a) = AR · I[a>0] + cR · a

C̃(l) outbound transportation cost for dispatching l units

C̃(l) = AD · I[l>0] + cD · l

States:

xn on-hand inventory level in period n, before the joint decisions are made

tn consolidated load waiting to be released in period n, before the joint

decisions are made

Decisions:

a∗
n(x, t) optimal inbound replenishment quantity in period n with x on-hand

inventory and t consolidated load

l∗n(x, t) optimal outbound dispatch quantity in period n with x on-hand inven-

tory and t consolidated load

Optimality Equation:

Vn(x, t) optimal expected total cost from period n to the end with x on-hand in-

ventory and t consolidated load (called the cost-to-go function of period

n)
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Figure 18: Problem Setting of the VMI System

V

S

R1

R2 R3

(xn, tn)

Zn ∼ f(·)

an

ln

(xn−1, tn−1)

In Figure 18, S, V and Ri represent the supplier, the vendor and the retailers,

respectively. During period n, a combined retailer order with quantity Zn is received

at the vendor. Zn’s are independent and identically distributed random variables

described by the density function f(·). Whenever a retailer order is received, the

vendor reviews her on-hand inventory level xn and the consolidated load tn. Based on

xn and tn, the vendor makes decisions regarding the inbound replenishment quantity

an and the outbound dispatch quantity ln. At the end of period n, the remaining

inventory xn−1 is carried to the next period (period n−1), and all unsatisfied retailer

orders tn−1 in period n are consolidated for at least one more period. We assume that

the vendor’s replenishment is received instantaneously and can be dispatched to the

retailer in the same time period. All retailer demands should be satisfied by the end

of the planning horizon.
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We denote W (a) as the inbound replenishment cost for replenishing a (a ≥ 0)

units and denote C̃(l) as the outbound transportation cost for dispatching l (l ≥ 0)

units. Since a private fleet is assumed to be used in both the inbound and outbound

logistics, both the inbound replenishment cost and the outbound transportation cost

are linear with a fixed cost, expressed as W (a) = AR · I[a>0] + cRa and C̃(l) =

AD · I[l>0] + cDl. Here, AR and AD are the fixed costs associated with the inbound

replenishment and outbound shipment, respectively. In practice, AR may include the

cost for reviewing the inventory levels and the administrative cost for replenishing

inventory. AD may include the fixed cost of processing a dispatching command, the

maintenance and usage cost of the truck, and even the salary paid to the truck driver.

cR and cD are unit replenishment or transportation costs that are volume-related.

The remaining inventory incurs inventory holding cost at h per unit per period, and

the remaining consolidated load incurs waiting cost at w per unit per period. All

transportation and inventory cost parameters are stationary.

Because we assume the joint decisions are made after the realization of the retailer

demands and all demands should be satisfied by the end of the planning horizon, the

unit transportation cost cD actually does not affect the joint decisions. To simplify

the analysis, we assume cD = 0, therefore, C̃(l) can be modified as C̃(l) = AD · I[l>0].

We can formulate this problem as a stochastic dynamic program. Since the

dispatch quantity cannot exceed the available on-hand inventory level and also would

not be more than the consolidated load, it follows that 0 ≤ ln ≤ min(xn +an, tn). Let

Vn(x, t) be the infimum of the expected total cost over periods n, n − 1,...,0 starting

with on-hand inventory of x units and consolidated load of t units. Then Vn(x, t) is

expressed as follows:
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Vn(x, t) =






inf a≥0
0≤l≤min(x+a,t)

{
W (a) + C̃(l) + h(x + a − l) + w(t − l)

+E (Vn−1 (x + a − l, t − l + Z))

}
, n = 1, ..., N,

infa≥(t−x)+

l=t

{
W (a) + C̃(l) + h(x + a − l)

}
, n = 0.

(5.1)

Letting

vn(a, l|x, t) = W (a)+C̃(l)+h(x+a−l)+w(t−l)+E (Vn−1 (x + a − l, t − l + Z)) (5.2)

denote the cost for replenishing a units of inventory and dispatching l units of con-

solidated orders in period n when the on-hand inventory level is x and the size of the

consolidated load is t, we have

Vn(x, t) = inf
a≥0

0≤l≤min(x+a,t)

vn(a, l|x, t) for n = 1, ..., N.

To make the optimal inventory replenishment and dispatch scheduling decisions

simultaneously, one method is to consider the cases of “do not dispatch” and “dis-

patch” separately, optimize each case individually and choose the one that gives a

lower expected cost. For this purpose, two functions u1
n(x, t) and u2

n(x, t) are defined

such that u1
n(x, t) represents the optimal cost-to-go function if no outbound shipment

is going to be released in period n, and u2
n(x, t) represents the optimal cost-to-go func-

tion if a positive size of consolidated load will be dispatched. Specifically, u1
n(x, t) and

u2
n(x, t) are represented as

u1
n(x, t) = inf

a≥0
l=0

vn(a, l|x, t), x ≥ 0, t ≥ 0

u2
n(x, t) = inf

a≥0
0<l≤min(x+a,t)

vn(a, l|x, t), x ≥ 0, t > 0.

Here, u1
n(x, t) is defined on a two-dimensional space with x ∈ [0,∞) and t ∈
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[0,∞). For u2
n(x, t), when no retailer order is consolidated at the vendor, the out-

bound dispatch quantity can only take the value of zero, i.e., if t = 0, then l = 0.

Thus, u2
n(x, t) is defined on a two-dimensional space with x ∈ [0,∞) and t ∈ (0,∞).

Consequently, the optimality equation can be rewritten as

Vn(x, t) =






u1
n(x, t), if t = 0,

min {u1
n(x, t), u2

n(x, t)} , if t > 0.

(5.3)

By this formulation, the optimization problem in each period is decomposed into

two subproblems associated with optimizing u1
n(x, t) and u2

n(x, t), respectively. In the

remaining part of this chapter, these two subproblems are solved individually, and

the optimal joint decisions are obtained.

V.2. A “Single-Period” Problem

According to (5.1), the optimal joint decisions in period n actually depend on the

cost-to-go function of period n − 1, i.e., Vn−1(x, t). However, due to the existence

of the fixed costs in the inbound replenishment and outbound transportation, the

cost-to-go function Vn−1(x, t) is neither jointly convex in x and t nor monotonically

increasing or decreasing in any dimension; hence, specific structures of the cost-to-go

function need to be characterized.

In Sublevel V.2.1, we examine the properties of the terminal cost, i.e., V0(x, t). In

Sublevel V.2.2, these properties are assumed for the cost-to-go function of an arbitrary

period n − 1, and the optimal joint decisions for period n are identified.
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V.2.1. Properties of the Terminal Cost

The terminal cost is the cost that occurs at the end of the planning horizon for

handling the ending inventory and ending consolidated load. In this model, the

terminal cost is V0(x, t) for x units of ending inventory and t units of consolidated

load. Since all demand needs to be satisfied, the dispatch quantity l = t. Then we

have

V0(x, t) = inf
a≥(t−x)+

{
W (a) + C̃(t) + h(x + a − t)

}
.

With the term in the braces increasing in a, the optimal replenishment quantity

is a∗
0(x, t) = (t − x)+, and V0(x, t) can be explicitly written as follows:

V0(x, t) = W ((t − x)+) + C̃(t) + h(x − t + (t − x)+)

=






AD · I[t>0] + h(x − t), if t ≤ x,

AR + cR(t − x) + AD, if t > x.

(5.4)

This equation shows that if the ending inventory is more than the consolidated load,

the terminal cost is equal to the transportation cost for dispatching the entire consoli-

dated load plus the holding cost for the excess inventory. Otherwise, the vendor needs

to replenish her stock so that every retailer order can be fulfilled. Thus, the terminal

cost is equal to the transportation cost plus the cost for replenishing extra units. The

terminal cost function expressed in (5.4) possesses the following properties.

Property 6 For any fixed t ≥ 0, V0(x, t) → ∞ as x → ∞. E(V0(x, Z)) + (cR + h)x

is continuous in x and has a minimizer S on x ∈ [0,∞). E(V0(x, t + Z)) is also

continuous on the two-dimensional state space of (x, t) for x, t ∈ [0,∞).

Proof of Property 6: First, let γ0,1(x, t) = AD · I[t>0] + h(x − t) and γ0,2(x, t) =
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AR + cR(t − x) + AD; then

V0(x, t) =






γ0,1(x, t), if t ≤ x,

γ0,2(x, t), if t > x.

For any fixed t ≥ 0,

lim
x→∞

V0(x, t) = lim
x→∞

γ0,1(x, t) = lim
x→∞

(
AD · I[t>0] + h(x − t)

)
= ∞.

Notice that for a fixed t, both γ0,1(x, t) and γ0,2(x, t) are continuous in x. Then,

E(V0(x, Z)) =

∫ ∞

0

V0(x, z)f(z)dz =

∫ x

0

γ0,1(x, z)f(z)dz +

∫ ∞

x

γ0,2(x, z)f(z)dz

is also continuous in x. Consequently, E(V0(x, Z)) + (cR + h)x is continuous in x.

