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ABSTRACT

A wireless relay network consists of multiple source nodes, multiple destination

nodes, and possibly many relay nodes in between to facilitate its transmission. It

is clear that the performance of such networks highly depends on information for-

warding strategies adopted at the relay nodes. This dissertation studies a particular

information forwarding strategy called compute-and-forward. Compute-and-forward

is a novel paradigm that tries to incorporate the idea of network coding within the

physical layer and hence is often referred to as physical layer network coding. The

main idea is to exploit the superposition nature of the wireless medium to directly

compute or decode functions of transmitted signals at intermediate relays in a net-

work. Thus, the coding performed at the physical layer serves the purpose of error

correction as well as permits recovery of functions of transmitted signals.

For the bidirectional relaying problem with Gaussian channels, it has been shown

by Wilson et al. and Nam et al. that the compute-and-forward paradigm is asymp-

totically optimal and achieves the capacity region to within 1 bit; however, similar

results beyond the memoryless case are still lacking. This is mainly because chan-

nels with memory would destroy the lattice structure that is most crucial for the

compute-and-forward paradigm. Hence, how to extend compute-and-forward to such

channels has been a challenging issue. This motivates this study of the extension of

compute-and-forward to channels with memory, such as inter-symbol interference.

The bidirectional relaying problem with parallel Gaussian channels is also studied,

which is a relevant model for the Gaussian bidirectional channel with inter-symbol

interference and that with multiple-input multiple-output channels. Motivated by

the recent success of linear finite-field deterministic model, we first investigate the
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corresponding deterministic parallel bidirectional relay channel and fully characterize

its capacity region. Two compute-and-forward schemes are then proposed for the

Gaussian model and the capacity region is approximately characterized to within a

constant gap.

The design of coding schemes for the compute-and-forward paradigm with low

decoding complexity is then considered. Based on the separation-based framework

proposed previously by Tunali et al., this study proposes a family of constellations

that are suitable for the compute-and-forward paradigm. Moreover, by using Chi-

nese remainder theorem, it is shown that the proposed constellations are isomorphic

to product fields and therefore can be put into a multilevel coding framework. This

study then proposes multilevel coding for the proposed constellations and uses mul-

tistage decoding to further reduce decoding complexity.
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1. INTRODUCTION

After six decades of endeavor by many researchers, we can now safely say that

we have a fair understanding of how to design point-to-point communication sys-

tems. In addition to computing the capacity of many channels, we also know how

to build capacity-achieving codes to arbitrarily approach the capacity with a de-

coding complexity that is linear in block length. Since 1980s, a great deal of effort

has been exerted on the design of wireless communication systems. There are two

important characteristics that make wireless communications different from point-

to-point communications, namely the superposition nature and the broadcast nature.

The superposition nature basically captures the characteristic that in wireless com-

munication, multiple nodes may send signals to a destination simultaneously, which

results in multiple access channels (MAC). On the other hand, the broadcast nature

captures the characteristic that if one sender transmits, all the nodes nearby would

hear, which can be modeled as broadcast channels (BC). For MAC channels and

two-user BC channels, the capacity regions have also been characterized in 1980s in

[1] [2] for MAC channels and in [3] [4] [5] for BC channels.

Now, if we keep adding terminals on either the transmitter and/or the receiver

ends, the problem becomes more and more complicated. Even for the two-user

interference channel, which is the smallest example with multiple transmitters and

receivers, the capacity region remains unknown and an approximate characterization

of the capacity region has become available only very recently in [6]. However,

modern wireless communication is all about networks in which there are multiple

terminals. Unfortunately, our understanding of networks with multiple terminals

such as multiple transmitters, multiple receivers, and/or multiple intermediate nodes

1



is fairly limited. The importance of wireless networks and the lack of a thorough

understanding of such networks have urged researchers to explore the frontiers of

network (or multi-terminal) information theory.

Although most problems in network information theory are fairly difficult to solve

due to the distributed nature and the lack of structure in networks, there are two

new exciting ideas that are driving progress in this area. The first is the determin-

istic model of Avestimehr, Diggavi, and Tse [7] which allows one to characterize the

capacity region approximately by considering an appropriate finite-field model of the

network. The second is a new line of research which tries to exploit interference in

wireless networks either through aligning the interference or by exploiting it through

structured coding at the physical layer [8] [9] [10]. In particular, the compute-and-

forward paradigm [11] allows us to harness the interference instead of fighting it.

This paradigm attempts to incorporate the idea of network coding within the physi-

cal layer and is hence called physical layer network coding as well. This strategy has

been shown to be capable of providing substantial gains over conventional strategies

in many networks. Recently the use of compute-and-forward paradigm and the con-

struction of practical compute-and-forward schemes have become popular research

areas.

Motivated by the success of the compute-and-forward strategy, the first part of

this dissertation is devoted to study this strategy in more detail from an information-

theoretic point of view and to extend this strategy to more general scenarios. Specif-

ically, it has been shown in [12] and [13] that for bidirectional relaying problem

with Gaussian channels, the compute-and-forward strategy is asymptotically opti-

mal. However, in practice, channels are hardly memoryless. This urges us to extend

the compute-and-forward paradigm to channels with memory such as inter-symbol

interference (ISI). Moreover, in modern communication systems, devices are usually

2



equipped with multiple antennas for which the resulted channels are multiple-input

multiple-output (MIMO) channels. This motivates the study of the MIMO bidirec-

tional relaying problem in this dissertation.

One important step following the establishment of the information-theoretic re-

sults is to establish coding-theoretic results. In most of literatures on compute-and-

forward, e.g., [12] [13] [11], (including the first part of this dissertation), infinite-

dimensional lattices are used for the purpose of both shaping and channel coding;

hence, the shaping and coding gains are inseparable. Although it has been shown that

lattices that are simultaneously good for shaping and good for channel coding exist,

the complexity of optimal algorithms for shaping and decoding is formidable. In one

of our previous work [14], a separation-based framework has been proposed where

channel coding and data modulation are separately designed. The constellation for

data modulation has to possess some properties in order to benefit from compute-

and-forward. In contrast to practically implementable lattice coding schemes that

are available in the existing literature such as low density lattice codes [15] and sig-

nal codes [16], this framework enables one to improve the coding gain and shaping

gain separately, thus resulting in increased computation rates. This separation also

allows us to keep the constellation size q small so that optimal demodulation is feasi-

ble. Moreover, the separation allows the use of codes on graph as channel coding so

that near optimal performance can be obtained with low-complexity message pass-

ing decoder. The second part of the dissertation focuses on designing practically

implementable compute-and-forward schemes that have provable threshold with de-

coding complexity scaled linearly with code length. Based on the separation-based

framework in [14], a low complexity compute-and-forward scheme is proposed which

is particularly suitable for applications that operate in the moderate and high rate

regimes.
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1.1 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we briefly

introduce some background for lattices, nested lattice codes, and lattice partition

chains which will be useful and crucial for the following chapters. We state basic

definitions and some important existing results without proofs. After that, we in-

troduce the problem of bidirectional relaying with Gaussian channels and explain

the lattice-based compute-and-forward strategy over this problem. The reason that

we particularly focus on Gaussian bidirectional relaying problem is that the idea of

compute-and-forward can be well illustrated by and was first proposed for bidirec-

tional relaying problem with Gaussian channels in [12] [13]. We restate the coding

schemes as well as the main results in [12] [13] without proofs.

In Chapter 3, we extend compute-and-forward paradigm to channels with mem-

ory such as ISI. We provide inner and outer bounds on the capacity region for the

Gaussian bidirectional relaying over ISI channels. The outer bound is obtained by

the conventional cut-set argument. For the inner bound, we propose a compute-

and-forward coding scheme based on lattice partition chains and study its achiev-

able rate. The coding scheme is a time-domain coding scheme which uses a novel

precoding scheme at the transmitter in combination with lattice precoding and a

minimum mean squared error receiver to recover linear combinations of lattice code-

words. The proposed compute-and-forward coding scheme substantially outperforms

decode-and-forward schemes. We also compare the proposed time-domain scheme to

the frequency-domain scheme that we proposed previously in [17]. The frequency

domain scheme [17] is similar in spirit to coded orthogonal frequency division multi-

plexing (OFDM) with independent coding across sub-carriers and uses nested-lattice

code with a power allocation strategy that can exploit the group property of lat-
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tices. While it is well known that for the point-to-point communication case, both

independent coding along sub-channels and time-domain coding can approach the

capacity limit, we show that for the bidirectional relaying, the performance of the

two coding schemes are different. Particularly, we show that independent coding

across sub-channels is not optimal and coding across sub-channels can improve the

capacity region for some channel realizations.

In Chapter 4, we consider the bidirectional relaying with parallel Gaussian chan-

nels. This is a relevant model for bidirectional relaying with ISI and MIMO bidirec-

tional relaying as the problems can be converted into a set of parallel bidirectional

relay channels by discrete Fourier transform and singular value decomposition, re-

spectively. We first take a look at the corresponding linear deterministic model [7]

and solve the corresponding network coding problem. Based on the insight obtained

from the reasoning in the corresponding linear deterministic model, we propose two

coding schemes that would substantially outperform the conventional strategies. We

then show that both the proposed schemes achieve the capacity region to within a

constant gap and one of the coding schemes is asymptotically optimal.

In Chapter 5, the problem of designing practically implementable compute-and-

forward schemes is investigated. We first review the separation-based framework

proposed in [14], which provides a design guideline for the design of compute-and-

forward schemes. Motivated by the work of Feng et al. [18], we propose a family of

constellations that satisfy the design guideline and thereby are suitable for compute-

and-forward paradigm. This family of constellations is generated from quotient rings

of Eisenstein integers and hence provides good shaping gains. Moreover, by Chinese

Remainder Theorem, we show that the proposed family of constellations is isomor-

phic to the corresponding product fields. This allows us to incorporate the idea of

multilevel coding so that for the proposed constellation with q2 elements, the chan-
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nel coding only has to work over Fq, thereby resulting in a substantial complexity

reduction.

In chapter 6, we summarize our prior work on the joint source-channel coding

problem of transmitting a discrete-time analog source over an additive white Gaus-

sian noise (AWGN) channel with interference known at transmitter. Particularly,

we consider the case when the source and the interference are correlated. Although

not directly relevant to the main theme of this dissertation, coding with side infor-

mation is an important topic and a canonical problem in wireless networks and we

feel appropriate to describe this work here. We first derive an outer bound on the

achievable distortion and then, we propose two joint source-channel coding schemes

to make use of the correlation between the source and the interference. The first

scheme is the superposition of the uncoded signal and a digital part which is the

concatenation of a Wyner-Ziv encoder and a dirty paper encoder. In the second

scheme, the digital part is replaced by a hybrid digital and analog (HDA) scheme so

that the proposed scheme can provide graceful degradation in the presence of signal-

to-noise ratio (SNR) mismatch. Interestingly, unlike the independent interference

setup, we show that neither of the two schemes outperform the other universally in

the presence of SNR mismatch.

1.2 Notation

Throughout the dissertation, C represents the set of complex numbers, E denotes

the expectation operation, and P(E) denotes the probability of the event E. Vectors

are written in boldface. Also, for a given real number x, we use the convention

(x)+ := max{0, x} and log(x)+ := max{0, log(x)} where all logarithms are to the

base 2. × denotes the Cartesian product and ⊕ denotes the addition operation over

some finite fields where the field size can be understood from the context if it is not

6



specified. Also, we do not distinguish the multiplication operation over the complex

field and finite fields; which field the operation is taking over is understood from the

context.
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2. BACKGROUND

2.1 Lattices, Nested Lattice Codes, and Lattice Partition Chains

Since lattices and lattice codes have been well discussed in many recent works,

we only summarize some required definitions and results without proofs. For more

details about the lattices, nested lattice codes, and lattice partition chains, the reader

is referred to [19, 20, 21, 13] and the reference therein.

2.1.1 Lattices

An n-dimensional lattice Λn is a discrete subgroup of Rn under ordinary vector

addition operation. This implies that for all pairs λ1, λ2 ∈ Λn, we have λ1+λ2 ∈ Λn.

In Fig. 2.1 and 2.2, we provide two examples of two-dimensional lattices, namely

Rectangular lattice (Z2) and Hexagonal lattice (A2), that corresponds to the ring of

Gaussian integers and the ring of Eisenstein integers, respectively.

In the following, we define some important operations in lattices.

Definition 1 (Lattice Quantizer): For a x ∈ Rn, the nearest neighbor quantizer

associated with Λ is denoted as

Q(x) = λ ∈ Λn; ‖x− λ‖ ≤ ‖x− λ′‖ ∀λ′ ∈ Λn, (2.1)

where ‖.‖ represents the L2-norm operation.

Definition 2 (Fundamental Voronoi Region): The fundamental Voronoi region

V(Λn) is defined as

V(Λn) = {x : QΛn(x) = 0}. (2.2)
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Figure 2.1: Rectangular (Z2) lattice, Gaussian integers
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Figure 2.2: Hexagonal (A2) lattice, Eisenstein integers
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Figure 2.3: Example showing some lattice operations

Definition 3 (Modulo Operation): The mod operation is represented as

x mod Λn = x−QΛn(x). (2.3)

One example that explains the above operations can be found in Fig. 2.3 where

A2 lattice is considered and the circle in the upper right corner represents a vector

x ∈ R2. The nearest neighbor quantizer associated with A2 will quantize x to the

lattice point inside the same hexagon with x. The hexagon circumventing the origin

is the fundamental Voronoi region of A2. Moreover, the modulo operation will map

x to the corresponding position inside the fundamental Voronoi region as the circle

shown in the middle of this figure.
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In what follows, we define goodness of lattices from the perspective of packing,

covering, quantization, and channel coding problems, respectively. Let us first denote

by B the n-dimensional unit sphere centered at the origin and rB the n-dimensional

sphere of radius r centered at the origin.

Packing Problem: For a lattice Λn, a radius r > 0 is said to be a packing radius

if Λ + rB is a packing in Euclidean space. i.e., for x 6= y ∈ Λn, we have

(x + rB) ∩ (y + rB) = ∅. (2.4)

Definition 4 (Packing Radius): Define the packing radius rpackΛn of Λn by

rpackΛn = sup{r : Λn + rB is a packing}. (2.5)

Definition 5 (Effective Radius): Define the effective radius reffecΛn of Λn as a radius

such that the volume of reffecΛn B is equal to the volume of the fundamental Voronoi

region.

Definition 6 (Packing Efficiency): Define the packing efficiency of a lattice Λn by

ρpack(Λ
n) =

rpackΛn

reffecΛn

. (2.6)

Also, for all possible n-dimensional lattice Λn, we define the optimal asymptotic

packing efficiency by

ρ∗pack = lim sup
n→∞

sup
Λn

rpackΛn

reffecΛn

. (2.7)

Definition 7 (Goodness for Packing): We say that a sequence of lattices is asymp-

totically good for packing if it achieves the Minkowski lower bound defined as

ρ∗pack = 1/2.
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Covering Problem: For a lattice Λn, r > 0 is said to be a covering radius if

Rn ⊆ Λn + rB.

Definition 8 (Covering Radius): Define the covering radius rcovΛn of Λn by

rcovΛn = min{r : Λn + rB is a covering}. (2.8)

Definition 9 (Covering Efficiency): Define the covering efficiency of a lattice Λn

by

ρcov(Λ
n) =

rcovΛn

reffecΛn

. (2.9)

Also, for all possible n-dimensional lattice Λn, we define the optimal asymptotic

covering efficiency by

ρ∗cov = lim inf
n→∞

inf
Λn

rcovΛn

reffecΛn

. (2.10)

Definition 10 (Goodness for Covering): We say that a sequence of lattices is

asymptotically good for covering or Rogers-good if ρ∗cov = 1.

MSE Quantization: In this problem, we consider the lattice quantizer for a lattice

Λndefined above. The second moment of a lattice is defined as the average energy

per dimension of a uniform probability distribution over V(Λn) as

σ2(Λn) =
1

V (Λn)

1

n

∫

V(Λn)

‖x‖2dx, (2.11)

where V (Λn) is the volume of the V(Λn). The normalized second moment of the

lattice is then defined as

G(Λn) =
σ2(Λn)

V (Λn)2/n
. (2.12)

The minimum possible value G(Λn) over all n-dimensional lattices is defined by Gn.

Also, the normalized second moment of a sphere approaches 1
2πe

as n → ∞. The
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isoperimetric inequality implies that Gn > 1
2πe

.

Definition 11 (Goodness for MSE Quantization): We say that a sequence of lat-

tices is asymptotically good for MSE quantization if

lim
n→∞

Gn =
1

2πe
. (2.13)

Unconstraint AWGN Channel Coding Problem: Consider the AWGN channel

Y = X + N where X , Y , and N ∼ N (0, PN) represent the transmitted signal, the

received signal, and the noise, respectively. Denote by N an i.i.d. vector of length

n of noise random variables. We define the “effective radius” of the noise vector by

rN =
√
nPN . Now, consider the case that we use an infinite lattice Λn as signal

constellation, i.e., we don’t have any power constraint.

Definition 12 (Voronoi-to-Noise Effective Radius Ratio): Define the Voronoi-to-

noise effective radius ratio of a lattice Λn by

ρAWGN(Λ
n, rN) =

reffecΛn

rN
. (2.14)

Definition 13 (Goodness for AWGN Channel Coding): We say that a sequence

of lattices is asymptotically good for AWGN channel coding or Poltyrev-good if

whenever ρAWGN(Λ
n, rN) > 1, the error probability of decoding X from Y

Pe(Λ
n, rN) = P{N /∈ V(Λn)} (2.15)

tends to zero exponentially fast as n grows. i.e., achieves the Poltyrev exponent

defined in [22].

We conclude this subsection by restating a very important theorem in [20] which
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was proved by using the ensemble of lattices generated by Construction A [23].

Theorem 1 (Theorem 5 of [20]). For asymptotically high dimension, there exist

lattices that are simultaneously good for packing, covering, MSE quantization, and

AWGN channel coding problems.

2.1.2 Nested Lattice Codes

An n-dimensional nested lattice code consists of a fine lattice Λn
f and a coarse

lattice Λn
c . The coarse lattice Λn

c is said to be nested in the fine lattice Λn
f if all the

elements in Λn
c are also elements in Λn

f as shown in Fig. 2.4. i.e. Λn
c ⊆ Λn

f . A nested

lattice code uses elements in the quotient group Λn
f/Λ

n
c as codewords. i.e., it takes

all the fine lattice points in Λn
f ∩ V(Λn

c ) as codewords. The rate of a nested lattice

code is given by

1

n
log |Λn

f ∩ V(Λn
c )| =

1

n
log

V (Λn
c )

V (Λn
f )
. (2.16)

To use a nested lattice code as transmission scheme, the coarse lattice has to be

carefully chosen as it governs the shaping (closely related to the power constraint)

as well as the rate of this nested lattice code.

In [19], Erez and Zamir consider the AWGN channel with the power constraint

P and the noise variance N . They show the existence of an ensemble of good nested

lattice codes and then use this ensemble to show that the AWGN capacity can be

achieved by lattice encoding together with Euclidean lattice decoding. In contrast

to maximum-likelihood decoding that finds the most likely lattice point inside the

shaping region, Euclidean lattice decoding directly find the closet lattice point to

the received signal, ignoring the boundary of the code. Lattice decoding has a much

lower complexity than maximum likelihood decoding and has hence attracted a lot

of interest. We restate these two Theorems in the following.
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Figure 2.4: An example of a nested lattice code. •: points in Λn
f . ◦: points in Λn

c .
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Theorem 2 (Section VII of [19]). There exist a sequence of nested lattice codes in

which the coarse lattices are simultaneously Rogers-good and Poltyrev-good and the

fine lattices are Poltyrev good.

Theorem 3 (Theorem 5 of [19]). For any rate R < C = 1
2
log
(
1 + P

N

)
, there exists

a sequence of n-dimensional nested lattice codes Λn
f/Λ

n
c whose coding rate approaches

R, and whose decoding error probability under Euclidean lattice decoding decays ex-

ponentially fast as n → ∞.

2.1.3 Lattice Partition Chains

An n-dimensional lattice partition chain Λn
f/Λ

n
2/Λ

n
1 consists three lattices Λn

f , Λ
n
1 ,

and Λn
2 , where Λ

n
1 ⊆ Λn

2 ⊆ Λn
f as shown in Fig. 2.5. We restate an important theorem

in [13].

Theorem 4 (Theorem 2 of [13]). For any P1 ≥ P2 ≥ 0, a sequence of n-dimensional

lattice partition chains Λn
f/Λ

n
2/Λ

n
1 exists that satisfies the following properties.

1. Λn
1 and Λn

2 are simultaneously Rogers-good and Poltyrev-good while Λc is Poltyrev-

good.

2. For any ǫ > 0, Pi − ǫ ≤ σ2(Λn
i ) ≤ Pi, i ∈ {1, 2}, for sufficiently large n.

3. The coding rate of the nested lattice code associated with the lattice partition

Λn
f/Λ

n
2 can approach any value γ ≥ 0 as n tends to infinity, i.e.,

R2 =
1

n
log

(
V(Λn

2)

V(Λn
f )

)
= γ + on(1), (2.17)

where on(1) → 0 as n → ∞. Furthermore, the coding rate of the nested lattice
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2 .
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1

code associated with Λn
f/Λ

n
1 is given by

R1 =
1

n
log

(
V(Λn

1 )

V(Λn
f )

)
= R2 +

1

2
log

(
P1

P2

)
+ on(1). (2.18)

It is worth mentioning that lattice partition chains are not restricted to three

lattices. A more general definition where one can have arbitrary number of coarse

lattices has been introduced in [24, Theorem 2].

18



2.2 Compute-and-Forward for Memoryless Bidirectional Relay channel

The main focus of this section is to explain the problem of memoryless bidirec-

tional relay channel and how to use lattice codes for compute-and-forward as an

information forwarding strategy. In a bidirectional relay channel shown in Fig. 2.6,

two nodes A and B wish to exchange information with the help of an intermediate

relay node between them. Also, we assume that the two nodes are remote from each

other so that we can assume that there is no direct link between the two nodes.

In the first phase, the MAC phase, both nodes send signals xA and xB with power

constraints PA and PB, respectively, to the relay and the relay keeps silent. The

received signal at the relay is given by

yR = hAxA + hBxB + zR, (2.19)

where zR is an i.i.d. noise random variables drawn from N (0, NR). The relay then

forms a signal xR based on the observation yR. In the second pase, the BC phase,

the relay broadcasts xR with a power constrain PR back to the nodes and the nodes

keep silent. The received signals at the nodes are given by

yA = gAxR + zA, (2.20)

yB = gBxR + zB, (2.21)

respectively, where zA and zB are i.i.d. noise random variables drawn from N (0, NA)

and N (0, NB), respectively. After this, the nodes try to decode the other’s message

according the received signals and their own messages as side information. It is worth

mentioning that since hA and hB can be absorbed into the power constraints and gA

and gB can be absorbed into the noise variances, one can equivalently consider the
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Figure 2.6: Bidirectional relay network.

case that all channel coefficients are 1, i.e., hA = hB = gA = gB = 1. Throughout

the chapter, we consider this equivalent model.

For this problem, conventional strategies such as AF and DF either suffer from

noise propagation or a loss in the multiplexing gain and hence are suboptimal. In

the following subsections, we review the lattice-based compute-and-forward strategy

which has been shown to be asymptotically optimal for memoryless bidirectional relay

channel. The main idea of the compute-and-forward is based on the observation that

the relay is not interested in the individual messages. The approach of compute-and-

forward is to choose the codes used by the nodes very specifically such that it enables

functional decoding or computing at the relay.

2.2.1 Symmetric Case

In this subsection, we consider the symmetric case where PA = PB = P and

NR = NA = NB = N . For this case, Wilson et al. [12] exploit the linear structure of

nested lattice codes and propose the following coding scheme. The nodes A and B

adopt an identical sequence of good nested lattice codes (in the sense of Theorem 2)

Λn
f/Λ

n
c where the coarse lattice are chosen to have a second moment (arbitrarily close

to) P . They first map the messages to lattice points tA, tB ∈ Λn
f/Λ

n
c , respectively.
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The dithered version

xA = [tA − dA] mod Λc, (2.22)

xB = [tB − dB] mod Λc, (2.23)

are then transmitted by the nodes A and B, respectively.

At the relay, due to the property that lattices are closed under integer combi-

nations, the relay can decode the received signal to tR = (tA + tB) mod Λn
c . The

procedure is listed below.

1. Form MMSE estimate of xA + xB from yR as αyR.

2. Subtract random dithers as αyR + dA + dB.

3. Bring this estimate back to the fundamental Voronoi region of the coarse lattice

by the modulo operation.

4. Quantize the result to the nearest fine lattice point.

The relay then re-encodes this estimate and broadcasts the codeword corresponding

to tR.

Now suppose tR can be reliably decoded at the two nodes, nodes A and B recover

the other’s message by the following operation

tB = [tR − tA] mod Λc, (2.24)

tA = [tR − tB] mod Λc. (2.25)

The performance of this coding scheme is described in the following Theorem which

is the main result of [12].
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Theorem 5 (Theorem 1 of [12]). For Gaussian bidirectional relay channel, there

exists at least a sequence of n-dimensional nested lattice codes Λn
f/Λ

n
c such that any

exchange rate of Rex = RA = RB ≤ 1
2
log
(
1
2
+ P

N

)+
is achievable using Euclidean

lattice decoding.

2.2.2 Asymmetric Case

In [13], Nam et al. consider the bidirectional relay channel with asymmetric

power PA and PB and asymmetric noise variance NA and NB. They proposed a

coding scheme as follows. Without loss of generality, one can assume that PA ≥ PB.

