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ABSTRACT

Wall-bounded turbulent flows are prevalent in engineering and industrial appli-

cations. Walls greatly affect turbulent characteristics in many ways including pro-

duction and propagation of turbulent stresses. While computational fluid dynamics

can be used as an important design tool, its use is hindered due to the fine-mesh re-

quirements in the near-wall region to capture all of the pertinent turbulent data. To

resolve all relevant scales of motion, the number of grid points scales with Reynolds

number as N ≈ Re9/4, making it nearly impossible to solve real engineering prob-

lems, most of which feature high Reynolds numbers.

A method to help alleviate the resolution requirements is the use of wall models.

This method allows for a coarser mesh to be used in which the near-wall region is

modeled and the first grid point is placed in the log-law region. The shear stress

at the wall is correlated with the velocity at a point outside the near-wall region,

drastically reducing the number of elements required and reducing the computational

time and cost of the simulation.

The goal of this study was to test the speed increase and element reduction ca-

pabilities of combining a wall function solution with the massively-parallel, spectral

element solver, Nek5000, and verify the method using a turbulent channel simulation.

The first grid point is placed at y+ = 100, in the log-law region, for Reτ = 950 and

the sub-grid scales are modeled using a dynamic Smagorinski model. The results are

then compared to a DNS performed by Jiménez and Hoyas for model verification.
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NOMENCLATURE

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

RANS Reynolds Averaged Navier-Stokes

LES Large Eddy Simulation

FEM Finite Element Method

SEM Spectral Element Method

SGS Sub-Grid Scale

TLM Two Layer Method

Re Reynolds Number

Reτ Friction Reynolds Number

U∞ Characteristic Velocity

GLL Gauss-Lobatto-Legendre

Cs Smagorinski Coefficient

y+ Wall Units in the Wall Normal Direction
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∆x+ Grid Spacing in Streamwise Direction

∆y+ Grid Spacing in Wall Normal Direction

∆z+ Grid Spacing in Spanwise Direction

uτ Friction Velocity

τw Wall Shear Stress

ρ Density

ν Kinematic Viscosity

ui Velocity Component

τij SGS Stress Tensor

P Pressure

µ Dynamic Viscosity

G Filter Function

S̄ij Strain Rate Tensor on Filtered Velocity

νT Eddy Viscosity

∆ Filter Width
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`s Smagorinski Length Scale

δij Kronecker Delta

φn Interpolation Polynomial

Ln Legendre Polynomial
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1 INTRODUCTION

Engineering design is a key aspect in the creation of any product used today. In

order for a product to be manufactured, built, and sold, it must first go through a

design process. This process is made up of many steps including the two key steps

of the detailed design and prototyping and testing. The detailed design is where

the product is visualized using solid computer modeling and drawings. From these

drawings and computer models, the product is manufactured and assembled in the

form of a prototype and thoroughly tested. This is typically an iterative process

that requires building many prototypes, performing countless tests, and optimiz-

ing the design model. For large, complex products such as airplanes, cars, and gas

turbines, this process can quickly become very expensive. When studying and op-

timizing something such as a gas turbine, engineers are interested in efficiency and

losses, among other things. To improve efficiency and limit losses, engineers must

understand the behavior of the overall flow and what effects the flow structures and

characteristics associated with the system have on its performance and durability.

One of the most important flow characteristics to understand is the effect of turbulent

flow. Fluid turbulence is a feature of fluid flows, not of specific fluids themselves, that

can be advantageous or detrimental depending on the system in question. However,

today it is still considered to be one of the unsolved questions of classical physics.

Sir Horace Lamb, an influential researcher in the field of fluid mechanics said,

”I am an old man now, and when I die and go to Heaven there are two matters on

which I hope for enlightenment. One is quantum electrodynamics and the other is

the turbulent motion of fluids. And about the former I am rather more optimistic.”

[6]
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1.1 Overview of Fluid Turbulence

Although fluid turbulence is unsolved, understanding it and its effects are very im-

portant in engineering design. For example, turbulent flow can be both advantageous

and detrimental in the study of combustion and power generation. By increasing fluid

turbulence in an engine, mixing capabilities of fuel and oxygen are enhanced, leading

to more efficient combustion. Conversely, increased fluid turbulence around or near

the walls of an engine increase heat transfer capabilities leading to material failure.

Turbulent flow also has detrimental effects on external flows, such as around a car

or an airplane. Fluid turbulence increases friction drag, thus effecting fuel consump-

tion. By eliminating turbulent flow on up to 40% of the surfaces of an aircraft, the

friction drag, which accounts for more than half the total drag of an aircraft, can be

reduced up to 16% [26]. By understanding and potentially controlling or managing

where and how fluid turbulence occurs, more advanced and efficient designs can be

created.

A turbulent flow will transition from laminar flow due to instabilities arising

and propagating through the flow and is identified through physical characteristics.

Three fundamental characteristics of turbulent flow are increased mixing, increased

vorticity, and chaos, or chaotic flow. Turbulent flows are diffusive in nature, causing

enhanced rates of heat, mass, and momentum transfer as well as rapid mixing. In

laminar flows, mixing occurs naturally due to molecular diffusion (viscosity), how-

ever, these effects are seen on much larger scales when the flow becomes turbulent.

Fluid turbulence exponentially stretches the interface surface area of fluid particles

over which molecular diffusion acts, increasing the speed of mixing. This is important

to engineers, who are concerned with drag and heat transfer effects in a system. The

second characteristic of a turbulent flow is vorticity. Turbulent flows are rotational,
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containing three dimensional vorticies that are generated by the instabilities in the

flow or with help from the presence of a wall or an object in the flow. Vortex stretch-

ing is a fundamental mechanism that, due to conservation of angular momentum,

causes vorticies to lengthen in one direction and thin in another. Larger structures

to break into smaller structures, establishing an energy cascade turbulent energy

carrying structures or motions, until the kinetic energy is overcome by the viscosity

of the fluid. These fluid motions, called eddies, are characterized by a range of length

scales, as show in Figure 1.1. The largest, higher energy scales are determined by the

size of the geometry, a characteristic length, while the smallest, lower energy scales

determined by the Reynolds number.

Figure 1.1: Turbulent channel structures. Visualization by Department of Mechani-

cal and Aerospace Engineering at Princeton [12]

Reynolds number is a non-dimensional number defined by characteristic velocity,

U∞, a characteristic length, L, and viscosity, ν. It is essentially a ratio of the inertial
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forces to viscous forces.

Re =
U∞L

ν
(1.1)

As Reynolds number increases, the range of length scales increases. Turbulent flows

are also chaotic. Three important consequences arise from this fact. The first is

that turbulent motions are highly irregular. The second is that turbulent flows are

sensitive to initial conditions, meaning that the slightest difference in the nature of

instabilities in the flow will change the structure of the turbulent flow completely. The

third consequence is that turbulent flows are deterministic, meaning equations can be

solved for instantaneous flow quantities. However, because of the sensitivity to initial

conditions and irregular nature of turbulent flows, it is impractical to solve these

equations because describing the turbulent motion as a function of time and space

becomes unmanageable. Engineers instead treat the problems statistically instead of

deterministically, concerning themselves with statistical averages of turbulent flows

such as the average drag over a wing or the average pressure loss, in an attempt to

understand what its effects are on systems of interest.

1.2 Background of Techniques

Comprehension of fluid flows are necessary for many fields, industries, and vir-

tually all areas of engineering, specifically understanding the dynamics of turbulent

eddies within a flow. However, there is still a large amount of information and many

phenomena that are not fully understood. Once theory has been exhausted, knowl-

edge about the system in question can be gained by means of two different paths,

experimentation and numerical simulations.