When x → ∞ for a fixed t, since V0(x, t) goes to ∞, E(V0(x, Z))+(cR +h)x also

goes to ∞. Combining this observation with the condition that E(V0(x, Z))+(cR+h)x

is continuous on x ∈ [0,∞), there exists an S ∈ [0,∞) such that E(V0(S, Z)) + (cR +

h)S ≤ E(V0(x, Z)) + (cR + h)x, for any x ≥ 0. In other words, S is a minimizer of

E(V0(x, Z)) + (cR + h)x on [0,∞). The continuity of E(V0(x, t + Z)) in x and t can

be proved similarly by writing the expectation as E(V0(x, t+Z)) =
∫ (x−t)+

0
γ0,1(x, t+

z)f(z)dz +
∫∞

(x−t)+
γ0,2(x, t + z))f(z)dz. �

Property 6 says that the terminal cost approaches infinity when the on-hand

inventory level goes to infinity. In addition, if the vendor clears the consolidated load

in period 1 and needs to carry some on-hand inventory into the last period (period 0),

the sum of the procurement cost for replenishing that inventory amount, the holding

cost for carrying it for one period, and the expected terminal cost is minimized when

the vendor carries S (i.e., the critical amount of inventory from period 1 to period 0).

Property 7 For any fixed x ≥ 0, t ≥ 0 and δ > 0, we have V0(x, t) − V0(x + δ, t) ≤
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AR + (cR + h)δ.

Proof of Property 7: For fixed x ≥ 0, t ≥ 0 and δ > 0, we examine the value of

V0(x + δ, t) − V0(x, t) in three cases.

Case 1: If x < x + δ < t,

V0(x + δ, t) − V0(x, t) = AR + cR(t − x − δ) + AD − AR − cR(t − x) − AD

= −cRδ ≥ −AR − (cR + h)δ.

Case 2: If x < t ≤ x + δ,

V0(x + δ, t) − V0(x, t) = AD + h(x + δ − t) − AR − cR(t − x) − AD

= − AR − (cR + h)(t − x) + h · δ ≥ −AR − (cR + h)δ + h · δ ≥ −AR − (cR + h)δ.

Case 3: If t ≤ x < x + δ,

V0(x + δ, t) − V0(x, t) = AD · I[t>0] + h(x + δ − t) − AD · I[t>0] − h(x − t)

= h · δ ≥ −AR − (cR + h)δ.

In all cases, V0(x + δ, t) − V0(x, t) ≥ −AR − (cR + h)δ. Thus, Property 7 holds. �

Property 7 says that the marginal cost for having δ units less on-hand inventory

at the beginning of period 0 is at most equal to the cost for replenishing δ units in

the previous period and carrying them to the current period.

Property 8 For any fixed ∆, V0(x, x + ∆) is non-decreasing in x.

Proof of Property 8: For any fixed ∆, the terminal cost V0(x, x + ∆) is given by:

V0(x, x + ∆) =






AD · I[x+∆>0] − h · ∆, if ∆ ≤ 0,

AR + cR · ∆ + AD, if ∆ > 0.
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From the above equation, it is straightforward to observe that V0(x, x + ∆) is always

non-decreasing in x. �

Property 8 says that if the excess position is fixed, the terminal cost is non-

decreasing in the on-hand inventory level.

Property 9 For t > 0, dV0(0,t)
dt

≥ cR.

Proof of Property 9: For any t > 0, V0(0, t) = AR + cRt + AD. Therefore,

dV0(0,t)
dt

= cR ≥ cR. �

Property 9 says that if there is no on-hand inventory at the beginning of the last

period, the marginal terminal cost with respect to the consolidated load exceeds the

unit procurement cost.

V.2.2. Optimal Joint Decision for Period n

Replacing V0(x, t) with a general two-dimensional function V (x, t), we define a family

of functions such that each function in this family possesses Properties 6 through 9

described above.

Definition 4 For given parameters AR, cR and h, define a family V of two dimen-

sional functions, such that when a function V (x, t) ∈ V, the following conditions are

satisfied.

(A1) For any fixed t ≥ 0, V (x, t) → ∞ as x → ∞. E(V (x, Z)) + (cR + h)x is

continuous in x and has a minimizer S on x ∈ [0,∞). E(V (x, t + Z)) is

continuous on the state space of (x, t) for x, t ∈ [0,∞).

(A2) For any fixed x ≥ 0, t ≥ 0 and δ > 0, we have V (x + δ, t) − V (x, t) ≥ −AR −

(cR + h)δ.

(A3) For any fixed ∆, V (x, x + ∆) is non-decreasing in x.
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(A4) For t > 0, dV (0,t)
dt

≥ cR.

For the purpose of this chapter, V (x, t) represents the cost-to-go function given

be equation 5.1. With this representation, Conditions (A1)–(A4) have the similar

interpretations as Properties 6 through 9, and Conditions (A1)–(A4) will be used to

solve for the optimal joint decisions. For period n (n > 0), the cost-to-go function is

obtained via solving the following optimality equation:

Vn(x, t) = inf
a≥0

0≤l≤min(x+a,t)






W (a) + C̃(l) + h(x + a − l) + w(t− l)

+E (Vn−1 (x + a − l, t − l + Z))





.

Therefore, the optimal joint decision in period n depends on the cost-to-go func-

tion of period n − 1. According to expression (5.3), we examine the optimal joint

decisions for “do not dispatch” and “dispatch” cases separately and select the more

preferable one, i.e., the one with a lower total expected cost.

Lemma 8 (Optimal joint decision for the “do not dispatch” case) For the

case where no outbound shipment is going to be released in period n, if Vn−1(x, t)

belongs to the family V, then the optimal replenishment quantity in period n is zero.

That is, the optimal joint decision is given by

a∗
n = 0, l∗n = 0, (5.5)

and the corresponding cost-to-go is

u1
n(x, t) = vn(0, 0|x, t) = hx + wt + E(Vn−1(x, t + Z)). (5.6)

Proof of Lemma 8: In period n, when there are x (x ≥ 0) units of on-hand inventory

and t units of consolidated load waiting to be released, the minimum achievable cost
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for consolidating all orders to the next period is

u1
n(x, t) = inf

a≥0
l=0

vn(a, l|x, t) = inf
a≥0

{W (a) + h(x + a) + wt + E (Vn−1 (x + a, t + Z))} .

Since Vn−1(x, t) ∈ V, according to Condition (A2) and the linearity of the expectation

operator, for ∀ a > 0, x ≥ 0 and t ≥ 0, we have E(Vn−1(x+a, t+Z))−E(Vn−1(x, t+

Z)) ≥ −AR − (cR + h)a. Thus, the cost for ordering a positive quantity a and

dispatching nothing is

vn(a, 0|x, t) = AR + cRa + h(x + a) + wt + E(Vn−1(x + a, t + Z))

≥ AR + cRa + h(x + a) + wt + E(Vn−1(x, t + Z)) − AR − (cR + h)a

= hx + wt + E(Vn−1(x, t + Z)) = vn(0, 0|x, t).

This implies that when no consolidated order is going to be dispatched, it is never

optimal to replenish the vendor’s inventory. Therefore, (5.5) and (5.6) hold and the

proof is complete. �

When no shipment is going to be released in period n, since replenishing the stock

without dispatching a shipment will incur extra inventory holding cost compared to

replenishing that amount in a later period, it is optimal to be idle. Note that when

there is no consolidated order (t = 0), the vendor surely chooses not to dispatch.

By Lemma 8, the optimal replenishment quantity is also zero, therefore, the optimal

joint decision is “do not replenish and do not dispatch”, and the cost-to-go function

is given by Vn(x, 0) = vn(0, 0|x, 0). For t > 0, the optimal joint decision requires

the comparison of u1
n(x, t) and u2

n(x, t). Hence, our next step is to examine u2
n(x, t)

to find the optimal inbound replenishment and outbound dispatch quantities if the

vendor must dispatch a positive size of consolidated load. It is worth mentioning that

u2
n(x, t) is defined on x ∈ [0,∞) and t ∈ (0,∞).
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Lemma 9 (Optimal joint decision for the “dispatch” case) For the case

where a positive size of consolidated load must be dispatched in period n, i.e., t > 0,

if Vn−1(x, t) belongs to V, then there exist two nonnegative parameters Sn and ∆∗
n

that define the joint policy. Sn is the minimizer of E (Vn−1(x, Z)) + (cR + h)x on

x ∈ [0,∞), and ∆∗
n is the unique solution to the following equation:

AR+cR∆+(cR+h)Sn+AD +E(Vn−1(Sn, Z)) = AD +w∆+E(Vn−1(0, ∆+Z)), (5.7)

for ∆ ∈ [0,∞). Then, the optimal joint decision for period n is






a∗
n = 0, l∗n = t, if x > 0, t − x ≤ 0,

a∗
n = 0, l∗n = x, if x > 0, 0 < t − x ≤ ∆∗

n,

a∗
n = t − x + Sn, l∗n = t, if x = 0 or t − x > ∆∗

n,

(5.8)

and the corresponding cost-to-go is

u2
n(x, t) =






vn(0, t|x, t) if x > 0, t− x ≤ 0,

= AD + h(x − t) + E(Vn−1(x − t, Z)),

vn(0, x|x, t) if x > 0, 0 < t − x ≤ ∆∗
n,

= AD + w(t− x) + E(Vn−1(0, t− x + Z)),

vn(t − x + Sn, t|x, t) if x = 0 or t − x > ∆∗
n.

= AR + AD + cR(t − x) + (cR + h)Sn + E(Vn−1(Sn, Z)),

(5.9)

Proof of Lemma 9: By the definition of u2
n(x, t),

u2
n(x, t) = inf

a≥0
0<l≤min(x+a,t)

vn(a, l|x, t)
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= inf
a≥0

0<l≤min(x+a,t)






W (a) + C̃(l) + h(x + a − l) + w(t − l)

+E (Vn−1 (x + a − l, t − l + Z))





.

