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ABSTRACT

A co-simulation methodology is explored whereby a finite element code and a

multi-body dynamics code featuring flexible cantilevered beams can be coupled and

interactively executed. The floating frame of reference formulation is used to develop

the equations of motion. The floating frame is fixed at the blade root. Such a formu-

lation results in ordinary differential equations without added algebraic constraints.

A variety of loose coupling and tight coupling schemes are examined for this prob-

lem. To synchronize the coupling variables, a Gauss-Seidel type iterative algorithm

is used. The resulting fixed-point iterations are accelerated using Aitken’s adap-

tive relaxation technique. The methodology is evaluated for FAST, a wind turbine

aeroelastic simulation code developed by NREL. As with FAST, many multi-body

codes which can model flexibility employ modal methods. A proposed addition for

FAST to simulate flexible effects using a finite element method module offers a po-

tential to include a variety of non-linearities and also provides possibilities for using

a high-fidelity aerodynamics module. The coupling schemes are compared and their

applicability and limitations for different scenarios are pointed out. Results validat-

ing the approach are provided.
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NOMENCLATURE

R Position of floating reference frame origin expressed in the inertial reference frame

θ Orientation parameters for the floating reference frame.

qr Vector describing the floating reference frame position and orientation

qf Vector containing nodal displacements

q0 Vector containing undeformed nodal coordinates

q Vector containing nodal displacements

A Transformation matrix between floating and inertial reference frames

N Element shape function matrix

ρ Mass density of beam

mi Mass of ith finite element

li Length of ith finite element

ai Cross-sectional area of ith finite element

ω̄ Angular velocity of the floating reference expressed in its frame

ū Position vector to an arbitrary point in the flexible body

˜̄u Skew-symmetric matrix formulation of the position vector

˜̄I Skew-symmetric matrix formulation of the 3x3 identity matrix

J Inertia of the turbine with the blades

J̄ Inertia of the turbine without the blades

Subscript

l Iteration count

n Time step

i Element number

j Blade number
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1. INTRODUCTION

1.1 Multiphysics Simulations

With the advent of increasing computational resources and processing power, re-

search in multiphysics simulations has received significant attention in recent decades.

As can be observed in the relevant literature, much of this effort has been focused

on fluid-structure interaction problems. Aeroelasticity among other multidisciplinary

fields of research requires capabilities for simulation models which can accurately cap-

ture potential couplings between the different types of forces involved [5]. Most sim-

ulations involving aeroelasticity focus on the coupling between FEM(Finite Element

Method) and CFD (Computational Fluid Dynamics)codes. The research described

herein addresses a coupling between a third module, MBD(MultiBody Dynamics)

with FEM and CFD in order to provide a comprehensive multidisciplinary simula-

tion environment for the three disciplines concerned: multibody dynamics, structural

dynamics and aerodynamics. Such an environment is envisioned for the wind turbine

aeroelastic simulation environment FAST.

Multiphysics simulations are concerned with the simulation of multiple physical

phenomena represented by different physical models. A partitioned form of such an

analysis appears attractive when a physical model is too complex to be constructed

in a monolithic form or when extensively validated modules handling physical models

already exist. Several industries such as the wind turbine industry use computer-

aided engineering (CAE) tools to a great extent for design and analysis. In wind

energy as larger turbine designs are envisioned, the accuracy of such tools becomes

critical along with a corresponding growth in importance of multiphysics simulations

[2]. There are many motivating reasons why partitioned multiphysics simulations
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have either become commonplace, or may become the norm in the near future, for

CAE based industries [6]:

1.1.1 Capability to Model Complex Physics

Perhaps, the greatest advantage of partitioned simulations is their proven capa-

bilities to handle complex physics without the need to construct a unified theoretical

model accounting for the complex interactions between different physical models. An

important example to cite is computational aeroelasticity, where a complex Navier-

Stokes CFD module is linked with a high-fidelity computational structural dynamics

(CSD) module.

1.1.2 Modularity

Since most multi-physics analysis are beyond the reach of simple analytical meth-

ods, two strategies for computational analysis are typically employed in the industry.

One approach is to develop new monolithic simulation codes in-house. This strategy,

frequently adopted by the rotorcraft industry leads to codes which are developed

for specific configurations and lack flexibility [7] . Such an approach also renders

these codes dysfunctional if an analysis for novel configurations is required or more

advanced high fidelity analysis methods are pursued.

An alternative approach seeking to enforce modularity combines existing codes

representing the different disciplines in an integrated computational environment.

This strategy exploits the advantage that many of these codes have been extensively

validated already. Modules representing the same physics of varying fidelity may be

used as needed depending on available computational resources and accuracy. For

instance, to simulate structural dynamics a non-linear finite element method module

can be replaced easily with an equivalent modal method module if a faster, but low

order model, is required without the need to rewrite the entire code. An advantage

2



related to the protection of intellectual property rights is offered in that modules

can be executed in a black-box approach, or executed remotely across a network,

thus ensuring data encapsulation [8]. Another advantage that modularization offers

with respect to integration schemes is that individual modules can be executed at

different rates and with different discretization schemes as needed. Modularization

maintains many of the advantages of Object Oriented Programming concepts and

mixed-language programming and also offers programmers the ease of developing,

maintaining and sharing code. For instance, in the current study which seeks to co-

simulate a FEM module with FAST, the FEM module code is written in MATLAB

whereas FAST is written in FORTRAN.

1.1.3 Rapid Growth in Processing Power

Given the rapid development in processing power, high-fidelity analysis is in-

creasingly less expensive. Partitioned simulations often require more computational

resources than a corresponding high-fidelity monolithic simulation due to the require-

ment of subiterations if the coupling is numerically unstable. According to Moore’s

law [9] which models the development in processing power in past decades, the num-

ber of transistors on integrated circuits doubles approximately every two years as

illustrated in Fig. 1.1.

In spite of the many advantages that modularization offers, several issues are of

concern particularly those related to stability, convergence and accuracy. It is very

possible that modules with observed stability in their integration schemes turn un-

stable when coupled to each other. In such a scenario, as also is the case for the

current study, additional stabilization schemes will need to be employed. Such sta-

bilization schemes typically involve many sub-iterations at each time-step to enforce

synchronization of the coupling variables. The sub-iterations may prove costly if one
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Fig. 1.1: Moore’s Law - CPU Transistor Counts [1]

or more modules are computationally expensive to execute. Such problems typically

arise in aeroelasticity when co-simulating a CFD module with a CSD module. For

faster execution times, especially from a control system design perspective, reduced

order models are developed which not only offer improved computational efficiency

but also provide insight into the essential features of an otherwise highly complicated

physical model.

To put the study in perspective, several classifications of multiphysics simulations

describe the full scope of interest as defined by David et al [10]. These range from

a bulk-coupled simulation such as radiation-hydrodynamics in astrophysics versus

coupling through an interface as in a typical fluid structure interaction problem.

Multiphyics problems may also be classified based on multi-rate or multi-scale char-

acteristics. Felippa et al [6] point out that multiphysics problems need not represent
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actual physical subsystems as in aeroelasticity, but can represent artificial subsys-

tems(provide examples) for the sake of computational convenience and improved

modularization. In this thesis, the interaction of rigid-body dynamics with flexible-

body dynamics interaction is partitioned into separate rigid-body dynamics and flex-

ible body dynamics modules. Then, such a partition would represent, based on the

aforementioned definitions a artificial subsystem-bulk coupled simulation.

A multibody system is defined as a system of interconnected rigid or flexible

bodies. The bodies may undergo large displacements and rotations. The bodies

may be connected with joints or by force elements such as springs or dampers [11].

The form of equations that are typically obtained for this class of systems for an

arbitrary set of generalized coordinates is a set of ordinary differential equations

(assuming the flexible structure has been discretized using either modal methods

or finite elements) along with a set of constraint equations coupled using a set of

Lagrangian multipliers. If a minimum set of independent coordinates are obtained

that can describe the system dynamics, then the set of ordinary differential equations

would suffice to describe the system dynamics without the need to explicitly identify

the constraints. Several methods can be used to arrive at the equations, the most

common being the Lagrangian or Kane’s method of dynamics. Depending on the

requirements, multibody systems can be modeled with varying fidelity, ranging from

from all bodies considered as rigid to including flexibility effects such as geometric

and material non-linearities [12].

Several reasons are identified for the usefulness of including a finite element mod-

ule within an aeroelastic simulation environment such as FAST. Firstly, if a more

advanced high fidelity aerodynamics module is coupled to FAST, as pointed out

in [7] the accuracy and fidelity of the aerodynamic module should match that of the

structural dynamics module. Coupling a modal method with a high-fidelity Navier-
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Stokes CFD module or coupling a finite element method with a simplified aerody-

namics tool based on the Blade Element Momentum(BEM)theory, would result in

a mismatch. Secondly, the Finite Element Method(FEM) provides an opportunity

to include a variety of non-linearities apart from the already accounted for inertial

nonlinearities (centrifugal and coriolis forces). However, the method developed in

this research does not account for the non-linearities due to the large deformation

of blades, though it offers a potential to account for these effects [8] . Thirdly, as

argued by Bauchau et al [7] , given today’s rapid developments in computer hard-

ware technology, enough processing power is available to simulate complex systems

using FEM without resorting to the lower order modal methods. However, it is

pointed out that partitioning the flexible dynamics into MBD(Multibody dynamics)

and FEM modules is advantageous only if a few flexible bodies need to be simulated

with FEM. These include wind turbine and rotorcraft blades. Partitioning provides

the capability of using varying fidelity as needed. For example, a situation may be

envisioned for a multibody system for a rotorcraft or wind turbine where only the

blades are co-simulated with FEM, and all other flexible components are analyzed

with simple modal methods or spring-mass-damper models.

As described in detail by Shabana et al [13], three methods are commonly used

to integrate finite element and multibody systems: co-simulation or gluing algo-

rithms (GAs), the finite element based direct integration method(FEBDI), and the

multibody system based direct integration method (MSBDI). In this study, since

modularization is a major requirement, the first method, namely gluing algorithms

is pursued. GAs are classified as T-T,X-T and X-X, where X represents kinematic

quantities and T represents forces [8,13,14]. For the current problem, both the MBD

and FEM modules are capable of taking forces as inputs and providing kinematic

quantities as outputs, hence the T-T type algorithm is implemented. In such an al-
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gorithm, kinematic quantities are fed to a coordinator module which, in turn returns

the forces that must be fed into each module.

A variety of aeroelastic simulation codes exist that are routinely used by the

wind turbine industry for design and analysis. Some of the more widely used codes

are FAST, Flex, and GH Bladed, as reviewed in Ref. [15]. The US wind industry

uses mainly two codes: FAST and MSC.ADAMS-A2AD-Aerodyn. Many of these

codes employ low order structural models such as modal methods and low order

aerodynamic models such as BEM methods.

1.2 FAST

Fatigue, Aerodynamics, Structures and Turbulence (FAST) is an industry stan-

dard wind turbine aeroelastic simulation tool developed by NREL for two or three

bladed horizontal axis wind turbines (HAWTs). FAST has been extensively vali-

dated and compared with experimental results [16]. It was also recently certified by

Germanischer Lloyd (GL) Wind Energie GmbH, a leading wind turbine certifying

agency, for on-shore wind turbine certification. The source code is written in FOR-

TRAN and is available open-source for further modifications by developers. Apart

from wind turbine aeroelastic simulation, FAST also comes with other capabilities

such as linearization, controls, interfacing with Simulink and preprocessing FAST

turbine data to enable direct import to the commercial multibody dynamics code

MSC.ADAMS. In the linearization mode, FAST is able to provide a linear repre-

sentation of the system dynamics about an operating point to aid in control system

design and analysis. FAST allows the following control inputs: Blade pitch, Genera-

tor Torque, High Speed Shaft brake, Tip brakes and Nacelle Yaw. The control laws

can be programmed in the provided user-defined subroutines. FAST also allows inter-

facing with Simulink/MATLAB using S-Functions. For this study, this functionality
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is fully used in developing the interface code between FAST and a representative

FEM code written in MATLAB.

1.2.1 System Model

FAST consists of a flexible multibody solver at its core. An aerodynamics mod-

ule (AeroDyn) is co-simulated with the multibody dynamics solver. Currently, the

interaction between these components is loosely coupled. A brief description of the

structural dynamics and aerodynamics modules is given as follows. More details can

be found in the FAST user manual [17].

