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ABSTRACT

Statistical Inferences for Models with Intractable Normalizing Constants. (August

2011)

Ick Hoon Jin, B.A., Yonsei University; M.A., Yonsei University

Chair of Advisory Committee: Dr. Faming Liang

In this dissertation, we have proposed two new algorithms for statistical infer-

ence for models with intractable normalizing constants: the Monte Carlo Metropolis-

Hastings algorithm and the Bayesian Stochastic Approximation Monte Carlo algo-

rithm. The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings

algorithm. At each iteration, it replaces the unknown normalizing constant ratio by

a Monte Carlo estimate. Although the algorithm violates the detailed balance condi-

tion, it still converges, as shown in the paper, to the desired target distribution under

mild conditions. The BSAMC algorithm works by simulating from a sequence of ap-

proximated distributions using the SAMC algorithm. A strong law of large numbers

has been established for BSAMC estimators under mild conditions. One significant

advantage of our algorithms over the auxiliary variable MCMC methods is that they

avoid the requirement for perfect samples, and thus it can be applied to many models

for which perfect sampling is not available or very expensive. In addition, although

the normalizing constant approximation is also involved in BSAMC, BSAMC can

perform very robustly to initial guesses of parameters due to the powerful ability of

SAMC in sample space exploration. BSAMC has also provided a general framework

for approximated Bayesian inference for the models for which the likelihood function

is intractable: sampling from a sequence of approximated distributions with their

average converging to the target distribution. With these two illustrated algorithms,
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we has demonstrated how the SAMCMC method can be applied to estimate the pa-

rameters of ERGMs, which is one of the typical examples of statistical models with

intractable normalizing constants. We showed that the resulting estimate is consis-

tent, asymptotically normal and asymptotically efficient. Compared to the MCMLE

and SSA methods, a significant advantage of SAMCMC is that it overcomes the model

degeneracy problem. The strength of SAMCMC comes from its varying truncation

mechanism, which enables SAMCMC to avoid the model degeneracy problem through

re-initialization. MCMLE and SSA do not possess the re-initialization mechanism,

and tend to converge to a solution near the starting point, so they often fail for the

models which suffer from the model degeneracy problem.
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CHAPTER I

INTRODUCTION

In statistical applications, one often encounters problems of making inference for a

model whose likelihood function contains an intractable normalizing constant. Ex-

amples of such models include the autologistic model used in ecology study [82], the

Potts model used in image analysis [42], the autonormal model used in agriculture ex-

periments [9], and the exponential random graph model used in social network study

[75], among others.

Suppose we have a dataset X generated from a statistical model with the likeli-

hood function

f(x|θ) =
1

κ(θ)
exp{−U(x, θ)}, x ∈ X , θ ∈ Θ, (1.1)

where θ is the parameter, and κ(θ) is the normalizing constant which depends on θ

and is not available in closed form. Let π(θ) denote the prior density imposed on θ.

The posterior density of θ is then given by

π(θ|x) ∝ 1

κ(θ)
exp{−U(x, θ)}π(θ). (1.2)

Since the closed form of κ(θ) is not available, inference for θ poses a great challenge

on the current statistical methods.

The MH algorithm cannot be applied to simulate from π(θ|x), because the ac-

ceptance probability would involve an unknown ratio κ(θ)/κ(θ′), where θ′ denotes the

The journal model is IEEE Transactions on Automatic Control.
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proposed value. To circumvent this difficulty, various approximation methods to the

likelihood function or the normalizing constant function have been proposed in the

literature. [9] proposed to approximate the likelihood function by a pseudo-likelihood

function which is tractable. The method is easy to use, but it typically performs

less well for the models for which neighboring dependence is strong. [32] proposed

an importance sampling-based approach to approximation κ(θ), which can be briefly

described as follows. Let θ∗ denote an initial guess of θ. Let y1, . . . , ym denote ran-

dom samples simulated from f(y|θ∗), which can be obtained via a MCMC simulation.

Then

log fm(x|θ) = −U(x, θ)− log(κ(θ∗))− log

(
1

m

m∑
i=1

exp{U(yi, θ
∗)− U(yi, θ)}

)
, (1.3)

approaches to log f(x|θ) as m→∞. The estimator θ̂ = arg maxθ log fm(x|θ) is called

the MCMLE of θ. If θ(0) lies in the attraction region of true MLE, the method usually

produces a good estimate of θ. Otherwise, the method may converge to a suboptimal

solution or fail to converge. To alleviate this difficulty, [32] recommended an iterative

approach, which drew new samples at the current estimate of θ and then re-estimate:

(a) Initialize with a point θ(0), usually taking to be the maximum pseudo-likelihood

estimator. Set t = 0.

(b) Simulate m auxiliary samples from f(x|θ(t)) using MCMC.

(c) Find θ(t+1) = arg maxθ log fm(x|θ).

(d) Stop if a specified number of iterations has been reached, or some other termi-

nation criterion has reached. Otherwise, go back to step (b).

Even with this iterative approach, non-convergence is still quite common if θ(0) is far

from the true MLE. [46] proposed an alternative Monte Carlo approach to approxi-
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mate κ(θ), where κ(θ) is viewed as a marginal density function of the unnormalized

distribution g(x, θ) = exp{−U(x, θ)} and estimated using an adaptive kernel smooth-

ing approach with Monte Carlo samples.

Toward Bayesian analysis for the model (1.1), a significant step was made by

[55], who propose to augment the distribution f(x|θ) by an auxiliary variable such

that the normalizing constant ratio κ(θ)/κ(θ′) can be canceled in simulations. Soon,

this algorithm was improved by [57], who, based on the idea of parallel tempering

[31], proposed the following algorithm—the exchange algorithm:

Exchange Algorithm

• Propose a candidate point θ′ from a proposal distribution denoted by q(θ′|θ, x).

• Generate an auxiliary variable y ∼ f(y|θ′) using a perfect sampler [61].

• Accept θ′ with probability min{1, r(θ, θ′|x)}, where

r(θ, θ′|x) =
π(θ′)f(x|θ′)f(y|θ)q(θ|θ′, x)
π(θ)f(x|θ)f(y|θ′)q(θ′|θ, x) .

Since a swapping operation between (θ, x) and (θ′, y) is involved, the algorithm

is called the exchanged algorithm. Both the Møller and the exchange algorithm are

called auxiliary variable MCMC algorithms in the literature. The exchange algorithm

generally improves the performance of the Møller algorithm, as it avoids an initial

estimation step (for θ) that required by the Møller algorithm. See [55] for the role

that an initial estimate of θ plays in their algorithm. [57] reported that the exchange

algorithm tends to have a higher acceptance probability than the Møller algorithm.

Although the Møller and exchange algorithms work well for some discrete models,

such as the Ising and autologistic models, they cannot be applied to many other

models for which perfect sampling is not available. In addition, even for the Ising and
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autologistic models, perfect sampling may be very expensive when the temperature

is near or below the critical point.

In Chapter II, we introduce the exponential random graph models (ERGMs)

which is one of the well-known statistical models with intractable normalizing con-

stants. In Chapter III, we describe the Monte Carlo Metropolis-Hasting algorithm,

which replaces the unknown normalizing constant ratio κ(θ)/κ(θ′) by a Monte Carlo

estimate to handle intractable normalizing constants problems. In Chapter IV, we il-

lustrate the Bayesian Stochastic Approximation Monte Carlo algorithm, which works

by simulating from a sequence of approximated distributions using the stochastic

approximation Monte Carlo algorithm [50]. for tickling intractable normalizing con-

stants problems. In Chapter V, we propose to use the stochastic approximation

MCMC (SAMCMC) algorithm to find the maximum likelihood estimator for ERGMs.

We conclude our statistical methods for models with intractable normalizing constants

in Chapter VI.
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CHAPTER II

EXPONENTIAL RANDOM GRAPH MODELS

A. Introduction

The social network is a social structure made of actors (individuals, organizations,

etc.) which are interconnected by certain relationship, such as friendship, common

interest, financial exchange, etc. The network can be represented in a graph with a

node for each actor and an edge for each relation between a pair of actors. This graph

representation can provide insight into organizational structures, social behavior pat-

terns, and a variety of other social phenomena. Recently, social network analysis has

been applied to many other fields, such as biology [71], political science [23], etc. etc.

Many statistical models have been proposed in the literature for social network

analysis, including the dyadic independence model, the Markov random graph model

[27], the exponential random graph model [75], among others. The model of particular

interest is the exponential random graph model (ERGM), which allows to include

various network dependent structures in the analysis and thus generally improves

goodness of fit of social networks. See [68] for an overview of ERGMs.

Consider a social network with n actors. The network can be specified in an

n× n-matrix Y = (Yij), where Yij = 1 if there is an edge between node i and node j

and 0 otherwise. This matrix is also known as the adjacency matrix. Note that the

social network can be either directed or non-directed. The likelihood function of the
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ERGM is given by

f(y|θ) =
1

κ(θ)
exp{

∑
i∈A

θiSi(y)}, (2.1)

where Si(y) denotes a statistic, θi is the corresponding parameter, A specifies the set

of statistics considered in the model, and κ(θ) is the normalizing constant which makes

(2.1) a proper probability distribution. An exact calculation of κ(θ) is impossible for

all but the smallest networks, as it involves a sum over all possible networks. In

the rest of this paper, we will let S(y) = (S1(y), . . . , Sd(y)) denote the vector of

d statistics considered in the model, and let θ = (θ1, . . . , θd) denote the vector of d

parameters of the model.

Parameter estimation for ERGMs suffers from two difficulties. The first difficulty

is due to the intractability of κ(θ), and the second is the so-called model degeneracy

problem. They will be discussed in sequel as follows.

B. Parameter Estimation Methods

Because κ(θ) in (2.1) is intractable, estimation of θ has put a great challenge on the

current statistical methods. Several methods have been proposed in the literature,

including the maximum pseudo-likelihood estimation (MPLE) method [76], Monte

Carlo maximum likelihood estimation (MCMLE) method ([32], [40]), stochastic ap-

proximation (SA) method [74], among others.

The MPLE method analyzes ERGMs with a simplified, analytic form of the

likelihood function under the assumption of dyadic independence. The properties

of this method has been studied by many authors, see e.g., [22], [25], [51] and [80].

MPLE is intrinsically highly dependent on the observed network. It usually works

well for the networks with low dependence structure, but may produce substantially

biased estimates for the networks with high dependency.



7

The MCMLE method originates in [32], whose basic idea is to approximate the

normalizing constant κ(θ) using Monte Carlo samples. It is known that the perfor-

mance of this method depends on the choice of an initial guess. If the initial guess

is near the MLE, it can produce a good estimate of θ. Otherwise, it may converge

to a local optimal solution or even fail to converge. To alleviate this difficulty, [32]

recommended an iterative approach, which drew new samples at the current estimate

of θ and then re-estimate. Even with this iterative procedure, as pointed out by [7],

non-convergence is still quite common for ERGMs.

With some simple manipulations, it is easy to show that maximizing the likeli-

hood function (2.1) is equivalent to solve the system of equations

Eθ (S(Y )) = S(yobs), (2.2)

where the expectation is taken with respect to the distribution f(y|θ) as specified in

(2.1). The rationale underlying this reformulation is the exponential family theory

([6]; [14]), which says that the MLE of (2.1), if existing, is the unique vector θ̂ such

that (2.2) holds. [74] applies the stochastic approximation algorithm [64] to solve

(2.2) for θ. In this paper, we call this method the SSA method. One iteration of SSA

consists of two main steps:

(a) (Independence network generation) Generate an independent sample y(k+1)

from the distribution f(y|θ(k)): Starting with a random graph in which each arc

variable Yij is determined independently with a probability 0.5 for the values

0 and 1; and then updating the random graph using the Gibbs sampler [30] or

the MH algorithm [36] and [54].

(b) (Estimate updating) Set

θ(k+1) = θ(k) − akD
−1

(
U(yk+1, ȳk+1)− S(yobs)

)
, (2.3)
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where {ak} denotes a positive sequence converging to 0, D denotes a pre-

estimated covariance matrix of S(Y ) at the initial estimate θ(1), ȳk+1 = 1−yk+1

denotes the complementary network of yk+1 (with each cell of the adjacency

matrix of yk+1 being switched from 0 to 1 and vice versa),

U(yk+1, ȳk+1) = P (ȳk+1|yk+1)S(ȳk+1) + (1− P (ȳk+1|yk+1))S(yk+1),

and P (ȳk+1|yk+1) denotes the MH acceptance probability of the transition from

yk+1 to ȳk+1.

A major shortcoming of SSA is its inefficiency in generating independent network

samples. The number of updating steps for generating each sample yk+1 is in the

order of 100n2, where n denotes the total number of nodes included in the network.

This is very time consuming when n is large.

C. Model Degeneracy

The model degeneracy problem [34] refers to the phenomenon that for some con-

figurations of θ, the model (2.1) produces networks that are either full (every tie

exists) or empty (no ties exist) with probability close to one. For example, the mod-

els with basic Markovian statistics (e.g., the number of triangles) often suffer from

the model degeneracy problem. When one edge is added to or removed from the

network, the values of the basic Markovian statistics can change a lot while the val-

ues of other statistics do not change proportionally, so the dyadic dependence effects

amplify quickly and the model tend to be degenerated. When the observed network

is fitted by such a model, the MCMLE and SSA method may produce a degenerated

estimate of θ (i.e., the estimate falls in a degeneracy region) if the starting value is

in or close to a degeneracy region. In this case, the resulting model will not provide
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a good fitting to the network. The reason why MCMLE and SSA often fail for the

model degeneracy problem is due to their local convergence property, i.e., they tend

to converge to a local optimal solution near the starting point.

As pointed out by [35], the model degeneracy problem can also be viewed as

a model mis-specification problem. A solution to avoid this problem is to specify a

model whose parameter space contains no or less degeneracy regions. However, this

is often more difficult than usual. For a linear model, the mis-specification can be

diagnosed by comparing observed to predicted values; but for ERGMs, if the model

is mis-specified, the analyst can be left with little information to help guide the re-

specification of the model.

D. Network Statistics

Recall the likelihood function given in (2.1). To define ERGMs, it is necessary to

specify the sufficient statistics S(y) explicitly. Since a large number of specifications

are available for ERGMs, we consider only several commonly used statistics in this

article, including basic Markovian statistics [27], the degree distribution, the edge-

wise shared partnership distribution [75], and nodal covariates. The basic Markovian

statistics, which consist of edge counts, k2-star, k3-star, and triangle counts, describe

the basic structure of social networks. The degree distribution and the edgewise

shared partnership distribution describe the higher order transitivity of social net-

works. Nodal covariates introduce actor attributes into ERGMs. See [68] and [69] for

overviews of ERGMs.
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1. Basic Markovian Statistics

The edge counts, denoted by S1(y), is the count of edges contained in the social

network y. If one node connects to other two nodes, it is called 2-star. In the same

manner, if one node connects to other three nodes, it is called 3-star. The counts of

2-stars and 3-star are called k2-star and k3-star, and denoted by S2(y) and S3(y),

respectively. If node ’a’ connects to node ’b’, node ’b’ connects to node ’c’, and

node ’c’ connects to node ’a’ simultaneously, then the nodes ’a’, ’b’ and ’c’ form a

triangle. The count of triangles is denoted by T (y). Mathematically, the statistics

Sk(y) (k = 2, 3) and T (y) can be calculated by

S1(y) =
∑

1≤i<j≤G

yij; Sk(y) =
∑

1≤i≤G

(
yi+

k

)
, k = 2, 3; T (y) =

∑

1≤i<j<h≤G

yijyihyjh,

(2.4)

where yi+ denotes the degree of node i.

2. Degree

Let Di(y) denote the number of nodes whose degree, the number of edges inci-

dent to the node, equals i. The statistics D0(y), . . . , DG−1(y) satisfy the constraint
∑G−1

i=0 Di(y) = G, and the edge count statistic can be re-expressed as S1(y) =

1
2

∑G−1
i=1 iDi(y).

The geometrically weighted degree statistic ([38], [40], and [75]) is defined by

u(y|τ) = eτ

G−2∑
i=1

{
1−

(
1− e−τ

)i
}
Di(y), (2.5)

where the additional parameter τ specifies the decreasing rate of weights put on the

higher order terms. Following [39], we fix τ to be a constant throughout this paper.

Although treating τ as an unknown parameter can potentially improve the model

fitting, the distribution (2.1) will no longer satisfy the form of exponential family.
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Rather it belongs to a curved exponential family.

3. Shared Partnership

Let EPk(y) denote the number of unordered pairs (i, j) for which i and j have ex-

actly k common neighbors and Yij = 1. Let DPk(y) denote the number of unordered

pairs (i, j) for which i and j have exactly k common neighbors regardless the value

of Yij. In the literature, EPk(y) is called the edge-wise shared partnership statis-

tic and DPk(y) the dyad-wise shared partnership statistic. They satisfy the con-

straint
∑G−2

k=0 EPk(y) = S1(y) and
∑G−2

k=0 DPk(y) =
(

n
2

)
. The geometrically weighted

edgewise shared partnership (GWESP) statistic and geometrically weighted dyadwise

shared partnership (GWDSP) statistic ([38], [40], and [75]) are defined by

v(y|τ) = eτ

G−2∑
i=1

{
1−

(
1− e−τ

)i
}
EPi(y), (2.6)

w(y|τ) = eτ

G−2∑
i=1

{
1−

(
1− e−τ

)i
}
DPi(y), (2.7)

where the parameter τ specifies the decreasing rate of weights put on the higher order

terms. As for the GWD statistic, τ is fixed to a constant throughout this paper.

4. Nodal covariates

Nodal covariates represent specific features of a node. Let Xi denote a covariate of

node i. All nodal covariates can be expressed as a dyadic independence statistic of

the form
∑∑

i<j

yijh(Xi, Xj) (2.8)

for a suitably chosen function h(Xi, Xj) [39]. In this paper, we consider a few types

of nodal covariates, including the main factor effect, nodal factor effect, homophily
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factor effect and absolute difference factor effect. The latter three are usually used

for categorical factors and their statistics take values of 0 or natural numbers.