Experimentation is a physical process in which a full prototype, or typically a
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scaled model, is created and tests are performed in order to measure the flow physics

directly. Experiments may require elaborate setups or special environments such as

wind tunnels in order to properly mimic the system of study. Additionally, proper

measuring devices are necessary to gather the data needed to study the flow dynam-

ics. A common example of an experiment is placing scaled model of an airfoil or

car in a wind tunnel and measuring pressure and velocity data while accelerated air

passes over the model, simulating real conditions. Using acquired data, important

design quantities, such as drag, can be calculated. Data from experiments can also

be used to verify theory and tune mathematical models. (For different experimental

measuring techniques, a good source is Goldstein [10]). Real data acquisition is lim-

ited to the scope of the measurement devices. It is very difficult to capture certain

aspects of the flow physics as well as data for an entire flow field. Experiments are

limited to points of interest in which to focus the measurements. Experiments can

also be very large, expensive, and require a lot of time to construct the experimental

apparatus.

The second method of gaining understanding of a system is through numerical

simulations. A set of equations called the Navier-Stokes equations represent the con-

servation of momentum in a fluid system. Coupled with the continuity equation,

conservation of mass, these equations govern the physics of a fluid system. Because

these four equations are coupled, non-linear, partial differential equations, an analyt-

ical solution is rare or sometimes non-existent without severe assumptions and simple

cases. Since the majority of real life flows are more complex than these assumptions

will allow, the equations must be solved numerically. Numerical analysis transforms

the Navier-Stokes equations from a set of differential equations to discrete differ-

ence equations able to be solved numerically, through a process called discretization.

While using numerical simulations allows the user to have data at every point within
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the domain, validating the data and scheme to ensure accuracy of the method is

essential. Validation against experimental data is critical to prove that a numerical

method is accurate and can be used to predict real data. Boundary conditions, grid

resolution (how the domain is broken down and the size of each element), and the

size of the time step taken in advancing the simulation all play a crucial role in the

stability and accuracy of a numerical scheme.

1.2.1 Computational Fluid Dynamics

The study of using numerical simulations in order to solve a fluid system is typi-

cally referred to as computational fluid dynamics, or CFD for short. CFD is broken

down into three different types of simulations, Direct Numerical Simulations (DNS),

Reynolds-Averaged Navier-Stokes (RANS), and Large Eddy Simulation (LES). Each

method comes with its own strengths and weaknesses, and while they all solve the

Navier-Stokes equations, the major difference lies in how the phenomenon of fluid

turbulence is dealt with and how the different length scales are solved or modeled,

as shown in Figure 1.2.

DNS solves the Navier-Stokes equations directly to determine the instantaneous

velocity field without the use of any turbulence modeling. While DNS is conceptually

the most basic approach as well as being widely considered the most accurate type

of simulation, it comes with a big cost [24]. In order to resolve all of the necessary

length scales and time scales, the grid resolution of the domain must be small enough

to capture them. The number of grid points needed to perform a three-dimensional

DNS scales like N ∼ Re
9
4 . This translates into extremely high element counts and

thus immense computing resources. The computational cost required to run a fully

resolved DNS makes this type of simulation impractical for real flows that contain

complex geometries and flow structures as well as high Reynolds number flows. To
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give an idea of the overall computational cost of DNS, some respective Reynolds

numbers are shown below.

Flows Characteristic Reynolds Number Required Mesh Points

Velocity
(
m
s

)
(Re) (N) for DNS

Model Airplane 1 ≈ 7× 104 ≈ 8× 1010

Car 3 ≈ 6× 105 ≈ 1013

Airplane 30 ≈ 2× 107 ≈ 2× 1016

Atmospheric ? ≈ 1020 ≈ 1045

Table 1.1: Representative Reynolds Numbers for DNS

In RANS, the entire momentum equation is time averaged in order to solve for

the mean velocity field instead of the instantaneous velocity field. The time average

yields an additional, non-linear term, called the Reynolds stress. The additional

Reynolds stress term is unknown, so it must therefore be modeled. There are many

different turbulence models that have been developed over the years, often times

giving rise to even more unknowns that result in additional modeling. If an accurate

model is obtained, this type of simulation is the easiest, fastest, and least expensive,

however, with many variables continuing to be modeled, a lot of doubt can arise in

the results.

LES is essentially a hybrid of DNS and RANS in which the larger turbulent scales

are directly resolved without the use of any models while the smaller turbulent scales

are modeled. Because of the explicit representation of the large scale, unsteady mo-

tions, LES is deemed more accurate and reliable than RANS [24], though it is com-

putationally more expensive.
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Figure 1.2: Wavelength vs. energy spectrum. Showing which turbulent eddy scales

DNS, RANS, and LES resolve and model

1.3 Supercomputing

For real engineering problems, both geometries and flows can be very complex.

As stated before, high Reynolds number flows dictate that simulations have many el-

ements where the numerical solution to the Navier-Stokes equations is solved. With

large numbers of elements and calculations needed leading to rising computation

costs, more powerful computers are needed to handle even the simplest CFD prob-

lems. Thus, supercomputers are used to solve CFD problems. Supercomputers are

systems with massive numbers of processors, typically ranging from several hundred

to several hundred thousand, and high speed memory resources. The efficiency of

such systems relies on the ability of the different processors to communicate with each

other, called parallel processing. Parallel processing allows the problem to be split

among all the processors while running simultaneously, reducing the time required

to solve the problem.
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1.4 Statement of Purpose

The ability to run simulations greatly enhances the design process by limiting

the number of prototypes and experiments needed to improve an engineering design.

Going forward, LES is the best numerical approach to design simulations that re-

quire a high level of accuracy while being able to balance cost. However, even with

current supercomputing technology, the grid scaling requirement based on Reynolds

number severely limits the applicability of LES in real engineering applications.

The objective of this study is to test the accuracy and speed increase of a basic

wall model with the pre-existing massively parallel, spectral element code, Nek5000,

and validate the model though characterizing turbulent flow behavior in a channel.

The major setback to numerical simulations is the computational cost associated with

them and the trade-off that must be made between computational cost and simula-

tion accuracy. The accuracy associated with LES as well as the spectral accuracy and

scaling capabilities of the present code can effectively be used while drastically reduc-

ing the required number of elements needed by means of a successful implementation

of a wall model.
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2 LITERATURE REVIEW AND NUMERICAL METHODS

In wall bounded flows, the region near a wall is of great importance and also

difficult to handle. In the presence of a wall, a layer of fluid that is greatly influenced

by the effects of viscosity, called a boundary layer, forms. Within the boundary layer,

the sizes of the eddies that carry turbulent motion scale roughly as the distance away

from the wall. In the near-wall region, the distance from the wall is defined by wall

units;

y+ =
uτy

ν
(2.1)

uτ =

√
τw
ρ

(2.2)

where uτ is the friction velocity, τw is the wall shear stress, ρ is the density, and ν

is the viscosity. Wall modeling is an approach in which the region near the wall is

not resolved like the rest of the flow. Instead, it is modeled using various approaches

in order to account for the effects of the unresolved turbulent scales while allowing

the grid to scale with the larger turbulent scales in the outer flow region. In doing

this, the number of grid points needed reduces significantly and makes the cost of

the simulation only slightly dependent on the Reynolds number. Over the years,

several distinct approaches to wall modeling have been implemented including the

approximate boundary conditions approach, the Two Layer Model approach, and a

Hybrid RANS/LES method.
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2.1 Literature Review