1.2.1.1 Structural Dynamics Module

FAST models the turbine as a collection of rigid bodies and flexible bodies. Kane’s

method of dynamics [18] is used to derive the equations of motion. The flexible bodies

include the turbine blades, tower and drive shaft. The flexibility of the blades and

the tower are modeled using mode shapes. The tower permits two modes each in the

longitudinal and transverse directions. The flexibility in the drive shaft is modeled

using a spring-damper system. The nine rigid bodies include the earth, support

platform, base plate, nacelle, armature, gears, hub, tail and structure that furls with

the rotor. Although the modal approach for the blades assumes small deformations,

the axial extensional effects due to bending are taken into account. FAST currently

does not provide an option to include torsional modes. FAST also comes with a pre-

processor program to compute mode shapes for a given rotor rpm. FAST provides

the option to enable/disable degrees of freedom (DOF) associated with any flexible

or rigid body. For the current analysis, the planar rotation of a simple three bladed

turbine is investigated. Only the drivetrain DOF is enabled, with the flexibility in

the blades modeled by an attached FEM module.
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1.2.1.2 Aerodynamics Module

To model the aerodynamics, the rotor-aerodynamics module AeroDyn supplies

the aerodynamic forces that are applied to the multibody model in a loosely-coupled

manner. Despite the fact that the aerodynamic sources associated with wind turbines

are extremely complicated, to aid in the design and analysis, the blade-element-

momentum theory is commonly used. BEM is a simplified model based on two-

dimensional quasi-steady theory that has found great use in the wind turbine industry

[18]. The BEM theory seeks to unify two aerodynamics models:

(1) - A blade element model wherein the forces acting on the blade are determined

using the two dimensional lift and drag characteristics of the sectional airfoil.

(2) - A momentum theory model where the forces acting on the blade are computed

using mass and momentum conservation principles.

AeroDyn also includes the alternative Genralized Dynamic Wake (GDW) theory.

AeroDyn has capabilities to model dynamic stall effects using the Beddoes-Leishman

model.

Once the kinematic quantities, such as the rotor rotational and blade section dis-

placements and velocities, are known they are fed to AeroDyn. AeroDyn successively

iterates between both aerodynamic models (1) and (2) until convergence is achieved.

The updated aerodynamic forces are then returned to FAST for integration towards

the next time step, where the scheme is repeated. More details on the theory and

programming interface can be found in the AeroDyn user guide [19].

1.2.2 FAST Modularization

The developers of FAST at NREL have recently investigated possibilities to im-

prove the modularity of FAST. A summary of their research efforts are provided

in Refs. [2, 20]. A means to achieving this goal is the development of a new FAST

9



modularization framework through which different modules as illustrated in Fig. 1.2

can be interconnected. The FAST modules are envisioned to be executed in either

tight or loosely coupled schemes and with continuous or discrete states.

A major purpose of this thesis is to further modularize the structural dynamics

module of FAST with two new modules. The new multibody dynamics module will

handle the rigid body blade dynamics and dynamics of other rigid and/or flexible

bodies. FAST with the blade flexibility disabled is considered here as the new MBD

module. The new FEM module will handle exclusively the flexible-body dynamics of

the blades. In keeping with the new framework and objectives discussed in Refs. [2,20]

both loose and tight coupling strategies are investigated in this thesis.

Fig. 1.2: FAST Modules [2]
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1.3 Background

In this section, the background to the theory for the flexible multibody dynamics

formulation and the co-simulation strategies further developed in the next chapter

is introduced.

1.3.1 Floating Frame of Reference Approach

Fig. 1.3: Flexible Multibody Formulations [3]

To model the flexible multi-body behavior using finite elements, three approaches

are commonly used as described by Brulls et al [3]. These are illustrated in Fig. 1.3.

The inertial frame (IF) approach uses absolute nodal co-ordinates defined in an

absolute reference frame. There is no distinction between the rigid and elastic co-

ordinates. The co-rotational frame (CRF) approach separates the motion into the

gross motion and small deformation motion of the finite element using an interme-

diate frame which follows the gross motion of the element. The floating frame of

reference(FFR) approach uses a reference frame which follows the gross motion of
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the flexible body. This results in a separation of the gross motion and the small de-

formation motion of the individual finite elements in the flexible body. The FFR for-

mulation offers the most straightforward means for integrating a finite-element based

structural dynamics module with a multi-body dynamics module such as FAST. FFR

will be used to develop the equations of motion in this study. A critical requirement

for the use of the FFR formulation is the need for the shape functions to account

for rigid-body modes. This condition is naturally fulfilled by isoparametric elements.

The shape functions used for beam elements, which can describe arbitrary rigid body

translations, cannot describe arbitrary rigid-body rotations since infinitesimal rota-

tions are used for the nodal rotational coordinates. However, the beam element

can be assumed to be isoparametric if small deformations are considered, such that

the rotations of the element described in the FFR can be considered infinitesimal.

Herein, the assumption of small deformations for the nodal rotational displacements

is equivalent to linearizing the terms involving these displacements in the kinematic

equations. It is pointed out that the concept of small deformations is not to be

confused with small strains. Large deformations with small strains is a possibility.

For instance, a highly flexible beam can be appropriately discretized using finite el-

ements such that local strains are small but the deformations with respect to the

floating frame can still be large. The deformations in this context refer to the nodal

displacements relative to the floating frame.

As stated, the FFR offers a method to separate the gross motion of the flexible

body from the small deformation motion of the finite element. Once the finite element

motion is described in the floating frame as is detailed in the next section, it is

necessary to eliminate the rigid-body modes as this is being already accounted for

by the FFR.For a general spatial motion, six conditions relating to the motion of the

finite element nodal coordinates defined in the FFR need to be identified. Commonly
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used reference frame conditions include the nodal-fixed axes and mean-axes [21].

The nodal-fixed axes provides a unique advantage to the objective of MBD-FEM

co-simulation. If the nodal coordinates at the root are fixed at zero, i.e the floating

frame is fixed at the blade root it is seen that the constraint equations enforcing

the the attachment of the flexible blade to the hub do not appear in the equations

of motion. This leads to a system of ordinary differential equations which can be

partitioned and solved separately using a MBD and a FEM solver.

1.3.2 Co-simulation Schemes

Several co-simulation schemes can be envisioned for the MBD-FEM interaction

for FAST. For clarity, they can be classified based on a variety of criteria as briefly

explained below. Schemes which require sub-iterations for this case are often slow. To

accelerate the iterations Aitken’s method is briefly discussed. Finally, performance

parameters for the stabilization schemes are defined.

1.3.2.1 Multiphysics Architectures

In a monolithic architecture, a unified model of the system is represented in

terms of a single set of differential equations and is advanced in time using a single

integrator. In contrast, for a partitioned approach the different physical models

encapsulated in software modules comprising the system are coupled in a variety of

schemes ranging from loose coupling to tight coupling.

1.3.2.2 Solver Schemes

Several definitions exist in the literature concerning what constitutes loose or

tight coupling. To conform to the FAST modularization framework, the definitions

provided in Refs [2, 20] will be followed. Tight coupling is defined as the scheme

where each module sets up the equations pertaining to its respective physics, but
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the states are advanced in time using a solver common to all modules. For loose

coupling, each module sets up the equations for the pertinent physics and also inte-

grates the equations. The modules exchange coupling variables at pre-defined time

intervals. As observed widely in literature, loose coupling schemes without any type

of subiterations taking place at each time step are subject to numerical instability

problems. In fluid-structure interaction problems, such schemes are found to fail if

there are significant added-mass effects [22].

1.3.2.3 Integration Schemes

Time integration schemes are generally classified into explicit and implicit types

[20]. With reference to the loose coupling scheme, an explicit scheme is defined as

one in which the coupling variables at the current time step are used when advancing

to the next time step. For example, consider two systems represented by x and y.

Herein, an explicit scheme is represented by:

xtn+1 = F(xtn ,ytn) (1.1)

ytn+1 = G(ytn ,xtn) (1.2)

For an implicit coupling scheme, the coupling variables from the next time step

are used in the current time step. Since coupling variables at the next time step are

not known a priori, sub-iterations are typically used to facilitate the use of such a

scheme.
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The implicit coupling scheme can be represented generically by systems x and y:

xtn+1 = F(xtn ,ytn+1) (1.3)

ytn+1 = G(ytn ,xtn+1) (1.4)

In addition, explicit and implicit schemes could be defined in a similar manner

for variables native to a module. As is observed widely in the literature and found in

the current study, explicit schemes though computationally less expensive are also

much less stable than implicit schemes.

1.3.2.4 Iteration Schemes

For stable solutions, sub-iterations are found to be necessary in all the schemes

considered here which involve obtaining a partitioned solution from multiple solvers.

Two widely used methods are the Jacobi and Gauss-Seidel approaches. In the Jacobi-

type coupling, variables from the previous iteration are used directly for the current

iteration in both modules as illustrated in Fig. 1.4. On the other hand, iterations

carry forward in a staggered sense in the Gauss-Seidel approach. For instance, as

illustrated in Fig. 1.5, the FEM module uses the latest update from the MBD module

at the current iteration step. The Gauss-Seidel approach is faster in convergence

since variables from the previous time step are used only once per iteration. The

Jacobi method uses only the variables from the previous time step to advance the

iteration without utilizing any current information. However, the Jacobi method

is faster in execution time if both modules can be made to run in parallel [22].

In the research herein, the Guass-Seidel approach is employed since a sequential

programming approach is followed.
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Fig. 1.4: Jacobi Coupling

Fig. 1.5: Gauss-Seidel Coupling

1.3.2.5 Acceleration Schemes

An observation that can be made from Fig. 1.5 is that the iterations can be

represented in as a fixed-point iteration (FPI) of the form:

wk = f(wk+1) (1.5)
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where, w represents the coupling variable for the MBD module that is native to

the FEM module and k represents the iteration count. For the current MBD-FEM

coupling problem, it is observed that fixed point iterations as represented in Eq.(1.5)

are stable and convergent but require many sub-iterations to satisfy the tolerance

limits. Therefore, an acceleration scheme known as the Aitken’s relaxation method

to accelerate the sub-iterations is explored for the current application. A detailed

description and implementation of the algorithm is provided in the next section. The

superior performance of this method compared with the fixed point iteration without

acceleration is demonstrated.

1.3.2.6 Coupling Performance Parameters

The coupling schemes can be analyzed, evaluated and compared using the fol-

lowing performance parameters [22]:

Stability

Stability of the coupling scheme is defined as the property for which the residual, i.e.,

the error between successive estimates, remains bounded as the iterations advance.

Convergence

Convergence is defined as the tendency of the iteration to approach a fixed point as

the iterations advance.

Accuracy

Accuracy is defined as the chosen limit in error in the solution obtained for the

fixed-point iteration as described in Eq.(1.5). Tighter tolerances will require more

sub-iterations.
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1.4 Current Work

A method is developed for co-simulating a multi-body dynamics (MBD) solver

such as FAST with a FEM solver using the FFR formulation. Such a formulation

allows for the separation of the gross motion from the small deformation motion of the

flexible body. The formulation however results in off-diagonal body reference-flexible

coordinate coupling terms in the global mass matrix. This poses a challenge to co-

simulate MBD and FEM codes in a partitioned manner due to numerical instability

issues.

Due to this difficulty among others, for small deformation problems one approach

is to neglect the coupling term involving the effect of elastic deformation on the rigid

body motion. This procedure is referred to as the Linear Theory of Elastodynamics

[11] . However, this approach may not be accurate for cases where the coupling

between the rigid-body motion and elastic deformation is significant as in high speed,

highly flexible or lightweight systems. Using the mean-axis reference conditions for

the FFR, the coupling term does not appear in the equations of motion. Ryu et

al [8, 23] exploit this fact in developing the Partition Iteration Method (PIM) to

co-simulate MBD and FEM codes. However, a drawback of this method is that

an additional MBD solver is needed for each flexible component. Also, enforcing

the mean-axis reference conditions requires the simultaneous solution of the related

constraint equations. A method is proposed herein for FAST which uses a blade-

root nodal fixed floating frame of reference. This formulation allows the possibility

of using an existing MBD code to solve for the rigid-body part of the flexible blade

dynamics, while an FEM code can used to solve for the small-deformation motion

of the flexible blade. However, this formulation results in a system of equations

that cannot be directly solved due to the off-diagonal reference-flexible coordinate
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coupling terms in the mass matrix. More specifically, the partitioned equations

employed by the MBD code requires nodal accelerations and the FEM code requires

rigid-body accelerations (since the equations of motion are second order in time, only

displacements and velocities are available at every time step).

A solution to this problem is proposed using an accelerated iterative algorithm.

At every time-step the MBD and the FEM codes are iteratively executed until the

residual chosen is reduced below a specified tolerance. This approach may be con-

sidered for integrating a general FEM code to an aeroelastic multibody dynamics

code such as FAST in a multidisciplinary computational environment. It is pointed

out that the formulation is valid only for multi-body systems which feature flexible

cantilevered beams such as wind turbine or rotorcraft blades.

