

OUTPUT FEEDBACK CONTROL AND OPTIMAL BANDWIDTH ALLOCATION

OF NETWORKED CONTROL SYSTEMS

A Dissertation

by

JIAWEI DONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Won-jong Kim
Committee Members, Reza Langari
 Bryan Rasmussen
 Xi Zhang
Head of Department, Andres Polycarpou

May 2013

Major Subject: Mechanical Engineering

Copyright 2013 Jiawei Dong

ABSTRACT

A networked control system (NCS) is a control system where sensors, actuators,

and controllers are interconnected over a communication network. This dissertation

presents a framework for modeling, stability analysis, optimal control, and bandwidth

allocation of the NCS. A ball magnetic-levitation (maglev) system, four DC motor

speed-control systems, and a wireless autonomous robotic wheelchair are employed as

test beds to illustrate and verify the theoretical results of this dissertation.

This dissertation first proposes an output feedback method to stabilize and

control the NCSs. The random time delays in the controller-to-actuator and sensor-to-

controller links are modeled with two time-homogeneous Markov chains while the

packet losses are treated with Dirac delta functions. An asymptotic mean-square stability

criterion is established to compensate for the network-induced random time delays and

packet losses in the NCS. Then, an algorithm to implement the asymptotic mean-square

stability criterion is presented. Experimental results illustrate effectiveness of the

proposed output feedback method compared to conventional controllers. The proposed

output feedback controller could reduce the errors of the NCS by 13% and 30–40% for

the cases without and with data packet losses, respectively.

The optimal bandwidth allocation and scheduling of the NCS with nonlinear-

programming techniques is also presented in the dissertation. The bandwidth utilization

(BU) of each client is defined in terms of its sampling frequency. Two nonlinear

approximations, exponential and quadratic approximations, are formulated to describe

ii

the system performance governed by discrete-time integral absolute error (DIAE) versus

sampling frequency. The optimal sampling frequencies are obtained by solving the

approximations with Karush-Kuhn-Tucker (KKT) conditions. Simulation and

experimental results are given to verify the effectiveness of the proposed approximations

and the bandwidth allocation and scheduling algorithms. In simulations and experiments,

the two approximations could maximize the total BU of the NCS up to about 98% of the

total available network bandwidth.

iii

To my parents

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Won-jong Kim for

his time and effort throughout my doctoral study at Texas A&M University. Without his

guidance this dissertation would not have been completed.

I wish to thank Drs. Reza Langari, Bryan Rasmussen, and Xi Zhang for serving

as my advisory committee members. I sincerely appreciate their valuable guidance and

comments for my research.

I would like to thank Min-Hyung Lee and Naveen Kumar Bibinagar for their

help, discussions and inspiration to the NCSs research. My thanks also go to Yi-chu

Chang and Young Ha Kim for their wonderful friendship in the precision lab. Thanks

also go to my friends, colleagues, and department faculty and staff members for making

my time at Texas A&M University a great experience.

My special appreciation goes to our research sponsor. This work was supported

in part by Texas A&M University Program to Enhance Scholarly and Creative Activities

under Grant No. 2010-SAC-8779.

Finally, but most importantly, this dissertation is dedicated to my family for their

continued love and support that have enabled me to complete my Ph.D. degree. Without

their unconditional love, encouragement, and support, I could have never come so far.

v

NOMENCLATURE

BU Bandwidth Utilization

CPU Central Processing Unit

DIAE Discrete-Time Integral Absolute Error

EDF Earliest Deadline First

IP Internet Protocol

KKT Karush-Kuhn-Tucker

LAN Local Area Network

LMI Linear Matrix Inequality

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulation

LSM Least Square Method

MSMC Multiple-Server-Multiple-Client

NCS Networked Control System

PWM Pulse-Width Modulation

RM Rate Monotonic

SSMC Single-Server-Multiple-Client

SSSC Single-Server-Single-Client

TCP Transmission Control Protocol

UDP User Datagram Protocol

WLAN Wireless Local Area Network

vi

TABLE OF CONTENTS

 Page

ABSTRACT .. ii

DEDICATION .. iv

ACKNOWLEDGMENTS ... v

NOMENCLATURE .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... x

LIST OF TABLES .. xiv

1. INTRODUCTION .. 1

 1.1 Overviews of Control over Networks .. 2
 1.1.1 Teleoperation .. 3
 1.1.2 Supervisory Control ... 3
 1.1.3 NCS .. 5
 1.2 Integrated Design Issues in the NCS .. 9
 1.2.1 Network-Induced Time Delays .. 10
 1.2.2 Network-Induced Packet Losses .. 11
 1.2.3 Optimal Sampling Periods ... 12
 1.2.4 Bandwidth Allocation and Scheduling 14
 1.3 Objectives ... 15
 1.4 Contributions .. 16
 1.5 Dissertation Organization ... 17

2. LITERATURE REVIEW AND RESEARCH MOTIVATION 19

 2.1 Review of Time Delays and Packet Losses ... 19
 2.2 Review of Bandwidth Allocation and Scheduling 23
 2.3 Motivation .. 26

3. KEY ELEMENTS, EXPERIMENTAL SETUPS, AND ANALYTICAL
 RESULTS OF THE NCS ... 28

vii

 Page

3.1 Key Elements ... 32
 3.1.1 Time Delays and Packet Losses ... 33
 3.1.2 Bandwidth Allocation and Scheduling 36
 3.1.3 Clock-Driven and Event-Driven Tasks 40

3.2 Experimental Setups ... 42
 3.2.1 Hardware Setups .. 42
 3.2.2 Software Setups .. 46
 3.2.3 Network Protocols and Data-Packet Structures 47
 3.2.4 NCS Control Flows .. 49
 3.3 Analytical Results .. 50
 3.3.1 Off-Line Clock Synchronization .. 50
 3.3.2 Time-Delay and Packet-Loss Experiments 59
 3.3.3 Bandwidth-Allocation Experiments ... 65
 3.4 Summary .. 77

4. MARKOV-CHAIN-BASED OUTPUT FEEDBACK CONTROL OF THE
 NCS .. 79

 4.1 System Modeling .. 80
 4.1.1 Markov Chain... 81
 4.1.2 Time-Delay Modeling .. 83
 4.1.3 Packet-Loss Modeling .. 84
 4.1.4 Controller Design ... 85

4.2 Algorithm Implementation ... 94
 4.3 Controller Implementation and Experiments 98
 4.3.1 Experimental Setup Review ... 98
 4.3.2 Experimental System Modeling ... 99
 4.3.3 Controller Design and Implementation 101
 4.3.4 Experimental Results .. 103
 4.4 Summary .. 105

5. OPTIMAL BANDWIDTH ALLOCATION AND SCHEDULING OF THE
 NCS .. 110

5.1 System Performance Approximations .. 112
 5.1.1 Network Bandwidth of the NCS .. 114
 5.1.2 Performance Index Functions ... 115
 5.1.3 Exponential Approximation Modeling 115
 5.1.4 Quadratic Approximation Modeling .. 117

5.2 Optimal Bandwidth Allocation and Scheduling 118
 5.2.1 Optimal Solution of Exponential Approximation 119
 5.2.2 Optimal Solution of Quadratic Approximation 123

viii

 Page

 5.2.3 Unique Global Optimal Solution .. 125
 5.2.4 Scheduling Algorithm .. 126

5.3 Simulation and Experiments .. 129
 5.3.1 Simulation Results .. 131
 5.3.2 Experimental Results without Reserved Bandwidth 135
 5.3.3 Experimental Results with Reserved Bandwidth 141
 5.3.4 Experimental Results without Chosen Client Sequences 145
 5.4 Summary .. 147

6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 149

6.1 Conclusions .. 149
6.2 Suggestions for Future Work ... 151

REFERENCES .. 153

APPENDIX A C/C++ Codes for the NCS ... 165

A.1 C Code for Server ... 165
A.2 C Code for Client (DC Motors) .. 178
A.3 C Code for Interoperability Suite ... 191
A.4 C++ Code for Client (Wheelchair) ... 196

APPENDIX B Matlab® Codes and Simulink® Block Diagrams 204

B.1 Matlab® Codes for the Output Feedback Controller 204
B.2 Simulink® Block Diagrams for the Bandwidth Allocation 206

ix

LIST OF FIGURES

Page

Figure 1 Block diagram of a teleoperation system .. 4

Figure 2 Block diagram of a supervisory control system 5

Figure 3 Representative framework of an NCS ... 7

Figure 4 Block diagram of a typical NCS with a direct structure 8

Figure 5 Block diagram of a typical NCS with a hierarchical structure 8

Figure 6 An NCS with a single server and multiple clients................................... 9

Figure 7 Performance comparisons of the continuous control, digital control,
 and NCS [25] .. 13

Figure 8 Internet-based teleoperation system .. 29

Figure 9 The NCS architecture with three clients ... 32

Figure 10 Time-delay components of the network in several periodic control
 iterations .. 34

Figure 11 Comparison of various BU definitions .. 40

Figure 12 Ball maglev system ... 43

Figure 13 DC motor speed-control systems .. 44

Figure 14 Wireless autonomous robotic wheelchair ... 45

Figure 15 Robotic-wheelchair control system ... 46

Figure 16 NCS data-packet structures ... 49

Figure 17 Flow chart of the multiscale NCS control architecture 51

Figure 18 Detailed timing diagram of one sampling period in the NCS 52

x

 Page

Figure 19 Polynomial approximation and experimental data with the 2.267-ms
 sampling period ... 56

Figure 20 Polynomial approximation and experimental data with the 3.4-ms
 sampling period ... 56

Figure 21 Polynomial approximation and experimental data with the 6.8-ms
 sampling period ... 57

Figure 22 Polynomial approximation and experimental data with the 15.1-ms
 sampling period ... 57

Figure 23 Statistics of the time delays with various sampling periods 58

Figure 24 Time delays in the NCS .. 60

Figure 25 DIAEs of Client 2 with a 5-ms sampling period with various time
 delays ... 62

Figure 26 DIAEs of Client 2 with a 10-ms sampling period with various time
 delays ... 62

Figure 27 DIAEs of Client 2 with a 15-ms sampling period with various time
 delays ... 63

Figure 28 DIAE vs. the sampling periods and the time delays 63

Figure 29 DIAEs of Client 2 with a 5-ms sampling period with various packet
 losses ... 64

Figure 30 DIAEs of Client 2 with a 10-ms sampling period with various packet
 losses ... 64

Figure 31 DIAEs of Client 2 with a 15-ms sampling period with various packet
 losses ... 65

Figure 32 Client motion trajectories from Case 1 ... 69

Figure 33 Client motion trajectories from Case 2 ... 70

Figure 34 Client motion trajectories from Case 3 ... 71

xi

 Page

Figure 35 Client motion trajectories from Case 4 ... 72

Figure 36 Client motion trajectories from Case 4 without control flow 73

Figure 37 Total DIAE vs. BUs of Clients 2 and 4 ... 77

Figure 38 A representative NCS block diagram .. 80

Figure 39 An example of Markov chain with three states 83

Figure 40 An example timing diagram of the NCS communication 87

Figure 41 Flow chart of output-feedback algorithm implementation 97

Figure 42 Block diagram of the DC motor speed-control system 98

Figure 43 Output-feedback controller data-packet structures.................................. 99

Figure 44 Step responses of Client 2 without packet losses 106

Figure 45 Step responses of Client 2 with 10% single packet losses 106

Figure 46 Step responses of Client 2 with 20% three consecutive packet losses 107

Figure 47 DIAE of the proposed method vs. PI controller without packet losses ... 107

Figure 48 DIAE of the proposed method vs. PI controller with 10% single
 packet losses .. 108

Figure 49 DIAE of the proposed method vs. PI controller with 20% three
 consecutive packets losses .. 108

Figure 50 NCS performance index vs. sampling frequency 113

Figure 51 A flow chart of the proposed bandwidth allocation and scheduling
 algorithm of the NCS .. 130

Figure 52 DIAE vs. sampling frequencies of the simulation, exponential
 approximation, and quadratic approximation ... 132

Figure 53 Profile of the sampling-frequency and BU changes for each DC
 motor during the simulation .. 134

xii

 Page

Figure 54 Accumulated total cost of performance J of the simulation,
 exponential approximation, and quadratic approximation 135

Figure 55 DIAE vs. sampling period and time delay in experiments 136

Figure 56 DIAE vs. sampling period and time delay with the exponential
 approximation .. 136

Figure 57 DIAE vs. sampling frequencies of the experiments, exponential
 approximation, and quadratic approximation ... 138