Given states (x, t), when z is the realized demand and the replenishment quantity a is

fixed, Vn−1(x+a−l, t−l+z) is non-increasing in l according to Condition (A3). Then,

its expectation, E (Vn−1 (x + a − l, t − l + Z)), over Z is also non-increasing in l. Fur-

thermore, if the dispatch quantity l is positive, then vn(a, l|x, t) given by equation

(5.2) is strictly decreasing in l ∈ (0, min(x + a, t)] provided that a is fixed. In other

words, if the replenishment quantity a is chosen, the optimal dispatch quantity should

be as much as possible, i.e., l = min(x+ a, t) and u2
n(x, t) = inf a≥0

l=min(x+a,t)
vn(a, l|x, t).

In order to analyze the cost function u2
n(x, t), we divide the two-dimensional state

space into two subspaces based on the excess position, i.e., t − x. The optimal joint

decision is determined for each subspace.

Subspace 1: If t−x ≤ 0, the on-hand inventory is at least as much as the consolidated

load. Then, the optimal dispatch quantity l is equal to min(x+a, t) = t > 0 regardless

of the value of a. Thus,

u2
n(x, t)

= inf
a≥0
l=t

{
W (a) + C̃(l) + h(x + a − l) + w(t− l) + E(Vn−1(x + a − l, t − l + Z))

}

= inf
a≥0

{
AR · I[a>0] + cRa + AD + h(x + a − t) + E(Vn−1(x + a − t, Z))

}
.

For any positive replenishment quantity a, Condition (A2) implies that

vn(a, t|x, t) = AR + cRa + AD + h(x + a − t) + E(Vn−1(x + a − t, Z))

≥ AD + h(x − t) + E(Vn−1(x − t, Z)) = vn(0, t|x, t).
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Consequently, if a shipment must be released when the on-hand inventory is sufficient

to satisfy the consolidated load, the least cost-to-go is attained when the vendor dis-

patches the entire consolidated load without replenishing her inventory. In summary,

when t − x ≤ 0 (since x ≥ t > 0), the optimal joint decision for the “dispatch” case

is given by a∗
n = 0 and l∗n = t with

u2
n(x, t) = vn(0, t|x, t) = AD + h(x − t) + E(Vn−1(x − t, Z)). (5.10)

Subspace 2: If t − x > 0, the on-hand inventory is not sufficient to clear the con-

solidated load. We consider the following three cases for the replenishment quantity

a: 1) a ≥ t − x (replenish more than the load excess), 2) 0 < a < t − x (replenish

less than the load excess), and 3) a = 0 (do not replenish). The cost for each case is

examined and the one with the lowest cost is chosen to be optimal. Mathematically,

u2
n(x, t) = min

{
u2

n(x, t|a ≥ t − x), u2
n(x, t|0 < a < t − x), u2

n(x, t|a = 0)
}

, (5.11)

where u2
n(x, t|Region of a) = inf Region of a

l=min(x+a,t)

vn(a, l|x, t).

Case 1: When a ≥ t − x, the available inventory after the vendor’s replenishment

is more than the consolidated load. As a result, the dispatch quantity l∗ = min(x +

a, t) = t, and

u2
n(x, t|a ≥ t − x)

= inf
a≥t−x>0

{AR + cRa + AD + h(x + a − t) + E(Vn−1(x + a − t, Z))} .

Since Vn−1(x, t) ∈ V, according to Condition (A1), there exists Sn ≥ 0 that minimizes

E(Vn−1(x, Z))+(cR+h)x. Letting x+a∗−t = Sn, we have the optimal replenishment

quantity a∗ = t − x + Sn and

u2
n(x, t|a ≥ t − x)
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= vn(t − x + Sn, t|x, t) = AR + cR(t − x + Sn) + AD + hSn + E(Vn−1(Sn, Z)).

(5.12)

(5.12) implies that when the on-hand inventory is not sufficient to satisfy the consol-

idated load, and the replenishment quantity a is required to be greater than t − x,

a should be equal to t − x + Sn. Following this result, the inventory level after the

vendor’s replenishment is t+Sn, and the ending inventory level of period n is Sn due

to the reason that the optimal dispatch quantity is t.

Case 2: When 0 < a < t− x, since 0 ≤ x < x + a < t, l = min(x + a, t) = x + a and

u2
n(x, t|0 < a < t − x) = inf

0<a<t−x
vn(a, x + a|x, t),

where vn(a, x + a|x, t) = AR + cRa + AD + w(t− x− a) + E(Vn−1(0, t− x− a + Z)).

Taking the first partial derivative of vn(a, x + a|x, t) with respect to a, we have

∂vn(a, x + a|x, t)

∂a
=

∂

∂a
[AR + cRa + AD + w(t − x − a) + E(Vn−1(0, t − x − a + Z))]

= cR − w +
∂

∂a
E(Vn−1(0, t − x − a + Z))

≤ cR − w − cR = −w < 0.

The “≤” inequality holds due to Condition (A4). ∂vn(a,x+a|x,t)
∂a

< 0 means that for a

fixed x and t, the function vn(a, x + a|x, t) is decreasing in a on (0, t − x). In other

words, when the on-hand inventory level and the size of the consolidated load are

observed, if the vendor chooses to replenish her inventory with a quantity that is less

than the load excess (t − x), then the larger is the replenishment quantity the lower

is the expected total cost-to-go. Hence,

u2
n(x, t|0 < a < t − x) = inf

0<a<t−x
vn(a, x + a|x, t) ≥ vn(t − x, t|x, t)

≥ vn(t − x + Sn, t|x, t) = u2
n(x, t|a ≥ t − x).
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( since t − x + Sn minimizes vn(a, t|x, t) for a ≥ t − x (Case 1))

Therefore, u2
n(x, t|0 < a < t − x) has a higher expected cost-to-go than u2

n(x, t|a ≥

t − x) does. More specifically, if the consolidated load is more than the on-hand

inventory, and the vendor decides to replenish her inventory, then it is never optimal

to replenish less than the load excess.

Case 3: When a = 0, since we define u2
n(x, t) as the minimum cost for dispatching

a positive size of consolidated load, the action {a = 0} is infeasible when there is no

on-hand inventory, i.e., x = 0. When x > 0, if the replenishment quantity a∗ = 0,

the dispatch quantity l∗ = min(x + a, t) = x > 0, i.e.,

u2
n(x, t|a = 0) = inf

a=0
l=x

vn(a, l|x, t) = vn(0, x|x, t) = AD +w(t−x)+E(Vn−1(0, t−x+Z)).

To sum up, for the “dispatch” case on Subspace 2, when x = 0, since a = 0 is

infeasible and u2
n(x, t|0 < a < t − x) is dominated by u2

n(x, t|a ≥ t − x) according to

the analysis in Case 2, the optimal decision is to replenish t + Sn units and dispatch

t units. When x > 0, the optimal joint decisions are either to replenish t − x + Sn

units and dispatch t units, or to replenish nothing and dispatch x units. By (5.11),

u2
n(x, t) on Subspace 2 is expressed as:

u2
n(x, t) =






vn(t − x + Sn, t|x, t), if x = 0,

min{vn(t − x + Sn, t|x, t), vn(0, x|x, t)}, if x > 0, t − x > 0.

(5.13)

To determine the explicit expression of u2
n(x, t), we denote

g1(x, t) = vn(t − x + Sn, t|x, t)

= AR + cR(t − x + Sn) + AD + hSn + E(Vn−1(Sn, Z)),

g2(x, t) = vn(0, x|x, t) = AD + w(t− x) + E(Vn−1(0, t− x + Z)).
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If we define ∆ := t − x where ∆ > 0 and replace t with x + ∆ in both g1(x, t) and

g2(x, t), we obtain

g1(x, x + ∆) = AR + cR∆ + (cR + h)Sn + AD + E(Vn−1(Sn, Z)), and

g2(x, x + ∆) = AD + w∆ + E(Vn−1(0, ∆ + Z)).

Taking partial derivatives with respect to ∆ of g1(x, x+∆) and g2(x, x+∆), we have

∂g1(x, x + ∆)

∂∆
= cR, and

∂g2(x, x + ∆)

∂∆
= w +

∂

∂∆
E(Vn−1(0, ∆ + Z)) ≥ w + cR.

The last inequality holds due to Condition (A4). Since lim∆→∞
∂[g2(x,x+∆)−g1(x,x+∆)]

∂∆
≥

w, it follows that lim∆→∞ g2(x, x + ∆) > lim∆→∞ g1(x, x + ∆). In addition, observe

that

lim
∆↓0

g1(x, x + ∆) = AR + (cR + h)Sn + AD + E(Vn−1(Sn, Z)), and

lim
∆↓0

g2(x, x + ∆) = AD + E(Vn−1(0, Z)).

If Sn = 0, obviously, lim∆↓0 g1(x, x + ∆) > lim∆↓0 g2(x, x + ∆). If Sn > 0, according

to Condition (A2) and the linearity of the expectation operator, E(Vn−1(Sn, Z)) −

E(Vn−1(0, Z)) ≥ −AR − (cR +h)Sn, and hence, lim∆↓0 g1(x, x+∆) ≥ lim∆↓0 g2(x, x+

∆). Comparing g1(x, x + ∆) and g2(x, x + ∆) for fixed x, we have two possible

situations:

I. If lim∆↓0 g1(x, x + ∆) > lim∆↓0 g2(x, x + ∆), since ∂g1(x,x+∆)
∂∆

< ∂g2(x,x+∆)
∂∆

and

lim∆→∞ g1(x, x+∆) < lim∆→∞ g2(x, x+∆), there exists a unique real number ∆∗
n > 0

such that when 0 < ∆ ≤ ∆∗
n, g1(x, x + ∆) ≥ g2(x, x + ∆), and when ∆ > ∆∗

n,
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g1(x, x + ∆) < g2(x, x + ∆). Therefore,

u2
n(x, x + ∆) = min{g1(x, x + ∆), g2(x, x + ∆)} =






g2(x, x + ∆), if 0 < ∆ ≤ ∆∗
n,

g1(x, x + ∆), if ∆ > ∆∗
n,

II. If lim∆↓0 g1(x, x + ∆) = lim∆↓0 g2(x, x + ∆), since ∂g1(x,x+∆)
∂∆

< ∂g2(x,x+∆)
∂∆

for any

∆, letting ∆∗
n = 0, we have g1(x, x+∆) ≤ g2(x, x+∆) for any ∆ > ∆∗

n. Equivalently,

u2
n(x, x + ∆) = min{g1(x, x + ∆), g2(x, x + ∆)} = g1(x, x + ∆).