The main factor effect directly adds covariates of nodes i and j; that is,

h(Xi, Xj) = Xi +Xj. (2.9)

For each edge, the nodal factor effect gives the node a score according to the

counts of endpoints which have the specified factor level. It is defined by

h(Xi, Xj) =





2, if both i and j have the specified factor level,

1, if exactly one of i, j has the specified factor level,

0, if neither i nor j has the specified factor level.

(2.10)

Since the sum of nodal factor effects for all levels are equal to twice the edge counts

of the network, one level must be excluded in nodal factor effects to remove the linear

dependency.

The homophily factor effect gives each edge a score of 0 or 1, depending on

whether or not the two endpoints have the same factor level. There are two types of

homophily factor effects: uniform homophily factor effect and differential homophily

factor effect. The former is defined by

h(Xi, Xj) =





1, if i and j have the same factor level,

0, otherwise,

(2.11)

and the latter is defined by

h(Xi, Xj) =





1, if i and j have the specified factor level,

0, otherwise.

(2.12)

For ordinal factors, one may expect that the nodes with smaller absolute dif-
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ferences in covariates tend to connect by edges. To incorporate this effect into the

models, we add a new statistic, the so-called absolute difference factor effect, into the

model. This effect is defined by

h(Xi, Xj) =





1 if |Xi −Xj| = C for some nonzero constant C,

0 otherwise.

(2.13)

If C = 0, it would introduce a linear dependence with the homophily factor effect.

5. Summary

In summary, the network statistics can be generally classified into two groups: dyadic

dependent and dyadic independent [35], where a dyad refers to a pair of nodes. Dyadic

independence means there are no direct dependence among dyads; that is, the state of

a dyad is independent of the state of other dyads. The edge counts and nodal covariate

terms are dyadic independent statistics. Dyadic dependence means the state of one

dyad stochastically depends on the state of other dyad. An example is “the friend of

my friend is also my friend”— edges in dyad (i, j) and (j, k) increase the probability

of relation in dyad (i, k). The k-star, triangle, degree and share partnership statistics

are dyadic dependent statistics. The dyadic dependent statistics tend to cause the

model degeneracy problem.
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CHAPTER III

THE MONTE CARLO METROPOLIS-HASTINGS ALGORITHM

A. Introduction

In this chapter, we propose a new algorithm, the so-called Monte Carlo Metropolis-

Hastings (MCMH) algorithm, for sampling from distributions with intractable nor-

malizing constants. The MCMH algorithm is a Monte Carlo version of the Metropolis-

Hastings algorithm. At each iteration, it replaces the unknown normalizing constant

ratio κ(θ)/κ(θ′) by a Monte Carlo estimate. Under mild conditions, we show that

the MCMH algorithm can still converge to the desired stationary distribution π(θ|x).
Unlike the Møller and exchange algorithms, the MCMH algorithm avoids the require-

ment for perfect sampling, and thus can be applied to many statistical models for

which perfect sampling is not available or very expensive.

The remainder of this chapter is organized as follows. In Section B, we describe

the MCMH algorithm. In Section C, we test the MCMH algorithm on social network

models. In Section D, we discuss the relation between MCMH and the group inde-

pendence MH algorithm introduced by [8], and the potential applications of MCMH

in marginal inference.
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B. The Monte Carlo Metropolis-Hastings Algorithm

1. The Algorithm

Consider the problem of sampling from the distribution (1.2). Let θt denote the

current draw of θ by the algorithm. Let y
(t)
1 , . . . , y

(t)
m denote the auxiliary samples

simulated from the distribution f(y|θt), which can be drawn by either a MCMC

algorithm or an automated rejection sampling algorithm [13]. The MCMH algorithm

works by iterating between the following steps:

Monte Carlo MH Algorithm I

1. Draw ϑ from some proposal distribution Q(θt, ϑ).

2. Estimate the normalizing constant ratio R(θt, ϑ) = κ(ϑ)/κ(θt) by

R̂m(θt,yt, ϑ) =
1

m

m∑
i=1

g(y
(t)
i , ϑ)

g(y
(t)
i , θt)

,

where g(y, θ) = exp{−U(y, θ)}, and yt = (y
(t)
1 , . . . , y

(t)
m ) denotes the collection

of the auxiliary samples.

3. Calculate the Monte Carlo MH ratio

r̃m(θt,yt, ϑ) =
1

R̂m(θt,yt, ϑ)

g(x, ϑ)π(ϑ)

g(x, θt)π(θt)

Q(ϑ, θt)

Q(θt, ϑ)
,

where π(θ) denotes the prior distribution imposed on θ.

4. Set θt+1 = ϑ with probability α̃(θt,yt, ϑ) = min{1, r̃m(θt,yt, ϑ)}, and set θt+1 =

θt with the remaining probability.

5. If the proposal is rejected in step 4, set yt+1 = yt. Otherwise, draw samples

yt+1 = (y
(t+1)
1 , . . ., y

(t+1)
m ) from f(y|θt+1) using either a MCMC algorithm or an

automated rejection sampling algorithm.



16

Since the algorithm involves a Monte Carlo step to estimate the unknown nor-

malizing constant ratio, it is termed as “Monte Carlo MH”. Clearly, the samples

{(θt,yt)} forms a Markov chain whose transition kernel is given by

P̃m(θ,y; dϑ, dz) = α̃(θ,y, ϑ)Q(θ, dϑ)fm
ϑ (dz)

+ δθ,y(dϑ, dz)
[
1−

∫

Θ×Y
α̃(θ,y, ϑ′)Q(θ, dϑ′)fm

ϑ′ (dz
′)
]

= α̃(θ,y, ϑ)Q(θ, dϑ)fm
ϑ (dz)

+ δθ,y(dϑ, dz)
[
1−

∫

Θ

α̃(θ,y, ϑ′)Q(θ, dϑ′)
]
,

(3.1)

where fm
θ (y) = f(y1, . . . , ym|θ) denotes the joint density of y1, . . . , ym.

In general, if {(Xt, Yt)} forms a Markov chain, then the marginal path {Xt}
forms an adaptive Markov chain for which each state depends all of its past states;

that is, Xt depends on Xt−1, . . . , X1, X0 for all t ≥ 1. For the MCMH-I algorithm,

the transition kernel of the marginal chain {θt} is given by

P̃m(θt, dϑ) =

∫

Y

∫

Y
P̃m(θt,yt; dϑ, dz)fm

θt
(dyt)

=

∫

Y
α̃(θt,yt, ϑ)Q(θt, dϑ)fm

θt
(dyt)

+ δθt(dϑ)
[
1−

∫

Θ×Y
α̃(θt,yt, ϑ

′)Q(θt, dϑ
′)fm

θt
(dyt)

]
.

(3.2)

It is easy to see that P̃m(θt, dϑ) is independent of {θt−1, . . . , θ0}. This implies that

the ergodicity of {θt} can be analyzed as a non-adaptive Markov chain. However, in

Theorem B.2 we still show that {θt} has the same stationary distribution as the time

homogeneous Markov chain under the framework of adaptive Markov chain (see e.g.,

[66]). Note that the independence of P̃m(θt, dϑ) on past states is not generally true

for all marginal Markov chains. It is true for MCMH-I as for which yt is generated

from fθt(y), which implies that yt is independent of θ0, . . . , θt−1 conditional on θt.

The MCMH-I algorithm requires the auxiliary samples to be drawn at equilib-
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rium, if a MCMC algorithm is used for generating the auxiliary samples. To ensure

this requirement to be satisfied, we propose to choose the initial auxiliary sample at

each iteration through an importance resampling procedure; that is, set y
(t+1)
0 = y

(t)
i

with a probability proportional to the importance weight

wi = g(y
(t)
i , θt+1)/g(y

(t)
i , θt). (3.3)

As long as y
(t+1)
0 follows correctly from the conditional distribution f(y|θt+1), this

procedure ensures that all samples, yt+1, yt+2, yt+3, . . ., drawn in the followed it-

erations will follow correctly from the respective conditional distributions, provided

that θ does not change drastically at each iteration. Note that the resampling proce-

dure may introduce a (probably very slight) dependence on the previous samples. In

practice, we may ignore this dependence, especially when m is large.

Regarding the choice of m, we note that m may not necessarily be very large in

practice. In our experience, a value between 20 and 50 may be good for most problems.

It seems that the random errors introduced by the Monte Carlo estimate of κ(θt)/κ(ϑ)

can be smoothed out by path averaging over iterations. This is particularly true for

parameter estimation.

The MCMH algorithm can have many variants. A simple one is to draw auxiliary

samples at each iteration, regardless of acceptance or rejection of the last proposal.

This variant be described as follows:

Monte Carlo MH Algorithm II

1. Draw ϑ from some proposal distribution Q(θt, ϑ).

2. Draw auxiliary samples yt = (y
(t)
1 , . . . , y

(t)
m ) from f(y|θt) using a MCMC algo-

rithm or an automated rejection algorithm.
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3. Estimate the normalizing constant ratio R(θt, ϑ) = κ(ϑ)/κ(θt) by

R̂m(θt,yt, ϑ) =
1

m

m∑
i=1

g(y
(t)
i , ϑ)

g(y
(t)
i , θt)

.

4. Calculate the Monte Carlo MH ratio

r̃m(θt,yt, ϑ) =
1

R̂m(θt,yt, ϑ)

g(x, ϑ)π(ϑ)

g(x, θt)π(θt)

Q(ϑ, θt)

Q(θt, ϑ)
.

5. Set θt+1 = ϑ with probability α̃(θt,yt, ϑ) = min{1, r̃m(θt,yt, ϑ)} and set θt+1 =

θt with the remaining probability.

MCMH-II has a different Markovian structure from MCMH-I. In MCMH-II, {θt}
forms a Markov chain with the transition kernel given by

P̃m(θ, dϑ) =

∫

Y
α̃(θ,y, ϑ)Q(θ, dϑ)fm

θ (dy)

+ δθ(dϑ)
[
1−

∫

Θ×Y
α̃(θ,y, ϑ′)Q(θ, dϑ′)fm

θ (dy)
]
,

(3.4)

which is identical to the marginal transition kernel (3.2) except for notations. Hence,

the two algorithms will have the same convergence rate for {θt}.
Intuitively, one may expect that MCMH-I converges slowly than MCMH-II, as

the former recycles the auxiliary samples when rejection occurs and thus the successive

samples generated by it may have significantly higher correlation than those generated

by the latter. In fact, the random error of R̂m(θt,yt, ϑ) depends mainly on θt and ϑ

instead of yt when m is large. This may help us to understand why MCMH-I and

MCMH-II show the same convergence rate in numerical examples.

Similar to MCMH-II, we can propose another variant of MCMH, which, in step

2, draws auxiliary samples from f(y|ϑ) instead of f(y|θt). Then

R̂∗m(θt,yt, ϑ) =
1

m

m∑
i=1

g(y
(t)
i , θt)

g(y
(t)
i , ϑ)

,
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forms an unbiased estimator of the ratio κ(θt)/κ(ϑ), and the Monte Carlo MH ratio

can be calculated as

r̃∗m(θt,yt, ϑ) = R̂∗m(θt,yt, ϑ)
g(x, ϑ)π(ϑ)

g(x, θt)π(θt)

Q(ϑ, θt)

Q(θt, ϑ)
.

In addition to f(y|θt) or f(y|ϑ), the auxiliary samples can also be generated from

a third distribution which has the same support set as f(y|θt) and f(y|ϑ). In this

case, the ratio importance sampling method ([18], [78]) can be used for estimating

the normalizing constant ratio κ(θt)/κ(ϑ). The existing normalizing constant ratio

estimation techniques, such as bridge sampling [53] and path sampling [28], are also

applicable to MCMH with an appropriate strategy for generating auxiliary samples.

2. Convergence

In this subsection, we first prove the ergodicity of MCMH-II; that is, showing

‖P̃ k
m(θ0, ·)− π(·|x)‖ → 0, as m→∞ and k →∞,

where k denotes the number of iterations, π(·|x) denotes the target distribution de-

fined in (1.2), and ‖ · ‖ denotes the total variation norm as specified in [77]. Then,

based on the theory of adaptive Markov chain [4], we show that MCMH-I has the

same stationary distribution as MCMH-II. The main results are presented below,

whose proofs can be found in Appendix A. Extension of these results to other vari-

ants of MCMH is straightforward.

Define

γm(θ,y, ϑ) =
R(θ, ϑ)

R̂(θ,y, ϑ)
.

In the context where confusion is impossible, we denote γm = γm(θ,y, ϑ). Define



20

λm = | log(γm(θ,y, ϑ))|, and define

ρ(θ) = 1−
∫

Θ×Y
α̃m(θ,y, ϑ)Q(θ, dϑ)fm

θ (dy),

which represents the mean rejection probability of a MCMH-II transition from θ.

To show the convergence of MCMH-II, we also consider the transition kernel

P (θ, ϑ) = α(θ, ϑ)Q(θ, ϑ) + δθ(dϑ)
[
1−

∫

Θ

α(θ, ϑ)Q(θ, ϑ)dϑ
]
,

which is induced by the proposal Q(·, ·). In addition, we assume the following condi-

tions:

(A1) Assume that P defines an irreducible and aperiodic Markov chain such that

πP = π, and for any θ0 ∈ Θ, limk→∞ ‖P k(θ0, ·)− π(·|x)‖ = 0.

(A2) For any (θ, ϑ) ∈ Θ×Θ,

γm(θ,y, ϑ) > 0, fm
θ (·)− a.s.

(A3) For any θ ∈ Θ and any ε > 0,

lim
m→∞

Q (θ, fm
θ (λm(θ,y, ϑ) > ε)) = 0,

where Q (θ, fm
θ (λm(θ,y, ϑ) > ε)) =

∫
{(ϑ,y):λm(θ,y,ϑ)>ε} f

m
θ (dy)Q(θ, dϑ).

The condition (A1) can be simply satisfied by choosing an appropriate proposal dis-

tribution Q(·, ·), following from the standard theory of the Metropolis-Hastings algo-

rithm [77]. The condition (A2) assumes that the distributions f(y|θ) and f(y|ϑ) have

a reasonable overlap such that R̂ forms a reasonable estimator of R. The condition

(A3) is equivalent to assuming that for any θ ∈ Θ and any ε > 0, there exists a
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positive integer M such that for any m > M ,

Q (θ, fm
θ (λm(θ,y, ϑ) > ε)) ≤ ε.

It essentially requires that R̂(θ,y, ϑ) is a consistent estimator of R(θ,y, ϑ) and the

stepsize of the proposal Q(θ, ϑ) is reasonably small, i.e., ϑ lies in a small neighborhood

of θ.

Lemma B.1 states that the marginal kernel P̃m has a stationary distribution. It

is proved in a similar way to Theorem 1 of [3]. The relation between this work and

[8] and [3] will be discussed in Section 5.

Lemma B.1 Assume (A1) and (A2) hold. Then for any m ∈ N such that for any

θ ∈ Θ, ρ(θ) > 0, P̃m is also irreducible and aperiodic, and hence there exists a

stationary distribution π̃m(θ|x) such that for any θ0 ∈ Θ,

lim
k→∞

‖P̃ k
m(θ0, ·)− π̃m(·|x)‖ = 0.

Lemma B.2 concerns the distance between the kernel P̃m and the kernel P . It

states that the two kernels can be arbitrarily close to each other, provided that m is

large enough.

Lemma B.2 Assume (A3) holds. Let ε ∈ (0, 1]. Then for any θ ∈ Θ, there exists

M(θ) ∈ N such that for any ψ : Θ → [−1, 1] and any m > M(θ),

|P̃mψ(θ)− Pψ(θ)| ≤ 4ε.

Theorem B.1 concerns the ergodicity of MCMH-II. It states that the kernel P̃m

asymptotically shares the same stationary distribution with the MH kernel P .

Theorem B.1 Assume the conditions (A1), (A2) and (A3) hold for MCMH-II. Then

for any ε ∈ (0, 1] and any θ0 ∈ Θ, there exist M(ε, θ0) ∈ N and K(ε, θ0,m) ∈ N such
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that for any m > M(ε, θ0) and k > K(ε, θ0,m)

‖P̃ k
m(θ0, ·)− π(·|x)‖ ≤ ε,

where π(·|x) denotes the posterior density of θ.

Theorem B.2 Assume the conditions (A1), (A2) and (A3) hold for MCMH-I. Then

the marginal chain {θt} induced by MCMH-I has the same stationary distribution as

the Markov chain {θt} induced by MCMH-II.

Theorem B.1 and Theorem B.2 imply, by standard MCMC theory (see, e.g., [77]),

that for an integrable function h(θ), the path averaging estimator
∑n

k=1 h(θk)/n will

converge to its posterior mean almost surely; that is, as k →∞,

1

n

n∑

k=1

h(θk) →
∫
h(θ)π(θ|x)dθ, a.s.,

provided that
∫ |h(θ)|π(θ|x)dθ < ∞ and m has been sufficiently large so that the

error in replacing π̃m(θ|x) by π(θ|x) is ignorable. Here π̃m denotes the stationary

distribution established in Lemma B.1 for a fixed value of m.

C. An Example: Exponential Random Graph Models

Based on the statistics defined , we consider three ERGMs with respective likelihood

functions given by

f(x|θ) =
1

κ(θ)
exp {θ1e(x) + θ2u(x|τ)} , (Model 1),

f(x|θ) =
1

κ(θ)
exp {θ1e(x) + θ2v(x|τ)} , (Model 2),

f(x|θ) =
1

κ(θ)
exp {θ1e(x) + θ2u(x|τ) + θ3v(x|τ)} , (Model 3).

To conduct a Bayesian analysis for the models, the prior π(θ) = Nd(0, 102Id)
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was imposed on θ, where d is the dimension of θ, and Id is an identity matrix of size

d × d. Then, MCMH can be applied to simulate from the posterior. The proposal

distribution Q(·, ·) used here is a Gaussian random walk proposal Nd(θt, s
2Id), and

s is called the step size. In all simulations of this section, s was fixed to 0.2. Each

auxiliary sample is generated through a cycle of Metropolis-within-Gibbs updates.