In order to circumvent the computational restrictions associated with LES,

Deardorff [7], in 1970, bypassed the inner layer while simulating turbulent channel

flow at high Reynolds numbers through the use of approximate boundary conditions

similar to RANS. Deardorff’s boundary conditions forced the existence of a layer

where the stress was constant, the logarithmic layer, as well as assumed that the

turbulent fluctuations were isotropic. The assumption was based on the total average

stress within the inner part of a boundary layer being almost constant. The boundary

conditions are presented as;

∂2ū

∂y2
= − 1

κ
(

∆y
2

)2 +
∂2ū

∂z2
(2.3)

v̄w = 0 (2.4)

∂2w̄

∂y2
=
∂2w̄

∂x2
(2.5)

By applying a no penetration condition on the wall-normal velocity at the wall and

restricting the second derivatives of u and w at the first grid point off the wall,

he related the velocity in the outer layer to the shear stress at the wall. The first

boundary condition requires that the average velocity satisfies the log law while

the no penetration condition helps satisfy continuity as well as implies that the

Reynolds stress components ūv̄, v̄2, and v̄w̄ at the wall are zero. Deardorff’s model

was incomplete because it assumed that solely the sub-grid scales were responsible

for the shear stress at the wall as well as not having an effect on the Reynolds number

essentially making it an infinite Reynolds number model.

In 1976, Schumann [27] altered Deardorff’s approximated boundary conditions

and simulated a turbulent channel using a finite volume approach. Schumann set a
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condition on the shear stress at the wall, directly applying a linear relation between

the stress and the velocity at the first grid point off the wall while still applying a

no penetration condition at the wall.

τ12,w(x, z) =

[
ū(x, y2, z)

〈ū(x, y2, z)〉
]
〈τw〉 (2.6)

v̄w = 0 (2.7)

τ32,w =

(
2

Reτ

)[
w̄(x, y2, z)

y2

]
(2.8)

where 〈〉 represents the time average and y2 is the location of the first grid point off

the wall, which must be located outside the inner region. In the first condition, the

mean velocity U(y2) = 〈ū(x, y2, z)〉 is obtained through the log law while 〈τw〉, the

average wall stress, is solved for using a global momentum balance. In a channel

flow, the average wall shear stress is set equal to the pressure gradient driving the

flow.

Grötzbach [11] modified Schumann’s approach by averaging the the axial velocity

at the first grid point off the wall over the entire plane parallel to the wall. He then

estimated 〈τw〉 with the log-law using the calculated, planar averaged velocity as the

input value and solved for uτ .

u+(y2) =
U(y2)

uτ
= 2.5log

(ywuτ
ν

)
+ 5.2 (2.9)

where yw is the distance from the wall to the first grid point. The benefits of

Grötzbach’s modifications were that the pressure gradient no longer needed to be

known beforehand in order to close the model. By iteratively solving for the aver-

age wall shear stress, fluctuation in both the pressure gradient and the mass flux is

allowed instead of prescribing and fixing both quantities.
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In 1989, Piomelli [23] proposed new approximate boundary conditions that corre-

lated the wall stress and the instantaneous velocity downstream using a streamwise

displacement as well as took into account sweep and ejection events within the flow.

τ12,w(x, z) = 〈τw〉 − Cuτ ū(x+ ∆s, y2, z) (2.10)

v̄w(x, z) = 0 (2.11)

τ32,w(x, z) =

[ 〈τw〉
U(y2)

]
w̄(x+ ∆s, y2, z) (2.12)

∆s = (1− |y2|) cot θ (2.13)

θ =


8◦ : 30 < y+

2 < 50− 60

13◦ : y+
2 > 60

(2.14)

where ∆s is the streamwise displacement, 〈τw〉 is obtained from the log law, and C

is a dimensionless constant of order 1. The addition of a streamwise displacement

improved the correlation of velocity and wall stress by taking the inclination of elon-

gated structures into account. The stretching of vortex structures and increase in

fluid turbulence near the wall is due to the impingement of the higher velocity fluid

which increases the wall stress. At the same time, ejection of energy and structures

needs to be accounted for due to its reduction of the the stress at the wall. The value

of θ varies with y+ in the inner layer and can be found experimentally in the works

of Rajagopalan and Antonia [25].

These new approximate boundary conditions saw a good improvement over the

ones previously used. Other modifications have also been made using the approxi-

mate boundary condition approach. Werner and Wengle [28] chose to fit the power-

law profiles for the streamwise velocity instead of the log-law. The power-law can

be inverted explicitly, which aids in numerical computations. Other modifications
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include accounting for the effects of buoyancy [18], wall roughness [17], and control

theory and using linear stochastic estimation [19, 2] in order to obtain the wall shear

stress. Wu and Squires [29] used a slightly different approach in which they solved

for uτ with a separate RANS calculation while solving for the flow over a rounded

bump.

The approximate boundary condition approach supplied good results for primar-

ily simple geometries such as channels, however, they rely on a crucial assumption

that the fluid turbulence is in equilibrium. In more complex geometries such as di-

verging or rotating channels, or geometries that produce strong pressure gradients

or secondary flows such as separation and re-circulation, these models have had very

limited success, if any, while often failing immensely. This lead to the the Two Layer

Model (TLM), shown in Figure 2.1. TLM essentially solves a separate set of equa-

tions on a second, embedded grid within the near-wall region.

Figure 2.1: Two Layer Model grid structure.

The Two Layer model uses an outer layer grid based on LES grid requirements

while, in the near-wall region, a second embedded grid is established within the first
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cell of the LES grid, at the wall. On the is secondary grid, a separate set of equations

is solved and the value of the velocity field is used as a Dirichlet boundary condition

to the LES grid. Balaras, Benocci, and Piomelli [3] solved a system derived from the

boundary layer equations on the secondary grid.

∂ūi
∂t

+
∂

∂x
(ū1ū2) +

∂

∂z
(ū3ū1) = − ∂p̄

∂xi
+

∂

∂z

(
(ν + νSGS)

∂ūi
∂z

)
, i = 1, 2 (2.15)

νSGS = (κz)2Db(z)|S̄| (2.16)

Db(z) =

(
1− exp

(
−
(
z+

A+

)3
))

(2.17)

where z is the wall normal direction, κ is the Von Karman constant, Db(z) is a

damping function, and A+ = 25. Cabot [4, 5] proposed a different definition:

νSGS = κuszD
2
C(z) (2.18)

DC(z) =
(

1− exp
(
−zud
Aν

))
(2.19)

where us and ud are determined velocity scales and A = 19.

The third method of wall modeling is a Hybrid RANS/LES approach. This

method is similar to the TLM, however, instead of a using a separate embedded

grid, this method has a single grid which is divided into zones. This method solves

the LES equations in the outer zone while solving a set of RANS equations in the

near-wall zone and the two zones are weakly coupled together at a matching point.

The difficulty with this approach is the buffer region that is created where the two

zones meet. Matching the different turbulent scales provided by each set of equations

is a challenge. Baggett [1] used two models in order to explicitly blend the two regions

together in a smooth transition. The first uses a linear combination of the predicted
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turbulent/subgrid stresses while taking anisotropy of fluid turbulence into account:

τij − 1

3
τkkδij = −νSGS

[
Sij − (1− β(z))

〈
S̄ij
〉]− β(z)νRANS

〈
S̄ij
〉

(2.20)

where νSGS and νRANS are the LES sub-grid and RANS turbulent viscosities respec-

tively and β(z) is a prescribed function of distance to the wall. The second method

blends the modeled viscosities.