Thus, unique ∆∗
n ≥ 0 exists and satisfies g1(x, x + ∆∗

n) = g2(x, x + ∆∗
n), i.e.,

AR + cR∆∗
n + (cR + h)Sn + AD + E(Vn−1(Sn, Z)) = AD + w∆∗

n + E(Vn−1(0, ∆
∗
n + Z)).

Therefore, u2
n(x, t) can be explicitly presented as

u2
n(x, t) =






vn(t − x + Sn, t|x, t), if x = 0,

vn(0, x|x, t), if x > 0, 0 < t − x ≤ ∆∗
n,

vn(t − x + Sn, t|x, t), if x > 0, t− x > ∆∗
n.

(5.14)

Summarizing (5.10) of Subspace 1 and (5.14) of Subspace 2, we obtain u2
n(x, t)

u2
n(x, t) =






vn(t − x + Sn, t|x, t), if x = 0,

vn(0, t|x, t), if x > 0, t− x ≤ 0,

vn(0, x|x, t), if x > 0, 0 < t − x ≤ ∆∗
n,

vn(t − x + Sn, t|x, t), if x > 0, t− x > ∆∗
n.

(5.15)

Reorganizing (5.15), we obtain (5.9). Note that when ∆∗
n = 0, 0 < t − x ≤ ∆∗

n

does not result in a valid range for t − x, and hence, the third situation in (5.15)

(equivalently, the second case in (5.9)) can be ignored. The corresponding optimal
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joint decisions are presented in (5.8) accordingly. �

Lemma 9 provides the expressions for the optimal joint decisions and the corre-

sponding cost-to-go functions under the condition that a positive size of consolidated

load must be dispatched in period n. Depending on the excess position, the joint de-

cisions have three options: (1) do not replenish and dispatch the entire consolidated

load when the on-hand inventory is sufficient; (2) do not replenish and dispatch all

the on-hand inventory when the load excess is in low volume; (3) replenish a quantity

that is equal to the sum of the load excess and a critical value when the load excess

exceeds a certain level. When the parameter ∆∗
n = 0, option (2) cannot be optimal,

then the optimal dispatch quantity l∗ = t implies that the vendor should always clear

the consolidated load if an outbound dispatch needs to be made.

With the optimal decisions for “do not dispatch” and “dispatch” cases known,

we can obtain the optimal joint decisions for t > 0 by comparing their corresponding

expected costs (5.6) and (5.9).

Theorem 6 (Optimal joint decision) If Vn−1(x, t) ∈ V, then there exist two

nonnegative parameters Sn and ∆∗
n, and a state-dependent parameter H t−x

n , such that

the optimal joint decision for period n is given by:






a∗
n = 0, l∗n = 0, if x < H t−x

n ,

a∗
n = 0, l∗n = t, if x ≥ H t−x

n , t > 0, t − x ≤ 0,

a∗
n = 0, l∗n = x, if x ≥ H t−x

n , 0 < t − x ≤ ∆∗
n,

a∗
n = t − x + Sn, l∗n = t, if x ≥ H t−x

n , t − x > ∆∗
n.

(5.16)

The cost-to-go function for period n (n > 0) is
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Vn(x, t) =






vn(0, 0|x, t) if x < H t−x
n ,

= hx + wt + E(Vn−1(x, t + Z)),

vn(0, t|x, t) if x ≥ H t−x
n , t > 0, t− x ≤ 0,

= AD + h(x − t) + E(Vn−1(x − t, Z)),

vn(0, x|x, t) if x ≥ H t−x
n , 0 < t − x ≤ ∆∗

n,

= AD + w(t − x) + E(Vn−1(0, t − x + Z)),

vn(t − x + Sn, t|x, t) if x ≥ H t−x
n , t − x > ∆∗

n.

= AR + cR(t − x + Sn) + AD + hSn + E(Vn−1(Sn, Z)),

(5.17)

Sn and ∆∗
n are defined in Lemma 9, and H t−x

n is continuous in t−x. In addition,

there exists ∆′
n > ∆∗

n such that when t − x ≥ ∆′
n, H t−x

n = 0.

Proof of Theorem 6: According to Lemma 8, when there is no retailer order

consolidated at the vendor (t = 0), we have Vn(x, t) = vn(0, 0|x, t). When t > 0, we

need to compare the costs associated with the optimal decisions for “do not dispatch”

and “dispatch” options. By Lemma 8 and Lemma 9, the costs for these two options

can be expressed as (5.6) and (5.9), respectively. For convenience, we set t := x + ∆

and rewrite equations (5.6) and (5.9) for x ≥ 0 and x + ∆ > 0 as follows:

u1
n(x, x + ∆) = vn(0, 0|x, x + ∆) = (h + w)x + w∆ + E(Vn−1(x, x + ∆ + Z)),

(5.18)
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u2
n(x, x + ∆) =






vn(0, x + ∆|x, x + ∆) if x > 0,−x < ∆ ≤ 0,

= AD − h∆ + E(Vn−1(−∆, Z)),

vn(0, x|x, x + ∆) if x > 0, 0 < ∆ ≤ ∆∗
n,

= AD + w∆ + E(Vn−1(0, ∆ + Z)),

vn(∆ + Sn, x + ∆|x, x + ∆) if x = 0 or ∆ > ∆∗
n.

= AR + AD + cR∆ + (cR + h)Sn + E(Vn−1(Sn, Z)),

(5.19)

Since Vn−1(x, x + ∆) ∈ V and the expectation operator is linear, according to

Condition (A3), E(Vn−1(x, x+∆+Z)) is non-decreasing in x for any fixed ∆, hence,

u1
n(x, x + ∆) is strictly increasing in x for any fixed ∆.

For u2
n(x, x+∆) on x ≥ 0 and ∆ > −x, {x = 0}∪{∆ > ∆∗

n} = {x = 0, 0 < ∆ ≤

∆∗
n} ∪ {x ≥ 0, ∆ > ∆∗

n}. Therefore, (5.19) can be rewritten as

u2
n(x, x + ∆) =






vn(0, x + ∆|x, x + ∆) if x > 0,−x < ∆ ≤ 0,

= AD − h∆ + E(Vn−1(−∆, Z)),

vn(0, x|x, x + ∆) if x > 0, 0 < ∆ ≤ ∆∗
n,

= AD + w∆ + E(Vn−1(0, ∆ + Z)),

vn(∆ + Sn, x + ∆|x, x + ∆) if x ≥ 0, ∆ > ∆∗
n,

= AR + AD + cR∆ + (cR + h)Sn + E(Vn−1(Sn, Z)),

vn(∆ + Sn, x + ∆|x, x + ∆) if x = 0, 0 < ∆ ≤ ∆∗
n.

= AR + AD + cR∆ + (cR + h)Sn + E(Vn−1(Sn, Z)),

(5.20)

When ∆∗
n = 0, we have {0 < ∆ ≤ ∆∗

n} = ∅, then the second and the last cases

of (5.20) do not exist. Although the expressions of u2
n(x, x + ∆) for ∆∗

n = 0 and
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∆∗
n > 0 are different, the optimal policies for the two cases follow the same argument.

Therefore, it is sufficient to examine u2
n(x, x + ∆) in the form of (5.20).

Let us compare u1
n(x, x+∆) and u2

n(x, x+∆) for four cases discussed in (5.20). For

the first three cases, when ∆ is fixed, u2
n(x, x+∆) is constant in x. Since u1

n(x, x+∆)

is strictly increasing in x for any fixed ∆, there exists H∆
n ≥ 0, such that if x < H∆

n ,

u1
n(x, x + ∆) < u2

n(x, x + ∆). If x ≥ H∆
n , u1

n(x, x + ∆) ≥ u2
n(x, x + ∆). That is,

Vn(x, x + ∆) = min
{
u1

n(x, x + ∆), u2
n(x, x + ∆)

}
=






u1
n(x, x + ∆), if x < H∆

n ,

u2
n(x, x + ∆), if x ≥ H∆

n .

(5.21)

For the last case of (5.20), we have x = 0 and 0 < ∆ ≤ ∆∗
n. This case is

only valid when ∆∗
n > 0. We observe that u1

n(0, ∆) = w∆ + E(Vn−1(0, ∆ + Z)),

and u2
n(0, ∆) = AR + AD + cR∆ + (cR + h)Sn + E(Vn−1(Sn, Z)). By (5.7), for any

0 < ∆ ≤ ∆∗
n, u1

n(0, ∆) < u1
n(0, ∆) + AD < u2

n(0, ∆). Thus,

Vn(0, ∆) = u1
n(0, ∆) = vn(0, 0|0, ∆). (5.22)
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When we substitute (5.18) and (5.20) into (5.21) and (5.22), the optimal cost-

to-go function for x + ∆ > 0 is written as follows:

Vn(x, x + ∆) =






1).vn(0, 0|x, x + ∆), if x < H∆
n , x > 0,−x < ∆ ≤ 0,

2).vn(0, 0|x, x + ∆), if x < H∆
n , x > 0, 0 < ∆ ≤ ∆∗

n,

3).vn(0, 0|x, x + ∆), if x < H∆
n , x ≥ 0, ∆ > ∆∗

n,

4).vn(0, x + ∆|x, x + ∆), if x ≥ H∆
n , x > 0,−x < ∆ ≤ 0,

5).vn(0, x|x, x + ∆), if x ≥ H∆
n , x > 0, 0 < ∆ ≤ ∆∗

n,

6).vn(∆ + Sn, x + ∆|x, x + ∆), if x ≥ H∆
n , x ≥ 0, ∆ > ∆∗

n,

7).vn(0, 0|0, ∆), if x = 0, 0 < ∆ ≤ ∆∗
n.