Figure 58 Profile of the sampling-frequency and BU changes for each DC
 motor during the experiments ... 140

Figure 59 Accumulated total cost of performance J of the experiments,
 exponential approximation, and quadratic approximation 140

Figure 60 Profile of the sampling-frequency and BU changes for each DC
 motor during the experiments with the ball maglev system 144

Figure 61 Accumulated total cost of performance J of the experiments with the
 ball maglev system, exponential approximation, and quadratic
 approximation ... 144

Figure 62 DIAE in experiments given in Table 12 .. 147

Figure B.1 A Simulink® block diagram for the bandwidth allocation simulation
 with single DC motor .. 206

Figure B.2 A Simulink® block diagram for the bandwidth allocation simulation
 with four DC motor ... 207

xiii

LIST OF TABLES

 Page

Table 1 Nomenclatures of the timing components ... 35

Table 2 Scheduling algorithms comparisons .. 41

Table 3 Type definition of the tasks in an NCS ... 42

Table 4 Four cases of experiments with the corresponding sampling periods
 and BUs ... 67

Table 5 System performance comparisons of NCS with wireless client 74

Table 6 System performance comparisons of NCS without wireless client 76

Table 7 Output feedback controller parameters ... 102

Table 8 Optimal sampling frequencies of the simulation 133

Table 9 Optimal sampling frequencies of the experiments 139

Table 10 Optimal sampling frequencies of the experiments with the ball
 maglev system ... 142

Table 11 Statistic comparison of the exponential and quadratic approximations .. 145

Table 12 Sampling frequencies [Hz] of Cases ... 146

xiv

1. INTRODUCTION

Networked control systems (NCSs) arose in the interdisciplinary development of

computer networks, communications, sensing technologies, and control theories. Other

disciplines as mechatronics and embedded technologies also support the development of

the NCSs. High-speed Ethernet and Field-bus successfully improved reliability and

stability of the NCSs than ever before and promoted their applications in aerospace,

manufacturing, process control, teleoperation, exploration, etc. The study of the NCSs

has been an active and attractive research area in the past several years due to their broad

applications, such as mobile sensor networks [1], remote surgery [2], haptic

collaboration over Internet [3–4], automated highway systems [5], and unmanned aerial

vehicles [6]. An NCS can be defined as a hybrid system of sensors, actuators, and

controllers, which are distributed and interconnected in locations. Reference inputs, plant

outputs, and control inputs of an NCS are exchanged over communication networks.

This special structure defines an NCS as a distributed closed-loop real-time feedback

control system.

The basic functionalities of an NCS include data acquisition (sensors), control

commands (controllers), communication (networks), and actuation (actuators). From a

larger scope, research of the NCSs can be categorized into two areas [7]:

(1) Control of networks. The control of networks, from computer science

perspective, focuses on the research and study of the communication network

1

itself. The research of interest includes network protocols, routing controls,

congestion controls, etc.

(2) Control over networks. The control over networks, from system and control

perspective, focuses on control strategies and controller designs that use the

networks as data transmission media. The aim is to reduce the effects from the

existence of the networks and to maintain system stability and performance.

As discussed above, the research of the control over networks focuses on control

methodologies rather than design of the network protocols and analysis of network

behaviors. Our interest in this research is to design and analyze the control algorithms of

the NCS so that the system stability and performance can be guaranteed and maintained

at a specified level. Hence, this dissertation will mainly discuss control issues of an NCS

from the control over networks perspective.

1.1 OVERVIEWS OF CONTROL OVER NETWORKS
The beginning of the research of the control over networks could be traced back

to publications of “Integrated communication and control systems” authored by Halevi

and Ray in 1988 [8–9]. The authors first combined the control systems and the

communication networks and named it as integrated communication and control systems

in the papers. Ever since, many research institutes and commercial companies have

shown great interests in applying the control over networks to their research or practical

applications such as remote industrial controls, factory automations, and other areas. The

classification of the control over networks depends on communication architectures

2

between plants and controllers, which can be roughly categorized into three modes: (1)

teleoperation, (2) supervisory control, and (3) NCS.

1.1.1. Teleoperation
Teleoperation pertains to the operation of a machine at a certain distance. By

distance, it can refer to a physical distance where operators are separated from to-be-

controlled systems, actuators, and sensors, or to a change in scales, for instance, remote

microscopic-level surgery [10]. Teleoperation arose in the needs of on-board

manipulation systems in dangerous or hazardous environments. It is most commonly

associated with robots but can be applied to a whole range of circumstances that include

radiation sites, nuclear materials cleanups, underwater inspections, explorations,

manufacturing, military applications, etc [10–12].

In traditional teleoperation systems, however, the operators must depend on

feedbacks provided by real-time sensory feedback systems to perform subsequent

actions as shown in Fig. 1. This is possible when latency in the system is minimal so that

the system performance could be guaranteed. An unsatisfactory performance may occur

due to the lack of local control mechanisms on the plant sites. Moreover, the operators’

limited perception of environments could also result in a poor performance. For these

reasons, researchers have been focusing their research attention on supervisory control.

1.1.2. Supervisory Control
The development of supervisory control is based on client-server architectures.

The sensors, actuators, and controllers are all located at the controlled plant side as

shown in Fig. 2. Compared to a teleoperation system, in the supervisory control,

3

http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Robotics

operators usually give high-level symbolic or analogical instructions to the controlled

plant remotely instead of directly controlling the remote manipulation system. Unlike a

teleoperation system, a supervisory control system introduces autonomous control loops

to the remote site. Hence, the controlled plant can be processed continuously and

autonomously. The operators monitor the system performance all the time and modify

control algorithms when necessary.

Operator/
Manipulator

Communication
Channel

Remote
Slave PlantUser

Commands

Fig. 1. Block diagram of a teleoperation system

In the last decade, several tele-robots and test beds were established using the

Internet as a supervisory control medium [13–18]. The Mercury project was the first

successful application of applying the Internet for supervisory control [13]. Luo et al.

applied the supervisory control technique to develop a desktop rapid-prototyping system

[14]. Garcia et al. developed a tele-robotic system using supervisory control based on a

hybrid control approach [15]. Srivatsava designed an Internet-based supervisory control

system that operators could monitor process and sent corrective commands to controller

from anywhere on the Internet [18].

4

Operator/
User

Communication
Channel

Remote
Controller Actuator

Sensor

User Side Controlled Plant Side

+
–

Plant

Fig. 2. Block diagram of a supervisory control system

1.1.3. NCS
The communications of Internet-based teleoperation and supervisory control

systems are generally unidirectional in nature. The Internet is applied to send

instantaneous feedback for monitoring, and operational commands for correcting system

actions in emergency. The feedback from the controlled plant is not directly applied to

the control-command decisions or the control algorithms modification by the controller

itself. However, in the NCS, all nodes, including sensors, actuators, and controllers, are

assumed to be interconnected bidirectionally via a communication channel. Furthermore,

decisions of the operational control algorithms or commands directly depend on the

feedback from the controlled plant side. The control loop is closed over the network with

the data packets exchanged on sensor-to-controller link and controller-to-actuator links.

In general, an NCS mainly consists of the controllers, plants, and communication

channels. The plants are usually continuous-time systems whereas the controllers are

discrete-time systems. The output of the plants are discretized and fed back to the

5

controllers via the communication channels. The controllers will send control inputs to

the plants within the current sampling period, if possible.

In an NCS, the controllers, sensors, and actuators can be distributed at different

levels of physical locations [19]. Multiple controllers or multiple plants can exist in the

same NCS. The framework of an NCS that includes one controller controlling one client,

one controller controlling multiple plants, and several controllers collaboratively

controlling one plant, is shown in Fig. 3. Also, there might be other users who do not

belong to the NCS share the same network.

For simplicity of the analysis of an NCS, the framework of an NCS in Fig. 3 can

be represented in a block diagram shown in Fig. 4. Figure 4 illustrates one of typical

structures of an NCS, a direct structure [20]. The NCS with a direct structure is

composed of a controller on one side of the communication channel and a remote system

containing a plant, sensors, and actuators on the other side. Applications, such as a

distance learning lab [21] and DC motor speed-control systems [22], follow this direct-

structure framework.

The other structure of an NCS, a hierarchical structure, is shown in Fig. 5.

Contrast to the direct structure, it has a remote controller at the remote system side. This

remote controller works as a complementary controller to the main controller. In this

structure, the main controller generates control inputs to the remote system, and the

remote controller executes the control inputs in a local closed-loop manner with possible

modifications based on the system feedback in real time. Under situations of large time

delays and data packet losses, the remote controller can generate compensational control

6

inputs to maintain the system performance with the absence of the main controller.

Hence, the NCS with the hierarchical structure has a better real-time performance than

the one with the direct structure. Applications of the NCS with the hierarchical structure

include mobile robots in [23], a modified teleoperation system in [24], etc.

Plan
t 1

Con
tro

lle
r

1

Sen
sor

1.1

Sen
sor

1.m

1
Actu

ato
r

1.1

Actu
ato

r
1.m

2

...

...

...

Other users
on the

network

Plan
t N

Con
tro

lle
r

N.q

Sen
sor N.1

Sen
sor

N.q1

Actu
ato

r N.1

Actu
ato

r
N.q2

...

...
Con

tro
lle

r
N.1

Plant i

Sensori.1

Sensor i.o
1

Actuatori.1

Actuatori.o
2

...

...

Plant j

Sensor
j.1

Sensor
j.p1

Actuator
j.1

Actuator
j.p2

...

...
C

ontroller
i ... j

...

...

...

Netw
ork

s Networks

Netw
ork

s Networks

Fig. 3. Representative framework of an NCS

7

User
Commands Communication

Channel

Actuator

Sensor

User Side Controlled Plant Side

Controller
+

–
Plant

Fig. 4. Block diagram of a typical NCS with a direct structure

User
Command

Communication
Channel

Remote
Controller Actuator

Sensor

User Side Controlled Plant Side

+
–

PlantMain
Controller

+
–

Fig. 5. Block diagram of a typical NCS with a hierarchical structure

This dissertation will focus on one of the most prominent and general forms of

the NCS with a direct structure that has a single controller and multiple plants. Several

control issues will be discussed and analyzed based on this framework. Hereafter, the

nodes containing the controllers will be presented as Server, and the ones containing the

sensors, actuators, and plants, Client, respectively. A representative framework of the

NCS in this dissertation is given in Fig. 6. In this architecture, all the clients compete for

resources, such as bandwidth, central processing unit (CPU) time, or battery to guarantee

their stability and system performance. Note that the results in this dissertation can also

be applied to the NCS with multiple controllers and multiple plants and the one with the

hierarchical structure with appropriate modifications.
8

Network

Server Controller

Client 1 Client 2 Client N. . .

A/D D/A A/D D/AA/D D/A

Plant 1 Plant 2 Plant N

Fig. 6. An NCS with a single server and multiple clients

1.2 INTEGRATED DESIGN ISSUES IN THE NCS
The NCS has advantages of remote operation and control, easy setup and

maintenance, increased flexibility and reliability, etc. However, the existence of the

networks or other communication channels will inevitably bring more complicated

control issues to the NCS such as network-induced time delays, packet losses, optimal

sampling periods, resource allocation, network scheduling, etc. Among all the control

design issues, the network-induced time delays and packet losses can be generally

categorized as the NCS’s stability issues, and the optimal sampling periods, resource

allocation, and network scheduling can be generally categorized as the NCS’s

performance issues. Note that these control issues can be coupled and integrated.

9

1.2.1. Network-Induced Time Delays
Unlike point-to-point connection in traditional control systems, the networks or

other communication channels in the NCS will consume longer time on data-packet

generation, transmission, processing, etc. For the success of the NCS, either the sensor

feedback or the control input must be sampled, encoded, and packed in a data packet,

transmitted over the network, and decoded and calculated at the receiver sides. This

process significantly outstands the NCS from the traditional control systems. The overall

time delays of an NCS can be very stochastic due to the nature of the network

communication. In general, the network-induced time delays in the NCS will include

(1) Data-packet-generation delays. Data at each node in the network need to be

sampled and capsulated in a single packet or multiple packets before being sent

out.

(2) Data-packet-queuing delays. When the network is occupied by other clients or

non-NCS users, the data packets will be hold and put in a buffer until the network

is available for the next transmission.

(3) Data-packet-transmission delays. The transmission delay is the time consumed

by the data packets transmitting over the network. It depends on lengths of

communication cables, sizes of the data packets, paths chosen by routers or

switches on the network, etc.