τij − 1

3
τkkδij = [(1− β(z)) νSGS + β(z)νRANS] S̄ij (2.21)

Using either method of smoothing, β = 0 corresponds to a classical LES while β = 1

yields a classical RANS simulation.

While all of the previously mentioned approaches and models have been imple-

mented successfully at some point in time, this current work will focus on a very

simple model based on the approximate boundary condition approach. The desire is

to test the speed increase and accuracy of the wall model combined with the present

spectral element code, Nek5000. Upon successful test, future works can begin incor-

porating more sophisticated models for a wider spectrum of problems.

2.2 Numerical Method

The governing equations for an incompressible and Newtonian fluid flow are given

by the Navier-Stokes equations shown here in tensor notation,

∂ui
∂t

+
∂ (uiuj)

∂xj
= −1

ρ

∂P

∂xi
+ ν

∂2ui
∂x2

j

(2.22)

∂uj
∂xj

= 0 (2.23)
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where ρ is the density, ν is the kinematic viscosity, and ui is the jth component of

the velocity field. The incompressible assumption defines a constant density while

the Newtonian fluid assumption sets a relationship of the shear stress, τ , to the

strain rate, ∂u
∂y

, through the proportionality constant, µ, being the dynamic viscosity,

τ = µ∂u
∂y

. The three components of velocity, represented by the jth component, are

the x, y, and z Cartesian coordinates. A spatial filtering operation is performed to

decompose the exact (DNS) equations into filtered (LES) equations,

f(x) =

∫
G(x, x′)f(x′)dx′ (2.24)

where G is a filter function and the integral is taken over the entire flow domain In

theory, the filter function is applied to the original Navier-Stokes equations in order

to to decompose the velocity field into the sum of a filtered (resolved) component

and unfiltered (residual) component. However, the filter is almost never solved for

and is instead represented as another function (The most commonly used filters are

presented in Pope [24]). The resolved component represents the larger scale, higher

energy containing motions while the residual component represents the smaller scale,

lower energy containing motions to be modeled. The result is the incompressible LES

equations;

u(x, t) = ū(x, t) + u′(x, t) (2.25)

∂ūi
∂t

+
∂ (ūiūj)

∂xj
= −1

ρ

∂P̄

∂xi
+ ν

∂2ūi
∂x2

j

− 1

ρ

∂τij
∂xj

(2.26)

∂ūj
∂xj

= 0 (2.27)

where the overbar represents the filtered variable and τij = ρ (uiuj − ūiūj) is the SGS

stress tensor produced by the filtering operation and reorganizing terms. The SGS
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stress cannot be solved with the larger, resolved scales, but the assumption that the

smaller eddies are universal and their effect is negligible in the total production of

turbulent energy [20], allows it to be modeled.

2.2.1 Eddy Viscosity Model

The most common approach to model the SGS stress is the linear eddy viscosity

assumption. This assumption relates the the residual stress to the strain rate tensor

of the filtered velocity field through a proportionality constant;

τij ≈ νTSij (2.28)

where νT is the eddy viscosity of the residual motions and Sij = 1
2

(
∂ūi

∂xj
+

∂ūj

∂xi

)
is the

strain rate tensor. It is important to note that the eddy viscosity is not a property

of the fluid, but of the flow itself [20]. Though many different models for the eddy

viscosity term exist, the most commonly used model is the Smagorinski model.

The Smagorinski model dictates that the eddy viscosity is proportional to the

characteristic length and velocity of the small scales while assuming that the SGS

kinetic energy and production are balanced by the rate dissipation. This implies that

the smaller scales are in a state of equilibrium. The Smagorinski model defines the

eddy viscosity as

νT = `s
2S̄ = (Cs∆)2 S̄ (2.29)

where S̄ is the characteristic filtered strain rate, Cs is the Smagorinski coefficient,

∆ is the filter width, and the Smagorinski length scale, `s, is proportional to the

filter width through the Smagorinski coefficient, which is analogous to the mixing-

length hypothesis [24] developed by Prandtl. By estimating S̄ from the Kolmogrov
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spectrum, a value of the Smagorinski constant Cs ≈ 0.17 was found. This model

worked reasonably well for homogeneous, isotropic turbulence with cutoff in the

inertial subrange [9], however, in inhomogeneous flows, such as wall bounded flows,

the value was too large causing the eddy viscosity to dissipate too much energy by

dampening the large-scale fluctuations. Excessive dampening of the larger, resolved

scales changes the overall the flow field, especially in transitional flows where the

growth rates of the initial perturbations was found to be inaccurate.

In order to more accurately model eddy viscosity, a dynamic approach was created

in order to calculate the eddy viscosity coefficient locally, adapting to the present

flow conditions. The model uses information from the smallest resolved scales to

model the sub-grid stresses. In theory, the Dynamic Smagorinski model, used in

the present code, defines two filter operations that are applied to the Navier-Stokes

equations, a grid filter Ḡ, and a test filter G̃, where the test filter width is larger

than the grid filter width.

f(x) =

∫
G(x, x′)f(x′)dx′ (2.30)

f̃(x) =

∫
G̃(x, x′)f(x′)dx′ (2.31)

˜̄G = G̃Ḡ (2.32)

The grid filter is applied to the Navier-Stokes equations forming the LES equations,

where the effects of the scale scale are present in the SGS stress term τij = uiuj−ūiūj.
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Applying ˜̄G to the LES equations generates a new set of filtered LES equations;

∂ ˜̄ui
∂t

+
∂ (˜̄ui ˜̄uj)

∂xj
= −1

ρ

∂ ˜̄p

∂xi
+ ν

∂2 ˜̄ui
∂x2

j

− 1

ρ

∂Tij
∂xj

(2.33)

Tij = ũiuj − ˜̄ui ˜̄uj (2.34)

Lij = ˜̄uiūj − ˜̄ui ˜̄uj = Tij − τ̃ij (2.35)

where the sub-grid scale stress is now Tij and the turbulent stress from the resolved

scales whose length fall between the grid filter and test filter width is Lij. Two

more variables, Mij and mij are defined to model the anisotropic parts of Tij and τij

respectively.

τij − δij
3
τkk ' mij = −2C∆̄2|S̄|S̄ij (2.36)

Tij − δij
3
Tkk 'Mij = −2C ˜̄∆2| ˜̄S| ˜̄Sij (2.37)

˜̄Sij =
1

2

(
∂ ˜̄ui
∂xj

+
∂ ˜̄uj
∂xi

)
(2.38)

| ˜̄S| =
√

2 ˜̄Smn
˜̄Smn (2.39)

where ∆̄ is the characteristic filter width related to Ḡ and ˜̄∆ is the characteristic

filter width related to ˜̄G.
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Figure 2.2: Dynamic smagorinski filter. The Dynamic smagorinski model uses both

a grid and test filter to model the smallest scales.

The Smagorinski coefficient, C, is assumed to be only a function of y and t in

channel flow to avoid and indeterminate value while a planar average is taken on the

plane parallel to the wall. The result is;

C(y, t) = −1

2

〈
LijS̄ij

〉
˜̄∆2
〈
| ˜̄S| ˜̄SmnS̄mn

〉
− ∆̄2

〈
| ˜̄S| ˜̄SpqS̄pq

〉 (2.40)

mij =

〈
LijS̄ij

〉
˜̄∆
∆̄

2 〈| ˜̄S| ˜̄SmnS̄mn〉− 〈| ˜̄S| ˜̄SpqS̄pq〉 |S̄|S̄ij (2.41)

where mij is the dynamic eddy viscosity sub-grid scale stress model. The dynamic

model scales as the cube of the distance to the wall in the near-wall region, accurately

describing the asymptotic behavior of the SGS stress tensor [9]. The model also

allows for backscatter, the energy that flows from the small scales to the large scales.