(5.23)

The range of H∆
n can be examined by analyzing the following three cases, respectively:

Case 1: When x > 0 and −x < ∆ ≤ 0, for a fixed ∆, limx↓−∆ u1
n(x, x + ∆) =

−h∆ + E(Vn−1(−∆, Z)), and limx↓−∆ u2
n(x, x + ∆) = AD − h∆ + E(Vn−1(−∆, Z)).

Thus, limx↓−∆ u1
n(x, x + ∆) < limx↓−∆ u2

n(x, x + ∆). Due to the observations that

u1
n(x, x + ∆) is strictly increasing in x for a fixed ∆ and u2

n(x, x + ∆) is constant,

H∆
n > −∆.

Case 2: When x > 0 and 0 < ∆ ≤ ∆∗
n, for a fixed ∆, limx↓0 u1

n(x, x + ∆) =

w∆ + E(Vn−1(0, ∆ + Z)), and limx↓0 u2
n(x, x + ∆) = AD + w∆ + E(Vn−1(0, ∆ + Z)).

Thus, limx↓0 u1
n(x, x + ∆) < limx↓0 u2

n(x, x + ∆). Consequently, H∆
n > 0.

Case 3: When x ≥ 0 and ∆ > ∆∗
n, we observe that u1

n(0, ∆) = w∆ + E(Vn−1(0, ∆ +

Z)), and u2
n(0, ∆) = AR + AD + cR∆ + (cR + h)Sn + E(Vn−1(Sn, Z)). Since ∆∗

n is

defined by (5.7),

lim
∆↓∆∗

n

AR+cR∆+(cR+h)Sn+AD+E(Vn−1(Sn, Z)) = lim
∆↓∆∗

n

AD+w∆+E(Vn−1(0, ∆+Z)).
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Equivalently, lim∆↓∆∗

n
u2

n(0, ∆) = lim∆↓∆∗

n
AD + u1

n(0, ∆). It follows that

lim
∆↓∆∗

n

u2
n(0, ∆) > lim

∆↓∆∗

n

u1
n(0, ∆).

However, by Condition (A4), u1
n(0, ∆) increases faster in ∆ than u2

n(0, ∆) does. That

means u1
n(0, ∆) will finally surpass u2

n(0, ∆). Hence, there exists ∆′
n > ∆∗

n, such

that when ∆∗
n < ∆ < ∆′

n, u1
n(0, ∆) < u2

n(0, ∆) and H∆
n > 0. When ∆ ≥ ∆′

n,

u1
n(0, ∆) ≥ u2

n(0, ∆) and H∆
n = 0.

To sum up, H∆
n = 0 if ∆ ≥ ∆′

n, and H∆
n > 0 otherwise. Thus,

{x ≥ H∆
n , x > 0,−x < ∆ ≤ 0} = {x ≥ H∆

n ,−x < ∆ ≤ 0}, (5.24)

{x ≥ H∆
n , x > 0, 0 < ∆ ≤ ∆∗

n} = {x ≥ H∆
n , 0 < ∆ ≤ ∆∗

n}, (5.25)

{x ≥ H∆
n , x ≥ 0, ∆ > ∆∗

n} = {x ≥ H∆
n , ∆ > ∆∗

n}. (5.26)

In addition, when x > 0 and 0 < ∆ ≤ ∆∗
n, since H∆

n > 0, {x = 0, 0 < ∆ ≤ ∆∗
n} =

{x < H∆
n , x = 0, 0 < ∆ ≤ ∆∗

n}, and hence, cases 1), 2), 3) and 7) in (5.23) can be

combined together as case “x < H∆
n ,−x < ∆”. In addition, substituting (5.24), (5.25)

and (5.26) into cases 4), 5) and 6) in (5.23), we obtain the expression of Vn(x, x + ∆)

for x + ∆ > 0 as

Vn(x, x + ∆) =






vn(0, 0|x, x + ∆), if x < H∆
n ,−x < ∆,

vn(0, x + ∆|x, x + ∆), if x ≥ H∆
n ,−x < ∆ ≤ 0,

vn(0, x|x, x + ∆), if x ≥ H∆
n , 0 < ∆ ≤ ∆∗

n,

vn(∆ + Sn, x + ∆|x, x + ∆), if x ≥ H∆
n , ∆ > ∆∗

n.

For a fixed ∆ ≤ 0, since H∆
n > −∆, when x approaches −∆ from the right,

it is true that x < H∆
n ,−x < ∆. Then, the limit of the cost-to-go function is

limx↓−∆ Vn(x, x + ∆) = limx↓−∆ u1
n(x, x + ∆) = vn(0, 0|x, x + ∆). Note that when
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x + ∆ = 0, for any x ≥ 0, Vn(x, x + ∆) = vn(0, 0|x, x + ∆). Thus, the cost-to-go

function for x ≥ 0, x + ∆ ≥ 0 can be summarized as

Vn(x, x + ∆) =






u1
n(x, x + ∆) = vn(0, 0|x, x + ∆), if x < H∆

n ,

u2
n(x, x + ∆) = vn(0, x + ∆|x, x + ∆), if x ≥ H∆

n ,−x < ∆ ≤ 0,

u2
n(x, x + ∆) = vn(0, x|x, x + ∆), if x ≥ H∆

n , 0 < ∆ ≤ ∆∗
n,

u2
n(x, x + ∆) = vn(∆ + Sn, x + ∆|x, x + ∆), if x ≥ H∆

n , ∆ > ∆∗
n,

(5.27)

and the optimal joint decisions are represented as






a∗
n = 0, l∗n = 0, if x < H∆

n ,

a∗
n = 0, l∗n = x + ∆, if x ≥ H∆

n ,−x < ∆ ≤ 0,

a∗
n = 0, l∗n = x, if x ≥ H∆

n , 0 < ∆ ≤ ∆∗
n,

a∗
n = ∆ + Sn, l∗n = x + ∆, if x ≥ H∆

n , ∆ > ∆∗
n.

(5.28)

Substituting ∆ with t − x in the above expressions, we get the optimal decisions as

(5.16), and the optimality equation as (5.17).

In addition, since E(Vn−1(x, t + Z)) is continuous on the state space of (x, t)

based on the hypothesis that Vn−1(x, t) ∈ V and Condition (A1), u1
n(x, t) given by

(5.6) is also continuous in x and t. By (5.9), it is obvious that u2
n(x, t) is continuous

on the subspace of x ≥ t > 0. On the subspace of t > x > 0, u2
n(x, t) is defined as the

minimum of two continuous functions: vn(0, x|x, t) and vn(t−x+Sn, t|x, t), and hence,

u2
n(x, t) is also continuous. We still need to check u2

n(x, t) on the boundary t = x. (1)

When ∆∗
n > 0, limx↓t u

2
n(x, t) = limx↓t vn(0, t|x, t) = vn(0, t|t, t) = limx↑t vn(0, x|x, t) =

limx↑t u2
n(x, t). (2) When ∆∗

n = 0,

lim
x↓t

u2
n(x, t) = lim

x↓t
vn(0, t|x, t) = AD + E(Vn−1(0, Z)),
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lim
x↑t

u2
n(x, t) = lim

x↑t
vn(t − x + Sn, t|x, t) = AR + AD + (cR + h)Sn + E(Vn−1(Sn, Z)).

By (5.7), the right hand sides of the above two equations are equal when ∆∗
n = 0,

and hence, limx↓t u2
n(x, t) = limx↑t u

2
n(x, t). It follows that u2

n(x, t) is also continuous

when t = x.

Considering that H t−x
n is essentially the intersection of the two continuous func-

tions, i.e., u1
n(x, t) and u2

n(x, t), we obtain that H t−x
n is continuous in t − x. �

Figure 19: Illustration of the Optimal Joint Policy
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Theorem 6 identifies the structure of the optimal policy for a single-period prob-

lem, provided that the cost-to-go function of the next period belongs to the family

of functions V in Definition 4. The optimal policy expressed in (5.16) is basically a

zoned, state-dependent threshold policy illustrated by Figure 19. In this policy, the

domain of x ≥ 0 and t ≥ 0 is divided into three zones by two lines: t − x = 0 and

t − x = ∆∗
n. In the zone where t − x ≤ 0, there is inventory excess of consolidated

load; in the zone where 0 < t − x ≤ ∆∗
n, there is a small amount of load excess of

on-hand inventory; and in the zone where t−x > ∆∗
n, the load excess is vast. In each

zone, the optimal policy is a threshold policy defined by a state-dependent parameter
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H t−x
n . More specifically, in each zone when x < H t−x

n , it is optimal not to replenish

and not to dispatch; otherwise, a positive quantity of consolidated load should be

dispatched, and both the optimal dispatch and replenishment quantities depend on

which zone the state (x, t) is in. By Theorem 6, we can divide the state space of

(x, t) into four regions as depicted by: I, II, III and IV in Figure 19. Note that when

∆∗
n = 0, the state space is divided into two zones by t−x = 0, and three regions as: I,

II, IV. The optimal joint inventory replenishment and shipment scheduling decisions

of the vendor can be characterized as follows:

• Region I: do not replenish and do not dispatch;

• Region II: do not replenish and dispatch the entire consolidated load;

• Region III: do not replenish and dispatch the entire on-hand inventory;

• Region IV: replenish by ordering t − x + Sn units and dispatch the entire con-

solidated load.

