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ABSTRACT 

 

A networked control system (NCS) is a control system where sensors, actuators, 

and controllers are interconnected over a communication network. This dissertation 

presents a framework for modeling, stability analysis, optimal control, and bandwidth 

allocation of the NCS. A ball magnetic-levitation (maglev) system, four DC motor 

speed-control systems, and a wireless autonomous robotic wheelchair are employed as 

test beds to illustrate and verify the theoretical results of this dissertation.  

This dissertation first proposes an output feedback method to stabilize and 

control the NCSs. The random time delays in the controller-to-actuator and sensor-to-

controller links are modeled with two time-homogeneous Markov chains while the 

packet losses are treated with Dirac delta functions. An asymptotic mean-square stability 

criterion is established to compensate for the network-induced random time delays and 

packet losses in the NCS. Then, an algorithm to implement the asymptotic mean-square 

stability criterion is presented. Experimental results illustrate effectiveness of the 

proposed output feedback method compared to conventional controllers. The proposed 

output feedback controller could reduce the errors of the NCS by 13% and 30–40% for 

the cases without and with data packet losses, respectively. 

The optimal bandwidth allocation and scheduling of the NCS with nonlinear-

programming techniques is also presented in the dissertation. The bandwidth utilization 

(BU) of each client is defined in terms of its sampling frequency. Two nonlinear 

approximations, exponential and quadratic approximations, are formulated to describe 
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the system performance governed by discrete-time integral absolute error (DIAE) versus 

sampling frequency. The optimal sampling frequencies are obtained by solving the 

approximations with Karush-Kuhn-Tucker (KKT) conditions. Simulation and 

experimental results are given to verify the effectiveness of the proposed approximations 

and the bandwidth allocation and scheduling algorithms. In simulations and experiments, 

the two approximations could maximize the total BU of the NCS up to about 98% of the 

total available network bandwidth. 
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NOMENCLATURE 

 

BU Bandwidth Utilization 

CPU Central Processing Unit 

DIAE Discrete-Time Integral Absolute Error 

EDF Earliest Deadline First 

IP Internet Protocol 

KKT  Karush-Kuhn-Tucker 

LAN Local Area Network 

LMI Linear Matrix Inequality 

LQG Linear Quadratic Gaussian 

LQR Linear Quadratic Regulation 

LSM Least Square Method 

MSMC Multiple-Server-Multiple-Client 

NCS Networked Control System 

PWM Pulse-Width Modulation 

RM Rate Monotonic 

SSMC Single-Server-Multiple-Client 

SSSC Single-Server-Single-Client 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 

WLAN Wireless Local Area Network 
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1. INTRODUCTION 

 

Networked control systems (NCSs) arose in the interdisciplinary development of 

computer networks, communications, sensing technologies, and control theories. Other 

disciplines as mechatronics and embedded technologies also support the development of 

the NCSs. High-speed Ethernet and Field-bus successfully improved reliability and 

stability of the NCSs than ever before and promoted their applications in aerospace, 

manufacturing, process control, teleoperation, exploration, etc. The study of the NCSs 

has been an active and attractive research area in the past several years due to their broad 

applications, such as mobile sensor networks [1], remote surgery [2], haptic 

collaboration over Internet [3–4], automated highway systems [5], and unmanned aerial 

vehicles [6]. An NCS can be defined as a hybrid system of sensors, actuators, and 

controllers, which are distributed and interconnected in locations. Reference inputs, plant 

outputs, and control inputs of an NCS are exchanged over communication networks. 

This special structure defines an NCS as a distributed closed-loop real-time feedback 

control system. 

The basic functionalities of an NCS include data acquisition (sensors), control 

commands (controllers), communication (networks), and actuation (actuators). From a 

larger scope, research of the NCSs can be categorized into two areas [7]: 

(1) Control of networks. The control of networks, from computer science 

perspective, focuses on the research and study of the communication network 
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itself. The research of interest includes network protocols, routing controls, 

congestion controls, etc. 

(2) Control over networks. The control over networks, from system and control 

perspective, focuses on control strategies and controller designs that use the 

networks as data transmission media. The aim is to reduce the effects from the 

existence of the networks and to maintain system stability and performance. 

As discussed above, the research of the control over networks focuses on control 

methodologies rather than design of the network protocols and analysis of network 

behaviors. Our interest in this research is to design and analyze the control algorithms of 

the NCS so that the system stability and performance can be guaranteed and maintained 

at a specified level. Hence, this dissertation will mainly discuss control issues of an NCS 

from the control over networks perspective.  

1.1 OVERVIEWS OF CONTROL OVER NETWORKS 
The beginning of the research of the control over networks could be traced back 

to publications of “Integrated communication and control systems” authored by Halevi 

and Ray in 1988 [8–9]. The authors first combined the control systems and the 

communication networks and named it as integrated communication and control systems 

in the papers. Ever since, many research institutes and commercial companies have 

shown great interests in applying the control over networks to their research or practical 

applications such as remote industrial controls, factory automations, and other areas. The 

classification of the control over networks depends on communication architectures 
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between plants and controllers, which can be roughly categorized into three modes: (1) 

teleoperation, (2) supervisory control, and (3) NCS.  

1.1.1. Teleoperation 
Teleoperation pertains to the operation of a machine at a certain distance. By 

distance, it can refer to a physical distance where operators are separated from to-be-

controlled systems, actuators, and sensors, or to a change in scales, for instance, remote 

microscopic-level surgery [10]. Teleoperation arose in the needs of on-board 

manipulation systems in dangerous or hazardous environments. It is most commonly 

associated with robots but can be applied to a whole range of circumstances that include 

radiation sites, nuclear materials cleanups, underwater inspections, explorations, 

manufacturing, military applications, etc [10–12]. 

In traditional teleoperation systems, however, the operators must depend on 

feedbacks provided by real-time sensory feedback systems to perform subsequent 

actions as shown in Fig. 1. This is possible when latency in the system is minimal so that 

the system performance could be guaranteed. An unsatisfactory performance may occur 

due to the lack of local control mechanisms on the plant sites. Moreover, the operators’ 

limited perception of environments could also result in a poor performance. For these 

reasons, researchers have been focusing their research attention on supervisory control.  

1.1.2. Supervisory Control 
The development of supervisory control is based on client-server architectures. 

The sensors, actuators, and controllers are all located at the controlled plant side as 

shown in Fig. 2. Compared to a teleoperation system, in the supervisory control, 
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operators usually give high-level symbolic or analogical instructions to the controlled 

plant remotely instead of directly controlling the remote manipulation system. Unlike a 

teleoperation system, a supervisory control system introduces autonomous control loops 

to the remote site. Hence, the controlled plant can be processed continuously and 

autonomously. The operators monitor the system performance all the time and modify 

control algorithms when necessary.  

 

Operator/
Manipulator

Communication 
Channel

Remote 
Slave PlantUser 

Commands

 

Fig. 1. Block diagram of a teleoperation system 

 

In the last decade, several tele-robots and test beds were established using the 

Internet as a supervisory control medium [13–18]. The Mercury project was the first 

successful application of applying the Internet for supervisory control [13]. Luo et al. 

applied the supervisory control technique to develop a desktop rapid-prototyping system 

[14]. Garcia et al. developed a tele-robotic system using supervisory control based on a 

hybrid control approach [15]. Srivatsava designed an Internet-based supervisory control 

system that operators could monitor process and sent corrective commands to controller 

from anywhere on the Internet [18]. 
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Operator/
User

Communication 
Channel

Remote 
Controller Actuator

Sensor

User Side Controlled Plant Side

+
–

Plant

 
Fig. 2. Block diagram of a supervisory control system  

 

1.1.3. NCS 
The communications of Internet-based teleoperation and supervisory control 

systems are generally unidirectional in nature. The Internet is applied to send 

instantaneous feedback for monitoring, and operational commands for correcting system 

actions in emergency. The feedback from the controlled plant is not directly applied to 

the control-command decisions or the control algorithms modification by the controller 

itself. However, in the NCS, all nodes, including sensors, actuators, and controllers, are 

assumed to be interconnected bidirectionally via a communication channel. Furthermore, 

decisions of the operational control algorithms or commands directly depend on the 

feedback from the controlled plant side. The control loop is closed over the network with 

the data packets exchanged on sensor-to-controller link and controller-to-actuator links. 

In general, an NCS mainly consists of the controllers, plants, and communication 

channels. The plants are usually continuous-time systems whereas the controllers are 

discrete-time systems. The output of the plants are discretized and fed back to the 
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controllers via the communication channels. The controllers will send control inputs to 

the plants within the current sampling period, if possible.  

In an NCS, the controllers, sensors, and actuators can be distributed at different 

levels of physical locations [19]. Multiple controllers or multiple plants can exist in the 

same NCS. The framework of an NCS that includes one controller controlling one client, 

one controller controlling multiple plants, and several controllers collaboratively 

controlling one plant, is shown in Fig. 3. Also, there might be other users who do not 

belong to the NCS share the same network.  

For simplicity of the analysis of an NCS, the framework of an NCS in Fig. 3 can 

be represented in a block diagram shown in Fig. 4. Figure 4 illustrates one of typical 

structures of an NCS, a direct structure [20]. The NCS with a direct structure is 

composed of a controller on one side of the communication channel and a remote system 

containing a plant, sensors, and actuators on the other side. Applications, such as a 

distance learning lab [21] and DC motor speed-control systems [22], follow this direct-

structure framework. 

The other structure of an NCS, a hierarchical structure, is shown in Fig. 5. 

Contrast to the direct structure, it has a remote controller at the remote system side. This 

remote controller works as a complementary controller to the main controller. In this 

structure, the main controller generates control inputs to the remote system, and the 

remote controller executes the control inputs in a local closed-loop manner with possible 

modifications based on the system feedback in real time. Under situations of large time 

delays and data packet losses, the remote controller can generate compensational control 
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inputs to maintain the system performance with the absence of the main controller. 

Hence, the NCS with the hierarchical structure has a better real-time performance than 

the one with the direct structure. Applications of the NCS with the hierarchical structure 

include mobile robots in [23], a modified teleoperation system in [24], etc. 
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Fig. 3. Representative framework of an NCS 
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Fig. 4. Block diagram of a typical NCS with a direct structure 
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Fig. 5. Block diagram of a typical NCS with a hierarchical structure 

 

This dissertation will focus on one of the most prominent and general forms of 

the NCS with a direct structure that has a single controller and multiple plants. Several 

control issues will be discussed and analyzed based on this framework. Hereafter, the 

nodes containing the controllers will be presented as Server, and the ones containing the 

sensors, actuators, and plants, Client, respectively. A representative framework of the 

NCS in this dissertation is given in Fig. 6. In this architecture, all the clients compete for 

resources, such as bandwidth, central processing unit (CPU) time, or battery to guarantee 

their stability and system performance. Note that the results in this dissertation can also 

be applied to the NCS with multiple controllers and multiple plants and the one with the 

hierarchical structure with appropriate modifications. 
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Network

Server Controller

Client 1 Client 2 Client N. . .

A/D D/A A/D D/AA/D D/A

Plant 1 Plant 2 Plant N
 

Fig. 6. An NCS with a single server and multiple clients 

 

1.2 INTEGRATED DESIGN ISSUES IN THE NCS 
The NCS has advantages of remote operation and control, easy setup and 

maintenance, increased flexibility and reliability, etc. However, the existence of the 

networks or other communication channels will inevitably bring more complicated 

control issues to the NCS such as network-induced time delays, packet losses, optimal 

sampling periods, resource allocation, network scheduling, etc. Among all the control 

design issues, the network-induced time delays and packet losses can be generally 

categorized as the NCS’s stability issues, and the optimal sampling periods, resource 

allocation, and network scheduling can be generally categorized as the NCS’s 

performance issues. Note that these control issues can be coupled and integrated. 
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1.2.1. Network-Induced Time Delays 
Unlike point-to-point connection in traditional control systems, the networks or 

other communication channels in the NCS will consume longer time on data-packet 

generation, transmission, processing, etc. For the success of the NCS, either the sensor 

feedback or the control input must be sampled, encoded, and packed in a data packet, 

transmitted over the network, and decoded and calculated at the receiver sides. This 

process significantly outstands the NCS from the traditional control systems. The overall 

time delays of an NCS can be very stochastic due to the nature of the network 

communication. In general, the network-induced time delays in the NCS will include 

(1) Data-packet-generation delays. Data at each node in the network need to be 

sampled and capsulated in a single packet or multiple packets before being sent 

out. 

(2) Data-packet-queuing delays. When the network is occupied by other clients or 

non-NCS users, the data packets will be hold and put in a buffer until the network 

is available for the next transmission. 

(3) Data-packet-transmission delays. The transmission delay is the time consumed 

by the data packets transmitting over the network. It depends on lengths of 

communication cables, sizes of the data packets, paths chosen by routers or 

switches on the network, etc. 

(4) Data-packet-processing delays. The processing delay mainly includes the data-

packet decoding time after its arrival at the receiver node and its corresponding 

calculation time.  
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1.2.2. Network-Induced Packet Losses 
The network-induced time delays is not the only control issue brought by the 

networks, packet losses can be another one. In the traditional control systems, the data 

are assumed never lost in the transmission. However, the data transmitted over the 

networks can be lost during the transmission. In an NCS, when the nodes such as 

sensors, actuators, and controllers exchange the data packets simultaneously over the 

networks, data-packet collision, network congestion, and connection failure may take 

place because of the network bandwidth limit and other uncertainties in the network. The 

possible reasons of the packet losses can be 

(1) Physical failures of connections. When communication cables break down for 

physical reasons, links among each node are disconnected so that the data 

packets over the network cannot be transmitted to their destination nodes.  

(2) Frequent communication congestions. Communication congestions are inevitable 

due to the share of the links and the network bandwidth limit. When the network 

is busy or does not have enough bandwidth for current transmission, the data 

packets are queued in a buffer and wait for a retransmission after a certain time 

threshold. If retransmissions fail certain times, the data packets will be dropped 

off by the network protocols. Overflown of the routers or switches on the 

network can also cause the data packet losses.  

(3) Disorder of the data packets. The nodes of the NCS do not designate a data 

transmission path over the network for each transmission. The paths are chosen 

by the routers or switches in the next available manner on the network. 
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Therefore, the later transmitted data packets may arrive first than the earlier 

transmitted ones. The disorder of the data packets will be considered as packet 

losses since they are outdated. 

(4) Other network uncertainties. Uncertainties such as utilization of the network 

from non-NCS users or electronic noise may also cause packet losses.  

1.2.3. Optimal Sampling Periods 
Traditional classical controls assume that the computer control systems have 

periodical invariant sampling periods. This assumption simplifies the analysis of the 

control systems. The system performance inversely depends on the sampling period. The 

smaller the sampling period, the better the system performance. However, the existence 

of the networks in the NCS complicates this relation between the system performance 

and the sampling period. A smaller sampling period increases the numbers of the data 

packets transmitted in the networks, which bring longer time delays overloading the 

networks, and may destabilize the systems eventually.  

A performance chart will provide a clear insight of choosing the optimal 

sampling periods for an NCS [25]. Figure 7 illustrates a comparison of the system 

performance versus the sampling period for the continuous-time control, digital control, 

and NCS. Given a control law, the worst, acceptable, and best sampling periods can be 

chosen based on control system specifications. The performance axis in Fig. 7 reflects a 

subset of the control system specifications. Since the performance of the continuous-

time control is not a function of the sampling period, it is then a constant for the given 

control inputs. The performance index only depends on the sampling period without 
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other uncertainties for digital control. In this case, the performance index is an inverse 

function of the sampling period in simplicity. The performance degradation point A in 

the digital control can be estimated based on relationship between the control system 

bandwidth and the sampling periods. For the NCS, point B can be determined by 

investigating characteristics and statistics of the network-induced time delays. As the 

sampling period gets smaller, the network traffic loads become heavier, the possibility of 

more contention time delays or packet losses increases, and worse performance results 

will be exhibited. This causes the existence of point C in the NCS. 

 

 
Fig. 7. Performance comparisons of the continuous-time control, digital control, and 

NCS [25] 
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  From Fig. 7, one can see that the performance index of points B and C are at the 

same level. Hence, for an NCS, point B should be chosen as it has the same performance 

as point C but introduces less data packets in the network which may reduce the 

possibilities of longer time delays and save the resource for other clients. Note that the 

performance of the digital control might be degraded as the sampling period decreases to 

the hardware limits of the system. Therefore, the sampling period of a digital control 

system cannot decrease indefinitely. Figure 7 explains the system performance versus 

the sampling period within the hardware limits of the system.  

1.2.4. Bandwidth Allocation and Scheduling 
One unique nature of the NCS is that it is a shared network. In general, several 

clients in an NCS may share one single controller and the network. All these clients 

compete for the CPU time or network bandwidth to guarantee the stability and system 

performance. Because of limited computational resources and network bandwidth, 

necessary resources could not be assigned to each client as required. Fair resource 

allocation to each client can be critical to the stability and system performance of an 

NCS. A certain sampling period is necessary to guarantee the stability and system 

performance of each client. The stability and system performance depends not only on 

control methodologies but also scheduling of all the data packets in the same link. An 

optimal scheduling algorithm will not only reduce the time delays but also save more 

bandwidth for other possible users on the network. To perform a better design of an 

NCS, both of its control and communication aspects need to be considered [26]. 
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Therefore, a co-design of both controls and network resource allocations must be applied 

to the NCS design [27–28]. 

1.3 OBJECTIVES 
Considering the discussed control issues and performance evaluation problems of 

the NCS, design of an NCS can be very challenging and requires not only robust control 

methodologies that compensate for the time delays and packet losses in the network but 

also optimal network resources and scheduling algorithms to guarantee the performance 

of collaborative operation of all the clients. To maintain the stability and even a better 

system performance of the NCS, our objectives are to propose an effective control 

method to fully compensate for the effect of the time delays and packet losses in the 

network and present an optimized bandwidth allocation algorithm to achieve an optimal 

system performance of the entire NCS. We expect our control methodology can 

statistically compensate for various levels of the network-induced time delays and packet 

losses and guarantee the stability of the NCS. Since the NCS contains multiple dynamic 

systems as the clients that require various sampling periods and controller 

considerations, we expect our performance evaluations can be fair to each client and 

eventually to achieve the most optimal system performance of the entire NCS with 

available network resources based on certain given scheduling algorithms. By fairness, it 

refers to the bandwidth allocation of each client is based on certain criteria that balance 

the network bandwidth according to preset priorities or weights. Because of the various 

system specifications and dynamics, evenly distributed network bandwidth does not 

guarantee an optimal system performance. The priority and weight of a client in the NCS 
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can be decided based on its system specification, expected performance, or user defined 

priorities.  

1.4 CONTRIBUTIONS 
This research focuses on real-time output feedback control and optimal 

bandwidth allocation of the NCS. The NCS in this research applies a steel-ball maglev 

system, a DC motor speed-control system that contains four DC motors, and a wireless 

autonomous robotic wheelchair as test beds to validate proposed control methodologies 

and algorithms, and optimal bandwidth allocation. Each client has a unique identification 

number within its data packets to distinguish from each other. We employ an Ethernet-

based local area network (LAN) as the communication network. User datagram protocol 

(UDP) is applied as the communication protocol in the NCS. In this research, various 

control issues involved in the NCS are studied. Accomplishments and developed 

algorithms will be illustrated later in following sections. 

Major accomplishments of this research include (1) validation of flexibility and 

performance of a multiscale wireless/wired NCS that consists of three different types of 

dynamic systems (fast, medium, and slow clients) with distinct time scales. (2) 

presentation of an output feedback control methodology based on Markov chain to 

stabilize and control the NCS. The random time delays in the controller-to-actuator and 

sensor-to-controller links are modeled with two time-homogeneous Markov chains, 

while the packet losses are modeled with Dirac delta functions. An asymptotic mean-

square stability criterion is established to compensate for the random time delays and 

packet losses in both the controller-to-actuator and sensor-to-controller links 
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simultaneously. (3) presentation of bandwidth allocation and scheduling of the NCS to 

guarantee the system performance of each client in the NCS. The bandwidth allocation 

algorithm will fairly distribute the network bandwidth to each client based on optimal 

sampling-frequency assignment under the KKT conditions. The scheduling algorithm 

will schedule each client in a sequence to maximize the system performance and reduce 

the idle network bandwidth. 

1.5 DISSERTATION ORGANIZATION 
This dissertation is organized as follow: 

Section 1 provides a brief introduction of the control over networks and their 

applications. Fundamental structures and current control issues of the NCS are 

introduced. This section also gives the objectives and contributions of this research.  

Section 2 explains basic research issues in the NCS with details based on the 

discussions raised in Section 1. Existing research results are reviewed and compared 

regarding to the stability and system performance of the NCS. 

Section 3 presents details of fundamental concepts in the NCS such as the time 

delays, packet losses, bandwidth definition, etc. This section also describes hardware and 

software setups of the NCS that is used in this research. The experimental assumptions 

and the architecture of the NCS are illustrated in details. Several analytical results are 

given in the end.  

Section 4 explains a Markov-chain-based output feedback control methodology 

of the time-delay and packet-loss compensation of the NCS. An asymptotic mean-square 

stability criterion is established with a Lyapunov approach. This section also presents an 
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implementing control flow of the proposed output feedback controller. Experimental 

results are illustrated to verify the effectiveness of the proposed control method.  

Section 5 presents exponential and quadratic approximations for the purpose of 

bandwidth allocation and scheduling of the NCS. A scheduling algorithm is given to 

achieve the bandwidth allocation methodology that is proposed for experimental 

verification. Simulation and experiments are conducted to verify the presented 

approximations and their performance. 

Section 6 concludes and summarizes the achievements and contributions of this 

dissertation. Suggestions for future work and research direction are discussed at the end 

of the section. 
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2. LITERATURE REVIEW AND RESEARCH MOTIVATION 

 

In control applications of modern industry, functional nodes such as sensors, 

actuators, and controllers are geographically distributed. For the success of a distributed 

control application, all the nodes have to exchange information through communication 

medium. Although there are great potentials in applications of the NCS, several technical 

challenges in performing real-time closed-loop control of the NCS should be addressed 

in advance: (1) networks have inevitable time delays and packet losses that are 

detrimental to the real-time controls, (2) difficulties in assigning required network 

bandwidth and other resources to the clients because of the sharing of finite network 

bandwidth and computational resources, and (3) difficulties in deterministically schedule 

data packets in the network to avoid congestions and preemption of any data packets.   

Success of an NCS relies on the performance of the network, optimal time-delay 

or packet-loss compensation algorithms, fair resource allocation, collaboration of 

multiple clients, etc. Variability of the time delays and packet losses make the analysis 

and design of an NCS difficult. Failure of the resource allocation and scheduling of an 

NCS will also deteriorate the entire system performance. Therefore, the co-design of the 

optimal control and resource allocation is necessary to a successful design of the NCS. 

2.1 REVIEW OF TIME DELAYS AND PACKET LOSSES 
The introduction of a communication network into a control system has brought 

many advantages, such as no additional dedicated wiring, reduced weight and space 

requirement, ease of system diagnosis and maintenance, increased system agility, etc. On 
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the other hand, the communication network inevitably presents more constraints such as 

random time delays and packet losses that make the analysis and design of the NCS 

challenging. Unpredictable time delays, packet losses, and sporadic jitters in data 

transmission are some of the control issues associated with the use of the network as a 

communication medium. The real-time closed-loop control over the networks should 

accommodate these uncertainties for satisfactory performances. These random time 

delays and packet losses can degrade the system performance or even destabilize the 

system. How to compensate for the random time delays and packet losses has become 

one of the active research areas of the NCS.  

Random time delays can be divided into three major categories, time delays 

shorter than one sampling period, time delays longer than one sampling period but finite, 

and infinite time delays which can also be considered as packet losses. The analysis and 

modeling of random time delays can be performed with a deterministic model or a 

stochastic model.  

Zhang et al. analyzed several fundamental issues of the network-induced time 

delays in the NCS in [29]. The time delays were assumed to be deterministic, and the 

controller gain was given as a constant. The relationship between the sampling 

frequency and the time delays was captured using a stability region plot. Methods to 

compensate for network-induced time delays using a time-domain solution of a plant 

model were discussed, and experimental results over a physical network were presented. 

In [30], the NCS was modeled as a switched system, and the controller gain was also set 

to be a constant as in [29]. Lin et al. discussed stability and disturbance attenuation 
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issues for the NCS with random time delays and packet losses. The NCS was considered 

a discrete-time switched system, and then the stability and performance of the NCS 

could be reduced to corresponding problems for the switched systems. The random time 

delays were modeled with Markov chains, and the analysis mainly focused on the delays 

shorter than one sampling period in [31–32]. The control inputs were derived by setting 

up cost functions of linear-quadratic regulation (LQR) and linear-quadratic Gaussian 

(LQG) problems. With the proposed methods, Nilsson analyzed distributed real-time 

control systems and designed controllers taking into account timing behaviors of the 

network [31]. The results in [31] had been expanded to the case with the time delays 

longer than one sampling period as in [33]. Hu and Zhu considered two cases of system 

with either full-state information or partial-state information. The controllers were 

shown to render corresponding the NCS exponentially mean-square stable. An optimal 

estimator of the system state was also presented when the system had partial-state 

information and time delays longer than one sampling period.  

In [29–33], the plants were modeled in continuous-time domain. But in practical 

NCS applications, the systems more or less involve discrete-time domain specifications. 

These research results from the continuous-time domain could not be directly 

transplanted to the discrete-time domain to guarantee the stability and system 

performance. Therefore, control methodologies of the NCS in the discrete-time domain 

have also been active research areas in the NCS.  

Xiao et al. proposed two types of controller-design methods for the NCS in [34]. 

The authors presented a V-K iteration algorithm to design stabilizing controllers for 
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specially structured discrete-time jump linear systems, which were used to model control 

systems with bounded random time delays in feedback loops. Zhang et al. proposed an 

output feedback method to analyze the time delays of an NCS and assumed the random 

time delays could only take integer values [35]. Necessary and sufficient conditions of 

stochastic stability for the systems were obtained in terms of a set of Linear Matrix 

Inequality (LMI) with matrix inversion constraints. Shi et al. also proposed an output 

feedback controller design method for the NCS with random time delays [36]. 

Conditions of stochastic stability were derived in form of a set of LMIs with nonconvex 

constraints. The product reduction algorithm was employed to obtain two-mode-

dependent output feedback controller. In [37], robust control problem of the NCS with 

norm-bounded uncertainties was studied. A stochastic stability analysis was addressed, 

and 2H  and H∞  norms for this system were defined. The 2H  and mixed 2 /H H∞  

control problems were solved in form of a set of LMIs with nonconvex constraints.  

In [38], Hu et al. discussed the stabilization problem of the discrete-time NCS 

with partly known time delays. A delay-distribution-dependent criterion for the mean-

square stability of the NCS was derived by using a Lyapunov-Krasovskii functional 

approach and LMI technique. Yang et al. studied the NCS with unreliable data 

communications in [39]. An observer-based controller was designed to exponentially 

stabilize the NCS in the sense of mean square and also achieved the prescribed H∞ 

disturbance attenuation level. An estimation method was introduced to compensate for 

the lost data of the NCS in [40]. The controller design was considered for both the 
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available and unavailable states, respectively. Some sufficient conditions were derived so 

that the closed-loop systems were exponentially mean-square stable.  