Otherwise, one can simply switch the role of node A and B. Consider a sequence of

good lattice partition chains (in the sense of Theorem 4) Λn
f/Λ

n
B/Λ

n
A. Node A (the

node having a larger power) encodes its message to tA by the nested lattice code

Λn
f/Λ

n
A and the weak node (the one having a weaker power) encodes its message to

tB by the nested lattice code Λn
f/Λ

n
B. Both nodes then transmit the corresponding

dithered version of the lattice codewords as

xA = [tA − dA] mod ΛA, (2.26)

xB = [tB − dB] mod ΛB, (2.27)

respectively.

At the relay, due to the property that lattices are closed under integer combi-

nations, the relay can decode the received signal to tR = (tA + tB − QB(tB + uB))

mod Λn
A. The procedure is listed below.

1. Form MMSE estimate of xA + xB from yR as αyR.

2. Subtract random dithers as αyR + dA + dB.

22



3. Bring this estimate back to the fundamental Voronoi region of the coarse lattice

Λn
A by the modulo operation.

4. Quantize the result to the nearest fine lattice point.

Note that here we have an extra term −QB(tB + uB). This is a result of that now

we adopt nested lattice codes with different coarse lattices and the relay performs

the modulo operation with respect to Λn
A. The relay then re-encodes this estimate

and broadcasts the codeword corresponding to tR.

Now suppose tR can be reliably decoded at the two nodes, nodes A and B recover

the other’s message by the following operation

tB = [tR − tA] mod ΛB, (2.28)

tA = [tR − tB +QB(tB + uB)] mod ΛA, (2.29)

respectively. The performance of this coding scheme is described in the following

Theorem which is the main result of [13].

Theorem 6 (Theorem 1 of [13]). For Gaussian bidirectional relay channel, there

exists a sequence of n-dimensional lattice partition chains Λn
f/Λ

n
B/Λ

n
A such that any

rate pair (RA, RB) satisfying

RA ≤ min

{
1

2
log

(
PA

PA + PB

+
PA

NR

)+

,
1

2
log

(
1 +

P

NB

)}
, (2.30)

RB ≤ min

{
1

2
log

(
PB

PA + PB

+
PB

NR

)+

,
1

2
log

(
1 +

P

NA

)}
. (2.31)

is achievable using Euclidean lattice decoding.

We conclude this section by the following two remarks.
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Remark: It has been shown in [13] that for Gaussian bidirectional relay channel,

the above lattice-based compute-and-forward schemes is asymptotically optimal in

the high SNR regime and achieves the capacity region to with 1/2 bit.

Remark: All the results and schemes in this section are over the real field. How-

ever, these can be easily extended to the complex field by regarding the complex filed

as two orthogonal real fields and use the schemes above in each real field.
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3. BIDIRECTIONAL RELAYING OVER ISI CHANNELS∗

In this chapter, we provide inner and outer bounds on the capacity region for the

Gaussian bidirectional relaying over inter-symbol interference channels. The outer

bound is obtained by the conventional cut-set argument. For the inner bound, we

propose a compute-and-forward coding scheme based on lattice partition chains and

study its achievable rate. The coding scheme is a time-domain coding scheme which

uses a novel precoding scheme at the transmitter in combination with lattice pre-

coding and a minimum mean squared error receiver to recover linear combinations

of lattice codewords. The proposed compute-and-forward coding scheme substan-

tially outperforms decode-and-forward schemes. While it is well known that for the

point-to-point communication case, both independent coding along sub-channels and

time-domain coding can approach the capacity limit, as a byproduct of the proposed

scheme, we show that for the bidirectional relay case, independent coding along sub-

channels is not optimal in general and joint coding across sub-channels can improve

the capacity for some channel realizations.

3.1 Introduction

The problem of communication over the bidirectional relay channel has attracted

a great deal of attention [25] [26] [27] [28] [12] [13]. In a bidirectional relay channel,

two nodes A and B wish to exchange information through a relay node R between

them as shown in Fig. 3.1. In addition, there is no direct link from node A to

node B and vice versa. For this setup with additive white Gaussian noise (AWGN)

only, (i.e., channels do not have memory,) it has been shown that classical relaying

∗ c©2013 IEEE. Reprinted, with permission, from Yu-Chih Huang, Nihat E. Tunali, and Krishna

R. Narayanan, A Compute-and-Forward Scheme for Gaussian Bi-Directional Relaying with Inter-

Symbol Interference, IEEE Transactions on Communications, March 2013.
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Figure 3.1: Bidirectional relay network with ISI.

strategies such as amplify-and-forward (AF) and decode-and-forward (DF) can be

directly extended to this channel. However, the AF strategy which only scales and

broadcasts the received signal at the relay is strictly suboptimal in the low signal-

to-noise ratio (SNR) regime due to noise propagation. On the other hand, the DF

strategy which requires the relay to decode the received signal to the individual

messages may significantly reduce the multiplexing gain (pre-log factor) and is thus

suboptimal in the high SNR regime. For more details about these classical strategies,

the reader is referred to [25] and [26] and references therein.

Recently, a novel information-forwarding strategy called compute-and-forward

(CF) (or physical layer network coding) for bidirectional relaying has been proposed

and studied in [27] [28] [12] [13]. In the CF strategy, the relay only decodes a function

of the transmitted signals instead of individual messages. The function is chosen

specifically such that given this function and their own messages, both nodes can

correctly recover each other’s message. In [11], the CF strategy is further extended

to a larger network.
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In [12], the channels are assumed to be symmetric and memoryless and the CF

strategy was realized using nested lattice codes (NLC). The main idea is to encode

the messages by identical NLCs at the two nodes and then to exploit the group

property of lattices at the relay. Since the channels are assumed to be symmetric,

the two transmitted codewords lie in the same (fine) lattice at the relay so that

the relay can directly decode the sum of two codewords modulo a coarse lattice

from the received signal. The authors show that this CF scheme can achieve an

exchange rate (i.e., symmetric rate) that is asymptotically optimal. For the case

when channels are asymmetric, Wilson and Narayanan [29] proposed a scheme that

uses a power allocation strategy for enforcing lattice alignment at the relay and then

directly carries out the CF scheme in [12]. On the other hand, in [13], Nam et al.

proposed another CF scheme in which different nesting ratios are used at the two

encoders. Their coding scheme is based on lattice partition chains and has been

shown to approach the capacity region to within one bit (1
2
bit per real dimension).

In this work, we study the Gaussian bidirectional relay channel with inter-symbol

interference (ISI), i.e., with memory. We provide inner and outer bounds on the

capacity region for this channel. The proposed outer bound is simply obtained by

the conventional cut-set argument [30]. For the inner bound, it is unclear how to

implement the above CF schemes for the channel with memory. To address this

problem, we first propose a novel pre-filtering technique that again ensures that the

two transmitted codewords lie in the same (fine) lattice at the relay. Then, we adopt

lattice precoding [31] at the two nodes and an unbiased minimum mean squared error

(MMSE) equalizer [32] at the relay. Our proposed scheme allows the use of NLC or

lattice partition chains schemes [13] for the channels with ISI.

For the point-to-point communication over ISI channels, it has been known for

quite a while that the capacity can be achieved by at least two different approaches.
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The first approach proposed by Cioffi et al. [32] adopts single-carrier transmission

with an infinite-length unbiased MMSE decision feedback equalizer (MMSE-DFE) at

the receiver. Cioffi et al. showed that this unbiased MMSE-DFE scheme is capacity-

achieving if the input power-spectral density is optimized. The second approach

is by partitioning the whole spectrum (which is frequency-selective) into infinitely

many infinitesimal sub-channels that are flat (frequency-nonselective) and then use a

good AWGN code in each sub-channel separately. Moreover, the power allocated to

each sub-channel can be obtained by the conventional water-filling power allocation

strategy for maximizing the overall rate [33]. This leads to the family of multi-carrier

transmission systems. This also implies that in point-to-point communication, joint

coding across sub-channels is not necessary for achieving the capacity. Similar results

for the Gaussian MAC channel and Gaussian BC channel with ISI are reported in [34]

and [35], respectively. On the other hand, Cadambe and Jafar in [36] showed that

for the parallel Gaussian interference channel, joint processing across sub-channels

can potentially achieve a larger rate region than that achieved by separate coding.

In this chapter, as a byproduct of our inner bound, we show that similar to the

interference channel, joint processing across sub-channels is required in general to

achieve the capacity region of the Gaussian bidirectional relay channel with ISI.

3.1.1 Organization

This chapter is organized as follows. In Section 3.2, we explain the problem

considered in this chapter in detail and provide an outer bound on the capacity

region in Section 3.3. In Section 3.4, we present the proposed scheme and analyze

the corresponding achievable rate region. Some discussions and numerical results are

given in Section 3.5 where we provide an example showing that joint coding across

sub-channels is necessary in general to achieve the capacity region. After this, there
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are some conclusions and potential future work in Section 4.5.

3.2 Problem Statement

In this chapter, we consider the bidirectional relay channel in which two nodes

A and B wish to exchange information through a relay R between them as shown

in Fig. 3.1. Different from other works on this problem, we consider the case that

the communication takes place in the presence of inter-symbol interference (ISI).

Specifically, the time-invariant vector channels from A to R and that from B to R

are denoted as hA ∈ CLAR and hB ∈ CLBR , respectively. Also, in the downlink,

the channel from R to A and B are denoted as gA ∈ CLRA and gB ∈ CLRB . Here,

LAR, LBR, LRA, and LRB are finite integers and represent the channel impulse re-

sponse length. These channel gains are assumed to be available at each node. Nodes

A and B map their messages uA ∈ {1, 2, . . . ,MA} and uB ∈ {1, 2, . . . ,MB} to length-

n channel input sequences xA = En
A(uA) and xB = En

B(uB), respectively, which are

then transmitted to the relay. Each node is subject to a power constraint Pi, i.e.,

E[|xi|2] ≤ Pi, i ∈ {A,B,R}. Alternatively, the power constraint can be represented

in frequency domain. Let us define Pi(θ) to be the corresponding power-spectral

density of xi, one can then write the feasible power constraint set as

P =

{
PA(·), PB(·), PR(·) :

1

2π

∫ π

−π

Pi(θ)dθ ≤ Pi, i ∈ {A,B,R}
}
. (3.1)

Note that this individual power constraint is more practical than the total power

constraint considered in [17] as nodes are assumed to be physically apart.

The transmission protocol we consider is the two-phase protocol consisting of a

multiple access channel (MAC) phase and a broadcast channel (BC) phase. Each

phase occupies a half of the channel uses and is assumed to be orthogonal to each

other. This can be accomplished by assigning different frequency bands, time slots,
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or spreading codes.

During the MAC phase, both nodes transmit their signals to the relay simul-

taneously and the relay remains silent. The received signal at the relay is given

by

yR = xA ∗ hA + xB ∗ hB + zR, (3.2)

where ∗ denotes the linear convolution operator and zR ∼ CN (0, σ2I) is i.i.d. Gaus-

sian noise. Upon receiving yR, the relay maps it to the transmitted signal in the BC

phase xR = En
R(yR). This mapping depends on the information forwarding strategy

and will be discussed later.

During the BC phase, the relay broadcasts xR back to nodes and both nodes

remain silent. Then the received signal at both nodes are

yA = xR ∗ gA + zA, (3.3)

yB = xR ∗ gB + zB, (3.4)

where again zA, zB ∼ CN (0, σ2I). Nodes A and B then form estimates of uB and uA

as ûB = Gn
A(yA,xA) and ûA = Gn

B(yB,xB), respectively.

Definition 14: An (n,MA,MB) code consists of a set of encoding functions (En
A, En

B, En
R)

with message cardinalities MA and MB at nodes A and B, respectively. The decoder

uses a set of decoding functions (Gn
A,Gn

B) and the error probability is then given by

P (n)
e =

∑

uA,uB

1

MAMB

· P ({uA 6= ûA} ∪ {uB 6= ûB}|uA, uB are sent) . (3.5)

Definition 15: A rate pair (RA, RB) is achievable if, for any ε > 0, there exists
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an no such that for n ≥ n0 there is an (n,MA,MB) code with

MA ≥ 2nRA, MB ≥ 2nRB , and P (n)
e ≤ ε. (3.6)

The capacity region C of the Gaussian bidirectional relay channel with ISI is defined

as the convex hull of the closure of the set of all achievable rate pairs (RA, RB). Note

that since each phase occupies a half of the channel uses, the achievable rate and the

capacity defined above are per two channel uses.

Also, as in [36], we define separate coding and separability of parallel channels

(which include the ISI channel as a special case) as follows.

Definition 16: (Separate coding [36]) For a set of parallel channels, a coding

scheme is said to be separate if no joint processing across sub-channels other than

power allocation is permitted.

Definition 17: (Separability [36]) A set of parallel channels is said to be separable

if its capacity can be achieved by a separate coding scheme (as defined above) and

power allocation among sub-channels.

In this work, in addition to providing inner and outer bounds on the capacity

region, we show the following theorem through providing a counterexample in Sec-

tion 3.5.

Theorem 7. Gaussian bidirectional relay channels with ISI are not always separable.

3.3 Outer Bound

An outer bound on the capacity region can be obtained by the cut-set argu-

ment [30] as shown in the following lemma whose proof is straightforward and hence

omitted. Before we start, let us define C(x) = log(1 + x).
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Lemma 8. C ⊆ C, where

C =
{
(RA, RB) : 0 ≤ RA ≤ min

{
CAR, CRB

}
,

0 ≤ RB ≤ min
{
CBR, CRA

}}
, (3.7)

where for i ∈ {A,B}

C iR =
1

2π

∫ π

−π

C

(
P ∗
i (θ)|hi(θ)|2

σ2

)
dθ, i ∈ {A,B}

CRi =
1

2π

∫ π

−π

C

(
P ∗
Ri(θ)|gi(θ)|2

σ2

)
dθ i ∈ {A,B},

with P ∗
A(θ), P

∗
B(θ), P

∗
RA(θ), and P ∗

RB(θ) be the conventional water-filling solutions [33]

for a given hA,hB, gA, and gB, respectively.

Since we also wish to know whether Gaussian bidirectional channels with ISI are

always separable or not, we propose the following a rate upper bound for all separate

coding schemes..

Lemma 9. For all separate coding schemes, the achievable rate region is contained

in

Cs
=
{
(RA, RB) : 0 ≤ RA ≤ C

s

A, 0 ≤ RB ≤ C
s

B

}
, (3.8)

where

C
s

i =
1

2π

∫ π

−π

min

{
C

(
P ∗∗
i (θ)|hi(θ)|2

σ2

)
, C

(
P ∗∗
Rj(θ)|gj(θ)|2

σ2

)}
dθ,

i, j ∈ {A,B} i 6= j. The optimal power-spectral density P ∗∗
i (θ), and P ∗∗

Rj(θ) are given
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by

P ∗∗
i (θ) =

( |gj(θ)|2
v1|gj(θ)|2 + v2|hi(θ)|2

− σ2

|hi(θ)|2
)+

, (3.9)

P ∗∗
Rj(θ) =

( |hi(θ)|2
v1|gj(θ)|2 + v2|hi(θ)|2

− σ2

|gj(θ)|2
)+

, (3.10)

where v1 and v2 are chosen such that the power constraints are satisfied.

Proof. The equation (3.8) can be derived in a similar way to the proof of the previous

lemma, i.e., applying the cut-set bound to each sub-channel, and is hence omitted.

The power-spectral density in (3.9) and (3.10) are derived in Appendix A.1.

3.4 Proposed Scheme

In this section, we propose a time-domain coding scheme for the considered setting

and then analyze the corresponding achievable rate region. This coding scheme can

be regarded as a time-domain approach since we do not diagonalize the channel

matrices via the discrete Fourier transform, i.e., we do not partition the spectrum

into sub-channels. Instead, we code over the whole spectrum directly.

3.4.1 MAC Phase

We consider transmitting K messages together where nodes A and B map mes-

sages uA,k and uB,k with k ∈ {1, 2 . . . , K} to column vectors x̃A,k and x̃B,k, respec-

tively, and x̃A,k and x̃B,k will be determined later. The node i ∈ {A,B} then passes

those columns into the write column-wise transmit row-wise block interleaver [37] to

form the sequence x̃i. Specifically, as shown in Fig. 3.2, the node i first aggregates

the K column vectors and appends Lg − 1 columns of 0 to form a n× (K + Lg − 1)

matrix where Lg is the length of g, the equivalent ISI channel that will be defined

shortly. It then forms the length-n(K + Lg − 1) vector x̃i by reading the matrix
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x̃i,1[1]

x̃i,1[2]

x̃i,1[n]

...

x̃i,2[1]

x̃i,2[2]

x̃i,2[n]

...

· · ·
· · ·

· · ·

...

x̃i,K [1]

x̃i,K [2]

x̃i,K [n]

...

0

0

0

...

· · ·
· · ·

· · ·

...

0

0

0

...

write

transmit

Figure 3.2: Write column-wise transmit row-wise interleaved signal for node i ∈
{A,B}

row-wisely.

Since we wish to make use of the group property of lattices, the key idea is

to enforce the two ISI channels to be perfectly aligned (up to a scaling factor) at

the relay. To this end, as shown in Fig. 3.3, we introduce linear filters fA and fB,

respectively, at two nodes so that the transmitted signals become

xA = x̃A ∗ fA, (3.11)

xB = x̃B ∗ fB. (3.12)

We enforce the power-spectral density of x̃i to be white and Pi(θ) = Pi, ∀θ and

also enforce ‖fA‖2 = ‖fB‖2 = 1. Together they ensure that the power constraints are

still satisfied. The key idea of our proposed coding scheme is to choose filters fA and

fB such that the resultant ISI channels at the relay are collinear. i.e.,

fA ∗ hA = a · g, (3.13)

fB ∗ hB = b · g, (3.14)

where a, b ∈ R and g is a length-Lg vector representing the equivalent ISI channel

seen at the relay. Also, we assume a > b without loss of generality; otherwise, we can
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switch the role of nodes A and B. By doing this, two lattices are perfectly aligned

up to a scaling factor at the relay and the received signal at the relay (3.2) can be

rewritten as

yR = x̃A ∗ fA ∗ hA + x̃B ∗ fB ∗ hB + zR,

= (a · x̃A + b · x̃B) ∗ g + zR

= (x̄A + x̄B) ∗ g + zR, (3.15)

where x̄A = a · x̃A and x̄B = b · x̃B are the transmitted signals before pre-filtering.

Also, we define x̄A,k = a · x̃A,k and x̄B,k = b · x̃B,k for all k ∈ {1, 2, . . . , K}. It

should be noted that in our proposed scheme, since we let the input power-spectral

density of x̃i to be Pi(θ) = Pi for all θ, x̄A and x̄B are subject to power constraints

P̄A = a2PA and P̄B = b2PB, respectively.

Now, two ISI channels have been perfectly aligned to an equivalent channel g so

that the relay can perform unbiased MMSE equalization and the results in [32] can

be directly applied with a slight modification. Let c[m] be the tap-coefficients of the

corresponding unbiased MMSE equalizer, the equalized signal at each time index m
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is then given by

v[m] =

∞∑

j=−∞
c[j]yR[m− j]

= x̄A[m] + x̄B[m]

+

∞∑

j=1

ḡ[j]x̄A[m− j] +

∞∑

j=1

ḡ[−j]x̄A[m+ j]

+
∞∑

j=1

ḡ[j]x̄B[m− j] +
∞∑

j=1

ḡ[−j]x̄B [m+ j] + n̄R[m]

(a)
= x̄A[m] + x̄B[m] + sA[m] + sB[m]

+ wA[m] + wB[m] + n̄R[m]

= x̄A[m] + x̄B[m] + sA[m] + sB[m] + e[m], (3.16)

where ḡ[j]’s are the combined effect of actual channel gains and feed forward MMSE

filter, and n̄R[m] denotes the corresponding noise after the MMSE filter. Moreover,

(a) follows from the definitions, for i ∈ {A,B},

si[m] =

∞∑

j=1

ḡ[j]x̄i[m− j], (3.17)

being the post-cursor ISI induced by the node i ∈ {A,B}, and

wi[m] =
∞∑

j=1

ḡ[−j]x̄i[m+ j], (3.18)

representing the corresponding pre-cursor ISI. Furthermore, if we assume that previ-

ously decoded signals are correct, we can use a DFE to reconstruct sA[m] and sB[m]

and then subtract them out. Therefore, we can write e[m] = wA[m]+wB[m]+ n̄R[m]

as the error obtained by the unbiased MMSE-DFE equalizer. The variance of this
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error is the mean squared error obtained by the unbiased MMSE-DFE as [32]

σ2
e =

(P̄A + P̄B)N0

S0 −N0
, (3.19)

with

log
S0

N0
=

1

2π

∫ π

−π

log

[
P̄A + P̄B

σ2
|Sg(θ)|2 + 1

]
dθ, (3.20)

where Sg(θ) is the power-spectral density of g. In our proposed scheme, we do

not literally perform the DFE at the relay; instead, we adopt lattice precoding at

both nodes to get rid of the post-cursor ISI. The reason for this substitution will be

explained in Remark 3.4.1.

The relay now pass the sequence v[m] into the read row-wise output column-wise

deinterleaver [37]. After removing the guard intervals, the kth output column can be

written as

vk = x̄A,k + x̄B,k + sA,k + sB,k + ek. (3.21)

We pick an n-dimensional lattice partition chain Λn
f/Λ

n
B/Λ

n
A, where Λn

A and Λn
B are

simultaneously Rogers-good and Poltyrev-good while Λn
f is Poltyrev-good (for the

definition of goodness, the reader is referred to [20, 19]). The second moment of Λn
i

is chosen to be (very close to) P̄i, i ∈ {A,B}. (Precisely, it should be P̄i − δ ≤

σ2(Λn
i ) ≤ P̄i for δ > 0 and sufficiently large n. However, since eventually we let n

tend to ∞ and we are interested in the asymptotic result, we will omit δ from here

onwards for the sake of simplicity.) The existence of such lattices is provided in [13,

Theorem 2].

Node i useNLCi the NLC associated with Λn
f/Λ

n
i which is defined as {Λn

f∩V(Λn
i )}

with V(Λn
i ) being the fundamental Voronoi region of Λn

i . By [13, Theorem 2], the

coding rate of NLCB can approach any value γ ≥ 0 as n → ∞ and that of NLCA can
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approach γ + 1
2
log
(

P̄A

P̄B

)
as n → ∞. Node i then encodes its message to codewords

ti,k ∈ NLCi in an injective manner. Observe that due to the interleaver/deinterleaver

pair, while encoding the message k, x̄A,k′ and x̄B,k′ for k
′ < k are encoded already.

Now, since the post-cursor ISI are linear combinations of previous codewords which

have been encoded, it is known at transmitter. We can then perform the lattice

precoding [31] as a structured dirty paper coding to cancel the known interference.

The lattice codewords are given by

x̄A,k = [tA,k − αsA,k − dA,k] mod Λn
A, (3.22)

x̄B,k = [tB,k − αsB,k − dB,k] mod Λn
B, (3.23)

where dA,k and dB,k are random dithers and

α =
P̄A + P̄B

P̄A + P̄B + σ2
e

, (3.24)

is the MMSE coefficient. Note that each x̄i,k satisfies the power constraint P̄i and

hence x̄i satisfies the power constraint P̄i. The block diagram of the proposed trans-

mitters at nodes A and B can be seen in Fig. 3.3 where we would like to recall that

the actual transmitted signals are xi instead of lattice codewords x̄i,k. Note that ek

in (3.21) is in general not Gaussian since wA,k and wB,k are in general not Gaussian.

However, from [38, Theorem 2], we know that if we choose the coarse lattices Λn
A

and Λn
B to be good for quantization, then the distribution of x̄A,k and x̄B,k will tend

to be a Gaussian distribution (so will wA,k and wB,k) when n → ∞. i.e., from now

on, we can assume ek to have a Gaussian distribution.

For each k, the relay first forms an estimate of tR,k = (tA,k + tB,k − QΛn
B
(tB,k −
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fB

NLC
(Λn

f
/Λn

A
)

w/ lattice
precoding

1
a

xA{x̃A,k}{x̄A,k}{uA,k} Block
interleaver

x̃A

NLC
(Λn

f
/Λn

B
)

w/ lattice
precoding

1
b

xB{x̃B,k}{x̄B,k}{uB,k} Block
interleaver

x̃B

fA

Figure 3.3: Block diagram of the proposed transmitters at nodes A and B

αsB,k − dB,k)) mod Λn
A from (3.21) according to

ŷR,k = [αvk + dA,k + dB,k] mod Λn
A

= [α (x̄A,k + x̄B,k + sA,k + sB,k + ek)

+dA,k + dB,k] mod Λn
A

= [tR,k − (1− α)(x̄A,k + x̄B,k) + αek] mod Λn
A

= [tR,k + neq,k] mod Λn
A, (3.25)

where

neq,k = [αek − (1− α)(x̄A,k + x̄B,k)] mod Λn
A. (3.26)

In deriving (3.25) we use the distributive property of modulo operation several times.

Thanks to the interleaver/deinterleaver pair and random dithers, the pre-cursor ISI

is linear combination of future codewords and hence independent of the current

codewords. Thus, ek is independent of x̄A,k and x̄B,k. Now, with the choice of α
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given in (3.24), the average second moment of Neq,k (whose particular realizations

are neq,k) is given by

1

n
E
[
‖Neq,k‖2

]
≤ (P̄A + P̄B)σ

2
e

P̄A + P̄B + σ2
e

:= σ2
eq. (3.27)

Note that according to the group property of lattices, tR,k is a lattice point in NLCA.

Also, by applying the crypto-lemma in for example [21, Lemma 2], one has that tR,k

is uniformly distributed over {Λf ∩ V(Λn
A)} and independent of neq,k. The relay

then attempts to decode to t̂R,k by finding the fine lattice point closest to ŷR,k

(lattice decoding), i.e., QΛn
f
(ŷR,k). Thus, the decoding at the MAC phase is said

to be successful if tR,k = QΛn
f
(ŷR,k). From (3.25), it is observed that to make the

communication reliable during the MAC phase, we require

P
(
{Neq,k /∈ V(Λn

f )}
)
→ 0, as n → ∞. (3.28)

Note that after perfectly aligning two ISI channels, the derivations above are the

same with those in [13] except that we incorporate the lattice precoding into the

lattice partition chains scheme. Moreover, the loss of appending guard intervals can

be made arbitrarily small as we let K tend to infinity and hence can be ignored.