(4) Data-packet-processing delays. The processing delay mainly includes the data-

packet decoding time after its arrival at the receiver node and its corresponding

calculation time.

10

1.2.2. Network-Induced Packet Losses
The network-induced time delays is not the only control issue brought by the

networks, packet losses can be another one. In the traditional control systems, the data

are assumed never lost in the transmission. However, the data transmitted over the

networks can be lost during the transmission. In an NCS, when the nodes such as

sensors, actuators, and controllers exchange the data packets simultaneously over the

networks, data-packet collision, network congestion, and connection failure may take

place because of the network bandwidth limit and other uncertainties in the network. The

possible reasons of the packet losses can be

(1) Physical failures of connections. When communication cables break down for

physical reasons, links among each node are disconnected so that the data

packets over the network cannot be transmitted to their destination nodes.

(2) Frequent communication congestions. Communication congestions are inevitable

due to the share of the links and the network bandwidth limit. When the network

is busy or does not have enough bandwidth for current transmission, the data

packets are queued in a buffer and wait for a retransmission after a certain time

threshold. If retransmissions fail certain times, the data packets will be dropped

off by the network protocols. Overflown of the routers or switches on the

network can also cause the data packet losses.

(3) Disorder of the data packets. The nodes of the NCS do not designate a data

transmission path over the network for each transmission. The paths are chosen

by the routers or switches in the next available manner on the network.

11

Therefore, the later transmitted data packets may arrive first than the earlier

transmitted ones. The disorder of the data packets will be considered as packet

losses since they are outdated.

(4) Other network uncertainties. Uncertainties such as utilization of the network

from non-NCS users or electronic noise may also cause packet losses.

1.2.3. Optimal Sampling Periods
Traditional classical controls assume that the computer control systems have

periodical invariant sampling periods. This assumption simplifies the analysis of the

control systems. The system performance inversely depends on the sampling period. The

smaller the sampling period, the better the system performance. However, the existence

of the networks in the NCS complicates this relation between the system performance

and the sampling period. A smaller sampling period increases the numbers of the data

packets transmitted in the networks, which bring longer time delays overloading the

networks, and may destabilize the systems eventually.

A performance chart will provide a clear insight of choosing the optimal

sampling periods for an NCS [25]. Figure 7 illustrates a comparison of the system

performance versus the sampling period for the continuous-time control, digital control,

and NCS. Given a control law, the worst, acceptable, and best sampling periods can be

chosen based on control system specifications. The performance axis in Fig. 7 reflects a

subset of the control system specifications. Since the performance of the continuous-

time control is not a function of the sampling period, it is then a constant for the given

control inputs. The performance index only depends on the sampling period without

12

other uncertainties for digital control. In this case, the performance index is an inverse

function of the sampling period in simplicity. The performance degradation point A in

the digital control can be estimated based on relationship between the control system

bandwidth and the sampling periods. For the NCS, point B can be determined by

investigating characteristics and statistics of the network-induced time delays. As the

sampling period gets smaller, the network traffic loads become heavier, the possibility of

more contention time delays or packet losses increases, and worse performance results

will be exhibited. This causes the existence of point C in the NCS.

Fig. 7. Performance comparisons of the continuous-time control, digital control, and

NCS [25]

13

 From Fig. 7, one can see that the performance index of points B and C are at the

same level. Hence, for an NCS, point B should be chosen as it has the same performance

as point C but introduces less data packets in the network which may reduce the

possibilities of longer time delays and save the resource for other clients. Note that the

performance of the digital control might be degraded as the sampling period decreases to

the hardware limits of the system. Therefore, the sampling period of a digital control

system cannot decrease indefinitely. Figure 7 explains the system performance versus

the sampling period within the hardware limits of the system.

1.2.4. Bandwidth Allocation and Scheduling
One unique nature of the NCS is that it is a shared network. In general, several

clients in an NCS may share one single controller and the network. All these clients

compete for the CPU time or network bandwidth to guarantee the stability and system

performance. Because of limited computational resources and network bandwidth,

necessary resources could not be assigned to each client as required. Fair resource

allocation to each client can be critical to the stability and system performance of an

NCS. A certain sampling period is necessary to guarantee the stability and system

performance of each client. The stability and system performance depends not only on

control methodologies but also scheduling of all the data packets in the same link. An

optimal scheduling algorithm will not only reduce the time delays but also save more

bandwidth for other possible users on the network. To perform a better design of an

NCS, both of its control and communication aspects need to be considered [26].

14

Therefore, a co-design of both controls and network resource allocations must be applied

to the NCS design [27–28].

1.3 OBJECTIVES
Considering the discussed control issues and performance evaluation problems of

the NCS, design of an NCS can be very challenging and requires not only robust control

methodologies that compensate for the time delays and packet losses in the network but

also optimal network resources and scheduling algorithms to guarantee the performance

of collaborative operation of all the clients. To maintain the stability and even a better

system performance of the NCS, our objectives are to propose an effective control

method to fully compensate for the effect of the time delays and packet losses in the

network and present an optimized bandwidth allocation algorithm to achieve an optimal

system performance of the entire NCS. We expect our control methodology can

statistically compensate for various levels of the network-induced time delays and packet

losses and guarantee the stability of the NCS. Since the NCS contains multiple dynamic

systems as the clients that require various sampling periods and controller

considerations, we expect our performance evaluations can be fair to each client and

eventually to achieve the most optimal system performance of the entire NCS with

available network resources based on certain given scheduling algorithms. By fairness, it

refers to the bandwidth allocation of each client is based on certain criteria that balance

the network bandwidth according to preset priorities or weights. Because of the various

system specifications and dynamics, evenly distributed network bandwidth does not

guarantee an optimal system performance. The priority and weight of a client in the NCS

15

can be decided based on its system specification, expected performance, or user defined

priorities.

1.4 CONTRIBUTIONS
This research focuses on real-time output feedback control and optimal

bandwidth allocation of the NCS. The NCS in this research applies a steel-ball maglev

system, a DC motor speed-control system that contains four DC motors, and a wireless

autonomous robotic wheelchair as test beds to validate proposed control methodologies

and algorithms, and optimal bandwidth allocation. Each client has a unique identification

number within its data packets to distinguish from each other. We employ an Ethernet-

based local area network (LAN) as the communication network. User datagram protocol

(UDP) is applied as the communication protocol in the NCS. In this research, various

control issues involved in the NCS are studied. Accomplishments and developed

algorithms will be illustrated later in following sections.

Major accomplishments of this research include (1) validation of flexibility and

performance of a multiscale wireless/wired NCS that consists of three different types of

dynamic systems (fast, medium, and slow clients) with distinct time scales. (2)

presentation of an output feedback control methodology based on Markov chain to

stabilize and control the NCS. The random time delays in the controller-to-actuator and

sensor-to-controller links are modeled with two time-homogeneous Markov chains,

while the packet losses are modeled with Dirac delta functions. An asymptotic mean-

square stability criterion is established to compensate for the random time delays and

packet losses in both the controller-to-actuator and sensor-to-controller links

16

simultaneously. (3) presentation of bandwidth allocation and scheduling of the NCS to

guarantee the system performance of each client in the NCS. The bandwidth allocation

algorithm will fairly distribute the network bandwidth to each client based on optimal

sampling-frequency assignment under the KKT conditions. The scheduling algorithm

will schedule each client in a sequence to maximize the system performance and reduce

the idle network bandwidth.

1.5 DISSERTATION ORGANIZATION
This dissertation is organized as follow:

Section 1 provides a brief introduction of the control over networks and their

applications. Fundamental structures and current control issues of the NCS are

introduced. This section also gives the objectives and contributions of this research.

Section 2 explains basic research issues in the NCS with details based on the

discussions raised in Section 1. Existing research results are reviewed and compared

regarding to the stability and system performance of the NCS.

Section 3 presents details of fundamental concepts in the NCS such as the time

delays, packet losses, bandwidth definition, etc. This section also describes hardware and

software setups of the NCS that is used in this research. The experimental assumptions

and the architecture of the NCS are illustrated in details. Several analytical results are

given in the end.

Section 4 explains a Markov-chain-based output feedback control methodology

of the time-delay and packet-loss compensation of the NCS. An asymptotic mean-square

stability criterion is established with a Lyapunov approach. This section also presents an

17

implementing control flow of the proposed output feedback controller. Experimental

results are illustrated to verify the effectiveness of the proposed control method.

Section 5 presents exponential and quadratic approximations for the purpose of

bandwidth allocation and scheduling of the NCS. A scheduling algorithm is given to

achieve the bandwidth allocation methodology that is proposed for experimental

verification. Simulation and experiments are conducted to verify the presented

approximations and their performance.

Section 6 concludes and summarizes the achievements and contributions of this

dissertation. Suggestions for future work and research direction are discussed at the end

of the section.

18

2. LITERATURE REVIEW AND RESEARCH MOTIVATION

In control applications of modern industry, functional nodes such as sensors,

actuators, and controllers are geographically distributed. For the success of a distributed

control application, all the nodes have to exchange information through communication

medium. Although there are great potentials in applications of the NCS, several technical

challenges in performing real-time closed-loop control of the NCS should be addressed

in advance: (1) networks have inevitable time delays and packet losses that are

detrimental to the real-time controls, (2) difficulties in assigning required network

bandwidth and other resources to the clients because of the sharing of finite network

bandwidth and computational resources, and (3) difficulties in deterministically schedule

data packets in the network to avoid congestions and preemption of any data packets.

Success of an NCS relies on the performance of the network, optimal time-delay

or packet-loss compensation algorithms, fair resource allocation, collaboration of

multiple clients, etc. Variability of the time delays and packet losses make the analysis

and design of an NCS difficult. Failure of the resource allocation and scheduling of an

NCS will also deteriorate the entire system performance. Therefore, the co-design of the

optimal control and resource allocation is necessary to a successful design of the NCS.

2.1 REVIEW OF TIME DELAYS AND PACKET LOSSES
The introduction of a communication network into a control system has brought

many advantages, such as no additional dedicated wiring, reduced weight and space

requirement, ease of system diagnosis and maintenance, increased system agility, etc. On

19

the other hand, the communication network inevitably presents more constraints such as

random time delays and packet losses that make the analysis and design of the NCS

challenging. Unpredictable time delays, packet losses, and sporadic jitters in data

transmission are some of the control issues associated with the use of the network as a

communication medium. The real-time closed-loop control over the networks should

accommodate these uncertainties for satisfactory performances. These random time

delays and packet losses can degrade the system performance or even destabilize the

system. How to compensate for the random time delays and packet losses has become

one of the active research areas of the NCS.

Random time delays can be divided into three major categories, time delays

shorter than one sampling period, time delays longer than one sampling period but finite,

and infinite time delays which can also be considered as packet losses. The analysis and

modeling of random time delays can be performed with a deterministic model or a

stochastic model.

Zhang et al. analyzed several fundamental issues of the network-induced time

delays in the NCS in [29]. The time delays were assumed to be deterministic, and the

controller gain was given as a constant. The relationship between the sampling

frequency and the time delays was captured using a stability region plot. Methods to

compensate for network-induced time delays using a time-domain solution of a plant

model were discussed, and experimental results over a physical network were presented.

In [30], the NCS was modeled as a switched system, and the controller gain was also set

to be a constant as in [29]. Lin et al. discussed stability and disturbance attenuation

20

issues for the NCS with random time delays and packet losses. The NCS was considered

a discrete-time switched system, and then the stability and performance of the NCS

could be reduced to corresponding problems for the switched systems. The random time

delays were modeled with Markov chains, and the analysis mainly focused on the delays

shorter than one sampling period in [31–32]. The control inputs were derived by setting

up cost functions of linear-quadratic regulation (LQR) and linear-quadratic Gaussian

(LQG) problems. With the proposed methods, Nilsson analyzed distributed real-time

control systems and designed controllers taking into account timing behaviors of the

network [31]. The results in [31] had been expanded to the case with the time delays

longer than one sampling period as in [33]. Hu and Zhu considered two cases of system

with either full-state information or partial-state information. The controllers were

shown to render corresponding the NCS exponentially mean-square stable. An optimal

estimator of the system state was also presented when the system had partial-state

information and time delays longer than one sampling period.

In [29–33], the plants were modeled in continuous-time domain. But in practical

NCS applications, the systems more or less involve discrete-time domain specifications.

These research results from the continuous-time domain could not be directly

transplanted to the discrete-time domain to guarantee the stability and system

performance. Therefore, control methodologies of the NCS in the discrete-time domain

have also been active research areas in the NCS.