In [41], an integral control of the NCS with the random time delays was studied. 

The necessary and sufficient conditions were found for zero-state mean-square 

exponential stability of the NCS. Ye et al. also modeled the time delays and packet losses 

in the NCS with Markov chains in [42]. Without the augmented state method, however, 

the computation effort was reduced. The mode-dependent controller for the closed-loop 

NCS was presented in a LMI formulation via Schur complement theory. In [43], Xiong 

and Lam proposed two types of packet-loss models—the arbitrary model and the 

Markov-chain model. The stability conditions of the NCS with the packet losses were 

given based on a Lyapunov approach. Liu et al. proposed a time-delay-compensation 

technique using modified model predictive control method [44]. The packet losses were 

compensated for with predicative packets generated from the same model. The fixed and 

random time delays were both studied in the research. In [45], Schenato proposed an 

optimal estimation design for the NCS. The stability of these estimators depended only 

on an overall packet-loss probability. The algorithms to compute the packet-loss 

probability and estimator in terms of the error covariance were given as well. 

2.2 REVIEW OF BANDWIDTH ALLOCATION AND SCHEDULING 
Traditionally, a control design problem is decoupled from software design and 

implementation considerations. This separation allows control and computer 

communities to focus on specific problems. Controller designers disregard 

characteristics of the implementation, computational, and communication resources, but 
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focus on controller itself. On the other hand, real-time operating system (RTOS) 

designers take control loop as a periodic task with hard deadlines [46]. In an NCS, 

however, these two fields are correlated in a closer way so that their separation will lead 

to poor system performances. Therefore, co-design of the controllers, resource 

allocation, and control task scheduling is necessary to the design of an NCS. 

Al-Hammouri et al. proposed a bandwidth allocation scheme for the NCS in [47]. 

The authors formulated the bandwidth allocation of an NCS as a convex optimization 

problem. While ensured stability of each client in the NCS, the scheme allocated the 

bandwidth in a manner of maximizing the aggregate performance of the entire NCS. 

Velasco et al. presented a dynamic control approach to achieve the bandwidth 

management which allowed control loops to consume network bandwidth according to 

the dynamics of controlled process while attempting to optimize overall NCS 

performance [48]. Wong and Brockett investigated a state-estimation problem involving 

finite communication capacity constraints in [49]. A concept of a finitely recursive 

coder-estimator sequence was introduced. In [50], Wong and Brockett further introduced 

the concept of containability to tackle problems of stabilization of an NCS through 

limited-capacity communication networks.  

Martí et al. applied a feedback-based method to allocate resources to controllers 

as a function of current states of the NCS in [51]. Experimental results showed that the 

scheme increased and maximized the control performance, saved the resources when 

perturbations occurred, and incurred negligible overheads. Castané et al. applied a 

feedback scheduler to determine optimal periods of the plants controlled by arbitrary 
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control laws in [52]. The resource management was shown as an optimization problem, 

where objective functions related the sampling periods to transient responses of the 

controlled plants. Belzarena et al. studied the network bandwidth allocation with time 

reservations in [53]. The situation involved fully distributed solutions over an arbitrary 

network topology. The allocation was in a given auction reserved for the entire duration 

of network connection. 

One of the very first papers discussed controllers and schedulers is [54]. Seto et 

al. considered an optimal sampling period selection for a set of controllers of an NCS. A 

cost function, approximated with an exponential function of the sampling periods, was 

used to measure the performance of each client in the system. Park et al. presented a 

scheduling method for the NCS with three types of data—periodic data, sporadic data, 

and messages (non-real-time asynchronous data such as system broadcasting messages) 

in [55]. The maximum allowable time-delay bound was used as a basic parameter for the 

scheduling method, which guaranteed stability of the NCS and was derived from 

characteristics of given plants. Branicky et al. proposed a co-design approach treating 

communication protocols and interacting controlled systems as a coupled system in [56]. 

The communication issues such as network bandwidth, quantization, survivability, 

reliability, and time delays were considered simultaneously with the control issues such 

as stability, performance, fault tolerance, and adaptability.  

Walsh and Ye studied scheduling of the NCS in [57]. Performance gains were 

demonstrated by dispensing with queues and dynamically scheduling network traffic. 

Error bounds of a static scheduler and a dynamic scheduler were defined for stability 
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analysis of the NCS. In [58], an approach was proposed to implement dynamic 

scheduling policy for network bus with performance guaranteed. Weiss et al. presented 

an automata-based scheduler automatically generated from a model of controlled plant 

and controller. The proposed method allowed adjustments to dynamic conditions such as 

varying disturbances and network load besides the ensured performance. In [59], Seto et 

al. considered optimal sampling period selection for a set of controllers. The system 

performance was approximated by an exponential function in terms of the sampling 

frequency. The optimal sampling frequencies were calculated from the KKT conditions 

with convex constraints. Kim et al. proposed a scheduling method to obtain a maximum 

allowable delay bound for a scheduling of the NCS [60]. The proposed method was 

formulated in terms of LMI and could yield an improved delay bound. The presented 

method could handle periodic data, sporadic data, and non-real-time data. In [61], the 

schedulability of real-time data was defined, and scheduling algorithms were proposed 

for efficient transmission of a real-time mixed traffic. Simulation showed enhancements 

in the average network utilization and packet-loss rate for the real-time data. 

2.3 MOTIVATION 
As discussed above, some researchers [29–32] modeled the time delays as 

constant parameters, which could not reveal the stochastic nature of the network-induced 

time delays of an NCS. Other methods [34–40] treated the time delays as random 

variables governed by a Markov chain or other probability functions. The authors 

assumed that the Markov-chain model of the time delays could intuitively include the 

packet losses as well. However, the packet losses actually change the structure of the 
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models. Hence, the Markov-chain-based packet-loss model assumes that the packet-loss 

information can be included by the same probability transition from the time-delay 

perspective will not closely reflect the nature of the NCS.  

Meanwhile, various cost functions or performance index functions were applied 

as objective functions of the network bandwidth allocation problems with certain 

constraint conditions. However, these methods did not explicitly consider the effects 

from the network-induced time delays and packet losses brought by frequent data-packet 

transmissions or higher sampling frequency of a client. Elimination of these time delays 

and packet losses in the cost functions or performance index functions could possibly 

dispel the network effects on the system performance in the perspective of the NCS.  

Considering possible limitations of previous modeling methods of the time 

delays and packet losses, and resource allocation and scheduling algorithms, this 

research aims to propose an real-time feedback control, optimal resource allocation and 

scheduling algorithm to fulfill control specifications and design goals of an NCS so that 

the time delays and packet losses can be modeled and compensated for faithfully and the 

time delays and packet losses brought by frequent data-packet transmissions can be 

treated as an essential parameter of the system performance index functions. Developed 

algorithms will be illustrated and experimentally verified in Sections 4 and 5 of this 

dissertation. 
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3. KEY ELEMENTS, EXPERIMENTAL SETUPS, AND ANALYTICAL 

RESULTS OF THE NCS 

 

Increment in geographical distribution of resources requires modern industries to 

integrate communications and different aspects of control-system design into various 

levels of industry operations. These distributed resources need to be accessed and 

controlled through a communication network. This special system architecture with 

distributed sensors, actuators and controllers via a communication network has caught 

the interests of many universities and industries. These communication networks with 

advanced capabilities for reliability and superior performance enable industrial process 

controls to make use of concept of distributed real-time controls across a large 

geographic distance. Figure 8 illustrates a fundamental structure of the distributed 

systems. Users, servers, and clients can all be geographically distributed via appropriate 

communication media but have full access to each end of the communication media. The 

users cannot only send commands to either the servers or the clients to control clients’ 

behaviors but also monitor system responses in real time. The servers and clients 

exchange sensor measurements and control inputs via the network to maintain system 

stability and performance.  

For the research in this dissertation, we assume that the users and servers are 

combined together under the structure in Fig. 8. Therefore, the NCS hereafter will only 

contain the servers and clients in its framework.  
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As discussed in Section 2 and illustrated in Fig. 3, an NCS can include several 

scenarios that can be categorized by the number of servers and clients involved in the 

entire framework as follows, 

(1) Single-server-single-client (SSSC) framework. This is the simplest scenario of an 

NCS. On one end of the network is a single server, and the other end, a single 

client. This scenario requires time-delay and packet-loss compensation but no 

resource-allocation mechanisms since all the network bandwidth and CPU time 

will be assigned to this single client.  

(2) Single-server-multiple-client (SSMC) framework. This is a scenario of an NCS 

that has a single server on one end of the network and multiple clients on the 

other end. This scenario could also be phrased as a collaborative NCS. It refers to 

a system that needs cooperation of multiple clients which involves the resource-

allocation mechanisms. The network bandwidth and CPU time shall be balanced 
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in a fair manner to guarantee each client’s stability and performance as well as 

schedulability of the entire NCS.  

(3) Multiple-server-multiple-client (MSMC) framework. This scenario refers to the 

most complicated application of an NCS. To successfully achieve the control 

requirements, multiple servers need to cooperatively manipulate multiple clients 

in the framework. This framework requires more robust-control algorithms, and 

resource-allocation and scheduling mechanisms. The resource allocation and 

scheduling shall be dynamically decided in real time as how to assign servers’ 

resources interchangeably.   

In this research, we will focus on the SSMC framework. Regardless of the 

applications domain of the NCS, this SSMC framework raises several fundamental 

issues, such as collaborative control and interactivity, time-delay and packet-loss 

compensation, resource allocation, scheduling, etc. Among all these issues, time-delay 

and packet-loss compensation of the NCS are some of crucial factors that affect stability 

of each client in the system. Resources allocation and scheduling are the factors that 

affect performance of each client and further the entire NCS. Especially for the SSMC 

framework, the clients will suffer from different levels of time delays or packet losses 

due to their variant geographical distances to the server, the network conditions, the 

numbers of clients in the NCS, and the resource assigned to each client. With control 

issues mentioned here, analysis and modeling of an NCS with the SSMC framework 

could be difficult to be implemented. To simplify the analysis and modeling procedures, 
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following assumptions will be made throughout the dissertation without loss of 

generalities.  

(1) Quantization errors in data-packet generation and transmission will be neglected. 

(2) All the nodes in the NCS have the same clock resolutions. 

(3) Network conditions of all the clients are at the same level regardless of the 

geographical distances and their system specifications. 

(4) All the sensor measurements and control inputs are sent within one single data 

packet during each control iteration. 

(5) The sensor measurements are strict clock-driven tasks, and the control inputs and 

actuator updates, strict event-driven tasks. 

The NCS in this dissertation includes a steel-ball maglev system, a DC motor 

speed-control system that contains four identical DC motors, and an autonomous 

wireless wheelchair robot as test beds as shown in Fig. 9. Each client has a unique 

identification number within their data packet to be distinguished from each other. We 

employ an Ethernet-based local area network (LAN) as the communication network. 

User datagram protocol (UDP) and socket programming is applied as communication 

carrier in the NCS. The wired and wireless TAMULink are chosen to be the data-

exchange media at Texas A&M University. The wired TAMULink is the LAN with IEEE 

802.3 standard, and the wireless TAMULink is the wireless LAN (WLAN) with IEEE 

802.1x standard.  

As shown in Fig 9, Clients 1, 2, 4, 5, and 6 represent the wired clients in the NCS 

that are connected to Server via a LAN. Client 3 represents the wireless client that 
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includes the wireless robotic wheelchair and a laptop that sends and receives data 

packets over the wireless network. Since the laptop of Client 3 runs Windows XP 

operating system (OS), which cannot communicate with Linux OS directly, an 

Interoperability Suite including a computer operated as an intermediary is set up. 

 

WLAN
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(Samba)

Server
(Controller)

Client 3
(Robotic Wheelchair)

L
A
N

Client 1
(Ball maglev system)

Client 2, 4, 5, 6
(DC motor speed-control system)

 

Fig. 9. The NCS architecture with three types of clients 

 

3.1 KEY ELEMENTS 

As discussed earlier, the network brings more complex dynamics into the NCS. 

Time delays and packet losses are the direct effects introduced by the network. As a 
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matter of fact, these two facts play crucial roles during the design of an NCS. 

Meanwhile, the structures of the NCS, SSMC and MSMC, require extra control efforts 

on the resource allocation and scheduling to maintain stability and desired system 

performance of an NCS.  

3.1.1. Time Delays and Packet Losses 
To better understand the structure of the network-induced time delays and packet 

losses of the NCS, consider several control iterations as shown in Fig. 10, whereas the 

lines with an arrow indicate successful transmission, and the lines with a dot, the packet 

losses. The red color represents the sensor-feedback data packet from Client to Server, 

and the green color, the control-input data packet from Server to Client. Table 1 gives 

nomenclatures of the timing components in Fig. 10.  

Figure 10 also illustrates details of the communication in the NCS. In the 

beginning of experiments, Server waits for the data packets from either Client or 

Interoperability Suite after Windows sockets setup and UDP connection actives. Client 

collects sensor measurements from the controlled plant and encapsulates the data 

segment with necessary headers into one single packet that is ready for transmission. 

The data packet is then transmitted to its destination if the network is idle or be held in a 

queue if the network is busy. If no packet losses take place, the data packet will be 

transmitted through the network to its destination node with a certain amount of 

propagation delays. The destination node will decode the data packet and implement 

corresponding calculations. This process achieves the data transmission and calculation 

from Client to Server. The other transmissions in Fig. 10 follow the same steps. 
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Fig. 10. Time-delay components of the network in several periodic control iterations 
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Table 1. Nomenclatures of the timing components 

Symbol Description 

T*prep 
Time taken by Client, Server, or Interoperability Suite to prepare a 
requested message. 

T*wait 
Time taken by Client, Server, or Interoperability Suite to wait for network 
access. 

T*trans 
Transmission time of a data packet from Client, Server, or Interoperability 
Suite to its destination node. 

T*proc 
Time taken by Client Server, or Interoperability Suite to process a data 
packet. 

h One sampling period of Client. 

  * can represent C (Client), S (Server), or IS (Interoperability Suite) depend on the content.  

 

In Fig. 10, the first control iteration with a sampling period h indicates a general 

case of the network-induced time delays. The second and third control iterations in Fig. 

10 indicate two possible cases of the packet losses in an NCS. The second control 

iteration shows that the data packet from Client to Server is lost. Consequently, Client 

will not receive an updated control input from Server because of Server is performed in 

event-driven based. The details of event-driven based server will be given in Section 

3.1.3. The third control iteration in Fig. 10 shows the data packet from Server to Client is 

lost so that Client will be unable to actuate the plant with the updated control input. 

Therefore, whenever a data packet is lost in either the client-to-server link or the server-

to-client link, Client will be unable to update itself with the latest control input. 

Hereafter, caτ   and scτ  represents the random time delays in the controller-to-actuator 
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and sensor-to-controller links, respectively. caδ  and scδ  represents the packet losses in 

the controller-to-actuator and sensor-to-controller links, respectively. 

From Fig. 10, the total time delay τ in one control iteration is given by 

wait trans proc prep wait transprep procTC TC TC TS TS TS TS TCt = + + + + + + + .            (1) 

In Eq. (1), the preparation time, waiting time, and transmission time are introduced by 

the network. The processing time is the time interval for Client or Server to process all 

the data packets. Compared to the traditional controls, the preparation time, waiting 

time, and transmission time can be classified as the network-induced time delays of an 

NCS. 

The time components in Eq. (1) are difficult to be measured in practice. 

However, it is possible to measure the time from Server to Client and vice versa by 

applying a timestamp in the data packet. Therefore, Eq. (2) gives a simple way to 

measure τ in each control iteration 

sc ca pτ τ τ τ= + + .                                                      (2) 

caτ  includes TCprep, TCwait, and TCtrans. scτ  includes TSprep, TSwait, and TStrans. pτ  is the 

processing time that includes TSproc and TCproc. Note that τ can be random with respect to 

the control iterations due to the stochastic nature of the network. 

3.1.2. Bandwidth Allocation and Scheduling 
The NCS is expected to provide more functionalities and better performance with 

available resources, such as network bandwidth, CPU time, and batteries. As discussed 

earlier in this section, this research focuses on the SSMC framework of an NCS so that 
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all the clients compete for the CPU time or network bandwidth to guarantee their 

stability and desired system performance. Because of the limits of the computational 

resources and network bandwidth, sufficient resources could not be assigned to each 

client as required. Fair resources allocation can be critical to the stability and system 

performance of an NCS.  

Network Bandwidth Definition 
From [26], relation between the sampling periods and BUs can be indicated as 

k
k i
i k

i
b

h
τ

= ,                                                              (3) 

where k
ib  is the BU, k

ih  is the sampling period, and k
iτ  is the total time delay defined in 

Eq. (2). The subscript i indicates index of the clients in the NCS, and the superscript k 

indicates the control iterations. Then the BU k
ib  represents a portion of the network 

bandwidth assigned to Client i at the control iteration k. From Eq. (3), given a certain 

amount of time delays, a small BU implies a large sampling period and more bandwidth 

available for other functionalities and control purposes in the same network. If the BU 

approaches the network bandwidth saturation threshold, the network will be overloaded 

and induce more time delays or packet losses.  

The BU definition in Eq. (3) is associated with and unique for the NCS. It is 

similar to the execution utilization defined in an RTOS for the purpose of schedulability 

test, but not so much as the network bandwidth defined from a computer-science 

perspective.  
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From the perspective of RTOS scheduling, the task execution utilization or CPU 

utilization is defined as [62] 

i
i

i

ce
h

= ,                                                              (4) 

where ie  is the execution utilization, ic  is the task execution time, and ih  is the period 

of tasks. The tasks are usually periodic control or calculation tasks of the RTOS. If 

summation of the execution utilization of each task does not exceed schedulability U of 

corresponding implemented algorithms, so that 
1

N
i

ii

c U
h=

≤∑ , then hard-time deadline of 

the tasks can be guaranteed and all the tasks can be scheduled.  

Note that, the BU definition of an NCS contains not only the processing time on 

processors, but more importantly the propagation delays introduced by the networks. 

However, the execution utilization from the RTOS perspective only considers the 

processing time on the processors. According to Eqs. (3) and (4), one can see that the 

RTOS execution utilization is smaller than the NCS BU. The difference is given by   

1 1 1 1 1
– –

sc ca p p sc caN N N N N
i i i i i i i i

i i i i ii i i i i

c
h h h h h
τ τ τ τ τ τ τ

= = = = =

+ +
∆ = = =

+∑ ∑ ∑ ∑ ∑ .                  (5) 

The network BU definition with network capacity consideration is  

8i
i

i

Bb
BW h

×
=

×
,                                                             (6) 

where iB  is size of the data packet from Client i in bytes, BW is the capacity of 

bottleneck link in the network backbone in megabits per second (Mbps), and ih  is the 

time interval of data-packet transmissions in the network. 
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The following experiments are conducted to discuss differences among these 

definitions in Eqs. (3), (4), and (6). Detailed experimental setup and the DC motor 

specification can be found in Section 3.2. The network propagation delay sc ca
i iτ τ+ , 

tested by Ping, is about 0.48 ms. The processing time of each control iteration is about 

0.866 ms. In this experiment, the size of data packet is 68 bytes. We assume that the 

capacity of the bottleneck link is 40 Mbps. Comparisons of various BU definitions are 

shown in Fig. 11. From Fig. 11, the NCS BU is the most conservative resource bound of 

an NCS. If the NCS BU can be guaranteed, the other two specifications will be 

guaranteed as well. Hence, the NCS BU can be applied as the primary resource for the 

allocation purpose. Hereafter, the NCS BU will be applied for the purpose of designing 

the bandwidth allocation algorithm and will be rewritten as BU for short.   

Scheduling Algorithms 
Roughly speaking, the scheduling problems in an NCS are to assign a 

transmission schedule to the sensors, actuators, and controllers on the network based on 

certain scheduling algorithms. A scheduling algorithm is a set of rules that determines 

transmission order of the data packets based on their execution times and deadlines. In 

general, a scheduling algorithm can be categorized as a static scheduling algorithm or a 

dynamic scheduling algorithm. A static scheduling algorithm assigns the tasks a fixed 

scheduling priority in the beginning of task execution. The scheduling sequence will not 

change while the system executes the given tasks. A dynamic scheduling algorithm 

redistributes or reorders the tasks’ scheduling priorities or sequences during their 
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executions. The redistribution or reordering is usually based on certain given policies of 

the scheduler.  

 

 
Fig. 11. Comparisons of various BU definitions 

 

Table 2 gives comparisons of several existing scheduling algorithms. However, 

these scheduling algorithms could not promise a satisfactory performance of an NCS. 

Since bandwidth allocation and scheduling are correlated aspects in the NCS, a 

scheduling algorithm, which is dynamic and flexible to the BU, would be expected.  

3.1.3. Clock-Driven and Event-Driven Tasks 

Concepts of clock-driven and event-driven tasks are originally from the RTOS 

task scheduling. Here in the NCS, definitions of the clock-driven and event-driven tasks 

are borrowed and revised from the RTOS task scheduling. 
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Table 2. Scheduling algorithms comparisons 

Algorithm Description RTAI1 
Compatible 

Global 
Information Schedulability2 Priority 

First-In-
First-Out 
(FIFO) 

The serving 
processes are 
based on the order 
of the queue. 

Yes No – Dynamic 
priority 

Round 
Robin 
(RR) 

Executes tasks in 
turns within a 
preset time-slice 
defined by the 
scheduler. 

Yes No – Same 
priority 

Earliest 
Deadline 

First (EDF) 

Executes the task 
with the shortest 
deadline first. 

No3 Yes 1 Dynamic 
priority 

Rate 
Monotonic 

(RM) 

All the fixed 
priories are preset 
prior to the run 
time. 

No4 Yes 1/(2 1)nn −  Static 
priority 

1 RTAI stands for real-time application interface, and can be found in Section 3.2. 
2 The schedulability of EDF and RM can refer to [62]. 
3,4  Could be supported with necessary revisions, hard and easy to implement, respectively. 

 
 

A clock-driven task’s update or execution decision is made at a specific time 

instant. The time instant is decided prior to the system’s implementation. In the NCS, the 

plant outputs of a client are generally considered as clock-driven tasks, which are strictly 

executed at each sampling period. The plant outputs of an NCS are not affected by the 

time delays and packet losses in the network. The plant outputs will be generated at each 

sampling period in an almost guaranteed manner.  

An event-driven task’s update or execution decision is made after certain 

specified events take place. The control-input calculations of Server and the actuator 

updates of Client in the NCS can be considered as event-driven tasks. The control-input 
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calculation of Server will be activated after the sensor-feedback packets of Client arrives 

at Server. If the sensor-feedback packets are lost in communication, Server will be 

unable to calculate the control inputs during the current control iteration because of lack 

of the current information of the plant. Similarly, the actuator update of Client can only 

be executed after the control-input packets from Server arrive at Client. 

Table 3 gives a clear view of each category of the tasks in the NCS. The hosting 

node of each data packet and its execution conditions are also given.  

 

Table 3. Type definition of the tasks in an NCS 

Name of task Type of task Hosting node Execution condition 

Plant outputs Clock-driven Client Sampling period 

Control-input 
calculation Event-driven Server Arrival of plant-output packet 

Actuator updates Event-driven Client Arrival of control-input packet 

 

3.2 EXPERIMENTAL SETUPS 

3.2.1. Hardware Setups 
As shown in Fig. 9, Client 1, the ball maglev system levitates a steel ball at a 4-

mm equilibrium position, which is measured from the bottom of electromagnet to the top 

of steel ball. Client 2, 4, 5, and 6, the DC motor speed-control systems, maintain the 

speed of the DC motors at 10 resolutions per second (rps). Client 3, the wireless 

autonomous robotic wheelchair, follows a pre-set path or explores an unknown 

42 

 



 

environment with its real-time path-planning capability. These three clients require 

various levels of sampling frequencies to maintain their stability and system 

performance. Client 1 requires a fast sampling frequency; Client 3, a slow sampling 

frequency; while Client 2 is in the middle. This structure brings more challenges to the 

NCS due to various requirements from the combination of fast, medium, and slow 

dynamic systems. 

Ball Maglev System 
Client 1 is the ball maglev system shown in Fig. 12 [63]. In order to levitate the 

steel ball at a predetermined steady-state equilibrium position with an electromagnet, the 

ball maglev system consists of a personal computer (PC), a position sensor, a pulse-

width modulation (PWM) power amplifier, and power supplies to drive a light bulb and 

an electromagnetic actuator. The optical position sensing unit consists of an incandescent 

light source, a CdS photocell, and a 15-V DC power supply.  

 

 
Fig. 12. Ball maglev system 
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DC Motor Speed-Control Systems 
The DC motor speed-control systems are shown in Fig. 13 [64]. The speed of the 

DC motor is directly proportional to supplied voltage, which is fed to a PWM amplifier. 

This drives the motor at a speed depending on the commanded voltage. The shaft 

angular displacement per unit time is sampled using an encoder. A PCI-6221 data-

acquisition (DAQ) card by National Instruments (NI) enables the test bed to send out 

sensor-feedback data packets and receive control-input data packets through the LAN.  

 

 
Fig. 13. DC motor speed-control systems 

 

Wireless Autonomous Robotic Wheelchair 
The wireless autonomous robotic wheelchair in Fig. 14 is constructed on the 

frame of an Invacare Ranger IITM electric powered wheelchair with the length, width, 

and height of 70 cm, 48 cm, and 55 cm, respectively [65]. It is capable of supporting a 

weight of approximately 100 kg. Two independent 12-V DC motors are the actuators to 
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drive front wheels. The front wheels’ diameter is 31.75 cm. The speed of the motors is 

controlled by the output voltage of the PWM amplifiers on board of two Diverse 

Electronic’s modular MC-7 motor controllers. In the rear are two 18-cm-diameter caster 

wheels. A NI USB-6501 DAQ card performs all data-acquisition and control functions. 

Three Sharp GP2D15 and two Sharp GP2D12 infrared distance-measuring sensors, 

mounted on a sensor bracket in front of the wheelchair, are used to detect obstacles in the 

path. The GP2D15 detects obstacles at a fixed range of 24 cm, and the GP2D12 detects 

obstacles at a range from 12 cm to 80 cm. Seven PDV-P5001 CdS photocells 

manufactured by Advanced Photonix are assembled to equip the robotic wheelchair with 

capability of tracking a specific light. All the seven photocells are distributed evenly by 

22.5° on the bracket. 

 

 
Fig. 14. Wireless autonomous robotic wheelchair 

 

The control system of the wireless autonomous robotic wheelchair is shown in 

Fig. 15. Client collects the sensor signals from the photocell, the infrared sensors, and 
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the Hall-effect sensors through the USB-6501 card. Then, the client laptop encapsulates 

the sensor data into one single data packet and sends it to Interoperability Suite through 

the WLAN. Interoperability Suite repacks the sensor data packet with necessary header 

changes, and then transfers the sensor-feedback data packet to Server. The control-input 

data packet will be sent back to Client through Interoperability Suite following the 

similar pattern.  
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Fig. 15. Robotic-wheelchair control system 

 

3.2.2. Software Setups 
To ensure the real-time operation of Server, Linux with RTAI [66] is found as a 

competitive OS environment. RTAI modifies the Linux kernel to make it a real-time 

operating environment. RTAI offers basically the same functionalities as a Linux kernel 

core, but adding features of a real-time OS. Linux Redhat 7.3 with RTAI 3.4 is chosen to 

be the OS running on Server, and Linux Ubuntu 6.10 with RTAI 3.4, on Client 1, 2, 4, 5 

and 6. The control and measurement device interface (Comedi) [67] is applied as drivers 
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and libraries of data acquisition on Clients. The programs of Server and Clients 1 and 2 

are developed in C. The programs of Client 3 are operated on a Dell Insprion 1525 

laptop computer with an Intel Core 2 Duo T7250 2.00 GHz processor and 4 GB RAM. 