Thus, we can directly apply the Theorem 1 in [13] to obtain the achievable rate
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region for the proposed scheme in the MAC (uplink) phase which is given by

RA,up(g) = log

(
P̄A

σ2
eq

)+

= log

(
P̄A

P̄A + P̄B

+
P̄A

σ2
eq

)+

= log

(
a2PA

a2PA + b2PB
+

a2PA

σ2
eq

)+

, (3.29)

and

RB,up(g) = log

(
b2PB

a2PA + b2PB
+

b2PB

σ2
eq

)+

, (3.30)

where the subscript “up” stands for the uplink.

Remark: In the MAC phase, the problem resembles the dirty MAC problem where

two nodes wish to communicate with a destination node and the communication is

corrupted by two pieces of interference. Each piece of interference is known to a

different node. This problem has been studied in [39] where Philosof et al. showed

that there is an inherent loss with respect to the clean MAC. However, here since

the relay node is only interested in computing tR,k, we can achieve the computation

rate as there is no interference at all as shown in (3.29) and (3.30).

Remark: One classical way to deal with the post-cursor ISI is to equip the receiver

with a DFE so that one can subtract the post-cursor ISI once the previous codewords

are decoded [32]. However, when we directly apply the lattice-based encoding and

decoding techniques in [13] to here and use an unbiased MMSE-DFE at the relay,

we still cannot get rid of the post-cursor ISI sA,k + sB,k. It is due to the fact that

in lattice decoding, instead of decoding to tA,k + tB,k, the relay tries to decode to

tR,k = (tA,k + tB,k −QΛn
B
(tB,k −αsB,k −dB,k)) mod Λn

A, making it very difficult for

the relay to reconstruct sA,k + sB,k. Therefore, the lattice precoding is a reasonable
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alternative of dealing with this issue.

It should be noted that very recently, Nazer proposed the successive compute-

and-forward scheme in [40] that can effectively reconstruct the real sum from the

modulo sum at the relay when two users adopt the same NLC. This approach can

also be extended to the lattice partition chains scheme considered in this section.

Remark: Since all the pre-cursor ISI wA,k and wB,k are also known at its own

transmitter, it is natural to argue that one can further improve the rate using the

lattice precoding to get rid of them also. However, this is fallacious in the sense that

one cannot process the future symbols which are yet to be determined. Specifically,

after preprocessing the post-cursor ISI, every codeword is a function of the message at

that time and some previous codewords (can be seen from (3.22) and (3.23)). Thus,

any attempts of preprocessing the pre-cursor ISI may change the current symbol and

hence may change the future symbols, which in turn changes the pre-cursor ISI itself.

This leads to a logical fallacy. (The interested reader is referred to [31].)

3.4.2 BC Phase

In the BC (downlink) phase, we drop the subscript k as the coding scheme is the

same for all k. The relay encodes the decoded tR to xR by a random Gaussian code-

book. Nodes A and B first form estimates of tR, namely t̂R,A and t̂R,B, respectively.

The two nodes then form estimates of each other’s message as

t̂B =
[
t̂R,A − tA

]
mod Λn

B, (3.31)

and

t̂A =
[̂
tR,B − (tB −QΛn

B
(tB − αsB − dB))

]
mod Λn

A, (3.32)

respectively.
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Similar to [13] [41], we can now use a typical set decoder to show that the rate

pair given below is achievable.

RA,down ≤ I(XR;YA) = log

(
1 +

PR

σ2
A

)
, (3.33)

RB,down ≤ I(XR;YB) = log

(
1 +

PR

σ2
B

)
, (3.34)

where the subscript “down” stands for the downlink and where σ2
A and σ2

B are derived

by equipping each node with an optimal unbiased MMSE-DFE [32] and are given by

σ2
A =

PRN
′
0

S ′
0 −N ′

0

, (3.35)

σ2
B =

PRN
′′
0

S ′′
0 −N ′′

0

, (3.36)

with

log
S ′
0

N ′
0

=
1

2π

∫ π

−π

log

[
PR

σ2
|SgA

(θ)|2 + 1

]
dθ, (3.37)

log
S ′′
0

N ′′
0

=
1

2π

∫ π

−π

log

[
PR

σ2
|SgB

(θ)|2 + 1

]
dθ. (3.38)

3.4.3 Achievable Rate Region of the Proposed Scheme

Having derived the achievable rate of the proposed scheme in the MAC phase and

the BC phase, we now summarize the achievable rate region of the proposed scheme

in the following theorem.

Theorem 10. For the Gaussian bidirectional relay channel with ISI hA and hB,

for every g such that there exist unit-norm filters fA and fB with fA ∗ hA = ag and
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fB ∗ hB = bg, respectively, the following rate pair is achievable.

RA(g) ≤ min(RA,up(g), RB,down), (3.39)

RB(g) ≤ min(RB,up(g), RA,down). (3.40)

It should be noted that the rates described above are per two channel uses since

we assume that each phase occupies a half of the channel uses. Notice that these

rates are functions of the equivalent ISI channel g which is a result of pre-filters fA

and fB that will be discussed in the following.

3.4.4 Filter Design

The problem now becomes how to choose a valid pair of unit-norm filters fA

and fB such that (3.13) and (3.14) are satisfied. Here, only the case of hA 6= hB is

considered since if hA = hB = h, there is no need to pre-filter the signals and choosing

the pre-filters to be 1 automatically satisfies (3.13) and (3.14) with a = b = 1 and

g = h.

For hA 6= hB, one valid choice is to make fA = hB/‖hB‖ and fB = hA/‖hA‖ so

that

g = hA ∗ hB, (3.41)

and a = 1/‖hB‖ and b = 1/‖hA‖. With this choice, the achievable rate in the MAC

phase described in (3.29) and (3.30) becomes

RA,up = log

( ‖hA‖2PA

‖hA‖2PA + ‖hB‖2PB

+
PA

‖hB‖2σ2
eq

)+

, (3.42)

RB,up = log

( ‖hB‖2PB

‖hA‖2PA + ‖hB‖2PB
+

PB

‖hA‖2σ2
eq

)+

. (3.43)

Remark: This choice of fA and fB is by no means optimal. Of course one can try
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to optimize the choice of transmitted filters fA and fB by solving the corresponding

optimization problem. However, this problem seems to be non-convex. Thus, in the

next section, we only give a numerical example of filter design problem for maximizing

the exchange rate in the MAC phase given by

maximize min{RA,up(g), RB,up(g)} (3.44)

subject to fA ∗ hA = a · g,

fB ∗ hB = b · g,

and leave the optimal filter design problem as potential future work.

Remark: For the case when PA = PB and two channels have a same L2-norm, the

proposed coding scheme with filters chosen above reduces to the one proposed in [17]

where, instead of lattice partition chains scheme, we use an identical NLC for both

nodes as in [12].

Remark: It is worth mentioning that we will discuss another approach in Chap-

ter for the considered problem where a frequency-domain approach is used in the

MAC phase and joint coding across sub-channels is only adopted in the BC phase.

This approach is shown to be asymptotically optimal in terms of the achievable

rate and can approach the capacity region to within a constant bit. However, the

time-domain approach proposed in this chapter is still interesting for several reasons.

First, it is unclear which scheme would perform better in the finite SNR and finite

block-length regime. Second, practical implementations of the time-domain approach

may provide advantages over the frequency-domain approach in some situations of

interest.
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3.5 Numerical Results

In this section, we present numerical results for comparing the proposed scheme,

the cut-set bound, and some existing schemes. As a byproduct, we also show that

Gaussian bidirectional relay channels with ISI are not always separable. In Fig. 3.4,

we plot the achievable rate region obtained by the scheme proposed in Section 3.4

and the outer bounds derived in Section 3.3 for PA and PB ranging from 0 to 20dB,

and PR = max{PA, PB}. The channel parameters are set to be hA = [1 1]t, hB =

[1 − 0.5]t, gA = [1 − 0.5]t, and gB = [1 1]t. Here, we choose the transmit filters

as those in Section 3.4.4, i.e., fA = hB/‖hB‖ and fB = hA/‖hA‖. We observe

that the proposed scheme offers a larger region than that provided by the cut-set

bound for separate coding schemes. This implies that allowing joint coding across

sub-channels enlarges the capacity region and that separate encoding schemes with

optimal power allocation only is in general not sufficient to achieve the capacity.

Therefore, although the choice of input linear filters is in general not optimal as

mentioned in Remark 3.4.4, this at least provides an example showing that, similar

to the parallel Gaussian interference channel [36], joint encoding across sub-channels

is in general required for achieving the capacity.

Remark: It is worth mentioning that although the inner and outer bounds pro-

vided in Fig. 3.4 look like rectangles, the capacity region of the considered channel

may not be a rectangle. Here, for the inner bound, we only plot the achievable rate

for our proposed CF scheme, which appears to be a rectangle (but it is actually not a

rectangle if one looks carefully). On the other hand, if we simply omit one node and

implement point-to-point transmission for the other, a higher rate can be achieved

for the operating node (see “Näıve scheme” in Fig. 3.4.) Now, by time-sharing be-

tween the proposed CF scheme and the näıve scheme, one obtains an inner bound
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Figure 3.4: Inner and outer bounds on capacity region for SNR = 20dB, hA = [1 1]t

and hB = [1 − 0.5]t case

on the capacity region which is not a rectangle.

3.5.1 Comparison

We now compare the performance of our proposed scheme with some existing

schemes. To make the comparison easier, we set PA = PB = PR = P and only

compare the maximum symmetric rate, i.e., the exchange rate as in [17], [12], and

[42]. Moreover, we consider the reciprocal case where hA = gA and hB = gB. For

comparison, in addition to the proposed scheme, we also plot the exchange rate

achieved by the frequency domain scheme in [17] where an orthogonal frequency

division multiplexing-based scheme is adopted and a power allocation strategy is
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performed so that each sub-channel can directly carry out the NLC scheme proposed

in [12]. As a benchmark, the exchange rate provided by the two-phase DF scheme [41]

is plotted where each sub-channel separately use the DF strategy and each phase uses

a half of channel uses. Moreover, the outer bounds in Section 3.3 for both separate

encoding and joint encoding cases are also provided.

In Fig. 3.5, we plot the exchange rate against the power available at each node

P with ISI channels hA = [1 1]t and hB = [1 − 1]t. It can be observed that

both the proposed scheme and the frequency domain scheme in [17] outperform

the DF substantially in the high SNR regime. This is a typical phenomenon when

one compares the DF and CF strategies in the high SNR regime, since the DF

strategy which requires the relay to decode the individual messages may result in a

significant loss in multiplexing gain. Moreover, in this figure, one can observe that

the proposed scheme outperforms the frequency domain scheme whose performance

is upper bounded by the cut-set bound for separate coding schemes.

3.5.2 Filter Design Example

We give an example of designing the pair of filters despite the fact that the

problem seems to be non-convex. The channel parameters are set to be hA = [1 0.5]t

and hB = [1 0.3 0.4]t. Let l be the maximum number of taps of filters fA and

fB. We numerically solve the optimization problem in (3.44) for l = 3, 5 and 20. In

Table 3.1, we list the designed transmit filters before normalization f̃i (i.e., fi = f̃i/‖f̃i‖

for i ∈ {A,B}). The exchange rate of the proposed scheme with these transmit filters

are presented in Fig. 3.6. One can observe in this example that there is a reasonable

improvement on the achievable exchange rate when the filter length is increased from

l = 3 to l = 5; however, the improvement from increasing l to 20 is marginal. Also,

it should be noted that since the optimization problem may be non-convex, these
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f̃A f̃B
l = 3 [1, 0.3, 0.4] [1, 0.5, 0]

l = 5
[1, -0.0299, 0.2391, [1, 0.1701, -0.2269,
-0.1505, -0.0248] -0.0309, 0]

l = 20

[1, -0.056, 0.251, -0.0656, [1, 0.144, -0.2202, 0.0684,
-0.0231, 0.0371, -0.0153, 0.0167, 0.0117, -0.0053, 0.0001, 0.0111,
-0.0083, 0.0176, -0.0095, 0.01734, -0.0033, 0.01, -0.0023, 0.0093,
-0.0088, 0.0167, -0.0084, 0.01686, -0.002, 0.0091, -0.002, 0.0096,
-0.009, 0.0148, -0.0002, 0.0048] -0.0027, 0.0073, 0.006, 0]

Table 3.1: Transmit filters before normalization

solutions may be local.

3.6 Conclusions and Future Works

In this work, we provided inner and outer regions on the capacity region of the

bidirectional relaying over ISI. The outer bound was obtained by the conventional

cut-set argument while the inner bound was obtained by the proposed time-domain

coding scheme. This scheme first pre-filters the transmitted signal at each node so

that lattices used at each node are perfectly aligned up to a scaling factor at the

relay. After that, with the help of adopting lattice precoding at each node, one

can directly carry out the CF scheme in [13] for exploiting the group property in

lattices. Although the results in this chapter are suited for all unit-norm pre-filters

satisfying the lattice-alignment condition, designing optimal pre-filters seems to be

quite challenging and is left as a potential future work.

Interestingly, in contrast to its point-to-point communication counterpart, for the

Gaussian bidirectional relaying with ISI, there exist examples for which the proposed

time-domain scheme beats the cut-set bound of separate encoding schemes despite

the fact that the choice of linear filters may be suboptimal. This implies that Gaus-

sian bidirectional relay channels with ISI are not always separable and to achieve the
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capacity, joint processing across sub-channels is required in general.
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4. CODING FOR PARALLEL GAUSSIAN BIDIRECTIONAL RELAY

CHANNELS: A DETERMINISTIC APPROACH∗

This chapter studies the capacity region and the efficient coding schemes for the

parallel Gaussian bidirectional relay channel with L independent sub-channels. A

two-step approach is considered. First, the corresponding finite-field linear determin-

istic model is studied, for which a compute-and-forward scheme is shown to achieve

the cut-set outer bound of the channel. Next, based on the insight obtained, a lattice-

based compute-and-forward scheme is proposed and is shown to achieve the capacity

region of the Gaussian model to within L bits regardless of the channel parameters.

Even though coding across different sub-channels is necessary for approaching the

cut-set outer bound, it is shown that this can be realized via a simple bit reallocation

(across different sub-channels) at the relay when the uplink and downlink channels

are reciprocal. Numerical results show that the proposed scheme substantially out-

performs the traditional decode-and-forward schemes and also provides nontrivial

gains over the scheme recently proposed by Huang et al. when applied to the inter-

symbol interference channel.

4.1 Introduction

In this chapter, we study the parallel Gaussian bidirectional relay network with

half-duplex transceivers shown in Fig. 4.1. The channel state information at the

transmitter (CSIT) is assumed at each node. The transmission protocol that we

consider is a two-phase protocol which consists of a multiple-access (MAC) phase

followed by a broadcast (BC) phase, where each phase occupies a half of the channel

∗ c©2011 IEEE. Part of the results reported in this chapter is reprinted with permission from

Yu-Chih Huang, Krishna R. Narayanan, and Tie Liu, Coding for parallel Gaussian bi-directional

relay channels: A deterministic approach, 49th Annual Allerton Conference, Sept. 2011.
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uses. Many communication channels can be transformed into parallel Gaussian chan-

nels and, therefore, the parallel channel considered here represents a canonical model

to study such communication scenarios. For example, inter-symbol interference (ISI)

channels and multiple-input multiple-output (MIMO) channels can be converted into

parallel Gaussian channels via multi-carrier systems such as orthogonal frequency di-

vision multiplex and via matrix decompositions, respectively.

The problem of communication over a single bidirectional relay channel has been

intensively studied. Classical information forwarding strategies proposed for (unidi-

rectional) relay channels such as amplify-and-forward [43] and decode-and-forward

[43] [44] have been extended to the bidirectional relay problem, see for example [45],

[26], and [41]. However, the amplify-and-forward strategy that directly forwards the

received signals without cleaning up the noise suffers from noise amplification. The

decode-and-forward strategy first decodes the individual messages sent in the MAC

phase and then broadcasts them back to the end nodes in the BC phase. This strat-

egy suffers from a loss of multiplexing gain and can be very suboptimal in the high

signal-to-noise ratio (SNR) regime.

Recently, it has been shown that a coding scheme based on nested lattice codes

at both nodes and compute-and-forward at the relay can substantially outperform

classical forwarding strategies for the bidirectional relaying [12] [13]. The main idea

comes from the observation that the relay does not need to decode the individual

messages; instead, in compute-and-forward the relay is only required to decode the

received signal to a function of the individual messages such that both end nodes

can figure out the other’s message from this function and from their own message

as side information. In [12] and [42], the authors considered symmetric channel

gains and adopted an identical nested lattice code at both nodes so that the lattice

alignment is automatic at the relay. The relay then exploits the group property of
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lattices and directly decodes the received signal to the modulo-sum of lattice points.

When channel is asymmetric, in [13], Nam et al. proposed a scheme adopting lattice

partition chains in the MAC phase and directly decoding the received signals to a

version of modulo-sum at the relay. Both these two schemes are purely structured

and turns out can approach the corresponding capacity region to within one bit per

complex dimension (For more details about the schemes in [12] [13], the reader is

referred to Chapter 2.) More recently, in [46], Lim et al. proposed a layer noisy

network coding scheme and showed that this purely unstructured code can also

approach the capacity region to within one bit.

Motivated by the success of nested lattice codes and compute-and-forward, in

Chapter 3, we proposed a pre-filtering scheme for the bidirectional relay channel with

ISI (a special case of the parallel Gaussian bidirectional relay channel) and provided

an example showing that the Gaussian bidirectional relay channel is inseparable, i.e.,

to achieve its capacity, joint processing across sub-channels are required in general.

The main idea of this coding scheme is to align two ISI channels by performing pre-

filtering at both nodes so that the codewords sent by the two nodes would add up

in a correct direction at the relay. Therefore, one can again apply the compute-and-

forward strategy to the ISI setup. Notice that in Chapter 3, we only provide one

feasible pair of filters and leave the optimal pair of filters design as an open problem

since this problem seems to be non-convex and very difficult to solve. Coding schemes

for the MIMO bidirectional relay channel (another special case of the parallel setting)

have also been considered in [47] and [48]. However, the focus of [47] and [48] is

mainly on how to create a parallel bidirectional relay channel from a MIMO problem

while the focus of this chapter is on designing coding schemes when the parallel

bidirectional relay channel has been created.

Different from [47] [48] and Chapter 3, in this chapter, our coding scheme is
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motivated by the linear finite-filed deterministic model proposed by Avestimehr et al.

[7] of the considered setup. This is a two-step approach that allows us to first ignore

the background noise and then focus on the interaction between signals from different

nodes. Coding schemes can then be designed according to the insight obtained from

this relatively simple finite-field network coding problem. This approach has been

very successful in capturing the features that a good coding scheme should possess

and further characterizing the capacity region to within a constant bit for many

networks. For instance, this model has been successfully used for the (arbitrary)

Gaussian relay network [7], the two-user interference network [49], the bidirectional

relay channel [50], the multi-pair bidirectional relay channel [51], the two user ZZ

and ZS interference-relay channels [52], the parallel relay wire-tap network [53], and

the many-to-one and one-to-many interference channel [54].

In this chapter, similar to [7], [49], [50], [51], [52], [53], and [54], we start by

investigating the corresponding linear deterministic model and propose a coding

scheme that achieves the cut-set bound for the deterministic model. This suggests

an insight that for the original Gaussian problem, one should do independent coding

for each sub-channel in the MAC phase and joint coding across sub-channels in the

BC phase. A coding scheme is proposed for the original Gaussian model based on

the above insight. In the MAC phase, the superposition of a nested lattice code

and a random Gaussian code is adopted at each sub-channel independently. In

the BC phase, the relay regards the problem as the bidirectional broadcast channel

(BBC) with common message and directly apply the optimal BBC coding in [55] for

joint coding across sub-channels. The proposed scheme is shown to approach the

capacity region to within L bits, which provides a means to circumvent the optimal

filters design problem posted in [17]. It is worth noting that when L = 1, although

both the scheme in [50] and our proposed scheme achieve the cut-set bound for the
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Figure 4.1: The parallel Gaussian bidirectional relay channel.

linear deterministic model, our schemes outperforms the one in [50] for the original

Gaussian model and provides the same approximation with the state-of-the-art [13]

[46]. Furthermore, although being a special case of general channels, channels with

the reciprocity assumption will be studied and a very simple and structured coding

scheme will be proposed.

The organization of this chapter is as follows. We introduce the channel model

and the proposed scheme for the parallel deterministic model in Section 4.2. The

channel model for the parallel Gaussian deterministic model is given in 4.3 where a

coding scheme is proposed as well based on the insight obtained from Section 4.2.

Some interesting discussions are provided in Section 4.4 where we extend the coding

scheme in [13] to the parallel setting, consider the channel reciprocity assumption,

compare the proposed scheme with some existing schemes, and show some numerical

results on the exchange rate. In Section 4.5, there are some concluding remarks.

4.2 Parallel Deterministic Bidirectional Relay Channel

4.2.1 Channel Model

In this section, we study the parallel deterministic bidirectional relay channel

where two nodes A and B wish to exchange information through a relay node R
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between them. The channels between nodes can be described as collections of L

parallel deterministic bidirectional relay channels where at the lth sub-channel, there

are nl links connected from Al to Rl and ml links from Bl to Rl during the MAC

phase. Also, in the BC phase, the number of links from Rl to Al is denoted as rl and

that from Rl to Bl is denoted as kl. Further, joint processing across sub-channels is

permitted. Each node is assumed to have the global channel knowledge, i.e., global

CSIT is assumed. One example of a parallel deterministic bidirectional relay channel

with two sub-channels can be found in Fig. 4.2.

In the MAC phase, at the lth sub-channel, Al and Bl map the messages wA ∈

{1, 2, . . . ,MA} and wB ∈ {1, 2, . . . ,MB} to q×N codeword matricesXAl = EN
Al(wA) ∈

(Fq
2)

N and XBl = EN
Bl(wB) ∈ (Fq

2)
N , respectively, independent of each other and of all

other sub-channels’ messages. Here q = max(n1 . . . , nL, m1 . . . , mL, r1 . . . , rL, k1 . . . , kL).

The received signal at Rl is given by

YRl = Sq−nlXAl ⊕ Sq−mlXBl. (4.1)

where ⊕ is the XOR operation and

S =




0 0 · · · 0

1 0 · · · 0

...
. . .

. . .
...

0 · · · 1 0




(4.2)

is a q × q downshift matrix. Let YR = [Yt
R1,Y

t
R2, . . . ,Y

t
RL]

t be the collection of

received signals at the relay.

The relay first maps the received signal YR to the transmitted signal in the BC
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phase at the Rl as

XRl = EN
Rl(YR), (4.3)

where EN
Rl(·) represents an information forwarding strategy for generating transmitted

signals at Rl. Note that since we allow joint processing across sub-channels, XRl

depends on the whole YR instead of just YRl.

In the BC phase, at the lth sub-channel, Rl broadcasts XRl to both nodes and

the received signals are given by

YAl = Sq−rlXRl, (4.4)

YBl = Sq−klXRl. (4.5)

Nodes A andB then collect all the received signals to formYA = [Yt
A1,Y

t
A2, . . . ,Y

t
AL]

t

and YB = [Yt
B1,Y

t
B2, . . . ,Y

t
BL]

t, respectively, and then try to figure out the other’s

message from the collected signals together with its own message as side information.

Definition 18: An (N,MA,MB) code consists of a sequence of encoding functions
(
EN
Al, EN

Bl, EN
Rl

)
, decoding functions

(
GN
Al,GN

Bl

)
, l ∈ {1, 2, . . . , L}, and an error proba-

bility

P (N)
e =

∑

wA,wB

1

MAMB

· P ({wA 6= ŵA} ∪ {wB 6= ŵB}|wAwB are sent) . (4.6)

Definition 19: A rate pair (Rd
AB, R

d
BA) is said to be achievable if, for any ε > 0,

there is an (N,MA,MB) code such that

MA ≥ 2NRd
AB and MB ≥ 2NRd

BA (4.7)
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and P
(N)
e ≤ ε. The capacity region Cd of the parallel deterministic bidirectional relay

channel is then defined as the closure of the set of all achievable rate pairs.

An upper bound on the capacity region of the parallel deterministic bidirectional

relay channel can be easily derived from the cut-set argument [30] as follows,

Lemma 11. Cd ⊆ Cd
, where

Cd
={(Rd

AB, R
d
BA) : 0 ≤ Rd

AB ≤ C
d

AB, 0 ≤ Rd
BA ≤ C

d

BA,

C
d

AB = min

{
L∑

l=1

nl,

L∑

l=1

kl

}
,

C
d

BA = min

{
L∑

l=1

ml,
L∑

l=1

rl

}
}, (4.8)

per two channel uses (one for each phase.)

The main result of this section stated in below completely characterizes the ca-

pacity region of the parallel deterministic relay channel.

Theorem 12. The capacity region of the parallel deterministic bidirectional relay

channel is equal to the cut-set upper bound. i.e., Cd = Cd
.

Sometimes, it is also interesting to study the exchange rate and exchange capacity

defined as follows.

Definition 20: An exchange rate Rd
ex is said to be achievable if (Rd

ex, R
d
ex) lies

inside the capacity region Cd. The exchange capacity Cex is then defined as the

supremum of all achievable exchange rates. Therefore, it is the maximum rate that

the two nodes can reliably transmit at a same rate simultaneously. i.e., the maximum

symmetric rate.
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4.2.2 Toy Example

For the deterministic model, before discussing the coding scheme, we emphasize

via Example 1 that different from the conventional bidirectional relay channel (with

only one sub-channel) [50], routing is in general not optimal and network coding is

required for the parallel setting.