Figure 1.6 shows the organization of the different coupling schemes, with a similar

philosophy followed in Ref. [20], that is implemented and tested in order to validate

the formulation. The blocks in the chart are arranged bottom-to-top showing the

progressive increase in the degree of coupling and fidelity. Accordingly, the results are

compared with a full tight coupling case which is designated as the scheme with the

most accurate results, though not necessarily the most computationally convenient

from a modularization perspective.
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Fig. 1.6: FAST-FEM Coupling Schemes Investigated

20



2. THEORY

In this section the associated theory for the flexible-multibody dynamics problem

using the FFR approach is elucidated and relevant equations outlined. With the

equations known, the terms contributing to the coupling between rigid body motion

and small deformation motion become apparent. Subsequently, coupling methods to

account for these coupling effects are considered.

2.1 Equations of Motion

Using the FFR approach, the motion of the deformable body can be represented

by two sets of coordinates: reference and elastic coordinates. The reference coor-

dinates identify the position and orientation of the floating reference origin. The

elastic coordinates identify the nodal displacements of the finite elements comprising

the deformable body defined with respect to the body reference.

The derivation of the equations of motion is explained in detail by Shabana [24].

A brief outline is provided below: The configuration of the reference frame can be

identified by the vector qr

qr = [RT θT]T (2.1)

As illustrated in Fig. 2.1, the vector R describes the position of the reference

frame(X1’,X2’,X3’) origin with respect to the inertial reference(X1,X2,X3). The

vector θ represents the orientation parameters defining the orientation of the body

reference with respect to the inertial reference. The position vector r describes an

arbitrary point on the deformable body with respect to the inertial origin. The vector

r is expressed in the inertial reference frame and is given by:

r = R + Aū (2.2)
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Fig. 2.1: Coordinate Frames

where ū is the position vector of the arbitrary point with respect to the reference

frame origin and A is the transformation matrix between the floating and inertial

reference frame. The vector r may be defined using the finite element shape functions

as:

r = R + AN(q0 + qf ) (2.3)

where N is the shape function matrix for the finite element, q0 represents the

undeformed nodal coordinates, and qf is the vector of nodal deformations.
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The time derivative of the position vector r is given as:

ṙ = Ṙ−A˜̄uḠθ̇ + ANq̇f (2.4)

where Ḡ depends on the choice of the orientation parameters and is obtained

from the relation:

ω̄ = Ḡθ̇ (2.5)

Developing expressions for the kinetic energy and using virtual work principles

by employing the above equations, the mass matrix, the quadratic velocity vector

and the generalized forces for the elastic and external forces can be derived. The

derivations are found in Refs. [8, 24]. Assembling the element level matrices results

in the following equation:


MRR MRθ MRRf

Mθθ Mθf

symmetric Mff




R̈

θ̈

q̈f

+


0 0 0

0 0

symmetric Kff




R

θ

qf

+


FCR

FCθ

0



=


(Qe)R

(Qe)θ

(Qe)f

 +


(Qv)R

(Qv)θ

(Qv)f



(2.7)

The assembly is accomplished using a Boolean transformation matrix [24] which
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identifies the connectivity conditions between the elements. The mass and stiffness

matrix is given by the first and second matrix respectively. The FC vector consists of

the constraint forces. It is observed that FCf
= 0 when the concept of kinematically

admissible virtual displacements [25] is considered ( δqfblade−root
= 0). Qe is the

vector containing generalized external forces and Qv is the quadratic velocity vector.

The detailed expression for the terms in the matrices is given by Shabana [24].

For the studies herein, the turbine rotation confined to the rotor plane is assumed.

Also, the blades are assumed to be connected to the turbine directly at the point of

rotation, i.e. the blades are joined without a hub. Enforcing these assumptions, the

representation Eq.(2.7) for the single blade can be simplified and written along with

the FAST equations of motion for the three-bladed turbine system as follows:

J̄θ̈ = (Qe)FAST −
∑

j

FCθj
(2.8)

Mθθj θ̈ + Mθfjq̈fj = FCθj
+ (Qe)θj + (Qv)θj (2.9)

Mffj
q̈fj + Mfθj θ̈ + Kffj

qfj = (Qe)fj + (Qv)fj (2.10)

j=1..3(Number of blades)

where θ represents the reference coordinates which in this case is simply the rotor

azimuth angle and qf represents the nodal deformation coordinates. Note that if the

full three dimensional motion of the floating frame is considered, the equations are

more involved since the kinematic relations between the chosen orientation parame-

ters and angular velocities will need to be considered. Equation (2.8) represents the

equations of motion for the portion of the turbine without the blades. The effect of

the blades is communicated through the constraint forces
∑

j FCθj
. Accordingly, J̄
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represents the inertia of the turbine components without the blades. (Qe)FAST rep-

resents the external forces acting on the turbine drive-shaft. As discussed in the next

chapter, these forces include the drive-shaft stiffness and damping related forces. It

is observed that when equations 2.8 and 2.9 are added, the constraint forces cancel

out since these are internal reaction forces. The following set of equations result,

written in matrix form:



J Mθf1 Mθf2 Mθf3

Mff1 0 0

Mff2 0

symmetric Mff3





θ̈

q̈f1

q̈f2

q̈f3


+



0 0 0 0

Kff1 0 0

Kff2 0

symmetric Kff3





θ

qf1

qf2

qf3



=



(Qe)θ

(Qe)f1

(Qe)f2

(Qe)f3


+



(Qv)θ

(Qv)f1

(Qv)f2

(Qv)f3


+



(Qe)FAST

0

0

0



(2.12)

The above equation offers a possibility to partition the motion of the flexible

multibody. The flexibility effects of the blade can now be modeled using the finite

element method. The remaining portion of the dynamics including the rigid body

dynamics of the blade can be modeled by FAST. Therefore, J = J̄ +
∑

j Mθθj now

represents the inertia of the turbine including the blades. J is time varying due to

the time-dependent blade deflections. This is done by implementing each row of
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Eq.(2.12) following the first equation in a finite element code. The first equation row

is implemented in FAST. It is observed that the resulting equations from Eq.( 2.12)

form a set of ordinary differential equations which are much easier to handle than

the differential algebraic equations (DAEs) which are obtained for other approaches

such as the mean-axis floating frame of reference [23] [8]. The expressions for the

terms in the matrices are provided in Appendix A.

It is also seen that the equations related to FAST and FEM are coupled by terms

in the mass matrix. In addition, coupling also exists in the external force vector, Qe,

which in this case is populated with aerodynamics forces and the quadratic velocity

vector Qv.

2.2 Constraint Forces

In this section, it is demonstrated that the constraint forces do not appear in the

finite element equations if the floating frame is fixed to the blade root. Virtual work

principles are used. The generalized external forces are also derived [24]. The virtual

work of a given external force vector F acting at a point in the flexible body and

associated with the arbitrary virtual displacement [25] is given by:

δW = F · δr (2.13)

From Eq.(2.3), and using the shape function matrix N (defined in Appendix A),

a variation in r is given by:

δr = δR +
∂Aū

∂θ
δθ + ANδqf (2.14)
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The generalized forces is obtained as :

FR = F (2.15)

Fθ = FT∂Aū

∂θ
(2.16)

Fqf
= FTAN (2.17)

If the floating frame is fixed at the root of the blade, i.e. nodal deflections at the

root are forced to be zero(δqfblade−root
=0), then the constraint forces do not appear

in the finite element equations since the contribution to the virtual work is zero.

As discussed in Ref. [25], by using the concept of kinematically admissible virtual

displacements in contrast to arbitrary virtual displacements, the constraint forces do

not appear in the finite element equations of motion. It is also noted from Eq.(2.17),

that the generalized forces that are applied to the FEM module are the external

forces expressed in the floating frame. ū in Eq.(2.17)(Generalized forces in FAST)

includes the effect of deformations, which are obtained from the FEM module.

For the planar rotation problem, the transformation matrix A is given as:

A =

 cos(θ) −sin(θ)

sin(θ) cos(θ)



and therefore, d/dθ(Aū) = Aθūθ̇, with Aθ given as:

27



Aθ =

 −sin(θ) −cos(θ)

cos(θ) −sin(θ)



Similarly, it can be shown that the constraint moments do not appear in the

equations of motion for the nodal coordinates.

Consider the virtual work due to moments Mθ due to an arbitrary infinitesimal

virtual displacement θT acting on a finite element node:

δW = Mθ · δθT (2.20)

where

δθT = δθ + δ(θf ) (2.21)

θf is the nodal rotations expressed in the inertial frame. Equation(2.21) is valid

since infinitesimal changes in angles are considered, hence the vector sum of rotations

are allowed. If nodal deflections at the blade root are forced to be zero, then the

contribution of the nodal deflections to the virtual work is also zero. Therefore, the

constraint moments do not appear in the finite element equations of motion.

2.3 Coupling Methods

Several coupling strategies are explored to integrate FAST and the FEM solver

interactively ranging from loosely coupled to full tight coupling methods. Equation

(2.12) cannot be solved directly by either FAST or the finite element code since the

equations are second order in time and q̈f and θ̈ are not known a priori. Only the

velocities and displacements are available at every time step. In this section, coupling

methods are listed in increasing order of fidelity and complexity. FAST and the FEM
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module interact in a Gauss-Seidel manner while executing iterations. In the schemes

considered, with the exception of the full tight coupling scheme, the Mθf1q̈f1 , Mθf2q̈f2

and Mθf3q̈f3 terms in Eq.(2.12) are taken to right side of the equation in both the

FAST and FEM modules and treated as pseudo-loads acting on the beam.

2.3.1 Loose Coupling

In the loose coupling scheme, the FAST and FEM modules set the state equations

and integrates the equations with separate solvers. Coupling variables are exchanged

between the modules at fixed time intervals. As mentioned earlier, Eq.(2.12) cannot

be directly integrated in time. One possible option is to use the unknown accelera-

tions from the previous time step. But, based on numerical experiments, even if a

very small time step is used, an unstable response is observed indicating the scheme

is unstable. Certain modifications are suggested as detailed below to enable the use

of the loose coupling approach.

2.3.1.1 Partial Loose Coupling

The partial loose coupled method referred to as the Linear Theory of Elastody-

namics [24] neglects the Mθf1q̈f1 , Mθf2q̈f2 and Mθf3q̈f3 terms in Eq.(2.12). At every

time step the FAST solver is executed first and the rigid body motion information,

θ̈ and θ̇, is then fed into the FEM solver. Such an approach would be satisfactory if

the flexible-rigid body motion coupling is small. This method offers the least effort

in terms of integrating FAST and the FEM module although its applicability and

accuracy is limited due to the reduction of the two-way coupling to a one-way data

flow for the terms involving acceleration.
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2.3.1.2 Explicit Loose Coupling

As discussed in the Introduction chapter, in the explicit loose coupling scheme the

information from the next time step is not used when integrating in the current time

step. As mentioned earlier an explicit scheme in which the unknown accelerations are

used from the previous time step is unstable. However, improved numerical stability

can be achieved if the unknown accelerations in Eq.(2.12) are found for at every time

step. With the accelerations known, the equations are integrated in time explicitly.

Let a guess value for θ̈ be substituted in the last three rows of Eq.(2.12), i.e. the

guess value is given as input to the FEM modules handling the blades. Using the

FEM module, q̈fi can be obtained and is substituted in the first row. Using FAST,

an updated value for θ̈ is obtained. Thus, it is seen that this procedure can be

represented as a fixed point iterating scheme of the type:

θ̈l+1 = f(θ̈l) (2.22)

It is noted that it is more advantageous to use the rigid body acceleration vector q̈r

as the variable in the scheme instead of the alternative q̈f since the vector size of

the former will usually be much smaller than the size of the latter. The guess value

is obtained from the previous time step. For the first time step, the guess value is

obtained from FAST enabled with modal methods. It is determined however from

numerical experiments that this scheme as is described in Eq.(2.22) is very slow. To

accelerate the convergence, Aitken’s method as described in the next sub-section is

used. It is noted that though the sub-iterations are performed at every time step, the

equations are still integrated explicitly in time. Thus, above an associated critical

time step, the scheme will be numerically unstable.
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2.3.1.3 Implicit Loose Coupling

As previously stated, the explicit integration scheme has numerical instability

issues. For numerical schemes which are unconditionally stable or at least stable for

large time steps, implicit coupling schemes are suggested. A fundamental difference of

this scheme with that of loose coupling is that the equations are integrated implicitly

in time. Here, the interface variables from the next time step is used in the evaluation

at the current time step. Using the Gauss-Siedel iteration approach, the following

implicit scheme is suggested:

[qf
l+1, q̇f

l+1, q̈f
l+1] = FEM(θ̇l, θ̈l,qf

n, q̇f
n) (2.23)

[θl+1, θ̇l+1, θ̈l+1] = MBD(θn, θ̇n,qf
l+1, q̇f

l+1, q̈f
l+1) (2.24)

A fixed point iterative scheme can be written for the above equations as:

θ̈l+1 = MBD(FEM(θ̈l)) (2.25)

The scheme is iteratively solved and stabilized using the methods described in

the next section until convergence is reached. A tight coupling scheme allows the

possibility of using larger time steps with the scheme retaining numerical stability.