The programs of Client 3 are developed by Visual Basic and Visual C++ 2008 on the 

Microsoft Windows XP OS. The programs of Client 3 are built on Windows XP while 

Server program is built on Linux. Since Windows and Linux cannot communicate 

directly, Samba [68] is chosen to be Interoperability Suite in Fig. 9. Samba 5.0 is 

installed on a Dell GX240 desktop computer running with Ubuntu 6.10 with RTAI 3.4 as 

Interoperability Suite. The programs for Server, Clients, and Interoperability Suite are 

listed in Appendix A.   

3.2.3. Network Protocols and Data-Packet Structures 
UDP provides a datagram service that emphasizes reduced latency over 

reliability. It is a connectionless protocol. A datagram can be sent at any moment without 

preparations. UDP does not guarantee that the datagram will be delivered to its 

destination host. The datagram can also be delivered in an incorrect order. Although 

UDP is unreliable, it has fewer headers than Transmission Control Protocol (TCP). UDP 

does not have retransmission mechanism as TCP. However, the UDP connection is faster 

and introduces smaller propagation delays to an NCS. For instance, if one packet in the 

network cannot reach its destination node at its first try, no retransmission of the data 

packet will be done with UDP protocol because of lack of the acknowledgment message. 

Then to the NCS, this specific data packet is lost. The UDP protocol does not try to 

recover the losses of data packets, so that transmissions of the next available data 
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packets will not be affected. However, for TCP with the acknowledgment and 

retransmission mechanism, this data packet will be retransmitted for a certain amount of 

times (3 times for the current TCP/IP protocol suite) until the retransmission threshold is 

reached. All the retransmissions take time and will put the other data packets in a buffer 

for a certain amount of time. Therefore, the time delays of other data packets will be 

longer than expected. The trade-off between the TCP and the UDP for an NCS is reliable 

connections and longer propagation delays vs. less reliable connections and faster 

transmissions. Depending on specifications and system requirements of various NCS 

applications, UDP can be a reasonable choice as a suitable protocol. For some NCSs, 

UDP is a preferred protocol for better performances [67]. Due to real-time characteristics 

of our NCS, UDP is chosen to be the protocol for experiments. More details regarding to 

comparisons of TCP and UDP and reasons to choose the UDP as the communication 

protocol can be found in [28, 69–70]. 

Data-packet structures of Server, Client, W Client (wireless client) and 

Interoperability Suite are given in Fig. 16. The 802.3 header, 802.1x header, IP header, 

and UDP header are standard Internet protocol headers. Control data and sensor data 

segments are data segments generated by Server and Client, respectively. Timestamp is 

set up by Client to track total time delays and execution times in the current control 

iteration. Identifier segment is to identify Client for data packets matching purpose. BU 

segment contains current BU information of the clients. Type segment is used to identify 

whether a client has a fixed sampling frequency or a variant one. SP segment contains a 

new sampling period assigned to each client if applicable. 
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Fig. 16. NCS data-packet structures 

 

3.2.4. NCS Control Flows 
A flow chart of the control algorithm on Server is given in Fig. 17. These Clients 

send the sensor measurements to and request the control inputs from Server. Server 

responds all the requests by their coming-in sequences and their identification numbers. 

If the total BU (TBU) of the NCS is less than an upper bound of current available 

bandwidth, Server calculates the control inputs and sends them back to each client 

directly or via Interoperability Suite. The upper bound may vary depends on the 

scheduling algorithm running on the system and the available bandwidth in the NCS. If 

the TBU is greater than the upper bound, Server checks Client’s sampling period type 

and calculates the control inputs directly for Clients that have fixed sampling periods. If 

Clients have variant sampling periods, Server will increase their current sampling 

periods by 5 % and check the TBU again until the TBU is no longer greater than the 
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upper bound. To maintain the stability of each client, a maximum sampling period maxh  

will be set as a boundary of the dynamic sampling period algorithm in the NCS. After 

the control inputs have been calculated, Server sends the control inputs to each client 

directly or via Interoperability Suite. Then Clients can update the actuators with the 

latest control inputs if data packets losses do not take place in data transmission. Note 

that not all the requests from Clients can be executed in time because of the stochastic 

nature of the NCS. Some data packets may be lost in data transmission so that the 

updated control inputs may not available to Clients all the time. In Section 4, one can see 

that predicted data will be applied to the NCS if data packets are lost in the transmission. 

3.3 ANALYTICAL RESULTS 

3.3.1. Off-Line Clock Synchronization 
Since all the nodes in an NCS operate on different clocks, accurate time delays of data 

transmission among the nodes cannot be measured. Even when all the nodes’ clocks are 

initially set accurately, real clocks will differ after a while due to clock drifts caused by 

clocks counting time at slightly different rates. However, an accurate measurement of the 

time delays may be unnecessary if the controller is robust enough to the time delays. 

Based on the earlier assumption of the clock resolution, all the nodes in this research are 

assumed to have the same clock resolution and no clock drifts will exist. One simple off-

line clock synchronization method will be presented to provide a relationship of clocks 

on different nodes. 

To understand this synchronization method, take one sampling period for 

example as shown in Fig. 18. 
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Fig. 17. Flow chart of the multiscale NCS control architecture 
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Fig. 18. Detailed timing diagram of one sampling period in the NCS 
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As shown in Fig. 18, in the beginning of this sampling period, the control task 

starts with collecting and coding sensor measurements (encapsulate a data segment) on 

Client.  Then the data packet with sensor measurements and necessary headers will be 

held in a queue waiting for transmission. If the network is idle, the transmission request 

will be permitted. The data packet will be decoded after it arrives at Server. The sensor-

feedback information carried by the data packet will be applied for the control-input 

calculation. Later, the control inputs will be coded into data segments, queued in a 

buffer, and transmitted back to Client. Client receives the control inputs and finishes up 

the current control iteration with decoding and executing the data packet. The control 

task should be accomplished within the current sampling period to guarantee the stability 

and system performance of the NCS. However, the control task could be delayed for 

more than one sampling period because of the network condition or fail because of 

unexpected longer time delays, packet losses, or other uncertainties.   

To start with the off-line clock-synchronization method, a timestamp is inserted 

at the marked time T1 on Client as in Fig. 18. When the control-input data packet arrives 

at Client, the timestamp carries T1 will be checked at time T2. One can calibrate these 

timestamps as Tc1, Tc2, Ts1, and Ts2 on Client and Server, respectively. Tc1 is the time 

instant that the first byte of the data packet leaves Client, and Tc2, the time instant that 

the last byte of the data packet arrives at Client. Ts1 is the time instant that the first byte 

of the data packet arrives at Server, and Ts2, the time instant that the last byte of the data 

packet leaves Server.  
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Although Client and Server run on separate clocks, the absolute time instant in 

real world should be the same so that 1 1 1 1     c sT T T δ= = −  and 2 2 2 2      c sT T T δ= = + . For 

simplicity, one can assume that 2 1 2
1 2

1( ) ( )
2 2

c s c c s sT T T T T T
δ δ

∆ − ∆ − − −
= = = . cT∆  and 

sT∆  can be obtained on each node with certain timestamp calculations. The two 

timestamp coordinates 1 1,  )ˆ( c sT T  and 2 2,  )ˆ( c sT T  will be available for each control 

iteration with 1 1 1
ˆ     s sT T δ= −  and 2 2 2

ˆ     s sT T δ= + . These timestamp coordinates can be applied 

to calculate the relation between Server and Client with a least-square method (LSM).  

From above discussion, the off-line clock synchronization is obtained from 

analytical experiments as follows. With four different sampling periods and the LSM, the 

linear relation between Server and Clients in this research is given by 

61.001 .60271 10s cT T= − × .                                             (7) 

This polynomial approximation is linearized by the LSM at a 3.4-ms sampling period 

and is verified at various sampling periods. The constant in Eq. (7) may vary with the 

time interval between the instants the OS is booted up and the OS is terminated. It 

indicates the linear relation will have to be recalibrated after the OS reboots. Note that 

the unit of the polynomial approximation in Eq. (7) is ns. Therefore, the proportional 

coefficient of 1.001 in Eq. (7) indicates an approximate 1 μs clock difference between 

Server and Client, which verifies the assumption about the clock resolution.  

Figures 19–22 illustrate the polynomial approximation in Eq. (7) and 

experimental results with the 2.267-ms, 3.4-ms, 6.8-ms, and 15.1-ms sampling periods, 
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respectively. The experimental results collect two timestamp coordinates 1 1,  )ˆ( c sT T  and 

2 2,  )ˆ( c sT T  as indicated in the figures. From Figs. 19–22, one can see that Eq. (7) could 

catch practical relation of the clocks on Server and Client.   

Another way to estimate the time delays in an NCS is to set up the timestamp 

segment in the data packets, the total time delays and packet losses can be detected by 

Client at the end of each sampling period. The total time delays can be inferred by 

calculating the difference between the time instance Client sends sensor-feedback 

packets to Server and the instance Client receives control-input packets from Server. 

This structure of the total time delays has the following form 

  sc ca ptimestamptttt   = +∆ += .                                          (8) 

Note that, in general, caτ  and scτ are not necessarily the same. Without a clock-

synchronization mechanism, exact caτ  and scτ  are unavailable, and we can simply 

assume that  

1    
2

sc caτ τ τ≈ ≈ .                                                       (9) 

This is possible because one can expect that the propagation delay in the sensor-to-

controller and controller-to-actuator links should be the same if no packet losses or 

major uncertainties take place in the network. Compared to the time delays over the 

network, the processing time can be smaller or neglected under certain circumstances.   
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Fig. 19. Polynomial approximation and experimental data with the 2.267-ms sampling 

period 

 
Fig. 20. Polynomial approximation and experimental data with the 3.4-ms sampling 

period 
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Fig. 21. Polynomial approximation and experimental data with the 6.8-ms sampling 

period 

 
Fig. 22. Polynomial approximation and experimental data with the 15.1-ms sampling 

period 
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Figure 23 shows mean and standard deviation of differences between the time 

delays calculated by Eqs. (7) and (8) with four different sampling periods. Equation (7) 

can yield explicit time delays in the sensor-to-controller and controller-to-actuator links 

compared to Eq. (8) within the current control iteration. Equation (8) cannot generate 

explicit time delays caτ  and scτ , and can only calculate τ for Server in the next control 

iteration, but it is easier to be implemented in algorithm compared to Eq. (7). From the 

analysis, the difference of these two time-delay calculations are quite small so that either 

one can be applied to the experiments of an NCS. However, for the simplicity of the 

algorithm implementation, Eq. (8) will be chosen to calculate the time delays in the 

NCS. This may also save calibration and calculation times of Eq. (7) so that the total 

time delays may be reduced.  

 

 

Fig. 23. Statistics of the time delays with various sampling periods 
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3.3.2. Time-Delay and Packet-Loss Experiments 
As discussed earlier, time delays and packet losses are two of unique properties 

of the NCS brought by the network. Therefore, the time delays and packet losses should 

be considered as crucial parts of design of an NCS. Because of the nature of the network, 

the time delays and packet losses can be stochastic in an NCS. Various levels of time 

delays and packet losses can exist in the NCS. Each different level of time delays and 

packet losses will also have different effects on the stability and system performance of 

an NCS. 

Client 2 is adopted here to test the effects of the time delays and packet losses on 

the system performance of an NCS. The transfer function of Client 2 is 

20.2( )
9.92 2.57

G s
s

=
+

.                                                    (10) 

A proportional-integral (PI) controller is applied to control Client 2 as  

1.5 5( ) sD s
s
+

= .                                                        (11) 

The time-delay experiment is performed for 20,000 iterations with Client 2 with 

a 3-ms sampling period. Figure 24 shows the first 2,000 iterations. From Fig. 24, the 

mean and standard deviation of the time delays in the network are about 0.5034 ms and 

0.0414 ms, respectively.  

The DIAE is adopted to be the performance index of the NCS and formulated as 

follows [71] 
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0

   
fk

k
k

DIAE e=∑ ,                                                        (12) 

where k0 and kf are the initial and final times of the interval of interests, and ke  is the 

error between the actual and reference signals. 

 

 
Fig. 24. Time delays in the NCS 
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performance of an NCS with various time delays. To show the effects of the different 

levels of time delays on the NCS, the following six sets of experiments are conducted, 

the experiments with extra 0-ms, 0.2-ms, 0.4-ms, 0.6-ms, 0.8-ms and 1-ms delays. Note 

that the time delays in the NCS are the sum of τ and the extra given delays. The system 

performances of Client 2 with 5-ms, 10-ms, and 15-ms are given in Figs. 25–27. From 

these figures, the DIAEs of Client 2 increase as the sampling periods and time delays 

increase in the NCS. As the time delays increase by 0.2 ms, the DIAE of Client 2 

increases about 3–5%. Note that occasionally the DIAE of Client 2 with a given 

sampling period with longer time delays may be smaller than the one with shorter time 

delays as shown in the figures. This can be caused by uncertainties in the network. 

Figure 28 shows the DIAE of Client 2 with respect to the sampling periods and the time 

delays in 3-D. Note that the relation among the DIAE, sampling periods and time delays 

is no longer linear because of the complex dynamics of the network. As shown in Fig. 

28, the DIAE decreases and then increases as the sampling period increases. Also, the 

DIAE increases as the time delays increase. This verifies that longer time delays and 

shorter sampling periods inevitably degrade the system performance.  

Figures 29–31 show the DIAE of Client 2 with 5-ms, 10-ms, and 15-ms sampling 

periods with various packet losses. The DIAEs of Client 2 increase as the sampling 

period and packet losses increase in the NCS. As the packet losses increase by 10%, the 

DIAE of Client 2 increases about 10–15% if the packet losses are less than 50%. Note 

that there might exist discrepancies caused by the uncertainties in the network.  
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Fig. 25. DIAEs of Client 2 with a 5-ms sampling period with various time delays 

 
Fig. 26. DIAEs of Client 2 with a 10-ms sampling period with various time delays 
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Fig. 27. DIAEs of Client 2 with a 15-ms sampling period with various time delays 

 

 
Fig. 28. DIAE vs. the sampling periods and the time delays 
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Fig. 29. DIAEs of Client 2 with a 5-ms sampling period with various packet losses 

 

 
Fig. 30. DIAEs of Client 2 with a 10-ms sampling period with various packet losses 
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Fig. 31. DIAEs of Client 2 with a 15-ms sampling period with various packet losses 
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more clients would need to compete for the network resources and decrease the 

schedulability. In this case, more robust controller may be necessary to the NCS, but the 

basic structure of the NCS will not change. Note that Client 1 is an open-loop unstable 

system that requires a fast fixed sampling period to maintain its stability. Client 2 is 

open-loop stable system that can have variant sampling periods. Client 3 is connected to 

Server via WLAN. Therefore, the NCS in this research includes Clients that are either 

wired or wireless systems, and open-loop unstable or stable systems with fast, medium, 

and slow dynamics. These Clients can have fixed or variant sampling periods. All these 

configurations bring more complexity to the NCS. Clients employed in this NCS can be 

replaced by other dynamic systems. In this research, we include these three typical 

dynamic systems to verify the feasibility and the performance of the multiscale NCS 

with wired and wireless frameworks. 

Client 1, the ball maglev system, is an open-loop unstable system and requires a 

fast sampling period to guarantee the stability and the performance. For this reason, a 3-

ms sampling period is assigned to the system with following controller [63] 

( ) 0.782 ( 1) 0.13 ( 2)

41500.0 ( ) 48779.1 ( 1) 31913.5 ( 2)

u k u k u k

e k e k e k

= − + −

− + − − − ,                     (13) 

where u(k) is the control input and e(k) is the error. 

The discrete-time controller of Client 2, the DC motor, is as follows [64] 

2 2( ) ( 1) (1.5 2.5 ) ( ) (1.5 2.5 ) ( 1)u k u k h e k h e k= − − − + + − ,                        (14) 

where h2 is the sampling period given in Table 4.  
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As discussed before, the BU threshold of the NCS depends on the implemented 

scheduling algorithm. Here, EDF is adopted for the experiments, which gives the NCS 

100% BU threshold [60]. Table 4 presents four different BU combinations and their 

corresponding sampling periods (h*) and BU (b*) of each client in the NCS. In Table 4, 

Case 4 exceeds the BU threshold. All the other three cases are within the BU threshold.  

Figures 32–35 illustrate the system performance of each client for the four cases 

of the NCS with wireless client, respectively. Figure 36 shows the system performance 

of each client of Case 4 without dynamic sampling period assignment algorithm in Fig. 

17. Each figure shows the performances of the ball maglev system, the DC motor, and 

the autonomous robotic wheelchair as parts (a), (b), and (c), respectively.  Each part 

contains the same number of the samples (10000, 2000, and 200 samples for the ball 

maglev, DC motor, and robotic wheelchair, respectively) according to the sampling 

periods given in Table 4. 

 

Table 4. Four cases of experiments with the corresponding sampling periods and BUs 

Case 
Client 1 Client 2 Client 3 

TBU 
h1 b1 h2 b2 h3 b3 

1 3 ms 43.5% 5 ms 27.0% 100 ms 18.95% 84.95% 

2 3 ms 43.5% 10 ms 13.5% 150 ms 12.63% 69.63% 

3 3 ms 43.5% 15 ms 9.0% 300 ms 6.3% 58.8% 

4 3 ms 43.5% 3 ms 45.0% 80 ms 23.6% 112.1% 
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From Fig. 32, although the TBU of Case 1 did not exceed the threshold, the 

performance of each client was degraded compared to Cases 2 and 3 in the Figs. 33 and 

34, respectively. It is because the sampling periods of Clients 2 and 3 in Case 1 were 

smaller than the one in Cases 2 and 3. Therefore, more data packets were exchanged in 

the network. It would introduce longer time delays or even packet losses to the NCS so 

that the system performance could be degraded.  From Fig. 35, the TBU was greater than 

100% when Client 3 joined the experiment around 2 s. Based on the algorithm in Fig. 

17, the sampling periods of Clients 2 and 3 were increased by 5% each time until the 

TBU was on longer greater than 100%. Note that in Fig. 35 there was a performance 

degradation of Client 2 around 2 s when Client 3 joined the NCS. The sampling periods 

of Clients 2 and 3 were eventually reset as 3.83 ms and 102.10 ms, respectively. The 

TBU was reduced to 97.53% for Case 4. To show the effectiveness of the control flow in 

Fig. 17, the experiment of Case 4 was conducted again without the control flow 

algorithm. The trajectories of each client were shown in Fig. 36. From Fig. 36, the BU 

threshold was exceeded, and Clients 1 and 3 failed. For Client 1, the steel ball could not 

be levitated. The 10-mm equilibrium-like position in Fig. 36 was the sensing limit of the 

photocell of the ball maglev system, not the actual position of the steel ball. Although 

Client 1 could not be levitated, it still sent the sensor measurement packets to Server 

every 3 ms. Therefore, Client 1 failed did not release any computational and network 

resource to other clients. For Client 3, the wheelchair could not track its pre-set straight 

path. Although Client 2 was still stable, it could not track the reference signals faithfully 

as the other three cases.  
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Fig. 32. Client motion trajectories from Case 1 
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Fig. 33. Client motion trajectories from Case 2 
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Fig. 34. Client motion trajectories from Case 3 
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Fig. 35. Client motion trajectories from Case 4 
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Fig. 36. Client motion trajectories from Case 4 without control flow 
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Table 5 shows the performance comparison of these four cases of the NCS. The 

numbers in Table 5 are means and standard deviations of the steady-state errors of each 

client.  For Client 1, when the total BU increased by 10%, the average steady-state error 

increased by about 200%. For the other two clients, the medium client and the slow 

client, both the BU and the sampling periods affected the stability and the performance 

of the systems, but not as crucially as they were on the fast client, Client 1. If the TBU 

exceeds the BU threshold, the algorithm would bring the TBU of the NCS less than the 

threshold based on the type of each client’s sampling frequency. From Table 5, the BU 

has more crucial effect on the system stability and performance as the dynamics of the 

system gets more complex. 

 

Table 5. System performance comparisons of NCS with wireless client 

Cases 1 2 3 4 

Client 1 (mm) 
Mean 0.7205 0.4851 0.2015 0.7653 

Stdev 0.4053 0.2860 0.2261 0.4158 

Client 2 (rps) 
Mean 0.0590 –0.0272 –0.0371 –0.0868 

Stdev 0.2010 0.1673 0.1745 0.1869 

Client 3 (cm) 
Mean –0.0625 –0.0311 –0.1698 –0.0618 

Stdev 0.5529 0.2861 0.7320 0.4920 

 

To determine the effects of the wireless client to the NCS, the experiments, cases 

1 to 4, were performed with only the wired clients under the same BU as in Table 6. 
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Another DC motor speed-control system, Client 4, was introduced to replace the 

wireless robotic wheelchair, Client 3. Client 4 had exactly the same system configuration 

as that of Client 2.  The execution time of Client 4 is 1.350 ms, assumed to be the same 

as Client 2. To maintain the same BU as in Table 5, Client 4’s sampling periods were set 

as 7 ms, 10.7 ms, 21.4 ms, and 5.72 ms for Cases 1 to 4, respectively. Table 6 shows the 

performance comparison of these four cases of the NCS without wireless clients. The 

numbers in Table 6 follow the notations in Table 5. One would expect that Clients 2 and 

4 have similar time responses if they are given the same sampling periods. Clients 2 and 

4 have exactly the same system configuration and execution time, so Server will treat 

them equally. Although Clients 2 and 4 are identical plants, the data packets from each 

client may not arrive at Server at exactly the same time. In practice, however, the data 

packets will be queued up in Server’s buffer waiting for unpacking and calculation. 

Different priorities can be assigned to the identical clients to rearrange their to-be-

executed sequence. Although Clients 2 and 4 are identical in the experiments, their to-

be-executed sequence can be different. Without modifications to the protocols, Clients 2 

and 4 are served on the first-come first-serve base. 

To show details of DIAE versus BU of Clients 2 and 4, separate experiments 

were conducted. Because of the uncertainties and the time delays on the network, five 

sets of experiments were conducted with 20,000 times for each given BU. Each 

experiment varied the BU of Clients 2 and 4 from 10% to 50%. The average of total 

DIAE of Clients 2 and 4 is shown in Fig. 37. From Fig. 37, the DIAEs of Clients 2 and 4 

are nearly distributed evenly which verifies the earlier analysis. 
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Table 6. System performance comparisons of NCS without wireless client 

Cases 1 2 3 4 

Client 1 (mm) 
Mean 0.5635 0.3858 –0.1286 0.7385 

Stdev 0.1402 0.1308 0.0916 0.1497 

Client 2 (rps) 
Mean –0.4556 –0.4370 –0.2865 –0.4275 

Stdev 0.2269 0.2660 0.1969 0.2374 

Client 4 (rps) 
Mean 0.2178 0.2525 0.0617 0.6050 

Stdev 0.2569 0.2686 0.1913 0.2309 

 

In the NCS without wireless clients, for the fast client, Client 1, with the same 

BU as in the NCS with wireless client, the average steady-state error decreased by about 

20% to 30% compared with Table 6. Compared with Table 6, the wireless indeed 

introduced more complexity to the NCS with only wired clients. For the medium client, 

Clients 2, the average steady-state error increased because of the similar levels of the 

sampling periods as Client 4 although the BU was exactly the same. In this case, Clients 

2 and 4 competed for the resources more fiercely compared to the NCS with Client 3. 

From the analysis, the sampling period is not the only factor that will affect the 

stability and the performance of the each client in the NCS. The BU, the number of 

clients, and the structure of the network will determine the time-delay and packet-loss 

levels of the NCS, which will affect the stability and the performance of the each client. 

By Eq. (3), the sampling period and the BU are coupled parameters in the NCS. A large 

sampling period implies a smaller BU, thereby poor performance or even instability. A 
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small sampling period implies a larger BU, more time delays, or even packet losses. 

Therefore, the trade-off between the sampling period and the stability is necessary to 

control the NCS effectively. 

 

 
Fig. 37. Total DIAE vs. BUs of Clients 2 and 4 
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its flexibility with the cost of complexity to its frame structure. This framework was 

adopted to test several control issues such as time delays, packet losses, and network 

bandwidth allocation of the NCS. The details of timing diagram, software and hardware 

setup of the NCS are illustrated. Several statistic and experimental results were given to 

verify the capability of the NCS. 
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4. MARKOV-CHAIN-BASED OUTPUT FEEDBACK CONTROL OF THE NCS* 

 

The introduction of a communication network into a control system inevitably 

presents more constraints such as random time delays and packet losses that make the 

analysis and design of the NCS challenging. These random time delays and packet losses 

can degrade the system performance or even destabilize the system. How to compensate 

for the time delays and packet losses has become an active research area of the NCS. 

In these aforementioned references [34–42], the authors assumed that the 

Markov-chain model could intuitively include the packet losses as well. However, the 

packet losses actually change the structure of the model. When a packet is lost, the 

sensor output or control input will be unavailable in all sense, whereas for the time-delay 

case, the sensor output or control input arrives at its destination node eventually with a 

certain amount of delays. Hence, the Markov-chain-based packet-loss model assumes 

that the packet-loss information can be included by the same probability transition from 

the time-delay perspective will not closely catch the nature of the NCS. Also in these 

aforementioned references, the stability analysis only considered the integer time-delay 

states. However, in the practical world, the time delays are non-integer numbers. In this 

dissertation, the random time delays and packet losses are treated with separate models 

 

____________ 
*Reprinted with permission from “Markov-chain-based output feedback control for 
stabilization of networked control systems with random time delays and packet losses” 
by J. Dong and W.-J. Kim, International Journal of Control, Automation and Systems, 
vol. 10, no. 5, pp. 1013–1322, Oct. 2012. Copyright 2012 by ICROS, KIEE and 
Springer. 
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 that reveal the nature of the NCS in a closer manner. The proposed models for the time 

delays and packet losses are based on stochastic processes in the discrete-time domain so 

that the proposed method can be implemented on a practical NCS without much 

modification. The proposed method considers both integer and non-integer time delays.  

4.1 SYSTEM MODELING 
A typical NCS has a closed-loop structure as shown in Fig. 38. As indicated in 

the dashed boxes, Server represents the controller on one end of the communication 

network whereas Client represents the plant including sensors and actuators on the other 

end of the communication network. 