Xiao et al. proposed two types of controller-design methods for the NCS in [34].

The authors presented a V-K iteration algorithm to design stabilizing controllers for

21

specially structured discrete-time jump linear systems, which were used to model control

systems with bounded random time delays in feedback loops. Zhang et al. proposed an

output feedback method to analyze the time delays of an NCS and assumed the random

time delays could only take integer values [35]. Necessary and sufficient conditions of

stochastic stability for the systems were obtained in terms of a set of Linear Matrix

Inequality (LMI) with matrix inversion constraints. Shi et al. also proposed an output

feedback controller design method for the NCS with random time delays [36].

Conditions of stochastic stability were derived in form of a set of LMIs with nonconvex

constraints. The product reduction algorithm was employed to obtain two-mode-

dependent output feedback controller. In [37], robust control problem of the NCS with

norm-bounded uncertainties was studied. A stochastic stability analysis was addressed,

and 2H and H∞ norms for this system were defined. The 2H and mixed 2 /H H∞

control problems were solved in form of a set of LMIs with nonconvex constraints.

In [38], Hu et al. discussed the stabilization problem of the discrete-time NCS

with partly known time delays. A delay-distribution-dependent criterion for the mean-

square stability of the NCS was derived by using a Lyapunov-Krasovskii functional

approach and LMI technique. Yang et al. studied the NCS with unreliable data

communications in [39]. An observer-based controller was designed to exponentially

stabilize the NCS in the sense of mean square and also achieved the prescribed H∞

disturbance attenuation level. An estimation method was introduced to compensate for

the lost data of the NCS in [40]. The controller design was considered for both the

22

available and unavailable states, respectively. Some sufficient conditions were derived so

that the closed-loop systems were exponentially mean-square stable.

In [41], an integral control of the NCS with the random time delays was studied.

The necessary and sufficient conditions were found for zero-state mean-square

exponential stability of the NCS. Ye et al. also modeled the time delays and packet losses

in the NCS with Markov chains in [42]. Without the augmented state method, however,

the computation effort was reduced. The mode-dependent controller for the closed-loop

NCS was presented in a LMI formulation via Schur complement theory. In [43], Xiong

and Lam proposed two types of packet-loss models—the arbitrary model and the

Markov-chain model. The stability conditions of the NCS with the packet losses were

given based on a Lyapunov approach. Liu et al. proposed a time-delay-compensation

technique using modified model predictive control method [44]. The packet losses were

compensated for with predicative packets generated from the same model. The fixed and

random time delays were both studied in the research. In [45], Schenato proposed an

optimal estimation design for the NCS. The stability of these estimators depended only

on an overall packet-loss probability. The algorithms to compute the packet-loss

probability and estimator in terms of the error covariance were given as well.

2.2 REVIEW OF BANDWIDTH ALLOCATION AND SCHEDULING
Traditionally, a control design problem is decoupled from software design and

implementation considerations. This separation allows control and computer

communities to focus on specific problems. Controller designers disregard

characteristics of the implementation, computational, and communication resources, but

23

focus on controller itself. On the other hand, real-time operating system (RTOS)

designers take control loop as a periodic task with hard deadlines [46]. In an NCS,

however, these two fields are correlated in a closer way so that their separation will lead

to poor system performances. Therefore, co-design of the controllers, resource

allocation, and control task scheduling is necessary to the design of an NCS.

Al-Hammouri et al. proposed a bandwidth allocation scheme for the NCS in [47].

The authors formulated the bandwidth allocation of an NCS as a convex optimization

problem. While ensured stability of each client in the NCS, the scheme allocated the

bandwidth in a manner of maximizing the aggregate performance of the entire NCS.

Velasco et al. presented a dynamic control approach to achieve the bandwidth

management which allowed control loops to consume network bandwidth according to

the dynamics of controlled process while attempting to optimize overall NCS

performance [48]. Wong and Brockett investigated a state-estimation problem involving

finite communication capacity constraints in [49]. A concept of a finitely recursive

coder-estimator sequence was introduced. In [50], Wong and Brockett further introduced

the concept of containability to tackle problems of stabilization of an NCS through

limited-capacity communication networks.

Martí et al. applied a feedback-based method to allocate resources to controllers

as a function of current states of the NCS in [51]. Experimental results showed that the

scheme increased and maximized the control performance, saved the resources when

perturbations occurred, and incurred negligible overheads. Castané et al. applied a

feedback scheduler to determine optimal periods of the plants controlled by arbitrary

24

control laws in [52]. The resource management was shown as an optimization problem,

where objective functions related the sampling periods to transient responses of the

controlled plants. Belzarena et al. studied the network bandwidth allocation with time

reservations in [53]. The situation involved fully distributed solutions over an arbitrary

network topology. The allocation was in a given auction reserved for the entire duration

of network connection.

One of the very first papers discussed controllers and schedulers is [54]. Seto et

al. considered an optimal sampling period selection for a set of controllers of an NCS. A

cost function, approximated with an exponential function of the sampling periods, was

used to measure the performance of each client in the system. Park et al. presented a

scheduling method for the NCS with three types of data—periodic data, sporadic data,

and messages (non-real-time asynchronous data such as system broadcasting messages)

in [55]. The maximum allowable time-delay bound was used as a basic parameter for the

scheduling method, which guaranteed stability of the NCS and was derived from

characteristics of given plants. Branicky et al. proposed a co-design approach treating

communication protocols and interacting controlled systems as a coupled system in [56].

The communication issues such as network bandwidth, quantization, survivability,

reliability, and time delays were considered simultaneously with the control issues such

as stability, performance, fault tolerance, and adaptability.

Walsh and Ye studied scheduling of the NCS in [57]. Performance gains were

demonstrated by dispensing with queues and dynamically scheduling network traffic.

Error bounds of a static scheduler and a dynamic scheduler were defined for stability

25

analysis of the NCS. In [58], an approach was proposed to implement dynamic

scheduling policy for network bus with performance guaranteed. Weiss et al. presented

an automata-based scheduler automatically generated from a model of controlled plant

and controller. The proposed method allowed adjustments to dynamic conditions such as

varying disturbances and network load besides the ensured performance. In [59], Seto et

al. considered optimal sampling period selection for a set of controllers. The system

performance was approximated by an exponential function in terms of the sampling

frequency. The optimal sampling frequencies were calculated from the KKT conditions

with convex constraints. Kim et al. proposed a scheduling method to obtain a maximum

allowable delay bound for a scheduling of the NCS [60]. The proposed method was

formulated in terms of LMI and could yield an improved delay bound. The presented

method could handle periodic data, sporadic data, and non-real-time data. In [61], the

schedulability of real-time data was defined, and scheduling algorithms were proposed

for efficient transmission of a real-time mixed traffic. Simulation showed enhancements

in the average network utilization and packet-loss rate for the real-time data.

2.3 MOTIVATION
As discussed above, some researchers [29–32] modeled the time delays as

constant parameters, which could not reveal the stochastic nature of the network-induced

time delays of an NCS. Other methods [34–40] treated the time delays as random

variables governed by a Markov chain or other probability functions. The authors

assumed that the Markov-chain model of the time delays could intuitively include the

packet losses as well. However, the packet losses actually change the structure of the

26

models. Hence, the Markov-chain-based packet-loss model assumes that the packet-loss

information can be included by the same probability transition from the time-delay

perspective will not closely reflect the nature of the NCS.

Meanwhile, various cost functions or performance index functions were applied

as objective functions of the network bandwidth allocation problems with certain

constraint conditions. However, these methods did not explicitly consider the effects

from the network-induced time delays and packet losses brought by frequent data-packet

transmissions or higher sampling frequency of a client. Elimination of these time delays

and packet losses in the cost functions or performance index functions could possibly

dispel the network effects on the system performance in the perspective of the NCS.

Considering possible limitations of previous modeling methods of the time

delays and packet losses, and resource allocation and scheduling algorithms, this

research aims to propose an real-time feedback control, optimal resource allocation and

scheduling algorithm to fulfill control specifications and design goals of an NCS so that

the time delays and packet losses can be modeled and compensated for faithfully and the

time delays and packet losses brought by frequent data-packet transmissions can be

treated as an essential parameter of the system performance index functions. Developed

algorithms will be illustrated and experimentally verified in Sections 4 and 5 of this

dissertation.

27

3. KEY ELEMENTS, EXPERIMENTAL SETUPS, AND ANALYTICAL

RESULTS OF THE NCS

Increment in geographical distribution of resources requires modern industries to

integrate communications and different aspects of control-system design into various

levels of industry operations. These distributed resources need to be accessed and

controlled through a communication network. This special system architecture with

distributed sensors, actuators and controllers via a communication network has caught

the interests of many universities and industries. These communication networks with

advanced capabilities for reliability and superior performance enable industrial process

controls to make use of concept of distributed real-time controls across a large

geographic distance. Figure 8 illustrates a fundamental structure of the distributed

systems. Users, servers, and clients can all be geographically distributed via appropriate

communication media but have full access to each end of the communication media. The

users cannot only send commands to either the servers or the clients to control clients’

behaviors but also monitor system responses in real time. The servers and clients

exchange sensor measurements and control inputs via the network to maintain system

stability and performance.

For the research in this dissertation, we assume that the users and servers are

combined together under the structure in Fig. 8. Therefore, the NCS hereafter will only

contain the servers and clients in its framework.

28

Users

ClientsServers
NCS

InternetIn
ter

ne
t

Control data

Co
m

m
an

d d
ata

Com
m

and data

(commands)

(controller) (actuators, sensors)
Fig. 8. Internet-based teleoperation system

As discussed in Section 2 and illustrated in Fig. 3, an NCS can include several

scenarios that can be categorized by the number of servers and clients involved in the

entire framework as follows,

(1) Single-server-single-client (SSSC) framework. This is the simplest scenario of an

NCS. On one end of the network is a single server, and the other end, a single

client. This scenario requires time-delay and packet-loss compensation but no

resource-allocation mechanisms since all the network bandwidth and CPU time

will be assigned to this single client.

(2) Single-server-multiple-client (SSMC) framework. This is a scenario of an NCS

that has a single server on one end of the network and multiple clients on the

other end. This scenario could also be phrased as a collaborative NCS. It refers to

a system that needs cooperation of multiple clients which involves the resource-

allocation mechanisms. The network bandwidth and CPU time shall be balanced

29

in a fair manner to guarantee each client’s stability and performance as well as

schedulability of the entire NCS.

(3) Multiple-server-multiple-client (MSMC) framework. This scenario refers to the

most complicated application of an NCS. To successfully achieve the control

requirements, multiple servers need to cooperatively manipulate multiple clients

in the framework. This framework requires more robust-control algorithms, and

resource-allocation and scheduling mechanisms. The resource allocation and

scheduling shall be dynamically decided in real time as how to assign servers’

resources interchangeably.

In this research, we will focus on the SSMC framework. Regardless of the

applications domain of the NCS, this SSMC framework raises several fundamental

issues, such as collaborative control and interactivity, time-delay and packet-loss

compensation, resource allocation, scheduling, etc. Among all these issues, time-delay

and packet-loss compensation of the NCS are some of crucial factors that affect stability

of each client in the system. Resources allocation and scheduling are the factors that

affect performance of each client and further the entire NCS. Especially for the SSMC

framework, the clients will suffer from different levels of time delays or packet losses

due to their variant geographical distances to the server, the network conditions, the

numbers of clients in the NCS, and the resource assigned to each client. With control

issues mentioned here, analysis and modeling of an NCS with the SSMC framework

could be difficult to be implemented. To simplify the analysis and modeling procedures,

30

following assumptions will be made throughout the dissertation without loss of

generalities.

(1) Quantization errors in data-packet generation and transmission will be neglected.

(2) All the nodes in the NCS have the same clock resolutions.

(3) Network conditions of all the clients are at the same level regardless of the

geographical distances and their system specifications.

(4) All the sensor measurements and control inputs are sent within one single data

packet during each control iteration.

(5) The sensor measurements are strict clock-driven tasks, and the control inputs and

actuator updates, strict event-driven tasks.

The NCS in this dissertation includes a steel-ball maglev system, a DC motor

speed-control system that contains four identical DC motors, and an autonomous

wireless wheelchair robot as test beds as shown in Fig. 9. Each client has a unique

identification number within their data packet to be distinguished from each other. We

employ an Ethernet-based local area network (LAN) as the communication network.