1. High School Student Friendship Network

The data was collected during the first wave (1994-1995) of National Longitudinal

Study of Adolescent Health(AddHealth) through a stratified sampling survey in the

U.S. schools containing grades 7 through 12. To collect the data, the school admin-

istrator made a roster of all students and asked students to nominate five close male

and female friends. Students were allowed to nominate their friends who were not in

their school. The students may choose not to nominate if they did not have enough

number of close male or female friends. The detailed description of the data can

be found in [62], [79], or at http://www.cpc.unc.edu/projects/addhealth. The full

dataset contains 86 schools and 90,118 students. In this paper, only the subnetwork

for school 10, which has 205 students, is analyzed. Also, only the undirected network

for the case of mutual friendship are considered.

MCMH-I was applied to this network with m = 20. For each model, MCMH-I

was run 5 times independently. Each run started with a random point and consisted of

5,000 iterations, where the first 1000 iterations were discarded for the burn-in process

and the samples collected from the remaining iterations were used for estimation.

The results were summarized in Table I.

For comparison, the MCMLE was also applied to this example. The software

we used for MCMLE is an R package ergm by [41]. MCMLE was also run 5 times

for each model of this example. Each run consisted of 25 iterations with 6,500 aux-
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iliary networks being generated at each iteration. In the ergm package, the auxiliary

networks was simulated using the tie-no-tie sampler with both the number of burnin

and the number of interval steps being set to 20,000. Under this setting, a total of

1.3×108(= 20, 000×6, 500) MH updates (each for one edge) are needed for generating

6500 networks at each iteration of MCMLE. The results are summarized in Table I.

It indicates that MCMLE costs longer CPU times than MCMH-I for this example.

All computations for this example were done on a 3.0GHz Intel Core 2 Duo computer.

Table I. Parameter estimation for the AddHealth school 10 network. The estimates

were calculated by averaging over 5 independent runs with the standard de-

viations reported in the parentheses. CPU: the CPU time (in minutes) cost

by a single run on a 3.0GHz Intel Core 2 Duo computer.

Method Terms Model 1 Model 2 Model 3

MCMH Edge Counts -3.922(7.0e-3) -5.607(1.3e-2) -5.507(3.7e-2)

GWD -1.545(1.6e-2) -0.101(3.7e-2)

GWESP 1.889(1.2e-2) 1.821(2.4e-2)

CPU(m) 33.6 33.5 60.1

MCMLE Edge Counts -3.977(5.3e-2) -5.388(9.3e-3) -5.170(1.5e-2)

GWD -1.297(4.3e-2) -0.227(6.1e-3)

GWESP 1.711(7.8e-3) 1.589(1.5e-2)

CPU(m) 45.1 48.9 70.8

To assess accuracy of the MCMH estimates, the following procedure was proposed

in a similar spirit to the parametric bootstrap method [26], which calculated the root

mean squared errors (RMSEs) of the estimates of Sa(x)’s. Since the statistics {Sa(x) :

a ∈ A} are sufficient for θ, if an estimate θ̂ is accurate, then Sa(x)’s can be reversely

estimated by simulated networks from the distribution f(x|θ̂). The procedure consists

of three steps:
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(a) Given the estimate θ̂, simulate K networks, x1, . . . , xK , independently using the

Gibbs sampler.

(b) Calculate the statistics Sa(x), a ∈ A for each of the simulated networks.

(c) Calculate RMSE by following equation.

RMSE(Sa) =

√√√√
K∑

i=1

[
Sa(xi)− Sa(x)

]2
/K, a ∈ A, (3.5)

where Sa(x) is the corresponding statistic calculated from the network x.

In addition to RMSE, we also calculate the absolute mean difference (AMD) for

each statistic,

AMD(Sa) =

∣∣∣∣∣
1

K

K∑
i=1

Sa(xi)− Sa(x)

∣∣∣∣∣ .

With simple manipulations, it is easy to show the following equalities hold at the

MLE of θ:

Eθ[Sa(X)] = Sa(x), ∀ a ∈ A, (3.6)

where Eθ[·] denotes the expectation with respect to the distribution f(x|θ) given in

(2.1). Hence, AMD also provides a measure for the quality of the estimate of θ.

For each of the estimates shown in Table I, the RMSEs and AMDs were calculated

with K = 1000 and summarized in Table II. The results indicate that MCMH-I

produced much more accurate estimates than MCMLE for all the three models. We

note that [39] have also applied MCMLE to model 1 and model 2 for this network.

Their estimate for model 2 is similar to ours, but their estimate for model 1 is much

worse than ours. [39] reported the estimate of model 1 as (−1.423,−1.305), for which

the RMSE values are 4577.2 for the edge count and 90.011 for GWD. MCMH-I was

also run with m = 50 for this network. The results were very similar.
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Table II. RMSEs and AMDs of the MCMLE and MCMH estimates for the ADDHealth

School 10 network.

Model 1 Model 2 Model 3

Method Terms RMSE AMD RMSE AMD RMSE AMD

MCMH Edge Counts 32.449 2.672 26.998 2.252 22.993 10.821

GWD 16.222 0.357 12.519 3.518

GWESP 28.269 0.945 30.531 11.333

MCMLE Edge Counts 50.046 42.151 41.305 29.599 87.158 76.948

GWD 26.964 24.497 27.609 25.277

GWESP 33.180 14.568 70.470 56.189

Finally, we assessed accuracy of the model estimates using the goodness-of-fit

(GOF) plots [39]. The GOF plot shows the distribution (through box-plots and

confidence intervals) of three sets of statistics, the degree distribution, the edgewise

shared partnership distribution and the geodesic distance distribution, for the fitted

model. If the statistics of the observed network, which are represented by a solid

line in the GOF plots, falls into the confidence intervals of the fitted model, then the

fitting is considered good. The closer the solid line is to the center of the box-plots,

the better the fitting is. Figure 1 compares the GOF plots for the two estimates of

model 3. It indicates that MCMH-I provides a better fitting for the network than

MCMLE. For other two models, GOF plots (omitted here) also indicate that MCMH-I

works better than MCMLE for this example.

D. MCMH, GIMH and Marginal Inference

In the literature, there is one algorithm, namely, grouped independence MH (GIMH)

[8], which is similar in spirit to the MCMH algorithm. GIMH is designed for marginal
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Fig. 1. Goodness-of-fit(GOF) plots for the high school student friendship network.

Row 1: MCMH-I estimate; Row 2: MCMLE. The solid line shows the observed

network statistics, and the box-plots represent the distributions of simulated

network statistics.
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inference from a joint distribution.

Let π(θ, y) denote a joint distribution. Suppose that one is interested in the

marginal distribution π(θ). For example, in Bayesian statistics, θ could represent a

parameter of interest and y a set of missing data or latent variables. As implied by

the Rao-Blackwell theorem [11], a basic principle in Monte Carlo computation is to

carry out analytical computation as much as possible. Motivated by this principle, [8]

proposed to replace π(θ) by its Monte Carlo estimate in simulations when the analyt-

ical form of π(θ) is not available. Let y = (y1, . . . , ym) denote a set of independently

identically distributed (iid) samples drawn from a trial distribution qθ(y). It follows

from the standard theory of importance sampling that

π̃(θ) =
1

m

m∑
i=1

π(θ, yi)

qθ(yi)
, (3.7)

forms an unbiased estimate of π(θ). In simulations, GIMH treats π̃(θ) as a known

target density, then simulate from it using the Metropolis-Hastings algorithm. Let θt

denote the current draw of θ, and let yt = (y
(t)
1 , . . . , y

(t)
m ) denote a set of iid auxiliary

samples drawn from qθ(y). One iteration of GIMH consists of the following steps:

Group Independence MH Algorithm

• Generate a new candidate point θ′ from a proposal distribution T (θ′|θt).

• Draw m iid samples y′ = (y′1, . . . , y
′
m) from the trial distribution qθ′(y).

• Accept the proposal with probability

min

{
1,
π̃(θ′)
π̃(θt)

T (θt|θ′)
T (θ′|θt)

}
.

If it is accepted, set θt+1 = θ′ and yt+1 = y′. Otherwise, set θt+1 = θt and

yt+1 = yt.
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The convergence of the GIMH algorithm has been studied by [3] under similar

conditions to those assumed for MCMH in this paper. In the context of marginal

inference, MCMH-I can be described as follows.

MCMH-I algorithm (for marginal Inference)

• Generate a new candidate point θ′ from a proposal distribution T (θ′|θt).

• Accept the proposal with probability

min

{
1, R̃(θt, θ

′)
T (θt|θ′)
T (θ′|θt)

}
,

where R̃(θt, θ
′) = 1

m

∑m
i=1 π(θ′, y(t)

i )/π(θt, y
(t)
i ) forms an unbiased estimate of the

marginal density ratio R(θt, θ
′) =

∫
π(θ′, y)dy/

∫
π(θt, y)dy. If it is accepted, set

θt+1 = θ′; otherwise, set θt+1 = θt.

• Set yt+1 = yt if a rejection occurs in the previous step. Otherwise, generate

auxiliary samples yt+1 = (y
(t+1)
1 , . . . , y

(t+1)
m ) from the conditional distribution

π(y|θt+1). The auxiliary samples y
(t+1)
1 , . . . , y

(t+1)
m can be generated via a MCMC

simulation.

Taking a closer look at MCMH-I, we can find that it is designed in a different

rule from GIMH. Firstly, one estimates the marginal distributions in GIMH; whereas,

one directly estimates the ratio of marginal distributions in MCMH-I. This leads

to an important use of MCMH for simulating from distributions with intractable

normalizing constants, which is the focus of this paper. Note that GIMH cannot be

directly used to this problem. Secondly, GIMH requires to draw samples in iterations

from two distributions qθ(·) and qθ′(·), while MCMH-I requires only to draw samples

from a single distribution π(·|θ). Thus, MCMH-I can be more efficient than GIMH

for marginal inference. In addition, MCMH-I can recycle the auxiliary samples when
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a proposal is rejected, and this further improves its efficiency. From the theoretical

perspective, we analyze the convergence of the marginal chain resulted from MCMH-I

under the framework of adaptive Markov chains, while GIMH is analyzed in [3] under

the framework of time homogeneous Markov chains.

MCMH can potentially be applied to many statistical models for which marginal

inference is our main interest, such as generalized linear mixed models (see, e.g.,

[52]) and hidden Markov random field models [70]. MCMH can also be applied to

Bayesian analysis for the missing data problems that are traditionally treated with

the EM algorithm [24] or the Monte Carlo EM algorithm [81]. Since the EM and

Monte Carlo EM algorithms are local optimization algorithms, they tend to converge

to suboptimal solutions. MCMH may perform better in this respect. Note that one

may run MCMH under the framework of parallel tempering [31] to help it escape

from suboptimal solutions.
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CHAPTER IV

BAYESIAN STOCHASTIC APPROXIMATION MONTE CARLO ALGORITHM

A. Introduction

In this chapter, we propose a new algorithm, the so-called Bayesian Stochastic Ap-

proximation Monte Carlo (BSAMC) algorithm, for tackling the intractable normaliz-

ing constant problem. BSAMC works by simulating from a sequence of approximated

distributions, which are denoted by πt(θ|z) and obtained using the stochastic approx-

imation Monte Carlo (SAMC) algorithm [50]. Let θt denote a sample simulated from

πt(θ|z). Under mild conditions, we show that for any bounded measurable function

ϕ(θ),
∑n

t=1 ϕ(θt)/n converges almost surely to the posterior mean of ϕ(θ) as n goes

to infinity. One significant advantage of BSAMC over the auxiliary variable MCMC

methods is that it avoids the requirement for perfect samples, and thus can be applied

to many models for which the auxiliary variable MCMC methods are not applicable.

BSAMC is general; it can be applied to any models whose normalizing constant is

intractable. Comparing to Monte Carlo MLE, BSAMC is very robust to the choice

of θ0 due to the powerful ability of SAMC in sample space exploration. Finally,

we note that although BSAMC works based on SAMC, SAMC itself cannot be di-

rectly applied to sample from the posterior π(θ|z). Hence, BSAMC represents an

extension of SAMC for Bayesian analysis for the models with intractable normalizing

constants. BSAMC also provides a general framework for approximated Bayesian

analysis through simulating from a sequence of approximated distributions with their

average converging to the target posterior distribution.
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The remainder of this chapter is organized as follows. In Section B, we describe

the BSAMC algorithm and explore its theoretical property. In Section C, we apply

BSAMC to Ising models along with a comparison with the MCMLE algorithm. The

numerical results show that BSAMC can perform very robustly to the initial guess of

θ. In Section D, we apply BSAMC algorithm to autologistic and autonormal models.

B. Bayesian Stochastic Approximation Monte Carlo Algorithm

1. The BSAMC Algorithm

To approximate the normalizing constant κ(θ), the MCMLE method proposed by

[32] adopts an importance sampling method with the trial distribution f(x|θ0). It is

obvious that, when θ0 is far from the true value of θ, f(x|θ0) may approximate f(x|θ)
poorly, and the resulting estimate of κ(θ) may be biased. To resolve this difficulty,

we choose the following mixture distribution as the trial distribution:

g(x, θ0) =
1

k

k∑
i=1

p(x, θ0)

ξ(i)
I(x ∈ Ei), (4.1)

where E1, . . . , Ek forms a partition of the sample space X , and ξ(i) =
∫

Ei
p(x, θ0)dx.

Let ξ = (ξ(1), . . . , ξ(k)). Without loss of generality, we assume that the sample space

has been partitioned according to the energy function − log p(x, θ0) as follows: E1 =

{x : − log p(x, θ0) < h1}, E2 = {x : h1 ≤ − log p(x, θ0) < h2}, . . ., Ek = {x :

− log p(x, θ0) ≥ hk−1}, where h1 < h2 < . . . < hk−1 are some pre-fixed numbers.

It is easy to see that sampling of g(x, θ0) will lead to an equal sampling from each

of the subregions E1, . . . , Ek, and the normalizing constant κ(θ) can thus be well

approximated even when θ0 is far from the true value of θ. Clearly, the success of

the approximation amounts on the estimation of the quantities ξ(1), . . . , ξ(k) which are

unknown a priori. Thanks to the SAMC algorithm, it provides consistent estimates
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of these quantities in an iterative way. Let ξ
(i)
t denote the estimate of ξ(i) at iteration

t, let ξt = (ξ
(1)
t , . . . , ξ

(k)
t ), and let x

(1)
t , . . . , x

(m)
t denote the samples simulated from the

working trial distribution

gξt(x, θ0) =
1

Zt

k∑
i=1

p(x, θ0)

ξ
(i)
t

I(x ∈ Ei), (4.2)

where Zt is the normalizing constant of gξt(x, θ0). Then log π(θ|z) can be approxi-

mated by

log πξt(θ|z) = log π(θ) + log p(z, θ)− log(Zt)− log

(
1

m

m∑
i=1

p(x
(i)
t , θ)/gξt(x

(i)
t , θ0)

)
.

(4.3)

It is clear that as m→∞, log πξt(θ|z) approaches to log π(θ|z).

BSAMC Algorithm

(a) (Auxiliary sample generating) Simulate samples x
(1)
t , . . . , x

(m)
t from the working

trial distribution gξt−1(x, θ0) using the MH algorithm. Denote the set of auxiliary

samples by xt = (x
(1)
t , . . . , x

(m)
t ).

(b) (Estimate updating) Update the estimates ξt−1 by setting

log (ξt) = log (ξt−1) + γtHξt−1(xt), (4.4)

where Hξt−1(xt) is a k-vector with the i-th component given by
∑m

j=1 I(x
(j)
t ∈

Ei)/m−1/k, I(·) is the indicator function, and {γt} is a pre-specified gain factor

sequence. How to choose the sequence {γt} will be discussed later.

(c) (Posterior sample generating) Draw sample θ
(1)
t , . . . , θ

(s)
t from the approximated

posterior πξt(θ|z) (as specified in (4.3)) using the MH algorithm.

Let (θ
(1)
1 , . . . , θ

(s)
1 ), . . ., (θ

(1)
n , . . . , θ

(s)
n ) denote the samples of θ generated in n

iterations of BSAMC. Then, for any bounded measurable function ϕ(θ), its posterior
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mean π(ϕ) =
∫
ϕ(θ)π(θ|z)dθ can be estimated by

π̂n(ϕ) =
1

(n− n0)s

n∑
t=n0+1

s∑
i=1

ϕ(θ
(i)
t ), (4.5)

where n0 denotes the burn-in time of the simulation. In Section 2, we show that

under mild conditions, π̂n(ϕ) converges almost surely to π(ϕ) when both n and m

become large.

The merit of this algorithm is the use of SAMC for learning of the trial distri-

bution g(x, θ0). As discussed in [50], SAMC possesses a self-adjusting mechanism: If

a component ξ(i) is underestimated (overestimated) in the current iteration, then the

subregion Ei will tend to be oversampled (undersampled) in the next iteration and

the current estimate of ξ(i) will thus be counter-adjusted by the quantity γt(e
(i)
t −1/k)

as prescribed in step (b). This mechanism enables the simulation to converge very

quickly with samples being drawn equally from different subregions of the sample

space even when θ0 is far from the true value of θ. In general, the performance of

BSAMC can be very robust to the choice of θ0.

For an effective implementation of BSAMC, several issues need to be considered:

• Choice of θ0: Like the MCMLE method, θ0 can be chosen using another esti-

mator of θ, which is easy to calculate, such as the maximum pseudo likelihood

estimator (MPLE) [9] or the double MH estimator [48]. In our study, we set θ0

to the MPLE of θ.

• Sample space partition: As discussed in [50], the sample space should be par-

titioned such that the simulation conducted in step (a) should have a reason-

able acceptance rate. Since, within the same subregion, the SAMC simulation

of gξt(x, θ0) is reduced to the MH simulation of f(x|θ0), the cutting values

h1, . . . , hk−1 are required to satisfy the constraint maxi(hi− hi−1) ≤ 2. In prac-
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tice, we often set the subregions to have an equal energy bandwidth; that is,

setting hi = hi−1 + δ with δ taking a value between 0 and 2. The value of h1

can be chosen to be reasonably small, and that of hk−1 can be reasonably large,

such that both the energy regions of the true distribution f(x|θ) and of the

initial distribution f(x|θ0) can be covered.

• Choice of m: In practice, BSAMC is often run in two stages, although, in theory,

this is not necessary. In stage I, a small value of m is often used. The goal of this

stage is to approximate ξi’s, so step (c) can be omitted in this stage. In stage

II, a large value of m is often used. The goal of this stage is draw samples of

θ. This two-stage implementation strategy often improves the efficiency of the

algorithm. In terms of MCMC simulations, stage I corresponds to the burn-in

steps in (4.5).