This is a phenomenon that the original Smagorinski model did not account for and

in some cases should not be ignored. The dynamic Smagorinski model allows νt to
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vanish as the wall is approached, where only the molecular viscosity should have

a contribution. Essentially, the dynamic Smagorinski model using information from

the smallest resolved scales in order to model to smallest turbulent motions, as shown

in Figure 2.2.

2.3 Numerical Solution: Spectral Element Method

To solve partial differential equations such as the Navier-Stokes equations, the

technique of approximating the solution through the use of continuous functions is

used. Typically these functions are polynomials whose derivatives are required to

satisfy the governing equations at discrete (grid) points. The approximation tech-

nique used by the present code, Nek5000, is the spectral element method (SEM).

The spectral element method is a high-order, weighted residual technique similar to

the finite element method (FEM). Similar abilities handling complex geometries and

being capable of local mesh refinement through h-refinement, increasing the number

of elements, or p-refinement, increasing the polynomial order within the elements are

achievable. The order of a method refers to the order of the polynomials used in the

approximation of the solution. Both methods split the entire domain into smaller

elements in which the solution is approximated. An essential condition however, is

that the solution matches at the boundaries of adjacent elements. Deville [8] refers

to each individual element in the domain as a parent element where the nodes on the

boundaries of each element are referred to as primary or element boundary nodes.

Each parent element spans a length of 2, from [-1, 1], in one dimension while the same

principle extends to the second and third dimensions. The coordinates, ξ, in each

parent element are mapped using a transformation. Within each parent element, the
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approximate solution takes the form of

ue = ueN(ξ) =
N∑
n=0

anφn(ξ) (2.42)

where φn are interpolation polynomials, an are coefficients that need to be solved

for, and N is the polynomial order used in each parent element. The interpolation

polynomials take the form of

φ(ξ) =
∏
i 6=n

ξ − ξi
ξn − ξi (2.43)

The mapped points ξn, called secondary points and corresponding to each value an,

are the points in each parent element to which the function is interpolated. Each

polynomial is characterized as having a value of zero at every point except the point

corresponding to its own number, where it has a value of one. This allows the

coefficient, an to be the solution at each point.

φn(ξj) =


1 : j = n

0 : j 6= n

(2.44)

The number of secondary grid points in directly related to the polynomial order.

The higher the order of the method used, the more secondary points and inter-

polating polynomials each parent element has. FEM algorithms typically only use

up to 2nd order elements requiring that if more accuracy is needed, the number

of elements must increase, also called h-refinement. SEM, implementing high-order

schemes in nature, allows the option of increasing the polynomial order yielding more

secondary grid points within each element if greater accuracy is required. This is

called p-refinement. A major difference between the two methods also comes from

23



how orthogonality of the polynomials is defined. In FEM, the orthogonality between

the basis functions is uniquely due to non-overlapping local functions. Conversely,

in SEM, orthogonality is related to both the topological nature (local extension)

and the analytical nature of the basis functions [8]. Chebyshev (Tn) or Legendre

(Ln) polynomials are examples of orthogonal basis functions used to approximate

the solution for the entire domain. Due to more straightforward implementation of

Legendre polynomials, they are typically chosen over the use of Chebyshev poly-

nomials. The reason that higher order schemes become problematic for the FEM,

and not SEM, has to do with the spacing of the secondary grid points. FEM uses

uniform grid spacing for the secondary points causing the polynomials to overshoot

the endpoints, leading to large errors. SEM, however, uses non-uniform interpolation

points where the points are the solutions to;

(
1− ξ2

)
L′N(ξ) = 0 (2.45)

L′N is the derivative of the Legendre polynomial with the highest order existing within

the element. These new solution points are called Gauss-Lobatto-Legendre (GLL)

points. This technique results in the distance between the GLL points decreasing

as you move away from the center of the element. The concentration of points near

the endpoints results in reducing the error in overshooting that the polynomials have

compared to uniformly spaced points. Figure 2.3 shows a comparison of a uniformly

spaced finite element and a non-uniformly spaced spectral element, demonstrates the

reduced error in interrelation accuracy. The elements are both 8th order elements,

the same order elements used in the present simulation.
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Figure 2.3: Interpolation polynomials. An 8th Order Spectral Element (a) and an

8th Order Finite Element (b), each showing the 5th polynomial.

Another benefit to SEM is the convergence rate, shown in Figure 2.4. The con-

vergence rate is essentially, given an accuracy requirement, how many grid points

the scheme will need in order to reach the given accuracy. While FEM typically has

a second order rate of convergence, SEM has an exponential rate that allows it to

use far fewer grid points to produce the same accuracy.
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Figure 2.4: Spectral convergence as a function of degrees of freedom. The L2 error

norms as a function of the number of degrees of freedom, N.
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This characteristic is very important when applying SEM to real problems be-

cause it reduces the amount of computing time, thus computational cost, needed to

solve complex problems. For more in-depth information on spectral elements, the

reader is invited to reference Deville [8].

2.4 Nek5000

Nek5000 is an open source, high-order, massively-parallel, spectral element CFD

code that brings together the essential characteristics of speed and accuracy needed

for solving the Navier-Stokes equations. While primarily used in academic research

at this point; in time, Nek5000 could be a substantial design tool given its ability

to cover a broad range of applications including combustion modeling, thermal hy-

draulics, and general fluid flow. From the beginning, Nek5000 was built to optimize

speed and accuracy capabilities allowed by the spectral element method as well as

originally being designed to take advantage of parallel computing, currently being

able to scale to over 250,000 processors [21]. As a parallel code, it uses efficient

element-to-element communication while using high-order elements to improve accu-

racy. Originally designed as a DNS solver by default, Nek5000 allows additional user

input and modification to add routines ranging anywhere from turbulence models to

post-processing calculations, allowing, in this case, the transformation into an LES

solver.

Aside from the source code, Nek5000 uses three additional files in order to set up

a problem, SIZE file, rea file, and the usr file. The SIZE file contains information

important to the number of processors to use, the division of elements per proces-

sor, the polynomial order of the Legendre polynomial basis functions, and whether a

PN/PN or PN/PN-2 method will be used. The difference between these two meth-

ods is how the code handles solving for pressure. The rea file stores all the fluid
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properties, mesh information, time-stepping information, and number of time-steps

to be run. The usr file is where you can add additional routines for the solver to run,

as well as set boundary and initial conditions. In the present study, modifications to

the source code and additions to the usr file were the primary focus for a successful

wall model implementation.

In the usr file, several base functions are defined and called by the source code

during a simulation. The primary functions of interest are the userbc() function and

the userchk() function. The userbc() function, as one might guess, allows the user

to set values or functions that define the boundary conditions. In the present study,

this is where the the no penetration condition, v = 0 at the wall, and the values

of stress at the walls are defined and applied to the numerical solution. The user-

chk() function, called at every time-step, is where the user can define functions for

post-processing such as averaging routines or calculate other quantities of interest,

as well as adding routines that can modify the flow field such as turbulence models

or adding acceleration to an outflow boundary to avoid numerical complications. In

the present study, this function is where the eddy viscosity for the turbulence model

is calculated through a defined routine, eddy visc. The function, eddy visc, is where

the values for the Dynamic Smagorinski model are calculated and applied to the

discretized equations to be solved numerically. The modifications to the source code

required to implement the wall model will be discussed later in the Test Case section.