User datagram protocol (UDP) and socket programming is applied as communication

carrier in the NCS. The wired and wireless TAMULink are chosen to be the data-

exchange media at Texas A&M University. The wired TAMULink is the LAN with IEEE

802.3 standard, and the wireless TAMULink is the wireless LAN (WLAN) with IEEE

802.1x standard.

As shown in Fig 9, Clients 1, 2, 4, 5, and 6 represent the wired clients in the NCS

that are connected to Server via a LAN. Client 3 represents the wireless client that

31

includes the wireless robotic wheelchair and a laptop that sends and receives data

packets over the wireless network. Since the laptop of Client 3 runs Windows XP

operating system (OS), which cannot communicate with Linux OS directly, an

Interoperability Suite including a computer operated as an intermediary is set up.

WLAN

Interoperability Suite
(Samba)

Server
(Controller)

Client 3
(Robotic Wheelchair)

L
A
N

Client 1
(Ball maglev system)

Client 2, 4, 5, 6
(DC motor speed-control system)

Fig. 9. The NCS architecture with three types of clients

3.1 KEY ELEMENTS

As discussed earlier, the network brings more complex dynamics into the NCS.

Time delays and packet losses are the direct effects introduced by the network. As a

32

matter of fact, these two facts play crucial roles during the design of an NCS.

Meanwhile, the structures of the NCS, SSMC and MSMC, require extra control efforts

on the resource allocation and scheduling to maintain stability and desired system

performance of an NCS.

3.1.1. Time Delays and Packet Losses
To better understand the structure of the network-induced time delays and packet

losses of the NCS, consider several control iterations as shown in Fig. 10, whereas the

lines with an arrow indicate successful transmission, and the lines with a dot, the packet

losses. The red color represents the sensor-feedback data packet from Client to Server,

and the green color, the control-input data packet from Server to Client. Table 1 gives

nomenclatures of the timing components in Fig. 10.

Figure 10 also illustrates details of the communication in the NCS. In the

beginning of experiments, Server waits for the data packets from either Client or

Interoperability Suite after Windows sockets setup and UDP connection actives. Client

collects sensor measurements from the controlled plant and encapsulates the data

segment with necessary headers into one single packet that is ready for transmission.

The data packet is then transmitted to its destination if the network is idle or be held in a

queue if the network is busy. If no packet losses take place, the data packet will be

transmitted through the network to its destination node with a certain amount of

propagation delays. The destination node will decode the data packet and implement

corresponding calculations. This process achieves the data transmission and calculation

from Client to Server. The other transmissions in Fig. 10 follow the same steps.

33

Server Client

TCprep

TCwait

TCtrans

TSprep

TSwait

TStrans

TSproc

TCproc

h

TCprep

TCwait

TCtrans

TCproc

h

TCprep

TCwait

TCtrans

TCproc

h

TSprep

TSwait

TStrans

TSproc

TSprep

TSwait

TStrans

TSproc

Fig. 10. Time-delay components of the network in several periodic control iterations

34

Table 1. Nomenclatures of the timing components

Symbol Description

T*prep
Time taken by Client, Server, or Interoperability Suite to prepare a
requested message.

T*wait
Time taken by Client, Server, or Interoperability Suite to wait for network
access.

T*trans
Transmission time of a data packet from Client, Server, or Interoperability
Suite to its destination node.

T*proc
Time taken by Client Server, or Interoperability Suite to process a data
packet.

h One sampling period of Client.

 * can represent C (Client), S (Server), or IS (Interoperability Suite) depend on the content.

In Fig. 10, the first control iteration with a sampling period h indicates a general

case of the network-induced time delays. The second and third control iterations in Fig.

10 indicate two possible cases of the packet losses in an NCS. The second control

iteration shows that the data packet from Client to Server is lost. Consequently, Client

will not receive an updated control input from Server because of Server is performed in

event-driven based. The details of event-driven based server will be given in Section

3.1.3. The third control iteration in Fig. 10 shows the data packet from Server to Client is

lost so that Client will be unable to actuate the plant with the updated control input.

Therefore, whenever a data packet is lost in either the client-to-server link or the server-

to-client link, Client will be unable to update itself with the latest control input.

Hereafter, caτ and scτ represents the random time delays in the controller-to-actuator

35

and sensor-to-controller links, respectively. caδ and scδ represents the packet losses in

the controller-to-actuator and sensor-to-controller links, respectively.

From Fig. 10, the total time delay τ in one control iteration is given by

wait trans proc prep wait transprep procTC TC TC TS TS TS TS TCt = + + + + + + + . (1)

In Eq. (1), the preparation time, waiting time, and transmission time are introduced by

the network. The processing time is the time interval for Client or Server to process all

the data packets. Compared to the traditional controls, the preparation time, waiting

time, and transmission time can be classified as the network-induced time delays of an

NCS.

The time components in Eq. (1) are difficult to be measured in practice.

However, it is possible to measure the time from Server to Client and vice versa by

applying a timestamp in the data packet. Therefore, Eq. (2) gives a simple way to

measure τ in each control iteration

sc ca pτ τ τ τ= + + . (2)

caτ includes TCprep, TCwait, and TCtrans. scτ includes TSprep, TSwait, and TStrans. pτ is the

processing time that includes TSproc and TCproc. Note that τ can be random with respect to

the control iterations due to the stochastic nature of the network.

3.1.2. Bandwidth Allocation and Scheduling
The NCS is expected to provide more functionalities and better performance with

available resources, such as network bandwidth, CPU time, and batteries. As discussed

earlier in this section, this research focuses on the SSMC framework of an NCS so that

36

all the clients compete for the CPU time or network bandwidth to guarantee their

stability and desired system performance. Because of the limits of the computational

resources and network bandwidth, sufficient resources could not be assigned to each

client as required. Fair resources allocation can be critical to the stability and system

performance of an NCS.

Network Bandwidth Definition
From [26], relation between the sampling periods and BUs can be indicated as

k
k i
i k

i
b

h
τ

= , (3)

where k
ib is the BU, k

ih is the sampling period, and k
iτ is the total time delay defined in

Eq. (2). The subscript i indicates index of the clients in the NCS, and the superscript k

indicates the control iterations. Then the BU k
ib represents a portion of the network

bandwidth assigned to Client i at the control iteration k. From Eq. (3), given a certain

amount of time delays, a small BU implies a large sampling period and more bandwidth

available for other functionalities and control purposes in the same network. If the BU

approaches the network bandwidth saturation threshold, the network will be overloaded

and induce more time delays or packet losses.

The BU definition in Eq. (3) is associated with and unique for the NCS. It is

similar to the execution utilization defined in an RTOS for the purpose of schedulability

test, but not so much as the network bandwidth defined from a computer-science

perspective.

37

From the perspective of RTOS scheduling, the task execution utilization or CPU

utilization is defined as [62]

i
i

i

ce
h

= , (4)

where ie is the execution utilization, ic is the task execution time, and ih is the period

of tasks. The tasks are usually periodic control or calculation tasks of the RTOS. If

summation of the execution utilization of each task does not exceed schedulability U of

corresponding implemented algorithms, so that
1

N
i

ii

c U
h=

≤∑ , then hard-time deadline of

the tasks can be guaranteed and all the tasks can be scheduled.

Note that, the BU definition of an NCS contains not only the processing time on

processors, but more importantly the propagation delays introduced by the networks.

However, the execution utilization from the RTOS perspective only considers the

processing time on the processors. According to Eqs. (3) and (4), one can see that the

RTOS execution utilization is smaller than the NCS BU. The difference is given by

1 1 1 1 1
– –

sc ca p p sc caN N N N N
i i i i i i i i

i i i i ii i i i i

c
h h h h h
τ τ τ τ τ τ τ

= = = = =

+ +
∆ = = =

+∑ ∑ ∑ ∑ ∑ . (5)

The network BU definition with network capacity consideration is

8i
i

i

Bb
BW h

×
=

×
, (6)

where iB is size of the data packet from Client i in bytes, BW is the capacity of

bottleneck link in the network backbone in megabits per second (Mbps), and ih is the

time interval of data-packet transmissions in the network.
38

The following experiments are conducted to discuss differences among these

definitions in Eqs. (3), (4), and (6). Detailed experimental setup and the DC motor

specification can be found in Section 3.2. The network propagation delay sc ca
i iτ τ+ ,

tested by Ping, is about 0.48 ms. The processing time of each control iteration is about

0.866 ms. In this experiment, the size of data packet is 68 bytes. We assume that the

capacity of the bottleneck link is 40 Mbps. Comparisons of various BU definitions are

shown in Fig. 11. From Fig. 11, the NCS BU is the most conservative resource bound of

an NCS. If the NCS BU can be guaranteed, the other two specifications will be

guaranteed as well. Hence, the NCS BU can be applied as the primary resource for the

allocation purpose. Hereafter, the NCS BU will be applied for the purpose of designing

the bandwidth allocation algorithm and will be rewritten as BU for short.

Scheduling Algorithms
Roughly speaking, the scheduling problems in an NCS are to assign a

transmission schedule to the sensors, actuators, and controllers on the network based on

certain scheduling algorithms. A scheduling algorithm is a set of rules that determines

transmission order of the data packets based on their execution times and deadlines. In

general, a scheduling algorithm can be categorized as a static scheduling algorithm or a

dynamic scheduling algorithm. A static scheduling algorithm assigns the tasks a fixed

scheduling priority in the beginning of task execution. The scheduling sequence will not

change while the system executes the given tasks. A dynamic scheduling algorithm

redistributes or reorders the tasks’ scheduling priorities or sequences during their

39

executions. The redistribution or reordering is usually based on certain given policies of

the scheduler.

Fig. 11. Comparisons of various BU definitions

Table 2 gives comparisons of several existing scheduling algorithms. However,

these scheduling algorithms could not promise a satisfactory performance of an NCS.

Since bandwidth allocation and scheduling are correlated aspects in the NCS, a

scheduling algorithm, which is dynamic and flexible to the BU, would be expected.

3.1.3. Clock-Driven and Event-Driven Tasks

Concepts of clock-driven and event-driven tasks are originally from the RTOS

task scheduling. Here in the NCS, definitions of the clock-driven and event-driven tasks

are borrowed and revised from the RTOS task scheduling.

34%

22%

0.35%

40%

26%

0.40%

45%

29%

0.45%

60%

39%

0.60%
0%

10%

20%

30%

40%

50%

60%

70%

NCS BU CPU Utilization BU with Capacity

Case 1 (h = 4.00 ms) Case 2 (h = 3.40 ms) Case 3 (h = 3.00 ms) Case 4 (h = 2.26 ms)

40

Table 2. Scheduling algorithms comparisons

Algorithm Description RTAI1
Compatible

Global
Information Schedulability2 Priority

First-In-
First-Out
(FIFO)

The serving
processes are
based on the order
of the queue.

Yes No – Dynamic
priority

Round
Robin
(RR)

Executes tasks in
turns within a
preset time-slice
defined by the
scheduler.

Yes No – Same
priority

Earliest
Deadline

First (EDF)

Executes the task
with the shortest
deadline first.

No3 Yes 1 Dynamic
priority

Rate
Monotonic

(RM)

All the fixed
priories are preset
prior to the run
time.

No4 Yes 1/(2 1)nn − Static
priority

1 RTAI stands for real-time application interface, and can be found in Section 3.2.
2 The schedulability of EDF and RM can refer to [62].
3,4 Could be supported with necessary revisions, hard and easy to implement, respectively.

A clock-driven task’s update or execution decision is made at a specific time

instant. The time instant is decided prior to the system’s implementation. In the NCS, the

plant outputs of a client are generally considered as clock-driven tasks, which are strictly

executed at each sampling period. The plant outputs of an NCS are not affected by the

time delays and packet losses in the network. The plant outputs will be generated at each

sampling period in an almost guaranteed manner.

An event-driven task’s update or execution decision is made after certain

specified events take place. The control-input calculations of Server and the actuator

updates of Client in the NCS can be considered as event-driven tasks. The control-input
41

calculation of Server will be activated after the sensor-feedback packets of Client arrives

at Server. If the sensor-feedback packets are lost in communication, Server will be

unable to calculate the control inputs during the current control iteration because of lack

of the current information of the plant. Similarly, the actuator update of Client can only

be executed after the control-input packets from Server arrive at Client.

Table 3 gives a clear view of each category of the tasks in the NCS. The hosting

node of each data packet and its execution conditions are also given.