 

Controller Plant
y(k)r(k) e(k) u(k)

ỹ(k)

ũ(k)+
- τca

τsc δsc

δca

Network

Server Client

 

Fig. 38. A representative NCS block diagram  

 

Assuming the entire NCS is a linear discrete-time system. caτ  and scτ  represent 

the random time delays, and caδ  and scδ , the packet losses in the controller-to-actuator 

and sensor-to-controller links, respectively. The state-space model of the plant is 

( 1) ( ) ( )p p p pk k k+ = +x A x B u                                             (15) 
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( ) ( )p pk k=y C x ,                                                           (16) 

where ( ) n
p k ∈x  , ( ) mk ∈u  , and ( ) pk ∈y   are state, control-input, and plant-output 

vectors, respectively. ( ) mk ∈u   and ( ) pk ∈y   are delayed control-input and plant-

output vectors. pA , pB , and pC are the known matrices with appropriated dimensions. 

Similarly, the controller has a state-space model as  

( 1) ( ) ( )c c c ck k k+ = +x A x B e                                               (17) 

( ) ( ) ( )c c ck k k= +u C x D e ,                                             (18) 

where ( ) ( ) ( )k k k= −e r y  is error and ( ) pk ∈r   is reference command. cA , cB , cC , and 

cD  are to be determined to compensate for the random time delays and packet losses, 

which will be discussed in Section 4.1.4 with details that include the stability criterion 

and algorithm. An experimental example of how to design the controller matrices will be 

given in Section 3.3. 

4.1.1. Markov Chain 
A Markov chain is a mathematical system that undergoes transitions from one 

state to another that belongs to a set of finite or countable number of possible states. It is 

a random process characterized as memoryless so that the next state depends only on the 

current state and not on the sequence of events that preceded it.  

Let Ψ  be a sample space that contains finite states. Consider a stochastic process 

{ N 0,  1,;   }nX X n= ∈ =   within the countable state space Ψ . Then “the process is at 
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state i at time n” means that ,  ,  NnX i i n∈ Ψ ∈= . The definition of a Markov chain is 

then given as follows. 

Definition 1 [72]: The stochastic process { N 0,  1,;   }nX X n= ∈ =   is called a 

Markov chain provided that 1 0 1 1Pr{ | ,  ,  ,  } Pr{ | }n n n nX i X X X X i X+ += = =  for all 

i ∈ Ψ  and Nn∈ . A Markov chain is then a sequence of random variables so that the 

next state 1nX +  of the process is independent of the past states 0 1 1,  ,  ,  nX X X −  

provided that the present state nX  is known.  

Definition 2 [72]: The probabilities Pr( , )i j  are called the transition probabilities 

for the Markov chain X with 1Pr{ } r( , )| Pn nX X i jj i+ = = =  where ,i j ∈ Ψ . And a 

Markov chain X satisfying this definition is said to be time-homogeneous if emphasis is 

needed. 

Definition 3 [72]: The transition-probability matrix of a Markov chain X is  

Pr(0,0) Pr(0,1) Pr(0,2)
Pr(1,0) Pr(1,1) Pr(1,2)
Pr(2,0) Pr(2,1) Pr(2,2)

  TP

 
 
 =
 
 
 







   

 

if  {0,  1,  }Ψ =  . 

 Figure 39 shows an example of the Markov Chain with its transition-probability 

matrix. This Markov chain contains three states  {0,  1,  2}Ψ =  and has a transition-

probability matrix 
0.5 0.25 0.25

  0.025 0.9 0.075
0.05 0.15 0.8

TP
 
 =  
  

. 
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4.1.2. Time-Delay Modeling 
In general, time delays can be categorized as deterministic delays and stochastic 

delays. Due to the stochastic nature of the network, a stochastic method is adopted to 

model the random time delays in the communication links since it can model the random 

processes of the network condition more realistically compared to a deterministic 

method. We assume that the status of the time delays mainly depends on the previous 

status so that the random time delays caτ  and scτ  can be modeled with finite-state time-

homogeneous Markov chains.  

 

State 2

State 0

State 1

0.9

0.5

0.8

0.05

0.250.025

0.25

0.15

0.075

 

Fig. 39. An example of Markov Chain with three states 
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In this section, caτ  and scτ  in Fig. 38 are modeled with two time-homogeneous 

Markov chains with finite Markov states and take values in the sets 

{ ;  1,  ,  }ca
i i pτ=  ∈ =      and { ;  1,  ,  }sc

m m qτ=  ∈ =   ;  , respectively. Their 

transition-probability matrices are  { }ijς=Λ  and { }mnξ=Γ , respectively. These 

transition-probability matrices represent the probabilities that caτ  and scτ  jump from the 

state i to j and the state m to n, respectively. The definitions of ijς  and mnξ  are 

Pr( ( 1) | ( ) )ca ca ca ca
ij j ik kς τ τ τ τ= + = = ,                                     (19) 

Pr( ( 1) | ( ) )sc sc sc sc
mn n mk kξ τ τ τ τ= + = = ,                                     (20) 

where 0ijς ≥ , 0mnξ ≥ , and 
1

1
p

ij
j

ς
=

=∑ , 
1

1
q

mn
n

ξ
=

=∑ ,  for all ,i j ∈   and ,m n∈ . 

4.1.3.  Packet-Loss Modeling 
The packet loss in an NCS is another challenge induced by the network. Packet 

losses could take place when the network is congested or the queues of routers and 

servers are overflown. NCS does not monitor the network conditions, so explicit packet-

loss information is unavailable to either Server or Client in the sense of real time.  

A simplest stochastic model treats packet losses as a Bernoulli process [5]. It can 

also be modeled with a Markov chain [73] or a Poisson process [74]. Normally, packet 

losses share no common probabilistic characteristics with the random time delays since 

their causes are usually different and not always coupled. In general, for the case of 

packet losses, the system will require extensive control input to guarantee the stability 

and system performance. Whenever a packet is lost, time-delay information is irrelevant 
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and unavailable. Therefore, assuming that a packet loss can be intuitively modeled with 

a Markov chain together with the time delays cannot represent their independence in a 

communication network. In this section, a separate packet-loss model is introduced. 

As illustrated in Fig. 38, the network backbone can be treated as a jump system. 

In this case, when a packet is lost, the current output packet or the control input packet 

will be unavailable to either Server or Client, so that the plant output or control input 

from the previous sampling period will be held for current period. The time-delay 

information from the previous period will also be inherited.  

The notations of the packet losses in Fig. 38 are as below.  

1 if no packet is lost
0 if a packet is l

(
ost

)ca kδ


= 


                                         (21) 

1 if no packet is lost
0 if a packet is l

(
ost

)sc kδ


= 


                                         (22) 

Unlike [5], however, we do not assign Bernoulli probabilities to caδ  and scδ . 

Packet losses can be stochastic so that a pre-assigned fixed probability Pr( ( ) 1)ca kδ =  

would not represent the nature of the packet losses realistically. That is, if either caδ  and 

scδ  takes the value 0, there is a packet lost in the corresponding links. Otherwise, only 

random time delays exist in the links.  

4.1.4. Controller Design 

As in Fig. 40, consider caτ  and scτ , we introduce a ceiling function 

0( )f
h

τ τ
τ

+ =   
,                                                       (23) 
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where 0τ  is time threshold, and h is the sampling period. The time threshold 0τ  includes 

summation of the data sampling time, data-packet generating time, packet-processing 

time, queuing time, etc. In each sampling period, these times may not be exactly the 

same, but can be quite deterministic. Therefore, an upper bound 0τ  can be set as a time 

threshold. Then the plant-output packet arriving at Server is ( ) ( ( ( )))sck k f kτ= −y y . 

This can also be applied to the control input, so that ( ) ( ( ( )))cak k f kτ= −u u . Note that 

for caτ  and 
scτ , the threshold 0τ  may take different values.  

Figure 40 illustrates an example of packet exchanges between Server and Client. 

The horizontal length of each line indicates the random time delays of each packet in the 

links. Several possible scenarios are shown in Fig. 40. The first case is that both the caτ  

and scτ  are shorter than h as shown in h1. Another case is that scτ  is shorter than h and 

caτ  is longer than h as shown in h2. For instance, if 0
sc hτ τ+ < , then ( ) 0scf τ = . Thus, 

when the plant-output packet arrives at Server, it is indicated as ( )ky  in the k-th 

sampling period. Likewise, if 0 2sch hτ τ+< < , then ( ) 1scf τ = . Thus the plant-output 

packet arrives at Server will be ( 1)k −y  in the k-th sampling period. Figure 40 also 

illustrates other possible data-packet-loss scenarios. As shown in h3 and h5, the plant 

outputs and the control inputs are lost in data transmission, respectively. Hence, the 

estimated or predicted data will be applied to calculate the corresponding data packets.  

Now consider the NCS in Fig. 38 with both the random time delays and the 

packet losses. The delayed plant outputs ( )ky  and control inputs ( )ku  are 
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( ) ( ) ( ( ( ))) ( ) ( 1 ( ( 1)))sc sc sc sck k k f k k k f kδ τ δ τ= − + − − −y y y                 (24) 

( ) ( ) ( ( ( ))) ( ) ( 1 ( ( 1)))ca ca ca cak k k f k k k f kδ τ δ τ= − + − − −u u u ,              (25) 

where ( ) 1 ( )sc sck kδ δ= −  and ( ) 1 ( )ca cak kδ δ= − . By Eqs. (24) and (25), if packet 

losses take place in the links, the previous data packets will be used. This provision can 

compensate for one packet loss.  

 

SERVER

CLIENT

PLANT

Sensor feedback
Control inputs
Updated actuator info 

Delayed data

Lost data 

Calculated data

Estimated data 

h1 h2 h3 h4 h5

y1 y2 y3
y4

y5

u1

u1 u2 û3 u4 u5

û2 û3 u4

u1

û5

 
Fig. 40. An example timing diagram of the NCS communication 

 

 For consecutive packets losses, an autoregressive (AR) model will be applied to 

predict future plant outputs and control inputs of an NCS.  

 Definition 4 [75]: A simple input-output relationship is obtained by describing it 

as a linear difference equation:  
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1 1( ) ( 1) ( ) ( 1) ( )
a bn a n by t a y t a y t n b u t b u t n+ − + + − = − + + −  , 

or  

( ) ( ) ( ) ( )A q y t B q u t= , 

where 1 2
1 2( ) 1 a

a
n

nA q a q a q a q−− −= + + + +  and 1 2
1 2( ) b

b
n

nB q b q b q b q−− −= + + + , an  is 

the order of ( )A q  and bn  is the order of ( )B q . The above model is called an autoregressive 

exogenous (ARX) model, where AR refers to the autoregressive part ( ) ( )A q y t  and X to the extra 

exogenous input ( ) ( )B q u t . 

 The AR model will be applied to predict the future data packets. The extra input 

term is dropped off from the ARX model bacause when the packet losses exist in the 

network, the input information is unavilable to its destination node. Therefore, to either 

Sever or Client, the plant outputs or control inputs are unavilable in the present of packet 

losses. Then the plant outputs to the controller ( )ky  and the control inputs to the plant 

( )ku  are as follows for the case of consecutive packets losses 

ˆ( ) ( ) ( ( ( ))) ( ) ( )sc sc sck k k f k k kδ τ δ= − +y y y                             (26) 

ˆ( ) ( ) ( ( ( ))) ( ) ( )ca ca cak k k f k k kδ τ δ= − +u u u ,                           (27) 

where ˆ( )ky  and ˆ( )ku  are the predicted data packets generated by the AR model with  

1 2
1 2

1

ˆ( ) ( ) ( ( ( )))

( 1 ( ( 1))) ( ( ( )))

a
a

a

n sc
y y yn

sc sc
y yn a a

k a q a q a q k f k

a k f k a k yn f k yn

τ

τ τ

−− −= − − − − −

= − − − − − − − − −

y y

y y



 ,           (28) 

1 2
1 2

1

ˆ( ) ( ) ( ( ( )))

( 1 ( ( 1))) ( ( ( )))

a
a

a

n ca
u u un

ca ca
u un a a

k a q a q a q k f k

a k f k a k un f k un

τ

τ τ

−− −= − − − − −

= − − − − − − − − −

u u

u u



 ,           (29) 
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where ayn  and aun are orders of the predicted plant outputs and control inputs, 

respectively. Based on the time-delay states of the NCS, we have ayn q≤  and aun p≤ .  

Augment the plant’s states as follows with all the possible Markov states of scτ  

( ) ( ) ( 1) ( 2) ( 1)
TT T T T

p pk k k k k q = − − − − x y y yx  . 

Then the plant’s model can be written as 

 ( 1) ( ) ( )p p p pk k k+ = +x A x B u                                               (30) 

( ) ( )p pk k=y C x ,                                                            (31) 

where

p

p

p

 
 
 
 

=  
 
 
 
  

A

A

C

I

I

 

 

 

  

     

 

0 0 0

0 0 0

0 0 0
0 0 0

0 0 0

, 

p

p

 
 
 
 

=  
 
 
 
  

B

B



0
0
0

0

, 

( ) ( )sc sc
p k kδδ =  C  0 1 1 0  with the ( ( ))scf kτ -th entry equals to ( )sc kδ 1

where 1 is the unit matrix with all elements equal to 1. For the case of consecutive 

packet losses, 1( ) ( ) ( )
a

a

y y
sc sc sc

p n

yn

k ka kaδ δ δ
 
 =  
 

− −

 

C 0 1 1 1 0

((((((((((







.
 

Similarly, the augmented controller state vector with all the possible Markov 

states of caτ  is ( ) ( ) ( 1) ( 2) ( 1)
TT T T T

c ck k k k k p = − − − − x u u ux  , and the 

corresponding controller model is  

 ( 1) ( ) ( ) ( )c c c c ck k k k+ = − +x A x B y B r                                (32) 
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( ) ( )c ck k=u C x ,                                                            (33) 

where 

c

c

c

 
 
 
 

=  
 
 
 
 

A
C

I

I

A

 

 

 

  

     

 

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0

, 

c

c

c

 
 
 
 

=  
 
 
 
  

B
D

B



0
0

0

, 

( ) ( )ca cc
c k kδδ =  C  0 1 1 0 with the ( ( ))caf kτ -th entry equals to ( )ca kδ 1 . 

Similarly, for the case of consecutive packets losses, 

1( ) ( ) ( )
a

a

u un

un

ca ca ca
c k k ka aδ δδ

 
 =  
 

−



−



C 0 1 1 1 0

(((((((((



(((



.
 

Augment the new plant and controller model with T T T
p c =  x x x , and the 

closed-loop dynamics will be 

( 1) ( ) ( )k k+ = +x A BKC x ,                                              (34) 

where p 
=  

  

A
A

0

0 0
, p 

=  
  

B
B

I

0

0
, c c

c

 −
=  

 

A B
K

C 0
, and 

p

 
=  

 

I
C

C
0

0
. 

For the stability analysis, Definition 4 in [76] and Theorem 1 in [77] are adopted. 

Definition 5 [76]: Consider a jump linear system dJ  

( 1) ( ( )) ( ) ( ( )) ( )
:

( ) ( ( )) ( ) ( ( )) ( )d
k k k k k

J
k k k k k

η η
η η

+ = +
 = +

x A x B u
y C x D u

, 

where ( )kη  is a discrete homogeneous Markov chain with states 1 2( ,   ,  )NS S S S=  ,   . 

The system dJ  with ( )k =u 0  is said to be asymptotic mean-square stable if  
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2{ ( ) } 0E k →x  as k → ∞ , 

for any initial condition 0(0) =x x  and initial distribution 0(0)η η= .  

Theorem 1 [77]: Let there exist a nonnegative functional ( ,   ,  )i h iV V i x x−=  ,   , 

i ∈  for which the conditions 

2{ } { }i iE V cE x∆ ≤ − ,  

where 1    i i iV V V+∆ = −  and 0c >  hold. Then system Jd is asymptotic mean-square stable. 

With Theorem 1, the necessary and sufficient conditions of the asymptotic mean-

square stability of the closed-loop system Eq. (34) can be derived as follows. 

Theorem 2: The closed-loop NCS in Eq. (34) is asymptotic mean-square stable if 

and only if there exists ( , ) ( , ) 0Ti m i m =  >P P  so that the following matrix inequality  

1 1
( , ) ( ) ( ( , ))( ) ( , ) 0

p q
T

ij mn
j n

i m j n i mλ m
= =

 = +  + −  <∑∑H A BKC P A BKC P             (35) 

holds for all i ∈   and m∈ . 

Proof: Sufficiency: for the closed-loop NCS in Eq. (34), construct a Lyapunov 

function as 

( ( ), ) ( ) ( ( ), ( )) ( )T ca scV k k k k k kτ τ =  x x P x .                              (36) 

Then  

( ( ), ) ( ( 1), 1) ( ( ), )

( 1) ( ( 1), ( 1)) ( 1) ( ) ( ( ), ( )) ( ).T ca sc T ca sc

V k k V k k V k k

k k k k k k k kτ τ τ τ

∆  = +  + −  

= + +  + + −  

x x x

x P x x P x      (37) 
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Assume caτ  is at the Markov state i in the k-th sampling period and will be at the 

Markov state j in the next sampling period. Similarly, scτ  is at the Markov state m in the 

k-th sampling period and will be at the Markov state n in the next sampling period. For 

the simplicity, we denote ( ( ), ( ))ca sck kτ τ P  as ( , )i m P  hereafter. Note that ( , )i m  is not 

the corresponding entry of matrix P, but the corresponding Markov states of the time 

delays.  

Then Eq. (37) can be reformulated as 

( ( ), ) ( 1) ( , ) ( 1) ( ) ( , ) ( )

( )[( ) ( , )( ) ( , )] ( )

T T

T T

V k k k j n k k i m k

k j n i m k

∆  = +  + −  

= +  + −  

x x P x x P x

x A BKC P A BKC P x .              (38)  

The next time-delay state will depend on the current one, and the conditional 

expectation of Eq. (38) is as follows.  

1 1

{ ( ( ), )} { ( )[( ) ( ( , ) | ( , ))( ) ( , )] ( )}

{ ( )( ) ( ( , ))( ) ( , ) ( )}

{ ( ) ( , ) ( )}.                                                 

T T

p q
T T

ij mn
j n

T

E V k k E k j n i m i m k

E k j n i m k

E k i m k

λ m
= =

∆  = +   + −  

= +  + −  

=  

∑∑

x x A BKC P P A BKC P x

x A BKC P A BKC P x

x H x                    (39)  

If ( , ) 0i m <H , then  

min

2

{ ( ( ), )} { ( ) ( , ) ( )}

{ ( , ) ( ) ( )}

{ ( ) },

T

T

E V k k E k i m k

E i m k k

E k

σ

σ

∆  =  

≤ −  

≤ −

x x H x

x x

x                              (40) 

where min min( , ) ( ( , ))i m i mσ σ = −  H  is the minimum eigenvalue of ( , )i m−  H  and 

mininf{ ( , ),  ,  } 0i m i mσ σ=   ∈  ∈ >   is the infimum of these minimum eigenvalues. 
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According to Theorem 1, if ( , ) 0i m <H , then the closed-loop system Eq. (34) is 

asymptotic mean-square stable.  

Necessity: Under the assumption that Eq. (34) is asymptotic mean-square stable 

and Theorem 1, with a constant 0α > , one has  

 

2

{ ( ( ), )} { ( ) ( , ) ( )}

{ ( ) }

{ ( )( ) ( )}

T

T

E V k k E k i m k

E k

E k k

α

α

∆  =  

≤ −

= −

x x H x

x

x I x                                   (41) 

so that { ( ) ( , ) ( )} { ( )( ) ( )} { ( )[ ( , ) ] ( )} 0T T TE k i m k E k k E k i m kα α − − =  + ≤x H x x I x x H I x , 

and ( , ) 0.i m α + ≤H I  Then     0β α+ ≤ , where 

max maxsup{ ( , ) ( ( , )),  ,  }i m i m i mβ β β=  =   ∈  ∈H    is the supremum of the maximum 

eigenvalues of ( , )i mH . Since 0α > , so that 0β < , and ( , ) 0i m <H . Hence, the closed-

loop system Eq. (30) is asymptotic mean-square stable, and ( , ) 0i m <H . 

The aforementioned asymptotic mean-square stability condition, Eq. (35) is 

nonlinear and difficult to be implemented in real time. A linear criterion will be 

introduced based on the LMIs with Schur complement. 

Definition 6 [78]: Schur complements of a strict LMI M are defined as follows  

( )
( ) ( )

 0
( )T

x x

x x
 

= > 
  

Q S
M

S R
, 

where ( ) ( )Tx x=Q Q , ( ) ( )Tx x=R R , and ( )xS  depend affinely on x and ( )xR  is 

invertible, is equivalent to  

1( ) ( ) ( ) ( ) 0Tx x x x−− >Q S R S , and ( ) 0x >R . 
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Theorem 3: There exists a controller that has the form as in Eqs. (17) and (18) so 

that the closed-loop system Eq. (34) is asymptotic mean-square stable if and only if there 

exists ( , ) ( , ) 0Ti m i m =  >P P  satisfying 

( , ) ( , )
 0

( , ) ( , )T

i m i m

i m j n

   
> 

   

P N

N G
                                         (42) 

with
1 1
2 2

1 1
( , ) ( )

p q
T

ij mn
j n

i m ς ξ
= =

 = +∑∑N A BKC . 

Proof: The proof is obtained by Schur complement with ( , ) ( , )j n j n  =G P I  and 

Theorem 2.  

The conditions in Theorem 3 are in fact a set of LMIs with non-convex 

constraints that can be solved by several existing algorithms with reasonable calculation 

efforts. However, the on-line calculation of such LMI problem with defined the 

coefficient matrices may require long computational time and induce more time delays 

to the data processing and control-law generation. Hence, an off-line calculation is 

adopted in this research, and experiments are conducted for its effectiveness to the NCS 

in the real-time sense. The control law with various levels of time delays and packet 

losses will be computed off-line and be tabulated for looking up during the 

implementation. 

4.2 ALGORITHM IMPLEMENTATION  
Practical NCS normally has no clock synchronization mechanism over the entire 

communication network. Therefore, no explicit time-delay information is available to 

Server and Client in real time. Similarly, no explicit packet-loss information can be 
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detected in real time either. All the information can be obtained by the next sampling 

period based on the assumption in the dissertation. Due to the stochastic nature of the 

communication network, the packets containing the control inputs of each loop that 

arrive at Client may not be in the same sequence as they were initially sent by Server. All 

these possibilities make it challenging to implement the controller in the practical NCSs.  

By setting up a timestamp segment in the packets traveling through the 

communication network, the total time delays and packet losses can be detected by 

Client at the end of each sampling period. The total time delays can be inferred by 

calculating the difference between the time instance that Client sends plant-output 

packets to Server and the time instance that Client receives control-input packets from 

Server. The structure of the total time delays has the following form. 

( ) ( ) ( ) ( )ca sctimestamp k k k kttt  ∆ = + + ,                                (43) 

where ( )kτ  includes the packet-processing time, queuing time, other calculating time, 

etc., on both Server and Client. Note that, in general, caτ  and scτ  are not necessarily the 

same. From Eq. (9), one can have  

1( ) ( ) ( )
2

ca sck k timestamp ktt ≈ ≈ ∆                                      (44) 

in the controller design and implementation to be presented in Section 4.3.3. Compared 

to the time delays over the communication network, the packet-processing time, queuing 

time, or calculating time can be much smaller or neglected under certain circumstances.  

If Client receives no updated control signal within a certain time period, it may assume 

the packet has been lost.  
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Note that the time delays calculated by tracking the timestamps can only be 

accessed by the end of each sampling period, so the current time-delay information will 

only be able to be applied to the NCS by the next sampling period. Packet losses can be 

handled similarly. Server will use the time-delay information carried from the previous 

data packet to compensate for the effect of the time delays and packet losses a sampling 

period later.  

An algorithm that implements the proposed output feedback controller is as 

follows. The implemented algorithm is illustrated in Fig. 41. The solid lines represent 

independent control flows on Server and Client. The dashed lines represent 

chronological data-packet exchanges between Server and Client. This flow chart 

explains the control flow in one control iteration of the NCS.  

Algorithm 1: The algorithm describes the control flow in one sampling period. 

(1) At the beginning of the current sampling period, Server waits for the plant-output 

data packet arriving from Client. The details of the data-packet structures will be 

given in Section 4.3.  

(2) When the data packet arrives, Server first checks the corresponding data segment 

in the packet to verify whether a packet is lost in the previous sampling period.  

(3) Server checks the time-delay states. The time-delay information is contained in 

the corresponding data segment. Then Server calculates the control input based 

on the time-delay states. Note that all the control laws for various time-delay 

states and packet losses are calculated off-line and tabulated on Server.  
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Fig. 41. Flow chart of the output feedback algorithm implementation 
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(4) Server sends the control-input data packet back to Client to actuate the plant. If 

the newly updated control-input packet is lost in the link, Client will use previous 

control-input data to actuate the plant. 

4.3 CONTROLLER IMPLEMENTATION AND EXPERIMENTS 
In this section, key experimental results are provided to verify the effectiveness 

of the Markov-chain-based output feedback method. The DC motor speed-control 

system in Fig. 13 was set up as the test bed. 

4.3.1 Experimental Setup Review 
Recall that Linux Redhat 7.3 with RTAI 3.4 is the OS running on Server, and 

Linux Ubuntu 6.10 with RTAI 3.4, on Client. Comedi is used as the drivers and libraries 

of data acquisition on Client. A NI PCI-6221 DAQ card enables the DC motor test bed to 

send out plant-output data packets and receive control-input data packets through the 

LAN. The speed control is achieved by controlling the output voltage of a PWM 

amplifier. Figure 42 shows the block diagram of the entire experimental setup. 
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Fig. 42. Block diagram of the DC motor speed-control system 
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The communication network in the experiment is a 100-Mbps Ethernet with 

unblocked UDP sockets. The data-packet structures for both Server and Client are as 

follows. As shown in Fig. 43, a new segment that indicates the time-delay and packet-

loss information is added to the end of the original data packet structure of Client 

defined in Fig. 16. The segment is used to track the random time delays and packet 

losses during the date packet transmission. If a packet is lost, this segment contains 

negative value to notify Server. If not, it contains the total time delays information. 
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Fig. 43. Output-feedback controller data-packet structures 

 

4.3.2 Experimental System Modeling 
Based on DC motor datasheet [79], its state-space model can be represented as 

1) 0.26( ( ) 2.04 ( )p px k x k u k+ = − +                                     (45) 

(( ) )py k x k= ,                                                              (46) 

where ( )u k ∈  is the input voltage, and ( )y k ∈y  is the angular velocity, respectively. 

The network-induced time delays were measured to determine the key statistical 

characteristics of the test bed. Recall the time-delay experiments in Fig. 24. A same 

random time-delay experiment was performed for 10,000 iterations. As aforementioned 
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in Section 4.2, the time delays attained by the experiment are the total delays in the NCS. 

The average of the time delays is between 0.45 and 0.5 ms, and some jitters with the 

average of 0.8 ms. We took these two cases as two time-delay states for the Markov-

chain-based model. According to the algorithm in Section 4.2, caτ  and scτ  in this 

experiment will be one half of the total time delays as indicated in Eq. (44) so that the 

time-delay Markov states of caτ  and scτ  will be 

{0.23, 0.4}= =    .                                                  (47) 

Equation (47) gives the Markov states of the experiments. The first Markov state 

of 0.23 ms represents the average of the time delays, and the second Markov state of 0.4 

ms represents the jitters in either the controller-to-actuator link or sensor-to-controller 

link. caτ  and scτ  will take one of the values in the set. As mentioned in Section 4.2, caτ  

and scτ  are not necessarily the same, but we assume they are since the explicit time-

delay information is unavailable in the experiment. Note that the random time delays 

may not be exactly the same for each sampling period, and each state in the set actually 

represents certain time intervals. A time delay shorter than 0.35 ms represents the first 

Markov state, and any time delay longer than 0.35 ms, the second Markov state. 