• Choice of {γt}: As shown in [47], to ensure the convergence of ξt, {γt} should

be chosen as a positive, nondecreasing sequence satisfying the conditions

(a) ¯limt→∞|γ−1
t − γ−1

t+1| <∞, (b)
∞∑

t=1

γt = ∞, and (c)
∞∑

t=1

γη
t <∞, (4.6)

for some η > 1. In this paper, we choose

γt =
t0

max(t0, t)
, t = 1, 2, · · · (4.7)

for some specified value t0 > 1. As discussed in [50], a large value of t0 will

force the sampler to reach all subregions quickly, even in the presence of multiple

local energy minima. Therefore, t0 should be set to a large value for a complex

problem. In practice, the choice of t0 should be associated with the choice of N ,

the total number of iterations of the run. The appropriateness of their choices

can be diagnosed by checking the convergence of multiple runs (starting with
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different points) through an examination for the variation of ξ̂ or f̂ , where ξ̂

and f̂ denote, respectively, the estimate of ξ and the sampling frequencies of

the subregions obtained at the end of a run. A rough examination for ξ̂ is

to see visually whether ξ̂’s produced in multiple runs follow the same pattern.

Existence of different patterns implies that the gain factor is still large at the

end of the runs or some parts of the sample space are not yet visited in all runs.

This is similar to f̂ . If the choices of t0 and N are appropriate, each nonempty

subregion should be sampled roughly equally at end of each run. If the runs are

diagnosed as non-converged, BSAMC should be re-run with a large value of N ,

a larger value of t0, or both.

2. Convergence

For the reason of mathematical simplicity, we assume that Ξ, the parameter space of

ξ, is compact. Therefore, the sequence {ξt} can be kept in a compact set. Extension of

our results to the case that Ξ = Rk is trivial with the technique of varying truncations

studied in [2] and [17], which ensures, almost surely, that the sequence {ξt} can be

kept in a compact set.

To establish the convergence of the BSAMC estimator (4.5), we first prove The-

orem B.1, which concerns the convergence of ξt and the convergence of the sample

average of ρ(xt), where ρ denotes a bounded measurable function. Note that Theo-

rem B.1 concerns only steps (a) and (b) of BSAMC. If step (c) is ignored, BSAMC

is reduced to the multiple SAMC algorithm studied in [47], where “multiple” means

that multiple samples are allowed to be generated from the working density gξt(x|θ0)

at each iteration. Including step (c) enables BSAMC to be used for Bayesian in-

ference for the models with intractable normalizing constants, and this is also the

main methodology contribution of this paper. Rigorous theory has been established
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for the methodology development. BSAMC also provides a general framework for

approximated Bayesian analysis through sampling from a sequence of approximated

distributions with their averages converging to the target posterior distribution.

With a slight abuse of notations, we let x = (x(1), . . . , x(m)) denote m MCMC

samples drawn from g(x|θ0), and let g(x|θ0) denote the joint density/mass function

of x. Then Theorem B.1 can be stated as follows:

Theorem B.1 Consider the BSAMC algorithm. If the condition (4.6) and the drift

condition (given in Appendix) hold and Ξ is compact, then for any integer m ≥ 1,

(i)

ξ
(i)
t → cξi, a.s. as t→∞, (4.8)

where c is an arbitrary positive constant and it can be determined by imposing

a constraint on ξ
(i)
t ’s, e.g.,

∑k
i=1 ξ

(i)
t is equal to a fixed constant.

(ii) For any bounded measurable function ρ(·),

1

n

n∑
t=1

ρ(xt) →
∫

X
ρ(x)g(x|θ0)dx, a.s. as n→∞.

Proof: The proof of part (i) can be found in [47]. As aforementioned, ignoring step

(c), BSAMC is reduced to the multiple SAMC algorithm described in [47].

To prove part (ii), we first consider a general measurable functionWξ(y) (possibly

depending on ξ) and the Poisson equation:

uξ(y)− Pξuξ(y) = Wξ(y)− wξ,

where Pξ denotes the joint Markov transition kernel as defined in Appendix, y denotes

a sample generated by Pξ, Pξuξ(y) =
∫
Xm uξ(y

′)Pξ(y,y
′)dy′, wξ =

∫
Wξ(y)fξ(y)dy,

and fξ(y) denotes the stationary distribution of Pξ. It follows from [2] (Proposition
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6.1) that if Wξ(y) is bounded, then there exists a constant C such that for any

ξ, ξ′ ∈ Ξ,

sup
y∈Xm

[‖uξ(y)‖+ ‖Pξuξ(y)‖] < C,

sup
y∈Xm

[‖uξ(y)− uξ′(y)‖+ ‖Pξuξ(y)− Pξ′uξ′(y)‖] < C‖ξ − ξ′‖.
(4.9)

Let ε0 = ε′0 = 0, and

εt = γt[uξt−1(xt)− Pξt−1uξt−1(xt−1)],

ε′t = γt[Pξtuξt(xt)− Pξt−1uξt−1(xt)] + (γt+1 − γt)Pξtuξt(xt),

ε
′′
t = −γt+1Pξtuξt(xt).

With the Poisson equation, it is easy to verify that

γt[Wξt−1(xt)− wξt−1 ] = εt + ε′t + ε
′′
t − ε

′′
t−1,

n∑
t=1

γt[Wξt−1(xt)− wξt−1 ] =
n∑

t=1

εt +
n∑

t=1

ε′t + ε
′′
n − ε

′′
0 .

It follows from (4.6) and (4.9) that
∑∞

t=1 ‖εt‖2 <∞. Similarly, there exists a constant

C ′ such that

∞∑
t=1

‖ε′t‖ ≤ C ′ + C

∞∑
t=1

γt‖ξt − ξt−1‖ = C ′ + C

∞∑
t=1

γtγt−1‖Hξt−1(xt−1)‖ <∞,

where the last inequality follows from (4.6) and the boundedness of Hξ(x). For

BSAMC, we have ‖Hξ(x)‖ ≤ 1.

Let Ft = {ξ0,x0; ξ1,x1; . . . , ξt,xt} denote a filtration. Then {εt} forms a martin-

gale difference sequence adapted to {Ft}t≥0. Since
∑∞

t=1 ‖εt‖2 <∞, by the martingale

convergence theorem,
∑n

t=1 εt converges almost surely. Then, following from (4.9) and
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the convergence of
∑∞

t=1 ‖ε′t‖, we have

n∑
t=1

γt[Wξt−1(xt)− wξt−1 ] <∞, a.s. (4.10)

Applying Kronecker’s Lemma to (4.10) with γt = 1/t and Wξt−1(xt) = ρ(xt), we

obtain

1

n

n∑
t=1

[
ρ(xt)−

∫

X
ρ(x)gξt(x|θ0)dx

]
→ 0, a.s. (4.11)

By the convergence of ξt established in part (i), which implies that xt will converge

in distribution to a random variable distributed according to g(x|θ0), and the bound-

edness of ρ(x), we have

∫

X
ρ(x)gξt(x|θ0)dx →

∫

X
ρ(x)g(x|θ0)dx, as t→∞,

which, together with (4.11), concludes the proof of part (ii). ¤

The drift condition is classical in the literature of Markov chain. It implies the

existence of a stationary distribution and uniform ergodicity of the Markov chain.

However, it is usually difficult to verify. For example, for the random walk MH

kernel, complicated conditions are needed to control the tail behavior of the target

distribution [2]. For mathematical simplicity, one may assume that the sample space

X is compact. For example, one may restrict X to the set {x : f(x|θ0) ≥ ε0}
for a sufficiently small number ε0. In addition, one may assume that the proposal

distribution q(·, ·) satisfies the local positive condition:

For every x ∈ X , there exists ε1 > 0 and ε2 > 0 such that

‖x− y‖ ≤ ε1 =⇒ q(x, y) ≥ ε2,

where ‖x− y‖ denotes a certain distance measure between x and y.

When the sample space X is compact and the proposal distribution satisfies the
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local positive condition, it is easy to verify that BSAMC satisfies the drift condition.

Refer to [47] for the details, where the drift condition is verified for multiple SAMC.

The next theorem concerns the convergence of the log-posterior distribution

log πξt(θ|z).

Theorem B.2 Consider the BSAMC algorithm. If the parameter space Θ is compact

and the conditions of Theorem B.1 hold, then for any θ ∈ Θ,

1

n

n∑
t=1

log πξt(θ|z) → log π(θ|z), a.s.

as m→∞ and n→∞.

Proof: Let Rt(θ) = κ(θ)/Zt, where Zt denotes the normalizing constant of gξt(x|θ0).

To define notations, we rewrite gξt(x|θ0) as

gξt(x|θ0) =
1

Zt

ψ̂t(x) =
1

Zt

k∑
i=1

p(x, θ0)

ξ
(i)
t

I(x ∈ Ei),

and let

R̂t(θ) =
1

m

m∑
j=1

p(x
(j)
t , θ)

ψ̂t(x
(j)
t )

.

It is easy to show that for any θ, R̂t(θ) forms an unbiased and consistent estimator

of Rt(θ) [20]. Following the standard theory of Markov chain Monte Carlo (see, e.g.,

[77]), we have
√
m(R̂t(θ)−Rt(θ)) → N(0, σ2

t (θ)),

for some positive constant σt(θ), depending on θ and t, as m → ∞. See [65] for an

explicit form of σt(θ). By the Delta method,

√
m

(
log

(
R̂t(θ)

)
− log(Rt(θ))

)
→ N

(
0, σ2

t (θ)/R
2
t (θ)

)
. (4.12)
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By part (i) of Theorem B.1, we have, as t→∞,

Rt(θ) → R(θ), and σ2
t (θ) → σ2(θ), a.s., (4.13)

where R(θ) = κ(θ)/Z and Z = 1/k denotes the normalizing constant of the distribu-

tion g(x|θ0).

With R̂t(θ), we have

log πξt(θ|z) = log π(θ) + log p(z, θ)− log(Zt)− log(R̂t(θ)).

By (4.12), (4.13) and part (ii) of Theorem B.1, we have

1

n

n∑
t=1

log πξt(θ|z) → log π(θ|z), a.s.

for any θ ∈ Θ as m→∞ and n→∞. This completes the proof of the theorem. ¤

Theorem B.3 concerns the convergence of the BSAMC estimator (4.5). For sim-

plicity, we considered only the case s = 1. Extension to the case s > 1 is trivial.

To prove this theorem, we first introduce a definition of strongly residually Cesàro

α-integrable and a lemma of strong law of large numbers, which are both taken from

[16].

Definition B.1 A sequence of random variables, {Xn, n ≥ 1}, is said to be strongly

residually Cesàro α-integrable (SRCI(α), in short) if there exists an α ∈ (0,∞) such

that the following two conditions hold:

(i) sup
n≥1

1

n

n∑
i=1

E[|Xi|] <∞, and, (ii)
∞∑

n=1

1

n
E[(|Xi| − nα)I(|Xi| > nα)] <∞.

(4.14)

Lemma B.1 Let {Xn} be a φ-mixing sequence of random variables and suppose that

there exist constants C and γ with 0 < γ < 1, such that, φn ≤ Cγn ∀n. If the
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sequence {Xn} satisfies the condition SRCI(α) for some α ∈ (0, 1), then

1

n
(Sn − E[Sn]) → 0, a.s. (4.15)

as n→∞, where Sn =
∑n

i=1Xi.

Theorem B.3 Consider the BSAMC algorithm. Assume that the parameter space

Θ is compact and the conditions of Theorem B.1 hold. Let θt denote a sample drawn

from πξt(θ|z) in the BSAMC algorithm. Then, for any bounded measurable function

ϕ,

1

n

n∑
t=1

ϕ(θt) → π(ϕ), a.s., (4.16)

as m → ∞ and n → ∞, where π(ϕ) =
∫
Θ
ϕ(θ)π(θ|z)dθ denotes the posterior mean

of ϕ(θ).

Proof: To show this theorem, we first show that {ϕ(θt)} is strongly residually Cesàro

α-integrable for some α ∈ (0, 1), say α = 1/2. This is obvious, as ϕ(θ) is bounded.

From the BSAMC algorithm, it is easy to see that {θt} forms a Markovian

sequence. Since Θ is compact, the Markov chain induced by the MH algorithm for

simulating from πξt(θ|z) is uniformly ergodic, and thus {θt} forms a φ-mixing sequence

and there exist constants C and η with 0 < η < 1 such that φn ≤ Cηn holds, where

C and η are given by

C = sup
t≥1

Ct, η = sup
t≥1

ηt,

where Ct and ηt are determined by the MH algorithm for simulating from πξt(θ|z).

Since Ξ is compact, 0 < η < 1 holds. Then, it follows from Lemma B.1 that

1

n

[
n∑

t=1

ϕ(θt)−
n∑

t=1

Eϕ(θt)

]
→ 0, a.s., as n→∞. (4.17)
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Now we consider the quantity
∑n

t=1Eϕ(θt)/n. Let

εt(θ) = log πξt(θ|z)− log π(θ|z).

A direct calculation yields

1

n

n∑
t=1

Eϕ(θt) =
1

n

n∑
t=1

∫
ϕ(θ)πξt(θ|z)dθ

=
1

n

n∑
t=1

∫
ϕ(θ) exp {log π(θ|z) + εt(θ)} dθ

=
1

n

n∑
t=1

∫
ϕ(θ)π(θ|z)

[
1 + εt(θ) +O(ε2t (θ)

]
dθ

=

∫
ϕ(θ)π(θ|z) +

∫
ϕ(θ)π(θ|z)

[
1

n

n∑
t=1

εt(θ)

]
dθ

+

∫
ϕ(θ)π(θ|z)

[
1

n

n∑
t=1

O(ε2t (θ))

]
dθ

= π(ϕ) + (I) + (II).

(4.18)

Theorem B.2 implies that
∑n

t=1 εt(θ)/n → 0 almost surely as n → ∞ and m → ∞.

Since ϕ(θ) is bounded and Θ is compact, the integrand ϕ(θ)π(θ|z)
[

1
n

∑n
t=1 εt(θ)

]
is

uniformly bounded on Θ. It follows from the bounded convergence theorem ([12],

p.214) that (I) → 0 as m→∞ and n→∞.

Since Θ is compact, it follows from (4.17) (with ϕ(θ) = ε2(θ)), (4.12), (4.13) that

1

n

n∑
t=1

O(ε2t (θ)) → O(
1

m
), as n→∞,

which implies that (II) → 0 as m → ∞ and n → ∞. We conclude the proof by

summarizing (4.17) and (4.18). ¤

In Theorems B.2 and B.3, Θ is restricted to a compact set. Since Θ can be set to a

huge set, say, [−10100, 10100]dim(θ), which, as a practical matter, is equivalent to setting

Θ = Rdim(θ). Hence, the compactness assumption of Θ does not significantly affect
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applications of the BSAMC algorithm. From the theoretical perspective, relaxing Θ to

Rdim(θ) is of great interest. However, this may require some extra theory on the law of

large numbers of adaptive MCMC, as BSAMC falls into the class of adaptive MCMC

algorithms whose target distributions gξt(x|θ0) (for auxiliary samples x
(1)
t , . . . , x

(m)
t )

and πξt(θ|z) (for samples θ
(1)
t , . . . , θ

(s)
t ) change from iteration to iteration.

C. The Ising Model

In this section, we illustrate the use of BSAMC using the Ising model along with a

comparison with the MCMLE method. Consider an Ising model defined on an N×N
lattice, whose likelihood function can be written as

f(x|θ) =
1

Z(θ)
exp{θU(x)}, (4.19)

where the negative energy function

U(x) =
N∑

i=1

N−1∑
j=1

xi,jxi,j+1 +
N−1∑
i=1

N∑
j=1

xi,jxi+1,j, (4.20)

and xi,j ∈ {−1, 1}. For this model, we impose a uniform prior on Θ = [0, 1]. Then

the posterior can be written as

π(θ|x) =
exp{θU(x)}

κ(θ)
. (4.21)

In simulations, we set N = 32 and simulated 50 independent datasets of x for

each value of θ = 0.2, 0.3 and 0.4 using the perfect sampler [21]. To show that

BSAMC is robust to the initial guess θ0, we apply BSAMC to the θ = 0.3 datasets

with initial guesses, θ0 =0.275, 0.3, 0.325, 0.35, and 0.375, where 0.35 and 0.375

are far from the true value 0.3. We set δ = 0.8 and partitioned the sample spaces

according to δ. For the runs with θ0 =0.275, 0.3 and 0.325, the sample space was
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partitioned into k = 252 subregions according to the energy function with h1 = −300

and hk−1 = −100. For the runs with θ0 =0.35, 0.375, we set k = 252, h1 = −320 and

hk−1 = −120. BSAMC was run in two stages. Stage I consisted of 200k iterations

where k is the number of subregions, for which we set m = 10 and s = 0. Recall s

denotes the samples generated from πξt(θ|x). Stage II consisted of 50 iterations, for

which we set m = 20k and s = 100. To draw samples from πξt(θ|x), we adopted a

Gaussian random walk proposal N(θ
(i−1)
t , a2I) with a = 0.05. The CPU time for a

single run is 69.1s on a 3.0 GHz personal computer (all computations reported in this

paper were done on this computer).

These settings are made according to the energy range of f(x|θ0) with end-point

extensions for accommodating the difference of energy ranges of f(x|θ0) and f(x|θ).
Choosing h1 and hk−1 to cover the main energy range of f(x|θ0) is also important,

as this facilitates the mixing of the simulations. The values of t0 were set to 20000

for the all cases of θ0. As discussed in Section 2.1, a large value of t0 should be used

for a system which is hard to mix. The numerical results were summarized in Table

III. The results indicate that BSAMC works well for all initial guesses, even for the

guesses 0.35 and 0.375 which are really far from the true value.