Example 1. Let us consider the example with L = 2 given in Fig. 4.2. The cut-

set bound is (Cd
AB, C

d
BA) = (5, 5) bits per two channel uses. It is obvious that for

this example, any routing scheme is not able to achieve the cut-set bound. We now

provide a network coding scheme that can achieve this bound. As shown in the

part (a) of Fig. 4.2, in the MAC phase, Al and Bl send nl and ml data streams,

respectively. Each sub-channel first shifts bits belonging to the aligned part to the

top. After this, the relay still wants to broadcast B11, B12, B13 to the node A and

A21, A22, A23 to the node B. Moreover, the relay still has 2 bidirectional links, 1

unidirectional link to the node A, and 1 unidirectional link to the node B. Since this

is the case, the relay shifts B13 to the unidirectional link to the node A and also A23

to that to the node B. Further, the relay performs linear network coding and send

A21 ⊕ B11 and A22 ⊕ B12 through two bidirectional links, respectively. This coding

and forwarding scheme is illustrated in Fig. 4.2-(b) where one can verify that indeed

we can achieve 5 bits. ♦

From the above example, one can see that blindly extending the coding scheme

in [50] to here results in a suboptimal scheme. In what follows, we will provide a

coding scheme that achieves the cut-set upper bound given in Lemma 11. This will

complete the proof of Theorem 12.
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Figure 4.2: Example 1.

4.2.3 Proposed Scheme

We outline the proposed coding scheme for the deterministic parallel bidirectional

relay channel as follows:

step 1: At lth sub-channel, in the MAC phase, Al and Bl send data streams to

Rl through some of its nl and ml most significant bit (MSB), respectively.

step 2: The relay collects all the received signals on all sub-channels and then

jointly encode them across sub-channels for broadcasting. One should notice that

there are three different types of messages waiting for broadcasting, namely the

common message intended for both end nodes, the private message from node A to

node B, and that from node B to node A, respectively.

step 3: Upon receiving, each end node recovers the other’s message according the

received signal and its own message as side-information.

Note that, in the MAC phase, the rate constraints for the nodes A and B are
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given by

Rd
AB ≤

L∑

l=1

nl, (4.9)

Rd
BA ≤

L∑

l=1

ml, (4.10)

respectively.

After collecting all the received signals and the received functions, the problem

in the BC phase can be regarded as a special broadcast channel where we have

one common message and two private messages, one for each direction. Moreover,

each private message is known perfectly by the corresponding non-intended receiver

as side information. This problem is usually referred to as bidirectional broadcast

channel (BBC) with common message whose capacity region has been characterized

in [55]. By directly applying the result in [55], one obtains an upper bound on the

rate region in the BC phase given by

Rd
BA = Rd

C +Rd
A ≤ I(XR;YB) =

L∑

l=1

kl, (4.11)

Rd
AB = Rd

C +Rd
B ≤ I(XR;YA) =

L∑

l=1

rl, (4.12)

where Rd
C , R

d
A, and Rd

B are the rates for the common message, the private message

from the node A to B, and that from the node B to A, respectively. In the following

lemma, we show that all the rate pairs satisfying (4.9)-(4.12) are indeed achievable.

This will complete the proof of Theorem 12

Lemma 13. For the parallel deterministic bidirectional relay channel, all the rate
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pairs (Rd
AB, R

d
BA) satisfying

Rd
AB ≤ min

{
L∑

l=1

nl,

L∑

l=1

kl

}
, (4.13)

Rd
BA ≤ min

{
L∑

l=1

ml,
L∑

l=1

rl

}
, (4.14)

are achievable.

Proof. We start by denoting Rd
MAC,C, R

d
MAC,A, and Rd

MAC,B as the maximum possible

rates for the message sent through aligned bit pipes, message sent through non-

aligned bit pipes from the node A, and that from the node B, respectively, in the

MAC phase without any coding and any rate allocation. It is easy to see that

Rd
MAC,C ,

L∑

l=1

min(nl, ml), (4.15)

Rd
MAC,A ,

L∑

l=1

(nl −ml)
+, (4.16)

Rd
MAC,B ,

L∑

l=1

(ml − nl)
+. (4.17)

In what follows, we separately discuss two different cases that contain all the possi-

bilities.

case 1 : (Rd
MAC,C ≤ min

{∑L
l=1 rl,

∑L
l=1 kl

}
)

In this case, since Rd
MAC,C ≤ min

{∑L
l=1 rl,

∑L
l=1 kl

}
, the BC phase is able to

support the transmission of a common message of a rate described in (4.15). Thus, in

the MAC phase, the two nodes send bits over all the aligned bit pipes, i.e., min(nl, ml)

bits in sub-channel l. This accounts for

Rd
C =

L∑

l=1

min(nl, ml), (4.18)
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bits of common message (sum of two messages) at the relay. Besides, the relay can

still send a private message of a rate up to
∑L

l=1 rl − Rd
C bits to the node A and

another private message of a rate up to
∑L

l=1 kl −Rd
C bits to the node B. According

to these constraints in the BC phase together with the rate upper bounds in (4.16)

and (4.17), nodes A and B send messages through those non-aligned bit pipes of

rates

Rd
A = min

{
Rd

MAC,A,

L∑

l=1

kl −Rd
C

}
, (4.19)

Rd
B = min

{
Rd

MAC,B,
L∑

l=1

rl −Rd
C

}
, (4.20)

respectively. Therefore, the achievable rate from the node A to B and that from the

node B to A are given by

Rd
AB = Rd

C +min

{
Rd

MAC,A,
L∑

l=1

kl − Rd
C

}
= min

{
L∑

l=1

nl,
L∑

l=1

kl

}
, (4.21)

Rd
BA = Rd

C +min

{
Rd

MAC,B,

L∑

l=1

rl − Rd
C

}
= min

{
L∑

l=1

ml,

L∑

l=1

rl

}
, (4.22)

respectively.

case 2 : (Rd
MAC,C > min

{∑L
l=1 rl,

∑L
l=1 kl

}
)

In this case, we assume that
∑L

l=1 rl ≥
∑L

l=1 kl without loss of generality. The

other case follows immediately if we switch the role of nodes A and B as we don’t

specify the relationship between nl and ml in the proof. Now, in the BC phase, the

relay is unable to support the transmission of a common message of a rate in (4.15)

to the node B. Thus, in this case, both nodes only use the same
∑L

l=1 kl bit pipes
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belonging to the aligned part. This accounts for

Rd
C =

L∑

l=1

kl, (4.23)

bits of common message at the relay. After this, since
∑L

l=1 rl ≥ Rd
C the relay can

still send a private message of a rate up to
∑L

l=1 rl − Rd
C bits to the node A. Also,

in the MAC phase, since both nodes only uses Rd
C bits in the aligned part, there

are still Rd
MAC,C − Rd

C bits that can be used by node B. Therefore, node B sends a

message through those non-aligned bit pipes and the remaining aligned bit pipes of

a rate

Rd
B = min

{
Rd

MAC,B +Rd
MAC,C − Rd

C ,

L∑

l=1

rl −Rd
C

}
. (4.24)

Therefore, the achievable rate from node A to B and that from node B to A are

given by

Rd
AB = Rd

C =
L∑

l=1

kl = min

{
L∑

l=1

nl,
L∑

l=1

kl

}
, (4.25)

Rd
BA = Rd

C +min

{
Rd

MAC,B +Rd
MAC,C − Rd

C ,

L∑

l=1

rl − Rd
C

}
= min

{
L∑

l=1

ml,

L∑

l=1

rl

}
,

(4.26)

respectively.

4.3 Parallel Gaussian Bidirectional Relay Channel

In this section, we study the parallel Gaussian bidirectional relay channel based

on the insight learned from the corresponding linear deterministic model. The scheme

in Section 4.2.3 suggests independently encoding among sub-channels in the MAC

phase and jointly encoding across sub-channels in the BC phase. According to this
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insight, a coding scheme is proposed which can be regarded as an extension of the

lattice alignment scheme proposed in [12]. We then show that the proposed scheme

achieves the capacity region of the parallel Gaussian bidirectional relay channel to

within L bits.

4.3.1 Channel Model

The parallel Gaussian bidirectional relay channel shown in Fig. 4.1 consists of

three nodes A, B, and R where A and B wish to exchange information through

a relay node R between them via a set of L parallel bidirectional relay channels.

The channel coefficients are assumed to be fixed in each sub-channel but may vary

from one sub-channel to another. As shown in Fig. 4.1, in the parallel Gaussian

bidirectional relay channel, each sub-channel l ∈ {1, 2, . . . , L} can be modeled as a

bidirectional relay channel with sub-nodes Al, Bl, and Rl. In addition, since we wish

to model the ISI and the MIMO channels, joint processing (such as joint coding)

across sub-channels is permitted. During the lth sub-channel, the channel gains from

nodes Al and Bl to Rl are denoted as hAl ∈ C and hBl ∈ C, respectively, and that

from Rl to the nodes are denoted as gAl ∈ C and gBl ∈ C, respectively. Each node is

assumed to have the global channel knowledge, i.e., global CSIT is assumed.

During the lth sub-channel, nodes A and B respectively map the messages wA ∈

{1, 2, . . . ,MA} and wB ∈ {1, 2, . . . ,MB}, independent of each other and of all other

sub-channels’ messages, to length-N codewords xAl = EN
Al(wA) and xBl = EN

Bl(wB).

Each sub-node is subject to an individual power constraint P . The transmission

protocol we consider is a two phase protocol consisting of a MAC phase and a BC

phase. Each of phases occupies a half of channel uses and is assumed to be orthogonal

to each other.

In the MAC phase, both nodes transmit their signals to the relay simultaneously
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and the relay keeps silent. The received signal at Rl is then given by

yRl = hAlxAl + hBlxBl + zRl, (4.27)

zRl ∼ CN (0, I) be i.i.d. Gaussian noise. The relay first collects all yRl for l ∈

{1, 2, . . . , L} and each Rl generates the transmitted signal xRl = EN
Rl(yR).

In the BC phase, each Rl broadcasts xRl back to Al and Bl and both nodes keep

silent. The received signal at end nodes are given by

yAl = gAlxRl + zAl, (4.28)

yBl = gBlxRl + zBl, (4.29)

respectively, where again zAl, zBl ∼ CN (0, I). Nodes A and B then collect its received

signals to form yA and yB. After that, estimates ŵB = GN
A (yA,xA) and ŵA =

GN
B (yB,xB) are formed at nodes A and B, respectively.

Here, the codes, the achievable rate region, and the capacity region can be defined

in a similar way as those in Section 4.2.1. Clearly, one can again have an upper bound

on the capacity region by using the cut-set argument [30] as

Lemma 14. C ⊆ C, where

C ={(RAB, RBA) : 0 ≤ RAB ≤ CAB, 0 ≤ RBA ≤ CBA,

CAB = min

{
L∑

l=1

log
(
1 + P |hAl|2

)
,

L∑

l=1

log
(
1 + P |gBl|2

)
}
,

CBA = min

{
L∑

l=1

log
(
1 + P |hBl|2

)
,

L∑

l=1

log
(
1 + P |gAl|2

)
}
}. (4.30)

The main result in this section is stated in the following theorem which approxi-
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mately characterizes the capacity region of the parallel Gaussian bidirectional relay

channel.

Theorem 15. The capacity region of the parallel Gaussian bidirectional relay channel

satisfies C − L ⊆ C ⊆ C.

It is worth noting that the approximation only depends on the number of sub-

channels and is independent of specific channel realizations.

Again, one can define the exchange rate and exchange capacity for the Gaussian

bidirectional relay channel as follows.

Definition 21: An exchange rate Rex is achievable if (Rex, Rex) lies inside the

capacity region C. The exchange capacity Cex is then defined as the supremum of all

achievable exchange rate.

4.3.2 Proposed Scheme - Lattice Alignment Scheme + Coding Across Sub-channels

As suggested by the linear deterministic model, in the MAC phase, we inde-

pendently encode signals for each sub-channel in the sense that no coding across

sub-channels is used. For the lth sub-channel, the weak node transmits a lattice

codeword only and the strong node transmits the superposition of a random code-

word and a lattice codeword. In addition, the lattice codewords are chosen from an

identical nested lattice code and are perfect aligned at the relay. Upon receiving,

the relay decodes the non-aligned codeword (corresponding to the non-aligned bits

in the linear deterministic model) and decodes the lattice function (corresponds to

the XOR bits in the linear deterministic model). In the BC phase, after collecting all

the decoded codewords and functions, the relay performs coding across sub-channels

as suggested by the linear deterministic model.

In general, in the MAC phase, the transmitted signals of the proposed scheme at
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the lth sub-channel from nodes A and B are respectively given by

xAl =
√
αAlx

(1)
Al +

√
1− αAlx

(2)
Al , (4.31)

xBl =
√
αBlx

(1)
Bl +

√
1− αBlx

(2)
Bl , (4.32)

where x
(1)
Al and x

(1)
Bl are codewords chosen from an identical nested lattice code with

codebook size 2nR
(1)
Al = 2nR

(1)
Bl . Moreover, x

(2)
Al and x

(2)
Bl are codewords chosen from

random codes with codebook size 2nR
(2)
Al and 2nR

(2)
Bl , respectively.

At the relay, each sub-channel always decodes random Gaussian codewords first,

subtracts the decoded codewords, and then computes lattice functions. Note that

the order of decoding at the relay matters. It is because that lattice functions contain

information for both directions; hence, one would decode it last as this would make

the equivalent channel for the aligned part to be as clean as possible.

As in Section 4.2, the resulted problem in the BC phase can be thought of as a

set of parallel broadcast channels with a common message (of a rate RC) and two

private messages (of rates RA and RB) where each private message is exactly known

at the corresponding non-intended receiver; i.e., a BBC with a common message.

We then directly apply the result in [55] to the parallel Gaussian bidirectional relay

channel and get the following rate constraints in the BC phase as

RAB = RC +RA ≤
L∑

l=1

log
(
1 + P |gAl|2

)
, (4.33)

RBA = RC +RB ≤
L∑

l=1

log
(
1 + P |gBl|2

)
. (4.34)

In the following lemma, we show that there exists a power allocation strategy

so that the achievable rate region of the proposed scheme approaches the capacity

70



region to within L bits. This will complete the proof of Theorem 15.

Lemma 16. For a parallel Gaussian bidirectional relay channel, there always exist

αAl and αBl for the proposed scheme such that the resulted rate region achieves the

capacity region to within L bits.

Proof. We start by defining

RMAC,C ,

L∑

l=1

log

(
1

2
+ P min(|hAl|2, |hBl|2)

)+

, (4.35)

In what follows, we separately discuss two different cases that contain all the possi-

bilities.

case 1 : (RMAC,C ≤ min
{∑L

l=1 log(1 + P |gAl|2),
∑L

l=1 log(1 + P |gBl|2)
}
) In this

case, the two nodes use the power allocation in the MAC phase described as follows.

For the sub-channels having a equal gain, i.e., |hAl|2 = |hBl|2, we set αAl = 1,

αBl = 1, R
(2)
Al = 0, and R

(2)
Bl = 0. The relay directly decodes the received signal to

the modulo-sum of two lattice codewords (see Chapter 2 for details.) This results in

R
(1)
Al = R

(1)
Bl ≤ log

(
1

2
+ P |hAl|2

)+

=
(
log
(
1 + 2P |hAl|2

)
− 1
)+

≥ log
(
1 + P |hAl|2

)
− 1. (4.36)

For the sub-channels with |hAl|2 > |hBl|2, node A can have one extra codeword

in the MAC phase. We therefore set αBl = 1 and R
(2)
Bl = 0 and choose the power

allocation at node A such that the two lattices are perfectly aligned at the relay as

αAl =
|hBl|2
|hAl|2

. (4.37)
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The relay first decodes the extra codeword x
(2)
Al by treating the lattice part as noise.

This results in

R
(2)
Al ≤ log

(
1 +

P |hAl|2(1− αAl)

1 + 2P |hBl|2
)
. (4.38)

It then subtracts the decoded codeword and tries to decode the lattice function. This

gives us

R
(1)
Al = R

(1)
Bl ≤ log

(
1

2
+ P |hBl|2

)+

. (4.39)

Notice that one can bound the sum rates at the each sub-channel as

R
(1)
Bl +R

(2)
Bl ≥ log

(
1 + P |hBl|2

)
− 1, (4.40)

and

R
(1)
Al +R

(2)
Al = log

(
1

2
+ P |hBl|2

)+

+ log

(
1 +

P |hAl|2(1− αAl)

1 + 2P |hBl|2
)

≥ log
(
1 + 2P |hBl|2 + P |hAl|2(1− αAl)

)
− 1

= log
(
1 + P |hAl|2 + P |hBl|2

)
− 1

≥ log
(
1 + P |hAl|2

)
− 1. (4.41)

Similarly, for the sub-channels with |hAl|2 < |hBl|2, we switch the role of nodes

A and B and hence we have αAl = 1, R
(2)
Al = 0, and

αBl =
|hAl|2
|hBl|2

. (4.42)

For this case, the relay again first decodes the extra codeword x
(2)
Bl by treating the

lattice part as noise, subtracts the decoded codeword out, and then computes the
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lattice function. Thus, one has

R
(2)
Bl ≤ log

(
1 +

P |hBl|2(1− αBl)

1 + 2P |hAl|2
)
, (4.43)

and

R
(1)
Al = R

(1)
Bl ≤ log

(
1

2
+ P |hAl|2

)+

. (4.44)

Again, notice that one can bound the sum rates as

R
(1)
Al +R

(2)
Al ≥ log

(
1 + P |hAl|2

)
− 1, (4.45)

and

R
(1)
Bl +R

(2)
Bl = log

(
1

2
+ P |hAl|2

)+

+ log

(
1 +

P |hBl|2(1− αBl)

1 + 2P |hAl|2
)

≥ log
(
1 + 2P |hAl|2 + P |hBl|2(1− αBl)

)
− 1

= log
(
1 + P |hAl|2 + P |hBl|2

)
− 1

≥ log
(
1 + P |hBl|2

)
− 1. (4.46)

In the BC phase, we have a common message (lattice functions) at the relay of

RC =

L∑

l=1

R
(1)
Al =

L∑

l=1

R
(1)
Bl = RMAC,C , (4.47)

bits. After this, the relay can still send a private message of a rate up to
∑L

l=1 log(1+

P |gAl|2)−RC bits to node A and another private message of a rate up to
∑L

l=1 log(1+

P |gBl|2) − RC bits to node B. According to these constraints in the BC phase

together with the rate constraints in the MAC phase, the private messages (Gaussian
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codewords) sent from nodes A and B can have rates up to

RA = min

{
L∑

l=1

R
(2)
Al ,

L∑

l=1

log(1 + P |gBl|2)− RC

}
, (4.48)

RB = min

{
L∑

l=1

R
(2)
Bl ,

L∑

l=1

log(1 + P |gAl|2)− RC

}
, (4.49)

respectively. Therefore, the achievable rates from node A to B is given by

RAB = RC +RA

= RC +min

{
L∑

l=1

R
(2)
Al ,

L∑

l=1

log(1 + P |gBl|2)−RC

}

= min

{
L∑

l=1

R
(1)
Al +R

(2)
Al ,

L∑

l=1

log(1 + P |gBl|2)
}

≥ min

{
L∑

l=1

log(1 + P |hAl|2)− 1,
L∑

l=1

log(1 + P |gBl|2)
}

≥ min

{
L∑

l=1

log(1 + P |hAl|2),
L∑

l=1

log(1 + P |gBl|2)
}

− L, (4.50)

and that from node B to A is given by

RBA = RC +RB

= RC +min

{
L∑

l=1

R
(2)
Bl ,

L∑

l=1

log(1 + P |gAl|2)− RC

}

= min

{
L∑

l=1

R
(1)
Bl +R

(2)
Bl ,

L∑

l=1

log(1 + P |gAl|2)
}

≥ min

{
L∑

l=1

log(1 + P |hBl|2)− 1,
L∑

l=1

log(1 + P |gAl|2)
}

≥ min

{
L∑

l=1

log(1 + P |hBl|2),
L∑

l=1

log(1 + P |gAl|2)
}

− L. (4.51)
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case 2 : (RMAC,C > min
{∑L

l=1 log(1 + P |gAl|2),
∑L

l=1 log(1 + P |gBl|2)
}
)

Without loss of generality, we assume that
∑L

l=1 log(1 + P |gAl|2) ≥
∑L

l=1 log(1 +

P |gBl|2). Otherwise, one can switch the role of nodes A and B. In this case, we

observe that the downlink channel is not able to support the whole transmission

of the lattice function if we still use the same power allocation strategy as that

in the previous case. Thus, one has to modify the power allocation strategy as

suggested by the deterministic model. In what follows, we propose a power allocation

strategy that can again achieve the cut-set bound to within L bits. In our strategy, in

some sub-channels, the nodes may have to reduce the power assigned to the lattice

codewords in order to make the resultant
∑L

l=1R
(1)
Al =

∑L
l=1R

(1)
Bl =

∑L
l=1 log(1 +

P |gBl|2). Moreover, for those sub-channels which reduce the power for the lattice

codewords, node B may increase the power assigned to the Gaussian codewords to

somehow compensate the rate loss. On the other hand, node A cannot do that simply

because the downlink will not be able to support any rate more than
∑L

l=1 log(1 +

P |gBl|2) to node B.

Let 0 ≤ δl ≤ P . For sub-channels with |hAl|2 ≥ |hBl|2, we set αAl =
P−δl
P

|hBl|2
|hAl|2 ,

αBl =
P−δl
P

, and R
(2)
Al = 0 (i.e., we don’t send x

(2)
Al ). The relay first decode the x

(2)
Bl ,

subtracts it out, and then decodes the lattice function. This leads to

R
(2)
Bl = log

(
1 +

δl|hBl|2
1 + 2(P − δl)|hBl|2

)
, (4.52)

and

R
(1)
Al = R

(1)
Bl = log

(
1

2
+ (P − δl)|hBl|2

)+

. (4.53)
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Notice that one can bound the sum rate of node B as

R
(1)
Bl +R

(2)
Bl = log

(
1

2
+ (P − δl)|hBl|2

)+

+ log

(
1 +

δl|hBl|2
1 + 2(P − δl)|hBl|2

)

≥ log
(
1 + 2(P − δl)|hBl|2 + δl|hBl|2

)
− 1

= log
(
1 + P |hBl|2 + (P − δl)|hBl|2

)
− 1

≥ log
(
1 + P |hBl|2

)
− 1. (4.54)

For sub-channels with |hAl|2 < |hBl|2, we set αAl =
P−δl
P

, αBl =
P−δl
P

|hAl|2
|hBl|2 , and

R
(2)
Al = 0 (i.e., we again don’t send x

(2)
Al ). The relay first decode the x

(2)
Bl , subtracts it

out, and then decodes the lattice function. This leads to

R
(2)
Bl = log

(
1 +

P |hBl|2 − P |hAl|2 + δl|hAl|2
1 + 2(P − δl)|hAl|2

)
, (4.55)

and

R
(1)
Al = R

(1)
Bl = log

(
1

2
+ (P − δl)|hAl|2

)+

. (4.56)

Notice that again one can bound the sum rate of node B as

R
(1)
Bl +R

(2)
Bl = log

(
1

2
+ (P − δl)|hAl|2

)+

+ log

(
1 +

P |hBl|2 − P |hAl|2 + δl|hAl|2
1 + 2(P − δl)|hAl|2

)

≥ log
(
1 + (P − δl)|hAl|2 + P |hBl|2

)
− 1

≥ log
(
1 + P |hBl|2

)
− 1. (4.57)

Now we choose δls such that

L∑

l=1

R
(1)
Al =

L∑

l=1

R
(1)
Bl =

L∑

l=1

log(1 + P |gBl|2). (4.58)
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In the BC phase, one has

RC =
L∑

l=1

R
(1)
Al =

L∑

l=1

R
(1)
Bl =

L∑

l=1

log(1 + P |gBl|2), (4.59)

bits of common message (lattice functions) at the relay. After this, the relay can still

send a private message of a rate up to
∑L

l=1 log(1 + P |gAl|2) − RC bits to node A.

According to this constraint in the BC phase together with the constraints in the

MAC phase, the private message sent from node B that is correctly decodable at

node A can have a rate up to

RB = min

{
L∑

l=1

R
(2)
Bl ,

L∑

l=1

log(1 + P |gAl|2)− RC

}
. (4.60)

Therefore, the achievable rates from node A to B is given by

RAB = RC =
L∑

l=1

log(1 + P |gBl|2)

≥ min

{
L∑

l=1

log(1 + P |hAl|2),
L∑

l=1

log(1 + P |gBl|2)
}

− L, (4.61)
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and that from node B to A is given by

RBA = RC +RB

= RC +min

{
L∑

l=1

R
(2)
Bl ,

L∑

l=1

log(1 + P |gAl|2)− RC

}

= min

{
L∑

l=1

R
(1)
Bl +R

(2)
Bl ,

L∑

l=1

log(1 + P |gAl|2)
}

≥ min

{
L∑

l=1

log(1 + P |hBl|2)− 1,

L∑

l=1

log(1 + P |gAl|2)
}

≥ min

{
L∑

l=1

log(1 + P |hBl|2),
L∑

l=1

log(1 + P |gAl|2)
}

− L. (4.62)

4.4 Discussions

In this section, we first propose another coding scheme that can be regarded as a

natural extension of the scheme in [13] to the parallel setting. We also study a special

case of the parallel Gaussian bidirectional relay channel, namely the reciprocal case.

i.e., the channel reciprocity is assumed. For this case, we show that routing across

sub-channels is optimal for the corresponding linear deterministic model and propose

a (conceptually) easier coding scheme for the Gaussian model. In addition, we also

compare the proposed schemes with some existing schemes.