By fixing the current Markov state, the transition-probability matrix can be 

constructed by counting the number of the next Markov state that falls into either the 

first Markov state or the second Markov state in Eq. (47). The transition-probability 

matrices of the two Markov states are determined experimentally as 

0.93 0.07
0.75 0.25

 
= =  

 
Λ Γ .                                                (48) 
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Equation (48) gives the probability that the time delays jump from the current 

Markov state to the next Markov state. (i.e., if the current time delay is 0.23 ms, then the 

next time delay will be 0.23 ms at 93% probability, and be 0.4 ms, 7%).  

4.3.3 Controller Design and Implementation 
The LMI stability criterion developed in Section 4.1 has been applied in the 

Matlab with the LMI Toolbox, and the V-K iteration algorithm in [34] with the following 

initial P matrix. The matrix ( , )i m P  depends on the Markov states of caτ  and scτ . For 

instance, if caτ  is at the first Markov state of 0.23 ms, and scτ  is at the second Markov 

state of 0.4 ms, ( , )i m P  will be denoted as (1, 2) P .  Set a state vector 12 [0.23 0.4]T=w  

for (1, 2) P , and define 12 12(1, 2) ( )Tdiagg ⋅ ⊗P w w I , where γ is a weight coefficient for 

the optimization and ⊗  is the Kronecker product. The dimension of I depends on the 

problems, where I is 4×4 identity matrix in our experiments. All the other ( , )i m P  can be 

constructed in the same way. These initial ( , )i m P  will be applied to start the LMI solver 

and V-K iteration algorithm, which will converge to the final states at the end of all the 

iterations or when the errors satisfy a pre-set error bound. The choice of initial ( , )i m P  

may vary. The convergence of the V-K iteration algorithm can be referred to [34]. Then 

with solving Eq. (42) using the Matlab LMI Toolbox and V-K iteration algorithm with 

the corresponding constraints, the controller can be designed.  

The controllers are designed as presented in Table 7. The 4-tuple

, , }{ ,ca sc ca scτ τ δ δ    in Table 7 represents different Markov states of the random time 

delays and packet losses as defined in Section 4.1. The order of the controller can be set 
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as needed. A higher-order controller may promise more robust system performance but 

require more computational efforts and bring more complexity to the system. In our 

experiments, the plant represented with Eqs. (45) and (46) is a first-order system. We 

design the controller to be first-order, so the whole closed-loop system is second-order.  

 

Table 7. Output feedback controller parameters 

, , }{ ,ca sc ca scτ τ δ δ    Ac Bc Cc Dc 

{0.23, 0.23, 1, 1} 1.0102 0.9687 0.0396 1.7621 

{0.23, 0.4, 1, 1} 1.0155 0.9879 0.0408 1.7889 

{0.4, 0.23, 1, 1} 1.0155 0.9879 0.0408 1.7889 

{0.4, 0.4, 1, 1} 1.0412 1.0030 0.0421 1.8162 

{–, –, 0, 0} 1.1974 1.1534 0.0557 2.0886 

 

As mentioned in Section 4.2, when the packet is lost, no time-delay information 

will be available. The 4-tuple {–, –, 0, 0} represents the case that both the controller-to-

actuator and the sensor-to-controller packets are lost. The sensor-to-controller packet 

loss is represented by {–, –, 1, 0}. However, Server will not be able to calculate the 

updated control input since it has not received any newly updated output information. 

The other case of the controller-to-actuator packet loss is represented by {–, –, 0, 1}. 

When this happens, the updated control input is calculated by Server but cannot arrive at 

Client. Therefore, all these cases can be grouped into the case {–, –, 0, 0} in the 

experiments since Client will not receive any updated control input for these three cases. 
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For the three consecutive packets losses case, two second-order AR models are 

applied to predict the lost plant outputs and control inputs so that  

ˆ ( ) 0.6621 ( 1) 0.3377 ( 2)k k k= − + −y y y ,                                (49) 

ˆ ( 1) 0.6867 ( 1) 0.3132 ( 2)k k k+ = − + −y y y ,                                (50) 

ˆ ( 2) 0.7151 ( 1) 0.2848 ( 2)k k k+ = − + −y y y ,                                (51) 

ˆ( ) 0.5094 ( 1) 0.4094 ( 2)k k k= − + −u u u ,                                 (52) 

ˆ( 1) 0.6136 ( 1) 0.3862 ( 2)k k k+ = − + −u u u ,                                (53) 

ˆ( 2) 0.6849 ( 1) 0.3151 ( 2)k k k+ = − + −u u u .                                (54) 

As discussed earlier, the order of the AR model depends on the number of the states of 

the Markov chain. Here, in the experiments, the time-delay Markov chain has two 

independent states as in Eq. (47). Therefore, the order of the AR model will be two in the 

experiments. The AR models are calculated in Matlab. The best-fit values of the above 

AR models are 83.3220 and 83.6391, respectively.  

4.3.4 Experimental Results 
The system performance with the proposed method is used to compare the 

performance with that of the PI controller in [64]. The difference equation of the PI 

controller is defined in Eq. (14).  

All experiments were executed with a 3-ms sampling period for 500 iterations. 

The reference speed of the DC motor in all the experiments was set to be 10 rps. Three 

separate experiments, without packet losses, with 10% single packet losses, and with 

20% consecutive packet losses, were conducted to evaluate the effectiveness of the 
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proposed method. All the experiments were executed under the same network condition 

as the time-delay experiment as measured in Eq. (47). The Ethernet LAN in the lab was 

robust so that no packet losses occurred even with UDP. Therefore artificial packet 

losses were introduced to the NCS with an approximate 10% and 20% loss rate, 

respectively. For instance, for 10% loss rate, a random function that takes value from 0 

to 1 was introduced, and a threshold of 0.1 (10% loss rate) was set for the comparison. If 

the random number was less than the threshold, the packet would be dropped from the 

NCS. Note that the random modulo operation does not generate a truly uniformly 

distributed random number in [0, 1], but it is generally a good approximation. Since we 

run the experiments with a large number of iterations, we assume that the packet-loss 

rate is about 10%. Similarly, for the consecutive-packet-loss case, a 20% three 

consecutive packets losses were artificially introduced in to the NCS. To clearly see the 

effects of the 20% three consecutive packets losses, the packet losses were introduced to 

the NCS at 500 ms.   

The step responses of the NCS are shown in Figs. 44–46. Figure 44 shows the 

results of the PI controller and the proposed controller without artificial packet losses. 

Without packet losses, the steady-state errors of the conventional PI control and the 

method proposed in this section are almost the same. Figure 45 shows the experimental 

results with 10% random artificial packet losses. Figure 46 shows the experimental 

results with 20% three consecutive packets losses. As shown in Figs. 45 and 46, even 

when packets were lost in the communication network, our approach could track the 

reference command faithfully whereas the PI controller could not compensate for the 

104 

 



 

random time delays and packet losses. The proposed method not only uses predictive 

control data but also compensates for the effect of packet losses. Hence the system 

performance can be enhanced. 

Figures 47–49 show the DIAE of all the experiments with the proposed method 

and the PI controller. Each figure shows the DIAE of the experimental data without 

packet losses, with 10% single packet losses, and 20% consecutive three-packet losses, 

respectively. From these figures, one can see that system errors of the NCS dramatically 

increase when packets are lost in the communication network. From Figs. 47–49, the 

proposed method reduced the DIAE by about 13% without packet losses. For the single 

packet losses case, the proposed method reduced the DIAE by as much as 30% 

compared to the PI controller. The three consecutive packets losses case, the proposed 

method could still reduce the DIAE of the NCS by about 40%.  In all these results, the 

Markov-chain-based method proposed in this research exhibited satisfactory system 

performance. 

4.4 SUMMARY 
This section proposed an output feedback method for the stabilization and control 

of the NCS with random time delays and packet losses. By modeling the random time 

delays with time-homogeneous Markov chains and packet losses with Dirac delta 

functions, the closed-loop system was stabilized, and the performance was much 

enhanced compared to a conventional control method. An asymptotic mean-square 

stability criterion for the NCS was obtained in terms of a Lyapunov function and a set of 

LMIs with matrix constraints. An algorithm implementation of the stability criterion was  
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Fig. 44. Step responses of Client 2 without packet losses 

 

 

Fig. 45. Step responses of Client 2 with 10% single packet losses 
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Fig. 46. Step responses of Client 2 with 20% three consecutive packets losses 

 

 

Fig. 47. DIAE of the proposed method vs. PI controller without packet losses 
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Fig. 48. DIAE of the proposed method vs. PI controller with 10% single packet losses 

 

 
Fig. 49. DIAE of the proposed method vs. PI controller with 20% three consecutive 

packets losses 
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also presented in this section. The experimental results demonstrated the feasibility and 

effectiveness of the proposed method. The proposed method enhanced the system 

performance with and without packet losses compared to a conventional control 

algorithm. The DIAE without packet losses was reduced by 13% with the proposed 

method. The DIAE with 10% single packet losses was reduced by about 30%, and the 

DIAE with 20% three consecutive packets losses, by about 40%. The NCS could track 

the reference command faithfully with the proposed method when random time delays 

and packet losses existed in the links whereas the NCS failed to track the reference 

command with a conventional control algorithm. 
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5. OPTIMAL BANDWIDTH ALLOCATION AND SCHEDULING OF THE NCS 

 

raditionally, a controller design problem is separated from software design and 

implementation. This separation allows control and computer communities to focus on 

their specific problems. Controller designers disregard the characteristics of the 

computational and communication resources but mainly focus on the controller and 

system stability and performance. On the other hand, real-time OS designers consider 

the control loops as periodic tasks with hard deadlines. They focus more on how to 

schedule all the tasks and guarantee that the tasks do not miss the deadlines [37]. In the 

NCS, however, these two fields are correlated in a closer way so that their separation 

will lead to poor system performances. The ideal linear relation between the system 

performance and the sampling frequency is no longer the case for the NCS design 

because of the existence of the network. A larger sampling frequency will increase the 

number of data packets in the network, which will bring longer time delays and might 

even overload and destabilize the network.  

In general, multiple controllers or multiple clients can coexist in the same NCS. 

A representative framework of an NCS was shown in Fig. 3. In this framework, the NCS 

includes several operation scenarios—a single controller controls a single client, a single 

controller controls multiple clients, and multiple controllers collaboratively control a 

single client. All the clients will compete for the limited resources in the NCS to 

maintain the stability and performance. Therefore, the communicational and 

computational resource allocation and scheduling plays a crucial role in an NCS. Guan 

T 
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et al. considered additive colored white Gaussian noise when optimizing the 

performance of the NCS with limited bandwidth [80]. A dynamic bandwidth allocation 

algorithm based on captured visual content information was presented to raise the 

bandwidth utilization of an NCS [81]. Heemels et al. presented a general framework that 

incorporated communication constraints, varying transmission intervals and varying 

delays. Based on a newly developed NCS model including all these above network 

phenomena, the authors provided an explicit construction of a continuum of Lyapunov 

functions [82]. Xu et al. formulated a bandwidth optimization and scheduling algorithm 

of the NCS based on a non-cooperative game model in [83]. The existence and 

uniqueness of Nash equilibrium point are proved. 

Traditionally, digital control assumes that the system performance can be 

reflected by a monotonically decreasing linear or exponential function of the sampling 

frequency. However, this is no longer the case for the design of an NCS as discussed in 

Section 1. A higher sampling frequency will increase the number of data packets in the 

network, which will cause longer time delays and might even overload and destabilize 

the network. Therefore, the linear models of the system performance proposed in the 

aforementioned literatures could not completely represent the system dynamics in an 

NCS. The effects on the system performance from the possible longer time delays 

brought by a high sampling frequency should be considered when formulating the 

performance index function (PIF) of an NCS. To better discuss the system performance 

and achieve the bandwidth allocation of an NCS, approximations of the PIF which can 

fully reveal the characteristics of an NCS are necessary. These approximations should 
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include the effects of the time delays brought by high sampling frequencies as an 

essential part when setting the system PIF of an NCS. Not only the time delays but also 

the scheduling sequences of controlled plants can affect the PIF of an NCS. Hence, two 

system approximations, exponential and quadratic, which consider the effects of time 

delays as a crucial part of the system PIF, are proposed to achieve the optimal bandwidth 

allocation and scheduling of an NCS. The proposed approximations and the optimal 

solutions are expected to exhaust the entire network bandwidth available to the NCS to 

maximize the BU and the system performance. Note that although the proposed 

approximations and scheduling algorithms are mainly for an NCS with SSMC 

framework, they can be applied to an NCS with MSMC framework easily with proper 

adjustments.    

5.1. SYSTEM PERFORMANCE APPROXIMATIONS 
Consider an NCS of a framework that contains one server and multiple clients. 

To guarantee the stability and enhance the system performance, all the clients are 

assumed to compete for the CPU time and the network bandwidth to calculate control 

inputs and transmit data packets. Accordingly, the most common objective in the 

resource allocation of an NCS is to optimize the overall quality of control subjected to 

certain resource limitations.   

Recall Fig. 3 in Section 1, the system performance of an NCS is no longer a 

linear function of the sampling frequency. As the sampling frequency increases, the 

system performance will be degraded due to large amount of data packets transmitted in 

the network. To be consistent with simulation and experiments in this section, Fig. 50 
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gives an intuitive idea about trends of the system performance of an NCS regarding to 

the sampling frequency. Note that Fig. 50 reflects the generic illustration of Fig. 3. In 

Fig. 50, fg  is the optimal sampling frequency that yields the optimal system 

performance of an NCS. fα  and fβ  are the sampling frequency boundaries of the 

acceptable performance range. The acceptable performance depends on the users’ 

requirements. It is not necessary the stable region of the NCS. Therefore, fα  and fβ  

may not necessary be the minimum and maximum sampling frequencies of the NCS, 

respectively.   
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Fig. 50. NCS performance index vs. sampling frequency 
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5.1.1. Network Bandwidth of the NCS 
To achieve the optimal resource-allocation objective, a system PIF in terms of 

various resources is set up. Based on the definition of the network bandwidth in [26], the 

relation between the sampling frequency and the BU can be indicated by the following 

equation, 

 k k k
i i ib fτ= ,                                                          (55) 

where k
ib  is the BU, k

if  is the sampling frequency, and k
iτ  is the total time delay in the 

NCS that includes the propagation delay from the network and the data processing time. 

The subscript i indicates the index of the clients in the NCS, and the superscript k 

indicates the control iterations.  

Note that given a certain amount of time delay, Eq. (55) gives a means to 

evaluate the clients’ sampling frequencies and represents the portion of network 

bandwidth assigned to each plant. Since k
iτ  includes the data processing time on 

Server’s CPU, this bandwidth definition also implicitly indicates the CPU resource 

allocation on Server. In control system design, the sampling frequency directly relates to 

the system stability and performance. Equation (55) also gives an implicit means to 

measure a client’s stability and performance. A large BU implies a high sampling 

frequency so that a client will have a better performance. However, an upper bound 

exists on the NCS bandwidth. If the BU reaches the network bandwidth saturation 

threshold, the network will be overloaded and induce more time delays or packet losses, 

and the performance of an NCS will be degraded. 
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5.1.2. Performance Index Function 
Recall that the DIAE is adopted to be the performance index formulated in 

Section 3. For each individual plant, at various sampling frequency, the DIAE will take a 

different value. Hence, a set of accumulated DIAEs of a client over a stability range of 

sampling frequencies will imply the performance of an NCS and can be applied to find 

the optimal sampling frequency of the client. Hereafter, the practical PIF will be defined 

as a piecewise function of the sampling frequency as follows,  

0

( ) ( )
fk

i
k k

i i
k
ief fJ

=

= ∑ .                                                (56) 

Two approximations will be proposed to capture the trends of the practical PIF as in Eq. 

(56) so that the analytical optimal bandwidth allocation can be achieved. 

5.1.3. Exponential Approximation Modeling 
The NCS system performance without considering time delays can be 

approximated as an exponential function [84–85]. However, the negligence of the time 

delay in the approximation would not reveal the characteristics of the NCS. Hence, a PIF 

considering the effects of the time delays is necessary and can be defined as  

 ( , ) exp( )k k k
i

k
i i i iJ f gfd a b cτ τ= + + + ,                               (57) 

where a, b, c, d, and g are approximation coefficients. The time delays depend on many 

aspects such as the data-packet size, number of packets in the network, network 

conditions, router’s capacity, unpredictable uncertainties, etc. Although the time delays 

affect the system performance, they are not directly controllable variables in a design of 

an NCS. However, by controlling the sampling frequency of each client in an NCS, the 
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number of data packets in the network can be maintained at a certain level so that the 

average of time delays can be controlled within a certain range. Therefore, for 

simplicity, we assume that the effects of the time delays can be reflected by an 

increasing function of the sampling frequencies of the plants in an NCS. The details of 

system performance versus the time delays can refer to [59, 86–87]. Hence, from an 

NCS design perspective, the PIF that reveals the effects of the time delays brought by a 

high sampling frequency can be revised as an increasing exponential function of the 

sampling frequency. Hereafter, from a traditional digital design perspective, ,( ) k
i iE f t  

defines an approximated PIF of Client i as a decreasing exponential function of the 

sampling frequency. Similarly, from an NCS design perspective, ,( ) k
i iF f t  defines an 

approximated PIF of Plant i as an increasing exponential function of the sampling 

frequency. Therefore,  

 
( ),  

k
i ifk

i iE f t e β−= ,                                                  (58) 

and  

,  ( )
k

iik
i

f
iF f t eδ= ,                                                    (59) 

where iβ  and iδ  are the approximation coefficients. These parameters can be obtained 

from simulation or experiments by a LSM approach. Refer to Eqs. (101) and (103) in 

Section 5.3 as examples. Therefore, for each individual client, the PIF can be defined as  

0

1
( ( ,  ) ( ,  ))k k

i i i i i i i
k

M

iJ J E f t F tf dtα g
=

−

≅ = +∑ ,                                 (60) 
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where M is the maximum control iteration. The coefficients iα  and ig  balance the 

impacts of the errors and time delays in the PIF of the corresponding client. 

For the NCS, the purpose of optimal bandwidth allocation is to minimize the PIF 

   

1

1

1 0

1

1 0

min min

min ( ( ( ),  ) ,  )

min ( ) ,
k k

i i i i

i

N
k
i if f i
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k k k
i i i i i if i k

N M
f fk

i i if i k

J J

E b b dt

e e
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t

t

d

F

β δ

ω

ω

α g

gα

ω

∈Ω ∈Ω =

−

∈Ω = =

−
−

∈Ω = =

+

+

=

=

=

∑

∑∑

∑∑                                (61) 

subject to  

1
 

N
k k
i i

i
f Bτ

=

≤∑ ,        1, ,k M∀ = 
                                  (62) 

where 0 1B≤ ≤  is the network bandwidth saturation threshold in the NCS, N is the 

number of clients, k
iω  is the weight for Client i at control iteration k, and Ω is the set of 

sampling frequencies that maintains the stability of the clients. The selection of k
iω  can 

be based on the system requirements. For example, the client with the largest sampling 

frequency may indicate the difficulties in maintaining the stability and system 

performance and wins the largest weight. Furthermore, the PIF is a convex function of 

sampling frequencies, and it is this convexity that allows for the optimal sampling 

frequency for a set of clients with appropriate convex optimization methodologies. 

5.1.4. Quadratic Approximation Modeling 
In Section 5.3, one can see that the exponential approximation can closely 

approximate the practical system performance, but a closed-form optimal solution of 

Eqs. (61–62) is not easy to obtain in real time. Therefore, a quadratic approximation is 
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proposed as a replacement of the exponential approximation. The quadratic 

approximation has a simple closed-form optimal solution to Eqs. (64–65) in the below. 

For each individual plant, the PIF can be defined as  

2  

0

1
 ( ( ) )k k

i i i i i i
k

M

iJ J a f f c tb d
−

=

≅ + += ∑ ,                                    (63) 

where ia , ib , and ic  are the approximation coefficients. Refer to Eqs. (102) and (104) in 

Section 5.3 as examples. 

For the entire NCS, the objective function and constraints could be formulated as 

                 

1

  2  

1 0

1

min min

min ( ( ) )

N
k
i if f i

N
k k k
i i i i i if i

M

k

J J

a f b f c dt

ω

ω

∈Ω ∈Ω =

∈Ω

−

= =

=

= + +

∑

∑∑ ,                                      (64) 

subject to  

1
 

N
k k
i i

i
f Bτ

=

≤∑ ,        1, ,k M∀ = 
                                   (65) 

Note that this quadratic PIF is also a convex function of the sampling frequency. 

5.2. OPTIMAL BANDWIDTH ALLOCATION AND SCHEDULING 
In this section, the optimal solution of the proposed exponential and quadratic 

approximations and the scheduling of the bandwidth assignment sequence of the clients 

are given. To facilitate the development, the following assumptions are made.  

Assumption 1: The total time delay k
iτ  in Eq. (55) is a random variable by the 

nature of the network. For the simplicity of analysis and optimization, however, it is 

assumed to be a constant at each different sampling frequency if  of Client i, and an 
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average value is used. Then the superscript k in all the approximations can be dropped, 

and iτ  is the average time delay for Client i.  

Assumption 2: All the clients can be scheduled at their minimum sampling 

frequency. That is, when min i if f= , we have m n

1

i
N

i i
i

f Bτ
=

≤∑ , where min
if  is the minimum 

sampling frequency of the Client i. When all the clients are at their maximum BU or 

maximum sampling frequency, the total BU of the entire NCS may or may not exceed 

the network bandwidth saturation threshold B. 

An NCS could contain various clients that have different system specifications 

and requirements. These clients can be categorized into two groups, the one with variant 

sampling frequencies, and the one with fixed sampling frequencies. If an NCS includes 

both groups of clients, the bandwidth threshold B needs to be modified as 

ˆ
j j

j
B B fτ

∈

= − ∑


, where   is the set of the indices of the clients with fixed sampling 

frequencies. Then, for the rest of the clients with variant sampling frequencies, the new 

bandwidth threshold B̂  will be used for the optimization purpose so that the objective 

function of Eq. (61) or (64) can still be applied. Or if a certain percentage of the network 

bandwidth should be reserved for other functionalities, the newly defined B̂  can also be 

applied so that B̂ B B= −  , where B  is a reserved network bandwidth.  

5.2.1. Optimal Solution of Exponential Approximation 
The two approximations discussed in the previous sections are both convex 

functions. Note that the constraints of the objective PIF approximations are also convex 
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functions. Hence, the convex optimization techniques can be applied to solve for optimal 

solutions of each approximation. Note that the exponential and quadratic approximations 

proposed in this section are nonlinear functions. Therefore, the KKT condition will be 

applied to solve the optimization approximations in Eqs. (61–62) and (64–65).  

Theorem 4 [88]: Let * n∈x    be a minimum solution of the problem  

minimize ( )f x  

subject to ( ) =h x 0  

( ) ≤g x 0 , 

and suppose n∈x   is a regular point for the constraints. Then there is a vector m∈λ    

and a vector p∈μ   with ≥μ 0  such that 

* * *)( ) ( ( )T Tf∇ + ∇ + ∇ =x λ h x μ g x 0 , 

*( )T =μ g x 0 . 

For the exponential approximation defined in Eqs. (60–61), the optimal solution 

will be given by the following theorem. 

Theorem 5: Given an NCS with N clients, and with the PIF approximated in Eqs. 

(61–62), an optimal solution, is given by  

mi* n
i iff = ,          1,  ,  i l= 

                                           (66) 

*     ( )j jf g λ= ,          1,  ,  j l N= +                                         (67) 

where l is the smallest index so that 

min  *

1 1

N

i i j j
i j

l

l
f f Bτ τ

= = +

≥+∑ ∑ ,                                          (68) 
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and ( )jg λ  is the solution to 

–    0i i i if f
i i ie eβ δ λτΞ + Φ + = ,                                         (69) 

where  i i i iω α βΞ = −  and    i i i iω g δΦ = . 

Proof: The KKT condition and the Lagrange multipliers λ, λi1, and λi2 will be 

introduced. Then define the Lagrange equation as 

1 2
1 1 1 1

min max( ) ( ) ( ) ( )i i i i
N N N N

f f
i i i i i i i i i i i

i i i i
BL e e f f f ffβ δω α λ τ λ λg−

= = = =

+ − −+ + −= +∑ ∑ ∑ ∑   (70) 

Then from the KKT condition, the dual feasibility is 

–
1 2)     0( i i i if f

i i i i i i i i i ie e f fβ δω α β g δ λτ λλ+ + −− + = ,                        (71) 

and the complementary slackness are  

1
( ) 0

N

i i
i

f Bλ τ
=

− =∑                                                      (72) 

min
1( ) 0i i if fλ − =                                                      (73) 

m x
2

a( ) 0i i if fλ =− ,                                                    (74) 

0λ ≥                                                             (75) 

1 0iλ ≥                                                             (76) 

2 0iλ ≥ ,                                                           (77) 

where   1,  2,  ,  i N=  . 

Based on Assumption 2, min

1
 

N

i i
i

f Bτ
=

≤∑ , all the clients are given initially the 

minimum frequencies, min i if f= , and there will be idle network bandwidth available. If 
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min

1
 

N

i i
i

f Bτ
=

=∑ , then the optimal solution of the objective and exponential approximation 

Eqs. (61–62) is mi* n
i if f= . If m n

1

i
N

i i
i

f Bτ
=

<∑ , then some or all sampling frequencies of the 

clients must be increased from their minimum values. For those clients that have 

increased sampling frequencies, their constraints are inactive so that 1 0iλ =  and 2 0iλ =  

based on the KKT conditions. Therefore from Eq. (71), we have  

–    0i i i if f
i i ie eβ δ λτΞ + Φ + = ,       1,  ,  i l N= + 

                            (78) 

where  i i i iω α βΞ = −  and    i i i iω g δΦ = . Solve if  from Eq. (78) in terms of λ, assume that λ 

is given at the moment and is a constant during the calculation. Multiple – i ife β  on both 

sides of Eq. (78), and let – ifu e= , then we will have 

  0i i i
i i iu uδ β βλτ+Φ + + Ξ = ,        1,  ,  i l N= + 

.                        (79) 

Note that Eq. (79) is a higher-order polynomial function. If the order of Eq. (79) is 

higher than 5, there is no closed-form solution. The Newton-Raphson Method [84] can 

be applied to find roots of Eq. (79).  

Let *u  be the solution of Eq. (78) and define * *ln )(if u= , then    

1

i *

1

m n ln )(
N

i i j
i j l

l
f u Bτ τ

= = +

+ ≥∑ ∑ .                                          (80) 

And solve for λ from Eq. (79) with *u  solved from Eq. (80), which yields the optimal 

solution of the exponential approximation.         
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Note that Eq. (78) is a transcendental equation, and a closed-form solution for if  

may not be easily obtained. Compared to solving the transcendental equation Eq. (78), 

solving of the polynomial function Eq. (79) requires less computational effort.  