For comparison, the MCMLE (the iterative version) was also applied to these

datasets with the same initial guesses θ0 = 0.275, 0.3, 0.325, 0.35 and 0.375. Each run

consisted of 500 iterations, and 5000 samples were generated at each iteration. This

setting matches the setting of BSAMC for stage II simulations; the same numbers of

auxiliary samples are used in both algorithms. Simulation of auxiliary samples is the

major part of CPU cost for both algorithms. MCMLE works well for the runs with

θ0 = 0.275, 0.3, and 0.325, but it often fails to converge for the runs with θ0 = 0.35

and 0.375. When θ0 = 0.375, it failed to converge in 49 out of 50 runs! The results

were summarized in Table III. This experiment shows that BSAMC is much more
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robust to initial guesses than MCMLE.

Table III. Parameter estimation for the Ising model with true θ = 0.3. The estimates

were calculated by averaging over 50 data sets, with the standard deviations

given in parentheses. ∗ Calculated based on 47 datasets; MCMLE failed to

converge for 3 datasets. ∗∗ Calculated based on 23 datasets; MCMLE failed

to converge for 27 datasets. ∗∗∗ Calculated based on one dataset; MCMLE

failed to converge for 49 datasets.

θ = 0.3

Initial Guess BSAMC MCMLE

θ0 = 0.275 0.2978 (2.0e-3) 0.2979 (2.0e-3)

θ0 = 0.3 0.2982 (2.0e-3) 0.2980 (2.0e-3)

θ0 = 0.325 0.2978 (2.0e-3) 0.2994 (1.8e-3)∗

θ0 = 0.35 0.2978 (1.9e-3) 0.3070 (2.1e-3)∗∗

θ0 = 0.375 0.2983 (2.0e-3) 0.3183 (N/A)∗∗∗

In the above simulations of BSAMC, the number of iterations in stage I and the

value of m have been set to a function of k. Their values can be much reduced when

θ0 is near the MLE. This can be seen in the next experiment. In this experiment,

BSAMC was applied to all datasets generated with θ=0.2, 0.3 and 0.4. For each

dataset, θ0 was set to the MPLE of θ. We set δ = 0.8 and divide the number of

subregions according to δ. Each run consisted of two stages. In stage I, we set s = 0

and m = 10, and set the number of iterations as 200k according to the number of

subregions for the runs with θ = 0.2, 0.3 and 0.4, respectively. In stage II, we set

s = 100, set the number of iterations to 50, and set m = 200k for the runs with

θ = 0.2, 0.3, and 0.4, respectively. We set t0 = 2000. The other settings, such as

sample space partitioning and the number of subregions k, were given in Table IV.
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The results were summarized in Table IV. They indicate that BSAMC works well for

all datasets.

Table IV. Parameter estimation for the Ising model with θ0 chosen as the MPLE of

θ. a the value of h1;
b the value of hk−1. Time: the CPU time cost by

a single run of BSAMC. The estimates (standard deviations given in the

parentheses) are calculated by averaging over 50 datasets.

Parameter Estimates Setting Time (3.0 GHz CPU)

θ = 0.2 0.1997 (2.2e-3) (-150a, -30b), k = 75 53.5s

θ = 0.3 0.2979 (1.9e-3) (-300a, -100b), k = 250 68.4s

θ = 0.4 0.3993 (1.6e-3) (-550a, -270b), k = 350 103.6s

D. Spatial Models with an Intractable Normalizing Constant

1. Autologistic Model

The autologistic model [9] has been widely used for analysis of spatial lattice data

(see, e.g. [60], [73], and [82]). Let x = {xi : i ∈ D} denote the binary response data,

where xi ∈ {−1, 1} is called a spin and D is the set of indices of spins. Let |D| denote

the total number of spins in D, and let N(i) denote the set of nearest neighbors of

spin i. The likelihood function of the autologistic model is

f(x|α, β) =
1

Z(α, β)
exp



α

∑
i∈D

xi +
β

2

∑
i∈D

xi


 ∑

j∈N(i)

xj






 , (α, β) ∈ Θ, (4.22)

where α represents the overall proportion of xi = +1 and β represents the intensity

of interaction between xi and its neighbor N(i). The normalizing constant is defined
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by

Z(α, β) =
∑

for all possible x
exp



α

∑
i∈D

xi +
β

2

∑
i∈D

xi


 ∑

j∈N(i)

xj






 , (4.23)

Since an exact calculation of Z(α, β) requires summary of over all 2|D| possible con-

figurations of x, it is impossible to be calculated exactly even for a moderate system.

To conduct a Bayesian analysis for the autologistic model,we assume an uniform

prior on

(α, β) ∈ Θ = [−1, 1]× [0, 1].

For the autologistic model, we set the initial guess (α(0), β(0)) to the MPLE of (α, β),

and draw (α
(t)
i , β

(t)
i ) using the MH algorithm with a Gaussian random walk proposal

N((α
(t)
i−1, β

(t)
i−1), a

2I), where we set a = 0.03 for the U.S. cancer mortality data studied

below.

U.S. Cancer Mortality Data. United States cancer mortality maps have been col-

lected by [63] for investigating the possible relation of cancer with unusual demo-

graphics, environmental, industrial characteristics, or employment patterns. Figure

2 shows the mortality map of liver and gallbladder (including bile ducts) cancers for

white males during the decade 1950-1959, which indicates some apparent geographic

clusterings. Refer to [73] for more descriptions of the data. Following [73], we modeled

the data by a spatial autologistic model. The total number of spins is |D| = 2293.

Since the boundary points have less neighbor than the interior points, we assume a

free boundary condition, which is natural for such an irregular shape lattice.

To conduct a Bayesian analysis for the auotologistic model, we assume an uniform

prior for

(α, β) ∈ Θ = [−1, 1]× [0, 1].

In BSAMC simulations, we set the initial guess (α(0), β(0)) to the MPLE of (α, β),
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Fig. 2. US cancer mortality data. The mortality map of liver and gallbladder cancers

(including bile ducts) for white males during the decade 1950-1959. Black

squares denote counties of high cancer mortality rate, and white squares denote

counties of low cancer mortality rate.

and simulate (α
(i)
t , β

(i)
t )’s at each iteration using the MH algorithm with a Gaussian

random walk proposal N((α
(t)
i−1, β

(t)
i−1), a

2I), where the step size a = 0.03. BSAMC

was run for the data five times. Each run consisted of two stages. Stage I consisted

of 200k iterations, for which we set m = 10 and s = 0. Stage II consisted of 100

iterations, for which we set m = 20k and s = 100. We collected every 10th sample

at each iteration. We set δ = 0.8 and the sample space was partitioned into 452

subregions according to δ where h1 = −650 and h451 = −350. The gain factor was

set in (4.7) with t0 = 2000. The CPU time cost by a single run is 6.2m. The resulting

estimates of (α, β) were summarized in Table V.

For comparison, the exchange algorithm was applied to this example. As afore-

mentioned, the exchange algorithm is an auxiliary variable MCMC algorithm, which

requires a perfect sampler for generating auxiliary variables, but can sample correctly

from the posterior distribution when the number of iterations becomes large. Hence,

the estimates produced by the exchange algorithm can be used as a test standard for
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Table V. Parameter estimation for the autologistic model. The MCMLE is from [73]

and the MPLE is from [46].

BSAMC Exchange MCMLE MPLE

α -0.3006 (4.5e-4) -0.3015 (1.3e-3) -0.304 (7.4e-4) -0.3205

β 0.1232 (2.6e-4) 0.1229 (7.6e-4) 0.117 (1.3e-3) 0.1115

assessing whether the results produced by MCMH are correct. The perfect sampler

used here is the summary state algorithm [21], which is known to be suitable for high

dimensional binary spaces. The exchange algorithm was run 5 times for this example.

Each run consisted of 5000 iterations. The first 1000 iterations were discarded for

the burn-in process, and the remaining 4000 iterations were used for estimation of

θ. The overall acceptance rate was 0.2, which indicates that the algorithm has been

implemented efficiently. The numerical results were summarized in Table V. For a

thorough comparison, we also include in the table two estimation results from the

literature, the MCMLE from [73] and the MPLE from [46]. The comparison indi-

cates that BSAMC is valid; it can produce almost identical results with the exchange

method for this example.

Figure 3 shows histograms, trace, and autocorrelation plots of the last sample

θt drawn at each iteration of stage II of a BSAMC run. It indicates the BSAMC

performs quite stationarily for this example. The autocorrelation plots imply that

the samples generated in different iterations are approximately independent.
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Fig. 3. Histogram, trace and autocorrelation plots of BSAMC samples for the autol-

ogistic model. (a)–(c) for the samples of α and (d)–(f) for the samples of

β.
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2. Autonormal Model

Consider a second-order zero-mean Gaussian Markov random field X = (Xi,j) defined

on M ×N lattice [9], whose conditional density is given by

f(xi,j | β, σ2, xu,v; (u, v) 6= (i, j))

=
1√
2πσ

exp



−

1

2σ2
(xi,j − βh

∑

nh(i,j)

xu,v − βv

∑

nv(i,j)

xu,v − βd

∑

nd(i,j)

xu,v)
2



 ,

(4.24)

where β = (βh, βv, βd) and σ2 are parameters, nh(i, j) = {(i, j − 1), (i, j + 1)},
nv(i, j) = {(i−1, j), (i+1, j)} and nd(i, j) = {(i−1, j−1), (i+1, j+1), (i−1, j+1), (i+

1, j−1)} are neighbors of (i, j). The model is stationary when |βh|+ |βv|+2|βd| < 0.5

[5]. The joint likelihood function of the model is given by

f(x|β, σ2) = (2πσ2)−MN/2|B|1/2 exp

{
− 1

2σ2
x′Bx

}
,

where |B| is an (MN ×MN)-dimensional matrix and |B| is intractable except for

some special cases [10].

For a Bayesian analysis, we assume the prior as

π(β) ∝ I(|βh|+ |βv|+ 2|βd| < 0.5), π(σ2) ∝ 1

σ2
, (4.25)

where I(·) is the indicator function. Under the free boundary condition, the posterior

distribution is

π(β, σ2|x) ∝ (2πσ2)−MN/2−1|B|1/2

× exp

{
−MN

2σ2
(Sx − 2βhXh − 2βvXv − 2βdXd)

}
I(|βh|+ |βv|+ 2|βd| < 0.5),

(4.26)
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where

Sx =
1

MN

M∑
i=1

N∑
i=1

x2
i,j,

Xh =
1

MN

M∑
i=1

N−1∑
i=1

x2
i,jxi,j+1,

Xv =
1

MN

M−1∑
i=1

N∑
i=1

x2
i,jxi+1,j,

Xd =
1

MN

(
M−1∑
i=1

N−1∑
i=1

x2
i,jxi+1,j+1 +

M−1∑
i=1

N∑
i=2

x2
i,jxi+1,j−1

)
.

Although σ2 can be integrated out, we do not suggest to do so, as this facilitate the

sampling of xi,j’s in our comparison studies. Also, to facilitate the sampling of σ2,

we reparameterize σ2 by τ = log(σ2) in simulations. In step (a), a single cycle of

the Metropolis-within-Gibbs update [56] was used for drawing samples of X. In step

(c), (β
(t)
i , τ

(t)
i ), the current state of Markov chain, is updated by a MH step with a

Gaussian random walk proposal N((β
(t)
i−1, τ

(t)
i−1)

′, a2I4), where a = 0.02 for the wheat

yield example studied below. In BSAMC, we treat |B| as intractable.

Wheat Yield Data. This data, shown in Figure 4(a), was collected on a 20 × 25

rectangular lattice (Tables 6.1. [1]). This data has been analyzed by a number of

authors, e.g., [9], [37], [33] and [48]. Following the previous authors, we subtracted

the mean from the data and then fitted the data by the autonormal model. In our

analysis, the free boundary condition is assumed. This is natural, as the lattice is

often irregular for the real data.

BSAMC was applied to this example with 5 independent runs. Each run con-

sisted of two stages. Stage I consisted of 200k iterations, and stage II consisted of 100

iterations where every 10th sample was collected at each iteration. In stage I, we set

m = 10 and s = 0; and in stage II, we set m = 20k and s = 100. The sample space
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(a) (b)

Fig. 4. Image of the wheat yield data. (a) Image of real wheat yield data (b) Image

of fitted wheat yield data using BSAMC: black squares denote high yield area,

and white squares denote low yield area.

was partitioned into 452 subregions according to the energy function of the model and

δ = 0.8, with h1 = −650 and h451 = −350. The gain factor sequence was set in (4.7)

with t0 = 2000. The CPU time of a single run is about 2.5m in a 3.0 GHz personal

computer. The numerical results were summarized in Table VI. For comparison, we

also gave in Table VI the true Bayesian estimates and the double MH estimates which

are reported by [48]. The former was obtained by directly simulating from (4.26) with

an analytical expression of |B| [5], and the latter was obtained by the double MH

algorithm. Like MPLE, the double MH estimate only works approximately, lacking a

theoretical justification for its consistency. The comparison indicates that BSAMC is

valid; it can produce almost identical results with the true Bayesian method for this

example.

Figure 5 shows the histogram, trace and autocorrelation plots of the samples

of (β1, β2, β3, σ) generated by BSAMC in a run. It indicates that BSAMC performs
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Fig. 5. Histogram, trace and autocorrelation plots of BSAMC samples for the autonor-

mal model. (a - c) for β1, (d - f) for β2, (g - i) for β3, and (j - l) for σ.
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Table VI. Estimation of the autonormal model for the wheat yield data. The results

of true Bayes and double MH are from [48].

Method β1 β2 β3 σ

BSAMC 0.096 (2e-3) 0.362 (1e-3) 0.007 (5e-4) 0.123 (2e-4)

True Bayes 0.102 (4e-4) 0.355 (3e-4) 0.006 (2e-4) 0.123 (2e-4)

double MH 0.099 (6e-4) 0.351 (5e-4) 0.006 (3e-4) 0.126 (3e-4)

MPLE 0.140 0.340 -0.010 0.122

quite stably for this example. The autocorrelation plots imply that the samples of

(β1, β2, β3) obtained in different iterations are approximately independent, while the

samples of σ have a short autocorrelation.
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CHAPTER V

FITTING ERGMS USING VARYING TRUNCATION STOCHASTIC

APPROXIMATION MCMC ALGORITHM

A. Introduction

In this paper, we propose to use the stochastic approximation MCMC (SAMCMC)

algorithm [49] to find the MLE for ERGMs. Like the SSA algorithm, SAMCMC is

rooted in the stochastic approximation algorithm. But it is fundamentally different

from SSA in two aspects. Firstly, it avoids the requirement for independent network

samples. In SAMCMC, yk+1 can be generated via a short MH run starting with

yk. This generally improves efficiency of the simulation. Secondly, SAMCMC works

under the framework of varying truncation stochastic approximation algorithms ([2],

[17]). The varying truncation mechanism enables SAMCMC to overcome the model

degeneracy problem. In degeneracy regions, SAMCMC tend to produce large updates

in the parameters due to generation of complete or empty networks. This will trigger

the varying truncation mechanism to force the simulation to be re-initialized. The

re-initialization enables SAMCMC to move out of degeneracy regions. Under mild

conditions, we show that the resulting estimator is consistent, asymptotically normal,

and asymptotically efficient. The SAMCMC method is illustrated using a variety of

networks, including the Florentine business network, Kapferer’s tailor shop network,

Lazega’s lawyer network, and Zachary’s Karate network. The numerical results indi-

cate that SAMCMC can significantly outperform MCMLE and SSA. For the ERGMs

which consist of basic Markovian statistics, the MCMLE and SSA methods often fail
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due to the model degeneracy, while SAMCMC still works well. For the ERGMs which

do not suffer from the model degeneracy, SAMCMC can work as well as or better

than the MCMLE and SSA methods.

The remainder of this paper is organized as follows. In Section B, we describe

the SAMCMC algorithm and study its theoretical property. In Section C, we apply

SAMCMC to a variety of social network examples along with comparisons with the

MCMLE and SSA methods. In Section D, we apply SAMCMC to a large network

study, the high school student friendship network.

B. Stochastic Approximation MCMC with Trajectory Averaging

The subject of stochastic approximation was founded by [64]. After five decades of

continual development, it has developed into an important area in systems control

and optimization, and it has also served as a prototype for development of recursive

algorithms for on-line estimation and control of stochastic systems. [18] proposed a

varying truncation version of the stochastic approximation algorithm, which removes

the growth rate restriction imposed on the mean field function and weakens the

conditions imposed on noise in showing the convergence of the algorithm. [2] proved

the convergence of the varying truncation stochastic approximation algorithm for a

wide class of mean field functions with Markov state-dependent noise. Quite recently,

[49] showed that the trajectory averaging technique used in traditional stochastic

approximation algorithms can also be applied to the varying truncation stochastic

approximation MCMC (SAMCMC) algorithm. In this section, we first give a brief

review for the varying truncation SAMCMC algorithm, and then give the details how

the algorithm can be applied to ERGMs.



59

1. Varying Truncation Stochastic Approximation MCMC Algorithm

Suppose that we want to solve the integration equation

∫

X
H(y, θ)f(y|θ)dy = 0, (5.1)

where X denotes the sample space of the distribution f(y|θ). This equation can be

solved using the varying truncation stochastic approximation MCMC algorithm as

follows.

Let {Ks, s ≥ 0} denote a sequence of compact sets of Θ such that

⋃
s≥0

Ks = Θ, and Ks ⊂ int(Ks+1), (5.2)

where int(A) denotes the interior of set A. Let X0 be a subset of X , and let T :

X × Θ → X0 × K0 be a measurable function which maps a point (y, θ) in X × Θ

to a random point in the initial region X0 × K0; that is, T defines a re-initialization

mechanism, re-initializing the simulation in the set X0 × K0. Other types of re-

initialization mechanism is also possible, but needs a little different theory.

Let {ak} and {bk} be two positive sequences satisfying the condition (A4) (given

in Appendix A). Let σk denote the number of truncations performed until iteration

k, and σ0 = 0. The stochastic approximation MCMC algorithm starts with a random

choice of (y0, θ
(0)) in the space X0×K0, and then iterates between the following steps:

Varying Truncation SAMCMC algorithm

(a) Draw a sample yk+1 with a Markov transition kernel, which admits f(y|θ(k)) as

the invariant distribution.