It is pointed out that the sub-iterations are carried out only for θ̈ as numerical

experiments show that the coupling involving the acceleration terms are found to

be unstable. The partial loose coupling scheme which does not include the coupling

between the acceleration terms is found to be stable (Refer the Partial Loose coupling

section of the Results chapter) indicating the coupling terms involving acceleration

are unstable. As with the explicit coupling scheme, the sub-iterations are accelerated
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using Aitken’s method.

2.3.2 Tight Coupling

In the tight coupling scheme, the FAST and FEM modules develop the state

equations, and these equations are integrated in time using a common solver. Two

schemes can be considered for this case based on the level of software intrusion as

listed below:

2.3.2.1 Partial Tight Coupling

In this scheme, in a similar manner as the explicit loose coupling scheme, the

unknown accelerations are determined in each time step using a fixed-point iterat-

ing scheme accelerated using Aitken’s method. Then, the known accelerations are

integrated in time using one common solver.

2.3.2.2 Full Tight Coupling

For the full tight coupling scheme, to overcome the problem of the unknown

accelerations at each time step, the full system mass matrix is constructed. This

method, though the most accurate and computationally least expensive, is also the

most intrusive in the sense that the turbine system inertial properties must be known

to construct the mass matrix. The forces acting on the rigid-blade turbine system

may be directly obtained from FAST using a software data link or may also be

obtained from the FAST mass matrix and acceleration data. The forces acting on

the flexible blade can be similarly be obtained from the FEM module. Then, the

system accelerations are obtained by inverting the mass matrix in Eq.(2.12). It is

pointed out that the full tight coupling case is similar to a monolithic simulation

with the difference being that the equations are developed in separate modules.

Therefore, unlike the previously discussed schemes, iterations are not performed at
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every time-step.

2.3.3 Aitken’s Acceleration

As observed with many coupled simulation problems, the interactions between

the modules - FAST and FEM - can be represented as a fixed point iteration prob-

lem. These iterations would occur at every time-step, in order to synchronize the

coupling variables. The iterations by themselves may or may not converge. Even if

they do converge, the number of iterations needed to satisfy a tolerance limit may

be prohibitively expensive. Therefore, acceleration techniques such as the Aitken’s

acceleration method are used to improve the convergence rates. A brief outline of

the derivation is provided as follows as developed in Ref. [26] and [27].

As an aid to understanding the acceleration technique, consider first a represen-

tative fixed point iteration problem, where w represents the interface variable. With

respect to the coupling schemes described in the previous section, w represents the

reference frame motion variable vector (accelerations):

wl+1 = F(wl) (2.26)

An improvement in stability and convergence characteristics can be obtained if

some amount of relaxation is used in the form of a linear interpolation of the updated

value from the Fixed-point iteration and the value from the previous iteration as

shown below. α in Eq.(2.28) is commonly called the relaxation factor.

w̃l+1 = F(wl) (2.27)

wl+1 = αw̃l+1 + (1− α)wl (2.28)
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As can be observed, a small α results in the value of the previous iteration being

dominant and a large α results in the updated value obtained from the Fixed-point

iteration being more dominant. In case the iterations are unstable, under-relaxation

relaxation is suggested. i.e. 0 < α < 1. This would result in a more stable scheme

with an increase in the number of iterations, since only a small fraction of the update

from the Fixed-point iteration is used. On the other hand, if the iterations appear

stable, over-relaxation(α > 1) can be considered to accelerate the convergence. Even

though this method appears straight-forward and easy to implement, an obvious

drawback is that the relaxation factor is chosen on a trail and error basis.

To circumvent these issues, Aitken’s acceleration method [27] [22] which adap-

tively adjusts the relaxation factor based on information from previous iterations is

explored for the current problem. A dramatic improvement in performance is ob-

served when compared with the nominal fixed point iteration without acceleration.

For the current application, since the planar rotation of the turbine is considered,

the interface variable is a scalar (w = θ̈). Let the residual at iteration step l + 1 be

defined for w as:

rsl+1 = F (wl)− wl (2.29)

Figure 2.2 shows the variation of the residual with the interface variable for the

sub-iterations in the first time step of the partial tight coupling case without external

loads. The variation of the residual as the iterations proceed is also shown. The initial

guess value is provided by FAST enabled with two modes.

It is observed that more than 10000 iterations are needed to satisfy a tolerance of

1E-6 on the residual. It is also observed that the iterations show linear convergence.

For fixed point iterations with linear convergence, Aitken’s acceleration method is
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Fig. 2.2: Residual Behavior for FPI Without Acceleration

known to improve the performance with quadratic convergence rates.

Aitken’s acceleration method similar to the method of secants can be derived in

a straightforward manner as shown below:

If the residuals rsl and rsl+1 from two previous iterations are available, then from

Fig. 2.2, the x-intercept for a straight line through the points (wl−1, rsl), (wl, rsl+1)

is given as:

wl+1 = wl − rsl+1 (wl − wl−1)
rsl+1 − rsl

(2.30)

Here, wl+1 would represent the interface variable for which the corresponding

residual is zero if the convergence is exactly linear away from the solution. The fixed

point iteration with the relaxation factor α can also be equivalently be represented
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by:

wl+1 = wl + αrsl+1 (2.31)

Rewriting Eq.(2.32) in the form of Eq.(2.31), we have:

wl+1 = wl + αl+1rsl+1 (2.32)

where,

αl+1 =
wl − wl−1

rsl+1 − rsl
= −αl rsl

rsl+1 − rsl
(2.33)

Thus, it is seen that Aitken’s method adaptively adjusts the relaxation factor as

the iterations proceed. The above formulation is valid for the scalar interface variable

w. A recursive formulation for a vector interface variable is given as:

αl+1 = −αlwlT rsl+1 − rsl

|rsl+1 − rsl|2
(2.34)

To avoid the situation where a division by zero occurs in Eq.(2.33) if rsl = rsl−1

the iterations revert to the fixed relaxation case using the relaxation factor estimated

at the previous iteration. To begin the iterations, a fixed relaxation factor is chosen

for the first iteration. Fig. 2.3 demonstrates the superior performance of this method.

For the same tolerance on the residual, just two iterations are sufficient to reach

convergence. This is true, since as 2.2 shows, the the convergence is linear even away

from the solution. A major benefit of this method is that not only is the scheme

simple to implement, there is also no need to evaluate sensitivities or the Jacobian

matrix.
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Fig. 2.3: Residual Behavior for FPI with Aitken’s Acceleration

2.4 Software Implementation

In this section, the details regarding the programming interfaces between the

FAST and FEM modules are provided.

FAST is written in FORTRAN. To interface with MATLAB and to connect with

the FEM module, an S-Function that calls FAST’s FORTRAN routines is used. The

S-Function routines are available open-source from NREL. The S-Function provides

the essential data links between FAST and the FEM module. The S-Function has

been modified to accept from the FEM module nodal deformations, rotor inertia, and

additional loads from the nodal acceleration or velocity terms such as Mθfiq̈fi . The

S-Function communicates with FAST and returns with the rotor accelerations and

aerodynamic loads. Since the blade deformations are handled by the FEM module,
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blade flexibility is disabled in FAST.

A representative finite element code is written in MATLAB with the mass matrix,

stiffness matrix, and shape function matrix definitions provided in Appendix A.

Since the finite element matrices (mass,stiffness, and shape function) are independent

of time, a pre-processor program is executed which load these matrices into the

memory as global variables. The aerodynamic loads from the AeroDyn module

connected to FAST are transferred to the FEM module using the S-Function. The

uniformly distributed aerodynamic loads acting on the blade elements are converted

to an equivalent load system acting on the finite element nodal points using the

concept of work equivalence for arbitrary nodal displacements [28]. Note that for the

present case, the equivalent loads are calculated only for the in-plane forces. Since

planar rotation of the turbine is assumed, there are no aerodynamic moments(axis

parallel to rotor axis) acting on the blade. The FEM module returns with the nodal

accelerations of the blade.

Once the accelerations are obtained from the FAST module and the FEM module,

they are integrated using available variable time-step ODE solvers in MATLAB.

The explicit fourth order Runge-Kutta integrator - ode45 is used for the current

application. It is pointed out that the explicit and implicit integration scheme in

this context is defined with respect to variables native to a module. Implicit schemes

are suggested if the explicit scheme appears stiff, i.e. the adaptive time-step chosen

by the explicit ODE solver is very small due to the high frequency content in the

system response.

Since a three-blade turbine is considered to validate the approach, three FEM

modules are used to interconnect with FAST. For a given rotor rpm, angular accel-

eration and nodal aerodynamic loads are obtained from the FAST S-Function. The

FEM module returns with nodal accelerations. The updated rotor inertia as well as
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the generalized loads that are applied to the rigid rotor are computed. This data is

fed back into the S-Function which eventually is input to FAST. Figure 2.4 shows

the flow of data through the FEM-AeroDyn-FAST cycle. Other schemes can be en-

visioned, but since AeroDyn is called from within FAST, the scheme illustrated in

Fig. 2.4 is seen to be appropriate for the current purpose.

Figure 2.4 illustrates the flow of data for the co-simulation of the FEM and

FAST modules. For both the explicit loose coupling and the partial tight coupling

approaches, initial guess values for the rotor angular acceleration, velocity, and aero-

dynamic loads are assumed. For the first iteration, the angular acceleration is pro-

vided from FAST with the modal methods enabled; the initial rotor angular velocity

given to FAST is chosen as the guess value for the angular velocity; and the aerody-

namic loads are assumed to be all zero. For subsequent iterations, information from

the previous time step is used for the guess values at the current time step. The

FEM modules return with the nodal displacements and accelerations. The updated

rotor inertia is calculated from the nodal displacements, as also are the coupling

loads arising out of the flexible-rigid body motion. Next, at step 2, the FAST state

variables and the nodal displacements are fed to FAST using the S-Function. FAST

first calls AeroDyn which returns with the aerodynamic forces considering the struc-

tural displacements and velocities. At step 3, the updated rotor inertia, flexible-rigid

body motion coupling loads, and the aerodynamic loads are then applied to the

FAST multibody system. FAST then returns with the rotor accelerations, returning

the data flow back to step 1. It is clear that, starting with an initial guess value for

the rotor acceleration θ̈ at step 1, we arrive with an updated rotor acceleration after

cycling through steps 1-2-3. Thus, we provide the rationale behind the fixed-point

iterating scheme. As previously discussed, the iterating scheme based on θ̈ is stable

but very slow. Acceleration methods will need to be used.
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The inertia computed from the FEM modules is provided to FAST even though

FAST has the capability to compute the inertia of the deforming blades. This is

because FAST computes the inertia using the lumped mass approach whereas the

FEM modules compute the inertia using the consistent mass approach. For the fixed

point iterating scheme to arrive at a solution, it is important that the value of inertia

used in Eq.(2.8) and modeled by FAST is identical to the value used by the FEM

modules. This fulfills the integrity of the floating frame of reference approach. It

is determined from numerical experiments that an error in calculating the inertia

term will result in unstable iterations. However, stability can be improved if a

large number of elements are used since both the lumped mass and consistent mass

approach converge to the same value. The FEM module also provides FAST with

the nodal displacements and velocities. However, since FAST takes in inputs at the

midpoints of the elements rather than the nodes at either end of a beam element, the

displacements and velocities are evaluated at the midpoint using the shape function

definitions given in Appendix A.

A similar procedure is followed for the implicit loose coupling scheme, except that

in this case, with the nodal accelerations obtained at step 2, the FEM module equa-

tions are integrated in time. The coupling variables(nodal displacements,velocities

and accelerations) at the new time step are then fed to AeroDyn and FAST. FAST

is then integrated from its state at the previous time step. The coupling variables

(rotor velocities and acclerations) at this new time step are fed back into the FEM

modules. It is noted that stabilizing for only θ̈ resulted in stable solutions even

though many coupling variables are used.

A purpose of the framework just described is to demonstrate the validity of the

approach described herein. The framework may be extended to a more advanced mul-

tiphysics framework facilitating connections between commercial multibody codes
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such as ADAMS or DADS and FEM softwares such as ABAQUS or FEAP. Many

of these codes are equipped with user-defined routines similar in functionality to the

S-Functions which can be used for co-simulation.

Fig. 2.4: FAST-FEM Co-simulation Data Flow
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3. RESULTS AND DISCUSSION

In this section the results validating the approach detailed in this thesis are

provided. A brief description of the turbine system used is also discussed.