V.3. Optimal Joint Policy for Multi-Period Problems

To ensure that the zoned, state-dependent threshold policy described in the previous

sublevel is optimal in period n, the cost-to-go function of the next period (period n−1)

should be in the class of functions V, which seems quite restrictive and complicated

to examine. However, a careful analysis reveals that for a finite horizon problem, the

cost-to-go function of each period always belongs to V, regardless of the parameter

settings.

Theorem 7 For a finite horizon problem, the optimal joint policy for each period can

be described in the form of (5.16).
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Proof of Theorem 7: It is sufficient to show that Vn(x, t) ∈ V for any n = 0, ..., N−

1. We prove this by induction.

• When n = 0, according to Properties 1-4, V0(x, t) ∈ V as shown in Sublevel

V.2.1.

• Now suppose that Vk−1(x, t) ∈ V for x ≥ 0 and t ≥ 0. We need to show that

Vk(x, t) ∈ V. By Theorem 6,

Vk(x, t) =






vk(0, 0|x, t) if x < H t−x
k ,

= hx + wt + E(Vk−1(x, t + Z)),

vk(0, t|x, t) if x ≥ H t−x
k , t > 0, t − x ≤ 0,

= AD + h(x − t) + E(Vk−1(x − t, Z)),

vk(0, x|x, t) if x ≥ H t−x
k , 0 < t − x ≤ ∆∗

k,

= AD + w(t− x) + E(Vk−1(0, t − x + Z)),

vk(t − x + Sk, t|x, t) if x ≥ H t−x
k , t − x > ∆∗

k.

= AR + cR(t − x + Sk) + AD + hSk + E(Vk−1(Sk, Z)),

Condition (A1):

Define γk,1(x, t) = Vk(x, t) on t ≤ x subspace and γk,2(x, t) = Vk(x, t) on t > x

subspace. By the definitions of H t−x
k and ∆∗

k, it can be verified that γk,1(x, t)

and γk,2(x, t) are continuous on their respective (x, t) domains. Thus, using the

same approach in the proof of Property 1, E(Vk(x, Z))+(cR +h)x is continuous

in x and E(Vk(x, t + Z)) is continuous in x and t. When t is fixed, as x goes

to infinity, the limit value of γk,1(x, t) needs to be examined. Note that for a

sufficiently large x, γk,1(x, t) = vk(0, t|x, t) = AD +h(x− t)+E(Vk−1(x− t, Z)).
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According to Condition (A1) for Vk−1(x, t), as x goes to infinity, Vk−1(x, t) goes

to infinity, and hence, so do γk,1(x, t) and Vk(x, t). Thus, E(Vk(x, Z))+(cR+h)x

also goes to infinity as x goes to infinity, and on x ∈ [0,∞), there exists a value

Sk+1 that minimizes E(Vk(x, Z)) + (cR + h)x.

Condition (A2):

To make the analysis easier, we introduce a new function u′2
k(x, t) for x, t ≥ 0

and k = 1, ..., N , which is given by:

u′2
k(x, t) =






vk(0, 0|x, t) + AD, if x = 0, 0 < t − x ≤ ∆∗
k,

vk(0, 0|x, t) + AD, if t = 0,

u2
k(x, t), otherwise.

We can rewrite u′2
k(x, t) as follows:

u′2
k(x, t) =






vk(0, t|x, t) + AD · I[t=0] if t − x ≤ 0,

= AD + h(x − t) + E(Vk−1(x − t, Z)),

vk(0, x|x, t) + AD · I[x=0] if 0 < t − x ≤ ∆∗
k,

= AD + w(t − x) + E(Vk−1(0, t− x + Z)),

vk(t − x + Sk, t|x, t) if t − x > ∆∗
k.

= AR + AD + cR(t − x) + (cR + h)Sk + E(Vk−1(Sk, Z)),

It can be easily verified that the cost-to-go function Vk(x, t) computed by equa-

tion (5.3) is equal to min
{
u1

k(x, t), u′2
k(x, t)

}
, i.e., Vk(x, t) = min

{
u1

k(x, t), u′2
k(x, t)

}
,

for x, t ≥ 0, where u1
k(x, t) is defined by equation (5.6). Therefore, we examine

the function Vk(x, t) by analyzing the properties of u1
k(x, t) and u′2

k(x, t).
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First, for any fixed x ≥ 0, t ≥ 0 and δ > 0,

u1
k(x + δ, t) − u1

k(x, t)

=h(x + δ) + wt + E(Vk−1(x + δ, t + Z)) − hx − wt − E(Vk−1(x, t + Z))

=hδ + E [(Vk−1(x + δ, t + Z) − Vk−1(x, t + Z)]

( by the induction hypothesis that Vk−1(x, t) ∈ V and Condition (A2))

≥hδ + (−AR − (cR + h)δ) ≥ −AR − (cR + h)δ.

Second, for any fixed x ≥ 0, t ≥ 0 and δ > 0, we show that u′2
k(x + δ, t) −

u′2
k(x, t) ≥ −AR − (cR + h)δ by examining the following six cases:

Case 1: When t − x − δ < t − x ≤ 0,

u′2
k(x + δ, t) − u′2

k(x, t)

=vk(0, t|x + δ, t) − vk(0, t|x, t)

=hδ + E(Vk−1(x + δ − t, Z)) − E(Vk−1(x − t, Z)) ≥ −AR − (cR + h)δ.

Case 2: When 0 < t−x−δ < t−x ≤ ∆∗
k, since Vk−1(x, t) ∈ V, Condition (A4)

is satisfied. Then for any t > 0,
dVk−1(0,t)

dt
≥ cR. By the mean value theorem,

Vk−1(0, t−x−δ+z) = Vk−1(0, z)+
dVk−1(0,θ)

dθ
(t−x−δ) where z < θ < t−x−δ+z.

Since z represents a realized demand, z ≥ 0, then θ > 0. By Condition (A4), we

have dVk−1(0,θ)

dθ
≥ cR. Therefore, Vk−1(0, t−x−δ+z) ≥ Vk−1(0, z)+cR(t−x−δ),

and hence,

E(Vk−1(0, t − x − δ + Z)) ≥ E(Vk−1(0, Z)) + cR(t − x − δ). (5.29)

By the definition of ∆∗
k in equation (5.7), vk(0, x|x, t) ≤ vk(t − x + Sk, t|x, t)

when 0 < t − x ≤ ∆∗
k. Equivalently, AD + w(t − x) + E(Vk−1(0, t − x + Z)) ≤
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AR + cR(t − x + Sk) + AD + hSk + E(Vk−1(Sk, Z)), which implies that

E(Vk−1(0, t−x+Z)) ≤ AR + cR(t−x+Sk)+hSk +E(Vk−1(Sk, Z))−w(t−x).

(5.30)

Therefore,

u′2
k(x + δ, t) − u′2

k(x, t) = vk(0, x + δ|x + δ, t) − vk(0, x|x, t)

= − wδ + E(Vk−1(0, t − x − δ + Z)) − E(Vk−1(0, t − x + Z))

≥− wδ + E(Vk−1(0, Z)) + cR(t − x − δ) − [AR + cR(t − x + Sk)

+ hSk + E(Vk−1(Sk, Z)) − w(t − x)] ( by (5.29) and (5.30) )

≥− wδ + cR(t − x − δ) − AR − cR(t − x) + w(t − x)



since Sk minimizes (cR + h)x + E(Vk−1(x, Z)) on [0,∞),

E(Vk−1(0, Z)) ≥ (cR + h)Sk + E(Vk−1(Sk, Z))




= − AR − cRδ + (t − x − δ)w ≥ −AR − cRδ ≥ −AR − (cR + h)δ.

Case 3: When ∆∗
k < t − x − δ < t − x,

u′2
k(x + δ, t) − u′2

k(x, t) =vk(t − x − δ + Sk, t|x + δ, t) − vk(t − x + Sk, t|x, t)

= − cRδ ≥ −AR − (cR + h)δ.

Case 4: When t − x − δ ≤ 0 and 0 < t − x ≤ ∆∗
k, since Sk is the minimizer of

E(Vk−1(x, Z)) + (cR + h)x,

E(Vk−1(x + δ − t, Z)) ≥ E(Vk−1(Sk, Z)) + (cR + h)(Sk − x − δ + t). (5.31)

In addition, by the definition of ∆∗
k in equation (5.7), when 0 < t − x ≤ ∆∗

k,
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vk(0, x|x, t) ≤ vk(t − x + Sk, t|x, t), which is equivalent to

AD + w(t − x) + E(Vk−1(0, t − x + Z))

≤ AR + cR(t − x + Sk) + AD + hSk + E(Vk−1(Sk, Z)).

Reordering the terms, we have

E(Vk−1(0, t−x+Z)) ≤ AR + cR(t−x+Sk)+hSk +E(Vk−1(Sk, Z))−w(t−x).