Table 3. Type definition of the tasks in an NCS

Name of task Type of task Hosting node Execution condition

Plant outputs Clock-driven Client Sampling period

Control-input
calculation Event-driven Server Arrival of plant-output packet

Actuator updates Event-driven Client Arrival of control-input packet

3.2 EXPERIMENTAL SETUPS

3.2.1. Hardware Setups
As shown in Fig. 9, Client 1, the ball maglev system levitates a steel ball at a 4-

mm equilibrium position, which is measured from the bottom of electromagnet to the top

of steel ball. Client 2, 4, 5, and 6, the DC motor speed-control systems, maintain the

speed of the DC motors at 10 resolutions per second (rps). Client 3, the wireless

autonomous robotic wheelchair, follows a pre-set path or explores an unknown

42

environment with its real-time path-planning capability. These three clients require

various levels of sampling frequencies to maintain their stability and system

performance. Client 1 requires a fast sampling frequency; Client 3, a slow sampling

frequency; while Client 2 is in the middle. This structure brings more challenges to the

NCS due to various requirements from the combination of fast, medium, and slow

dynamic systems.

Ball Maglev System
Client 1 is the ball maglev system shown in Fig. 12 [63]. In order to levitate the

steel ball at a predetermined steady-state equilibrium position with an electromagnet, the

ball maglev system consists of a personal computer (PC), a position sensor, a pulse-

width modulation (PWM) power amplifier, and power supplies to drive a light bulb and

an electromagnetic actuator. The optical position sensing unit consists of an incandescent

light source, a CdS photocell, and a 15-V DC power supply.

Fig. 12. Ball maglev system

43

DC Motor Speed-Control Systems
The DC motor speed-control systems are shown in Fig. 13 [64]. The speed of the

DC motor is directly proportional to supplied voltage, which is fed to a PWM amplifier.

This drives the motor at a speed depending on the commanded voltage. The shaft

angular displacement per unit time is sampled using an encoder. A PCI-6221 data-

acquisition (DAQ) card by National Instruments (NI) enables the test bed to send out

sensor-feedback data packets and receive control-input data packets through the LAN.

Fig. 13. DC motor speed-control systems

Wireless Autonomous Robotic Wheelchair
The wireless autonomous robotic wheelchair in Fig. 14 is constructed on the

frame of an Invacare Ranger IITM electric powered wheelchair with the length, width,

and height of 70 cm, 48 cm, and 55 cm, respectively [65]. It is capable of supporting a

weight of approximately 100 kg. Two independent 12-V DC motors are the actuators to

44

drive front wheels. The front wheels’ diameter is 31.75 cm. The speed of the motors is

controlled by the output voltage of the PWM amplifiers on board of two Diverse

Electronic’s modular MC-7 motor controllers. In the rear are two 18-cm-diameter caster

wheels. A NI USB-6501 DAQ card performs all data-acquisition and control functions.

Three Sharp GP2D15 and two Sharp GP2D12 infrared distance-measuring sensors,

mounted on a sensor bracket in front of the wheelchair, are used to detect obstacles in the

path. The GP2D15 detects obstacles at a fixed range of 24 cm, and the GP2D12 detects

obstacles at a range from 12 cm to 80 cm. Seven PDV-P5001 CdS photocells

manufactured by Advanced Photonix are assembled to equip the robotic wheelchair with

capability of tracking a specific light. All the seven photocells are distributed evenly by

22.5° on the bracket.

Fig. 14. Wireless autonomous robotic wheelchair

The control system of the wireless autonomous robotic wheelchair is shown in

Fig. 15. Client collects the sensor signals from the photocell, the infrared sensors, and

45

the Hall-effect sensors through the USB-6501 card. Then, the client laptop encapsulates

the sensor data into one single data packet and sends it to Interoperability Suite through

the WLAN. Interoperability Suite repacks the sensor data packet with necessary header

changes, and then transfers the sensor-feedback data packet to Server. The control-input

data packet will be sent back to Client through Interoperability Suite following the

similar pattern.

Client
laptopController MC-7 motor

controllers
Wheel
chair

Hall-effect
sensors

USB-
6501

Infrared
sensors

Photocell

W
L
A
N

Interope
rability
Suite

L
A
N

Fig. 15. Robotic-wheelchair control system

3.2.2. Software Setups
To ensure the real-time operation of Server, Linux with RTAI [66] is found as a

competitive OS environment. RTAI modifies the Linux kernel to make it a real-time

operating environment. RTAI offers basically the same functionalities as a Linux kernel

core, but adding features of a real-time OS. Linux Redhat 7.3 with RTAI 3.4 is chosen to

be the OS running on Server, and Linux Ubuntu 6.10 with RTAI 3.4, on Client 1, 2, 4, 5

and 6. The control and measurement device interface (Comedi) [67] is applied as drivers

46

and libraries of data acquisition on Clients. The programs of Server and Clients 1 and 2

are developed in C. The programs of Client 3 are operated on a Dell Insprion 1525

laptop computer with an Intel Core 2 Duo T7250 2.00 GHz processor and 4 GB RAM.

The programs of Client 3 are developed by Visual Basic and Visual C++ 2008 on the

Microsoft Windows XP OS. The programs of Client 3 are built on Windows XP while

Server program is built on Linux. Since Windows and Linux cannot communicate

directly, Samba [68] is chosen to be Interoperability Suite in Fig. 9. Samba 5.0 is

installed on a Dell GX240 desktop computer running with Ubuntu 6.10 with RTAI 3.4 as

Interoperability Suite. The programs for Server, Clients, and Interoperability Suite are

listed in Appendix A.

3.2.3. Network Protocols and Data-Packet Structures
UDP provides a datagram service that emphasizes reduced latency over

reliability. It is a connectionless protocol. A datagram can be sent at any moment without

preparations. UDP does not guarantee that the datagram will be delivered to its

destination host. The datagram can also be delivered in an incorrect order. Although

UDP is unreliable, it has fewer headers than Transmission Control Protocol (TCP). UDP

does not have retransmission mechanism as TCP. However, the UDP connection is faster

and introduces smaller propagation delays to an NCS. For instance, if one packet in the

network cannot reach its destination node at its first try, no retransmission of the data

packet will be done with UDP protocol because of lack of the acknowledgment message.

Then to the NCS, this specific data packet is lost. The UDP protocol does not try to

recover the losses of data packets, so that transmissions of the next available data

47

http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Latency_(engineering)

packets will not be affected. However, for TCP with the acknowledgment and

retransmission mechanism, this data packet will be retransmitted for a certain amount of

times (3 times for the current TCP/IP protocol suite) until the retransmission threshold is

reached. All the retransmissions take time and will put the other data packets in a buffer

for a certain amount of time. Therefore, the time delays of other data packets will be

longer than expected. The trade-off between the TCP and the UDP for an NCS is reliable

connections and longer propagation delays vs. less reliable connections and faster

transmissions. Depending on specifications and system requirements of various NCS

applications, UDP can be a reasonable choice as a suitable protocol. For some NCSs,

UDP is a preferred protocol for better performances [67]. Due to real-time characteristics

of our NCS, UDP is chosen to be the protocol for experiments. More details regarding to

comparisons of TCP and UDP and reasons to choose the UDP as the communication

protocol can be found in [28, 69–70].

Data-packet structures of Server, Client, W Client (wireless client) and

Interoperability Suite are given in Fig. 16. The 802.3 header, 802.1x header, IP header,

and UDP header are standard Internet protocol headers. Control data and sensor data

segments are data segments generated by Server and Client, respectively. Timestamp is

set up by Client to track total time delays and execution times in the current control

iteration. Identifier segment is to identify Client for data packets matching purpose. BU

segment contains current BU information of the clients. Type segment is used to identify

whether a client has a fixed sampling frequency or a variant one. SP segment contains a

new sampling period assigned to each client if applicable.

48

Client

UDP Header
(8 Bytes)

Control Data
(12 Bytes)

Timestamp
(8 Bytes)

Identifier
(8 Bytes)Server IP Header

(20 Bytes)
802.3 Header

(14 bytes)

UDP Header
(8 Bytes)

Sensor Data
(28 Bytes)

Timestamp
(8 Bytes)

Identifier
(8 Bytes)

IP Header
(20 Bytes)

802.3 Header
(14 bytes)

Interoperability
Suite to W Client

Interoperability
Suite to Server

UDP Header
(8 Bytes)

Sensor Data
(28 Bytes)

Timestamp
(8 Bytes)

Identifier
(8 Bytes)

IP Header
(20 Bytes)

802.3 Header
(14 bytes)

UDP Header
(8 Bytes)

Control Data
(12 Bytes)

Timestamp
(8 Bytes)

Identifier
(8 Bytes)

IP Header
(20 Bytes)

802.1x Header
(14 bytes)

Type
(1 Bytes)

BU
(8 Bytes)

SP
(8 Bytes)

SP
(8 Bytes)

Type
(1 Bytes)

BU
(8 Bytes)

W Client UDP Header
(8 Bytes)

Sensor Data
(28 Bytes)

Timestamp
(8 Bytes)

Identifier
(8 Bytes)

IP Header
(20 Bytes)

802.1x Header
(30 bytes)

Type
(1 Bytes)

BU
(8 Bytes)

Fig. 16. NCS data-packet structures

3.2.4. NCS Control Flows
A flow chart of the control algorithm on Server is given in Fig. 17. These Clients

send the sensor measurements to and request the control inputs from Server. Server

responds all the requests by their coming-in sequences and their identification numbers.

If the total BU (TBU) of the NCS is less than an upper bound of current available

bandwidth, Server calculates the control inputs and sends them back to each client

directly or via Interoperability Suite. The upper bound may vary depends on the

scheduling algorithm running on the system and the available bandwidth in the NCS. If

the TBU is greater than the upper bound, Server checks Client’s sampling period type

and calculates the control inputs directly for Clients that have fixed sampling periods. If

Clients have variant sampling periods, Server will increase their current sampling

periods by 5 % and check the TBU again until the TBU is no longer greater than the

49

upper bound. To maintain the stability of each client, a maximum sampling period maxh

will be set as a boundary of the dynamic sampling period algorithm in the NCS. After

the control inputs have been calculated, Server sends the control inputs to each client

directly or via Interoperability Suite. Then Clients can update the actuators with the

latest control inputs if data packets losses do not take place in data transmission. Note

that not all the requests from Clients can be executed in time because of the stochastic

nature of the NCS. Some data packets may be lost in data transmission so that the

updated control inputs may not available to Clients all the time. In Section 4, one can see

that predicted data will be applied to the NCS if data packets are lost in the transmission.

3.3 ANALYTICAL RESULTS

3.3.1. Off-Line Clock Synchronization
Since all the nodes in an NCS operate on different clocks, accurate time delays of data

transmission among the nodes cannot be measured. Even when all the nodes’ clocks are

initially set accurately, real clocks will differ after a while due to clock drifts caused by

clocks counting time at slightly different rates. However, an accurate measurement of the

time delays may be unnecessary if the controller is robust enough to the time delays.

Based on the earlier assumption of the clock resolution, all the nodes in this research are

assumed to have the same clock resolution and no clock drifts will exist. One simple off-

line clock synchronization method will be presented to provide a relationship of clocks

on different nodes.

To understand this synchronization method, take one sampling period for

example as shown in Fig. 18.

50

http://en.wikipedia.org/wiki/Clock_drift

Start

Server receives
data packets
from Clients

TBU>Upperbound?

Wait for
next iteration

Stop

NO

Fixed sampling
period?

YES

Increase
sampling period

by 5%

h > hmax?

YES

YES NO

h = hmax

NO

Calculate control
input with

respect to the ID

Send control
input with

respect to the ID

Check ID
numbers

Fig. 17. Flow chart of the multiscale NCS control architecture

51

T

com
pT

code

T
prep

T
w

ait
T

trans
T

trans
T

w
ait

T
proc

T
post

T
queue

T
block

T
fram

eT
fram

e

T
fram

e

T
fram

e
T

queue
T

block
T

com
p

T
com

p
T

deco

T
deco

T
code

T
c1

T
c2

T
s1

T
s2

δ
1

δ
2

T
1

T
2

h

C
lient

Server

C
lient

C
lient

Server
N

etw
ork

N
etw

ork

Task
Starts

Task
Ends

Sam
pling Period
Starts

Sam
pling Period

Ends

Fig. 18. Detailed timing diagram of one sampling period in the NCS
52

As shown in Fig. 18, in the beginning of this sampling period, the control task

starts with collecting and coding sensor measurements (encapsulate a data segment) on

Client. Then the data packet with sensor measurements and necessary headers will be

held in a queue waiting for transmission. If the network is idle, the transmission request

will be permitted. The data packet will be decoded after it arrives at Server. The sensor-

feedback information carried by the data packet will be applied for the control-input

calculation. Later, the control inputs will be coded into data segments, queued in a

buffer, and transmitted back to Client. Client receives the control inputs and finishes up

the current control iteration with decoding and executing the data packet. The control

task should be accomplished within the current sampling period to guarantee the stability

and system performance of the NCS. However, the control task could be delayed for

more than one sampling period because of the network condition or fail because of

unexpected longer time delays, packet losses, or other uncertainties.