2.5 Wall Modeling Theory

In a well-resolved LES, the grid required is almost as fine as one needed to per-

form a DNS. An accurate LES with the near-wall region and the needed turbulent

scales resolved requires a number of grid points that scales as N ∼ Reτ
2, where Reτ

is the friction Reynolds number. To accurately represent the structures in the near-
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wall region, the first grid point must be located at y+ < 1, and the grid spacing must

be of order ∆x+ ' 50− 150, ∆z+ ' 15− 40 [22]. As Re → ∞, the number of grid

points must increase to avoid or lessen numerical inaccuracy. Using wall models can

help relax the grid spacing requirements through modeling the wall layer by corre-

lating the wall stress with the outer layer velocity field using a specified law relation.

When using a model, the first grid point off the wall is placed in the outer flow layer,

y+ ' 30 − 200, since the small, turbulent structures do not need to be resolved.

Approximated boundary conditions are applied at the wall that correlate the outer

flow with the wall shear stress while the necessary assumptions are applied. This also

allows coarser mesh in the x and z directions, ∆x+ ' 100− 600, ∆z+ ' 100− 300,

drastically reducing the required number of elements needed.

2.5.1 Log-Law

According to Pope [24], it is useful to divide the flow into three regions, the viscous

wall region (y+ < 50), the log-law region (50 < y+ ' 285), and the core (y+ > 285).

The value of 285 corresponds to the Reynolds number of the present simulation,

(Reτ = 950). Furthermore, the viscous wall region can be subdivided to three main,

distinct regions; the viscous sub-layer, the buffer layer, and the inertial sub-layer.

Each of these regions are characterized by the effects and contributions of both

viscosity and the Reynolds stresses to the total stress, as shown in Figure 2.5. The

viscous contribution drops from 100% at the wall (y+ = 0) to 50% at y+ ≈ 12 and

is less than 10% by y+ = 50 [24].
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Figure 2.5: Fractional stress contributions. The viscous stress and Reynolds stress

have different fraction contributions to the total shear stress depending on y+, as

seen in Pope [24]

Prandtl suggested that the viscous wall region, or inner layer, is characterized as

a region where the mean velocity profile is independent of U0, the centerline velocity,

and δ, the outer layer length scale, and only determined by the effects of the viscous

scales. Within the Inner layer, u+ is defined as only a function of y+, according to

Prandtl’s hypothesis, and is expressed as;

u+ =
〈U〉
uτ

(2.46)

The law of the wall defines u+ as an integral function of y+;

du+

dy+
=

1

y+
ΦI(y

+) (2.47)

u+ =

∫ y+

0

1

y′
ΦI(y

′)dy′ (2.48)

where ΦI is a function of y
δ

and y+ that tend asymptotically to a function of y+ only,
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as y
δ

tends to zero [24].

• Viscous Sub-Layer: 0 < y+ < 5

In this region, the Reynolds stress is negligible compared to the viscous stress, how-

ever, experiments have shown that a small fraction of the Reynolds stress still remains

up to about y+ = 5. In this region, through integration, the relationship u+ = y+ is

obtained.

• Buffer Layer: 5 < y+ < 30

This is essentially a transition region between viscous-dominated and turbulence-

dominated regions of the the flow where neither the viscous stress nor the Reynolds

stresses can be neglected.

• Inertial Sub-Layer: 30 < y+ ' 285

This region is called the log-law region due to the logarithmic nature of the mean

velocity profile. Data has shown that the Reynolds number has an impact on the size

of this region. The higher the Reynolds number is, the further this region reaches in

terms of values of y+. In this region, the velocity gradient is,

du+

dy+
=

1

κy+
(2.49)

which integrates to

u+ =
1

κ
ln y+ +B (2.50)

where κ is the von Kármán constant and B is a constant based on the intersection of

the slope. Through vast amounts of experiments and literature, the values of these
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two constants varies slightly, however, they generally fall within ±5% of the values,

κ = 0.41 (2.51)

B = 5.2 (2.52)

Typically, for the approximate boundary condition method, the first grid point off

the wall is placed somewhere within the log-law region so that the log-law can be

directly applied to the grid point in accordance with the law of the wall, shown in

Figure 2.6.

Figure 2.6: Law of the wall. The different algebraic relationships for each individual

region of the inner layer

The viscous wall region contains the most vigorous turbulent activity. The pro-
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duction, dissipation, turbulent kinetic energy, and anisotropy all achieve their peak

values at y+ < 20 [24].

2.6 Test Case

The test case chosen to simulate this study of an LES with a wall model was flow

through a turbulent channel at Reτ = 950 based on the friction velocity, uτ and the

channel half height h. The first step was to balance forces and derive the driving

pressure force, ∂P
∂x

in the channel where the mean centerline velocity U = 1, shown

in Figure 2.7.

2.6.1 Balance of Forces

Beginning with a fully developed flow within the channel, meaning the velocity

profile is the same everywhere along the direction of the flow, the continuity equation

is simplified first. Assuming that there is no velocity in the z-direction, w = 0, and

u does not vary in the x-direction, ∂u
∂x

= 0 since the flow is fully developed, the

continuity equation reduces as follows,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.53)

�
�
���
0

∂u

∂x
+
∂v

∂y
+
�
�
��7

0
∂w

∂z
= 0 (2.54)

∂v

∂y
= 0 (2.55)

In order to satisfy the no penetration condition that v = 0 at the walls, v = 0

must be true for all y values. The x-direction momentum equation applied to a

differential control volume is similarly simplified to begin the analysis. As a result of

the same assumptions and the simplified continuity equation, only the surface forces
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remain and are equal to zero.

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂P

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(2.56)

ρ


�
�
���
0

∂u

∂t
+ u
�
�
���
0

∂u

∂x
+��

0
v
∂u

∂y
+��*

0w
∂u

∂z

 = −∂P
∂x

+ µ


�
�
��7

0
∂2u

∂x2
+
∂2u

∂y2
+
�
�
��7

0
∂2u

∂z2

 (2.57)

∂P

∂x
= µ

∂2u

∂y2
(2.58)

Figure 2.7: Balance of Forces in a Channel

This flow is purely driven by the pressure gradient with no flow acceleration

added to the system. Therefore, the momentum equation results in the balance of

the axial pressure gradient and the shear stress as seen above. With the shear stress

only being a function of y, τ(y), and the driving pressure only being a function of x,

it is clear that both variables have constant values. By integrating the relationship
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along the y-direction evaluating y from [-1,1],

∂P

∂x

(
y2

2

)
= µU (2.59)

∂P

∂x
�
�7

1

y2

2
= µ���

1
U (2.60)

∂P

∂x
= 2µ (2.61)

the resulting value of the pressure gradient is determined. This value is added as a

source term driving the flow in the simulation. This value is defined in the user file

in Nek5000 in the function userf.