(5.32)

Hence,

u′2
k(x + δ, t) − u′2

k(x, t) = vk(0, t|x + δ, t) − vk(0, x|x, t)

=AD + h(x + δ − t) + E(Vk−1(x + δ − t, Z))

− [AD + w(t− x) + E(Vk−1(0, t − x + Z))]

≥AD + h(x + δ − t) + E(Vk−1(Sk, Z)) + (cR + h)(Sk − x − δ + t)

− [AD + AR + cR(t − x + Sk) + hSk + E(Vk−1(Sk, Z))]

( by (5.31) and (5.32) )

= − AR − cRδ ≥ −AR − (cR + h)δ.

Case 5: When t − x − δ ≤ 0 and t − x > ∆∗
k, since Sk is the minimizer of

E(Vk−1(x, Z)) + (cR + h)x, (5.31) still holds. Thus,

u′2
k(x + δ, t) − u′2

k(x, t) = vk(0, t|x + δ, t) − vk(t − x + Sk, t|x, t)

=AD + h(x + δ − t) + E(Vk−1(x + δ − t, Z))

− [AR + AD + cR(t − x) + (cR + h)Sk + E(Vk−1(Sk, Z))]

≥− AR − cR · δ ( by (5.31) ) ≥ −AR − (cR + h)δ.
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Case 6: When 0 < t − x − δ ≤ ∆∗
k and t − x > ∆∗

k, (5.29) still holds. Thus,

u′2
k(x + δ, t) − u′2

k(x, t) = vk(0, x + δ|x + δ, t) − vk(t − x + Sk, t|x, t)

=AD + w(t − x − δ) + E(Vk−1(0, t − x − δ + Z))

− [AR + AD + cR(t − x) + (cR + h)Sk + E(Vk−1(Sk, Z))]

≥E(Vk−1(0, Z)) + cR(t − x − δ) − AR − cR(t − x + Sk)

− hSk − E(Vk−1(Sk, Z)) + w(t − x − δ) ( by (5.29) )

≥− AR − cRδ + w(t− x − δ) ≥ −AR − (cR + h)δ.



since Sk minimizes (cR + h)x + E(Vk−1(x, Z)) on [0,∞),

E(Vk−1(0, Z)) ≥ (cR + h)Sk + E(Vk−1(Sk, Z))




Thus, for all cases u′2
k(x + δ, t) − u′2

k(x, t) ≥ −AR − (cR + h)δ.

To sum up, since Vk(x, t) = min
{
u1

k(x, t), u′2
k(x, t)

}
, if Vk(x+ δ, t) = u1

k(x+ δ, t)

and Vk(x, t) = u1
k(x, t), or Vk(x + δ, t) = u′2

k(x + δ, t) and Vk(x, t) = u′2
k(x, t),

then obviously, Vk(x + δ, t) − Vk(x, t) ≥ −AR − (cR + h)δ. If Vk(x + δ, t) =

u′2
k(x + δ, t) and Vk(x, t) = u1

k(x, t), this implies u1
k(x, t) ≤ u′2

k(x, t), hence,

Vk(x + δ, t) − Vk(x, t) ≥ u′2
k(x + δ, t) − u′2

k(x, t) ≥ −AR − (cR + h)δ. The

same logic can be applied to the case where Vk(x + δ, t) = u1
k(x + δ, t) and

Vk(x, t) = u′2
k(x, t). Thus, Vk(x + δ, t) − Vk(x, t) ≥ −AR − (cR + h)δ.

Condition (A3):

To prove the validation of this condition, we need to write u1
k(x, t) and u′2

k(x, t)

in terms of x and ∆, i.e., u1
k(x, x + ∆) = vk(0, 0|x, x + ∆) = (h + w)x + w∆ +
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E(Vk−1(x, x + ∆ + Z)), and

u′2
k(x, x + ∆) =






vk(0, x + ∆|x, x + ∆) + AD · I[x+∆=0] if ∆ ≤ 0,

= AD − h∆ + E(Vk−1(−∆, Z)),

vk(0, x|x, x + ∆) + AD · I[x=0] if 0 < ∆ ≤ ∆∗
k,

= AD + w∆ + E(Vk−1(0, ∆ + Z)),

vk(∆ + Sk, x + ∆|x, x + ∆) if ∆ > ∆∗
k.

= AR + AD + cR∆ + (cR + h)Sk + E(Vk−1(Sk, Z)),

Obviously, for a fixed ∆, u1
k(x, x + ∆) is increasing in x, and u′2

k(x, x + ∆)

is constant in x. Hence, Vk(x, x + ∆) = min
{
u1

k(x, x + ∆), u′2
k(x, x + ∆)

}
is

non-decreasing in x for a fixed ∆.

Condition (A4):

When x = 0, Vk(0, t) is either equal to vk(0, 0|0, t) or vk(t + Sk, t|0, t). If

Vk(0, t) = vk(0, 0|0, t) = wt+E(Vk−1(0, t+Z)), then dVk(0,t)
dt

= w+dE(Vk−1(0,t+Z))

dt
≥

w + cR. Otherwise, Vk(0, t) = vk(t + Sk, t|0, t) = AR + AD + cR(t + Sk) + hSk +

E(Vk−1(Sk, Z)), and dVk(0,t)
dt

= cR. Thus, dVk(0,t)
dt

≥ cR.

Since Conditions (A1)–(A4) also hold for Vk(x, t), Vn(x, t) ∈ V for any n =

0, ..., N − 1. �

Theorem 7 establishes that in any period during a finite horizon problem, the

optimal joint inbound inventory replenishment and outbound shipment scheduling

policy is in the form of a zoned, state-dependent threshold policy. For any period n,

the vendor should replenish her inventory if and only if the excess position (t − x)

exceeds a certain level (∆∗
n) and the on-hand inventory level x is above a threshold

value (H t−x
n ). The corresponding optimal replenishment quantity is equal to the sum
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of the excess position and a critical value Sn. In all other situations, the lowest cost

is achieved when there is no inventory replenishment. For the cases when the size

of the consolidated load is small, or both the on-hand inventory level and the load

excess are in low volumes, it is more preferable to choose to be idle in that period,

i.e., do not replenish and do not dispatch. When there is inventory excess or mild

load excess, if the on-hand inventory level is higher than a state-dependent threshold

value, then it is optimal to dispatch as many consolidated orders as possible.

Figure 20: A Realization of the Process

(a)

(b)

(c)

t1

t1

t2

t3

t4

t4

t5

t5

x1

x2,

x3

x3

x4

x5

S4
S5

Ht1−x1
1

Ht2−x2
2

Ht3−x3
3

Ht4−x4
4

Ht5−x5
5

∆∗
1 ∆∗

2
∆∗

3 ∆∗
4 ∆∗

5

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

n

n

n

xn

tn

tn − xn



179

Figure 20 illustrates a realization of a VMI system running under the optimal

policy for 5 periods. xn and tn denote the on-hand inventory level and the consolidated

load in period n, respectively. xn increases when the vendor replenishes her inventory,

and tn increases when the vendor receives an order (realized stochastic demand of a

period). Both xn and tn decrease when a shipment is dispatched. Orders are received

at the end of each period. The joint decision is made immediately after the order

arrival at the end of each period.

tn − xn is the excess position level observed right before the n-th decision is

made. In period n, the optimal policy can be defined by parameters ∆∗
n, Sn and

H
(·)
n where ∆n and Sn are independent of the states xn and tn, and H

(·)
n is a function

of tn − xn. For this example, in period 1, we observe that t1 − x1 < 0 (from part

(c) of Figure 20) and x1 > H t1−x1
1 (from part (a) of Figure 20). Hence, the optimal

decision is to dispatch the entire consolidated load without replenishing the inventory.

For period 2, x2 < H t2−x2
2 , which implies that the optimal decision is to postpone

the dispatch until the next period. For period 3, a retailer order arrives to raise the

consolidated load to t3 such that 0 < t3 − x3 ≤ ∆∗
3 (from part (c) of Figure 20).

Since x3 ≥ H t3−x3
3 , the optimal decision is to dispatch the entire on-hand inventory

without replenishment. In period 4, the consolidated load is high enough such that

t4 − x4 > ∆∗
4 and x4 = 0 = H t4−x4

4 , and hence, the optimal decision is to replenish

t4 − x4 + S4 and dispatch t4. Thus, the remaining inventory level is exactly equal to

S4. In period 5, a large order quantity t5 arrives at the vendor so that t5 − x5 > ∆∗
5

and x5 > H t5−x5
5 . It is optimal for the vendor to replenish t5 − x5 + S5 and dispatch

t5, and the remaining inventory level is S5.
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V.4. Summary

Although the integration of inventory replenishment and shipment scheduling is inves-

tigated in the literature, all the existing research adopts a pre-defined (e.g., quantity-

based or time-based) temporal shipment consolidation policy, and attempts to opti-

mize for the underlying parameter values. Although these policies are practical, they

might be suboptimal in the class of all feasible policies. This paper is the first to

examine the optimal joint inventory replenishment and shipment consolidation policy

in a multi-level supply chain system.

We formulate the problem as a discrete-time Markov decision process via a

stochastic dynamic programming approach, and we examine the optimal joint pol-

icy for the case of private fleet transportation. To address the economies of scale

in transportation, we include fixed inbound replenishment cost and fixed outbound

transportation cost, respectively, for each echelon. We prove the optimality of a

zoned, state-dependent threshold policy. More specifically, we show that depending

on the difference between the two states (the on-hand inventory level and the size

of the consolidated load), the two-dimensional state space can be divided into three

zones. On each zone, the optimal joint replenishment and dispatch decisions can be

determined by a threshold policy. As a result, in each period the optimal decision

can only be chosen from the following four options: (1) do not replenish and do not

dispatch; (2) do not replenish and dispatch the entire consolidated load; (3) do not

replenish and dispatch the entire on-hand inventory; (4) replenish an amount so that

after dispatching the entire consolidated load, the remaining inventory level is equal

to a critical value. Due to the existence of the fixed replenishment cost, the optimal

joint policy does not exhibit the clearing property.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation concentrates on coordinating the inventory and transportation deci-

sions in stochastic dynamic demand supply chain systems. In contrast to the existing

research that mainly aims at optimizing the cost over a set of feasible and prede-

fined policies, we utilize stochastic dynamic programming techniques to determine

the structures of the optimal inventory and/or shipment policies. In order to achieve

our objectives, we investigate three classes of problems: (1) Pure inbound inven-

tory model; (2) Pure outbound transportation models; and (3) Integrated inbound

inventory and outbound transportation model.