(b) Set θ(k+ 1
2
) = θ(k) + akH(yk+1, θ

(k))

(c) If ||θ(k+ 1
2
)− θ(k)|| ≤ bk and θ(k+ 1

2
) ∈ Kσk

, where ‖z‖ denote the Euclidean norm
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of the vector z, then set σk+1 = σk and (yk+1, θ
(k+1)) = (yk+1, θ

(k+ 1
2
)); otherwise

set σk+1 = σk + 1 and (yk+1, θ
(k+1)) = T (yk, θ

(k)).

The SAMCMC algorithm is an adaptive algorithm, because it is re-initialized

with a smaller initial value of the gain factor ak, and a larger truncation set Kσ+1

when the current parameter estimates are outside the active truncation set or when

the difference between two successive estimates is greater than a time-threshold value

bk. This varying truncation mechanism enables the algorithm to select an appropriate

gain factor sequence and a starting point automatically. Note that, as shown in [2],

the number of re-initializations is almost surely finite for every (y0, θ
(0)) ∈ X0 ×

K0. Under the conditions (A1)–(A4) given in Appendix A, [49] showed that the

trajectory averaging estimator of θ, i.e.,
∑n

k=1 θ
(k)/n, is asymptotically efficient. Refer

to Theorem .1 of Appendix A for the details. The self-adaptivity of the SAMCMC

algorithm plays a crucial role for establishing asymptotic efficiency of the trajectory

averaging estimator.

2. Varying Truncation SAMCMC for ERGMs

To apply the varying truncation SAMCMC algorithm to ERGMs, we set the sequences

{ak} and {bk} as follows:

(C1) Set

ak = Ca

(
k0

max(k0, k)

)η

, bk = Cb

(
t0

max(k0, k)

)ξ

, (5.3)

for some constants k0 > 1, η ∈ (1/2, 1), ξ ∈ (1/2, η), Ca > 0, and Cb > 0.

How to choose the values of the parameters Ca, Cb, k0, η and ξ will be discussed at

the end of this section.

Let {Ks, s ≥ 0} denote a sequence of compact sets of Θ, which satisfy the fol-

lowing condition:
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(C2) {Ks, s ≥ 0} satisfies (5.2) and there exist constants l0 and l1 such that l0 > l1,

K0 ⊂ {θ ∈ Θ : l(θ|yobs) > l0}, and {θ ∈ Θ : l(θ|yobs) ≥ l1} is compact, where

l(θ|yobs) denotes the log-likelihood function of the model under consideration.

In this paper, we set Ks to be a product rectangle; that is, Ks = Ks,1 × Ks,2 ×
· · · × Ks,d, where Ks,i corresponds to the parameter θi in (2.1) and is of the form

[−di(s+ 1), di(s+ 1)]. How to choose di’s will be discussed at the end of this section.

By the continuity of l(θ|yobs), it is easy to see that (C2) is satisfied. For ERGMs, the

sample space X is finite, we set X0 = X ; that is, each run starts or is re-initialized

with a random configuration of the network.

In summary, one iteration of the algorithm consists of the following steps:

Varying truncation SAMCMC for ERGMs

(a) Draw an auxiliary social network yk+1 from the distribution f(y|θ(k)) using the

Gibbs sampler, which starts with the network yk and iterates for m sweeps.

(b) Set θ(k+ 1
2
) = θ(k) + ak

(
S(yk+1)− S(yobs)

)
.

(c) If ||θ(k+ 1
2
)− θ(k)|| ≤ bk and θ(k+ 1

2
) ∈ Kσk

, where ‖z‖ denote the Euclidean norm

of the vector z, then set σk+1 = σk and (yk+1, θ
(k+1)) = (yk+1, θ

(k+ 1
2
)); otherwise

set σk+1 = σk + 1 and (yk+1, θ
(k+1)) = T (yk, θ

(k)).

For this algorithm, θ can be estimated by the trajectory averaging estimator

θ̄n =
n∑

k=1

θ(k)/n. (5.4)

In practice, to reduce the variation of the estimate, we often use

θ̄(n0, n) =
1

n− n0

n∑

k=n0+1

θ(k), (5.5)
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to estimate θ, where n0 denotes the number of burn-in iterations and it is usually set

to a value at which the last truncation occurs.

Theorem B.1 concerns the convergence and asymptotic efficiency of θ̄n, whose

proof can be found in Appendix B. To make the theory more general (the auxiliary

network samples can be generated using the MH algorithm), we further assume the

following condition for the proposal distribution used in step (a):

(C3) (Local positive) For every y ∈ X , there exist positive ε1 and ε2 such that

‖z − y‖ ≤ ε1 =⇒ q(z|y) ≥ ε2, (5.6)

where q(z|y) denotes the proposal distribution conditioned on the current sam-

ple y.

It is easy to see that the Gibbs sampler used in step (a) satisfies the local positive

condition by noting that the Gibbs sampler is special case of the MH algorithm and

that only a single arc variable is updated at each updating step.

Theorem B.1 Assume that the conditions (C1), (C2) and (C3) hold. Then, as n→
∞, we have

1. (Convergence) θ(n) → θ∗ almost surely, where θ∗ denotes a solution of equation

(2.2).

2. (Asymptotic Normality)

√
n(θ̄n − θ∗) −→ N(0,Γ),

where Γ is a negative definite matrix independent of the sequences {ak} and

{bk}. See [49] for an explicit form of Γ.

3. (Asymptotic Efficiency) θ̄n is asymptotically efficient; that is, Γ is the smallest
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possible limit covariance matrix that an estimator based on a stochastic approx-

imation algorithm can achieve.

Although both SSA and SAMCMC originate in the stochastic approximation

algorithm, they are different in several aspects. Firstly, SAMCMC avoids the re-

quirement of independent samples. As described above, yk+1 can be generated by the

Gibbs sampler starting with yk. Note that Theorem B.1 holds for any value of m ≥ 1.

In one numerical example, we show that the value of m does not significantly affect

the convergence of the trajectory averaging estimator. Secondly, SAMCMC includes

the varying truncation step, which enables SAMCMC to overcome the model degen-

eracy problem. When the model degeneracy occurs, the sampled network yk tends

to be complete or empty. In this case, ‖S(yk)−S(yobs)‖ tends to have a large value,

and thus re-initialization will be triggered. This enables SAMCMC to move out of the

degeneracy region. Thirdly, SAMCMC avoids estimation for the covariance matrix

D used in (2.3). This greatly simplifies computation. As shown in Theorem B.1, the

asymptotic efficiency of the SAMCMC estimate can be obtained by averaging over

its trajectory.

The SAMCMC algorithm consists of several free parameters, including the se-

quences {ak} and {bk}, the compact sets {Ks, s ≥ 0}, and the number (m) of Gibbs

sweeps used at each iteration. As shown in Theorem B.1, the choice of the sequences

{ak} and {bk} will not affect the efficiency of the algorithm as long as the condition

(C1) is satisfied. This gives us much freedom for choosing the two sequences. In this

paper, we fix k0 = 100, η = 0.65, ξ = (0.5 + η)/2, Cb = 1000 and leave Ca as a free

parameter to be adjusted for different examples. Since Ca determines the learning

rate of θk, it is reasonable to set its value according to the variation of S(yk). If the

variation is large, a small value may be set for Ca, say, Ca = 0.001. Otherwise, a little
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larger value, say, Ca = 0.01 may be set for Ca. This ensures the update of θt not to

be very large at a single iteration.

The choice of the compact sets {Ks, s ≥ 0} is quite critical to the performance of

SAMCMC. If the sets, especially K0, are not chosen appropriately, a lot of truncations

will occur in simulations, and this will delay the convergence of the simulation. We

suggest to choose K0 to be around the MPLE [76], and then to enlarge Ks (s ≥ 1)

gradually. For simplicity, we set in this paper Ks,1 = [−4(s+ 1), 4(s+ 1)] and Ks,2 =

· · · = Ks,d = [−2(s + 1), 2(s + 1)]. The reason why Ks,1 is separated from others is

that S1(y) always denotes the edge count in our examples, whose coefficient θ1 has

usually a value around −3 and is greater than other coefficients in magnitudes.

On the number of Gibbs sweeps used at each iteration, we note that a small

value of m will result in a smooth trajectory due to the strong dependency between

the samples generated in successive iterations, and a high value of m will result in a

relatively rough trajectory. However, the value of m will not significantly affect the

convergence of SAMCMC, see e.g., Figure 8. An excessively large value of m may

cause some waste of CPU times. For computational simplicity, we set m = 1 for all

examples of this paper.

C. Numerical Examples

To illustrate the performance of SAMCMC, we consider in this section four examples,

including the Florentine business network, Kapferer’s tailor shop network, Lazega’s

lawyer network, and Karate network, which are shown in Figure 6. For the first

two networks, we consider some models with basic Markovian statistics, which are

known as the main reason for model degeneracy. Using these networks, we show that

SAMCMC can potentially avoid the model degeneracy problem. While the MCMLE
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and SSA methods fail to produce any reasonable estimates for these networks due to

model degeneracy. Using the last two networks, we show that SAMCMC can work

as well as or better than the MCMLE and SSA methods for the models which do not

suffer from the degeneracy problem.

SAMCMC was run five times independently for each example. Each run consisted

of 200,000 iterations and the estimates produced in the last 150,000 iterations were

averaged to get the final estimate. In simulations, we set Ca = 0.001 for Kapferer’s

tailor shop network and Ca = 0.01 for others. As explained previously, this is due

to that S(y) has a large variation for Kapferer’s tailor shop network. All other

parameters were set to their default values as given at the end of previous section.

For comparison, MCMLE and SSA, which both have been implemented in the

ergm package [39], were also applied to these examples. MCMLE was run 5 times

for each example. Each run consisted of 25 iterations with 50,000 auxiliary networks

being generated at each iteration. SSA was also run 5 times for each example, each run

consisting of 10 iterations. Other parameters (for both MCMLE and SSA) were set to

their default values as suggested in the ergm package. As shown below, both MCMLE

and SSA cost longer CPU times than MCMLE in all examples. All computations for

the three algorithms were done on a 3.0GHz Intel Core 2 Duo computer.

The goodness-of-fit (GOF) plot [39] was used as the tool for assessing the per-

formance of the three algorithms. The GOF plot shows the distribution (through

box-plots and confidence intervals) of three sets of statistics, the degree distribution,

the edgewise shared partnership distribution and the geodesic distance distribution,

for the fitted model. It is clear that if the statistics of the observed network, which

are represented by a solid line in the GOF plots, falls into the confidence intervals of

the fitted model, then the fitting is considered good. The closer the solid line is to

the center of the box-plots, the better the fitting is.
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1. Florentine Business Network

This network (shown in Figure 6) was collected by [59] from historic documents, which

represents a set of business ties, such as loans, credits and joint partnership, among

Renaissance Florentine families. The network consists of 16 families who were locked

in a struggle for political control of the city of Florence around 1430. Two factions

were dominant in this struggle: one revolved around the infamous Medicis, and the

other around the powerful Strozzis.

Florentine Business Network Kapferer’s Tailor Shop Network

Lazega’s Lawyer Network Zachary’s Karate Network

Fig. 6. Social network examples. (a) Florentine business network; (b) Kapferer’s tailor

shop network; (c) Lazega’s lawyer network; (d) Karate network.

We analyzed this network using an ERGM with the edge and 2-star counts. The

likelihood function of this model is given by

f(y|θ) =
1

κ(θ)
exp

{
θ1S1(y) + θ2S2(y)

}
, (5.7)
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where S1(y) is the edge count and S2(y) is the 2-star count. The estimates obtained

by SAMCMC, MCMLE and SSA are summarized in Table VII, and the corresponding

GOF plots are shown in Figure 7. The GOF plots indicate that SAMCMC provides

a much better fitting than MCMLE and SSA for this network. Both the MCMLE

and SSA estimates fall into a degeneracy region of the model (5.7), where complete

networks tend to be generated. However, SAMCMC avoided the model degeneracy

problem and produced an estimate for which the simulated networks match well with

the observed network. It is also remarkable that SAMCMC is computationally very

efficient, which costs only 3.2s for a single run. Both MCMLE and SSA are much

more time consuming than SAMCMC.

Table VII. Parameter estimates the Florentine business network. The standard devi-

ations given in the parentheses.

Edge Count(θ1) K2-Star(θ2) CPU

SAMCMC -2.733 (4.2× 10−4) 0.198 (9.0× 10−5) 3.2s

MCMLE -3.191 (2.6× 10−1) 0.412 (1.2× 10−1) 78.1s

SSA -2.842 (7.7× 10−3) 0.283 (3.9× 10−2) 370.4s

For this example, we also assessed the effect of m, the number of Gibbs sweeps

used for generating auxiliary networks at each iteration, on the performance of SAM-

CMC. Figure 8 shows the trajectories of θ produced by SAMCMC in three runs with

m = 1, 5 and 10, where the sample frequencies have been adjusted such that the

same number of estimates are collected within the same CPU time in each run. We

collected estimates at every 100th, 20th and 10th iterations in the runs with m = 1, 5

and 10, respectively. The trajectories show some fluctuations at the early stage of the

simulations, which are caused by varying truncations. Figure 8 suggests that θ(n) can
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Fig. 7. Goodness-of-fit(GOF) plots for the Florentine business network. Row 1: SAM-

CMC; Row 2: MCMLE; Row 3: SSA. The solid line shows the observed network

statistics, and the box-plots represent the distributions of simulated network

statistics.
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converge to the same value in all three runs, and the value of m does not significantly

affect the convergence of SAMCMC. When m is small, the networks generated in

successive iterations are highly correlated, so the trajectory looks smooth. In con-

trast, when m is large, the trajectory looks a little rough, as the networks generated

in successive iterations are less correlated.
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Fig. 8. Trajectories of θ produced by SAMCMC for the Florentine business network

with different values of m. m = 1 (red), m = 5 (black) and m = 10 (blue).

2. Kapferer’s Tailor Shop Network

[43] collected interactions in a tailor shop in Zambia (then Northern Rhodesia) over

a period of ten months, with the focus on changing patterns of alliance among work-

ers during extended negotiations for higher wages. There are two different types of

interactions, the “instrumental” (work- and assistance-related) interaction and the
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“sociational” (friendship, socioemotional) interaction, which are recorded at two dif-

ferent times (seven months apart). This dataset is particularly interesting because

an abortive strike occurred after the first time of observations, and a successful strike

took place after the second time of observations. In this paper, we analyze the “soci-

ational” network recorded at the second time of observations. It consists of 39 nodes

and is shown in Figure 6.

For this network, we consider an ERGM model with the likelihood function given

by

f(y|θ) =
1

κ(θ)
exp {θ1S1(y) + θ2S2(y) + θ3v(y|τ)} , (5.8)

where S1(y) denotes the edge count, S2(y) denotes the 2-star count, and v(y|τ)
denotes the geometrically weighted edgewise shared distribution defined with τ =

log 2. Table VIII summarizes the estimates obtained by SAMCMC, MCMLE and

SSA, and Figure 9 shows the GOF plots of the respective estimates. The GOF plots

indicate that SAMCMC produces a much better fitting than MCMLE and SSA for

this network. The MCMLE and SSA estimates fall into a degeneracy region of the

model (5.8) as shown in Figure 9. However, SAMCMC avoids the model degeneracy

problem for this network, and produced an estimate for which the simulated networks

match well with the observed network. In addition, SAMCMC costs much less CPU

time than MCMLE and SSA for this example.

Kapferer’s network has been used as a benchmark example in the literature for

testing whether a method can avoid the model degeneracy problem. It is known

that this network has two degeneracy regions, which are around (−20, 0, 17) and

(−350, 0, 350), respectively. To apply SAMCMC to this benchmark example, we

conducted two experiments. In the first experiment, we set θ(0) = (−20, 0, 17), Ks,1 =

Ks,3 = [−4(s + 5), 4(s + 5)], and Ks,2 = [−(s + 1), (s + 1)], which covers the known
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Table VIII. Estimates of θ produced by SAMCMC, MCMLE and SSA for the

Kapferer’s tailor shop network. Standard deviations are shown in the

parentheses. The MCMLE estimates are calculated based on 4 runs only,

as it failed to produce an estimate in one run.

Methods Edge Count(θ1) K2-star(θ2) GWESP Time

SAMCMC -4.056 (5.7× 10−3) 0.038 (2.4× 10−4) 0.962 (1.0× 10−3) 4.3m

MCMLE -4.256 (1.8× 10−5) 0.089 (1.2× 10−3) 0.542 (3.4× 10−5) 204.8m

SSA -3.927 (3.8× 10−3) 0.068 (8.4× 10−5) 0.571 (5.7× 10−4) 99.9m
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Fig. 9. Goodness-of-fit(GOF) plots for Kapferer’s tailor shop network. Row 1: SAM-

CMC; Row 2: MCMLE; Row 3: SSA.
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degeneracy point (−20, 0, 17). The other parameters were the same as those used in

previous runs. SAMCMC was run 5 times. Each run consisted of 300,000 iterations,

and the estimates produced in the last 100,000 iterations were averaged for final

estimation. The resulting estimates are summarized in Table IX, which are very close

to the previous estimates shown in Table VIII.

Table IX. Estimates of θ produced by SAMCMC for Kapferer’s tailor Shop network

with different starting points.

Starting Points Edge Count(θ1) K2-star(θ2) GWESP(θ3)

(−20, 0, 17) -4.015 (4.4× 10−3) 0.040 (6.9× 10−5) 0.921 (2.5× 10−3)

(−350, 0, 350) -3.886 (3.9× 10−4) 0.028 (3.9× 10−5) 0.954 (3.5× 10−4)

In the second experiment, we set θ(0) = (−350, 0, 350), Ks,1 = Ks,3 = [−4(s +

90), 4(s + 90)], and Ks,2 = [−(s + 1), (s + 1)], which covers the known degeneracy

point (−350, 0, 350). The other parameters were the same as those used in previous

runs. Each run consisted of 1,100,000 iterations, and the estimates produced in the

last 100,000 iterations were used for final estimation. The resulting estimates are also

summarized in Table IX, which are slightly different from the previous ones. The

reason can be explained as follows. We checked the details of the five runs. The

numbers of truncations in these runs are 112, 101, 62, 113, and 94, respectively; and

the last re-initialization points are (337.8, -38.9, 95.6), (226.2, -8.6, -92.7), (191.4, -5.3,

4.6), (2.0, 27.9, -27.3), (342.2, -13.6, -108.6), respectively. Since these re-initialization

points are very far from the putative solution, it needs a little longer time for the

simulation to converge. Figure 10 shows the GOF plots resulted from these runs. For

comparison, the the GOF plot resulted from the runs with the default starting region

[−4, 4]× [−2, 2]2 was also included. It indicates that SAMCMC can avoid the model
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degeneracy problem through re-initializations.
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Fig. 10. Goodness-of-fit(GOF) plots for Kapferer’s tailor shop network resulted from

the runs with the default starting region [−4, 4]× [−2, 2]2 (row 1), the starting

point (−20, 0, 17) (row 2), and the starting point (−350, 0, 350) (row 3).