4.4.1 Extension of Lattice Partition Chain Scheme

For the parallel Gaussian bidirectional relay channel, once we realize that separate

coding in the MAC phase and joint coding across sub-channel in the BC phase may be

a right approach, it is natural to extend the lattice partition chain scheme proposed

by Nam et al. [13] to the parallel setting. This has been done independently in [48]

and in the conference version of this work [56]. We summarize the coding scheme
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and result in the following and refer this coding scheme to as the proposed scheme

2.

In the MAC phase, again following the linear deterministic model, for each sub-

channel, we independently encode the message by a sequence of lattice partition

chains proposed by Nam et al. [13]. The relay then decodes and re-encodes the

computed functions by a random codebook that performs joint coding across sub-

channels.

Specifically, in the MAC phase, at the lth sub-channel, any computation rate

satisfies the following is achievable

RAl,Nam ≤ log

( |hAl|2
|hAl|2 + |hBl|2

+ P |hAl|2
)+

, (4.63)

RBl,Nam ≤ log

( |hBl|2
|hAl|2 + |hBl|2

+ P |hBl|2
)+

. (4.64)

The total achievable rates in the MAC phase from the nodes A and B to the relay

are given by

RAB,Nam ≤
L∑

l=1

RAl,Nam, (4.65)

RBA,Nam ≤
L∑

l=1

RBl,Nam, (4.66)

respectively.

The relay collects all the decoded functions and performs joint coding across
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sub-channels in the BC phase. This results in

RBA,Nam ≤
L∑

l=1

log
(
1 + P |gAl|2

)
, (4.67)

RAB,Nam ≤
L∑

l=1

log
(
1 + P |gBl|2

)
. (4.68)

Both nodes then identify the other’s message from the received signals and their own

message as side information. The achievable rate region of this coding scheme is then

given by

RAB,Nam ≤ min

{
L∑

l=1

log

( |hAl|2
|hAl|2 + |hBl|2

+ P |hAl|2
)+

,

L∑

l=1

log
(
1 + P |gBl|2

)
}
,

(4.69)

RBA,Nam ≤ min

{
L∑

l=1

log

( |hBl|2
|hAl|2 + |hBl|2

+ P |hBl|2
)+

,

L∑

l=1

log
(
1 + P |gAl|2

)
}
.

(4.70)

Following the proof in [13], it is easy to verify that this scheme also achieves the ca-

pacity region to within L bits. This provides an alternative proof of the achievability

part of Theorem 15.

4.4.2 Reciprocal Case

Under the channel reciprocity assumption, the capacity region is fully character-

ized by the exchange capacity, Cd
ex and Cex for deterministic and Gaussian models,

respectively.

For the linear deterministic model with channel reciprocity, we note that an upper
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bound on Cd
ex can be obtained from Lemma 11 as

C
d

ex,= min

(
L∑

l=1

nl,
L∑

l=1

ml

)
, (4.71)

per two channel uses (one for each phase.) The main result on the reciprocal case is

stated in the following theorem.

Theorem 17. (Reciprocal case) For reciprocal channels, the exchange capacity (or

capacity region) of the parallel deterministic bidirectional relay channel is equal to

the cut-set upper bound given in (4.71). Furthermore, the exchange capacity can be

achieved by a simple routing scheme.

We postpone the proof to Appendix B.1 but only outline the coding scheme.

A small example is also provided to demonstrate the main idea behind the coding

scheme.

In the following, we outline the proposed coding scheme, which is nothing but

routing.

step 1: In the MAC phase, Al and Bl send nl and ml independent data streams

to Rl through its nl and ml MSB, respectively.

step 2: Each Rl shifts the aligned part to the MSB because it contains information

intended for both directions. Note that this step is always possible because of the

channel reciprocity assumption.

step 3: For the non-aligned part, the relay reorders the signals to other sub-

channels that can support the transmission to the desired destination.

Example 2. Let us consider the example with two sub-channels (i.e., L = 2) given

in Fig. 4.3 where n1, n2, m1, and m2 are equal to 4, 1, 2, and 3, respectively. There-

fore, the cut-set upper bound for this example is 5 bits per two channel uses (one for
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Figure 4.3: An example of a linear deterministic model of the considered setup.

each phase). To achieve this upper bound, in the MAC phase, Al sends Al1, . . . , Alnl

independent bits to Rl through its nl MSB. Similarly, Bl sends [Bl1, . . . , Blml
] inde-

pendent bits to Rl through its ml MSB bits.

The received signals at R1 contains an aligned part A13 ⊕ B11, A14 ⊕B12 and an

non-aligned part A11, A12. Likewise, we have an aligned part A21 ⊕ B23 and a non-

aligned part B21, B22 at R2. At each sub-channel, the relay first shifts the aligned

part to its MSB. After this, the relay still needs to arrange broadcasting A11, A12

to the node B and B21, B22 to the node A. It then reorders those remaining bits

across sub-channels such that it will broadcast A11, A12 at the second sub-channel

and broadcast B21, B22 at the first sub-channel. Each node then cancels out their

own messages for the aligned part and recovers 5 bits from the other node. ♦

For the Gaussian model with channel reciprocity, we again note that for the

exchange capacity, the upper bound in Lemma 14 reduces to

Cex = min

{
L∑

l=1

log
(
1 + P |hAl|2

)
,

L∑

l=1

log
(
1 + P |hBl|2

)
}
. (4.72)

According to the coding scheme for the corresponding deterministic model, we pro-

pose a coding scheme (referred to as the proposed scheme 3) that is conceptually
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easier than the coding scheme in 4.3.2 in the sense that no joint coding across sub-

channels are required. We then show that this coding scheme is again able to ap-

proach the upper bound to within L bit as well. Since this coding is motivated by

the insight obtained from the reordering scheme described above, it works only under

the channel reciprocity assumption.

In the MAC phase, we use the same lattice alignment scheme as that in the

proposed scheme 1. After correctly decoding signals and functions at the relay, due to

the channel reciprocity, the lattice functions are guaranteed to be broadcasted within

the same sub-channel. For the codewords that correspond to the non-aligned part,

as suggested by the linear deterministic model, the relay collects all the non-aligned

codewords and then reallocates bits to each sub-channel. This bit reallocation scheme

mimics the reordering scheme in the deterministic model to the Gaussian scenario.

In the BC phase, each sub-channel now independently considers the problem as

a corresponding BBC problem, i.e., separate coding, with a common message corre-

sponding to the lattice function received in this sub-channel and a private message

corresponding to the bits assigned to this sub-channel.

The performance of this scheme for the reciprocal case is given as follows.

Theorem 18. The proposed bit reallocation scheme achieves the exchange capacity

to within L bits.

Proof. See Appendix B.2.

Remark: From the above result, one can see that under the assumption of chan-

nel reciprocity, simple joint operations across sub-channels such as bit reallocation

together with an optimal separate coding in the BC phase is able to achieve the

exchange capacity to within a constant gap. This allows us to conceptually simplify

the proposed scheme as joint coding across sub-channels is not performed. However,
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for the extension of lattice partition chain scheme, it is not clear to us how to exploit

the channel reciprocity to further simplify the scheme.

Remark: It is worth noting that the proposed bit reallocation scheme here is

different from the codeword reallocation scheme in the conference version of this

chapter [56]. In [56], for the reciprocal case, the relay reorders the whole codeword

to another sub-channel such that the induced rate mismatch is minimized. The

codeword allocation problem is then formulated as a weighted bipartite matching

problem and the solution is given by the Hungarian method. This coding scheme is

in fact not able to approximate the exchange capacity to within a constant bit. It

is due to the fact that when adopting the codeword allocation scheme, we are not

allowed to split the private messages and this results in a gap that is dependent of

channel parameters.

4.4.3 Comparisons

Remark: (Single sub-channel case) When L = 1, the problem reduces to the

conventional bidirectional relay channel. We first compare the proposed scheme with

the one proposed by Avestimehr et al. since their coding scheme was inspired by the

linear deterministic model also. In [50], they showed that their coding scheme that

adopts superposition of unstructured codes approaches the capacity region to within

3 bits. When L = 1, our proposed scheme 1 can be regarded as a modification of their

scheme that replaces the coding scheme for the aligned part by a structured code.

As shown in Theorem 15, the proposed scheme which is a mixture of structured and

random schemes guarantees to approach the capacity region to within 1 bit, which

is the same as the completely structured one in [13] and the completely random one

in [46].

Remark: (Comparison to the scheme in [47]) In [47], Khina et al. study the
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achievable exchange rate of the MIMO bidirectional relay channel and propose a

coding scheme based on the joint matrix decomposition under the assumption that

detHAH
∗
A = detHBH

∗
B = 1 and HA,HB are full rank. This joint matrix decom-

position allows us converting the MIMO bidirectional relay channel into a paral-

lel bidirectional relay channel with equal channel gains at each sub-channel, i.e.,

|hAl|2 = |hBl|2. Thus, one can directly carry out the nested lattice coding scheme in

[12] for compute-and-forward at each sub-channel. They also show that this scheme

achieves an asymptotically optimal exchange rate equal to Nr log
(

PT

Nr

)
where Nr is

the number of receive antenna and PT is the total power constraint at each node.

Now, let’s compare our proposed schemes to the joint matrix decomposition

scheme. We first notice that a parallel bidirectional relay channel with channel

gains hA1, . . . , hAL and hB1, . . . , hBL can be thought of as a MIMO bidirectional

relay channel with L transmit antenna and L receive antenna and whose channel

matrices are HA = diag(hA1, . . . , hAL) and HB = diag(hB1, . . . , hBL). The assump-

tion that two MIMO channels are full rank is equivalent to assuming that channel

gains of both directions are non-zero for all sub-channels, i.e., hAl 6= 0 and hBl 6= 0

for all l. Moreover, the assumption of detHAH
∗
A = detHBH

∗
B = 1 is equivalent to

that
L∏

l=1

|hAl|2 =
L∏

l=1

|hBl|2 = 1. (4.73)

With these two assumptions, we now take a closer look at the performance achieved in

the MAC phase of the proposed scheme 2. Note that since we consider the asymptotic

(in P ) behavior, we can assume all the terms inside the logarithm is greater than 1;
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i.e., we can ignore the (·)+ sign. One has that

RAB ≥
L∑

l=1

log
(
1 + P |hAl|2

)
− 1

≥ log

(
L∏

l=1

P |hAl|2
)

− L = L log

(
LP

L

)
− L

P→∞
= L log

(
LP

L

)
, (4.74)

and similarly for RBA. This implies that the proposed scheme is asymptotically

optimal when P approach ∞ and is as good as the one in [47] in the asymptotic

regime when the corresponding HA and HB are full-rank.

More importantly, the joint matrix decomposition scheme cannot handle the

channels which are not full rank. However, the proposed scheme is able to work

under non-full rank channel matrices (i.e., channel gains for some sub-channels may

be 0.) One may think that it is unfair to compare the joint matrix decomposition

scheme with ours since they start by a MIMO problem and convert it into a parallel

setup, while we start by assuming that a parallel setup has been created. However,

in the following extreme example, it can easily be verified that our scheme is optimal

in the MAC phase while the joint matrix decomposition fails to work.

Example 3. (Example in [47]) Consider a pair of channel matrices as

HA =




1 0

0 0


 (4.75)

and

HB =




0 0

0 1


 . (4.76)
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For this example, the proposed scheme reduces to the decode-and-forward and is

optimal in the MAC phase while the joint matrix decomposition fails to work. ♦

This points out that when one of or both channel matrices are not full rank, the

joint matrix decomposition scheme does not work while our proposed scheme can

still work if the corresponding parallel setup can somehow be created.

4.4.4 Numerical Results

In this section, we provide a numerical example to compare the performance (in

terms of the exchange rate) of the proposed scheme, the extension of lattice partition

chain scheme, the codeword allocation scheme proposed in [56], and the pre-filtering

scheme proposed in [17]. We also plot the cut-set bound in (4.72) as an upper bound

and the decode-and-forward scheme with an optimal power allocation as a baseline

scheme. The channel parameters are set to be hA = [9, 1, 5, 4], hB = [8, 4, 2, 2],

and L = 4.

In Fig. 4.4, one observes that the decode-and-forward scheme trying to decode

individual messages at the relay is very sub-optimal in the high SNR regime. For the

pre-filtering scheme and the codeword allocation scheme, although adopting the idea

of compute-and-forward strategy makes the exchange rate scale correctly, there is no

guarantee of a constant gap to the exchange capacity. Therefore, the gap between

the cut-set bound and these two schemes can be very large. However, as promised by

the Theorem 15 and Theorem 18, the proposed scheme is able to provide an exchange

rate that is within a constant gap to the cut-set bound.

4.5 Conclusions

In this chapter, we studied the achievable rate region for the parallel Gaussian

bidirectional relay channel. We first looked into the corresponding linear determinis-

tic model and proposed a coding scheme that can achieve the capacity region for this
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Figure 4.4: Performance comparison when hA = [9, 1, 5, 4] and hb = [8, 4, 2, 2].
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deterministic model. Based on the insight obtained from the deterministic model,

we proposed a coding scheme that can approach the capacity region to within L bits.

This provided a detour to avoid the optimal linear filter designs for the scheme in

[17]. For the reciprocal channels, we also showed that a very simple routing scheme is

in fact optimal for the deterministic model. This idea was then leveraged to design

a conceptually easier and more structured coding scheme for the Gaussian model

with channel reciprocity assumption. Numerical results showed that the proposed

scheme substantially outperform the decode-and-forward scheme and provide non-

trivial gains over the scheme recently proposed in [17].
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5. DESIGN OF PRACTICALLY IMPLEMENTABLE

COMPUTE-AND-FORWARD SCHEMES

A novel construction of lattices is proposed. This construction can be thought of

as Construction A with linear codes over Fq2 chosen from a restricted subset of codes

where each code in this subset can be represented as the Cartesian product of two

linear codes over Fq; hence, is referred to as the product construction. The existence

of a sequence of Poltyrev-good lattices generated by the product construction is

shown. This family of lattices is then used to generate signal constellations with

q2 elements for the separation-based compute-and-forward framework proposed by

Tunali et al.. Moreover, a multilevel coding/multistage decoding scheme tailored for

these constellations is proposed so that the channel coding has to work only over Fq

instead of Fq2.

5.1 Introduction

Compute-and-forward is a novel information forwarding paradigm in wireless

communications in which relays in a network decode functions of signals transmit-

ted from multiple transmitters and forward them to a central destination. If these

functions are chosen as linear integer combinations, lattice codes are one of the most

effective ways to implement a compute-and-forward scheme since a lattice is closed

under addition. If the channel state information is not available at the transmitters,

compute-and-forward can be implemented effectively by allowing the relay to choose

integer coefficients depending on the channel coefficients and SNR. Such a scheme

which uses lattices over integers has been analyzed by Nazer and Gastpar for AWGN

networks in [11] where achievable information rates were derived. Feng, Silva, and

Kschischang [57] have extended the framework in [11] towards the design of efficient
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and practical schemes via an algebraic approach. Based on this approach, in [14],

Tunali et al. considered the use of lattices over Eisenstein integers for the compute-

and-forward paradigm and successfully extended the result on achievable rates in

[11] to lattices over Eisenstein integers.

The schemes in [11] and [14] are based on Construction A over Fq, which uses a

linear code over Fq in conjunction with a constellation cropped from the correspond-

ing integers (integers in [11] and Eisenstein integers in [14]) with q elements. One of

the main drawbacks of this scheme is that the decoding complexity increases with q

and, hence, the computational complexity of this scheme is quite high for high rates.

In this chapter, we aim to construct lattice coding schemes with lower decoding com-

plexity while still maintaining desirable properties such as good shaping gain and the

ability to perform compute-and-forward. The main contributions of this work are

the following. We first propose a novel construction of lattices inspired by Theorem

2 in [57] that can be thought of as construction A with linear codes over Fq2 chosen

from a particular subset of codes. Specifically, we restrict the linear codes over Fq2 to

those that can be represented as the Cartesian product of two linear codes over Fq.

This construction is then shown to be able to generate sequences of Poltyrev-good

lattices. Moreover, based on the proposed lattices, we propose two families of signal

constellations of q2 elements that are suitable for compute-and-forward. A multilevel

coding/multistage decoding scheme is then proposed for these constellations (with

q2 elements) so that the channel coding only has to work over Fq instead of Fq2 .

This substantially reduces the decoding complexity for a given size of the constella-

tion (or, equivalently, rate) and hence makes the proposed scheme more practically

implementable than the existing ones [11] [57] [14].
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Figure 5.1: A compute-and-forward relay network where S1, . . . , SK are source nodes
and D1, . . . , DM are destination nodes.

5.2 Problem Statement and Background

5.2.1 Problem Statement

The network considered in this chapter is the compute-and-forward relay net-

work first studied by Nazer and Gastpar in [11]. Consider a K source nodes K

destinations AWGN network as shown in Fig 5.1. Each source node has a message

wk ∈ {1, 2, . . . , N ′}, k ∈ {1, . . . , K} which is fed into an encoder EN
k whose output

is a length-N codeword xk ∈ CN . Each codeword is subject to a power constraint

given by

1

N
‖xk‖2 =

1

N

N∑

n=1

|xk[n]|2 ≤ P. (5.1)
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The signal observed at destination m is given by

ym[n] =
K∑

k=1

hmkxk[n] + zm[n], (5.2)

where hmk ∈ C is the channel coefficient between the source node k and destination

m, and zm[n] ∼ CN (0, 1). One can also define the channel model for using the

channel N times as

ym =

K∑

k=1

hmkxk + zm. (5.3)

In Nazer and Gastpar’s setting, instead of individual messages, each destination node

is only interested in recovering a linear combination of messages given by

um = bm1w1 ⊕ . . .⊕ bmKwK , (5.4)

where bm1, . . . , bmK are elements in the same field with wk and the operations are

elementwise. Upon observing ym, the destination node m forms ûm = GN
m (ym) an

estimate of um.

Definition (Computation codes). For a given set of (bm1, . . . , bmK), a (N,N ′) compu-

tation code consists of a sequence of encoding/decoding functions (EN
1 , . . . , EN

K )/(GN
1 , . . . ,GN

M)

described above and an error probability given by

P (N)
e , P

(
M⋃

m=1

{ûm 6= um}
)
. (5.5)

Definition (Computation rate of relaym). For a given channel vector hm , [hm1, . . . , hmK ]
T

and equation coefficient vector bm , [bm1, . . . , bmK ]
T , a computation rate R(hm,bm)

is achievable at relay m if for any ε > 0 there is an (N,N ′) computation code such
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that

N ′ ≥ 2NR(hm,bm) and P (N)
e ≤ ε. (5.6)

In the following, we will consider the case that we have two source nodes and

only one destination node for the sake of simplicity. However, all the results can

be extend to the general setting straightforwardly. With this simplification, we will

restrict k ∈ {1, 2} and drop the subscript m from now on. The received signal can

then be compressed to

y = h1x1 + h2x2 + z. (5.7)

5.2.2 Background

In this subsection, we provide some preliminaries that will be useful in explaining

our results in the following sections. All the Lemmas are provided without proofs

for the sake of brevity; however, their proofs can be found in standard textbooks of

abstract algebra, see for example [58].

Lemma 19. If R is a principal ideal domain (PID), then every non-zero prime ideal

is maximal.

Lemma 20. Let I be an ideal in a ring R with identity 1R 6= 0. If I is maximal

and R is commutative, then the quotient ring R/I is isomorphic to a field.

Lemma 21 (Chinese Remainder Theorem). Let R be a commutative ring, and

I1, . . . , In be ideals in R, such that they are relatively prime. Then,

R/ ∩n
i=1 Ii

∼= R/I1 × . . .×R/In. (5.8)

The ring of Eisenstein integers Z[ω] is the collection of complex numbers of the

form a + bω where a, b ∈ Z and ω = −1
2
+ j

√
3
2
. The ring of Gaussian integers Z[i]
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is the collection of complex numbers of the form a + bj where again a, b ∈ Z. Both

Z[ω] and Z[i] are PIDs. An Eisenstein integer (Gaussian integer) π is an Eisenstein

prime (Gaussian prime) if either one of the following mutually exclusive conditions

hold:

1. π is equal to the product of a unit and any natural prime congruent to 2 mod 3

(3 mod 4).

2. |π|2 is any natural prime congruent to 0 mod 3 or 1 mod 3 (2 or 1 mod 4).

For those Eisenstein primes (Gaussian primes) π with |π|2 = π · π̄ being natural

primes congruent to 1 mod 3 (1 mod 4), one can verify that π and π̄ are both

Eisenstein primes (Gaussian primes) but they are not associates. Moreover, it has

been shown in [59] that for every x ≥ 7, there exists a natural prime of this form

between x and 2x. Thus, the choices of π satisfying the above property are abundant.

5.2.3 Proposed Product Construction of Lattices

Motivated by Theorem 2 in [57], we propose the product construction of lattices

shown in Fig. 5.2. Let σ : Z[ω] → Z[ω]/qZ[ω] ↔ F
2
q be a Z-module homomorphism

and let M , σ−1 be a mapping from F2
q to Z[ω]/qZ[ω]. Throughout the chapter, we

will refer to the set of coset representatives of Z[ω]/qZ[ω] as signal constellation or

constellation in short. Also, let Bl, l ∈ {1, 2}, be the set of all linear (N,ml) codes

over Fq and B , B1×B2. i.e., B is the collection of all linear codes over Fq2 that can

be represented as the Cartesian product of two linear codes whose input lengths are

m1 and m2, respectively, over Fq. The construction consists of the following steps.

1. Let C = C1 × C2 ∈ B where Cl ∈ Bl, l ∈ {1, 2}.

2. Define Λ∗ , M(C1, C2) where for two vectors c1 and c2 with equal length,

M(c1, c2) is defined as the elementwise mapping.
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Figure 5.2: The proposed production construction of lattices.

3. Replicate Λ∗ over the entire CN to form Λ , Λ∗ + qZ[ω]N .

Theorem 22. Λ is a lattice and there exists a sequence of lattices generated by this

construction that is Poltyrev-good.

Proof. (Sketch) We first verify that B is a balanced set. i.e., each element in FN
q2

is contained in the same number of codes in this restricted set. This in turn shows

the Minkowski-Hlawka Theorem and the remaining steps of the proof in [60] can be

repeated.

Here, by Poltyrev-good, we mean that the lattices achieve the Poltyrev limit;

instead of the Poltyrev exponent whose proof is more involved. This theorem es-

tablishes the fact that the proposed lattice is good for channel coding if shaping is

ignored.

5.2.4 Separation-Based Compute-and-Forward by Tunali et al.

Typically, in addition to the Poltyrev-goodness, shaping has to be taken into

account in order to use a lattice for communication. However, due to the lack of
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efficient shaping techniques in practice, in this chapter, we consider the separation-

based framework discussed in Section V of [14]. This framework attempts to separate

the design of channel coding and data modulation so that N the dimension of the

channel coding can still grow to infinity and the shaping is designed to be optimal

in a small dimensional space (although suboptimal in the N dimensional space).

The channel coding employed by all the source nodes is restricted to be the same

linear code over Fq in order to make linear combinations (over Fq) of codewords

valid codewords. On the other hand, the constellation has to be carefully chosen so

that one can still benefit from the structural gain offered by compute-and-forward

strategy. It turns out that the key condition for this is a ring homomorphism between

the extended version (to infinite constellation) of the signal constellation and Fq the

field that the channel coding is working over.

In Section V of [14], a scaled version of the quotient ring of Eisenstein integers

shown in the following is chosen as signal constellation at each source node,

A , γ (Z[ω]/πZ[ω]) , (5.9)

where |π|2 , q is a natural prime congruent to 1 mod 3 and γ is for satisfying the

power constraint. Since Z[ω] is a PID, from Lemma 19, one has that πZ[ω] is a

maximal ideal. Hence, from Lemma 20, Z[ω]/πZ[ω] ∼= Fq. i.e., the following ring

homomorphism σ exist,

σ : Z[ω] → Z[ω]/πZ[ω] ↔ Fq. (5.10)

In addition to the ring homomorphisms, this choice of constellation provides other

properties such as optimal shaping gain (in two-dimensional space) and good quan-
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tization of channel coefficients as Z[ω] corresponds to hexagonal lattices.

Unlike the framework proposed in [11] and Section III of [14] in which infinitely-

dimensional lattices are employed as channel coding and data modulation jointly, the

separation approach allows one to let the dimension of channel coding grow while

keeps the constellation size small so that optimal decoding is feasible. This also

allows the use of well-developed codes on graph (e.g., non-binary LDPC) as channel

coding for which one can carry out iterative decoding to further reduce the decoding

complexity.

5.3 Proposed Constellations

In this section, we propose two families of constellations for the separation-based

compute-and-forward. The constellations in the first family are isomorphic to the

corresponding extension fields so that ring homomorphisms exist. Therefore, these

constellations can be directly used for compute-and-forward. For the constellations

in the second family, although the ring homomorphisms are not guaranteed, the

existence of Z-module homomorphisms can be shown by using the Chinese remainder

theorem. The Z-module homomorphisms will be exploited for a novel multilevel

compute-and-forward strategy in the next section. It is worth emphasizing that the

theory required for showing the existence of the homomorphisms has been developed

in [57, Theorem 1 and Theorem 2]. But these specific constructions are not explicitly

proposed in [57] and the multilevel coding/multistage decoding in Section 5.4.1 is

not given in [57].