To start with the off-line clock-synchronization method, a timestamp is inserted

at the marked time T1 on Client as in Fig. 18. When the control-input data packet arrives

at Client, the timestamp carries T1 will be checked at time T2. One can calibrate these

timestamps as Tc1, Tc2, Ts1, and Ts2 on Client and Server, respectively. Tc1 is the time

instant that the first byte of the data packet leaves Client, and Tc2, the time instant that

the last byte of the data packet arrives at Client. Ts1 is the time instant that the first byte

of the data packet arrives at Server, and Ts2, the time instant that the last byte of the data

packet leaves Server.

53

Although Client and Server run on separate clocks, the absolute time instant in

real world should be the same so that 1 1 1 1 c sT T T δ= = − and 2 2 2 2 c sT T T δ= = + . For

simplicity, one can assume that 2 1 2
1 2

1() ()
2 2

c s c c s sT T T T T T
δ δ

∆ − ∆ − − −
= = = . cT∆ and

sT∆ can be obtained on each node with certain timestamp calculations. The two

timestamp coordinates 1 1,)ˆ(c sT T and 2 2,)ˆ(c sT T will be available for each control

iteration with 1 1 1
ˆ s sT T δ= − and 2 2 2

ˆ s sT T δ= + . These timestamp coordinates can be applied

to calculate the relation between Server and Client with a least-square method (LSM).

From above discussion, the off-line clock synchronization is obtained from

analytical experiments as follows. With four different sampling periods and the LSM, the

linear relation between Server and Clients in this research is given by

61.001 .60271 10s cT T= − × . (7)

This polynomial approximation is linearized by the LSM at a 3.4-ms sampling period

and is verified at various sampling periods. The constant in Eq. (7) may vary with the

time interval between the instants the OS is booted up and the OS is terminated. It

indicates the linear relation will have to be recalibrated after the OS reboots. Note that

the unit of the polynomial approximation in Eq. (7) is ns. Therefore, the proportional

coefficient of 1.001 in Eq. (7) indicates an approximate 1 μs clock difference between

Server and Client, which verifies the assumption about the clock resolution.

Figures 19–22 illustrate the polynomial approximation in Eq. (7) and

experimental results with the 2.267-ms, 3.4-ms, 6.8-ms, and 15.1-ms sampling periods,

54

respectively. The experimental results collect two timestamp coordinates 1 1,)ˆ(c sT T and

2 2,)ˆ(c sT T as indicated in the figures. From Figs. 19–22, one can see that Eq. (7) could

catch practical relation of the clocks on Server and Client.

Another way to estimate the time delays in an NCS is to set up the timestamp

segment in the data packets, the total time delays and packet losses can be detected by

Client at the end of each sampling period. The total time delays can be inferred by

calculating the difference between the time instance Client sends sensor-feedback

packets to Server and the instance Client receives control-input packets from Server.

This structure of the total time delays has the following form

 sc ca ptimestamptttt = +∆ += . (8)

Note that, in general, caτ and scτ are not necessarily the same. Without a clock-

synchronization mechanism, exact caτ and scτ are unavailable, and we can simply

assume that

1
2

sc caτ τ τ≈ ≈ . (9)

This is possible because one can expect that the propagation delay in the sensor-to-

controller and controller-to-actuator links should be the same if no packet losses or

major uncertainties take place in the network. Compared to the time delays over the

network, the processing time can be smaller or neglected under certain circumstances.

55

Fig. 19. Polynomial approximation and experimental data with the 2.267-ms sampling

period

Fig. 20. Polynomial approximation and experimental data with the 3.4-ms sampling

period

9.3339 9.3339 9.3339 9.3339 9.3339 9.3339 9.3339

x 10
7

9.175

9.175

9.175

9.175

9.175

9.175

9.175
x 10

7

Time on Client (ns)

Ti
m

e
on

 S
er

ve
r (

ns
)

Linear relation of Server and Client
(Tc1, Ts1)
(Tc2, Ts2)

7.2638 7.2638 7.2638 7.2638 7.2638 7.2638 7.2638 7.2638 7.2638

x 10
7

7.1045

7.1045

7.1045

7.1045

7.1045

7.1045

7.1045

7.1045

7.1045

7.1045

x 10
7

Time on Client (ns)

Ti
m

e
on

 S
er

ve
r (

ns
)

Linear relation of Server and Client
(Tc1, Ts1)
(Tc2, Ts2)

56

Fig. 21. Polynomial approximation and experimental data with the 6.8-ms sampling

period

Fig. 22. Polynomial approximation and experimental data with the 15.1-ms sampling

period

9.3753 9.3753 9.3753 9.3753 9.3753 9.3753 9.3753 9.3753

x 10
7

9.2164

9.2164

9.2164

9.2164

9.2164

9.2164

9.2164

x 10
7

Time on Client (ns)

Ti
m

e
on

 S
er

ve
r (

ns
)

Linear relation of Server and Client
(Tc1, Ts1)
(Tc2, Ts2)

9.4186 9.4186 9.4186 9.4186 9.4186 9.4186 9.4186 9.4186

x 10
7

9.2597

9.2597

9.2597

9.2597

9.2597

9.2597

9.2597

9.2597

9.2597

x 10
7

Time on Client (ns)

Ti
m

e
on

 S
er

ve
r (

ns
)

Linear relation of Server and Client
(Tc1, Ts1)
(Tc2, Ts2)

57

Figure 23 shows mean and standard deviation of differences between the time

delays calculated by Eqs. (7) and (8) with four different sampling periods. Equation (7)

can yield explicit time delays in the sensor-to-controller and controller-to-actuator links

compared to Eq. (8) within the current control iteration. Equation (8) cannot generate

explicit time delays caτ and scτ , and can only calculate τ for Server in the next control

iteration, but it is easier to be implemented in algorithm compared to Eq. (7). From the

analysis, the difference of these two time-delay calculations are quite small so that either

one can be applied to the experiments of an NCS. However, for the simplicity of the

algorithm implementation, Eq. (8) will be chosen to calculate the time delays in the

NCS. This may also save calibration and calculation times of Eq. (7) so that the total

time delays may be reduced.

Fig. 23. Statistics of the time delays with various sampling periods

2.267ms 3.4ms 6.8ms 15.1ms
Mean -0.2752 0.0000 0.5148 0.6650
Standard deviation 0.0624 0.0958 0.0894 0.0393

-0.4000

-0.2000

0.0000

0.2000

0.4000

0.6000

0.8000

Ti
m

e
 (m

s)

Sampling Period Cases
Mean Standard deviation

58

3.3.2. Time-Delay and Packet-Loss Experiments
As discussed earlier, time delays and packet losses are two of unique properties

of the NCS brought by the network. Therefore, the time delays and packet losses should

be considered as crucial parts of design of an NCS. Because of the nature of the network,

the time delays and packet losses can be stochastic in an NCS. Various levels of time

delays and packet losses can exist in the NCS. Each different level of time delays and

packet losses will also have different effects on the stability and system performance of

an NCS.

Client 2 is adopted here to test the effects of the time delays and packet losses on

the system performance of an NCS. The transfer function of Client 2 is

20.2()
9.92 2.57

G s
s

=
+

. (10)

A proportional-integral (PI) controller is applied to control Client 2 as

1.5 5() sD s
s
+

= . (11)

The time-delay experiment is performed for 20,000 iterations with Client 2 with

a 3-ms sampling period. Figure 24 shows the first 2,000 iterations. From Fig. 24, the

mean and standard deviation of the time delays in the network are about 0.5034 ms and

0.0414 ms, respectively.

The DIAE is adopted to be the performance index of the NCS and formulated as

follows [71]

59

0

fk

k
k

DIAE e=∑ , (12)

where k0 and kf are the initial and final times of the interval of interests, and ke is the

error between the actual and reference signals.

Fig. 24. Time delays in the NCS

Since the actual time delays in the network are not controllable variables in the

NCS design, we manually add more time delays in the program to discuss the

0 200 400 600 800 1000 1200 1400 1600 1800 2000
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5
x 10

5

Control iterations

Ti
m

e
de

la
ys

 (n
s)

60

performance of an NCS with various time delays. To show the effects of the different

levels of time delays on the NCS, the following six sets of experiments are conducted,

the experiments with extra 0-ms, 0.2-ms, 0.4-ms, 0.6-ms, 0.8-ms and 1-ms delays. Note

that the time delays in the NCS are the sum of τ and the extra given delays. The system

performances of Client 2 with 5-ms, 10-ms, and 15-ms are given in Figs. 25–27. From

these figures, the DIAEs of Client 2 increase as the sampling periods and time delays

increase in the NCS. As the time delays increase by 0.2 ms, the DIAE of Client 2

increases about 3–5%. Note that occasionally the DIAE of Client 2 with a given

sampling period with longer time delays may be smaller than the one with shorter time

delays as shown in the figures. This can be caused by uncertainties in the network.

Figure 28 shows the DIAE of Client 2 with respect to the sampling periods and the time

delays in 3-D. Note that the relation among the DIAE, sampling periods and time delays

is no longer linear because of the complex dynamics of the network. As shown in Fig.

28, the DIAE decreases and then increases as the sampling period increases. Also, the

DIAE increases as the time delays increase. This verifies that longer time delays and

shorter sampling periods inevitably degrade the system performance.

Figures 29–31 show the DIAE of Client 2 with 5-ms, 10-ms, and 15-ms sampling

periods with various packet losses. The DIAEs of Client 2 increase as the sampling

period and packet losses increase in the NCS. As the packet losses increase by 10%, the

DIAE of Client 2 increases about 10–15% if the packet losses are less than 50%. Note

that there might exist discrepancies caused by the uncertainties in the network.

61

Fig. 25. DIAEs of Client 2 with a 5-ms sampling period with various time delays

Fig. 26. DIAEs of Client 2 with a 10-ms sampling period with various time delays

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

Control iterations

In
te

gr
al

 a
bs

ol
ut

e
er

ro
r (

rp
s)

0 ms
0.2 ms
0.4 ms
0.6 ms
0.8 ms
1 ms

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

Control iterations

In
te

gr
al

 a
bs

ol
ut

e
er

ro
r (

rp
s)

0 ms
0.2 ms
0.4 ms
0.6 ms
0.8 ms
1 ms

62

Fig. 27. DIAEs of Client 2 with a 15-ms sampling period with various time delays

Fig. 28. DIAE vs. the sampling periods and the time delays

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Control iterations

In
te

gr
al

 a
bs

ol
ut

e
er

ro
r (

rp
s)

0 ms
0.2 ms
0.4 ms
0.6 ms
0.8 ms
1 ms

0

5

10

15

0

0.5

1

1.5

2

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

Sampling periods (ms)Time delays (ns)

D
IA

E
 (r

ps
)

63

Fig. 29. DIAEs of Client 2 with a 5-ms sampling period with various packet losses

Fig. 30. DIAEs of Client 2 with a 10-ms sampling period with various packet losses

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Control iterations

In
te

gr
al

 a
bs

ol
ut

e
er

ro
r (

rp
s)

No packet losses
10% packet losses
20% packet losses
30% packet losses
40% packet losses
50% packet losses

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5000

10000

15000

Control iterations

In
te

gr
al

 a
bs

ol
ut

e
er

ro
r (

rp
s)

No packet losses
10% packet losses
20% packet losses
30% packet losses
40% packet losses
50% packet losses

64

Fig. 31. DIAEs of Client 2 with a 15-ms sampling period with various packet losses

3.3.3. Bandwidth-Allocation Experiments
As shown in Fig. 9, three different types of clients are involved in the NCS

experiments. The number of clients in the NCS is not strictly limited to three. However,

complexity of the NCS will increase by adding more clients. The maximum number of

clients can be determined by available network resources and the minimum BU

requirement of each client. For instance, if each client requires 30% network bandwidth,

the NCS could incorporate three clients with 10% idle network bandwidth.