5.2.2. Optimal Solution of Quadratic Approximation 
For the quadratic approximation defined in Eqs. (64–65), the optimal solution 

will be given as follows.  

Theorem 6: Given an NCS with N clients, and with the PIF in Eqs. (64–65), an 

optimal solution, is given by 

mi* n
i if f= ,          1,  ,  i l=                                                (81) 

* –
 2

j j j
j

j j

b
f

λτ ω
ω α

−
= ,          1,  ,  j l N= +                                     (82) 

where l is the same as in Theorem 4 and  

m

1 1
2

i

1

n    
2

   

 2

l N
j j

i i
ji j l

N
j

j jj l

b
f B

a

a

τ
τ

λ
τ
ω

= = +

= +

− −

=
∑∑

∑
.                                             (83) 

Proof: The KKT condition and the Lagrange multipliers λ, λi1, and λi2 will be 

introduced. Then define the Lagrange equation as 

2 min max
1 2

1 1 1 1
( ) ( ) ( ) ( )

N N N N

i i i i i i i i i i i i i
i i i

i
i

f bL a f c f f f f fBω λ τ λ λ
= = = =

+ + −= +− −+ +∑ ∑ ∑ ∑    (84) 

From the KKT condition, the dual feasibility of Eq. (84) is 

1 2(2 ) 0i i i i i i i i ia f b f fω λτ λ λ+ − ++ = ,                                    (85) 
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and the complementary slackness are
  

1
( ) 0

N

i i
i

f Bλ τ
=

− =∑                                                      (86) 

min
1( ) 0i i if fλ − =                                                      (87) 

m x
2

a( ) 0i i if fλ =− ,                                                    (88) 

0λ ≥                                                             (89) 

1 0iλ ≥                                                             (90) 

2 0iλ ≥ ,                                                           (91) 

where   1,  2,  ,  i N=  . 

Similarly, based on Assumption 2, all the clients are given initially the minimum 

frequencies, min i if f= , and there will be idle network bandwidth available. Similar, for 

those clients, which have sampling frequencies other than their minimum values, 1 0iλ =  

and 2 0iλ =  based on the KKT conditions. Therefore from Eq. (85), we have 

2 0i i i i i ia f bω ω λτ+ + = ,    1,  ,  i l N= +                                   (92) 

so that 

* –
 2

i i i
i

i i

bf
a

λτ ω
ω

−
= ,      1,  ,  i l N= +                                       (93) 

Substitute Eq. (93) into Eq. (86), and solve for λ. 

m n

1

i

1 2

l N
j j j

i i j
j ji j l

b
f B

a
λτ ω

τ τ
ω= = +

− −
+ =∑ ∑ ,                                     (94) 

and 
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m

1 1
2

i

1

n    
2

   

 2

l N
j j

i i
ji j l

N
j

j jj l

b
f B

a

a

τ
τ

λ
τ
ω

= = +

= +

− −

=
∑∑

∑
.                                          (95) 

Note that the solutions to Eqs. (61–62) and (64–65) may vary depending on the 

selection of the weights ωi
k and the approximation coefficients. Finding optimal 

solutions with the chosen weights and approximation coefficients may not be feasible. 

Then new weights and approximation coefficients need to be chosen to fulfill the 

feasibility of the optimization.  

5.2.3. Unique Global Optimal Solution 
Note that the exponential and quadratic functions are convex functions. The 

additional operation preserves the convexity of functions. Hence, the two proposed 

approximations defined in Eqs. (61–62) and (64–65) are convex approximation. With the 

convexity of the proposed approximations, the following theorem exists.  

Theorem 7: Given the two approximations in Eqs. (61–62) and (64–65), the 

optimal solutions in Eqs. (66–67) and (81–82) will be the unique global optimal 

solutions if the solutions exist.  

Proof: Consider a convex optimization problem as follows 

minimize ( )f x  

subject to ( ) =h x 0  

( ) ≤g x 0 , 
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and let * n∈x    be an existing local optimal solution. Assuming that the given convex 

optimization problem ( )f x  is feasible, then there exists ε such that  

* *( ) inf{ ( ) :  ( ) 0,  1,  ,  ;  ( ) 0,  1,  ,  ;  }i jf f g i m h j p ε= ≤ = = = − ≤x x x x x x  .  (96) 

Suppose that *x  is not globally optimal. Then there exists a feasible y  so that 

*( ) ( )f f<y x , which implies that * ε− >y x . Consider that a point z is given by  

*(1 )θ θ= − +z x y ,     
*

0 1
2

εθ< = <
−y x

. 

Then * 2ε ε− ≤ <z x  and by convexity of the objective function ( )f x ,  

* *( ) (1 ) ( ) ( ) ( )f f f fθ θ≤ − + ≤z x y x , 

which contradicts Eq. (95). Therefore, if local optimal solutions of Eqs. (60–61) and 

(63–64) exist, they are also the unique global optimal solutions of the optimization 

problems, respectively.  

5.2.4. Scheduling Algorithm 
Scheduling of the NCS consists of two parts: (1) priority assignment and client 

arrangement in the NCS, and (2) scheduling algorithm implementation in the 

programming or protocol of the NCSs. In general, the second part can be achieved by 

introducing the existing scheduling algorithms in the real-time system to the NCS. 

For the purposes of the priority assignment and plant arrangement, we assume 

under Assumption 2 that there will be an idle bandwidth available for the initial 

bandwidth allocation. The rate of change of the system PIF in terms of the sampling 
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frequency can be obtained as ( ) / )(i i i i iU f J fτ= ∂ ∂ . Initially, the controlled plants will be 

arranged by the following sequence, 

min min
1 1 2

in
2

m( ) ( ) ( )N NU f U f U f≤ ≤ ≤ .                                   (97) 

In this preferred sequence, by changing the same amount of sampling frequency 

of each plant, Client N will yield the largest change in PIF so that the performance of the 

NCS can be improved in the fastest rate. The rate of change of the sampling frequency 

can be linear or constant. Consequently, Client N should be first given the idle network 

bandwidth if available. And as long as sufficient bandwidth is available in the NCS, the 

increment of BU for Client N will continue until the moment either that  

  min
1 1( ) ( )N N N NU f U f− −= , or  ma  x

N Nf f= , or   *
N Nf f= . Then BU of Plant N and N–1 will 

increase by maintaining  
1 1( ) ( )N N N NU f U f− −=  until the moment either that (1) 

   
1 1 2

n
2

mi( ) ( ) ( )N N N N N NU f U f U f− − − −= = , (2) ma  x
N Nf f=  and   m x

1 1
a

N Nf f− −= , or (3)   *
N Nf f=  

and   *
1 1N Nf f− −= . This bandwidth allocation process will continue until the idle network 

bandwidth in the NCS is exhausted. 

Note that the ( )i iU f  consists of two parts, iΞ  and iΦ  in the exponential 

approximation. Here, iΞ  represents the decrement in the PIF per unit increment of the 

BU from the traditional digital design perspective, and iΦ , the increment in the PIF per 

unit increment of the BU from the NCS design perspective, respectively. From Section 

5.1.1, Eq. (58) is a monotonically decreasing function of if , and Eq. (59) is a 

monotonically increasing function of  if . Recall Eq. (78) so that we have  
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–    0i i i if f
i i ie eβ δ λτΞ + Φ + = ,       1,  ,  i l N= +  .                            (98) 

For each iteration, λ  and iτ  are given from Eq. (79) and the timestamp calculation of 

Client, respectively. Hence, we can consider  iλτ  as an offset of Eq. (98). If the offset is 

being eliminate from Eq. (98), one can have  

–    0i i i if f
i ie eβ δΞ + Φ = ,       1,  ,  i l N= +  .                               (99) 

From the properties of exponential functions, – 1i ife β <  and 1i ifeδ > , respectively. 

Therefore, for non-trivial sampling frequency    0if ≠ , 

–
  1

i i

i i

f
i

f
i

e
e

δ

β
Ξ

= >
Φ

,      1,  ,  i l N= +  .                               (100) 

From Eq. (95), we will have i iΞ > Φ  to balance the exponential functions in Eqs. (71) 

and (78) for each client in general. This indicates that the NCS is more sensitive with 

respect to iΞ  than iΦ . In Section 5.3, we will see that i iΞ Φ  in simulation and 

experiments. Therefore, we will apply iΞ  as the primary parameter and iΦ  as the 

complementary parameter for the scheduling. 

The calculation of the network bandwidth saturation threshold B of an NCS 

depends on the scheduling algorithms. There exist several scheduling algorithms for 

real-time systems that could also be implemented in the NCS [62]. However, there is a 

significant difference between real-time system scheduling and NCS scheduling. Real-

time system scheduling is able to put the tasks into a pre-emptive status based on their 

priority decided by the scheduling algorithms. But when a data packet is transmitted in 

the network, the controller will be unable to suspend the data packet although there 
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might be higher-priority tasks in the NCS. Therefore, only real-time non-preemptive 

scheduling algorithms can be applied to the NCS such as non-preemptive RM and EDF.   

The flow chart of the scheduling algorithm of the NCS is illustrated in Fig. 51. 

The network bandwidth saturation threshold B of an RM scheduling defined in Fig. 51 is 

the ratio of the smallest task period over the largest task period in the system [89]. In an 

NCS, the task period can be assumed equal to the sampling period of Client. For 

instance, arranging the sampling period of a Client in an ascending order as

1 2 Nh h h≤ ≤ ≤ , then 1  / NB h h= . With above analysis and discussions, the scheduling 

algorithm with the proposed NCS PIF approximations is as follows. 

Algorithm 2: The scheduling algorithm of the proposed PIF approximations is  

(1) Decides which scheduling algorithm will be implemented on the NCS. If RM is 

chosen, then 1  / NB h h= ; if EDF is chosen, then 1B = .  

(2) Choose the approximations for the NCS. Based on the network bandwidth 

saturation threshold B from step (1), the optimal sampling frequencies of the 

given NCS are calculated from Eqs. (66–67) and (81–82) for the exponential and 

quadratic approximations, respectively. 

(3) Arrange the clients in the order of Eq. (97) for the sampling frequencies update.  

(4) Update the sampling frequency of each client until the optimal sampling 

frequency is achieved or the idle network bandwidth is exhausted. 

5.3. SIMULATION AND EXPERIMENTS 
In this section, the simulation and experimental results are presented to 

demonstrate the effectiveness of the proposed approximation methods and their 
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scheduling performances. Four DC-motor speed-control systems were set up as the test 

bed for experimental verification as shown in Fig. 13.  

 

Start

RM/EDF?

End

B = 1

Arrange the 
clients by (97).

Increase the sampling 
frequencies of clients 

until the optimal 
solutions in (66–67) or 
(81–82) are achieved. 

B = h1/hN

RM EDF

Calculate the 
coefficients of the 

approximation.

 
Fig. 51. A flow chart of the proposed optimal bandwidth allocation and scheduling 

algorithm of the NCS 
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The objective of this experiment is to control the speed of a DC motor over the 

LAN. The transfer functions of the DC motor and the PI controller are defined by Eqs. 

(10–11). Again, the reference speed was set to be 10 rps. The minimum sampling 

frequency without causing instability of each DC motor is 65 Hz. The average of total 

time delay of the DC motor speed-control system is measured to be 1.360 ms. The 

network protocol is UDP. 

5.3.1. Simulation Results 
In order to verify the scheduling algorithm proposed in Section 5.2, the 

simulation result is presented here first. The simulation setup contains four independent 

DC motor speed-control systems as given in Eqs. (10–11). To make this simulation 

closer to practice, the network-induced time delays are also considered. A time-delay 

experiment was performed for 20,000 iterations with Client 2 with a 3-ms sampling 

period as before. The average and the standard deviation of the time delays in the 

network are 0.5034 ms and 0.0414 ms, respectively. The data-packet processing time is 

not included here. The simulation in this section was conducted by the TrueTime 

toolbox in Matlab [84]. Ethernet is chosen as the network protocol and its transmission 

rate is 100 Mbps. 

When all the DC motors are operated at the minimum sampling frequency of 65 

Hz, the BU of each DC motor is 0.0884, and the total BU of the NCS is 35.36%. With 

either the EDF or RM scheduling algorithm, B = 1, and Assumption 2 is justified. Figure 

52 shows the simulation of a single DC motor and its PIFs with the exponential and 

quadratic approximations are as follows 
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–0.0315 0.02809 030.9 .006i if f
iJ e e= + ,                                   (101) 

20.0288 16.0297 2776.6i i iJ f f += − .                                  (102) 

The sampling periods of the simulation were varied from 2.2 to 15.2 ms with a step of 

0.2 ms. In each individual sampling period, the simulation ran for 20,000 control 

iterations.   

 

 
Fig. 52. DIAE vs. sampling frequencies of the simulation, exponential approximation, 

and quadratic approximation 

 

For the exponential approximation, we have l = 1 from Eq. (68), where l is the 

smallest number of the controlled plants that have the minimum sampling frequency as 

defined in Eq. (68). Similarly, for the quadratic approximation, l = 1. Based on 
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Theorems 5 and 6, the optimal sampling frequency of each DC motor is given in Table 

8. Note that the different selection of the weights will lead to different optimal solutions 

listed in Table 8. Here, for the four identical DC motors, we chose the weights based on 

the priority that we expected. 

 

Table 8. Optimal sampling frequencies of the simulation 

Client # of DC motors iω  Exponential 
Approximation [Hz] 

Quadratic 
Approximation [Hz] 

2 1 1 65 65 

4 2 2 124.4 121.2 

5 3 4 240.2 233.4 

6 4 5 304.8 298.6 

 

Figure 53 shows the profile of the sampling-frequency and BU changes for each 

DC motor during the simulation. Here, we adopted a linear changing rate for the 

sampling frequencies. Under Assumption 1, the time delay of each sampling frequency 

is assumed to be a constant. Hence, the BU changes can also be illustrated in the figure 

as the sampling frequency in Fig. 53. 

From Table 8 and Eq. (55), the total BUs of the exponential and quadratic 

approximations are 99.87% and 97.67%, respectively. The parameters in the digital 

controller depended on the sampling frequency and were adjusted automatically as the 

sampling frequency changed. 
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Fig. 53. Profile of the sampling-frequency and BU changes for each DC motor during 

the simulation 

 

In Fig. 53, as the control iteration increased, the sampling frequency of each DC 

motor approached their optimal values listed in Table 8. After the optimal sampling 

frequencies were achieved, the DC motors kept the sampling frequencies for the rest of 

the simulations. Therefore, the total BU of the simulation may not be exactly the same as 

the ones calculated from Table 8, however, it will be very close to the optimal value 

eventually. From Fig. 53, the final total BU is 98.75%. Note that the sampling 

frequencies of DC motor 2, 3, and 4 in Fig. 53 are not changed in the beginning of the 

program. These delays are caused by the scheduling algorithm in Eq. (95). The clients 

will run at their minimum sampling frequencies until the scheduling condition in Eq. 

(95) is satisfied. Figure 54 shows the accumulated total cost of performance J of the 

simulation, the exponential approximation, and the quadratic approximation, 
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respectively. As the control iteration increases, the sampling frequency of each DC 

motor is approaching their optimal values listed in Table 8 and the total cost of the 

performance J is decreasing.  

 

 

 
Fig. 54. Accumulated total cost of performance J of the simulation, exponential 

approximation, and quadratic approximation 

 

5.3.2. Experimental Results without Reserved Bandwidth 
The relation of the DIAE versus the sampling frequency and the time delay in 

experiments and with the exponential approximation are given in Figs. 55 and 56. Five 

sets of experiments were conducted under the same network conditions. In each 

individual sampling period, the experiments ran for 20,000 control iterations.  
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Fig. 55. DIAE vs. sampling period and time delay in experiments 

 

 

Fig. 56. DIAE vs. sampling period and time delay with the exponential approximation 

 

3
6

9
12

15

0.4863
0.7906

1.0949

1.3993
1.7036

x 10
6

0

2000

4000

6000

8000

Sampling period (ms)Time delay (ns)

P
er

fo
rm

an
ce

 in
de

x 
(rp

m
)

3
6

9
12

15

0.4863
0.7906

1.0949

1.3993
1.7036

x 10
6

0

1000

2000

3000

4000

5000

6000

Sampling period (ms)Time delay (ns)

P
er

fo
rm

an
ce

 in
de

x 
(rp

m
)

136 

 



 

Note that the time delays induced by the network in an NCS are not directly 

controllable variables. Extra time delays are manually inserted to the experiments. The 

curves of Fig. 55 are not smooth along either the sampling-period axis or the time-delay 

axis. This non-smoothness results from the uncertainties of the NCS, which makes the 

design of an NCS a challenge.  Figure 56 shows the approximated exponential PIF 

generated by curve fitting. Compare Figs. 55 and 56, the trend of the performance of an 

NCS can be faithfully approximated by the exponential PIF. 

The relation of the DIAE versus the sampling frequencies of the experiments and 

exponential/quadratic approximations is given in Fig. 57. Figure 57 shows the 

experimental results of a single DC motor and its exponential and quadratic 

approximations. From Fig. 57, the DIAE of the DC motor was quite large in the lower 

sampling-frequency range because the DC motor could not have adequately frequent 

control inputs from the controller to maintain the system performance. As the sampling 

frequency increased, the DIAE of the DC motor decreased. In the higher sampling-

frequency range, the DIAE of the DC motor increased again because the number of data 

packets in the network increased as the sampling frequency kept increasing. The large 

number of the data packets would bring longer time delays into the NCS or even packet 

losses so that the performance of the DC motor could be degraded. Note that there are a 

few discrepancies among the five sets of experiments in the high sampling-frequency 

range. Because of the large number of the data packets in the network in the high 

sampling-frequency range, any possible disturbances or irrelevant data-packet 

137 

 



 

transmissions from other network users may cause the NCS performance to be degraded. 

Therefore, the NCS is more sensitive at high sampling frequencies. 

 

 
Fig. 57. DIAE vs. sampling frequencies of the experiments and exponential and 

quadratic approximations 

 

Similarly, the PIFs with exponential and quadratic approximations are as follows 
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Although the simulations and the experiments were conducted based on the same system 

dynamics of the DC motors and the controller, the approximations of the simulation and 
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100 150 200 250 300 350 400 450
0

1000

2000

3000

4000

5000

6000

Sampling frequency (Hz)

In
te

gr
al

 a
bs

ol
ut

e 
er

ro
rs

 (r
ps

)

 

 

exponential approximation
quadratic approximation
experiment set 1
experiment set 2
experiment set 3
experiment set 4
experiment set 5

138 

 



 

LAN is shared with other non-NCS users when the experiments were conducted. Longer 

time delays and packet losses might have existed in the network in experiments. 

Similarly as in Section 5.3.2, we have l = 1 for both the exponential and quadratic 

approximations, respectively. Therefore, based on Theorems 5 and 6, the optimal 

sampling frequency of each DC motor is given in Table 9. 

 

Table 9. Optimal sampling frequencies of the experiments 

Client DC motor iω  Exponential 
Approximation [Hz] 

Quadratic 
Approximation [Hz] 

2 1 1 65 65 

4 2 2 173.5 162.7 

5 3 4 237.1 225.8 

6 4 5 252.2 249.9 

 

Figure 58 shows the profile of the sampling-frequency and BU changes for each 

DC motor during the experiments. Here, we adopted a linear changing rate for the 

sampling frequencies. From Table 9 and Eq. (55), the total BUs of the exponential and 

quadratic approximations are 98.98% and 95.66%, respectively. Similarly as the 

simulation, the sampling frequency were adjusted automatically by 1i if cf+ =  where c is 

a constant rate of change. In Fig. 58, as the control iteration increased, the sampling 

frequency of each DC motor approached their optimal values listed in Table 9. The total 

BU of the experiments may not be exactly the same as the ones calculated from Table 9, 

however, it will be close to the optimal value eventually.  
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Fig. 58. Profile of the sampling-frequency and BU changes for each DC motor during 

the experiments 

 

 
Fig. 59. Accumulated total cost of performance J of the experiments, exponential 

approximation, and quadratic approximation 
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From Fig. 58, the final total BU is 98.26%. Figure 59 shows the accumulated 

total cost of performance J of the experiment, the exponential approximation, and the 

quadratic approximation, respectively. As the control iteration increases, the sampling 

frequency of each DC motor is approaching their optimal values listed in Table 9 and the 

total cost of the performance J is decreasing. 

5.3.3. Experimental Results with Reserved Bandwidth 
In next experiment, Client 1, the ball maglev system, is introduced in to this 

experiment. As mention earlier in Section 3, it is an open-loop unstable system that has a  

fixed sampling frequency of 333 Hz. The average of total time delay  1τ  is measured to 

be 1.350 ms from the experiments. By Eq. (55), the BU of Client 1 is 

1 1 1  –3(1.350 10 s) (333 Hz) 44.96%b fτ= = × × = . The total time delay of the ball maglev 

system and the DC motor speed-control system are very close because they are tested 

under the same network conditions and have the same size of data packets. With the 

reserved network bandwidth of Client 1, the available network bandwidth

ˆ  1  0.4496 55.04%j j
j

B B fτ
∈

= − − ==∑


, where {1}= , we have l = 2 for the exponential 

approximation and the quadratic approximation, respectively. The optimal sampling 

frequency of each DC motor with the reserved network bandwidth in the NCS is given in 

Table 10. 

Figure 60 shows the profile of the sampling-frequency and BU changes for each 

DC motor during the experiments with the ball maglev system as a controlled plant that 

had a fixed sampling frequency. From Table 10 and Eq. (55), the total BUs of the 
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exponential and quadratic approximations are 54.26% and 54.04%, respectively, with 

the ball maglev system taking approximately 45% of the total BU. Similarly, the total 

BU of the experiments may not be exactly the same as the ones calculated from Table 

10, however, it will get close to the optimal value eventually. From Fig. 60, the final 

total BU is 53.45%. Note that DC motors 1 and 2 have the same optimal sampling 

frequencies as in Table 10, so they are overlapped in Fig. 60. 

 

Table 10. Optimal sampling frequencies of the experiments with the ball maglev system 

Client DC motor iω  Exponential 
Approximation [Hz] 

Quadratic 
Approximation [Hz] 

2 1 1 65 65 

4 2 2 65 65 

5 3 4 117.68 119.35 

6 4 5 151.35 148.02 

 

Figure 61 shows the accumulated total cost of performance J of the experiment 

with the ball maglev system, the exponential approximation, and the quadratic 

approximation, respectively. As the control iteration increases, the sampling frequency 

of each DC motor is approaching their optimal values listed in Table 10 and the total 

cost of the performance J is decreasing. 

From the simulation and experiments, we can see the exponential approximation 

represents the practices more closely compared to the quadratic approximation in the 

sense of the system performance. However, the quadratic approximation takes less 
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computational efforts to solve the optimization objective function and has a closed-form 

optimal solution. Both the exponential and quadratic approximations could find the 

optimal sampling frequencies that exhaust about 98% of the total network bandwidth 

available to the NCS with or without the fixed sampling-frequency plant, the ball maglev 

system in our experiments. 

Statistic comparisons of the exponential and quadratic approximations are given 

in Table 11. These statistical values are based on the simulation and experimental results 

in Figs. 52 and 57. From Table 11, the accuracy of the exponential approximation is 

about 30% and 60% better than the quadratic approximation for simulation and 

experiments, respectively. Although the exponential approximation is more accurate 

when capturing the system performance of an NCS, it does not have an analytic closed-

form optimal solution that can be implemented on line. In contrast to the exponential 

approximation, the quadratic one has a closed-form optimal solution to the objective PIF 

that can be implemented on line. Hence, the algorithm of bandwidth allocation and 

scheduling with quadratic approximation has a better efficiency in real-time operation. 

However, the accuracy of the quadratic approximation is less than the exponential 

approximation. Moreover, the exponential approximation gives an explicit measurement 

of the effects of high sampling frequency on the NCS whereas the quadratic 

approximation only indicates a coupled performance measurement of the NCS. 
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Fig. 60. Profile of the sampling-frequency and BU changes for each DC motor during 

the experiments with the ball maglev system 

 

Fig. 61. Accumulated total cost of performance J of the experiments with the ball 

maglev system, exponential approximation, and quadratic approximation 
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Table 11. Statistic comparison of the exponential and quadratic approximations 

 Exponential 
Approximation (rps) 

Quadratic 
Approximation (rps) 

Simulation 
Mean 87.09 110.22 

Stdev 60.12 75.48 

Experiments 
Mean 395.42 1004.5 

Stdev 125.33 526.96 

 

5.3.4. Experimental Results without Chosen Client Sequences 
Note that the proposed approximations and algorithms are intend to minimize the 

system error while exhaust all the available network resources of an NCS. The 

approximations can also be applied to minimize the BU to obtain an optimal system 

performance. This can be achieved by removing the pre-set client sequence defined in 

Eq. (99). Then the optimal solution to the proposed PIF approximations from the KKT 

conditions will be optimal BU that leads to the minimum system errors.  The following 

experiments show the optimal results of this case.  

As in Section 5.3.2, when all the DC motors are operated at their minimum 

sampling frequency of 65 Hz, the BU of each DC motor is 8.84%, and the total BU of 

the NCS is 35.36%. The optimal sampling frequency of each DC motor with the EDF 

scheduling algorithm is given in Table 12 indicated by Case 1. The total BU is 78.24%. 

Table 12 also gives the sampling frequencies of each DC motor of various BU 
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combination cases. Cases 2 and 3 evenly distribute the 79% and 100% bandwidths to 

each DC motor. Note that Case 2 has the same total BU as Case 1. 

Figure 62 shows the DIAE of the BU cases as given in Table 12. Note that Cases 

1 and 2 have nearly same total bandwidths of the entire NCS. However, from Fig. 10, 

the DIAE of Case 1 is reduced by about 25% than that of Case 2. Although both Cases 2 

and 3 evenly distribute the bandwidth to each DC motor, the DIAE of Case 3 is larger 

than that of Case 2. In these two cases, each DC motor has the same sampling frequency, 

so they send data packets to the controller simultaneously. Case 3 has nearly 100% 

bandwidth, so the scheduler and the controller are busy with data transmission and data 

calculation. It may induce longer waiting time to each data packet in the network, and its 

system performance is worse than Case 2. From the experiments, one can see that the 

exponential approximation could represent the practice closely in terms of the system 

performance and yield the optimal sampling frequency of the NCS. 

 

Table 12. Sampling frequencies [Hz] of Cases 

DC motor iω  Case 1 ( *
if ) Case 2 Case 3 

1 1 116.27 145.22 183.82 

2 2 132.55 145.22 183.82 

3 4 145.10 145.22 183.82 

4 5 181.37 145.22 183.82 
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Fig. 62. DIAE in the experiments given in Table 12 

 

5.4. SUMMARY 
In this section, the optimal bandwidth allocation and scheduling of the NCS with 

nonlinear-programming techniques were investigated. The BU of each controlled plant 

was defined in terms of its sampling frequency. Two nonlinear approximations, 

exponential and quadratic, were formulated to describe the system performance 

governed by the DIAE versus the sampling frequencies. Based on the convexity of the 

proposed approximations, the optimal solution could be obtained from the nonlinear-

programming perspective. The optimal sampling frequencies were obtained by solving 

the approximations with the KKT conditions. Within various network bandwidth 

saturation thresholds based on different real-time scheduling algorithms, the proposed 

approximations could find the optimal BU for each controlled plant in the NCS. Later in 
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the section, simulation and experimental results verified the effectiveness of the 

proposed approximation models. In both simulation and experiments, the total BU of the 

NCS could approach up to 98% of the total available network bandwidth. Therefore, the 

proposed approximations and the scheduling algorithms can maximize the BU so that 

the controlled plants can be scheduled along with the system PIFs being optimized. 