5.3.1 The First Proposed Family of Constellations

Let π be an Eisenstein prime with π being the product of a unit and a natural

prime q congruent to 2 mod 3. Since Z[ω] is a PID, from Lemma 19, πZ[ω] is a
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Figure 5.3: The proposed constellation with q = 5 and a ring homomorphism shown
as the labeling with the irreducible polynomial x2 + 2x+ 4.

prime ideal and hence a maximal ideal. From Lemma 20, one has that

Z[ω]/πZ[ω] ∼= Fq2. (5.11)

Thus, the following ring homomorphism exists

σ : Z[ω] → Z[ω]/πZ[ω] ↔ Fq2. (5.12)

Example 4. One example of this construction with q = 5 is given in Fig. 5.3 where

the labeling is the ring homomorphism and the multiplication in F25 is defined by

the irreducible polynomial x2 + 2x+ 4 over F5. ♦
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Similarly, let π be a Gaussian prime with π being the product of a unit and a

natural prime q congruent to 3 mod 4. Again, one has that

Z[i]/πZ[i] ∼= Fq2. (5.13)

Thus, the following ring homomorphism exists

σ : Z[i] → Z[i]/πZ[i] ↔ Fq2 . (5.14)

Example 5. One example of this construction with q = 3 is given in Fig. 5.4 where

the labeling is the ring homomorphism and the multiplication in F9 is defined by the

irreducible polynomial x2 + 1 over F3. ♦

One straightforward way to exploit this property is to use

A , γ (Z[ω]/πZ[ω]) or γ (Z[i]/πZ[i]) , (5.15)

where γ is for the power constraint, as signal constellation for the separation-based

compute-and-forward framework in [14] and to directly apply the above ring homo-

morphism as data modulation. However, this implies that one has to work with a

very large field Fq2 which results in a formidable decoding complexity. In the next

section, we propose a novel encoding/decoding pair that incorporates the idea of

multilevel coding and multistage decoding [61]. The proposed encoding/decoding

allows us to work over a potentially much smaller field Fq.

5.3.2 The Second Proposed Family of Constellations

Let π be an Eisenstein prime with |π|2 = q congruent to 1 mod 3. As mentioned

before, one has that π̄ is also an Eisenstein prime and π and π̄ are not associates,
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i.e., they are relatively prime. Now, one has that

Z[ω]/ππ̄Z[ω]
(a)∼= Z[ω]/πZ[ω]× Z[ω]/π̄Z[ω]

(b)∼= Fq × Fq = F
2
q , (5.16)

where (a) follows from the Chinese Remainder Theorem in Lemma 21 and (b) is from

Lemma 20 and the fact that Z[ω] is a PID. Therefore, this implies that the following

Z-module homomorphism exists,

σ : Z[ω] → Z[ω]/ππ̄Z[ω] ↔ F
2
q. (5.17)

One way to generate Z-module homomorphism is to choose

σ−1(c1, c2) , c1 + c2ω mod ππ̄Z[ω]. (5.18)

Similarly, let π be a Gaussian prime with |π|2 = q congruent to 1 mod 4. Then,

π̄ and π are both Gaussian primes and are relatively prime. Hence, one again has

Z[i]/ππ̄Z[i] ∼= F
2
q, (5.19)

Z[i]/ππ̄Z[i] ∼= Z[i]/πZ[i] × Z[i]/π̄Z[i]

∼= Fq × Fq = F
2
q, (5.20)

and

σ : Z[i] → Z[i]/ππ̄Z[i] ↔ F
2
q. (5.21)

A corresponding Z-module homomorphism can be obtained by replacing ω by j
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and Z[ω] by Z[i] in (5.18). For this family of constellations, although the ring ho-

momorphisms are not guaranteed, one can still exploit the existence of Z-module

homomorphisms for compute-and-forward as described in the next section.

5.4 Proposed Multilevel Coding Scheme

In this section, we propose a multilevel encoding/multi-stage decoding scheme

where only Z-module homomorphisms are required. For the first proposed family of

constellations (whose Z-module homomorphisms can be trivially obtained from the

ring homomorphisms), the proposed multilevel coding scheme allows one to signif-

icantly reduce the decoding complexity at a price of slight rate reduction. On the

other hand, for the second proposed family of constellations, this multilevel coding

scheme enables the compute-and-forward strategy. It is worth emphasizing that for

both the proposed families of constellations with q2 elements, the employment of the

proposed multilevel coding/multistage decoding allows the channel coding to work

only over Fq.

5.4.1 Encoding/Decoding

Without loss of generality, here, we equivalently consider the messages to be

length L vectors over the extension field Fq2 such that

L ≈ logq2(N
′), (5.22)

where the approximation can be made precise when N ′ is large. Each source node

Sk first splits its input stream wk ∈ (Fq2)
L into two streams, namely w1

k ∈ Fm1
q and

w2
k ∈ F

m2
q with m1+m2 = 2L. Let C1 and C2 be linear codes over Fq adopted in levels

1 and 2 and G1 and G2 be the generator matrices, respectively. The rate of these

linear codes are chosen to be R1 = m1/N and R2 = m2/N such that the outputs
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Figure 5.5: The encoder of the proposed multilevel coding scheme.

have a same length N . We individually encode each stream with the corresponding

linear code as c1k = w1
kG

1 and c2k = w2
kG

2. The encoder k then takes two of these

symbols and maps them to a symbol from A via M , γ · σ−1. The overall encoding

process is summarized in Fig. 5.5.

The decoder at the destination is a multistage decoder in which we first decode

the first stream by treating the other stream as unknown and then decode the second

stream by assuming the previous decoding is correct. It can be seen from the exam-

ples of the proposed constellations in Section 5.3 that given one level (or ignoring one

level by treating it as noise), the resulted constellation for the other level is a q-ary

pulse amplitude modulation (PAM). Therefore, using the multilevel coding with mul-

tistage decoding for compute-and-forward only requires Z-module homomorphisms

instead of ring homomorphisms since we only consider one level at a time.

Given (b11, b
1
2), in order to decode the first data stream, the decoder first computes
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the a posteriori probabilities given by

P
(
c̃1R[n] = l|y[n]

)
∝

∑

c11,c
1
2∈Fq:

b11c
1
1⊕b12c

1
2=l

∑

c21,c
2
2∈Fq

exp
[
−
∥∥h1M(c11, c

2
1) + h2M(c12, c

2
2)− y[n]

∥∥2
]
, (5.23)

for all l ∈ Fq and for each codeword dimension n. According to these a posteriori

probabilities, the decoder forms the first level’s estimate given by

ĉ1R = argmax
c∈C1

N∏

n=1

P
(
c̃1R[n] = l|y[n]

)
. (5.24)

Given (b21, b
2
2), in the decoding of the second data stream, the destination assumes

the decoding in the first level is correct and again forms the corresponding a posteriori

probabilities given by

P
(
c̃2R[n] = l|y[n], ĉ1R[n]

)
∝

∑

c11,c
1
2∈Fq:

b1
1
c1
1
⊕b1

2
c1
2
=ĉ1

R
[n]

∑

c21,c
2
2∈Fq:

b2
1
c2
1
⊕b2

2
c2
2
=l

exp
[
−
∥∥h1M(c11, c

2
1) + h2M(c12, c

2
2)− y[n]

∥∥2
]
, (5.25)

for all l ∈ Fq and for each codeword dimension n. Similar to the first level, the

decoder then forms the second level’s estimate as

ĉ2R = argmax
c∈C2

N∏

n=1

P
(
c̃2R[n] = l|y[n], ĉ1R[n]

)
. (5.26)
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5.4.2 Achievable Computation Rate

In [61], using the chain rule of mutual information, Wachsmann et al. show that

the multilevel coding incurs no loss in terms of the achievable information rate for

point to point communication. The same proof works for our construction as well,

which we summarize here. Let C1 and C2 be the codebooks used for level 1 and 2,

respectively, and let C1 and C2 be the corresponding random variables. Also, notice

that the mapping between (C1, C2) and A is bijective. One has that

RAWGN = I(Y ;A) = I(Y ;M(C1, C2))

(a)
= I(Y ;C1, C2) = I(Y ;C1) + I(Y ;C2|C1), (5.27)

where (a) is due to the fact that M is bijective.

Now, we provide the achievable information rates of the proposed schemes for

compute-and-forward. For the first proposed family of constellations, one can choose

to directly work over Fq2 . Let C be a codebook over Fq2 and let C1 and C2 be the

corresponding random variables at source nodes 1 and 2, respectively. The achievable

computation rate of directly working over Fq2 can be written as

Rdirect = max
b1,b2∈Fq2

I(Y ; b1C1 ⊕ b2C2), (5.28)

where the subscript ”direct” stands for that we directly work over the extension

field. For the multilevel coding/multistage decoding scheme (which works for both

constructions), let C1 and C2 be the linear codebooks adopted for level 1 and 2,

respectively, and let C1
k and C2

k be the corresponding random variables at source
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node k. One has the achievable computation rate given by

RMLC = max
b11,b

2
1,b

1
2,b

2
2 ∈Fq

I(Y ; b11C
1
1 ⊕ b12C

1
2 , b

2
1C

2
1 ⊕ b22C

2
2)

= max
b11,b

2
1,b

1
2,b

2
2 ∈Fq

I(Y ; b11C
1
1 ⊕ b12C

1
2)

+ I(Y ; b21C
2
1 ⊕ b22C

2
2 |b11C1

1 ⊕ b12C
1
2). (5.29)

It should be noted that Rdirect and RMLC are in general not the same. It is because

for Ck = (C̃1
k , C̃

2
k), given b1, b2 ∈ Fq2, there may not exist b̃11, b̃

2
1, b̃

1
2, b̃

2
2 ∈ Fq such that

b1C1 ⊕ b2C2 = (b̃11C̃
1
1 ⊕ b̃12C̃

1
2 , b̃

2
1C̃

2
1 ⊕ b̃22C̃

2
2), (5.30)

and C̃1
k , C̃

2
k are valid codewords over Fq.

5.5 Simulation Results

In this section, we use the Monte-Carlo method to simulate the achievable com-

putation rates. We will focus on the ring of Eisenstein integers for the sake of brevity

but similar results can be observed for the Gaussian integers. The Eisenstein prime

that we use is π = 5, i.e., |A| = 25. Since 5 is congruent to 2 mod 3, this belongs

to the first proposed family of constellations and ring homomorphisms exist. Hence,

one can choose either to directly carry out the separation-based scheme with the

ring homomorphism given in Example 4 or to implement the proposed multilevel

coding and multistage decoding scheme. In what follows, we do both and compare

the achievable rates of these approaches given in (5.28) and (5.29).

In Fig. 5.6, we show the achievable rates of the proposed constellations with

multilevel coding where each level employs a linear code over F5 and the proposed

construction with a linear code over F25. The ring homomorphism adopted is as
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Figure 5.6: Achievable rates of the proposed construction with and without multilevel
coding. For the one with multilevel coding, the achievable rate achieved by each level
is also plotted. The channel coefficients are set to be h1 = h2 = 1.

shown in Example 4. For the multilevel coding scheme, the rate achieved by each

level is also shown. The transmitted SNR is ranging from -10 dB to 40 dB. The

channel coefficients are set to be h1 = h2 = 1 in order to simulate the scenario

when there is no self-interference. In this case, one can see from the figure that

using the proposed constellations with multilevel coding incur no rate loss compared

to the scheme directly working over F25. It is because for this case, both schemes

would choose to decode the received signal to the sum of the messages (over the

corresponding fields) and digit-wise addition in the base field is equivalent to addition

in the extension field.
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We then compare the average achievable rates of the proposed constellation in

Fig. 5.3 with and without multilevel coding, the constellations in [14] with 7 elements,

and that with 19 elements. The channel coefficients are drawn from CN (0, 1) (i.e., its

norm has a Rayleigh distribution). We average over 100 pairs of channel coefficients

and the results are shown in Fig. 5.7. One can see that the scheme directly working

over F25 provides a higher rate than that provided by the multilevel coding which

works over F5. However, the gap becomes smaller and smaller as the SNR increases.

One also observes that after roughly 26 dB, the gap becomes negligible and the

proposed multilevel coding scheme over F5 outperforms the scheme working over

F19. This shows that using the proposed scheme over F5, one can perform very close

to the scheme over F25 and outperform the scheme over F19 in the high SNR regime

with a substantially lower computational complexity.

5.6 Extensions

One interesting extension is to restrict the codes used in the two levels to be the

same, i.e., C1 = C2 = C. Then, there always exist parameters such that (5.30) holds.

However, this still doesn’t mean that the multilevel coding scheme would achieve

the same rate with that provided by the code over Fq2 . It is because the symmetric

capacity may not touch the boundary of the sum rate limit for the underlying MAC

channel. It is interesting to see when this is true and currently we have been able

to identify some special cases. Moreover, by setting C1 = C2 = C, one can further

incorporate the idea of flexible decoding [62] into our framework. Specifically, in

addition to the original choice we have had

b11c
1
1 ⊕ b12c

1
2 and b21c

2
1 ⊕ b22c

2
2, (5.31)
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where b11, b
2
1, b

1
2, b

2
2 ∈ Fq, one can decode to something else. For example,

b̃11c
1
1 ⊕ b̃22c

2
2 and b̃21c

2
1 ⊕ b̃12c

1
2. (5.32)

where b̃11, b̃
2
1, b̃

1
2, b̃

2
2 ∈ Fq. More precisely, one can decode the received signal to

[c1R, c
2
R]

T = [B1B2]




c11

c21

c11

c21



, (5.33)

where B1 and B2 are 2 by 2 full-rank matrices with elements in Fq. This approach

allows rich choices of functions that one can decode to and hence may result in a

higher rate in general.

5.7 Conclusions

In this chapter, we studied the design of practically implementable compute-

and-forward schemes. We focused on the separation-based framework that allow

separately designing channel coding and data modulation. We first proposed two

families of constellations that are suitable for the separation-based framework while

still provide good shaping gains. Using the idea of multilevel coding and multistage

decoding, we then proposed a low complexity scheme that would substantially reduce

the decoding complexity in the high rate regime. We also showed that the use of

multilevel coding and multistage decoding incurs no essential rate loss in the regions

that one would operate on. Moreover, the proposed scheme can be further extended

by incorporating the idea of flexible decoding in [62].
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6. JOINT SOURCE-CHANNEL CODING WITH CORRELATED

INTERFERENCE∗

We study the joint source-channel coding problem of transmitting a discrete-

time analog source over an additive white Gaussian noise (AWGN) channel with

interference known at transmitter. We consider the case when the source and the in-

terference are correlated. We first derive an outer bound on the achievable distortion

and then, we propose two joint source-channel coding schemes. The first scheme is

the superposition of the uncoded signal and a digital part which is the concatenation

of a Wyner-Ziv encoder and a dirty paper encoder. In the second scheme, the digital

part is replaced by the hybrid digital and analog scheme proposed by Wilson et al.

When the channel signal-to-noise ratio (SNR) is perfectly known at the transmitter,

both proposed schemes are shown to provide identical performance which is substan-

tially better than that of existing schemes. In the presence of an SNR mismatch,

both proposed schemes are shown to be capable of graceful enhancement and grace-

ful degradation. Interestingly, unlike the case when the source and interference are

independent, neither of the two schemes outperforms the other universally. As an

application of the proposed schemes, we provide both inner and outer bounds on the

distortion region for the generalized cognitive radio channel.

6.1 Introduction and Problem Statement

In this chapter, we consider transmitting a length-n i.i.d. zero-mean Gaussian

source V = (V (1), V (2), . . . , V (n)) over n uses of an additive white Gaussian noise

(AWGN) channel with noise Z ∼ N (0, N · I) in the presence of Gaussian interfer-

∗ c©2012 IEEE. Reprinted, with permission, from Yu-Chih Huang and Krishna R. Narayanan,

Joint Source-Channel Coding with Correlated Interference, IEEE Transactions on Communications,

May 2012.
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Figure 6.1: Joint source-channel coding with interference known at transmitter.

ence S which is known at the transmitter as shown in Fig. 6.1. Throughout the

chapter, we only focus on the bandwidth-matched case, i.e., the signalling rate over

the channel is equal to the sampling rate of the source. The transmitted signal

X = (X(1), X(2), . . . , X(n)) is subject to a power constraint

1

n

n∑

i=1

E[X(i)2] ≤ P, (6.1)

where E[·] represents the expectation operation. The received signal Y is given by

Y = X+ S+ Z. (6.2)

We are interested in the expected distortion between the source and the estimate

V̂ at the output of the decoder given by

d = E[d(V, g(f(V,S) + S+ Z))], (6.3)

where f and g are a pair of source-channel coding encoder and decoder, respectively,
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and d(., .) is the mean squared error (MSE) distortion measure given by

d(v, v̂) =
1

n

n∑

i=1

(v(i)− v̂(i))2. (6.4)

Here the lower case letters represent realizations of random variables denoted by

upper case letters. As in [30], a distortion D is achievable under power constraint

P if for any ε > 0, there exists a source-channel code and a sufficiently large n such

that d ≤ D + ε.

When V and S are uncorrelated, it is known that an optimal quantizer followed

by a Costa’s dirty paper coding (DPC) [63] is optimal and the corresponding joint

source-channel coding problem is fully discussed in [64]. However, different from the

typical writing on dirty paper problem, in this chapter, we consider the case where

the source and the interference are correlated with a covariance matrix given by

ΛV S =




σ2
V ρσV σS

ρσV σS σ2
S


 . (6.5)

Under this assumption, separate source and channel coding using DPC naively

may not be a good candidate for encoding V in general. It is due to the fact that

in Costa’s DPC scheme, the transmitted signal is designed to be orthogonal to the

interference and, hence, the DPC scheme cannot exploit the correlation between

the source and the interference. Also, the purely uncoded scheme fails to avoid the

interference and is suboptimal in general. In this chapter, we first derive an outer

bound on the achievable distortion region and then, we propose two joint source-

channel coding schemes which exploit the correlation between V and S, thereby

outperforming the naive DPC scheme. The first scheme is a superposition of the

uncoded scheme and a digital part formed by a Wyner-Ziv coding [65] followed by
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a DPC, which we refer to as a digital DPC based scheme (or just the digital DPC

scheme). The second scheme is obtained by replacing the digital part by a hybrid

digital and analog (HDA) scheme given in [64] that has been shown to provide

graceful improvement when the actual SNR (SNRa) is better than the design SNR

(SNRd). We then analyze the performance of these two proposed schemes when

there is an SNR mismatch. It is shown that both the HDA scheme and the digital

DPC scheme benefit from a higher channel SNR and provide graceful enhancement;

however, interestingly, for this case neither of schemes dominate the other universally

and which one performs better depends on the designed SNR. When ρ is small, the

HDA scheme outperforms the digital DPC scheme and when ρ is large, the digital

DPC scheme outperforms the HDA scheme. When the channel deteriorates, both the

proposed schemes perform identically and are able to provide graceful degradation.

One interesting application of this problem is to derive an achievable distortion

region for the generalized cognitive radio channel with correlated sources. This chan-

nel can be modeled as a typical two-user interference channel except that one of them

knows exactly what the other plans to transmit. Moreover, two users’ sources are as-

sumed to be correlated. One can regard the informed user’s channel as the setup we

consider here and then directly apply the schemes we propose as the coding scheme

for the informed user. For the generalized cognitive radio channel with correlated

sources, we provide inner and outer bounds on the distortion region where the inner

bound largely relies on the coding schemes proposed in this chapter.

The rest of the chapter is organized as follows. In Section 6.2, we present some

prior work which is closely related to ours. The outer bound is given in Section

6.3 and two proposed schemes are given in Section 6.4. In Section 6.5, we analyze

the performance of the proposed schemes under SNR mismatch. These proposed

schemes are then extended to the generalized cognitive radio channel in Section 6.6.
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Some conclusions are given in Section 6.7.

6.2 Related Work on JSCC with Interference Known at Transmitter

In [66], Sutivong et al. consider the problem of sending a digital source in the

presence of interference (or, channel state) which is known at the transmitter and is

assumed to be independent of the source. The optimal tradeoff between the achiev-

able rate for transmitting the digital source and the distortion in estimating the

interference is then studied. A coding scheme that is able to achieve the optimal

tradeoff is also provided in [66]. This coding scheme uses a portion of the power to

amplify the interference and uses the remaining power to transmit the digital source

via DPC. This coding scheme can be extended to the problem we consider as fol-

lows. Since the source and the interference are jointly Gaussian, we can first rewrite

the source as V = ρσV

σS
S + N ′

ρ with S and the innovation N ′
ρ being independent of

each other. Now if one quantizes N ′
ρ into digital data, the setup becomes the one

considered by Sutivong et al. and their proposed scheme can be applied directly. For

any power allocation between the analog part and digital part, using this scheme to

operate on the boundary of the optimal tradeoff, the optimal distortion in estimating

ρσV

σS
S and that in estimating N ′

ρ is achieved. The distortion in estimating V for this

power allocation strategy is the sum of the above two distortions. One can then

optimize the power allocation strategy to get the minimum distortion for this coding

scheme. It is worth pointing out that this coding scheme is in general suboptimal

for our problem although it achieves the optimal tradeoff between estimating S and

N ′
ρ individually. This is because, our interest is in estimating V directly and it is

importantly to carefully take advantage of the correlation in the estimation error in

estimating S and N ′
ρ. The coding scheme in [66] is not naturally suited to take ad-

vantage of this correlation. One numerical example is shown in Fig. 6.2 where we can
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Figure 6.2: Distortions for the naive DPC, the uncoded scheme, and the extension
of of Sutivong et al.’s scheme.

see that the union of the uncoded scheme and the naive DPC scheme outperforms

the extension of Sutivong et al.’s scheme.

In [67], Lapidoth et al. consider the 2 × 1 multiple access channel in which

two transmitters wish to communicate their sources, which are drawn from a bi-

variate Gaussian distribution, to a receiver which is interested in reconstructing both

sources. There are some similarities between the proposed work and the work in [67]

if we regard one of the users’, say the user 2’s, signal as interference. However, an

important difference is that in [67], the transmitters are not allowed to cooperate

with each other, i.e., for the transmitter 1, the interference (user 2’s signal) is not

known. Moreover, this interference now depends on the signalling scheme adopted
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at user 2 and may not be correlated to the source anymore.

In [68] [69] [70] [71], transmitting a bi-variate Gaussian source over a 1× 2 Gaus-

sian Broadcast Channel is considered. In their setup, the source consists of two

components V1 and V2 which are memoryless and stationary bi-variate Gaussian

random variables and each receiver is only interested in one part of the sources. In

[71], Tian et al. propose a HDA scheme that achieves the outer bound given in

[68] and therefore leads to a complete characterization of the distortion region. This

problem is similar to ours if we only focus on one receiver, say the first receiver.

However, a crucial difference is that the interference now is a function of V2 which

depends on the broadcast encoding scheme and may not be correlated to V1. The

joint source-channel coding problem for broadcasting a single memoryless Gaussian

source under bandwidth mismatch is considered in [72] [73] [74]. However, different

from its bandwidth matched counterpart [75], only approximation characterizations

of the achievable distortion region are available for this problem. Broadcasting a col-

ored Gaussian source over a colored Gaussian broadcast channel to a digital receiver

and a analogy receiver is considered in [76] where Prabhakaran et al. propose a HDA

scheme that achieves the entire distortion region for the problem they consider.

Joint source-channel coding for point to point communications over Gaussian

channels has also been widely discussed. See e.g. [64],[77] [78] [79] [80]. However,

they either don’t consider interference ([77] [78] [79] [80]) or assume independence of

source and interference ([64]). In [64], Wilson et al. proposed a HDA coding scheme

for the typical writing on dirty paper problem in which the source is independent

of the interference. This HDA scheme was originally proposed to perform well in

the case of a SNR mismatch. In [64], the authors showed that their HDA scheme

not only achieves the optimal distortion in the absence of SNR mismatch but also

provides gracefully degradation in the presence of SNR mismatch. In the following
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sections, we will discuss this scheme in detail and then propose a coding scheme

based on this one.

6.3 Outer Bounds

6.3.1 Outer Bound 1

For comparison, we first present a genie-aided outer bound. This outer bound is

derived in a similar way to the one in [70] in which we assume that S is revealed to

the decoder by a genie. Thus, we have

n

2
log

σ2
V (1− ρ2)

Dob

(a)

≤ I(V; V̂|S)
(b)

≤ I(V;Y|S)

= h(Y|S)− h(Y|S,V)

= h(X+ Z|S)− h(Z)

(c)

≤ h(X+ Z)− h(Z)

(d)

≤ n

2
log

(
1 +

P

N

)
, (6.6)

where (a) follows from the rate-distortion theorem [30], (b) is from the data process-

ing inequality, (c) is due from that conditioning reduces differential entropy and (d)

comes from the fact that Gaussian density maximizes the differential entropy and all

random variables involved are i.i.d. Therefore, we have the outer bound as

Dob,1 =
σ2
V (1− ρ2)

1 + P/N
. (6.7)

Note that this outer bound in general may not be tight for our setup since in the

presence of correlation, giving S to the decoder also offers a correlated version of the

source that we wish to estimate. For example, in the case of ρ = 1, giving S to the
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decoder implies that the outer bound is Dob = 0 no matter what the received signal

Y was. On the other hand, if ρ = 0, the setup reduces to the one with uncorrelated

interference and we know that this outer bound is tight. Now, we present another

outer bound that improves this outer bound for some values of ρ.

6.3.2 Outer Bound 2

Since S(i) and V (i) are jointly Gaussian distributed with covariance matrix given

in (6.5), we can write

S(i) = ρ
σS

σV
V (i) +Nρ(i), (6.8)

where Nρ(i) ∼ N (0, (1− ρ2)σ2
S) representing the innovation and is independent to

V (i). Now, suppose a genie reveals only the n-letter collection of innovation Nρ to

the decoder, we have

n

2
log

σ2
V

Dob,2
=

n

2
log

var(V |Nρ)

Dob

(a)

≤ I(V; V̂|Nρ)

(b)

≤ I(V;Y|Nρ)

= h(Y|Nρ)− h(Y|Nρ,V)

= h(X+ ρ
σS

σV

V + Z|Nρ)− h(Z)

(c)

≤ h(X+ ρ
σS

σV
V + Z)− h(Z)

(d)

≤ n

2
log



var

(
X + ρ σS

σV
V + Z

)

N




(e)

≤ n

2
log

(
1 +

(
√
P + ρ

√
σ2
S)

2

N

)
, (6.9)
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where (a)-(d) follow from the same reasons with those in the previous outer bound

and (e) is due from the Cauchy-Schwartz inequality that states that the maximum

occurs when X and V are collinear. Thus, we have

Dob,2 =
σ2
V

1 + (
√
P + ρ

√
σ2
S)

2/N
. (6.10)

Note that although the encoder knows the interference S exactly instead of just Nρ,

the inequality in step (a) does not decrease the knowledge about S at the transmitter

since S is a deterministic function of V and Nρ.