3.1 Turbine Model

The planar case of a 3-bladed turbine is considered, i.e only the rotational degree

of freedom of the drive train and the edge-wise deformation (rotor in-plane) of the

blades are allowed. A modified version of one of the FAST certification test files

(Test #08, AOC 15/50 FAST v.7.01.00) is used as the test case for validation. Figure

3.1 shows a photo of an AOC turbine installed at NREL’s test facility. Simplified

aerodynamics is considered i.e. blade element momentum theory without the effects

of dynamic stall is used. Uniform structural and aerodynamic beam properties are

used. The uniform properties are obtained by averaging span-wise varying properties

of the original model.A summary of the turbine system properties is provided in Table

3.1. The beam is discretized using five finite elements. It is noted that the extension

of the approach to a full three dimensional turbine system with other complexities is

straightforward in principle, though not in terms of software implementation. The

purpose here is to provide a proof of concept for the approach detailed in this thesis.
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Table 3.1: Turbine System Properties Summary - Modified AOC 15/50

Parameter Value

Turbine Make Atlantic Orient Corporation

Rotation Axis Horizontal

Orientation Downwind

Rotor Radius(m) 7.490

Rotor Speed(RPM) 64.14

Number of Blades 3

Nacelle Yaw(deg) -15

Hub Inertia(Kgm2) 9

Beam Mass per unit length(Kg/m) 20.179

Beam Bending Stiffness - EI(Nm2) 6.14E6

No. of FEM, AeroDyn beam elements 5

Airfoil Chord Length(m) 0.6019

Wind Velocity(m/s) 12

Drivetrain torsional stiffness(Nm/rad) 6.0E5

Drivetrain torsional damping(Nm/(rad/s)) 1.0E3
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Fig. 3.1: AOC 15/50 Wind Turbine [4]

The FAST modal pre-processor program, MODES is used to obtain the modal

shapes for the chosen rotor rotational rate of 64.14 rpm. It is noted that FAST

accepts only one mode for the edgewise motion and two modes for the flapwise

motion. The blades are therefore given a structural twist of 90 deg to use two modes

for the in-plane rotor motion. The modes obtained are used for the comparison for

the co-simulation approach with the modal approach. It is noted that the formulation

presented includes axial modes. FAST does not include axial modes but considers

the axial deflection due to bending. Therefore, for both models to be as consistent,
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the axial modes are suppressed in the finite element code by using a very large value

for the axial stiffness. However, this tends to make the equations of motion stiff for

time-integration.

For spatial integration needed for the modal method capability in FAST, numer-

ical integration is performed across a number of stations along the blade. These

stations which also serve as collocation points for the aerodynamic forces are defined

in the AeroDyn input file. It is determined that a large number of integration sta-

tions is needed for the modal approach to match the results from the finite element

method.

The following table shows the output from MODES in terms of the modal fre-

quencies. The 6th order polynomial form of the mode shape as normalized with the

tip displacement are shown:

Table 3.2: Modes Output

Frequency(Hz) x2 x3 x4 x5 x6

Mode 1 5.7349 1.6006 -0.0307 -1.4453 1.2027 -0.3273

Mode 2 35.2671 -9.7180 9.9859 20.0685 -29.9356 10.5992

Mode 3 102.0608 35.9689 141.7970 173.7561 -67.5438 0.6158

Mode 4 210.2372 -83.6436 529.3278 -1161.0175 1064.1913 -347.8582

Mode 5 872.1095 29.9830 -231.3566 614.3611 -678.3636 266.3761

It is pointed out that only the first two modes in Table 3.2 are used in FAST. Fig-

ure 3.2 shows the convergence of natural frequencies as the number of finite elements

increases. For five elements, the natural frequencies converge for the first two modes.
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Fig. 3.2: Natural Frequency Convergence with Number of Finite Elements

Since direct load transfer is used from the aerodynamics module (AeroDyn) to the

FEM module, both modules have the same number of elements. It is determined

from the results shown in this section, that five elements are sufficient to model both

the structural dynamics and aerodynamics for the specified parameters.

3.2 Results

Results are provided for the different schemes investigated detailed in the previous

section. Since the full tight coupling case has the highest accuracy among the schemes

considered, the accuracy of other coupling schemes will be compared to the data

obtained for this case. For all cases considered, an initial tip displacement of 1cm is

set for the three blades. The plots presented show the response for one full revolution

of the turbine system. It is noted that the time step used in this section refers to the
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time interval at which the coupling variables are exchanged. This is different from

the variable time-step used by the ODE solver to integrate the equations. However,

in the case of the partial tight coupling scheme, both definitions of the time-step

are equivalent since the coupling variables are exchanged at the variable time-step

chosen by the ODE solver.

3.2.1 Full Tight Coupling

To validate the full tight coupling case, data obtained from modal methods are

used for comparison. For linear material behavior and small deformations, both the

modal method and the finite element method should show a close match given the

same initial conditions. Since FAST allows a maximum of two modes, the system pa-

rameters are chosen such that the resulting dynamics may be adequately represented

by only a few modes.

FAST takes into account the axial deflection due to bending and the formula-

tion presented herein does not take this effect into account. Therefore, the FAST

source code was modified to disable this effect. Figures 3.3,3.4 and 3.5 show the

tip displacements of the blade using the full tight coupling scheme. Displacements

are compared with a version of FAST which does not include axial deflection due to

bending and the original version which takes into account this effect. FAST is con-

figured in this case to include both gravity and aerodynamic loads. As observed, the

FAST-FEM co-simulation approach shows an excellent agreement with the modal

method when the axial deflection is not taken into account. However, a time-varying

phase-difference is seen when compared with the modal method with axial deflection

taken into account. This may be due to a minor change in the modal frequency

response when the axial deflection due to bending is neglected.
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Fig. 3.3: Full Tight Coupling with External Loads - Blade 1 Response
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Fig. 3.4: Full Tight Coupling with External Loads - Blade 2 Response
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Fig. 3.5: Full Tight Coupling with External Loads - Blade 3 Response

It is observed that gravity and aerodynamic loads influence the behavior to a large

extent. Therefore to analyze the influence of the rigid-body-flexible motion alone on

the blade response, results are presented (Fig. 3.6)which show the blade response

without external loading. The negligible errors shown in this case arise purely out of

the inconsistencies between the modal method and finite element method in modeling

the flexible-multibody motion. A major source of this error is due to FAST providing

only two modes. The response of only one blade is shown since the the flexible

dynamics of all three blades due to symmetry will be exactly the same.
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Fig. 3.6: Full Tight Coupling Without External Loads - Blade 1 Response

3.2.2 Partial Loose Coupling

Figures 3.7, 3.8 and 3.9 show the comparison of the partial loose coupling (Linear

Theory of elastodynamics) with the full tight coupling case with external loading.

As expected, the accuracy is low due to previously discussed one-way coupling. The

marked discrepancy between both the modal and co-simulation approaches may be

interpreted as a measure of the flexible-rigid body motion coupling that exists for

the given system parameters. A time step of 0.0001 secs is used. An improvement in

accuracy may be observed if the coupling between the rigid-body and flexible-body

dynamics is weak.
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Fig. 3.7: Partial Loose Coupling - Blade 1 Response
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Fig. 3.8: Partial Loose Coupling - Blade 2 Response
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Fig. 3.9: Partial Loose Coupling - Blade 3 Response

3.2.3 Explicit Loose Coupling

Figures. 3.10, 3.11 and 3.12 show the comparison the explicit loose coupling

scheme with the full tight coupling data. External loading is considered. As men-

tioned earlier, the explicit nature of the scheme results in numerical instability issues.

A reduced time-step of 0.00001 secs is used to obtain stable results.
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Fig. 3.10: Explicit Loose Coupling - Blade 1 Response - Hub Inertia = 9 Kgm2
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Fig. 3.11: Explicit Loose Coupling - Blade 2 Response - Hub Inertia = 9 Kgm2
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Fig. 3.12: Explicit Loose Coupling - Blade 3 Response - Hub Inertia = 9 Kgm2

The use of a small time-step for a stable solution is to adequately capture the

high frequency content seen in Figs. 3.10, 3.11 and 3.12. A larger time step may be

used if the response is dominated by relatively low frequencies. If the Hub inertia

is increased to 9000Kg − m2, a time-step of 0.0001 secs is found to provide stable

results. Figures. 3.13, 3.14 and 3.15 show the blade response for this case. Figure

3.16 shows the number of FPI cycles needed to reach convergence. A small number

of FSI cycles, an average of 3, is needed since the time-steps used are small.
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Fig. 3.13: Explicit Loose Coupling - Blade 1 Response - Hub Inertia = 9000 Kgm2

58



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.04

−0.02

0

0.02

0.04

Time, s

Ti
p 

di
sp

la
ce

m
en

t, 
m

 

 
Explicit Loose Coupling
Full tight coupling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5
x 10

−3

Time, sAb
so

lu
te

 e
rro

r o
f t

ip
 d

is
pl

ac
em

en
ts

, m

Fig. 3.14: Explicit Loose Coupling - Blade 2 Response - Hub Inertia = 9000 Kgm2
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Fig. 3.15: Explicit Loose Coupling - Blade 3 Response - Hub Inertia = 9000 Kgm2
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Hub Inertia = 9 Kgm2
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Hub Inertia = 9000 Kgm2

Fig. 3.16: Explicit Loose Coupling - Fixed Point Iteration Counts Comparison

3.2.4 Implicit Loose Coupling

A significant increase in numerical stability can be achieved using the implicit

scheme. The results, Figs. 3.17,3.18 and 3.19 show good agreement for this case.

A time-step of 0.001 secs, two orders of magnitude greater than the loose coupling

scheme is used. External loading is considered.
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Fig. 3.17: Implicit Loose Coupling - Blade 1 Response - Time Step = 0.001 secs
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Fig. 3.18: Implicit Loose Coupling - Blade 2 Response - Time Step = 0.001 secs
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Fig. 3.19: Implicit Loose Coupling - Blade 3 Response - Time Step = 0.001 secs

Stable solutions are obtained even at 0.01 secs. However, a lower accuracy is

observed. This is due to the larger coupling time-steps used. Figures 3.20, 3.21 and

3.22 show the blade response for this case compared with the full tight coupling data

with external loading.
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Fig. 3.20: Implicit Loose Coupling - Blade 1 Response - Time Step = 0.01 secs
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Fig. 3.21: Implicit Loose Coupling - Blade 2 Response - Time Step = 0.01 secs
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Fig. 3.22: Implicit Loose Coupling - Blade 3 Response - Time Step = 0.01 secs

Figure 3.23 shows the comparison for the number of FPI cycles needed for conver-

gence for both time-steps considered. As expected, the implicit scheme at a time-step

of 0.01 secs requires more iterations than the case for which a time step of 0.001 secs

is used. This is true since at larger time steps, the initial guess value to start the

iteration is less accurate. At a time-step of 0.01 secs, an average of 8.92 iterations

are needed. At a time-step of 0.001 secs, an average of 7.39 iterations are needed.
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Fig. 3.23: Implicit Loose Coupling - Fixed Point Iteration Counts Comparison

3.2.5 Partial Tight Coupling

Figures 3.24, 3.25 and 3.26 show the blade response for the partial tight coupling

compared with the full tight coupling case. External loading is considered. Figure

3.27 shows the number of FPI iterations needed to reach convergence. As stated

earlier, since the variable time-step chosen by the ODE solver tends to be small,

the initial guess value for the FPI iterations which is estimated from the previous

time-step is close to the actual solution. It is observed that this scheme, though in

principle equivalent to the explicit loose coupling scheme (with the exception that a

common solver is used) is significantly faster.
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Fig. 3.24: Partial Tight Coupling - Blade 1 Response
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Fig. 3.25: Partial Tight Coupling - Blade 2 Response
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Fig. 3.26: Partial Tight Coupling - Blade 3 Response
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Fig. 3.27: Partial Tight Coupling - Fixed Point Iteration Counts

3.3 Summary

The results for the coupling schemes investigated in this thesis, show good agree-

ment with the validation data with the exception of the partial loose coupling case.

It is determined that the accuracy and stability of the loose coupling schemes de-

pends on the chosen system parameters. The applicability of a particular scheme

depends on the system parameters, the level of modularity and accuracy desired.

Table 3.3 summarizes the coupling schemes explored in terms of Software intrusion,

computational expense, stability and accuracy.
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Table 3.3: Comparison of Coupling Schemes

Software Intrusion Expense Stability Accuracy

Partial Loose Coupling Low Medium High Low

Explicit Loose Coupling Medium High Low High

Implicit Loose Coupling Medium Medium High High

Partial Tight Coupling High Medium High High

Full Tight Coupling High Low High High

The partial loose coupling case is the least intrusive in terms of software inte-

gration, though the least accurate among the schemes considered. If the coupling

between the rigid-body dynamics and flexible-body dynamics is weak, this scheme

may be considered on a preliminary basis.