Experimental results also verified the effectiveness of the proposed approximation 

method to solve the NCS bandwidth allocation without chosen client sequences. 

Therefore, the proposed approximation can minimize the BU so that the plants can be 

scheduled along with the system PIFs being optimized.  
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6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

This dissertation presented the output feedback control and optimal bandwidth 

allocation of an NCS. This section will provide the conclusions of current research and 

several suggestions for future work. 

6.1. CONCLUSIONS 
An NCS is a control system that has sensors, actuators, and controllers 

geographically distributed and connected by communication media. The NCS has 

advantages of low cost, reduced system weight, easy installation and maintenance, high 

flexibility, etc. However, the communication media bring several challenges such as the 

network-induced time delays, packet losses, resource allocation, scheduling, etc. This 

dissertation mainly focused on the output feedback control and optimal bandwidth 

allocation of an NCS. It covered the design issues of the NCS including network-

induced time delays, packet losses, resource allocation, and scheduling and could be 

used as guidance in the design of an NCS. 

The NCS discussed in this dissertation included three different types of clients, 

the ball maglev system, the DC motor-speed control system, and the wireless robotic 

wheelchair system. These three systems represented the fast, medium, and slow 

dynamics in the entire NCS. We briefly discussed the capability and system performance 

of an NCS that has both wired and wireless clients, and also the capability of the NCS 

controlling various dynamic systems.  
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Later, this dissertation proposed an output feedback method for the stabilization 

and control of the NCS with random time delays and packet losses. This output feedback 

control considered the time delays and packet losses in both the sensor-to-controller and 

controller-to-actuator links. The random time delays were modeled with two time-

homogeneous Markov chains, and the packet losses with Dirac delta functions, 

respectively. Then an asymptotic mean-square stability criterion for the NCS was 

obtained in terms of a Lyapunov function and a set of LMIs with matrix constraints 

based on the time-delay and packet-loss models. An algorithm implementation of the 

stability criterion was also presented later to verify the effectiveness of the proposed 

output feedback controller design method. The experimental results collected from 

Client 2 demonstrated the feasibility and effectiveness of the proposed method. It 

enhanced the system performance with and without packet losses compared to a 

conventional control algorithm. The NCS could track the reference command faithfully 

with the proposed method when random time delays and packet losses existed in the 

links whereas the NCS failed to track the reference command with a conventional 

control algorithm. 

Lastly, this dissertation investigated the optimal bandwidth allocation and 

scheduling of the NCS with the nonlinear-programming techniques. The BU of each 

client was defined in terms of its sampling frequency. Two nonlinear approximations, 

exponential and quadratic approximations, were formulated to describe the system 

performance governed by the DIAE versus the sampling frequencies. The optimal 

sampling frequencies were obtained by solving the approximations with the KKT 
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conditions. A simple scheduling algorithm was proposed to perform the optimal 

bandwidth allocation calculated from the two approximations. The scheduling algorithm 

was based on the changing rate of the PIFs versus the changing rate of the sampling 

frequencies of each client. Later, simulation and experimental results verified the 

effectiveness of the proposed approximations and the bandwidth allocation and 

scheduling algorithms. In both the simulation and experiments, the two approximations 

could maximize the total BU of the NCS up to about 98% of the total available network 

bandwidth. 

6.2. SUGGESTIONS FOR FUTURE WORK 
This dissertation provides theoretical foundations for the future research efforts 

in the NCS design and performance analysis. In this section, a few possible further 

research directions are explored. 

For the NCS, the network-induced time delays include the data processing time is 

a significant factor that affects the total time delays. So are the possible data-packet 

losses in the network. This dissertation modeled the time delays with Markov chains and 

the packet losses with Dirac Delta models. However, the NCS designer needs to have a 

good knowledge of the statistics of the time delays and packet losses prior to performing 

the controller design procedure. In this dissertation, several experiments were conducted 

to measure the statistics of the time delays to set up the Markov chain probability 

transition matrix before fully designing the controller. From the computer science 

perspective, the behaviors of the data packets in the network can be modeled a with 

Bernoulli or Poison process. Doing such, the NCS designer may not have to measure the 
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statistics of the time delays from the experiments but calculate them from the Bernoulli 

or Poison process. Therefore, the output feedback design process could be further 

developed by including the Bernoulli or Poison process. 

The packet-loss model presented in this dissertation considered both the single 

packet losses and consecutive packets losses during data-packet transmission. An AR 

model was applied to predict the lost data packet in the network. An AR model is the 

simplest prediction model in the NCS design. However, a more robust prediction model 

could be applied to enhance the performance.  

Optimal network scheduling of the NCS also deserves more efforts. The 

scheduling algorithm proposed in this dissertation based on the system performance 

changing rate versus the sampling frequency. The scheduling depended on a certain 

sequence of the clients set up prior to the experiments based on the various PIFs. 

However, a more advanced dynamic scheduling algorithm may enhance the NCS 

performance. This dynamic scheduling algorithm should consider the system 

performance on a real-time basis and be able to assign different scheduling schemes to 

different clients. 
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APPENDIX A 

C/C++ CODES FOR THE NCS 

 

A.1. C CODE FOR SERVER 
#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <signal.h> 

#include <string.h> 

#include <asm/errno.h> 

#include <sys/types.h> 

#include <sys/user.h> 

#include <sys/mman.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <sched.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

#include <netdb.h> 

#include <sys/ioctl.h> 

#include <sys/time.h> 

#include <errno.h> 

#include <inttypes.h> 

#include "defines.h"  

#define KEEP_STATIC_INLINE 

#include <rtai_lxrt_user.h> 

#include <rtai_lxrt.h> 
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RTIME time_stamp; 

double u0, u1e, u2e, u3e, u4e, u5e, u6e, u7e, u8e; 

double y0, y_1, y_2, y_3, y_4, y_5, y_6, y_7; 

char y_8[6]="00000"; 

double u_1, u_2; 

double y_hat_1, y_hat_2, y_hat_3, y_hat_4, y_hat_5, y_hat_6, y_hat_7, y_hat_8; 

doube delay; 

FILE *fp; 

// DC-motor (m5) 

double y_dot_desi = 10.0; 

double e0 = 0, e1 = 0, u0 = 0, u1 = 0, u2 = 0;  

// A Ball Maglev  

double y_hat_desi = 0.005;  //* User input (desired set point) 

double v_hat_err = 0.0; 

double k = 0.083;  

double c = 0.0;         //* Controller constant 

double v = 0.975;  //current setting 

double er0 = 0.0, er1 = 0.0, er2 = 0.0; 

int i=0, p1 = 0, p2 = 0, p3 = 0, p4 = 0; 

//rtai declarations 

unsigned long mtsk_name; 

RT_TASK *mtsk; 

struct sched_param mysched; 

void terminate_normally(int signo) 

{ 

 fflush(stdin); 

 if(signo==SIGINT || signo==SIGTERM) 

 { 

  printf("Terminating the program normally\n"); 

166 

 



 

  rt_make_soft_real_time(); 

  printf("MASTER TASK YIELDS ITSELF\n"); 

  rt_task_yield(); 

  printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 

  stop_rt_timer(); 

  printf("MASTER TASK DELETES ITSELF\n"); 

  rt_task_delete(mtsk); 

  printf("END MASTER TASK\n"); 

 } 

 exit(0); 

} 

main(int argc, char *argv[]) 

{ 

int sockid, nread, addrlen; 

   struct sockaddr_in my_addr, client_addr; 

   int nw, nr; 

   int send_buffer_size, recv_buffer_size; 

    unsigned short server_port = 0;  

    struct send_data *send_buffer = NULL; 

   struct recv_data *recv_buffer = NULL; 

 RTIME start_time = 0, end_time = 0, actual_period = 0, difference = 0; 

 size_t iRet = 0; 

 int esti_count = 0; 

 double vhaterr_prev[5] = {0.0, 0.0, 0.0, 0.0, 0.0}; 

 int j=0; 

 double h2=0.005, h3=0.05; 

 float hh=1.0; 

 double delay2=0, delay3=0; 

 struct sigaction sa; 
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 sa.sa_handler = terminate_normally; 

 sa.sa_flags = 0; 

 sigemptyset(&sa.sa_mask); 

 if(sigaction(SIGINT, &sa, NULL)) { 

  perror("sigaction"); 

 } 

 if(sigaction(SIGTERM, &sa, NULL)) { 

  perror("sigaction"); 

 } 

       fprintf(stderr, "creating socket\n"); 

    if ( (sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {  

       perror("socket() failed "); 

       fprintf(stderr, "%s: socket error: %d\n", argv[0], errno);  

       exit(2);  

    } 

    fprintf(stderr, "binding my local socket\n"); 

    server_port = 4444; 

       memset((void *) &my_addr, (char) 0, sizeof(my_addr)); 

    my_addr.sin_family = AF_INET; 

    my_addr.sin_addr.s_addr = htons(INADDR_ANY); 

    my_addr.sin_port = htons(server_port); 

    if ( (bind(sockid, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0) ) {  

      perror("bind() failed "); 

      fprintf(stderr, "bind() errno = %d\n", errno);  

      exit(4);  

    } 

    recv_buffer_size = sizeof(struct recv_data);  

    if((recv_buffer = (struct recv_data *)calloc(1, sizeof(struct recv_data))) 

==NULL) { 
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          fprintf(stderr, "cannot allocate memory for buffer!\n"); 

  exit(4); 

    } 

    send_buffer_size = sizeof(struct send_data);  

    if((send_buffer = (struct send_data *)calloc(1, sizeof(struct send_data))) 

==NULL) { 

          fprintf(stderr, "cannot allocate memory for buffer!\n"); 

  exit(4); 

    } 

    addrlen = sizeof(client_addr); 

    fprintf(stderr, "%s: starting blocking message read\n", argv[0]); 

 mysched.sched_priority = 99; 

 if( sched_setscheduler( 0, SCHED_FIFO, &mysched ) == -1 ) { 

 puts(" ERROR IN SETTING THE SCHEDULER UP"); 

 perror( "errno" ); 

 exit( 0 ); 

  }        

 mlockall(MCL_CURRENT | MCL_FUTURE); 

 mtsk_name = nam2num("MTSK"); 

  if (!(mtsk = rt_task_init(mtsk_name, 0, 0, 0))) { 

  printf("CANNOT INIT MASTER TASK\n"); 

  exit(1); 

 } 

 start_time = rt_get_cpu_time_ns(); 

 printf("main: start_time = %lld\n", start_time); 

 printf("MASTER TASK STARTS THE ONESHOT TIMER\n"); 

 actual_period = start_rt_timer(nano2count(25000)); 

 printf("actual_period = %lld\n", actual_period); 

 printf("MASTER TASK MAKES ITSELF PERIODIC \n"); 
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 rt_task_make_periodic(mtsk, rt_get_time()+ nano2count(1000000), 

nano2count(1000000));  

    while( 1 ) 

    { 

  nr = recvfrom(sockid, (void *)recv_buffer, recv_buffer_size, 0, (struct 

sockaddr *) &client_addr, &addrlen); 

  if( nr <= -1 ) {  

   fprintf(stderr, "recvfrom() errno = %d\n", errno); 

   exit(10); 

  } 

  start_time = rt_get_cpu_time_ns(); 

  y0 = recv_buffer->y_0; 

  y_1 = recv_buffer->y_1; 

  y_2 = recv_buffer->y_2; 

  y_3 = recv_buffer->y_3; 

  y_4 = recv_buffer->y_4; 

  y_5 = recv_buffer->y_5; 

  y_6 = recv_buffer->y_6;  

  y_7 = recv_buffer->y_7; 

  y_8[0] = recv_buffer->y_8[0]; 

  y_8[1] = recv_buffer->y_8[1]; 

  y_8[2] = recv_buffer->y_8[2]; 

  y_8[3] = recv_buffer->y_8[3]; 

  y_8[4] = recv_buffer->y_8[4]; 

  u_1 = recv_buffer->u_1; 

  u_2 = recv_buffer->u_2; 

  delay = recv_buffer->delay; 

  if (delay2/h2 + delay3/h3 > 0.545) { 

   h2 = h2*1.05; 
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   h3 = h3*1.05; 

  } 

  if(y_7 == 1) { 

   er0 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k;   

   er1 = (y_hat_desi - (-0.0010108*y_1+0.0114970))*k; 

   er2 = (y_hat_desi - (-0.0010108*y_2+0.0114970))*k; 

   u0 = ((0.782*(u_1-v)) + (0.13*(u_2-v)) - (41500.0*er0) + 

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v; 

        send_buffer->u0 = hh*u0; 

   y_hat_1 = 0.8122*y0 - 0.3479*y_1 - 0.0294*y_2 + 0.4605*y_3 + 

0.0742*y_4 + 0.1042*y_5 + 0.1117*y_6;// - 0.3561*y_7; 

   er0 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k;   

   er1 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k; 

   er2 = (y_hat_desi - (-0.0010108*y_1+0.0114970))*k; 

   u1e = ((0.782*(u0-v)) + (0.13*(u_1-v)) - (41500.0*er0) + 

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v; 

        send_buffer->u1e = hh*u1e; 

   y_hat_2 = 0.3117*y0 - 0.3119*y_1 + 0.4366*y_2 + 0.4482*y_3 + 

0.1645*y_4 + 0.1964*y_5 - 0.2653*y_6;// - 0.2892*y_7; 

   er0 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k;   

   er1 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k; 

   er2 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k; 

   u2e = ((0.782*(u1e-v)) + (0.13*(u0-v)) - (41500.0*er0) + 

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v; 

        send_buffer->u2e = hh*u2e; 

   y_hat_3 = -0.0587*y0 + 0.3281*y_1 + 0.4390*y_2 + 0.3080*y_3 

+ 0.2195*y_4 - 0.2329*y_5 - 0.2544*y_6;// - 0.1110*y_7; 

   er0 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k;   

   er1 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k; 
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   er2 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k; 

   u3e = ((0.782*(u2e-v)) + (0.13*(u1e-v)) - (41500.0*er0) + 

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v; 

        send_buffer->u3e = hh*u3e; 

   y_hat_4 = 0.2804*y0 + 0.4594*y_1 + 0.3097*y_2 + 0.1925*y_3 - 

0.2372*y_4 - 0.2605*y_5 - 0.1176*y_6;// + 0.0209*y_7; 

   er0 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k;   

   er1 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k; 

   er2 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k; 

   u4e = ((0.782*(u3e-v)) + (0.13*(u2e-v)) - (41500.0*er0) + 

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v; 

        send_buffer->u4e = hh*u4e; 

   y_hat_5 = 0.6872*y0 + 0.2122*y_1 + 0.1842*y_2 - 0.1081*y_3 - 

0.2397*y_4 - 0.0884*y_5 + 0.0523*y_6;// - 0.0999*y_7; 

   er0 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k;   

   er1 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k; 

   er2 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k; 

   u5e = ((0.782*(u4e-v)) + (0.13*(u3e-v)) - (41500.0*er0) + 

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v; 

        send_buffer->u5e = hh*u5e; 

   y_hat_6 = 0.7703*y0 - 0.0548*y_1 - 0.1283*y_2 + 0.0767*y_3 - 

0.0374*y_4 + 0.1239*y_5 - 0.0231*y_6;// - 0.2447*y_7; 

   er0 = (y_hat_desi - (-0.0010108*y_hat_6+0.0114970))*k;  

   er1 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k; 

   er2 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k; 

   u6e = ((0.782*(u5e-v)) + (0.13*(u4e-v)) - (41500.0*er0) + 

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v; 

        send_buffer->u6e = hh*u6e; 
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   y_hat_7 = 0.5708*y0 - 0.3963*y_1 + 0.0541*y_2 + 0.3173*y_3 + 

0.1810*y_4 + 0.0572*y_5 - 0.1586*y_6;// - 0.2743*y_7; 

   er0 = (y_hat_desi - (-0.0010108*y_hat_7+0.0114970))*k;   

   er1 = (y_hat_desi - (-0.0010108*y_hat_6+0.0114970))*k; 

   er2 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k; 

   u7e = ((0.782*(u6e-v)) + (0.13*(u5e-v)) - (41500.0*er0) + 

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v; 

        send_buffer->u7e = hh*u7e; 

   send_buffer->u8e = 1; 

   p1 = p1+1;  

   printf("m02  %d\n",p1); 

  }  

  if(y_7 == 2) { 

   delay2 = delay; 

   e1 = y_dot_desi - y0;   

   if (delay2 <=0.00046)  

    u0 = 1.0102*u1 +1.7621 *e1 - 1.7417*e0;    

   else if (delay2 <=0.00063) 

    u0 = 1.0155*u1 + 1.7889*e1  - 1.7762 *e0;    

   else if (delay2 <=0.0008) 

    u0 = 1.0412*u1 +1.8162*e1  - 1.8488*e0;    

   else  

    u0 = 1.1974*u1 + 2.0866*e1 – 2.4366*e0; 

   send_buffer->u0 = u0; 

   u1e= 0.5094*u0 + 0.4094*u2; 

        send_buffer->u1e = u1e; 

   u2e = 0.6136*u1 + 0.3862*u2;  

        send_buffer->u2e = u2e; 

   u3e = 0; 
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        send_buffer->u3e = u3e; 

   u4e = 0; 

        send_buffer->u4e = u4e; 

   u5e = 0; 

        send_buffer->u5e = u5e; 

    u6e = 0; 

        send_buffer->u6e = u6e; 

   u7e = 0; 

        send_buffer->u7e = u7e; 

   u8e = 2; 

        send_buffer->u8e = u8e; 

   send_buffer->h = h2; 

   p2 = p2+1;  

   printf("  m05 %d\n", p2); 

   u1 = u0;  

   u2 = u1; 

   e0 = e1; 

    }  

  if(y_7 == 3) { 

   delay3 = delay; 

   if(strcmp(y_8,"00010")==0){ 

    send_buffer->u0 = 2.0; 

   } 

   else if(strcmp(y_8,"00011")==0){ 

    send_buffer->u0 = 2.0; 

   } 

   else if(strcmp(y_8,"00100")==0){ 

    send_buffer->u0 = 2.0; 

   } 
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   else if(strcmp(y_8,"00101")==0){ 

    send_buffer->u0 = 2.0; 

   } 

   else if(strcmp(y_8,"00110")==0){ 

    send_buffer->u0 = 2.0; 

   } 

   else if(strcmp(y_8,"00111")==0){ 

    send_buffer->u0 = 2.0; 

   } 

   else if(strcmp(y_8,"01000")==0){ 

    send_buffer->u0 = 7.0; 

   } 

   else if(strcmp(y_8,"01001")==0){ 

    send_buffer->u0 = 7.0; 

   } 

   else if(strcmp(y_8,"01010")==0){ 

    send_buffer->u0 = 10.0; 

   } 

   else if(strcmp(y_8,"01100")==0){ 

    send_buffer->u0 = 10.0; 

   } 

   else if(strcmp(y_8,"01110")==0){ 

    send_buffer->u0 = 2.0; 

   } 

   else if(strcmp(y_8,"10000")==0){ 

    send_buffer->u0 = 7.0; 

   } 

   else if(strcmp(y_8,"10001")==0){ 

    send_buffer->u0 = 7.0; 
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   } 

   else if(strcmp(y_8,"10010")==0){ 

    send_buffer->u0 = 10.0; 

   } 

   else if(strcmp(y_8,"10100")==0){ 

    send_buffer->u0 = 10.0; 

   } 

   else if(strcmp(y_8,"10110")==0){ 

    send_buffer->u0 = 10.0; 

   } 

   else if(strcmp(y_8,"11000")==0){ 

    send_buffer->u0 = 7.0; 

   } 

   else if(strcmp(y_8,"11001")==0){ 

    send_buffer->u0 = 7.0; 

   } 

   else if(strcmp(y_8,"11010")==0){ 

    send_buffer->u0 = 10.0; 

   } 

   else if(strcmp(y_8,"11100")==0){ 

    send_buffer->u0 = 7.0; 

   } 

   else if(strcmp(y_8,"11110")==0){ 

    send_buffer->u0 = 10.0; 

   } 

   else if(strcmp(y_8,"00000")==0){ 

    send_buffer->u0 = 10.0; 

   } 

   else{ 
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    send_buffer->u0 = 5.0; 

   } 

   u1e = 0; 

        send_buffer->u1e = u1e; 

   u2e = 0;  

        send_buffer->u2e = u2e; 

   u3e = 0; 

        send_buffer->u3e = u3e; 

   u4e = 0; 

        send_buffer->u4e = u4e; 

   u5e = 0; 

        send_buffer->u5e = u5e; 

    u6e = 0; 

        send_buffer->u6e = u6e; 

   u7e = 0; 

        send_buffer->u7e = u7e; 

   u8e = 2; 

        send_buffer->u8e = u8e; 

   send_buffer->h = h3; 

   p3 = p3+1;  

   printf("               _wheelchair %d_\n",p3); 

   u1 = u0; 

   e0 = e1; 

    } 

  end_time = rt_get_cpu_time_ns(); 

       send_buffer->time_stamp = recv_buffer->time_stamp; 

            nw = sendto(sockid, (const void *)send_buffer, send_buffer_size, 0, 

(struct sockaddr *) &client_addr, addrlen); 

       if( nw <= -1 ) { 
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          perror("sendto failed "); 

          fprintf(stderr, "sendto() errno = %d \n", errno);  

          exit(12);  

       } 

} // END of while 

    fclose(fp); 

 printf("MASTER TASK YIELDS ITSELF\n"); 

 rt_task_yield(); 

 printf("MASTER TASK STOPS THE PERIODIC TIMER\n"); 

 stop_rt_timer(); 

 printf("MASTER TASK DELETES ITSELF\n"); 

 rt_task_delete(mtsk); 

  close(sockid); 

    free(send_buffer); 

    free(recv_buffer); 

 } 

A.2. C CODE FOR CLIENT (DC MOTORS) 
#include <stdio.h> 

… //* here is an identical code block as the one in Appendix A.1 

#define PERIOD 1000000 

#define LOOPS 20000 

#define NTASKS 2 

#define taskname(x) (1000 + (x)) 

…   //* here is an identical code block as the one in Appendix A.1 

double y_7=2; 

double u_1, u_2; 

float h = 3; 

RTIME current_time_stamp; 

int j = 0, m = 0, b0 = 0, b1 = 0, cnt = 0, p = 0; 
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double speed = 0; 

pthread_t task[NTASKS]; 

int ntasks = NTASKS; 

RT_TASK *mytask; 

SEM *sem;  //added static 

static int cpus_allowed; 

SEM *sock_sem;  //socket semaphoere, used by all the threads. 

int sockid; 

RTIME start_instant; 

int server_sock_size = 0; 

struct sockaddr_in my_addr, server_addr; 

comedi_t *it; 

int in_subdev = 2; //digital input 

int out_subdev = 1; //analog output 

int in_chan = 0, out_chan = 0, in_range = 0, out_range = 0; 

int aref = AREF_GROUND; 

int i=0; 

//comedi declarations 

lsampl_t in_data; 

lsampl_t out_data; 

float volts = 0.0; 

int in_maxdata = 0, out_maxdata = 0; 

comedi_range *in_range_ptr, *out_range_ptr; 

int endme_int = 0; 

void terminate_normally(int signo); 

void endme(int sig) 

{ 

 printf("You want to kill me?\n"); 

 endme_int = 1; 
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 rt_sem_delete(sem); 

 comedi_close(it); 

 stop_rt_timer(); 

 rt_task_delete(mytask); 

 signal(SIGINT, SIG_DFL); 

 exit(1); 

} 

void *send_thread_fun(void *arg) 

{ 

 RTIME start_time, period, end_time, difference; 

 RTIME t0; 

 SEM *sem; 

 RT_TASK *mytask; 

 unsigned long mytask_name; 

 int mytask_indx; 

 int iRet = 0; 

    struct recv_data *send_msg = NULL; 

    int send_msg_size; 

 FILE *fp = NULL;  

 float print_data[LOOPS]; 

 int loop_count = 0; 

 fp = fopen("result.txt","w"); 

 if(fp == NULL) 

 { 

  printf("could not open file"); 

  exit(0); 

 } 

         pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); 

 mytask_indx = 0; 
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 mytask_name = taskname(mytask_indx); 

 cpus_allowed = 1 - cpus_allowed;  

  if (!(mytask = rt_task_init_schmod(mytask_name, 1, 0, 0, SCHED_FIFO, 1 << 

cpus_allowed))) { 

  printf("CANNOT INIT send_thread TASK\n"); 

  exit(1); 

 } 

 printf("send thread pid = %d\t master pid = %d\n", getpid(), getppid()); 

 mlockall(MCL_CURRENT | MCL_FUTURE); 

 rt_receive(0, (unsigned int*)&sem); 

    send_msg_size = sizeof(struct recv_data); 

    if(( send_msg = (struct recv_data *)calloc(1, sizeof(struct recv_data))) == 

NULL){ 

         printf("cannot allocate message memory\n"); 

  exit(4); 

    }        

 period = nano2count(PERIOD); 

 start_time = rt_get_time() + nano2count(10000000); 

 t0 = start_instant; 

 printf("send: t0 = %lld\t", t0); 

 printf("This period = %lld\t", rt_get_time()); 

 printf("actual start = %lld\n", t0 + nano2count(500000000)); 

 rt_task_make_periodic(mytask, (t0 + nano2count(500000000)), 

nano2count(h*1000000)); 

 printf("starting the send_thread while loop\n"); 

 // DC motor speed measure 

 while(1){  

  if(endme_int == 1){ 

   break; 
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  } 

  // Counting encoder pulses 

  start_time = rt_get_cpu_time_ns(); 

  comedi_dio_config(it, in_subdev, in_chan, COMEDI_INPUT); 

  for(j=0;j<500;j++) { 

   m = comedi_data_read(it, in_subdev, in_chan, in_range, aref, 

&in_data); 

   if(in_data == 1) //* high or low? 