Remark: If ρ = 0, this outer bound reduces to the previous one and is tight. If

ρ = 1, the genie actually reveals nothing to the decoder and the setup reduces to

the one considered in [66], i.e., the encoder is interested in revealing the interference

to the decoder. For this case, we know that this outer bound is tight. However, this

outer bound is in general optimistic except for two extremes. It is due to the fact

that in derivations, we assume that we can simultaneously ignore the Nρ and use all

the power to take advantage of the coherent part. Despite this, the outer bound still

provides an insight that in order to build a good coding scheme that one should try

to use a portion of power to make use of the correlation and then use the remaining

power to avoid Nρ. Further, it is natural to combine these two outer bounds as

Dob = max{Dob,1, Dob,2}.

From now on, since the channel we consider is memoryless and all the random

variables we consider are i.i.d. in time, i.e. V (i) is independent of V (j) for i 6= j, we

will drop the index i for the sake of convenience.
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6.4 Proposed Schemes

6.4.1 Digital DPC Based Scheme

We now propose a digital DPC scheme which retains the advantages of the above

two schemes. This scheme can be regarded as an extended version of the coding

scheme in [78] to the setup we consider. As shown in Fig. 6.3, the transmitted signal

of this scheme is the superposition of the analog partXa with power Pa and the digital

part Xd with power P − Pa. The motivation here is to allocate some power for the

analog part to make use of the interference which is somewhat coherent to the source

for large ρ’s and to assign more power to the digital part to avoid the interference

when ρ is small. The analog part is the scaled version of linear combination of source

and interference as

Xa =
√
a (γV + (1− γ)S) , (6.11)

where Pa ∈ [0, P ], a = Pa/σ
2
a, γ ∈ [0, 1] and

σ2
a = γ2σ2

V + (1− γ)2σ2
S + 2γ(1− γ)ρσV σS. (6.12)

The received signal is given by

Y = Xd +Xa + S + Z

= Xd +
√
aγV +

(
1 +

√
a(1− γ)

)
S + Z

= Xd + S ′ + Z, (6.13)

where Xd is chosen to be orthogonal to S and V and S ′ =
√
aγV +(1 +

√
a(1− γ))S

is the effective interference. The receiver first makes an estimate from Y only as
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Figure 6.3: Digital DPC scheme.

V ′ = βY with

β =
E[V Y ]

E[Y 2]
=

√
a(γσ2

V + (1− γ)ρσV σS) + ρσV σS

P +N + σ2
S ++2

√
a ((1− γ)σ2

S + γρσV σS)
. (6.14)

The corresponding MSE is

D∗ = σ2
V − βE[V Y ]

= σ2
V

[
1− β

(√
a(γ + (1− γ)ρ

σS

σV
) + ρ

σS

σV

)]
. (6.15)

Thus, we can write V = V ′ +W with W ∼ N (0, D∗).

We now refine the estimate through the digital part, which is the concatenation

of a Wyner-Ziv coding and a DPC. Since the DPC achieves the rate equal to that

when there is no interference at all, the encoder can use the remaining power P −Pa
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to reliably transmit the refining bits T with a rate arbitrarily close to

R =
1

2
log

(
1 +

P − Pa

N

)
. (6.16)

The resulting distortion after refinement is then given as

Dsep = inf
γ, Pa

D∗

1 + P−Pa

N

. (6.17)

In Appendix C.2, for self-containedness, we briefly summarize the digital Wyner-Ziv

scheme to illustrate how to achieve the above distortion.

Remark: The performance of our proposed scheme can be improved by allowing

the coefficient in front of S to be negative. i.e., γ > 1 is allowed. When this

coefficient is allowed to be negative, performance similar to that reported in [79] can

be achieved.

Remark: Different from the setup considered in [78] that the optimal distortion

can be achieved by any power allocation between coded and uncoded transmissions,

in our setup the optimal distortion is in general achieved by a particular power

allocation which is a function of ρ.

6.4.2 HDA Scheme

Now, let us focus on the HDA scheme obtained by replacing the digital part in

Fig. 6.3 by the HDA scheme given in [64]. The analog signal remains the same as in

(6.11) and the HDA output is referred to as Xh. Therefore, we have Y = Xh+S ′+Z.

Again, the HDA scheme regards S ′ as interference and V ′ described previously as

side-information. The encoding and decoding procedures are similar to that in [64]

but the coefficients need to be re-derived to fit our setup (the reader is referred to

[64] for details).
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Let the auxiliary random variable U be

U = Xh + αS ′ + κV, (6.18)

where Xh ∼ N (0, Ph) independent to S ′ and V and Ph = P − Pa. The covariance

matrix of S ′ and V can be computed by (6.5).

Codebook Generation: Generate a random i.i.d. codebook U with 2nR1 codewords,

reveal the codebook to both transmitter and receiver.

Encoding : Given realizations s′ and v, find a u ∈ U such that (s′,v,u) is jointly

typical. If such a u can be found, transmit xh = u − αs′ − κv. Otherwise, an

encoding failure is declared.

Decoding : The decoder looks for a û such that (y,v′, û) is jointly typical. A

decoding failure is declared if none or more than one such û are found. It is shown

in [64] that if n → ∞ and the condition given in (6.21) is satisfied, the probability

of û 6= u → 0.

Estimation: After decoding u, the receiver forms a linear MMSE estimate of v

from y and u. The distortion is then obtained as

Dhda = inf
γ, Pa

[
σ2
V − ΓTΛ−1

UY Γ
]
, (6.19)

where ΛUY is the covariance matrix of U and Y , and Γ = [E[V U ],E[V Y ]]T .

In the encoding step, to make sure the probability of encoding failure vanishes
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with increasing n, we require

R1 > I(U ;S ′, V )

= h(U)− h(Xh + αS ′ + κV |S ′, V )

(a)
= h(U)− h(Xh)

=
1

2
log

E[U2]

Ph

, (6.20)

where (a) follows because Xh is independent of S ′ and V .

Further, to guarantee the decodability of U in the decoding step, one requires

R1

(a)
< I(U ; Y, V ′)

= h(U)− h(U |Y, V ′)

= h(U)− h(U − αY − κV ′|Y, V ′)

(b)
= h(U)− h(κW + (1− α)Xh − αZ|Y ), (6.21)

where (a) follows from the error analysis of E3 in Section III of [81] and (b) is due to

the fact that V ′ = βY . By choosing

α =
Ph

Ph +N
, κ2 =

P 2
h

(Ph +N)D∗ , (6.22)

one can verify that (6.20) and (6.21) are satisfied. Note that in (6.20) what we really

need is R1 ≥ I(U ;S ′, V ) + ε and in (6.21) it is R1 ≤ I(U ; Y, V ′)− δ. However, since

ε and δ can be made arbitrarily small, these are omitted for the sake of convenience

and to maintain clarity.

Remark: It is shown in Appendix C.1 that the distortions in (6.17) and (6.19) are

exactly the same. However, as we will see in the next section, two schemes perform
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differently when SNRa > SNRd.

6.4.3 Numerical Results

In Fig. 6.4, we plot the distortion (in −10 log10(D)) for coding schemes and outer

bounds described above as a function of SNR. In this figure, we set σ2
V = σ2

S = 1

and ρ = 0.3. Note that for this choice of σ2
V , what we plot is actually the signal-

to-distortion ratio. As expected, the two proposed schemes have exactly the same

performance. Moreover, for this case, these two schemes not only outperform others

but also approach the outer bound (maximum of two) very well.

We then fix the SNR and plot the distortion as a function of ρ in Fig. 6.5. The

parameters are set to be σ2
V = σ2

S = 1, P = 10, and N = 1. It can be seen that both

the proposed schemes perform exactly the same and that the achievable distortion

region with the proposed scheme is larger than what is achievable with a separation

based scheme using DPC and a uncoded scheme. Further, although the proposed

schemes perform close to the outer bound over a wide range of ρs, the outer bound

and the inner bound do not coincide however, leaving room for improvement either

of the outer bound or the schemes.

6.5 Performance Analysis in the Presence of SNR Mismatch

In this section, we study the distortions for the proposed schemes in the pres-

ence of SNR mismatch i.e., we consider the scenario where instead of knowing the

exact channel SNR, the transmitter only knows a lower bound on the channel SNR.

Specifically, we assume that the actual channel noise to be Za ∼ N (0, Na) but the

transmitter only knows that Na ≤ N so that it designs the coefficients assuming the

noise variance is N . In what follows, we analyze the performance for both proposed

schemes under the above assumption.
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6.5.1 Digital DPC Based Scheme

Since the transmitter designs its coefficients for N , it aims to achieve the distor-

tion Dsep given in (6.17). It first quantizes the source to T by a Wyner-Ziv coding

with side-information D∗ given in (6.15) and then encodes the quantization output

by a DPC with a rate

R =
1

2
log

(
1 +

P − P̃a

N

)
, (6.23)

where P̃a is the power allotted to Xa such that the distortion in the absence of SNR

mismatch is minimized. i.e.,

P̃a = arg inf
Pa

D∗

1 + P−Pa

N

. (6.24)

At receiver, since Na ≤ N , the DPC decoder can correctly decode T with high

probability. Moreover, the receiver forms the MMSE estimate of V from Y as V ′
a =

βaY with βa and the corresponding MSE D∗
a derived by substituting Na for N in

(6.14) and (6.15), respectively. After that, the problem reduces to the Wyner-Ziv

problem with mismatched side-information. In Appendix C.3, we show that for this

problem, one can achieve

Dsep,mis =
D∗D∗

a

D∗D∗
a + (D∗ −D∗

a)Dsep
Dsep. (6.25)

Unlike the typical separation-based scheme that we have seen in [64], the pro-

posed digital DPC scheme (whose digital part can be regarded as a separation-

based scheme) can still take advantage of better channels through mismatched side-

information.
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6.5.2 HDA Scheme

Different from the digital DPC scheme, in the presence of SNR mismatch, the

performance analysis of the HDA scheme cannot be converted to the Wyner-Ziv

problem with mismatched side-information. It is because that in the HDA scheme,

we jointly form an estimate of V from U and Y . Fortunately, as shown in [64], the

HDA scheme is capable of making use of an SNR mismatch.

Similar to the digital DPC scheme, we design the coefficients for noise variance

N . The HDA scheme regards D∗ as side-information and S ′ as interference. It

generates the auxiliary random variable U given by (6.18) with coefficients described

by (6.22). Since Na ≤ N , the receiver can correctly decode U with high probability.

The receiver then forms the MMSE as described in (6.19). Note that E[Y 2] in ΛUY

should be modified appropriately to address the fact that the actual noise variance

is Na in this case.

Remark: In [64], the authors compare the distortions of the digital scheme and the

HDA scheme in estimating the source V and the interference S as we move away from

the designed SNR. One important observation is that the HDA scheme outperforms

the separation-based scheme in estimating the source; however, the separation-based

scheme is better than the HDA scheme if one is interested in estimating the inter-

ference. Here, since the effective interference S ′ includes the uncoded signal
√
aV

in part and the source is correlated to the interference, estimating the source V is

equivalent to estimating a part of S ′. Thus, one can expect that if Pa and ρ are large

enough, the digital DPC scheme may outperform the HDA scheme in the presence of

SNR mismatch. One the other hand, if Pa and ρ are relatively small, one can expect

the reverse.

Remark: Note that we have only discussed the case when the actual channel turns
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out to be better than that expected by the transmitter. On the other hand, when

the channel deteriorates, the digital DPC scheme and the HDA scheme are not able

to decode the digital part and the HDA part, respectively. For the digital DPC

scheme, this is due to the fact that a capacity-approaching code is used so that the

decoding will fail if the channel is no longer being able to support this rate. For the

HDA scheme, this inability to decode U is because the constraint (6.21) is no longer

satisfied if the channel is worse than that expected. However, both schemes can still

form the MMSE estimate of the source from the received signal Y . Therefore, for

a same choice of Pa, the resulting distortion of two proposed schemes would be the

same and is equal to D∗
a. This implies that both the proposed schemes are able to

provide graceful degradation when channel deteriorates.

6.5.3 Numerical Results

Now, we compare the performance of the above two schemes and the scheme

that knows the actual SNR. The parameters are set to be σ2
V = σ2

S = 1. We plot

−10 log10(D) as we move away from the designed SNR for both ρ = 0.1 and ρ = 0.5

cases. Two examples for designed SNR = 0 dB and 10 dB are given in Fig. 6.6 and

Fig. 6.7, respectively.

In Fig. 6.6, we consider the case that the designed SNR is 0 dB which is relatively

small compared to the variance of interference. We plot both the cases when channel

improves and deteriorates in this figure. When channel deteriorates, as discussed

in Remark 6.5.2, both the proposed scheme can provide a distortion equal to D∗
a.

For the case when channel improves, we can see that which scheme performs better

in the presence of SNR mismatch really depends on ρ. It can be explained by the

observations made in Remark 6.5.2 and the power allocation strategy. For this case

the optimal power allocation P̃a is proportional to ρ. For ρ = 0.1 case, since the
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correlation is small and the assigned P̃a is also small, the HDA scheme is better than

the digital DPC scheme. On the other hand, for ρ = 0.5 case, we allot a relatively

large power to P̃a so that one may get a better estimate if we try to use the digital

DPC scheme to estimate a part of S ′. This property is further discussed in the

Appendix C.4.

In Fig. 6.7, we design the coefficients for SNR = 10 dB which can be regarded

as relatively large SNR compared to the variance of interference. Here, we only

plot the case when channel improves for the sake of brevity. For this case, the

optimal power allocation P̃a for both ρ = 0.1 and ρ = 0.5 are relatively small.

Therefore, the performance improvement provided by the HDA scheme is larger

than that provided by the digital DPC scheme for both cases. It is worth noting

that in Fig. 6.6 and Fig. 6.7, both two proposed schemes can provide a performance

improvement although some of them may be hard to observe due to that the scale

of the y-axis is in dB.

In Fig. 6.8, we plot the performance of the proposed schemes with different choices

of Pa for the same channel parameters with those in the previous figure for ρ = 0.1.

We observe that for both schemes, if we compromise the optimality at the designed

SNR, it is possible to get better slopes of distortion than that obtained by setting

Pa = P̃a. In other words, we can obtain a family of achievable distortion under SNR

mismatch by choosing Pa ∈ [0, P ].

6.6 JSCC for the Generalized Cognitive Radio Channel

An interesting application of the joint source-channel coding problem considered

in this chapter is in the transmission of analog sources over a cognitive radio channel.

In this section, we will first formally state the problem, derive an outer bound on the

achievable distortion region, and then propose a coding scheme based on the schemes
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given in Section 6.4.

6.6.1 Problem Statement

Recently, there has been a lot of interest in cognitive radio since it was proposed

in [82] for flexible communication devices and higher spectral efficiency. In a con-

ventional cognitive radio setup, the lower priority user (usually referred to as the

secondary user) listens to the wireless channel and transmits the signal only through

the spectrum not used by the higher priority user (referred to as the primary user).

In a generalized cognitive radio channel, simultaneous transmission over the same

time and frequency is allowed. As shown in Fig. 6.9, the problem can be modeled

as an interference channel with direct channel gain 1 and cross channels h1 and h2

representing the real-valued channel gains from user 1 to user 2 and vice versa, re-

spectively. The average power constraints imposed on the outputs of user 1 and 2

are P1 and P2, respectively. Different from interference channels, in cognitive radio

channels, we further assume that the secondary user knows V1 non-causally. Here,

we also assume that the channel coefficient h1 is known by the secondary user. The

received signals are given by




Y1

Y2


 =




1 h1

h2 1







X1

X2


 +




Z1

Z2


 . (6.26)

where Zi ∼ N (0, 1) for i ∈ {1, 2}. The capacity region of this channel has been

studied and is known for some special cases, e.g., the weak interference case [83] [84],

the very-strong interference case [85], and the primary-decode-cognitive case [86].

In this section, we consider the same generalized cognitive radio channel but our

focus is on the case when both users have analog information V1 and V2, respectively.

We are interested in the distortion region which describes how much distortion two
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Figure 6.9: System model for a cognitive radio channel.

users can achieve simultaneously. In particular, we consider the case when the two

sources are correlated with a covariance matrix given by

ΛV1V2 =




σ2
V1

ρσV1σV2

ρσV1σV2 σ2
V2


 . (6.27)

The distortion measure is the MSE distortion measure defined in (6.4). An achievable

distortion region can be obtained by first enforcing the primary user to use the

uncoded scheme and using the proposed schemes given in section 6.4 for the secondary

user. In fact, since the primary user does not have any side-information, analog

transmission is an optimal choice [75] [87] in terms of the distortion achieved at the

primary receiver. Further notice that since we do not consider SNR mismatch here,

it makes no difference which proposed scheme we use.

138



6.6.2 Outer Bound

In this subsection, we derive an outer bound on the distortion region for the

generalized cognitive radio channel with nR1 = I(X1;Y1) and nR2 = I(X2;Y2|X1).

Then, for the primary user, we have

n

2
log

σ2
V1

D1

(a)

≤ I(V1; V̂1)

(b)

≤ I(X1;Y1)

= nR1, (6.28)

where (a) follows from rate distortion theory and (b) follows from the data processing

inequality. Also, for the secondary user, we have

n

2
log

σV2(1− ρ2)

D2
≤ I(V2; V̂2|V1)

(a)
= I(V2; V̂ 2|V1,X1)

(b)
= I(V2; V̂2|X1)

(c)

≤ I(X2;Y2|X1)

= nR2, (6.29)

where (a) is due to the fact that X1 is a deterministic function of V1, (b) follows

from the Markov chain V1 ↔ (X1,X2) ↔ (Y1,Y2), and (c) follows from the data

processing inequality. Thus, we have

Dob1 =
σ2
V1

R1
, (6.30)

Dob2 =
σ2
V2
(1− ρ2)

R2

, (6.31)
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where (R1, R2) must lie inside the capacity region of the generalized cognitive radio

channel.

As mentioned earlier, the capacity region of this channel setup is only known

for some special cases. Fortunately, for those cases whose capacity regions remain

unknown, outer bounds on (R1, R2) are available (see e.g. [86] wherein the authors

give an unified view of outer bounds for different cases) and therefore we can still

obtain the outer bound given in (6.30) and (6.31).

6.6.3 Proposed Coding Scheme

Let the primary user simply transmit the scaled version of the uncoded source

X1 =
√
P1/σ

2
V1
V1. Therefore, the bottom channel in Fig. 6.9 reduces to the situation

we considered in the previous section with source V = V2 and interference S = h1X1.

The covariance matrix becomes (6.5) with

σ2
V = σ2

V2
, (6.32)

σ2
S = h2

1P1. (6.33)

The secondary user then encodes its source to X2 by the HDA scheme described

previously in section 6.4.2 with power P2 = Ph + Pa and coefficients according to

(6.22). With these coefficients, the corresponding distortion D2 is computed by

(6.19). At the receiver 1, the received signal is

Y1 = X1 + h2X2 + Z1

=
(
1 + (1− γ)

√
ah1h2

)
X1 + h2Xh + h2

√
aγV2 + Z1. (6.34)
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Decoder 1 then forms a linear MMSE estimate from Y1 given by V̂1 = β1Y1, where

β1 = E[V1Y1]/E[Y
2
1 ] and

E[V1Y1] =
(
1 + (1− γ)

√
ah1h2

)√
P1σ2

V1
+ h2

√
aγρσV1σV2 (6.35)

E[Y 2
1 ] =

(
1 + (1− γ)

√
ah1h2

)2
P1 + ah2

2γ
2σ2

V2
+

h2
2Ph + 2

√
ah2γρ

√
P1σ

2
V2

(
1 + (1− γ)

√
ah1h2

)
+N1. (6.36)

Therefore, the corresponding distortion is D1 = σ2
V1

− β1E[V1Y1].

It can be verified that assigning γ = 1 may lead to a suboptimal D1 in general.

Thus, as we mentioned in Section 6.4.1, one may want to assign a non-zero power

to transmit S in order to achieve a larger distortion region. We can then optimize

the power allocation for particular performance criteria. For instance, if one desires

achieving the minimum distortion for the secondary user, γ should be set to be 1.

However, if the aim is to obtain the largest achievable distortion region, one should

optimize over Pa ∈ [0, P1] and γ ∈ [0, 1].

6.6.4 Discussions and Numerical Results

Here, we give examples to compare the performance of the outer bound and the

proposed coding scheme for two cases whose capacity region is known, namely the

weak interference case and very-strong interference case. Also, similar to [84], we

present the distortion for the secondary user under the coexistence conditions.

1. Weak interference case: When the interference is weak, i.e., |h2| ≤ 1, the

capacity region is given by [83] [84]

R1 ≤
1

2
log

(
1 +

P1(1 + h2ρx
√

P2/P1)
2

1 + (1− ρ2x)h
2
2P2

)

R2 ≤
1

2
log
(
1 + (1− ρ2x)P2

)
, (6.37)
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where ρx ∈ [0, 1]. One can see that for a fixed ρx, increasing R2 will not affect R1.

Thus, for this case, the outer bounds in (6.30) and (6.31) become

Dob1 =
σ2
V1

1 +
P1(1+h2ρx

√
P2/P1)2

1+(1−ρ2x)h
2
2P2

, (6.38)

Dob2 =
σ2
V2
(1− ρ2)

1 + (1− ρ2x)P2
. (6.39)

One example of the distortion region for this case is shown in Fig. 6.10 in which

we plot the outer bound and the boundary of the distortion region achieved by the

proposed coding scheme. The parameters are set to be σ2
V1

= σ2
V2

= 1, h1 = h2 = 0.5,

and the power constraints are P1 = P2 = 1. In this figure, One can observe that

when ρ = 0, the outer bound is tight and the proposed coding scheme is optimal.

However, the inner and outer bound do not coincide for other ρs and one can see

that the gap increases as ρ increases.

2. Very-strong interference case: The channel is said to be in the very-strong

interference regime if the following conditions are satisfied,

|h2| ≥ 1, (6.40)

|h1

√
P1/P2 + 1| ≥ |

√
P1/P2 + h2|, (6.41)

|h1

√
P1/P2 − 1| ≥ |

√
P1/P2 − h2|. (6.42)

The capacity region of this case is the union of (R1, R2) satisfying [85]

R2 ≤
1

2
log
(
1 + (1− ρ2x)P2

)

R1 +R2 ≤
1

2
log
(
1 + P1 + h2

2P2 + 2ρxh2

√
P1P2)

2
)
, (6.43)
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where ρx ∈ [0, 1]. For this case, different choices of R2 may lead to different upper

bounds for R1. Thus, the outer bound can be obtained by collecting all the Pareto

minimal points of (D1, D2) among all choices of (R1, R2) and ρx.

In Fig. 6.11, the outer bound and the boundary of the distortion region achieved

by the proposed scheme are plotted. All the parameters are set to be the same as

those in the previous figure except for h1 = h2 = 1.5 now. It is easy to see that

(6.40)-(6.42) are satisfied under these parameters. One can see that for this case the

inner and outer bound do not coincide even for ρ = 0 case. This may be due to

the fact that in the proposed coding scheme, the primary decoder treats the signal

from the secondary user as extra noise. This violates the insight of the very-strong

interference regime that one should first decode interfering signal and then cancel

it out since the interference is “very-strong” and is regarded as easier to decode.

However, for the proposed scheme, the primary decoder is not able to obtain an

improvement from this decoding strategy. This is because the digital part (or the

HDA part, depends on which scheme is used) of the interfering signal is a function

of V1 and the bin index (or U). Therefore, decoding the bin index (or U) only is not

enough to reconstruct Xd (or Xh).

On the other hand, if one simply ignores the correlation and uses an optimal

separate source-channel code at the secondary user, this coding scheme is guaranteed

to achieve the outer bound for ρ = 0 but this scheme is unable to adapt with ρ, i.e.,

the performance is fixed for all ρs. Therefore, when ρ is large, one may obtain a lower

distortion by using the proposed scheme although it fails to achieve the outer bound

for any ρ. One example is given in Fig. 6.11 that when ρ = 0.5, the distortion region

achieved by the proposed scheme is larger than that achieved by an optimal separate

coding scheme (whose performance is the same as the outer bound for ρ = 0). It

is interesting to build a coding scheme that achieves the outer bound for ρ = 0 and
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Figure 6.11: Distortion region for the very-strong interference case with P1 = P2 =
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= 1, and h1 = h2 = 1.5.

is capable of adapting with ρ for the very-strong interference case; however, this is

beyond the scope of this chapter.

3. Coexistence conditions : In [84], the coexistence conditions are introduced to

understand the system-wise benefits of cognitive radio. The authors study the largest

rate that the cognitive radio can achieve under these coexistence conditions described

as follows.

⋄ the presence of cognitive radio should not create rate degradation for the pri-

mary user, and

⋄ the primary user does not need to use a more sophisticated decoder than it

would use in the absence of the cognitive radio. i.e, a single-user decoder is enough.
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Similar to this idea, we study the distortion of the secondary user under the

following conditions

♣ the presence of cognitive radio should not create distortion increment for the

primary user, and

♣ the primary user uses a single-user decoder.

We present the outer bound and the signal-to-distortion ratio for the secondary

user obtained by the proposed scheme under coexistence conditions. Here the outer

bound is given by

Dob2,coexist = inf

Dob1≤
σ2
V1

1+P1

Dob2, (6.44)

where Dob1 and Dob2 are given in (6.30) and (6.31), respectively, and R1 and R2

therein can be further bounded by the capacity region or upper bounds on the ca-

pacity region as mentioned. Note that when taking the infimum, we simply constrain

the distortion of the primary user to be at most the one achieved when there is no

interference at all and ignore the second coexistence condition. i.e., this outer bound

allows the primary decoder to be any possible decoder, not necessary a single-user

decoder.