2.6.2 Mesh Generation

After deriving the value of the driving pressure gradient, the computation domain

and mesh needed to be created. Based on DNS data provided by Jimenez and

Hoyas [13] (Discussions of Data and results can be found [14, 15, 16]), the following

parameters, shown in Table 2.1, were assumed for the dimensions of the channel and

necessary flow data values. For the basic wall model, these values are used from

experimental data in order to appropriately implement the wall model, however, in

more advanced wall models and later modifications, many of these values will be

calculated from the flow itself and supplied directly to the boundary conditions.
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X Length Lx

h
= 8π

Channel Half Height h = 2

Z Length Lz

h
= 3π

Friction Reynolds Number Reτ = 950

Friction Velocity uτ = 0.0454

Viscosity ν = 4.8591× 10−5

Experimental y+ = 100 y = 0.10678

Velocity at y+ = 100 Uexp = 0.7462

Table 2.1: Computational Domain Dimensions and Experimental Flow Values

Using the experimental values for utau, and ν, the value of y+ in wall units was

able to be calculated and used to create the necessary mesh. Recall that the use of

a wall model allows the first grid point off the wall to be placed in the outer layer

instead of requiring high resolution in the near-wall region. In a wall resolved LES,

recall that the first grid point needs to be located with y+ < 1. Typical LES grids

will also require 2 points within y+ = 5 and assign a growth rate of the element size

in the wall normal direction, α = 1.1 − 1.3 until ∆y+ = 30. Once ∆y+ = 30, the

element size will be uniform. These rules of thumb are used in order to capture the

required length scales. In this study, a conservative value of y+ = 100 was chosen

for the location of the first grid point and the element size, ∆y+, in the wall normal

direction was uniform. Similarly, conservative values for ∆x+ and ∆z+ were chosen

for the first iteration of the wall model and similarly had uniform element sizes. Ta-

ble 2.2 shows the meshing values and required number of elements for the present

wall modeled LES and a wall resolved LES (WR LES). Two runs with different grid

spacing were used for the wall modeled case. Figure 2.8 shows the two meshes, a

conservative approach using smaller grid spacing (WM LES) and a mesh with much
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coarser grid spacing (LGWM LES) according to the requirements allowed by Piomelli

[22] ∆x+ ' 100− 600, ∆z+ ' 100− 300.

Method ∆x+
max ∆z+

max ∆y+
max α Number of Elements Total

(XxYxZ) Elements

WR LES 30 30 30 1.3 112×24×42 112896

WM LES 50 30 30 N/A 67×10×42 28140

LGWM LES 300 200 30 N/A 11×10×6 660

Table 2.2: Meshing Values

Recall that for a DNS, the number of elements needed to resolve all length scales

goes as N ∼ Re
9
4 . This means a DNS would require approximately 7.16 × 105

elements. The conservative wall modeled LES reduces the number of elements needed

by over 70% compared to the wall resolved LES and the coarse mesh case reduces

the number of elements needed by close to 200 times.

Figure 2.8: Meshes used. The first run using conservative grid spacing (a), and the

second run using coarse grid spacing (b). Non-uniform spacing shows the GLL points

along with the global elements.
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2.6.3 Boundary Conditions

The boundary conditions that were applied to the computation channel domain

are as follows:

• v = 0 at the top and bottom walls

• periodic boundary conditions on both the x-direction and z-direction faces

A periodic boundary condition in a computation domain is essentially replicating

the domain an infinite number of times in order to avoid needing to set an inlet

and outlet to the domain and the conditions needed with them. Periodic boundary

conditions are convenient to use due to the ease of implementation while avoiding

the need be concerned with the spatial development of the flow in a finite domain.

Instead, periodic boundary conditions essentially create an environment where user

is solely concerned with the time development of the flow.

2.6.4 Implementation of Wall Model

The wall model is implemented through a logical switch addefor a Finite Element,

Chebyshev collocation, and Legendre spectral element solutions d to the Nek5000

source code. The switch is set to true when the user wants to use the wall model.

The first step was assigning a Dirichlet boundary condition at the wall for the y-

velocity, v. This is done simply by assigning v = 0 as a boundary condition in the

user file and Nek5000 will assign the condition on any element face that user has

designated a wall. The second step was to set a Robin boundary condition on the

stress at the wall. Nek5000 uses three Helmholtz solves in order calculate the x, y,
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and z velocities in which the weak form of the Naiver-Stokes equations are used.

(
ν∇2r, q

)
Ω

= −
∫

Ω

ν∇r · ∇q∂V +

∫
∂Ω

ν∇r · n̂q∂S (2.62)

Using the divergence theorem, a boundary integral is obtained. In the boundary

integral, ∇r · n̂ is of concern for setting a boundary condition. The model takes the

form of,

µ
∂u

∂y
|0 = τw,bc ≡ u(y+ = δ)

〈u(y+ = δ)〉exp
〈τw〉exp (2.63)

While the value of u(y+ = δ) could simply be used as is, this value is not easily

known. The value of y+ is dynamic, depending on the friction velocity. Because of

this, the value could easily end up somewhere in an element that is not directly on

a GLL point. If this was the case, the value would need to be interpolated, which

is an expensive operation to perform. Instead, the value of δ is assumed constant

and the value of velocity is approximated using a first order Taylor expansion taken

about the point at the wall.

µ
du

dy
≈ u+ δ du

dy
|0

〈u〉exp
〈τw〉exp (2.64)

where δ is the distance y+, in wall units, away from the wall where the velocity value

is taken to correlate with the stress at the wall. The new form of the boundary

condition resembles a Robin boundary condition. The new boundary condition is
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rearranged to resemble the Robin form and the values for a, b, and c are determined.

au+ b
∂u

∂y
= c (2.65)(

µ− δ 〈τw〉exp〈u〉exp

)
du

dy
|0 − u

〈τw〉exp
〈u〉exp

= 0 (2.66)

〈τw〉exp
〈u〉exp

= a (2.67)(
µ− δ 〈τw〉exp〈u〉exp

)
= b (2.68)

0 = c (2.69)

The condition is solved for ∂u
∂y

and this is the what is used in the weak formed Navier-

Stokes equation to set the stress boundary condition. All the experimental values are

taken from the DNS data in the work done by Hoyas and Jiménez [13]. These values

are used in the weak formed Helmholtz solve as terms added at the boundaries.
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3 RESULTS AND DISCUSSION

The test case of a turbulent channel was run using 8th order spectral elements

on 128 processors at Texas A&M’s supercomputer, EOS. The first run used approx-

imately 5,000 CPU hours accumulating just over 82 seconds of real time flow data

and the second run used approximately 600 CPU hours accumulating 800 seconds

of real time flow data.. In these 82 seconds and 800 seconds respectively, the flow

began as a laminar flow and transitioned to turbulent flow.

The main objective of this study was to test the speed and accuracy of a wall

model for an LES of a turbulent channel when combined with a massively parallel,

spectral element code, and validate the results against a DNS. An important detail to

remember in the present study is that the boundary conditions are set using experi-

mental values of uτ and U(y+ = 100) and are not allowed to fluctuate. Typically, the

values of uτ as well as y+ will fluctuate depending on the flow behavior. In a second

iteration of this wall model, these values will be determined and set by the flow itself,

allowing for fluctuations and more accurate results. With that said, the present wall

modeled LES performed well in the first run, exhibiting similar turbulent and overall

flow characteristics to the work of Hoyas and Jiménez. For an idea of the overall

flow behavior, Figures 3.1 and 3.2 show the instantaneous and time-averaged velocity

field and profile respectively at an arbitrary timestep. The turbulent behavior of the

instantaneous velocity field is clearly seen while the time-averaged field shows a much

smoother profile with a thinner boundary layer and sharper gradients, as expected.