The explicit loose coupling scheme, for the chosen system parameters of the AOC

turbine needed an extremely small time-step to maintain numerical stability. This

resulted in long run times. However, this may not be a disadvantage if a CFD solver

is coupled to FAST. In such a case, the CFD solver may determine the time-step. The

time-steps used by CFD solvers are typically very small. However, the computational

expense of performing a few sub-iterations at each time-step may be expensive. This

scheme may also find applicability if the blade response is dominated by a few low-

frequency modes, so that larger time-steps may be used. The implicit loose coupling

scheme is advantageous if relatively large time-steps can be used. Such is the case,

with low-order aerodynamic models such as AeroDyn.

The partial tight coupling case is suitable is a common solver can be used to

integrate the states. To link general purpose multibody codes such as ADAMS with
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FEM codes such as Abaqus or FEAP, developing a common solver if possible, may

require substantial programming effort. However, this scheme is much faster than the

equivalent explicit loose coupling scheme. The full tight coupling scheme requires the

greatest software intrusion in that the system mass matrix needs to be known. This

scheme is in principle equivalent to a monolithic scheme, with the exception that

state time-derivatives are computed by separate modules. Therefore, this scheme is

considered the most accurate among the schemes considered. As with the partial

tight coupling case, using this scheme may require significant programming effort

and commonly available codes may not provide such a level of access.
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4. CONCLUSIONS

4.1 Concluding Remarks

A method is developed to co-simulate the wind turbine aeroelasticity simulation

tool FAST with a FEM module. This is shown to be accomplished using a floating

frame of reference formulation which allows a clear separation of rigid-body motion

and small deformation motion of the turbine blades. Developing the equations for

multibody dynamics usually results in a system of differential algebraic equations

since the constraints have to be accounted for in the equations. However as developed

in this study, fixing the reference frame at the blade root results in the constraint

forces not appearing in the equations of motion. Consequently, the approach results

in a system of ordinary differential equations which are integrated in time using

conventional numerical techniques.

Various coupling strategies in accordance with the new modularization philoso-

phy developed by NREL [2, 20] are explored ranging from partial loose coupling to

full tight coupling schemes. For the explicit loose coupling, implicit loose coupling

and partial tight coupling cases, the unknown accelerations at each time step are

obtained using an iterative process. To accelerate these iterations, Aitken’s method

is used. To the author’s best knowledge, no previous studies exploring the appli-

cation of Aitken’s adaptive relaxation technique for the FEM-MBD co-simulation

problem exist. Aitken’s method is used more commonly in applications involving

fluid-structure interactions. The results for the full tight coupling case are first com-

pared with the modal approach. The good agreement validates the floating frame

of reference approach for the finite element formulation of the flexible blades. Sub-

sequently, results for the other coupling schemes are compared with the full tight
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coupling case. Their individual merits and applicability are pointed out.

It is noted that the methodology developed in this thesis may be generally applied

to the co-simulation of any finite element method code with a multibody dynamics

code. The method is valid only if the flexible beams are cantilevered such as the case

for rotorcraft and wind turbines. If additional constraints are added to the beams,

such as in a simply supported configuration, gluing algorithms developed in Refs. [14]

and [8] may be considered for this purpose.

4.2 Future Work

Several areas for further improvement are identified.

Firstly, the floating frame of reference formulation is valid only for the small de-

formation motion of the blade. This is a consequence of using infinitesimal nodal

rotational displacements, essentially linearizing the kinematics. For large deforma-

tions observed in large flexible turbines, the errors induced on account of this linear

analysis may be significant. Several solutions are proposed in the literature to ac-

count for the large deformation while still exploiting the advantages of using the

floating frame of reference formulation. One common solution is to divide the beam

into several elements and define a floating frame for each of these elements. The

elements are joined using algebraic constraints. [11]. A method proposed by Das [29]

uses a co-rotational frame for each finite element including using a floating frame for

the overall flexible body in an updated Lagrangian description of motion, i.e. the

current configuration is used as the reference. Das develops the formulation for the

multibody analysis for plates using the finite element method. Rotorcraft blades and

other aerospace structures are constructed using plate and shell elements for which

the finite element method becomes an appropriate choice. Another method proposed

by Tsai et al [30] uses a combined co-rotational floating frame of reference formulation

76



but in a total Lagrangian description of motion, i.e the initial configuration is used

as the reference. Both of the aforementioned methods, though allowing a variety of

nonlinearities to be included in the formulation, are valid for small strains. However,

the combined co-rotational floating frame approach may not allow the possibility of

using general-purpose FEM codes.

Secondly, the methods developed in this thesis are for the planar rotation of

the turbine system. This significantly simplifies the analysis for the purposes of

validation and comparison. The development of a full three dimensional formulation

is relatively straightforward. However, care must be exercised in the choice of the

orientation parameters to avoid encountering singularities. Many similar works in

the literature use Euler parameters to avoid singularities.

Thirdly, the inclusion of the bending-axial strain coupling is necessary to avoid

the instabilities observed at critical speeds. The floating frame of reference allows for

the inclusion of such nonlinear stress-strain relationships in the form of the geometric

stiffness matrix. [31], [32], [33].

Fourthly, concerning the coupling schemes and programming interfaces, further

research is required to optimize the framework. In this work, rather simplified tools

already available in MATLAB are used for time-integration. Specialized integration

schemes have been identified in the literature for the optimum performance of the

floating frame of reference approach. Reference [33] discusses schemes which take

into account the effect of the high frequency axial modes.

Finally, as is true with many multiphysics simulations, the simulations demon-

strated herein are computationally much more expensive than the existing low order

model which is used by FAST. Also, if a high-fidelity CFD code is also co-simulated

with FAST as is appropriate for the FEM module, the involved computational ex-

pense may preclude any iterative design process or control system development and
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analysis. Therefore, a common approach for such problems is to generate a reduced

order model of the system. For the general multiphysics environment envisioned for

FAST with interaction of different physics modules such as aerodynamics, hydrody-

namics and structural dynamics with varying degrees of fidelity, techniques applied

to general complex systems such as detailed in Ref. [34] may be be explored for this

purpose.
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APPENDIX A

MATRIX EXPRESSIONS FOR THE PLANAR ROTATION OF THE TURBINE

Fig. A.1: Beam Element Coordinates

In this section, the finite element matrix definitions such as the shape function,

mass matrix and stiffness matrix are presented as derived by Shabana [13] for the

two-dimensional beam element. Three dimensional formulations are found in Refs.

[24], [23]. Figure A.1 shows the two node, two dimensional beam line element with

three degrees of freedom - axial, transverse, and rotational - defined at the two

nodes. (X1’, X2’) refers to the floating frame attached to the flexible blade at the

root. It is noted that since all the beam elements are assumed initially to lie along

the X2’ axis, there is no need to define the intermediate element coordinate system

[11]. However, the intermediate element coordinate system is required for flexible

structures with complex shapes. The nodal coordinates shown can be used to define
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both the displacements and the position with respect to the (X1’,X2’) frame of any

arbitrary point within the element. This isoparametric nature is shown readily by

the translational coordinates qi1 , qi2 , qi4 , qi5 . qi3 and qi6 . The rotational displacements

are represented in terms of slopes, hence these coordinates can be used to describe

positions accurately as well only if small deformations are assumed. The ability to

correctly describe the position of any point in the flexible body is important in order

to derive the equations of motion. In the derivations presented, qi = [qi1..qi6]
T refers

to the displacements with respect to the (X1’,X2’) frame and qfi = [qfi1 ..qfi6 ]
T refers

to nodal the deformations. The (X1’,X2’) frame provides the coordinate basis for

both displacements and deformations.

The position ūi at any point within the element is given by:

ūi = Niqi (A.1)

dūi

dX1′
at any point within the element is given by:

dūi

dX1′
=

dNi

dξ

qi

l
(A.2)

The infinitesimal rotational displacements(slopes) from Eq.(A.2) are given by(
dūi

dX1′

)
X2′

, the component of the vector along the X2’ axis. Ni the shape function

matrix given the element length l is defined as :

Ni =

 1− ξ 0 0 ξ 0 0

0 1− 3ξ2 − 2ξ3 l(ξ − 2ξ2 + ξ3) 0 3ξ2 − 2ξ3 l(ξ3 − ξ2


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where ξ is the coordinate along the X1’ axis (also the element axis) normalized

with the beam length l and measuring from node 1 to node 2 ( See Fig. A.1).

The definitions of the displacement of a point within the element is used to

transfer nodal translational displacements, velocities and rotational displacements

from the FEM module to FAST (to be used by AeroDyn). Since the nodes defined

in AeroDyn are at the mid-section of the beam element, the shape function matrix

is evaluated at the ξ = 0.5.

Using the shape function matrix and Eq.(2.3), the position vector in the inertial

reference frame is obtained. Differentiating this vector as in Eq.(2.4), the velocity

vector is obtained, using which an expression for the kinetic energy is formulated.

Integrating the kinetic energy expression through the beam element (i.e along the

ξ axis), the mass matrix for the element is derived. As stated in previous sections,

since the blades are allowed to deform and rotate only in the in-plane directions and

since the blades are assumed to be connected at the point of rotation, the terms in

the mass matrix associated with rotation and deformation and the coupling between

rotation and deformation need to be considered.

The part of the mass matrix related to the nodal deformations is given by:

mffi
=

∫ 1

0

ρailiNi
TNidξ (A.4)

Integrating through the beam the element using the shape function definition in

Eq.(A.3), we obtain the following matrix expression assuming uniform beam prop-

erties:
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mffi
= 1/3



1 symmetric

0 13/35

0 11l/210 l2/105

1/6 0 0 1/3

0 9/70 13l/420 0 13/35

0 −13l/420 −l2/140 0 −11l/210 l2/105



The mass matrix term related to the rotational coordinate θ is given as:

mθθi =

∫ 1

0

ρailiūi
Tūidξ = qi

T

∫ 1

0

ρailiNi
TNidξqi = qi

Tmffi
qi (A.6)

Eq.(A.6) represents the inertia of the beam element about the X3’ axis. Note

that inertia is computed using the consistent mass approach. Also, though mffi
is

constant, the inertia of the element is time varying since qi is time varying.

The part of the mass matrix related to the coupling between rigid and flexible

coordinates is given as:

mθfi =

∫ 1

0

ρailiūi
TĨNidξ = qi

T

∫ 1

0

ρailiNi
TĨNidξqi = qi

TÑi (A.7)

where Ñi is given as:
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Ñi = mi/60



0 2l 3l 0 9 −2l

−2l 0 0 −9 0 0

−3l 0 0 −2l 0 0

0 9 2l 0 2l −3l

−9 0 0 −2l 0 0

2l 0 0 3l 0 0



The stiffness matrix is obtained by using the strain energy expression for the

Euler-Bernoulli beam model.

kffi
= EIxi/l



a/l symmetric

0 12/l2

0 6/l 4

−a/l 0 0 a/l

0 −12/l2 −6/l 0 12/l2

0 6/l 2 0 −6/l 4



It can be seen that the axial deformation is decoupled from the transverse defor-

mation. Higher order beam theories which include such coupling do not suffer from

instability problems at critical rotor speeds [31].

The quadratic velocity vector expressions are listed as follows adapted from Ref.

[24]

Qvθi
= −2θ̇q̇fi

T(mffi
qfi + Ī0) (A.10)
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Qvfi
= θ̇2(mffi

qfi + Ī0) + 2θ̇Ñiq̇fi (A.11)

where

Ī0 =

∫ 1

0

ρailiNi
Tū0i

dξ (A.12)

and ū0i
represents an arbitrary point in the undeformed configuration.

Let q0i
represent the undeformed nodal coordinates, then ū0i

= Niq0i
. Since

nodal displacements represent the superposition of deformations over the undeformed

configuration, we have:

qi = q0i
+ qfi (A.13)

Substituting Eq.(A.13) in Eqs.(A.10) and (A.11) and using the definition for mffi

from Eq.(A.5), we have:

Qvθi
= −2θ̇q̇fi

Tmffi
qi (A.14)

Qvfi
= θ̇2mffi

qi + 2θ̇Ñiq̇fi (A.15)

The matrices and quadratic velocity vector expressions are presented above for

the element i. To accomplish the assembly of the finite elements, a Boolean trans-

formation connecting two adjacent elements is employed. For example, for nnodes

nodes let q =
[
q11 ..qnnodes3

]T
represent the nodal displacements for all nodes in one

blade with the finite elements assembled. Then, displacements for the first element,

q1 = [q11 ..q16 ]
T , used to derive the expressions above is selected from q by using the

constant Boolean transformation matrix B1,

q1 = B1q (A.16)

where B1 is a square matrix of nnodes×6, populated with zeros except for the
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first six elements along the diagonal which are unity. Note, that with reference to

Fig. A.1, each node has 3 degrees of freedom and each element has with 6 degrees

of freedom.