As a summary of the first two examples, we conclude that SAMCMC is able to

overcome the the model degeneracy problem in fitting ERGMs through its varying

truncation mechanism. MCMLE and SSA can only converge to a local optimal so-

lution near the starting point, and thus often fail to produce a reasonable estimate

for ERGMs if the starting point is close to or lies in the degeneracy region. In the

next two subsections, we will show that SAMCMC can work as well as or better than

MCMLE and SSA for the ERGMs which do not suffer from the model degeneracy

problem.

Finally, we note that MCMLE and SSA becomes significantly slower when they
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suffer from the model degeneracy problem. This is mainly related to the data structure

and sampling algorithm used in ERGM. There is a binary tree of edges incident on

each node. As the network gains more edges, it takes longer to search through the

binary tree or update it. ERGM employs the tie-no-tie (TNT) sampler (Morris et al.,

2008) to simulate auxiliary networks. The TNT proposal picks with equal probability

a dyad with a tie or a dyad without a tie to propose a toggle. Thus it becomes

significantly slower as the network grows more dense.

3. Lazega’s Lawyer Network

This dataset comes from a network study of corporate law partnership [45] that was

carried out in a Northeastern US corporate law firm, referred to as SG & R 1988-1991

in New England. It includes a friendship network among 36 partners of this firm. The

members’ attributes are also part of this dataset, including seniority, office location,

gender, and their practices. The network is shown in Figure 6.

The likelihood function of the model we considered for this network is given by

f2(y|θ) =
1

κ(θ)
e{θ1S1(y)+θ2Msen(y)+θ3Mpra(y)+θ4Hpra(y)+θ5Hsex(y)+θ6Hloc(y)+θ7v(y|τ)},

(5.9)

where S1(y) is the edge count, Msen(y) and Mpra(y) are main effects of seniority and

practice, Hpra(y), Hsex(y), and Hloc(y) are uniform homophily effects of practice,

gender, and location, and v(y|τ) is a GWESP with a fixed value of τ = 0.778 which

is the same as that used in Koskinen (2008).

SAMCMC, MCMLE and SSA were applied to this example. The resulting esti-

mates are summarized in Table X, and the resulting GOF plots are shown in Figure

11. The GOF plots indicate that SAMCMC produced a better fitting to the observed

network than MCMLE and SSA, especially for the degree and edge-wise shared part-
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Table X. Estimates produced by SAMCMC, MCMLE and SSA for Lazega’s lawyer

network. Standard deviations are shown in the parentheses.

SAMCMC MCMLE SSA

Edge Counts (θ1) -6.507(9.7× 10−4) -6.442(7.1× 10−3) -6.503(2.6× 10−2)

Main Effect

Seniority (θ2) 0.852(4.3× 10−4) 0.874(5.5× 10−3) 0.820(2.7× 10−2)

Practice (θ3) 0.410(2.0× 10−4) 0.447(5.5× 10−3) 0.393(1.7× 10−2)

Homophily Effect

Practice (θ4) 0.760(2.7× 10−4) 0.731(5.8× 10−3) 0.733(2.0× 10−2)

Sex (θ5) 0.703(4.0× 10−4) 0.668(9.6× 10−3) 0.676(2.0× 10−2)

Location (θ6) 1.145(2.8× 10−4) 1.168(9.7× 10−3) 1.111(2.8× 10−2)

GWESP (θ7) 0.898(1.3× 10−4) 0.908(1.4× 10−2) 0.858(4.6× 10−2)

time 2.7m 8.0m 60.2m
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ners statistics. In addition, as shown in Table X, the SAMCMC estimates consistently

have smaller standard deviations than the MCMLE and SSA estimates for all param-

eters. This implies that SAMCMC can perform stably with different initial values.
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Fig. 11. Goodness-of-fit(GOF) plots for Lazega’s lawyer network. Row 1: SAMCMC;

Row 2: MCMLE; Row 3: SSA.

4. Zachary Karate Network

The Zachary Karate network was collected from 34 members of a university karate

club, which represents the presence or absence of ties among the members of the

club. [83] used this data and an information flow model of network conflict resolution

to explain the split-up of this group following disputes among the members. The

network is shown in Figure 6.

This network has been analyzed using an ERGM with edge counts, GWD and
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GWESP with τ = 0.2. The likelihood of the model is given by

f(y|θ) =
1

κ(θ)
exp {θ1S1(y) + θ2u(y|τ) + θ3v(y|τ)} ,

where s1(y) is the edge count, u(y|τ) is a GWD statistic with τ = 0.2, and v(y|τ) is

a GWESP statistic with τ = 0.2.

SAMCMC, MCMLE and SSA were applied to this network. The resulting esti-

mates are summarized in Table XI, and the GOF plots are shown in Figure 12. The

comparison indicates that all the three methods perform similarly for this network,

and SAMCMC and SSA perform a little better than MCMLE. As shown in Figure

12, both SAMCMC and SSA produce better fitting for the observed edge-wise shared

partners statistic than MCMLE.

Table XI. Parameter estimates produced by SAMCMC, MCMLE and SSA for the

Karate network. Standard deviations are shown in the parentheses.

Method Edge Count(θ1) GWD (θ2) GWESP (θ3) Time

SAMCMC -3.730 (6.5× 10−4) 3.725 (5.0× 10−3) 1.303 (3.5× 10−4) 2.5m

MCMLE -2.909 (5.3× 10−2) 7.901 (3.5× 10−3) 0.361 (7.7× 10−2) 2.9m

SSA -3.637 (3.5× 10−2) 3.584 (5.1× 10−2) 1.224 (6.1× 10−2) 22.2m

As a summary of the last two examples, we conclude that SAMCMC can work

as well as or better than MCMLE and SSA for the ERGMs which do not suffer from

the model degeneracy problem.

D. A Large Network Example

In this section, we considered a large network collected during the first wave (1994-

1995) of National Longitudinal Study of Adolescent Health(AddHealth). The data

were collected through a stratified sampling survey in the US schools containing
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Fig. 12. Goodness-of-fit(GOF) plots for the Karate network. Row 1: SAMCMC; Row

2: MCMLE; Row 3: SSA.



79

grades 7 through 12. To collect the friendship, the school administrator made a

roster of all students in each school and asked students to nominate five close male

and female friends. Students were allowed to nominate their friends who were not

in their school or not to nominate if they did not have five close male or female

students. A detailed description of the dataset can be found in [62], [79], or at

http://www.cpc.unc.edu/projects/addhealth.

AddHealth Network

Fig. 13. A large network example: High school student friendship network.

The full dataset contains 86 schools and 90,118 students. In this paper, we ana-

lyzed a single school, school 10, which has 205 students, as shown in Figure 13. Also,

we considered only the undirected network for the case of mutual friendship, although

the true data is a directed network. We model the network using the following model

f(Y |θ) =
1

κ(θ)
e{θ1S1(y)+θ2u(y|τ)+θ3w(y|τ)+θ4v(y|τ)+

P22
k=1

PP
i<j yijhk(Xi,Xj)}, (5.10)

where S1(y) is the edge count, u(y|τ) is a GWD statistic with τ = 0.25, w(y|τ) is

a GWDSP statistic with τ = 0.25, v(y|τ) is a GWESP statistic with τ = 0.25, and
∑∑

i<j yijhk(Xi, Xj) are nodal covariates. There are a total of 22 nodal covariates
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included in this model. Three factors were considered in modeling: Grade, Race

and Sex. Grade is an ordinal variable with six levels, grade 7–grade 12. For Grade,

we include nodal factor effects, differential homophily effects, and absolute different

effects with C = 1, 2, 3. Race consists of five levels: white, black, hispanic, native

American, and others. For Race, we include nodal factor effects and differential

homophily effects. But we exclude the nodal factor for others whose level is 1, and

the differential homophily factor for blacks and others whose value is 0. The Sex is

a two-level factor: male and female. For Sex, we include the differential homophily

effect or the nodal effect, but not both of them. Including both would entail redundant

information. As aforementioned, sometimes we need to exclude some terms to avoid

linear dependency among the model statistics. We note that model (5.10) is very

similar to the model given in Hunter et al. (2008) except for some minor differences

in covariate definition.

SAMCMC was applied to this network with the default setting given previously.

SAMCMC was run 5 times, and each run costs about 12.8 hours on a 3.0GHz Intel

Core 2 Duo computer. The resulting estimates are summarized in Table XII, which

are calculated by averaging over five independent runs. The resulting GOF plot is

shown in Figure 14, which implies that SAMCMC produces a good fit for this large

network. This example indicate that SAMCMC can work for large networks.

SAMCMC costs a long CPU time for this example because the Gibbs sampler is

used for generating auxiliary networks. To reduce the CPU time, we can switch the

Gibbs sampler to the tie-to-tie (TNT) sampler, which selects with equal probability a

dyad with a tie or a dyad without a tie to update at each MH step. Obviously, TNT

can have better mixing than the Gibbs sampler for large spare networks for which

the number of TNT updates can be significantly smaller than
(

n
2

)
, the number of MH

updates made by the Gibbs sampler in a sweep.
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Table XII. Estimates produced by SAMCMC for the high school student friendship

network. The estimates are calculated by averaging over five independent

runs with the standard deviations being given in the parentheses. NF: node

factor effect, DHF: different homophily effect, UHF: uniform homophily

effect, and AD: absolute different effect.

Coefficient SAMCMC Coefficient SAMCMC

Edge Counts -10.510(3.3× 10−3) AD(Grade 1) -0.121(1.1× 10−3)

GWD 0.006(1.8× 10−4) AD(Grade 2) 0.131(1.2× 10−3)

GWDSP 0.007(3.6× 10−5) AD(Grade 3) -0.103(1.2× 10−3)

GWESP 1.377(7.7× 10−5) DHF(Grade 7) 6.005(2.7× 10−3)

NF(Grade 8) 1.439(1.5× 10−3) DHF(Grade 8) 3.252(9.7× 10−4)

NF(Grade 9) 2.183(1.9× 10−3) DHF(Grade 9) 1.594(1.6× 10−3)

NF(Grade 10) 2.513(2.1× 10−3) DHF(Grade 10) 1.079(1.7× 10−3)

NF(Grade 11) 2.294(1.9× 10−3) DHF(Grade 11) 1.869(1.3× 10−3)

NF(Grade 12) 2.894(1.8× 10−3) DHF(Grade 12) 1.034(1.9× 10−3)

NF(Race: B) 0.627(3.3× 10−4) DHF(Race: W) 0.682(8.1× 10−4)

NF(Race: H) -0.385(3.3× 10−4) DHF(Race: H) 0.566(4.1× 10−4)

NF(Race: N) -0.335(3.7× 10−4) DHF(Race: N) 1.052(4.9× 10−4)

NF(Sex: F) 0.141(9.8× 10−5) UHF(Sex) 0.544(1.3× 10−4)
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Fig. 14. Goodness-of-fit(GOF) plots for the high school student friendship network.
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CHAPTER VI

CONCLUSION

In this dissertation, we have proposed two new algorithms for statistical inference for

models with intractable normalizing constants: the Monte Carlo Metropolis-Hastings

algorithm and the Bayesian Stochastic Approximation Monte Carlo algorithm. In

addition, we has demonstrated how the SAMCMC method can be applied to estimate

the parameters of ERGMs, which is one of the typical examples of statistical models

with intractable normalizing constants, without the hinderance of model degeneracy.

The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings al-

gorithm. At each iteration, it replaces the unknown normalizing constant ratio by

a Monte Carlo estimate. Although the algorithm violates the detailed balance con-

dition, it still converges, as shown in the paper, to the desired target distribution

under mild conditions. Unlike other auxiliary variable MCMC algorithms, such as

the Møller and exchange algorithms, the MCMH algorithm avoids the requirement

for perfect sampling, and thus can be applied to many statistical models for which

perfect sampling is not available or very expensive.

The MCMH algorithm can also be applied to Bayesian inference for the ran-

dom effect models and the missing data problems which involve simulations from

distributions with intractable integrals. Comparing to the existing GIMH algorithm,

the MCMH algorithm should be more efficient for these problems, as it recycles the

auxiliary samples in simulations.

The Bayesian Stochastic Approximation Monte Carlo algorithm works by simu-
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lating from a sequence of approximated distributions using the stochastic approxima-

tion Monte Carlo algorithm One significant advantage of BSAMC over the auxiliary

variable MCMC methods is that it avoids the requirement for perfect samples, and

thus it can be applied to many models for which perfect sampling is not available or

very expensive. Although the normalizing constant approximation is also involved in

BSAMC, as shown by our numerical results, BSAMC can perform very robustly to

initial guesses of parameters due to the powerful ability of SAMC in sample space ex-

ploration. A strong law of large numbers has been established for BSAMC estimators

under mild conditions.

BSAMC has provided a general framework for approximated Bayesian inference

for the models for which the likelihood function is intractable: sampling from a se-

quence of approximated distributions with their average converging to the target

distribution. From this point of view, MCMLE is just a special instance of BSAMC,

for which there is only one approximate distribution is sampled from. Within this

framework, BSAMC can also be implemented in different ways, for example, the so-

called “grid approach”. In this approach, we choose k points of θ: θ
(1)
0 , · · · , θ(k)

0 , and

wish the convex set formed by the k points covers the true value of θ. In practice,

θ
(i)
0 ’s can be selected around the MPLE of θ. We can define a mixture distribution

g(x|θ(1)
0 , . . . , θ

(k)
0 ) =

1

k

k∑
i=1

p(x, θ
(i)
0 )/κ(θ

(i)
0 ), (6.1)

for which the normalizing constants κ(θ
(1)
0 ), · · · , κ(θ(k)

0 ) can be approximated by

SAMC in an on-line manner. Then, (6.1) can replace (4.1) to work as a trial distribu-

tion for BSAMC. It is easy to see that the convergence results established still hold

for the grid approach.

We note that BSAMC can be further improved using the smoothing SAMC
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algorithm proposed by [47]. Smoothing SAMC includes a smoothing step at each it-

eration, which distributes the information contained in each sample to its neighboring

subregions and thus improves the convergence of the simulation.

Varying trunction SAMCMC algorithm outperform for estimating the parame-

ters of ERGMs. We showed that the resulting estimate is consistent, asymptotically

normal and asymptotically efficient. Comparing to the MCMLE and SSA methods,

a significant advantage of SAMCMC is that it overcomes the model degeneracy prob-

lem. This is remarkable. For the ERGMs which consist of basic Markovian statistics,

the MCMLE and SSA methods often fail to produce any reasonable estimates due to

the model degeneracy, while SAMCMC still works well. For the ERGMs which do

not suffer from the model degeneracy, SAMCMC can work as well as or better than

the MCMLE and SSA methods.

The strength of SAMCMC comes from its varying truncation mechanism, which

enables SAMCMC to avoid the model degeneracy problem through re-initialization.

MCMLE and SSA do not possess the re-initialization mechanism and tend to converge

to a solution near the starting point, so they often fail for the models which suffer

from the model degeneracy problem.

In addition to finding the MLE, parameters of the ERGM can also be estimated

under the Bayesian framework, see e.g., [44] and [15]. It is known that the MH al-

gorithm cannot be directly applied to sample from the posterior distribution of the

ERGM, because its acceptance probability would involve an unknown normalizing

constants ratio κ(θ)/κ(θ′), where θ′ denotes the proposed value. To tackle this diffi-

culty, [44] proposed to estimate this ratio using the linked importance sampler [58].

However, including a Monte Carlo estimate in the acceptance probability of the MH

move would break its detailed balance condition, and thus the resulting estimate is

only approximately correct, even when the number of samples used at each iteration
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for estimation of κ(θ)/κ(θ′) is large. Instead of estimating the ratio κ(θ)/κ(θ′), [15]

attempt to generate a perfect network y from f(y|θ′) at each iteration via a long MH

run, and then to cancel the unknown ratio using the exchange technique proposed by

[57]. Due to complex interdependency of social networks, perfect networks are usu-

ally difficult to be generated using the MH algorithm. Comparing to these Bayesian

algorithms, SAMCMC avoids the requirement for estimation of unknown normalizing

constants and the requirement for drawing perfect network samples, and thus can be

easily used in practice.
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APPENDIX A

PROOF OF THEOREM IN CHAPTER III

Proof of Lemma B.1 Since P defines an irreducible and aperiodic Markov chain, to

show P̃m has the same property, it suffices to show that the accessible sets of P are

included in those of P̃m. More precisely, we show by induction that for any k ∈ N,

θ ∈ Θ and A ∈ B(Θ) such that P k(θ, A) > 0, then P̃ k
m(θ, A) > 0. First, for any θ ∈ Θ

and A ∈ B(Θ),

P̃m(θ, A) ≥
∫

A

[

∫

Y
(1 ∧ γm)fm

θ (dy)]α(θ, ϑ)Q(θ, dϑ) + I(θ ∈ A)ρ(θ),

where I(·) is the indicator function. By condition (A2), we deduce that the implication

is true for k = 1. Assume the induction assumption is true up to some k = n ≥ 1.

Now, for some θ ∈ Θ, let A ∈ B(Θ) be such that P n+1(θ, A) > 0 and assume that

∫

Θ

P̃ n
m(θ, dϑ)P̃m(ϑ,A) = 0,

which implies that P̃m(ϑ,A) = 0, P̃ n
m(θ, ·)-a.s. and hence that P (ϑ,A) = 0, P̃ n

m(θ, ·)-
a.s. from the induction assumption for k = 1. From this and the induction assumption

for k = n, we deduce that P (ϑ,A) = 0, P n(θ, ·) -a.s. (by contradiction), which

contradicts the fact that P n+1(θ, A) > 0.