    {b1 = 1;} 

   else  

    {b1 = 0;} 

   if(b1 != b0) //* count turn-over (H to L or L to H) 

   {cnt++;} 

   b0 = b1; 

  }  

  end_time = rt_get_cpu_time_ns(); //* End of the FOR loop 

  current_time_stamp = rt_get_cpu_time_ns(); 

  speed = (cnt*0.214)+1.322;  //* DI counting w/ j=1000, PCI-6025E 

  y_0 = speed;   

  send_msg->y_0 = y_0; 

  send_msg->y_1 = y_1; 

  send_msg->y_2 = y_2; 

  send_msg->y_3 = y_3; 

  send_msg->y_4 = y_4; 

  send_msg->y_5 = y_5; 

  send_msg->y_6 = y_6; 

  send_msg->y_7 = y_7; 

  send_msg->u_1 = u_1; 

  send_msg->u_2 = u_2; 

182 

 



 

  send_msg->time_stamp = current_time_stamp; 

  send_msg->delay = time_diff[loop_count]  

  rt_sem_wait(sock_sem);  

  iRet = sendto(sockid, (const void *)send_msg, send_msg_size, 0, (struct 

sockaddr*)&server_addr, server_sock_size); 

  rt_sem_signal(sock_sem); 

  if(iRet <= -1) { 

   perror("sendto() failed\n"); 

   break; 

  } 

  //y_7 = y_6; 

  y_6 = y_5; 

  y_5 = y_4; 

  y_4 = y_3; 

  y_3 = 0.7151*y_2+0.2848*y_1; 

  y_2 = 0.6867*y_1+0.3182*y_0; 

  y_1 = y_0; 

  cnt = 0; 

                 loop_count++;  

  if(loop_count == LOOPS) { 

   break; 

  } 

  rt_task_wait_period(); 

  print_data[loop_count] = y_0; 

 } 

 end_time = rt_get_cpu_time_ns(); 

 difference = end_time - start_time; 

 printf("difference = %lld\n", difference); 

 endme_int++;  
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 rt_sem_signal(sem); 

 rt_make_soft_real_time(); 

 for(i=0;i<LOOPS;i++) {  

  fprintf(fp, "%f\n", print_data[i]); 

 } 

 fclose(fp); 

 free(send_msg); 

 rt_task_delete(mytask); 

 printf("send_thread ENDS\n"); 

 return 0; 

}  

void *recv_thread_fun(void *arg) 

{ 

 RTIME start_time, period, end_time, difference = 0; 

 RTIME t0; 

 RTIME re_time_stamp, current_cpu_time; 

 SEM *sem; 

 RT_TASK *mytask; 

 unsigned long mytask_name; 

 int mytask_indx; 

 int iRet = 0; 

 int recv_msg_size;  

    struct send_data *recv_msg = NULL; 

    int loop_count = 0; 

 float control_data[LOOPS]; 

 RTIME time_diff[LOOPS]; 

 FILE *tdiff = NULL; 

 FILE *control = NULL; 

         tdiff = fopen("timediff.txt","w"); 
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 if(tdiff == NULL){ 

  printf("could not open tdiff file"); 

  exit(0); 

 } 

 control = fopen("control.txt","w"); 

 if(control == NULL) { 

  printf("could not open control file"); 

  exit(0); 

 } 

    recv_msg_size = sizeof(struct send_data); 

    if(( recv_msg = (struct send_data *)calloc(1, sizeof(struct send_data))) == 

NULL) { 

          printf("cannot allocate message memory\n"); 

  exit(4); 

    } 

         pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL); 

 mytask_indx = 1; 

 mytask_name = taskname(mytask_indx); 

 cpus_allowed = 1 - cpus_allowed;  

  if (!(mytask = rt_task_init_schmod(mytask_name, 1, 0, 0, SCHED_FIFO, 1 << 

cpus_allowed))) { 

  printf("CANNOT INIT recv_thread TASK\n"); 

  exit(1); 

 } 

 printf("recv thread pid = %d\t master pid = %d\n", getpid(), getppid()); 

 mlockall(MCL_CURRENT | MCL_FUTURE); 

 rt_receive(0, (unsigned int*)&sem); 

 period = nano2count(PERIOD); 

 start_time = rt_get_time() + nano2count(10000000); 
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 t0 = start_instant; 

 printf("recv: t0 = %lld\t", count2nano(t0)); 

 printf("This period = %lld\t", count2nano(rt_get_time())); 

 printf("actual start = %lld\n", count2nano(t0 + nano2count(500500000))); 

 rt_task_make_periodic(mytask, (t0 + nano2count(500500000)), 

nano2count(h*1000000)); 

 start_time = rt_get_time(); 

 printf("starting the recv_thread while loop\n"); 

 for(;;) {  

  if(endme_int == 1) { 

   break; 

  } 

  rt_sem_wait(sock_sem);  

  iRet = recvfrom(sockid, (void *)recv_msg, recv_msg_size, 0, (struct 

sockaddr *)&server_addr, &server_sock_size); 

  rt_sem_signal(sock_sem);  

  if(iRet <= -1) { 

   endme_int = 1;  

   printf("difference = %lld\n", difference); 

   perror("recvfrom() failed\n"); 

   break; 

  } 

  if(loop_count < LOOPS) { 

  u0 = recv_msg->u0; 

  u1e = recv_msg->u1e; 

  u2e = recv_msg->u2e; 

  u3e = recv_msg->u3e; 

  u4e = recv_msg->u4e; 

  u5e = recv_msg->u5e; 
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  u6e = recv_msg->u6e; 

  u7e = recv_msg->u7e; 

  u8e = recv_msg->u8e; 

  h = recv_msg->h; 

  re_time_stamp = recv_msg->time_stamp; 

   current_cpu_time = rt_get_cpu_time_ns(); 

  time_diff[loop_count] = current_cpu_time-re_time_stamp; 

  control_data[loop_count] = u0; 

  } 

  if(loop_count < (LOOPS-2)){ 

   volts = u0*1.014-0.005; 

  } 

  else if(loop_count == (LOOPS-2)) { 

   volts = 0.0;  

  } 

  if(volts > 5.0) { 

   volts = 4.99999; 

  } 

  if(volts < 0.0) { 

   volts = 0.0; 

  } 

  out_data = comedi_from_phys(volts, out_range_ptr, out_maxdata); 

  comedi_data_write(it, out_subdev, out_chan, out_range, aref, out_data); 

  u_1 = u0; 

  if(loop_count == LOOPS) { 

   loop_count = 0; 

  } 

  else { 

   loop_count++; 
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  } 

  rt_task_wait_period(); 

 } 

 end_time = rt_get_cpu_time_ns(); 

 difference = end_time - start_time; 

 printf("difference = %lld\n", difference); 

 endme_int++;  

 rt_make_soft_real_time(); 

 for(i=0;i<LOOPS;i++) {  

  fprintf(tdiff, "%lld\n", time_diff[i]); 

  fprintf(control, "%f\n", control_data[i]); 

 } 

 fclose(tdiff); 

 fclose(control); 

 free(recv_msg); 

 rt_task_delete(mytask); 

 printf("recv_thread ENDS\n"); 

 return 0; 

}//End of  Recv Thread 

int main(void) 

{ 

 int i;        

 unsigned long mytask_name = nam2num("MASTER"); 

 struct sigaction sa; 

char * server_ip = "165.91.95.40"; //maglev1 

 unsigned short my_port, server_port;  

    my_port = 4445; 

    server_port = 4444; 

    printf("creating socket\n"); 
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    if( (sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {  

perror("socket() failed "); 

       exit(2);  

    } 

    memset((void *) &my_addr, (char) 0, sizeof(my_addr)); 

    my_addr.sin_family = AF_INET; 

    my_addr.sin_addr.s_addr = htonl(INADDR_ANY);   

    my_addr.sin_port = htons(my_port); 

    if ( (bind(sockid, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0) ) {  

       perror("bind() failed "); 

       exit(3);  

    }    

    server_sock_size = sizeof(server_addr); 

    memset((void *) &server_addr, (char) 0, server_sock_size); 

    server_addr.sin_family = AF_INET; 

    server_addr.sin_addr.s_addr = inet_addr(server_ip); 

    server_addr.sin_port = htons(server_port); 

 sa.sa_handler = endme; 

 sa.sa_flags = 0; 

 sigemptyset(&sa.sa_mask); 

 if(sigaction(SIGINT, &sa, NULL)) { 

  perror("sigaction"); 

 } 

 if(sigaction(SIGTERM, &sa, NULL)) { 

  perror("sigaction"); 

 } 

 it = comedi_open("/dev/comedi0"); 

 if(it == NULL) { 

  printf("Could not open comedi\n"); 
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  exit(1); 

 } 

 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan); 

 out_maxdata = comedi_get_maxdata(it, out_subdev, out_chan); 

 in_range_ptr = comedi_get_range(it, in_subdev, in_chan, in_range); 

 out_range_ptr = comedi_get_range(it, out_subdev, out_chan, out_range); 

 if (!(mytask = rt_task_init(mytask_name, 1, 0, 0))) { 

  printf("CANNOT INIT main TASK \n"); 

  exit(1); 

 } 

 printf("MASTER INIT: name = %lu, address = %p.\n", mytask_name, mytask); 

 sem = rt_sem_init(10000, 0);  

 sock_sem = rt_sem_init(nam2num("SOCK"), 1); 

 rt_set_periodic_mode(); 

 start_rt_timer(nano2count(25000)); 

 start_instant = rt_get_time(); 

 printf("main: start_instant = %lld\n", start_instant);  

 if (pthread_create(&task[0], NULL, send_thread_fun, &start_instant)) { 

  printf("ERROR IN CREATING send_thread\n"); 

  exit(1); 

  }       

 if (pthread_create(&task[1], NULL, recv_thread_fun, &start_instant)) { 

  printf("ERROR IN CREATING recv_thread\n"); 

  exit(1); 

  }  

 for (i = 0; i < ntasks; i++) { 

  while (!rt_get_adr(taskname(i))) { 

   rt_sleep(nano2count(20000000)); 

  } 
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 } 

 for (i = 0; i < ntasks; i++) { 

  rt_send(rt_get_adr(taskname(i)), (unsigned int)sem); 

 } 

 printf("Start waiting for sem\n"); 

 while(endme_int == 0) { 

  rt_sem_wait_timed(sem, nano2count(50000000)); 

 } 

 printf("Stop waiting for sem\n"); 

 for (i = 0; i < ntasks; i++) { 

  while (rt_get_adr(taskname(i))) { 

   rt_sleep(nano2count(20000000)); 

  } 

 } 

 rt_sem_delete(sem); 

 rt_sem_delete(sock_sem); 

 stop_rt_timer(); 

 comedi_close(it); 

 rt_task_delete(mytask); 

 printf("MASTER %lu %p ENDS\n", mytask_name, mytask); 

 for (i = 0; i < ntasks; i++) { 

  pthread_join(task[i], NULL); 

 } 

 return 0; 

} 

A.3. C CODE FOR INTEROPERABILITY SUITE 
#include <stdio.h> 

…   //*here is an identical code block as the one in Appendix A.1 

double u0, u1e, u2e, u3e, u4e, u5e, u6e, u7e, u8e; 
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char y_8[6]="000000"; 

double y_0, y_1, y_2, y_3, y_4, y_5, y_6; 

double y_7=3; 

double u_1, u_2; 

double delay, h; 

//rtai declarations 

…   //* here is an identical code block as the one in Appendix A.1 

void terminate_normally(int signo) 

{ 

…   //* here is an identical code block as the one in Appendix A.1 

} 

int main(int argc, char *argv[]) 

{ 

…   //* here is an identical code block as the one in Appendix A.1 

char recv_msg[6] = "000000"; //Client to Interoperability Suite 

    char fwd[10] = "front"; 

    char back[10] = "back"; 

    char stop[10] = "stop"; 

    char left[10] = "left"; 

    char right[10] = "right"; 

    char *server_ip= "165.91.95.40"; 

    FILE *fp = NULL; 

    fp = fopen("result.txt","w"); 

if (fp==NULL) { 

  printf("could not open file\n"); 

  exit(0); 

} 

 RTIME start_time = 0, end_time = 0, actual_period = 0; 

 …   //* here is an identical code block as the one in Appendix A.1 
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fprintf(stderr, "binding sockets\n"); 

    server_port = 4444; 

    second_port = 3333; 

 addrlen = sizeof(server_addr); 

    clilen = sizeof(my_addr);  

    memset((void *) &server_addr, (char) 0, addrlen); 

    server_addr.sin_family = AF_INET; 

    server_addr.sin_addr.s_addr = inet_addr(server_ip); 

    server_addr.sin_port = htons(server_port); 

memset((void *) &my_addr, (char) 0, clilen); 

    my_addr.sin_family = AF_INET; 

    my_addr.sin_addr.s_addr = htonl(INADDR_ANY); 

    my_addr.sin_port = htons(second_port); 

    if ( (bind(sd, (struct sockaddr *) &my_addr,sizeof(my_addr)) < 0) ){  

       perror("2bind() failed "); 

       fprintf(stderr, "bind() errno = %d\n", errno);  

       exit(4);  

    } 

    recv_buffer_size = sizeof(struct recv_data);  

    if(( recv_buffer = (struct recv_data *)calloc(1, sizeof(struct recv_data))) 

==NULL){ 

         fprintf(stderr, "cannot allocate memory for buffer!\n"); 

  exit(4); 

    } 

    send_buffer_size = sizeof(struct send_data);  

    if(( send_buffer = (struct send_data *)calloc(1, sizeof(struct send_data))) 

==NULL){ 

         fprintf(stderr, "cannot allocate memory for buffer!\n"); 

  exit(4); 
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    } 

    fprintf(stderr, "%s: starting blocking message read\n", argv[0]); 

 …   //* here is an identical code block as the one in Appendix A.1 

 start_time = rt_get_cpu_time_ns(); 

 printf("main: start_time = %lld\n", start_time); 

 printf("MASTER TASK STARTS THE ONESHOT TIMER\n"); 

 //rt_set_oneshot_mode(); 

 actual_period = start_rt_timer(nano2count(25000)); 

 printf("actual_period = %lld\n", actual_period); 

 printf("MASTER TASK MAKES ITSELF PERIODIC \n"); 

 rt_task_make_periodic(mtsk, rt_get_time()+ nano2count(3000000), 

nano2count(3000000));  

while( 1 ) { 

  cr = recvfrom(sd, recv_msg, 10, 0, (struct sockaddr *) &client_addr, 

&clilen); 

  if( cr <= -1 ){  

   fprintf(stderr, "2recvfrom() errno = %d\n", errno); 

   exit(10); 

  } 

  start_time = rt_get_cpu_time_ns(); 

  y_1 = 0; 

  y_2 = 0; 

  y_3 = 0; 

  y_4 = 0; 

  y_5 = 0; 

  y_6 = 0; 

  y_7 = 3; 

  y_8[0] = recv_msg[0]; 

  y_8[1] = recv_msg[1]; 
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  y_8[2] = recv_msg[2]; 

  y_8[3] = recv_msg[3]; 

  y_8[4] = recv_msg[4]; 

  y_8[5] = recv_msg[5]; 

  u_1 = 0; 

  u_2 = 0; 

  …   //* here is an identical code block as the one in Appendix A.2 

  send_buffer->time_stamp = current_time_stamp; 

  send_buffer->delay = delay; 

  nw=sendto(sockid, (const void *)send_buffer, send_buffer_size, 0,(struct 

sockaddr *) &server_addr, addrlen);  

       if( nw <= -1 ){ 

          perror("1sendto failed "); 

          fprintf(stderr, "sendto() errno = %d \n", errno);  

          exit(12);  

       } 

  nr = recvfrom(sockid, (void *)recv_buffer, recv_buffer_size, 0, (struct 

sockaddr *) &server_addr, &addrlen); 

  if( nr <= -1 ){  

   fprintf(stderr, "1recvfrom() errno = %d\n", errno); 

   exit(10); 

  } 

      …   //* here is an identical code block as the one in Appendix A.1 

  printf("recv: %s   u0: %f" ,y_8, u0); 

  if(u0 == 10.0){ 

   cw = sendto(sd, fwd, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  else if(u0 == 7.0){ 
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   cw = sendto(sd, right, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  else if(u0 == 2.0){ 

   cw = sendto(sd, left, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  else if(u0 == 0.0){ 

   cw = sendto(sd, back, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  else if(u0 == 5.0){ 

   cw = sendto(sd, stop, 6, 0, (struct sockaddr *) &client_addr, 

clilen); 

  } 

  end_time = rt_get_cpu_time_ns(); 

  send_buffer->time_stamp = recv_buffer->time_stamp; 

         printf("end_time - start_time = %lld\n", (end_time - start_time)); 

  cnt = cnt +1; 

   } //end while 

…   //* here is an identical code block as the one in Appendix A.1 

} 

A.4. C++ CODE FOR CLIENT (WHEELCHAIR) 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <NIDAQmx.h> 

#include <winsock2.h> 

#include <ws2tcpip.h> 
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#include <windows.h> 

#pragma comment(lib, "winmm.lib") 

#define MAXLOOP 200 

#define DAQmxErrChk(functionCall) if( DAQmxFailed(error=(functionCall)) ) goto 

Error; else 

void move(uInt8 direction[8]); 

void sensors(); 

int LIFR, LIFRS, RIFR, RIFRS, IFR; 

void main(void) 

{ 

 WSADATA w; /* Used to open Windows connection */ 

 SOCKET sd;  /* The socket descriptor */ 

 int server_length; /* Length of server struct */ 

 struct sockaddr_in server; /* Information about the server */ 

 struct sockaddr_in client; /* Information about the client */ 

 char *server_ip = "165.91.95.119"; 

 unsigned short server_port = 3333; 

 char recv_data[6]="wheel", send_data[6]="00000"; 

 uInt8 forward[8]={0,1,1,0,0,1,1,0}; 

 uInt8 backward[8]={1,0,1,0,1,0,1,0}; 

 uInt8 left[8]={0,1,1,0,1,0,1,0}; 

 uInt8 right[8]={1,0,1,0,0,1,1,0}; 

 uInt8 stop[8]={0,0,0,0,0,0,0,0}; 

 int counter=0; 

 int32 error=0; 

 TaskHandle taskHandle=0; 

 uInt8 data[8]; 

 char errBuff[2048]={'\0'}; 

 int32 read,bytesPerSamp; 
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 unsigned long starttime, endtime, timediff; 

 int pos[2]; 

 int left_cnt=0, right_cnt=0, ileft=0, iright=0, h = 80; 

 FILE *fp; 

 errno_t err; 

 if ((err = fopen_s(&fp,"result.txt","w"))!=0) { 

  printf("Can not open file! \n"); 

  exit(0); 

 } 

 timeBeginPeriod(1); 

 if (WSAStartup(0x0101, &w) != 0) { 

  printf("Could not open Windows connection.\n");  

  exit(0); 

 } 

 sd = socket(AF_INET, SOCK_DGRAM, 0); 

 if (sd == INVALID_SOCKET) { 

  printf("Could not create socket.\n"); 

  WSACleanup(); 

  exit(0); 

 } 

 memset((void *)&server, '\0', sizeof(struct sockaddr_in)); 

 server.sin_family = AF_INET; 

 server.sin_port = htons(server_port); 

 server.sin_addr.S_un.S_addr = inet_addr(server_ip); 

 memset((void *)&client, '\0', sizeof(struct sockaddr_in)); 

 client.sin_family = AF_INET; 

 client.sin_port = htons(0); 

 client.sin_addr.S_un.S_addr = htonl(INADDR_ANY); 

 if (bind(sd, (struct sockaddr *)&client, sizeof(struct sockaddr_in)) == -1) 
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 { 

  printf("Cannot bind address to socket.\n"); 

  closesocket(sd); 

  WSACleanup(); 

  exit(0); 

 } 

 printf("Wheelchair is ready.\n"); 

 printf("Wheelchair is running.\n"); 

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle)); 

 DAQmxErrChk 

(DAQmxCreateDIChan(taskHandle,"Dev1/port0/line0:7","",DAQmx_Val_ChanForAllL

ines)); 

 DAQmxErrChk (DAQmxStartTask(taskHandle)); 

 while (counter<MAXLOOP) 

 { 

  Sleep(200); 

  DAQmxErrChk 

(DAQmxReadDigitalLines(taskHandle,1,10.0,DAQmx_Val_GroupByChannel,data,8,&r

ead,&bytesPerSamp,NULL)); 

  starttime = timeGetTime(); 

  left_cnt = 1 * data[0] + 2 * data[1] + 4 * data[2] + 8 * data[3]; 

  right_cnt = 1 * data[4] + 2 * data[5] + 4 * data[6] + 8 * data[7]; 

  if (left_cnt < 8) 

   ileft++; 

  if (right_cnt < 8) 

   iright++; 

  pos[0] = ileft * 15 + left_cnt; 

  pos[1] = iright * 15 + right_cnt; 

  sensors(); 
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  send_data[0] = (char)(((int)'0')+LIFR); 

  send_data[1] = (char)(((int)'0')+LIFRS); 

  send_data[2] = (char)(((int)'0')+RIFR); 

  send_data[3] = (char)(((int)'0')+RIFRS); 

  send_data[4] = (char)(((int)'0')+IFR); 

  server_length = sizeof(struct sockaddr_in); 

  if (sendto(sd, (char *)&send_data, (int)strlen(send_data) + 1, 0, (struct 

sockaddr *)&server, server_length) == -1) { 

   printf("Error transmitting data.\n"); 

   closesocket(sd); 

   WSACleanup(); 

   exit(0); 

  } 

  if (recvfrom(sd, (char *)&recv_data, (int)sizeof(recv_data), 0, (struct 

sockaddr *)&server, &server_length) < 0) { 

   printf("Error receiving data.\n"); 

   closesocket(sd); 

   WSACleanup(); 

   exit(0); 

  } 

  if (strcmp(recv_data,"stop")==0) 

   move(stop); 

  else if (strcmp(recv_data,"back")==0) 

   move(backward); 

  else if (strcmp(recv_data,"left")==0) 

   move(left); 

  else if (strcmp(recv_data,"right")==0) 

   move(right); 

  else move(forward); 
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  endtime = timeGetTime(); 

  timediff = endtime - starttime; 

  fprintf(fp,"%d, %d\n",pos[0],pos[1]); 

  Sleep(h); 

  counter++; 

  printf("Current loop: %d.  Command from the server: %s \n", counter, 

recv_data); 

 } 

 move(stop); 

 printf("Wheelchair stops. \n"); 

 closesocket(sd); 

 WSACleanup(); 

 printf("To quit and close the console window, press any key! \n"); 

 timeEndPeriod(1); 

 getchar(); 

 fclose(fp); 

Error: 

 if( DAQmxFailed(error)) 

  DAQmxGetExtendedErrorInfo(errBuff,2048); 

 if( taskHandle!=0 ) { 

  DAQmxStopTask(taskHandle); 

  DAQmxClearTask(taskHandle); 

 } 

 if( DAQmxFailed(error) ) 

  printf("DAQmx Error: %s\n",errBuff); 

} 

void sensors(void) 

{ 

 int32  error=0; 
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 TaskHandle taskHandle=0; 

 uInt8  data[8]; 

 char  errBuff[2048]={'\0'}; 

 int32  read, bytesPerSamp; 

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle)); 

 DAQmxErrChk 

(DAQmxCreateDIChan(taskHandle,"Dev1/port1/line0:7","",DAQmx_Val_ChanForAllL

ines)); 

 DAQmxErrChk (DAQmxStartTask(taskHandle)); 

 DAQmxErrChk 

(DAQmxReadDigitalLines(taskHandle,1,10.0,DAQmx_Val_GroupByChannel,data,8,&r

ead,&bytesPerSamp,NULL)); 

 LIFR = data[0]; 

 LIFRS = data[1]; 

 RIFR = data[2]; 

 RIFRS = data[3]; 

 IFR = data[4]; 

 photocell[0] = data[5]; 

 photocell[1] = data[6]; 

 photocell[2] = data[7]; 

Error: 

 if( DAQmxFailed(error) ) 

  DAQmxGetExtendedErrorInfo(errBuff,2048); 

 if( taskHandle!=0 ) { 

  DAQmxStopTask(taskHandle); 

  DAQmxClearTask(taskHandle); 

 } 

 if( DAQmxFailed(error) ) 

  printf("DAQmx Error: %s\n",errBuff); 
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} 

void move(uInt8 direction[8]) 

{ 

 double       error=0; 

 TaskHandle  taskHandle=0; 

 char        errBuff[2048]={'\0'}; 

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle)); 

 DAQmxErrChk 

(DAQmxCreateDOChan(taskHandle,"Dev1/port2/line0:7","",DAQmx_Val_ChanForAll

Lines)); 

 DAQmxErrChk (DAQmxStartTask(taskHandle)); 

 DAQmxErrChk 

(DAQmxWriteDigitalLines(taskHandle,1,1,10.0,DAQmx_Val_GroupByChannel,directi

on,NULL,NULL)); 

Error: 

 if( DAQmxFailed(error)) 

  DAQmxGetExtendedErrorInfo(errBuff,2048); 

 if( taskHandle!=0 ) { 

  DAQmxStopTask(taskHandle); 

  DAQmxClearTask(taskHandle); 

 } 

 if( DAQmxFailed(error)) 

  printf("DAQmx Error: %s\n",errBuff); 

}  
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APPENDIX B 

MATLAB® CODES AND SIMULINK® BLOCK DIAGRAMS 

 

B.1. MATLAB® CODES FOR THE OUTPUT FEEDBACK CONTROLLER 
A = -0.26; B = 2.04; C = 1; 

Q = 1; R = 1; 

[K, S, e] = LQR(A, B, Q, R); 

K0 = K; K1 = K; 

 P = [0.97 0.07; 0.75 0.25]; 

P0 = [0.969 0.068; 0.73 0.26];  

delta = [0.001 -0.002; -0.02 0.01]; 

AA = [A 0; 1 0]; BB = [B; 0]; CC0 = [0 0]; CC1 = [0 1]; 

 for iter = 1:1:2 

CG0(iter, :) = K0; 

CG1(iter, :) = K1; 

%V-steps 

A0 = AA + BB*K0*CC0;  

A1 = AA + BB*K1*CC1; 

Q0 = sdpvar(2,2); Q1 = sdpvar(2,2); 

H0 = [Q0 A0'*Q0 A1'*Q1; Q0*A0 inv(P0(1,1))*Q0 zeros(2); Q1*A1 zeros(2) 

inv(P0(2,1))*Q1]; 

H1 = [Q1 A0'*Q0 A1'*Q1; Q0*A0 inv(P0(1,2))*Q0 zeros(2); Q1*A1 zeros(2) 

inv(P0(2,2))*Q1]; 

lmisysV = [H0 > 0, H1 > 0, Q0 > 0, Q1 > 0]; 

solvesdp(lmisysV); 

Q0 = double(Q0); 

Q1 = double(Q1); 

%K-steps 
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a = sdpvar(1, 1); 

K0 = sdpvar(1, 1); 

K1 = sdpvar(1, 1); 

A0 = AA + BB*K0*CC0; 

A1 = AA + BB*K1*CC1; 

M0 = [Q0 A0'*Q0 A1'*Q1; Q0*A0 inv(P0(1,1))*Q0 zeros(2); Q1*A1 zeros(2) 

inv(P0(2,1))*Q1]; 

M1 = [Q1 A0'*Q0 A1'*Q1; Q0*A0 inv(P0(1,2))*Q0 zeros(2); Q1*A1 zeros(2) 

inv(P0(2,2))*Q1];       

lmisysK = [M0 > 0, M1 > 0]; 

c = [1 0 0]; 

x = [a; K0; K1]; 

h = c*x; 

solvesdp(lmisysK,h); 

K0 = double(K0); 

K1 = double(K1);     

%delta-steps 

P0 = P0 + delta; 

if (isequal(P0, P) == 1) 

break; 

end 

end 

 

 

 

 

 

205 

 



 

B.2. SIMULINK® BLOCK DIAGRAMS FOR THE BANDWIDTH 
ALLOCATION 

 

 

Fig. B.1. A Simulink® block diagram for the bandwidth allocation simulation with single 

DC motor 
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Fig. B.2. A Simulink® block diagram for the bandwidth allocation simulation with four 

DC motors 
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