Figures 3.3-3.5 show the mean velocity profiles of the DNS, Wall Modeled LES, and

a comparison of the two respectively.
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Figure 3.1: Instantaneous Velocity Profile. A Z-plane slice of the instantaneous

velocity field along with a lineout of the velocity profile

Figure 3.2: Time-Averaged Velocity Profile. A Z-plane slice of the time-averaged

velocity field along with a lineout of the velocity profile
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Figure 3.3: DNS Log-Law profile. Mean Velocity profile of DNS data in Reτ = 950

turbulent channel flow
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Figure 3.4: Wall modeled LES Log-Law profile. Mean Velocity profile of Wall Mod-

eled LES data in Reτ = 950 turbulent channel flow
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Figure 3.5: Comparision of wall Modeled LES and DNS Log-Law profile

In the viscous sub-layer, 0 < y+ < 5, the wall model deviates slightly from the

u+ = y+ and in the log-law region, the model overshoots the DNS data curve but

still retains the correct trend. This behavior of the mean velocity in the outer layer is

seen in the implementation of the Dynamic Smargorinski model work done by Ger-

mano [9]. The higher values of mean velocity in the outer layer, where the Reynolds

stress is primarily responsible for dissipating energy in the flow, is evidence of too

little energy dissipation and an under-prediction of the Reynolds stress and eddy

viscosity in the buffer region. A low value for the eddy viscosity could be due to an

improper filter width calculated by the Dynamic Smagorinski model used. Figures

3.6-3.8 show the root-mean-square turbulence intensities
√
u′2,
√
v′2, and

√
w′2. The

turbulence intensities clearly peak in the near-wall region, as expected, and follow

the same trends as the DNS data in the outer layer. The model slightly under pre-

dicted the turbulence intensities in the majority of the flow field, however, urms and

wrms were over predicted in the near-wall region around y+ = 50. This is believed
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to a be result of the values supplied as boundary conditions for the wall shear stress

at the wall. Since uτ , ν, and U(y+ = 100) were fixed, experimental values instead

of dynamic, time-dependent terms calculated from the flow at each time step, the

turbulence intensities were over predicted in the near-wall region. Figure 3.9 shows

the Reynolds Shear Stress term 〈u′v′〉. Similar to the turbulence intensities, the

Reynolds Shear stress was also slightly under-predicted and fluctuations are seen in

the near-wall region. The under-prediction of the the Reynolds stress curve in the

buffer region could be the cause of the velocity values being over-predicted. The

velocity approaches the actual values further in the outer layer due to the model pre-

dicting higher Reynolds stresses than the DNS data. Figure 3.10 shows the Reynolds

Stress terms plotted as a function of y+. The trend and magnitude of the specific

components matches what was expected as seen in Pope [24] for turbulent channel

flow.
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Figure 3.6: urms vs. y+. Plane-averaged rms turbulence intensities
√
u′2 normalized

by friction velocity in Reτ = 950 turbulent channel flow, in wall units, y+
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Figure 3.7: vrms vs. y+. Plane-averaged rms turbulence intensities
√
v′2 normalized

by friction velocity in Reτ = 950 turbulent channel flow, in wall units, y+
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Figure 3.8: wrms vs. y+. Plane-averaged rms turbulence intensities
√
w′2 normalized

by friction velocity in Reτ = 950 turbulent channel flow, in wall units, y+
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Figure 3.9: Reynolds Shear Stress vs. y+. Plane-averaged Reynolds Shear Stress u′v′

normalized by friction velocity in Reτ = 950 turbulent channel flow, in wall units,

y+
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Figure 3.10: u′iu
′
j vs. y+. Plane-averaged Reynolds Stresses normalized by friction

velocity in Reτ = 950 turbulent channel flow, in wall units, y+

The second run with a much coarser mesh did not fare as well as the first run.
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The mean velocity was vastly over-predicted in the outer layer. The velocity profile

eventually reached a logarithmic-like shape, however, the mean velocity value itself

was very high compared to the DNS data, as shown in Figures 3.11 and 3.12. Because

of this, the buffer layer extended far past it’s typical value. urms and wrms decayed

very rapidly due to the very high values compared to the DNS data. The Reynolds

Stresses matched the proper profiles as the DNS data, however, the values were

incorrectly predicted, shown in Figures 3.13-3.17. The Reynolds shear stress was

under-predicted and decayed slightly faster than it should have and vrms appears

under-resolved due to the lack of clear maximum and weak decay rate, as shown

in Figure 3.14. The velocity in the outer layer never approaches the actual values

because the Reynolds stress continues to diverge from the DNS predicted values, as

shown in Figure 3.16. These results clearly show a grid dependence is still necessary

in order to capture the necessary turbulent data.
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Figure 3.11: Coarse wall modeled LES Log-Law profile. Mean Velocity profile of

Wall Modeled LES data in Reτ = 950 turbulent channel flow for large grid spacing
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Figure 3.12: Comparision of coarse wall modeled LES and DNS Log-Law profile
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Figure 3.13: urms vs. y+ for coarse mesh. Plane-averaged rms turbulence intensities
√
u′2 normalized by friction velocity in Reτ = 950 turbulent channel flow, in wall

units, y+, for large grid spacing
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Figure 3.14: vrms vs. y+ for coarse mesh. Plane-averaged rms turbulence intensities
√
v′2 normalized by friction velocity in Reτ = 950 turbulent channel flow, in wall

units, y+, for large grid spacing
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Figure 3.15: wrms vs. y+ for coarse mesh. Plane-averaged rms turbulence intensities
√
w′2 normalized by friction velocity in Reτ = 950 turbulent channel flow, in wall

units, y+, for large grid spacing
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Figure 3.16: Reynolds Shear Stress vs. y+ for coarse mesh. Plane-averaged Reynolds

Shear Stress u′v′ normalized by friction velocity in Reτ = 950 turbulent channel flow,

in wall units, y+, for large grid spacing
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Figure 3.17: u′iu
′
j vs. y+ for coarse mesh. Plane-averaged Reynolds Stresses normal-

ized by friction velocity in Reτ = 950 turbulent channel flow, in wall units, y+, for

large grid spacing
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4 CONCLUSION AND FUTURE WORK

The use of a wall model in the massively-parallel, spectral element code, Nek5000

proved to be extremely beneficial in the LES of a turbulent channel. While the

second run showed that, even with a wall model, an LES needs grid requirements in

order to capture pertinent turbulent data, the first run proved that the original LES

mesh requirements could be relaxed while still providing accurate results. The wall

modeled LES reduced the required number of elements by over 70% from 112,986

elements down to 28,140 elements and only used about 5,000 hours to transition from

laminar to turbulent flow as well as reach a statistically steady state. The error in

the results for urms, vrms, wrms, and u’v’ that were introduced by the approximate

boundary conditions were very acceptable, especially with the benefit of the element

count and computational time reduction.

The advantage gained with this wall modeled LES shows promise toward using

LES for design purposes in real engineering applications, however, there are still

several steps that need to be taken before such uses can be considered. The first

minor step, as mentioned previously, is modifying the present model to use real

flow data from the simulation itself to supply the boundary conditions at the wall,

as well as taking elongated structures into account as done by Piomelli [23]. This

should both improve the accuracy further and make the model more applicable to

other types of flows. The second minor step would be to modify the model to

allow for complex geometries. This step should be able to be accomplished through

identifying wall normal components instead of simply an XYZ Cartesian system.

The next major step would be incorporating a method to deal with secondary flows.

When phenomena such as re-circulation and re-laminarization are involved, simple
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approximate boundary conditions may not be enough to fully characterize these

flows. Addressing these minor and major steps will further assist in the use of LES

as a major engineering design tool in many industries.
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