Proof of Lemma B.2 Let

S =Pψ(θ)− P̃mψ(θ)

=

∫

Θ×Y
ψ(ϑ)

[
1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)

]
Q(θ, dϑ)fm

θ (dy)

− ψ(θ)

∫

Θ×Y

[
1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)

]
Q(θ, dϑ)fm

θ (dy),
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and we therefore focus on the quantity

S0 =

∫

Θ×Y

∣∣∣1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)
∣∣∣Q(θ, dϑ)fm

θ (dy)

=

∫

Θ×Y

∣∣∣1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)
∣∣∣I(λm > ε)Q(θ, dϑ)fm

θ (dy)

+

∫

Θ×Y

∣∣∣1 ∧ r(θ, ϑ)− 1 ∧ γmr(θ, ϑ)
∣∣∣I(λm ≤ ε)Q(θ, dϑ)fm

θ (dy).

Since, for any (x, y) ∈ R2,

|1 ∧ ex − 1 ∧ ey| = 1 ∧ |e0∧x − e0∧y| ≤ 1 ∧ |x− y|,

we deduce that

S0 ≤ Q(θ, fm
θ (I(λm > ε))) +Q(θ, fm

θ (1 ∧ λmI(λm ≤ ε))).

Consequently, we have

|S| ≤ 2Q(θ, fm
θ (I(λm > ε))) + 2Q(θ, fm

θ (1 ∧ λmI(λm ≤ ε))) ≤ 2ε+ 2ε = 4ε.

This completes the proof of Lemma B.2.

Proof of Theorem B.1 For any k ≥ 1 and any ψ : Θ → [−1, 1], we have

P̃ k
mψ(θ0)− π(ψ) = S1(k) + S2(k),

where π(ψ) = π(ψ(θ)) for notational simplicity, and

S1(k) = P kψ(θ0)− π(ψ), S2(k) = P̃ k
mψ(θ0)− P kψ(θ0).

For the term S2(k), we can further decompose it as follows. For any k0 (1 ≤<
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k0 < k),

|S2(k)| ≤ |P̃ k
mψ(θ0)− P̃ k0

m ψ(θ0)|+ |P̃ k0
m ψ(θ0)− P k0ψ(θ0)|+ |P k0ψ(θ0)− P kψ(θ0)|

=

∣∣∣∣∣
k0−1∑

l=0

[P lP̃ k0−l
m ψ(θ0)− P l+1P̃ k0−(l+1)

m ψ(θ0)]

∣∣∣∣∣

+ |P̃ k
mψ(θ0)− P̃ k0

m ψ(θ0)|+ |P kψ(θ0)− P k0ψ(θ0)|

=

∣∣∣∣∣
k0−1∑

l=0

P l(P̃m − P )P̃ k0−(l+1)
m ψ(θ0)

∣∣∣∣∣

+ |P̃ k
mψ(θ0)− P̃ k0

m ψ(θ0)|+ |P kψ(θ0)− P k0ψ(θ0)|.
(A.1)

For any ε > 0, by Lemma B.2, there exists an M(ε, θ0) such that for anym > M(ε, θ0),

|S2(k)| ≤ 4k0ε+ |P̃ k
mψ(θ0)− P̃ k0

m ψ(θ0)|+ |P kψ(θ0)− P k0ψ(θ0)|

= 4k0ε+ S3(m, k, k0) + S4(k, k0)

where Lemma B.2 has been applied to (A.1) k0 times.

The magnitudes of S1(k), S4(k, k0) and S3(m, k, k0) can be controlled following

from the convergence of the transition kernel P and Lemma B.1. For any ε > 0, there

exists k0 = k(ε, θ0,m) such that for any k > k0,

|S1(k)| ≤ ε, S3(m, k, k0) ≤ ε, S4(k, k0) ≤ ε.

Summarizing the results of S1(k) and S2(k), we conclude the proof by choosing ε =

ε/(4k0 + 3).

Proof of Theorem B.2 To prove this theorem, we introduce the following lemma

(Lemma 4.1 of [4]):

Lemma .1 Consider an adaptive MCMC algorithm, on a state space X , with adap-

tation index Y, so π(·) is stationary for each kernel Pγ for γ ∈ Y. If Y is finite and
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∑∞
n=1 P (Γn 6= Γn−1) <∞, then the adaptive Markov chain is ergodic.

Since the transitional kernel of {θt} is independent of iterations (i.e., Γn takes

a constant value in Lemma .1), the two conditions, Y is finite and
∑∞

n=1 P (Γn 6=
Γn−1) < ∞, trivially holds for the marginal chain {θt}. Hence, the marginal chain

{θt} is ergodic and has the same stationary distribution as MCMH-II.
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APPENDIX B

PROOF OF THEOREM IN CHAPTER IV

Before giving details of the drift condition, we first define some notations. Let

x = (x(1), . . . , x(m)) denote a vector of m MCMC samples drawn from a distribution

defined on the space X . Let Xm = X × · · · × X , and thus x ∈ Xm. Let BXm denote

the Borel set defined on Xm. Let Pξ(x,y) denote a Markov transition kernel indexed

by ξ (which takes values in the space Ξ).

For a function g : Xm → Rd, define the norm

‖g‖V = sup
x∈Xm

‖g(x)‖
V (x)

,

and define the set LV = {g : Xm → Rd, supx∈Xm ‖g‖V <∞}.
Given the above notations, the drift condition can be specified as follows:

For any ξ ∈ Ξ, the transition kernel Pξ is irreducible and aperiodic. In addition,

there exists a function V : Xm → [1,∞) and a constant α ≥ 2 such that for any

compact subset K ⊂ Ξ,

(i) There exist a set C ⊂ Xm, an integer l, constants 0 < λ < 1, b, ς, δ > 0 and a

probability measure ν such that

• sup
ξ∈K

P l
ξV

α(x) ≤ λV α(x) + bI(x ∈ C), ∀x ∈ Xm. (B.1)

• sup
ξ∈K

PξV
α(x) ≤ ςV α(x), ∀x ∈ Xm. (B.2)

• inf
ξ∈K

P l
ξ(x, A) ≥ δν(A), ∀x ∈ C, ∀A ∈ BXm . (B.3)
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(ii) There exists a constant c > 0 such that, for all x ∈ Xm,

• sup
ξ∈K

‖Hξ(·)‖V ≤ c. (B.4)

• sup
(ξ,ξ′)∈K

‖Hξ(·)−Hξ′(·)‖V ≤ c‖ξ − ξ′‖. (B.5)

(iii) There exists a constant c > 0 such that, for all (ξ, ξ′) ∈ K ×K,

• ‖Pξg − Pξ′g‖V ≤ c‖g‖V ‖ξ − ξ′‖, ∀g ∈ LV . (B.6)

• ‖Pξg − Pξ′g‖V α ≤ c‖g‖V α‖ξ − ξ′‖, ∀g ∈ LV α . (B.7)
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APPENDIX C

PROOF OF THEOREM IN CHAPTER V

These conditions, given in [49], are necessary to analyze asymptotic efficiency of

θ̄k.

Lyapunov condition on h(θ). This condition assumes the existence of a global Lya-

punov function v for the mean field h.

(A1) Let 〈x,y〉 denote the Euclidean inner product. Θ is an open set, the function

h : θ → Rd is continuous, and there exists a continuous differentiable function

v : Θ → [0,∞) such that

(i) There exists M0 > 0 such that

L = {θ ∈ Θ, 〈Ov(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ, v(θ) < M0}. (C.1)

(ii) There exists M1 ∈ (M0,∞) such that VM1 is a compact set, where VM =

{θ ∈ Θ, v(θ) ≤M}.

(iii) For any θ ∈ Θ \ L, 〈Ov(θ), h(θ)〉 < 0.

(iv) The closure of v(L) has an empty interior.

Stability Condition on h(θ). This condition constraints the behavior of the mean

field function around the solution points. It makes the trajectory averaging estimator

sensible both theoretically and practically.

(A2) The mean field function h(θ) is measurable and locally bounded. That is, there

exists a stable matrix F (i.e., all eigenvalue of F are with negative real parts),
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γ > 0, ρ ∈ (0, 1], and a constant c such that, for any θ∗ ∈ L,

||h(θ)− F (θ − θ∗)|| ≤ c||θ − θ∗||1+ρ, ∀θ ∈ {θ : ||θ − θ∗|| ≤ γ},

where L is defined in (C.1).

Drift condition on the transition kernel Pθ. Before giving details of this condition, we

first define some terms and notation. Assume that a transition kernel Pθ is irreducible,

aperiodic and has a stationary distribution on a sample space denoted by X . A set

C ⊂ X is said to be small if there exist a probability measure ν on X , a positive

integer l and δ > 0 such that

P l
θ(x, A) ≥ δν(A), ∀x ∈ C, ∀A ∈ BX ,

where BX is the Borel set defined on X . A function V : X → [1,∞) is said to be a

drift function outside C if there exist positive constants λ < 1 and b such that

PθV (x) ≤ λV (x) + bI(x ∈ C), ∀x ∈ X ,

where PθV (x) =
∫
X Pθ(x,y)V (y)dy. For a function g : X → Rd, define the norm

‖g‖V = sup
x∈X

‖g(x)‖
V (x)

,

and define the set LV = {g : X → Rd, supx∈X ‖g‖V < ∞}. Given these terms and

notation, the drift condition can be specified as follows.

(A3) For any given θ ∈ Θ, the transition kernel Pθ is irreducible and aperiodic. In

addition, there exists a function V : X → [1,∞) and a constant α ≥ 2 such

that for any compact subset K ⊂ Θ,

(i) There exist a set C ⊂ X , an integer l, constants 0 < λ < 1, b, ς, δ > 0



105

and a probability measure ν such that

• sup
θ∈K

P l
θV

α(x) ≤ λV α(x) + bI(x ∈ C), ∀x ∈ X . (C.2)

• sup
θ∈K

PθV
α(x) ≤ ςV α(x), ∀x ∈ X . (C.3)

• inf
θ∈K

P l
θ(x, A) ≥ δν(A), ∀x ∈ C, ∀A ∈ BX . (C.4)

(ii) There exists a constant c > 0 such that, for all x ∈ X ,

• sup
θ∈K

‖H(θ,x)‖V ≤ c. (C.5)

• sup
(θ,θ′)∈K

‖H(θ,x)−H(θ′,x)‖V ≤ c‖θ − θ′‖. (C.6)

(iii) There exists a constant c > 0 such that, for all (θ, θ′) ∈ K ×K,

• ‖Pθg − Pθ′g‖V ≤ c‖g‖V ‖θ − θ′‖, ∀g ∈ LV . (C.7)

• ‖Pθg − Pθ′g‖V α ≤ c‖g‖V α‖θ − θ′‖, ∀g ∈ LV α . (C.8)

Conditions on the step-size This condition gives constraints to gain factors and

control the speed and accuracy of convergence in trajectory averaging.

(A4) Let {ak} and {bk} be two monotone, non-increasing, and positive sequences

which satisfy the following conditions:

∞∑

k=1

ak = ∞, lim
k→∞

(kak) = ∞,
ak+1 − ak

ak

= o(ak+1), , bk = O(a
1+τ
2

k ). (C.9)

for some τ ∈ (0, 1],
∞∑

k=1

a
(1+τ)/2
k√
k

<∞ (C.10)

and for some constants δ ≥ 2

∞∑
i=1

{aibi + (b−1
i ai)

α} <∞. (C.11)
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For instance, ak = C1/k
η for some constants C1 > 0 and η ∈ (1

2
, 1), then we can

set bk = C2/k
ξ for some constants C2 > 0 and ξ ∈ (1

2
, η − 1

α
), which satisfies (C.9)

and (C.11). Under this setting, the existence of τ is obvious.

Theorem .1 ([49]; Theorems 2.1–2.3) Assume the conditions (A1), (A2), (A3), and

(A4) hold. Let X0 ⊂ X be such that supx∈X0
V (x) < ∞ and that K0 ⊂ VM0, where

VM0 is defined in (A1). Then, as n→∞, we have

1. (Convergence) θ(n) → θ∗ almost surely for some point θ∗ ∈ L.

2. (Asymptotic Normality)

√
n(θ̄n − θ∗) −→ N(0,Γ),

where Γ is a negative definite matrix.

3. (Asymptotic Efficiency) θ̄n is asymptotically efficient.

Proof of Theorem .1 To prove Theorem .1, it suffices to verify Conditions (A1), (A2),

(A3) and (A4) for ERGMs. Let l(θ) = log fθ(x) denote the log-likelihood function of

an ERGM x, where fθ(x) is specified in Equation (2.1). Let h(θ) = ∂θl(θ) denote

the partial derivative of l(θ) with respect to θ. Since X is finite for ERGMs, we set

X0 = X and V (x) = 1. Then the conditions (A1)–(A4) can be verified as follows.

(A1) It is clear that the function h(θ) is continuous in θ, as the ERGM belongs to

the exponential family. Set v(θ) = −l(θ) + C, where C is a constant chosen

such that v(θ) > 0. Existence of C is apparent, as l(θ) is up bounded. From

Equation (2.1), it can be seen that v(θ) is continuously differentiable. Thus, we

have

〈∇v(θ), h(θ)〉 = −‖∂θl(θ)‖2,
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which implies that the set L = {θ : 〈∇v(θ), h(θ)〉 = 0} coincides with the

solution set {θ : ∂θl(θ) = 0}, and that 〈∇v(θ), h(θ)〉 < 0 for any θ ∈ Θ\L. This

verifies (A1)-(iii). Given the condition (C2), the verification of other conditions

of (A1) is straightforward.

(A2) Set the matrix F as the Hessian matrix of l(θ), then (A2) can be verified using

the Taylor expansion by choosing ρ = 1.

(A3) Theorem 2.2 of Roberts and Tweedie (1996) shows that if the target distribu-

tion is bounded away from 0 and ∞ on every compact set of its support X ,

then the MH chain with a proposal distribution satisfying the condition (5.6)

is irreducible and aperiodic, and every nonempty compact set is small. For

ERGMs, X is finite, so f(x|θ) is bounded away from 0 and ∞ for any θ. In

addition, the Gibbs sampler we used in generating auxiliary networks satisfies

the condition (5.6). Hence, Pθ is irreducible and aperiodic for any θ ∈ Θ.

Since X is compact (finite), X is a small set and thus the minorisation condition

is satisfied; that is, there exists an integer l such that

inf
θ∈Θ

P l
θ(x, A) ≥ δν(A), ∀x ∈ X , ∀A ∈ B. (C.12)

Define PθV (x) =
∫
X Pθ(x,y)V (y)dy. Since C = X is small, the following

conditions hold

sup
θ∈K

P l
θV

α(x) ≤ λV α(x) + bI(x ∈ C), ∀x ∈ X ,

sup
θ∈K

PθV
α(x) ≤ κV α(x), ∀x ∈ X ,

(C.13)

by choosing the drift function V (x) = 1, 0 < λ < 1, b = 1−λ, κ > 1, α ∈ [2,∞)

and any integer l. Equations (C.12) and (C.13) implies that (A3)-(i) is satisfied.



108

By construction of our algorithm, we have

H(θ,Y ) = S(Y )− S(yobs). (C.14)

Since X is finite, there exists a constant c such that supθ∈K ‖H(θ,Y )‖V ≤ c

with respect to the norm V (·) = 1. By (C.14), we have

H(θ,Y )−H(θ′,Y ) = 0.

which implies that (A3)-(ii) is satisfied.

Let sθ(x,y) = q(x,y) min{1, r(θ,x,y)}, where r(θ,x,y) =
fθ(y)q(y,x)

fθ(x)q(x,y)
. Thus,

we have

∣∣∂sθ(x,y)

∂θi

∣∣ =
∣∣q(x,y)I(r(θ,x,y) < 1)r(θ,x,y)[S(y)− S(x)]

∣∣

≤ q(x,y)‖S(y)− S(x)‖,

where I(·) is the indicator function. By the boundedness of the term ‖S(y)−
S(x)‖ and the mean-value theorem, there exists a constant c2 such that

|sθ(x,y)− sθ′(x,y)| ≤ c2q(x,y)|θ − θ′|, (C.15)

which implies that

sup
x
‖sθ(x, ·)− sθ′(x, ·)‖1 = sup

x

∫

X
|sθ(x,y)− sθ′(x,y)|dy ≤ c2|θ − θ′|. (C.16)
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In addition, for any measurable set A ⊂ X we have

|Pθ(x, A)− Pθ′(x, A)|

=
∣∣
∫

A

[sθ(x,y)− sθ′(x,y)]dy + I(x ∈ A)

∫

X
[sθ′(x,z)− sθ(x,z)]dz

∣∣

≤
∫

X
|sθ(x,y)− sθ′(x,y)|dy + I(x ∈ A)

∫

X
|sθ′(x,z)− sθ(x, z)|dz

≤ 2

∫

X
|sθ(x,y)− sθ′(x,y)|dy ≤ 2c2|θ − θ′|.

(C.17)

For g : X → Rd, define the norm ‖g‖V = supx∈X
|g(x)|
V (x)

. Then, for any function

g ∈ LV = {g : X → Rd, ‖g‖V <∞}, we have

‖Pθg − Pθ′g‖V = ‖
∫

(Pθ(x, dy)− Pθ′(x, dy))g(y)‖V

= ‖
∫

X+

(Pθ(x, dy)− Pθ′(x, dy))g(y) +

∫

X−
(Pθ(x, dy)− Pθ′(x, dy))g(y)‖V

≤
∥∥∥ max

{ ∫

X+

(Pθ(x, dy)− Pθ′(x, dy))g(y),

−
∫

X−
(Pθ(x, dy)− Pθ′(x, dy))g(y)

}∥∥∥
V

≤ ‖g‖V max{|Pθ(x,X+)− Pθ′(x,X+)|, |Pθ(x,X−)− Pθ′(x,X−)|}

≤ 2c2‖g‖V |θ − θ′|, (following from (C.17))

where X+ = {y : y ∈ X , (Pθ(x, dy)− Pθ′(x, dy))g(y) > 0} and X− = X \ X+.

This implies that condition (A3)-(iii) is satisfied by choosing V (x) = 1 and

β = 1.

(A4) It is easy to see that (C1) implies (A4) by letting α = ∞, where α is defined in

(A3).

The proof is completed.
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