In Fig. 6.12 and Fig. 6.13, the achievable distortion for the secondary user is

plotted for the same set of parameters as in Fig. 6.10 and Fig. 6.11, respectively. As

shown in these figures, the proposed scheme is able to increase the secondary user’s

signal-to-distortion ratio without degrading the performance of the primary user.

Moreover, one can observe that at ρ = 0 the proposed coding is optimal for the weak

interference case but not for the very-strong interference case. This may be due to

the fact that in the proposed coding scheme the interfering signal is not fully decoded.

This may also be the consequence of ignoring the second condition when deriving

the outer bound. Another interesting observation is that in Fig. 6.13, the signal-to-
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Figure 6.12: Distortion region for the weak interference case under coexistence con-
ditions, h1 = h2 = 0.5.

distortion ratio increases more rapidly than that in Fig. 6.12. This is because in the

very-strong interference case, the channel would amplify the secondary user’s signal

much more than that in the weak interference case. So the secondary user could

use less power to boost the primary signal such that the coexistence conditions are

satisfied and then use the remaining power to decrease its own distortion.

6.7 Conclusions

In this chapter, we have discussed the joint source-channel coding problem with

interference known at the transmitter. In particular, we considered the case that the

source and the interference are correlated with each other. We proposed a digital
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DPC scheme and a HDA scheme and showed that both two schemes can adapt with

ρ. The performance of these two schemes under SNR mismatch are also discussed.

Different from typical separation-based schemes which are not able to take advan-

tage of a better channel SNR and suffer from abrupt degradation when the channel

deteriorates, both the proposed schemes can benefit from a better side-information

acquired at the decoder and also provide a graceful degradation and improvement

under SNR mismatch. However, there is a difference between the performance of the

two proposed schemes when SNRa > SNRd and which scheme is better depends on

the designed SNR and ρ.

These two schemes are then applied to the generalized cognitive radio channel for

deriving an achievable distortion region. Outer bounds on distortion region for this

channel are also provided. To the best of our knowledge, this is the first joint source-

channel coding scheme that has been proposed for the generalized cognitive radio

channel. Numerical results suggest that, in the weak interference regime, the gap

between the inner and outer bound is reasonably small for small and medium ρ and

increases as ρ increases. Moreover, in the very-strong interference regime, there exist

ρs such that the proposed joint source-channel coding scheme outperforms optimal

separate coding scheme. The system-wise benefits of cognitive radio in terms of

distortion are also studied via imposing the coexistence conditions.
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7. CONCLUSIONS

The bidirectional relay channel with ISI and MIMO bidirectional relay chan-

nel have been studied in the first part of this dissertation. We have extended the

compute-and-forward strategy to these scenarios which has been very successful in

memoryless bidirectional relay channel. For the bidirectional relay channel with ISI,

we proposed a time-domain approach that prefilters the input codewords so that

the equivalent ISI channel seen by the relay is perfectly aligned. After this, the lat-

tice precoding and an unbiased MMSE equalizer was adopted so that the problem

can be converted into a memoryless bidirectional relay channel; hence, the compute-

and-forward strategy can be directly carried out. Our results have shown that the

bidirectional relay channel with memory is inseparable, i.e., in order to achieve the

capacity, joint processing across sub-channels other than power allocation is required.

We then studied a relevant model for the considered scenarios, namely the parallel

bidirectional relay channels. The corresponding linear deterministic model has been

considered and its capacity region has been fully characterized. Based on the insight

obtained from the study of the deterministic model, we proposed two coding schemes

that are able to approach the capacity region to within a constant gap. This led us

to an approximate characterization of the capacity region for the considered setting.

After establishing the information-theoretic results, we focused on designing prac-

tically implementable compute-and-forward schemes. The separation-based compute-

and-forward framework that we previously proposed was considered. We proposed

two families of constellations that are suitable for compute-and-forward. The con-

stellations in the first family are isomorphic to the corresponding extension fields

and hence can be directly used for the separation-based compute-and-forward. On
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the other hand, using the Chinese Remainder Theorem, we showed that the constel-

lations in the second family are isomorphic to the corresponding product fields. We

then used the idea of multilevel coding/multistage decoding to enable the compute-

and-forward for the constellations in the second family. The introduction of this

multilevel coding/multistage decoding also resulted in a huge reduction in compu-

tational complexity for the constellations in the first family. For example, with the

proposed multilevel coding/multistage decoding, for a constellation with q2 elements,

the channel coding has to work only over Fq instead of Fq2 .
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APPENDIX A

APPENDIX TO CHAPTER 3

A.1 Optimal Power Allocation for Cs

The problem we wish to solve is given by

max
P

∫ π

−π

min

{
C

(
Pi(θ)|hi(θ)|2

σ2

)
, C

(
PRj(θ)|gj(θ)|2

σ2

)}
dθ (A.1)

s.t.
1

2π

∫ π

−π

Pi(θ)dθ ≤ Pi,
1

2π

∫ π

−π

PRj(θ)dθ ≤ PR,

Pi(θ) ≥ 0, PRj(θ) ≥ 0, ∀θ,

for i, j ∈ {A,B} and i 6= j. Note that the objective function in (3.8) is Riemann

integrable since the minimum of two Riemann integrable functions is also Riemann

integrable [88]. Now, instead of solving the original optimization problem, we can

partition the whole spectrum into L sub-channels and then solve the following prob-

lem instead,

max
P

L∑

l=1

Rij(l) (A.2)

s.t. Rij(l) ≤ C

(
Pi(l)|hi(l)|2

σ2

)
,

Rij(l) ≤ C

(
PRj(l)|gj(l)|2

σ2

)
,

L∑

l=1

Pi(l) ≤ LPi,
L∑

l=1

PRj(l) ≤ LPR.

Pi(l) ≥ 0, PRj(l) ≥ 0, ∀l.
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Clearly, this optimization problem is convex and Slater’s condition holds so that

it can be solved efficiently [89] and its solution is determined by the Karush-Kuhn

Tucker (KKT) conditions. The corresponding Lagrangian is given by

L = −
L∑

l=1

Rij(l)

+
∑

l=1

µ1(l)

(
Rij(l)− C

(
Pi(l)|hi(l)|2

σ2

))

+
∑

l=1

µ2(l)

(
Rij(l)− C

(
PRj(l)|gj(l)|2

σ2

))

−
L∑

l=1

µ3(l)Pi(l)−
L∑

l=1

µ4(l)PRj(l)

+ v1

(
L∑

l=1

Pi(l)− LP

)
+ v2

(
L∑

l=1

PRj(l)− LP

)
, (A.3)

where µ1(l), µ2(l), µ3(l), µ4(l), v1, v2 ≥ 0 are the dual variables. The feasible condi-

tions together with the following conditions form the KKT conditions,

a) µ1(l)

(
Rij(l)− C

(
Pi(l)|hi(l)|2

σ2

))
= 0,

b) µ2(l)

(
Rij(l)− C

(
PRj(l)|gj(l)|2

σ2

))
= 0,

c) µ3(l)Pi(l) = 0, d) µ4(l)PRj(l) = 0,

e) µ1(l) + µ2(l) = 1,

f) µ1(l)
|hi(l)|2

σ2 + Pi(l)|hi(l)|2
+ µ3(l)− v1 = 0,

g) µ2(l)
|gj(l)|2

σ2 + PRj(l)|gj(l)|2
+ µ4(l)− v2 = 0.
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Solving for the Pi and PRj , one obtains

P ∗∗
i (l) =

( |gj(l)|2
v1|gj(l)|2 + v2|hi(l)|2

− σ2

|hi(l)|2
)+

(A.4)

P ∗∗
Rj(l) =

( |hi(l)|2
v1|gj(l)|2 + v2|hi(l)|2

− σ2

|gj(l)|2
)+

. (A.5)

Now, let the number of sub-channels L go to infinity, one obtains (3.9) and (3.10)

and thus completes the proof.
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APPENDIX B

APPENDIX TO CHAPTER 4

B.1 Proof of Theorem 17

Without loss of generality,
∑L

l=1 nl ≥
∑L

l=1ml is assumed; otherwise, one can

switch the role of nodes A and B. Note that, for this case, one has that Cex =
∑L

l=1ml. We again define

Rd
MAC,C ,

L∑

l=1

min(nl, ml), (B.1)

Rd
MAC,A ,

L∑

l=1

(nl −ml)
+, (B.2)

Rd
MAC,B ,

L∑

l=1

(ml − nl)
+. (B.3)

The coding scheme for the reciprocal case is described as follows. In the MAC

phase, both nodes use all the bit pipes belonging to the aligned part to transmit

signals. Therefore, the relays will receive a common message of Rd
MAC,C bits. In

addition to this, some of the bit pipes belonging to the non-aligned part are also used.

At the relay, this will result in a private message sent from node A of Rd
A ≤ Rd

MAC,A

bits and a private message sent from node B of Rd
B ≤ Rd

MAC,B bits.

In the BC phase, the relay first re-routes the bits in Rd
A and Rd

B to other sub-

channels that can support the transmission of the private messages to the intended

destination. After that, each sub-channel independently performs the BBC cod-

ing [55], i.e., separate coding. Since the uplink channel and the downlink channel

are reciprocal, it is guaranteed that the sub-channel l can reliably transmit exactly
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min(nl, ml) bits. So all the functions can get through the channel and

Rd
C =

L∑

l=1

min(nl, ml) = Rd
MAC,C. (B.4)

In addition to that, the sub-channel l can also support the transmission of private

messages of

nl −min(nl, ml) = (nl −ml)
+, (B.5)

ml −min(nl, ml) = (ml − nl)
+, (B.6)

bits to nodes A and B, respectively. Therefore, the private message sent from node

A that is decodable at node B can have a rate up to

Rd
A = min

{
L∑

l=1

(ml − nl)
+, Rd

MAC,A

}

= min

{
L∑

l=1

(ml − nl)
+ +min(nl, ml),

L∑

l=1

(nl −ml)
+ +min(nl, ml)

}
−min(nl, ml)

= min

{
L∑

l=1

ml,
L∑

l=1

nl

}
−min(nl, ml)

(a)
=

L∑

l=1

ml −min(nl, ml), (B.7)

where (a) is due to the assumption that
∑L

l=1 nl ≥ ∑L
l=1ml. Also, the private
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message sent from node B that is decodable at node A can have a rate up to

Rd
B = min

{
L∑

l=1

(nl −ml)
+, Rd

MAC,B

}

= min

{
L∑

l=1

(nl −ml)
+ +min(nl, ml),

L∑

l=1

(ml − nl)
+ +min(nl, ml)

}
−min(nl, ml)

= min

{
L∑

l=1

nl,
L∑

l=1

ml

}
−min(nl, ml)

(a)
=

L∑

l=1

ml −min(nl, ml), (B.8)

where again in (a) we use the assumption that
∑L

l=1 nl ≥
∑L

l=1ml. Therefore, this

scheme achieves the rate pair given by

Rd
AB = Rd

C +Rd
A =

L∑

l=1

ml,

Rd
BA = Rd

C +Rd
B =

L∑

l=1

ml. (B.9)

Thus, there always exists a routing strategy that can achieve the capacity region.

B.2 Proof of Theorem 18

Similar to the proof of Theorem 17, without loss of generality, we assume

L∑

l=1

log
(
1 + P |hAl|2

)
≥

L∑

l=1

log
(
1 + P |hBl|2

)
= Cex. (B.10)

For the sub-channels having a equal gain, i.e., |hAl|2 = |hBl|2, we set αAl = 1,

αBl = 1, R
(2)
Al = 0, and R

(2)
Bl = 0. The relay directly decodes the received signal to
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the modulo-sum of two lattice codewords. This results in

R
(1)
Al = R

(1)
Bl ≥ log

(
1 + P |hAl|2

)
− 1. (B.11)

For the sub-channels with |hAl|2 > |hBl|2, node A can have one extra codeword

in the MAC phase. We therefore set αBl = 1 and R
(2)
Bl = 0 and choose the power

allocation at node A such that the two lattices are perfectly aligned at the relay as

αAl =
|hBl|2
|hAl|2

. (B.12)

The relay first decodes the extra codeword x
(2)
Al by treating the lattice part as noise.

It then subtracts the decoded codeword and computes the lattice function. Again,

this results in

R
(1)
Al +R

(2)
Al = log

(
1

2
+ P |hBl|2

)+

+ log

(
1 +

P |hAl|2(1− αAl)

1 + 2P |hBl|2
)

≥ log
(
1 + P |hAl|2

)
− 1, (B.13)

and

R
(1)
Bl +R

(2)
Bl ≥ log

(
1 + P |hBl|2

)
− 1. (B.14)

For the sub-channels with |hAl|2 < |hBl|2, we switch the role of nodes A and B

and hence have αAl = 1, R
(2)
Al = 0, and

αBl =
|hAl|2
|hBl|2

. (B.15)

For this case, the relay again first decodes the extra codeword x
(2)
Bl by treating the

lattice part as noise, subtracts it out, and then decodes the lattice function. Again,
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one can bound the sum rates as

R
(1)
Al +R

(2)
Al ≥ log

(
1 + P |hAl|2

)
− 1, (B.16)

and

R
(1)
Bl +R

(2)
Bl = log

(
1

2
+ P |hAl|2

)+

+ log

(
1 +

P |hBl|2(1− αBl)

1 + 2P |hAl|2
)

≥ log
(
1 + P |hBl|2

)
− 1. (B.17)

In the BC phase, the relay first performs bit loading for assigning the bits in

x
(2)
Al and x

(2)
Bl to other sub-channels that can support the transmission of the private

message to the intended destination. This mimics the behavior of routing in the

deterministic model. After that, each sub-channel independently performs the BBC

coding [55], i.e., separate coding. Since the uplink channel and the downlink channel

are reciprocal, it is guaranteed that all the decoded lattice functions can be reliably

transmitted inside the same sub-channel. Hence, the functions can have

RC =
L∑

l=1

R
(1)
Al =

L∑

l=1

R
(1)
Bl , (B.18)

bits. In addition to that, the sub-channel l can also support the transmission of

a private message of a rate log(1 + P |hAl|2) − R
(1)
Bl to node A, and that of a rate

log(1 + P |hBl|2)−R
(1)
Al to node B. Therefore, the private message sent from node A

170



that is decodable at node B can have a rate up to

RA = min

{
L∑

l=1

R
(2)
Al ,

L∑

l=1

log(1 + P |hBl|2)− R
(1)
Al

}

= min

{
L∑

l=1

R
(1)
Al +R

(2)
Al ,

L∑

l=1

log(1 + P |hBl|2)
}

− RC

≥ min

{
L∑

l=1

log(1 + P |hAl|2)− 1,
L∑

l=1

log(1 + P |hBl|2)
}

− RC

≥ min

{
L∑

l=1

log(1 + P |hAl|2),
L∑

l=1

log(1 + P |hBl|2)
}

−RC − L

(a)
=

L∑

l=1

log(1 + P |hBl|2)−RC − L

(B.19)

where (a) follows from the assumption that
∑L

l=1 log(1 + P |hAl|2) ≥ ∑L
l=1 log(1 +

P |hBl|2). Also, the private message sent from node B that is decodable at node A

can have a rate up to

RB = min

{
L∑

l=1

R
(2)
Bl ,

L∑

l=1

log(1 + P |hAl|2)− R
(1)
Bl

}

= min

{
L∑

l=1

R
(1)
Bl +R

(2)
Bl ,

L∑

l=1

log(1 + P |hAl|2)
}

− RC

≥ min

{
L∑

l=1

log(1 + P |hBl|2)− 1,

L∑

l=1

log(1 + P |hAl|2)
}

− RC

≥ min

{
L∑

l=1

log(1 + P |hBl|2),
L∑

l=1

log(1 + P |hAl|2)
}

− RC − L

(a)
=

L∑

l=1

log(1 + P |hBl|2)− RC − L,

(B.20)
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where again (a) is due to the assumption that
∑L

l=1 log(1 + P |hAl|2) ≥
∑L

l=1 log(1 +

P |hBl|2). Therefore, this scheme achieves the rate pair given by

RAB = RC +RA

≥
L∑

l=1

log(1 + P |hBl|2)− L

= Cex − L, (B.21)

and that from node B to A is given by

RBA = RC +RB

≥
L∑

l=1

log(1 + P |hBl|2)− L

= Cex − L. (B.22)

This shows that there always exists a bit loading strategy such that together with

separate BBC coding at each sub-channel, it achieves the exchange capacity to within

L bits.
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APPENDIX C

APPENDIX TO CHAPTER 6

C.1 Equivalence of (6.17) and (6.19)

In this appendix, we verify that with the knowledge of actual channel SNR, two

proposed schemes perform exactly the same. For fixed γ and Ph = P−Pa, the second

term in (6.19) becomes

ΓTΛ−1
UY Γ =

E[V U ]2E[Y 2]− 2E[V U ]E[V Y ]E[UY ] + E[V Y ]2E[U2]

E[U2]E[Y 2]− E[UY ]2
, (C.1)

where

E[V U ] = αE[S ′V ] + κσ2
V , (C.2)

E[V Y ] = E[S ′V ], (C.3)

E[U2] = Ph + α2
E[S ′2] + κ2σ2

V + 2ακE[S ′V ], (C.4)

E[Y 2] = Ph + E[S ′2] +N, (C.5)

E[UY ] = Ph + αE[S ′2] + κE[S ′V ], (C.6)

with α and κ2 determined by (6.22) and

E[S ′2] = aγ2σ2
V + [1 +

√
a(1− γ)]2σ2

S

+ 2
√
aγ[1 +

√
a(1− γ)]ρσV σS, (C.7)

E[S ′V ] =
√
aγσ2

V + [1 +
√
a(1− γ)]ρσV σS. (C.8)
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After some algebra, we can rewrite the numerator and denominator in (C.1) as,

respectively,

Ph {E[S ′V ]2ND∗ + σ2
V Ph(σ

2
V E[Y

2]− E[S ′V ]2)}
(Ph +N)D∗ , (C.9)

and

Ph {(ND∗ + Phσ
2
V )E[Y

2]− PhE[S
′V ]2}

(Ph +N)D∗ . (C.10)

Thus, we can rewrite (6.19) as

Dhda = σ2
V − ΓTΛ−1

UY Γ = σ2
V − (C.9)

(C.10)

= D∗ N(σ2
V E[Y

2]− E[S ′V ]2)

(ND∗ + Phσ
2
V )E[Y

2]− PhE[S ′V ]2

(a)
=

ND∗(σ2
V E[Y

2]− E[S ′V ]2)

(Ph +N)(σ2
V E[Y

2]− E[S ′V ]2)

=
D∗

1 + Ph

N

, (C.11)

where (a) follows from that D∗ = σ2
V − E[V Y ]2/E[Y 2] and E[V Y ] = E[S ′V ]. This

completes the proof.

C.2 Digital Wyner-Ziv Scheme

In this appendix, we summarize the digital Wyner-Ziv scheme for lossy source

coding with side-information V ′ (V = V ′ + W with W ∼ N (0, D∗)) at receiver.

Similar to the previous sections, we omit all the ε and/or δ intentionally for the sake

of convenience and to maintain clarity.

Suppose the side-information is available at both sides, the least required rate

RWZ for achieving a desired distortion D is [64]

RWZ =
1

2
log

D∗

D
. (C.12)
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Let us set this rate to be arbitrarily close to the rate given in (6.16), the rate that

the channel can support with arbitrarily small error probability. The best possible

distortion one can achieve for this setup is then given as

D =
D∗

1 + P−Pa

N

. (C.13)

This distortion can be achieved as follows [64],

1. Let T be the auxiliary random variable given by

T = αsepV +B, (C.14)

where

αsep =

√
D∗ −D

D∗ (C.15)

and B ∼ N (0, D). Generate a length n i.i.d. Gaussian codebook T of size 2nI(T ;V )

and randomly assign the codewords into 2nR bins with R chosen from (6.16). For

each source realization v, find a codeword t ∈ T such that (v, t) is jointly typical.

If none or more than one are found, an encoding failure is declared.

2. For each chosen codeword, the encoder transmit the bin index of this codeword

by the DPC with rate given in (6.16).

3. The decoder first decodes the bin index (the decodability is guaranteed by the

rate we chose) and then looks for a codeword t̂ in this bin such that (t̂,v′) is jointly

typical. If this is not found, a dummy codeword is selected. Note that as n → ∞,

the probability that t̂ 6= t vanishes. Therefore, we can assume that t̂ = t from now

on.
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4. Finally, the decoder forms the MMSE from t and v′ as v̂ = v′ + ŵ with

ŵ =
αsepD

∗

α2
sepD

∗ +D
(t− αsepv

′). (C.16)

It can be verified that for the choice of α the required rate is equal to (C.12) and the

corresponding distortion is

E[(V − V̂ )2] = E[(W − Ŵ )2]

= D∗
(
1− α2

sepD
∗

α2
sepD

∗ +D

)
= D. (C.17)

C.3 Wyner-Ziv with Mismatched Side-Information

In this appendix, we calculate the expected distortion of the digital Wyner-Ziv

scheme in the presence of side-information mismatch. Specifically, we consider the

Wyner-Ziv problem with an i.i.d. Gaussian source and the MSE distortion measure.

Let us assume that the best achievable distortion in the absence of side-information

mismatch to be D. The encoder believes that the side-information is V ′, and V =

V ′ +W with W ∼ N(0, D∗). However, the side-information turns out to be V ′
a and

has the relation V = V ′
a +Wa with Wa ∼ N(0, D∗

a). Under the same rate, we want

to calculate the actual distortion Da suffered by the decoder.

Since the encoder has been fixed to deal with the side-information, V ′, at decoder,

the auxiliary random variable is as in (C.14) with the coefficient given in (C.15). Since

the decoder knows the actual side-information, V ′
a, perfectly, it only has to estimate

Wa. By the orthogonality principle, the MMSE estimate Ŵa can be obtained as

Ŵa =
αsepD

∗
a

α2
sepD

∗
a +D

(T − αsepV
′
a) (C.18)
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Therefore, the estimate of the source is V̂ = V ′
a + Ŵa. The corresponding distortion

is given as

Da = E[(V − V̂ )2] = E[(Wa − Ŵa)
2]

=
D∗D∗

a

D∗D∗
a + (D∗ −D∗

a)D
D (C.19)

Here, we give an example in Fig. C.1 to see the performance improvement through

having the access of a better side-information. In this figure, we plot the −10 log10Da

as −10 log10D
∗
a increases, i.e., as the actual side-information improves. The outer

bound is obtained by assuming the transmitter always knows the distribution of

actual side-information at decoder and the distortion of the HDA scheme is computed

through derivations in section 6.4.2. The parameters are set to be P = N = 1 and

D∗ = 0.1. One can observe in the figure that both the schemes benefit from a better

side-information at decoder. Moreover, it can be seen that these two schemes provide

the same performance under side-information mismatch.

C.4 Discussions for SNR Mismatch Cases

As discussed previously, both the digital DPC scheme and the HDA scheme

benefit from a better SNR. Here, we wish to analyze and compare the performance

for these two schemes under SNR mismatch. Since the digital DPC scheme makes

estimate from T (see Appendix C.2) and V ′ (which is a function of Y ) and the

HDA scheme makes estimate from U and Y , it suffices to compare I(V ;T, Y ) with

I(V ;U, Y ). By the chain rule of mutual information, we have

I(V ;T, Y ) = I(V ; Y ) + I(V ;T |Y ), (C.20)
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Figure C.1: Wyner-Ziv problem with side-information mismatch.
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and

I(V ;U, Y ) = I(V ; Y ) + I(V ;U |Y ). (C.21)

Thus, we only have to compare I(V ;T |Y ) to I(V ;U |Y ). Let us consider ρ = 0 case

for example,

I(V ;T |Y ) = h(T |Y )− h(T |V, Y )

= h(αsepV +B|Y )− h(αsepV +B|V, Y )

= h(αsepV − αsepβaY +B|Y )− h(αsepB|V, Y )

= h(αsepWa +B|Y )− h(B)

(a)
= h(αsepWa +B)− h(B)

=
1

2
log

α2
sepD

∗
a +D

D
, (C.22)

where αsep andWa are defined in Appendix C.3 and (a) follows from the orthogonality

principle.

I(V ;U |Y ) = h(U |Y )− h(U |V, Y )

= h(U |Y )− h(Xh + αS ′ + κV |V, Y )

= h(U |Y )− h ((1− α)Xh − αZa|V, Y )

(a)

≥ h(U |Y )− h ((1− α)Xh − αZa)

=
1

2
log

E[U2]− E[UY ]2/E[Y 2]

(1− α)2Ph + α2Na

. (C.23)

where (a) follows from that conditioning reduces entropy and the equality occurs if

there is no SNR mismatch.

Two examples are given in Fig. C.2 to compare these two quantities with and

179



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Pa

Without SNR mismatch

 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Pa

With SNR mismatch

 

 

I(V;T|Y)
I(V;U|Y)

I(V;T|Y)
I(V;U|Y)

SNR
d
=0 dB, SNR

a
=3 dB  

SNR
d
=10 dB, SNR

a
=13 dB  

SNR
d
=10 dB, SNR

a
=10 dB  

SNR
d
=0 dB, SNR

a
=0 dB  

Figure C.2: Comparisons of (C.22) and (C.23).

without SNR mismatch for a small and a large designed SNR, respectively. One can

observe that without SNR mismatch, these two quantities coincide with each other

for all choices of Pa. This implies the result in section 6.4 that without mismatch

the digital DPC scheme and the HDA scheme provide exactly the same distortion.

However, with SNR mismatch, we can observe that which quantity is larger really

depends on Pa for the small designed SNR case. On the other hand for designed SNR

= 10 dB case, we have I(V ;U |Y ) > I(V ;T |Y ) for a wide range of Pa (except for

some Pa close to 1). This explains the results in section 6.5 that, for large designed

SNRs, the HDA scheme has better results than the digital DPC scheme does while

for small designed SNRs we cannot make this conclusion easily.
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