Substituting qi = Biq for qi in the equations used to derive the mass and stiffness

matrices and the quadratic velocity vector expressions and summing through the

elements as shown below for instance for the mass sub-matrix associated with the

deformation coordinates, the finite element assembly is accomplished.

Mff =
∑

i

BT
i mffi

Bi (A.17)
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APPENDIX B 

     FAST DATA INPUTS 

 

FAST INPUT 

-------------------------------------------------------------------------------- 

------- FAST INPUT FILE -------------------------------------------------------- 

FAST certification Test #08(Modified): AOC 15/50 with only Drive Train  DOF, with fixed yaw error and steady wind. 

Many parameters are pure fiction.  Compatible with FAST v7.00.00. 

---------------------- SIMULATION CONTROL -------------------------------------- 

False       Echo        - Echo input data to "echo.out" (flag) 

   1        ADAMSPrep   - ADAMS preprocessor mode {1: Run FAST, 2: use FAST as a preprocessor to create an ADAMS model, 3: 

do both} (switch) 

   1        AnalMode    - Analysis mode {1: Run a time-marching simulation, 2: create a periodic linearized model} (switch) 

   3        NumBl       - Number of blades (-) 

  1.0      TMax        - Total run time (s) 

   0.001    DT          - Integration time step (s) 

---------------------- TURBINE CONTROL ----------------------------------------- 

   0        YCMode      - Yaw control mode {0: none, 1: user-defined from routine UserYawCont, 2: user-defined from Simulink} 

(switch) 

9999.9      TYCOn       - Time to enable active yaw control (s) [unused when YCMode=0] 

   0        PCMode      - Pitch control mode {0: none, 1: user-defined from routine PitchCntrl, 2: user-defined from Simulink} (switch) 

9999.9      TPCOn       - Time to enable active pitch control (s) [unused when PCMode=0] 

   0        VSContrl    - Variable-speed control mode {0: none, 1: simple VS, 2: user-defined from routine UserVSCont, 3: user-defined 

from Simulink} (switch) 

9999.9      VS_RtGnSp   - Rated generator speed for simple variable-speed generator control (HSS side) (rpm) [used only when 

VSContrl=1] 

9999.9      VS_RtTq     - Rated generator torque/constant generator torque in Region 3 for simple variable-speed generator control 

(HSS side) (N-m) [used only when VSContrl=1] 

9999.9      VS_Rgn2K    - Generator torque constant in Region 2 for simple variable-speed generator control (HSS side) (N-m/rpm^2) 

[used only when VSContrl=1] 

9999.9      VS_SlPc     - Rated generator slip percentage in Region 2 1/2 for simple variable-speed generator control (%) [used only 

when VSContrl=1] 
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   1        GenModel    - Generator model {1: simple, 2: Thevenin, 3: user-defined from routine UserGen} (switch) [used only when 

VSContrl=0] 

True        GenTiStr    - Method to start the generator {T: timed using TimGenOn, F: generator speed using SpdGenOn} (flag) 

True        GenTiStp    - Method to stop the generator {T: timed using TimGenOf, F: when generator power = 0} (flag) 

9999.9      SpdGenOn    - Generator speed to turn on the generator for a startup (HSS speed) (rpm) [used only when GenTiStr=False] 

   0.0      TimGenOn    - Time to turn on the generator for a startup (s) [used only when GenTiStr=True] 

9999.9      TimGenOf    - Time to turn off the generator (s) [used only when GenTiStp=True] 

   1        HSSBrMode   - HSS brake model {1: simple, 2: user-defined from routine UserHSSBr} (switch) 

9999.9      THSSBrDp    - Time to initiate deployment of the HSS brake (s) 

9999.9      TiDynBrk    - Time to initiate deployment of the dynamic generator brake [CURRENTLY IGNORED] (s) 

9999.9      TTpBrDp(1)  - Time to initiate deployment of tip brake 1 (s) 

9999.9      TTpBrDp(2)  - Time to initiate deployment of tip brake 2 (s) 

9999.9      TTpBrDp(3)  - Time to initiate deployment of tip brake 3 (s) [unused for 2 blades] 

9999.9      TBDepISp(1) - Deployment-initiation speed for the tip brake on blade 1 (rpm) 

9999.9      TBDepISp(2) - Deployment-initiation speed for the tip brake on blade 2 (rpm) 

9999.9      TBDepISp(3) - Deployment-initiation speed for the tip brake on blade 3 (rpm) [unused for 2 blades] 

9999.9      TYawManS    - Time to start override yaw maneuver and end standard yaw control (s) 

9999.9      TYawManE    - Time at which override yaw maneuver reaches final yaw angle (s) 

   0.0      NacYawF     - Final yaw angle for yaw maneuvers (degrees) 

9999.9      TPitManS(1) - Time to start override pitch maneuver for blade 1 and end standard pitch control (s) 

9999.9      TPitManS(2) - Time to start override pitch maneuver for blade 2 and end standard pitch control (s) 

9999.9      TPitManS(3) - Time to start override pitch maneuver for blade 3 and end standard pitch control (s) [unused for 2 blades] 

9999.9      TPitManE(1) - Time at which override pitch maneuver for blade 1 reaches final pitch (s) 

9999.9      TPitManE(2) - Time at which override pitch maneuver for blade 2 reaches final pitch (s) 

9999.9      TPitManE(3) - Time at which override pitch maneuver for blade 3 reaches final pitch (s) [unused for 2 blades] 

   0.0     BlPitch(1)  - Blade 1 initial pitch (degrees) 

   0.0     BlPitch(2)  - Blade 2 initial pitch (degrees) 

   0.0     BlPitch(3)  - Blade 3 initial pitch (degrees) [unused for 2 blades] 

   0.0     BlPitchF(1) - Blade 1 final pitch for pitch maneuvers (degrees) 

   0.0     BlPitchF(2) - Blade 2 final pitch for pitch maneuvers (degrees) 

   0.0     BlPitchF(3) - Blade 3 final pitch for pitch maneuvers (degrees) [unused for 2 blades] 
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---------------------- ENVIRONMENTAL CONDITIONS -------------------------------- 

   9.8  Gravity     - Gravitational acceleration (m/s^2) 

---------------------- FEATURE FLAGS ------------------------------------------- 

False        FlapDOF1    - First flapwise blade mode DOF (flag) 

False        FlapDOF2    - Second flapwise blade mode DOF (flag) 

False        EdgeDOF     - First edgewise blade mode DOF (flag) 

False       TeetDOF     - Rotor-teeter DOF (flag) [unused for 3 blades] 

True        DrTrDOF     - Drivetrain rotational-flexibility DOF (flag) 

False       GenDOF      - Generator DOF (flag) 

False       YawDOF      - Yaw DOF (flag) 

False        TwFADOF1    - First fore-aft tower bending-mode DOF (flag) 

False        TwFADOF2    - Second fore-aft tower bending-mode DOF (flag) 

False        TwSSDOF1    - First side-to-side tower bending-mode DOF (flag) 

False        TwSSDOF2    - Second side-to-side tower bending-mode DOF (flag) 

True        CompAero    - Compute aerodynamic forces (flag) 

False       CompNoise   - Compute aerodynamic noise (flag) 

---------------------- INITIAL CONDITIONS -------------------------------------- 

   0.0      OoPDefl     - Initial out-of-plane blade-tip displacement (meters) 

   0.0      IPDefl      - Initial in-plane blade-tip deflection (meters) 

   0.0      TeetDefl    - Initial or fixed teeter angle (degrees) [unused for 3 blades] 

   0.0      Azimuth     - Initial azimuth angle for blade 1 (degrees) 

   64.14     RotSpeed    - Initial or fixed rotor speed (rpm) 

   -15.0      NacYaw      - Initial or fixed nacelle-yaw angle (degrees) 

   0.0      TTDspFA     - Initial fore-aft tower-top displacement (meters) 

   0.0      TTDspSS     - Initial side-to-side tower-top displacement (meters) 

---------------------- TURBINE CONFIGURATION ----------------------------------- 

   7.490    TipRad      - The distance from the rotor apex to the blade tip (meters) 

   0    HubRad      - The distance from the rotor apex to the blade root (meters) 

   1        PSpnElN     - Number of the innermost blade element which is still part of the pitchable portion of the blade for partial-span 

pitch control [1 to BldNodes] [CURRENTLY IGNORED] (-) 

   0.0      UndSling    - Undersling length [distance from teeter pin to the rotor apex] (meters) [unused for 3 blades] 
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   0.0      HubCM       - Distance from rotor apex to hub mass [positive downwind] (meters) 

   1.341    OverHang    - Distance from yaw axis to rotor apex [3 blades] or teeter pin [2 blades] (meters) 

   0.0      NacCMxn     - Downwind distance from the tower-top to the nacelle CM (meters) 

   0.0      NacCMyn     - Lateral  distance from the tower-top to the nacelle CM (meters) 

   0.6      NacCMzn     - Vertical distance from the tower-top to the nacelle CM (meters) 

  24.4      TowerHt     - Height of tower above ground level [onshore] or MSL [offshore] (meters) 

   0.6      Twr2Shft    - Vertical distance from the tower-top to the rotor shaft (meters) 

   0.0      TwrRBHt     - Tower rigid base height (meters) 

   0.0      ShftTilt    - Rotor shaft tilt angle (degrees) 

   0.0      Delta3      - Delta-3 angle for teetering rotors (degrees) [unused for 3 blades] 

   0.0      PreCone(1)  - Blade 1 cone angle (degrees) 

   0.0      PreCone(2)  - Blade 2 cone angle (degrees) 

   0.0      PreCone(3)  - Blade 3 cone angle (degrees) [unused for 2 blades] 

   0.0      AzimB1Up    - Azimuth value to use for I/O when blade 1 points up (degrees) 

---------------------- MASS AND INERTIA ---------------------------------------- 

   0.0      YawBrMass   - Yaw bearing mass (kg) 

1747.0      NacMass     - Nacelle mass (kg) 

 247.3      HubMass     - Hub mass (kg) 

   0.0      TipMass(1)  - Tip-brake mass, blade 1 (kg) 

   0.0      TipMass(2)  - Tip-brake mass, blade 2 (kg) 

   0.0      TipMass(3)  - Tip-brake mass, blade 3 (kg) [unused for 2 blades] 

 976.3      NacYIner    - Nacelle inertia about yaw axis (kg m^2) 

  10.0      GenIner     - Generator inertia about HSS (kg m^2) 

   9.0      HubIner     - Hub inertia about rotor axis [3 blades] or teeter axis [2 blades] (kg m^2) 

---------------------- DRIVETRAIN ---------------------------------------------- 

 100.0      GBoxEff     - Gearbox efficiency (%) 

  89.4      GenEff      - Generator efficiency [ignored by the Thevenin and user-defined generator models] (%) 

  28.25     GBRatio     - Gearbox ratio (-) 

False       GBRevers    - Gearbox reversal {T: if rotor and generator rotate in opposite directions} (flag) 

9999.9      HSSBrTqF    - Fully deployed HSS-brake torque (N-m) 

9999.9      HSSBrDt     - Time for HSS-brake to reach full deployment once initiated (sec) [used only when HSSBrMode=1] 
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""          DynBrkFi    - File containing a mech-gen-torque vs HSS-speed curve for a dynamic brake [CURRENTLY IGNORED] 

(quoted string) 

   6.0E5    DTTorSpr    - Drivetrain torsional spring (N-m/rad) 

   1.0E3    DTTorDmp    - Drivetrain torsional damper (N-m/(rad/s)) 

---------------------- SIMPLE INDUCTION GENERATOR ------------------------------  Crude approximation of torque/speed curve. 