Having roots in applied probability, optimization, inventory theory and optimal

control theory, this dissertation makes several theoretical contributions in stochastic

modeling and optimization. The contributions are discussed in detail in Sublevel

VI.1. Future research directions are provided in Sublevel VI.2

VI.1. Contributions

In Chapter III, the pure inbound inventory model puts its emphasis on answering the

questions of how often and in what quantities to replenish stock so that replenishment

(including shipping cost), holding, and waiting costs are minimized. The studied

model is a generalization of the classical stochastic dynamic inventory problem in

that a multiple setup cost structure is included to explicitly represent a private fleet

of trucks with finite capacity. We develop a new replenishment policy, called (Q,~s, ~S)

policy, which is more general than previously examined policies in the literature for

the problem of interest. Sufficient conditions for the optimality of the new policy are

provided. To this end, we introduce a new concept, non-(∆, C)-decreasing, which is
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analogous to the existing concept of non-K-decreasing. For the special case when

the demand is uniformly distributed on (0, mC) where m is an integer and C is the

cargo capacity, we prove the optimality of the (Q,~s, ~S) policy that in turn reduces to

a simpler form. Our contributions are highlighted below:

• We defined new concepts of non-(∆, C)-decreasing and non-(∆, C)K
N
-decreasing;

• We proposed a new replenishment policy: (Q,~s, ~S) policy;

• We provided sufficient conditions under which the new policy is optimal; and

• We investigated a special case when the demand is uniformly distributed over

and identifying the exact optimal policy which has a simple form characterized

by parameters (Q = s, s, S).

We note that the results of the special case are beneficial for generating easier-to-

compute, approximate policies or for new products with no historical data of demand

patterns so that demand is assumed to be uniformly distributed.

In Chapter IV, the pure outbound transportation model investigates the problem

regarding when to dispatch and how large the dispatch quantity should be so that

transportation scale economies are achieved while the timely service requirements are

not sacrificed. Since transportation exhibits scale economies, savings are particularly

realizable when the transportation decisions include a strategy for shipment consol-

idation, under which small shipments can be consolidated into a single larger load.

Time-base, quantity-based, and hybrid consolidation policies are mostly implemented

in practice. In the literature, Çetinkaya and Bookbinder (2003) compute the optimal

parameter values of the time-based and quantity-based consolidation policies for pri-

vate and common carriage cases, respectively. However, these two policies may not

be optimal in all feasible policies. Hence, we model the same supply chain system
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as a stochastic dynamic program and examine the optimal consolidation policies for

different types of transportation costs: (1) private fleet transportation without cargo

capacity constraint, (2) single-truck transportation with cargo capacity and fixed cost,

(3) common carriage with quantity discount schedule, and (4) multi-truck transporta-

tion with cargo capacity. We characterize the structures of the optimal policies for

cases (1) and (2). We show, theoretically that in these two cases, the optimal policy

possesses a control limit property and the dispatch quantity is either zero or equal to

the maximum possible value. Assuming the “clearing properties”, we investigating

the optimality of some practical policies for case (3) and provide sufficient conditions

under which they are optimal. We prove that under different parameter settings, the

optimal policy for case (3) can be an immediate dispatch policy, or a threshold policy,

or a more complicated (SL, SU) policy. The complexity of the exact optimal policy is

illustrated numerically. In addition, preliminary results for case (4) are provided.

This research contributes to the periodic-review, stochastic, consolidation sys-

tems literature by explicitly considering transportation costs related to different in-

dustry practices. Analytically, we contribute by developing a new consolidation pol-

icy: (SL, SU) policy, and providing sufficient conditions under which the discussed

practical policies are optimal.

The model that we consider in Chapter V optimizes the inbound inventory re-

plenishment and outbound dispatch decisions simultaneously. We consider a two-

echelon supply chain system applicable under a VMI contract where the vendor uses

a private fleet for inbound replenishment and outbound shipments. Shipment con-

solidation strategy is again employed on the outbound logistics. There are some

studies in the literature that analyze the same system, however, they all choose the

inbound inventory and outbound transportation decisions in advance and concentrate

on finding the policy parameter values that yield a minimal cost.
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To characterize the exact optimal joint policy, we formulate the problem as a

two-state, two-action stochastic dynamic program. We first identify the structure of

the optimal policy for a single-period problem for an arbitrary period, provided that

the value function of the next period belongs to a specific family of functions charac-

terized explicitly in the paper. The exact optimal joint polices specifying the vendor’s

inbound replenishment and outbound dispatch quantities in successive periods is in

the form of a zoned, state-dependent threshold policy. We then provide a formal

proof that the value function of each period always belongs to the specific family of

functions characterized, regardless of the parameter settings. It follows that in any

period during a finite horizon problem, the optimal policy is a zoned, state-dependent

threshold policy. Our contributions are highlighted below:

• Our research is the first to identify the structural properties of the vendor’s

exact optimal joint policies.

• The characterized zoned, state-dependent threshold policy is a new class of poli-

cies in multi-echelon stochastic inventory control theory.

• This research renders insights into ways that we design and implement supply

chain applications, e.g., VMI and Third Party Logistics.

VI.2. Future Work

Several extensions of the presented work are possible.

1. Infinite Horizon: As noted earlier, our focus in this dissertation is on the-

oretical analysis of the optimal inventory and/or transportation policies with

consideration of realistic transportation cost. All models investigated are over

a finite horizon. Usually for a finite-period dynamic system, although the poli-
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cies in different periods have the same structure, the parameters that define

the policy can be very different from each other. However, for a supply chain

system that needs to make frequent decisions over many time periods, it would

be more convenient to have a stationary policy. Here, “stationary” means the

policy parameters do not vary from period to period. Therefore, it is worth-

while to show the optimality of the characterized policies in the infinite horizon

discounted and average cost cases.

2. Solution Methods: Although the analytical results regarding the structure of

the optimal policies have a theoretical value, to strengthen the practical contri-

bution of this research, solution methods or algorithms for efficient calculation of

the policy values need to be developed. It is known that the computational lim-

itations on stochastic dynamic programming have made it very difficult to find

the optimal values of the policy parameters, even if it is a conceptually power-

ful technique. In addition, incorporation of time-windows, explicit consideration

of general freight cost structures, and cargo capacity constraints increase the

computational requirements for this class of problems. Therefore, designing a

well-formed approximate algorithm is a possible future research avenue. When

a solution method is available, the advantages of the optimal policy over those

suboptimal, yet practical policies can also be evaluated.

3. Generalized Transportation Cost in Integrated Model: In Chapter V,

the transportation cost is presented as the summation of a fixed setup cost

and a linear variable cost. Clearly, this cost structure ignores the impact of

transportation cost and capacity related to delivery of orders; thereby, also

ignoring possible transportation scale economies achievable via optimization.

An interesting generalization is to investigate the transportation costs for single
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or multiple capacitated trucks, or common carriage transportation in both the

inbound and outbound logistics of the integrated replenishment and shipment

model.

4. Multiple Items: It would also be of interest to consider multiple products

that have different demand distributions, procurement costs (hence, different

inventory holding costs), and customer waiting costs. As mentioned previously,

shipment consolidation can be applied to combine orders of the same item or-

dered by the customers at different time, or the orders of different items ordered

at the same time (more accurately, during a sufficiently short period). In such

a supply chain system, we need to consider the proper dispatch schedules to

reduce the total cost of transportation and waiting.
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Axsäter, S. 2001. A note on stock replenishment and shipment scheduling for vendor-

managed inventory systems. Manage. Sci. 47(9) 1306–1310.

Bagchi, P.K., F.W. Davis. 1988. Some insights into inbound freight consolidation.

Int. J. Phys. Distrib. Mater. Manage. 18(6) 27–33.

Baita, F., W. Ukovich, R. Pesenti, D. Favaretto. 1998. Dynamic routing and inventory

problems: a review. Transp. Res.-A 32(8) 585–598.

Ballou, R.H. 1992. Business Logistics Management . Prentice Hall, Englewood Cliffs,

NJ.



188

Bell, W.J., L.M. Dalberto, M.L. Fisher, A.J. GreenField, R. Jaikumar, P. Kedia, R.G.

Mack, P.J. Prutzman. 1983. Improving the distribution of industrial gases with an

online computerized routing and scheduling optimizer. Interfaces 13(6) 4–23.

Ben-khedher, N., C.A. Yano. 1994. The multi-item joint replenishment problem with

transportation and container effects. Transp. Sci. 28(1) 37–54.

Bookbinder, J.H., J.K. Higginson. 2002. Probabilistic modeling of freight consolida-

tion by private carriage. Transp. Res.-E 38(5) 305–318.

Campbell, A., L. Clark, A. Kleywegt, M. Savelsberg. 1998. The inventory rout-

ing problem. T.G. Crainic and G. Laporte eds. Fleet Management and Logistics.

Kluwer, Norwell, MA.
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