   2.222    SIG_SlPc    - Rated generator slip percentage (%) [used only when VSContrl=0 and GenModel=1] 

1800.0      SIG_SySp    - Synchronous (zero-torque) generator speed (rpm) [used only when VSContrl=0 and GenModel=1] 

 314.3      SIG_RtTq    - Rated torque (N-m) [used only when VSContrl=0 and GenModel=1] 

   1.75     SIG_PORt    - Pull-out ratio (Tpullout/Trated) (-) [used only when VSContrl=0 and GenModel=1] 

---------------------- THEVENIN-EQUIVALENT INDUCTION GENERATOR ----------------- 

  60.0      TEC_Freq    - Line frequency [50 or 60] (Hz) [used only when VSContrl=0 and GenModel=2] 

   4        TEC_NPol    - Number of poles [even integer > 0] (-) [used only when VSContrl=0 and GenModel=2] 

   4.92E-02 TEC_SRes    - Stator resistance (ohms) [used only when VSContrl=0 and GenModel=2] 

   5.34E-04 TEC_RRes    - Rotor resistance (ohms) [used only when VSContrl=0 and GenModel=2] 

 480.0      TEC_VLL     - Line-to-line RMS voltage (volts) [used only when VSContrl=0 and GenModel=2] 

   1.00E-04 TEC_SLR     - Stator leakage reactance (ohms) [used only when VSContrl=0 and GenModel=2] 

   1.00E-04 TEC_RLR     - Rotor leakage reactance (ohms) [used only when VSContrl=0 and GenModel=2] 

   4.49E-03 TEC_MR      - Magnetizing reactance (ohms) [used only when VSContrl=0 and GenModel=2] 

---------------------- PLATFORM ------------------------------------------------ 

   0        PtfmModel   - Platform model {0: none, 1: onshore, 2: fixed bottom offshore, 3: floating offshore} (switch) 

""          PtfmFile    - Name of file containing platform properties (quoted string) [unused when PtfmModel=0] 

---------------------- TOWER --------------------------------------------------- 

  11        TwrNodes    - Number of tower nodes used for analysis (-) 

"AOC_Tower.dat" TwrFile - Name of file containing tower properties (quoted string) 

---------------------- NACELLE-YAW --------------------------------------------- 

   0.0      YawSpr      - Nacelle-yaw spring constant (N-m/rad) 

   0.0      YawDamp     - Nacelle-yaw damping constant (N-m/(rad/s)) 

   0.0      YawNeut     - Neutral yaw position--yaw spring force is zero at this yaw (degrees) 

---------------------- FURLING ------------------------------------------------- 

False       Furling     - Read in additional model properties for furling turbine (flag) 

""          FurlFile    - Name of file containing furling properties (quoted string) [unused when Furling=False] 
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---------------------- ROTOR-TEETER -------------------------------------------- 

   0        TeetMod     - Rotor-teeter spring/damper model {0: none, 1: standard, 2: user-defined from routine UserTeet} (switch) 

[unused for 3 blades] 

   0.0      TeetDmpP    - Rotor-teeter damper position (degrees) [used only for 2 blades and when TeetMod=1] 

   0.0      TeetDmp     - Rotor-teeter damping constant (N-m/(rad/s)) [used only for 2 blades and when TeetMod=1] 

   0.0      TeetCDmp    - Rotor-teeter rate-independent Coulomb-damping moment (N-m) [used only for 2 blades and when 

TeetMod=1] 

   0.0      TeetSStP    - Rotor-teeter soft-stop position (degrees) [used only for 2 blades and when TeetMod=1] 

   0.0      TeetHStP    - Rotor-teeter hard-stop position (degrees) [used only for 2 blades and when TeetMod=1] 

   0.0      TeetSSSp    - Rotor-teeter soft-stop linear-spring constant (N-m/rad) [used only for 2 blades and when TeetMod=1] 

   0.0      TeetHSSp    - Rotor-teeter hard-stop linear-spring constant (N-m/rad) [used only for 2 blades and when TeetMod=1] 

---------------------- TIP-BRAKE ----------------------------------------------- 

   0.0      TBDrConN    - Tip-brake drag constant during normal operation, Cd*Area (m^2) 

   0.0      TBDrConD    - Tip-brake drag constant during fully-deployed operation, Cd*Area (m^2) 

   0.0      TpBrDT      - Time for tip-brake to reach full deployment once released (sec) 

---------------------- BLADE --------------------------------------------------- 

"AOC_Blade.dat"         BldFile(1) - Name of file containing properties for blade 1 (quoted string) 

"AOC_Blade.dat"         BldFile(2) - Name of file containing properties for blade 2 (quoted string) 

"AOC_Blade.dat"         BldFile(3) - Name of file containing properties for blade 3 (quoted string) [unused for 2 blades] 

---------------------- AERODYN ------------------------------------------------- 

"Test08_FEM_AD.ipt"         ADFile     - Name of file containing AeroDyn input parameters (quoted string) 

---------------------- NOISE --------------------------------------------------- 

""          NoiseFile   - Name of file containing aerodynamic noise input parameters (quoted string) [used only when 

CompNoise=True] 

---------------------- ADAMS --------------------------------------------------- 

"AOC_ADAMS.dat"         ADAMSFile  - Name of file containing ADAMS-specific input parameters (quoted string) [unused when 

ADAMSPrep=1] 

---------------------- LINEARIZATION CONTROL ----------------------------------- 

"AOC_Linear.dat"        LinFile    - Name of file containing FAST linearization parameters (quoted string) [unused when 

AnalMode=1] 

---------------------- OUTPUT -------------------------------------------------- 

True        SumPrint    - Print summary data to "<RootName>.fsm" (flag) 
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True        TabDelim    - Generate a tab-delimited tabular output file. (flag) 

"ES10.3E2"  OutFmt      - Format used for tabular output except time.  Resulting field should be 10 characters. (quoted string)  [not 

checked for validity!] 

  0.0      TStart      - Time to begin tabular output (s) 

  10        DecFact     - Decimation factor for tabular output {1: output every time step} (-) 

   5.0      SttsTime    - Amount of time between screen status messages (sec) 

   0.0      NcIMUxn     - Downwind distance from the tower-top to the nacelle IMU (meters) 

   0.0      NcIMUyn     - Lateral  distance from the tower-top to the nacelle IMU (meters) 

   0.0      NcIMUzn     - Vertical distance from the tower-top to the nacelle IMU (meters) 

   0.5      ShftGagL    - Distance from rotor apex [3 blades] or teeter pin [2 blades] to shaft strain gages [positive for upwind rotors] 

(meters) 

   0        NTwGages    - Number of tower nodes that have strain gages for output [0 to 9] (-) 

   0        TwrGagNd    - List of tower nodes that have strain gages [1 to TwrNodes] (-) [unused if NTwGages=0] 

   0        NBlGages    - Number of blade nodes that have strain gages for output [0 to 9] (-) 

  2,6       BldGagNd    - List of blade nodes that have strain gages [1 to BldNodes] (-) [unused if NBlGages=0] 

            OutList     - The next line(s) contains a list of output parameters.  See OutList.txt for a listing of available output channels, ( -) 

"RootMxb1,Azimuth,RotSpeed,RotAccel"       - Blade 2 flapwise and edgewise tip deflections RootMxb1,TipDyb1 

END of FAST input file (the word "END" must appear in the first 3 columns of this last line). 

-------------------------------------------------------------------------------- 

 

AERODYN INPUT 

 

AOC aerodynamic parameters for FAST Certification Test #8. 

SI                                     SysUnits - System of units for used for input and output [must be SI for FAST] (unquoted string) 

STEADY                                StallMod - Dynamic stall included [BEDDOES or STEADY] (unquoted string) 

NO_CM                                  UseCm    - Use aerodynamic pitching moment model? [USE_CM or NO_CM] (unquoted string) 

EQUIL                                  InfModel - Inflow model [DYNIN or EQUIL] (unquoted string) 

SWIRL                                  IndModel - Induction-factor model [NONE or WAKE or SWIRL] (unquoted string) 

   0.005                               AToler   - Induction-factor tolerance (convergence criteria) (-) 

PRANDtl                                TLModel  - Tip-loss model (EQUIL only) [PRANDtl, GTECH, or NONE] (unquoted string) 

NONE                                   HLModel  - Hub-loss model (EQUIL only) [PRANdtl or NONE] (unquoted string) 
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"Wind\AOC\Shr11_30.wnd"                WindFile - Name of file containing wind data (quoted string) 

  25.0                                 HH       - Wind reference (hub) height [TowerHt+Twr2Shft+OverHang*SIN(ShftTilt)] (m) 

   0.3                                 TwrShad  - Tower-shadow velocity deficit (-) 

   0.2                                 ShadHWid - Tower-shadow half width (m) 

   1.341                               T_Shad_Refpt - Tower-shadow reference point (m) 

   0.9526                              AirDens  - Air density (kg/m^3) 

   1.4639e-5                           KinVisc  - Kinematic air viscosity (m^2/sec) 

   0.005                               DTAero   - Time interval for aerodynamic calculations (sec) 

   5                                   NumFoil  - Number of airfoil files (-) 

"AeroData\AOC\S814_1.DAT "             FoilNm   - Names of the airfoil files [NumFoil lines] (quoted strings) 

"AeroData\AOC\S814_15.DAT" 

"AeroData\AOC\S812_15.DAT" 

"AeroData\AOC\S812_2.DAT " 

"AeroData\AOC\S813_15.DAT" 

  5                                   BldNodes - Number of blade nodes used for analysis (-) 

RNodes   AeroTwst DRNodes Chord NFoil PrnElm 

0.749 3.419 1.498 0.6019 2 NOPRINT 

2.247 3.419 1.498 0.6019 2 NOPRINT 

3.745 3.419 1.498 0.6019 2 NOPRINT 

5.243 3.419 1.498 0.6019 2 NOPRINT 

6.741 3.419 1.498 0.6019 2 NOPRINT 

 

WIND INPUT 

 

! Wind file for sheared 18 m/s wind with 30 degree direction. 

! Time Wind Wind Vert. Horiz. Vert. LinV Gust 

!   Speed Dir Speed Shear  Shear Shear Speed 

  0.0  11.0 30.0 0.0 0.0  0.2 0.0 0.0 

  0.1  11.0 30.0 0.0 0.0  0.2 0.0 0.0 

999.9  11.0 30.0 0.0 0.0  0.2 0.0 0.0 
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BLADE INPUT 

 

-------------------------------------------------------------------------------- 

---------------------- FAST INDIVIDUAL BLADE FILE ------------------------------ 

AOC 15/50 blade file.  9999 represent dummy values. Edge mode shapes not used. Distributed properties  word-wrapped to fit in 

page 

---------------------- BLADE PARAMETERS ---------------------------------------- 

  2        NBlInpSt    - Number of blade input stations (-) 

False       CalcBMode   - Calculate blade mode shapes internally {T: ignore mode shapes from below, F: use mode shapes from 

below} [CURRENTLY IGNORED] (flag) 

   0.0      BldFlDmp(1) - Blade flap mode #1 structural damping in percent of critical (%) 

   0.0      BldFlDmp(2) - Blade flap mode #2 structural damping in percent of critical (%) 

   0.0      BldEdDmp(1) - Blade edge mode #1 structural damping in percent of critical (%) 

---------------------- BLADE ADJUSTMENT FACTORS -------------------------------- 

   1.0      FlStTunr(1) - Blade flapwise modal stiffness tuner, 1st mode (-) 

   1.0      FlStTunr(2) - Blade flapwise modal stiffness tuner, 2nd mode (-) 

   1.0      AdjBlMs     - Factor to adjust blade mass density (-) 

   1.0      AdjFlSt     - Factor to adjust blade flap stiffness (-) 

   1.0      AdjEdSt     - Factor to adjust blade edge stiffness (-) 

---------------------- DISTRIBUTED BLADE PROPERTIES ---------------------------- 

BlFract  AeroCent  StrcTwst  BMassDen    FlpStff    EdgStff    GJStff    EAStff   Alpha   FlpIner   EdgIner   PrecrvRef   PreswpRef   

FlpcgOf   EdgcgOf   FlpEAOf   EdgEAOf 

   (-)      (-)      (deg)    (kg/m)      (Nm^2)     (Nm^2)    (Nm^2)       (N)     (-)    (kg m)    (kg m)         (m)         (m)       (m)       (m)       

(m)       (m) 

0 0.25 -90 20.17909091 6144424.364 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 

1 0.25 -90 20.17909091 6144424.364 9999 9999 9999 9999 9999

 9999 9999 9999 9999 9999 9999 9999 

---------------------- BLADE MODE SHAPES --------------------------------------- 

   1.6006   BldFl1Sh(2) - Flap mode 1, coeff of x^2 
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   -0.0307   BldFl1Sh(3) -            , coeff of x^3 

   -1.4453   BldFl1Sh(4) -            , coeff of x^4 

   1.2027   BldFl1Sh(5) -            , coeff of x^5 

  -0.3273    BldFl1Sh(6) -            , coeff of x^6 

  -9.7180   BldFl2Sh(2) - Flap mode 2, coeff of x^2 

   9.9859   BldFl2Sh(3) -            , coeff of x^3 

  20.0685   BldFl2Sh(4) -            , coeff of x^4 

  -29.9356   BldFl2Sh(5) -            , coeff of x^5 

  10.5992   BldFl2Sh(6) -            , coeff of x^6 

   1.6006   BldEdgSh(2) - Edge mode 1, coeff of x^2 

  -0.0307   BldEdgSh(3) -            , coeff of x^3 

  -1.4453   BldEdgSh(4) -            , coeff of x^4 

   1.2027   BldEdgSh(5) -            , coeff of x^5 

  -0.3273   BldEdgSh(6) -            , coeff of x^6 

 

 

 

 

 

 

 

  