The performance of an NCS mainly depends on the time-delay and packet-loss

level and resource allocation and scheduling. The number of clients may not have direct

effects on the NCS, but it is indeed an important parameter of an NCS in the sense that

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

Control iterations

In
te

gr
al

 a
bs

ol
ut

e
er

ro
r (

rp
s)

No packet losses
10% packet losses
20% packet losses
30% packet losses
40% packet losses
50% packet losses

65

more clients would need to compete for the network resources and decrease the

schedulability. In this case, more robust controller may be necessary to the NCS, but the

basic structure of the NCS will not change. Note that Client 1 is an open-loop unstable

system that requires a fast fixed sampling period to maintain its stability. Client 2 is

open-loop stable system that can have variant sampling periods. Client 3 is connected to

Server via WLAN. Therefore, the NCS in this research includes Clients that are either

wired or wireless systems, and open-loop unstable or stable systems with fast, medium,

and slow dynamics. These Clients can have fixed or variant sampling periods. All these

configurations bring more complexity to the NCS. Clients employed in this NCS can be

replaced by other dynamic systems. In this research, we include these three typical

dynamic systems to verify the feasibility and the performance of the multiscale NCS

with wired and wireless frameworks.

Client 1, the ball maglev system, is an open-loop unstable system and requires a

fast sampling period to guarantee the stability and the performance. For this reason, a 3-

ms sampling period is assigned to the system with following controller [63]

() 0.782 (1) 0.13 (2)

41500.0 () 48779.1 (1) 31913.5 (2)

u k u k u k

e k e k e k

= − + −

− + − − − , (13)

where u(k) is the control input and e(k) is the error.

The discrete-time controller of Client 2, the DC motor, is as follows [64]

2 2() (1) (1.5 2.5) () (1.5 2.5) (1)u k u k h e k h e k= − − − + + − , (14)

where h2 is the sampling period given in Table 4.

66

As discussed before, the BU threshold of the NCS depends on the implemented

scheduling algorithm. Here, EDF is adopted for the experiments, which gives the NCS

100% BU threshold [60]. Table 4 presents four different BU combinations and their

corresponding sampling periods (h*) and BU (b*) of each client in the NCS. In Table 4,

Case 4 exceeds the BU threshold. All the other three cases are within the BU threshold.

Figures 32–35 illustrate the system performance of each client for the four cases

of the NCS with wireless client, respectively. Figure 36 shows the system performance

of each client of Case 4 without dynamic sampling period assignment algorithm in Fig.

17. Each figure shows the performances of the ball maglev system, the DC motor, and

the autonomous robotic wheelchair as parts (a), (b), and (c), respectively. Each part

contains the same number of the samples (10000, 2000, and 200 samples for the ball

maglev, DC motor, and robotic wheelchair, respectively) according to the sampling

periods given in Table 4.

Table 4. Four cases of experiments with the corresponding sampling periods and BUs

Case
Client 1 Client 2 Client 3

TBU
h1 b1 h2 b2 h3 b3

1 3 ms 43.5% 5 ms 27.0% 100 ms 18.95% 84.95%

2 3 ms 43.5% 10 ms 13.5% 150 ms 12.63% 69.63%

3 3 ms 43.5% 15 ms 9.0% 300 ms 6.3% 58.8%

4 3 ms 43.5% 3 ms 45.0% 80 ms 23.6% 112.1%

67

From Fig. 32, although the TBU of Case 1 did not exceed the threshold, the

performance of each client was degraded compared to Cases 2 and 3 in the Figs. 33 and

34, respectively. It is because the sampling periods of Clients 2 and 3 in Case 1 were

smaller than the one in Cases 2 and 3. Therefore, more data packets were exchanged in

the network. It would introduce longer time delays or even packet losses to the NCS so

that the system performance could be degraded. From Fig. 35, the TBU was greater than

100% when Client 3 joined the experiment around 2 s. Based on the algorithm in Fig.

17, the sampling periods of Clients 2 and 3 were increased by 5% each time until the

TBU was on longer greater than 100%. Note that in Fig. 35 there was a performance

degradation of Client 2 around 2 s when Client 3 joined the NCS. The sampling periods

of Clients 2 and 3 were eventually reset as 3.83 ms and 102.10 ms, respectively. The

TBU was reduced to 97.53% for Case 4. To show the effectiveness of the control flow in

Fig. 17, the experiment of Case 4 was conducted again without the control flow

algorithm. The trajectories of each client were shown in Fig. 36. From Fig. 36, the BU

threshold was exceeded, and Clients 1 and 3 failed. For Client 1, the steel ball could not

be levitated. The 10-mm equilibrium-like position in Fig. 36 was the sensing limit of the

photocell of the ball maglev system, not the actual position of the steel ball. Although

Client 1 could not be levitated, it still sent the sensor measurement packets to Server

every 3 ms. Therefore, Client 1 failed did not release any computational and network

resource to other clients. For Client 3, the wheelchair could not track its pre-set straight

path. Although Client 2 was still stable, it could not track the reference signals faithfully

as the other three cases.

68

Fig. 32. Client motion trajectories from Case 1

0 5 10 15 20 25 30
0

2

4

6

8

10

(a) Time (s)

P
o
s
it
io

n
 (

m
m

)

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

(b) Time (s)

S
p
e
e
d
 (

rp
s
)

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

200

400

600

800

(c) x (cm)

y
 (

c
m

)

69

Fig. 33. Client motion trajectories from Case 2

0 5 10 15 20 25 30
0

2

4

6

8

10

(a) Time (s)

P
o
s
it
io

n
 (

m
m

)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

(b) Time (s)

S
p
e
e
d
 (

rp
s
)

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

200

400

600

800

(c) x (cm)

y
 (

c
m

)

70

Fig. 34. Client motion trajectories from Case 3

0 5 10 15 20 25 30
0

2

4

6

8

(a) Time (s)

P
o
s
it
io

n
 (

m
m

)

0 5 10 15 20 25 30
0

2

4

6

8

10

12

(b) Time (s)

S
p
e
e
d
 (

rp
s
)

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

200

400

600

800

(c) x (cm)

y
 (

c
m

)

71

Fig. 35. Client motion trajectories from Case 4

0 5 10 15 20 25 30
0

2

4

6

8

10

(a) Time (s)

P
o
s
it
io

n
 (

m
m

)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

(b) Time (s)

S
p
e
e
d
 (

rp
s
)

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

200

400

600

800

(c) x (cm)

y
 (

c
m

)

1.5 2 2.5
9

9.5

10

10.5

72

Fig. 36. Client motion trajectories from Case 4 without control flow

0 5 10 15 20 25 30
0

2

4

6

8

10

12

(a) Time (s)

P
o
s
it
io

n
 (

m
m

)

0 1 2 3 4 5 6
0

2

4

6

8

10

12

(b) Time (s)

S
p
e
e
d
 (

rp
s
)

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

200

400

600

800

(c) x (cm)

y
 (

c
m

)

73

Table 5 shows the performance comparison of these four cases of the NCS. The

numbers in Table 5 are means and standard deviations of the steady-state errors of each

client. For Client 1, when the total BU increased by 10%, the average steady-state error

increased by about 200%. For the other two clients, the medium client and the slow

client, both the BU and the sampling periods affected the stability and the performance

of the systems, but not as crucially as they were on the fast client, Client 1. If the TBU

exceeds the BU threshold, the algorithm would bring the TBU of the NCS less than the

threshold based on the type of each client’s sampling frequency. From Table 5, the BU

has more crucial effect on the system stability and performance as the dynamics of the

system gets more complex.

Table 5. System performance comparisons of NCS with wireless client

Cases 1 2 3 4

Client 1 (mm)
Mean 0.7205 0.4851 0.2015 0.7653

Stdev 0.4053 0.2860 0.2261 0.4158

Client 2 (rps)
Mean 0.0590 –0.0272 –0.0371 –0.0868

Stdev 0.2010 0.1673 0.1745 0.1869

Client 3 (cm)
Mean –0.0625 –0.0311 –0.1698 –0.0618

Stdev 0.5529 0.2861 0.7320 0.4920

To determine the effects of the wireless client to the NCS, the experiments, cases

1 to 4, were performed with only the wired clients under the same BU as in Table 6.

74

Another DC motor speed-control system, Client 4, was introduced to replace the

wireless robotic wheelchair, Client 3. Client 4 had exactly the same system configuration

as that of Client 2. The execution time of Client 4 is 1.350 ms, assumed to be the same

as Client 2. To maintain the same BU as in Table 5, Client 4’s sampling periods were set

as 7 ms, 10.7 ms, 21.4 ms, and 5.72 ms for Cases 1 to 4, respectively. Table 6 shows the

performance comparison of these four cases of the NCS without wireless clients. The

numbers in Table 6 follow the notations in Table 5. One would expect that Clients 2 and

4 have similar time responses if they are given the same sampling periods. Clients 2 and

4 have exactly the same system configuration and execution time, so Server will treat

them equally. Although Clients 2 and 4 are identical plants, the data packets from each

client may not arrive at Server at exactly the same time. In practice, however, the data

packets will be queued up in Server’s buffer waiting for unpacking and calculation.

Different priorities can be assigned to the identical clients to rearrange their to-be-

executed sequence. Although Clients 2 and 4 are identical in the experiments, their to-

be-executed sequence can be different. Without modifications to the protocols, Clients 2

and 4 are served on the first-come first-serve base.

To show details of DIAE versus BU of Clients 2 and 4, separate experiments

were conducted. Because of the uncertainties and the time delays on the network, five

sets of experiments were conducted with 20,000 times for each given BU. Each

experiment varied the BU of Clients 2 and 4 from 10% to 50%. The average of total

DIAE of Clients 2 and 4 is shown in Fig. 37. From Fig. 37, the DIAEs of Clients 2 and 4

are nearly distributed evenly which verifies the earlier analysis.

75

Table 6. System performance comparisons of NCS without wireless client

Cases 1 2 3 4

Client 1 (mm)
Mean 0.5635 0.3858 –0.1286 0.7385

Stdev 0.1402 0.1308 0.0916 0.1497

Client 2 (rps)
Mean –0.4556 –0.4370 –0.2865 –0.4275

Stdev 0.2269 0.2660 0.1969 0.2374

Client 4 (rps)
Mean 0.2178 0.2525 0.0617 0.6050

Stdev 0.2569 0.2686 0.1913 0.2309

In the NCS without wireless clients, for the fast client, Client 1, with the same

BU as in the NCS with wireless client, the average steady-state error decreased by about

20% to 30% compared with Table 6. Compared with Table 6, the wireless indeed

introduced more complexity to the NCS with only wired clients. For the medium client,

Clients 2, the average steady-state error increased because of the similar levels of the

sampling periods as Client 4 although the BU was exactly the same. In this case, Clients

2 and 4 competed for the resources more fiercely compared to the NCS with Client 3.

From the analysis, the sampling period is not the only factor that will affect the

stability and the performance of the each client in the NCS. The BU, the number of

clients, and the structure of the network will determine the time-delay and packet-loss

levels of the NCS, which will affect the stability and the performance of the each client.

By Eq. (3), the sampling period and the BU are coupled parameters in the NCS. A large

sampling period implies a smaller BU, thereby poor performance or even instability. A

76

small sampling period implies a larger BU, more time delays, or even packet losses.

Therefore, the trade-off between the sampling period and the stability is necessary to

control the NCS effectively.

Fig. 37. Total DIAE vs. BUs of Clients 2 and 4

3.4 SUMMARY
This section discussed the fundamental elements of an NCS such as the time

delays, packet losses, bandwidth allocation, etc. This section also presented a multiscale

NCS that contains three different types of clients, defined as the fast, medium, and slow

client, respectively. With the wireless capability brought by WLAN, the NCS expanded

10
20

30
40

50

10
20

30

40
50

2000

4000

6000

8000

10000

12000

BU of Client 2 (%)BU of Client 4 (%)

To
ta

l D
IA

E
 (r

ps
)

77

its flexibility with the cost of complexity to its frame structure. This framework was

adopted to test several control issues such as time delays, packet losses, and network

bandwidth allocation of the NCS. The details of timing diagram, software and hardware

setup of the NCS are illustrated. Several statistic and experimental results were given to

verify the capability of the NCS.

78

4. MARKOV-CHAIN-BASED OUTPUT FEEDBACK CONTROL OF THE NCS*

The introduction of a communication network into a control system inevitably

presents more constraints such as random time delays and packet losses that make the

analysis and design of the NCS challenging. These random time delays and packet losses

can degrade the system performance or even destabilize the system. How to compensate

for the time delays and packet losses has become an active research area of the NCS.

In these aforementioned references [34–42], the authors assumed that the

Markov-chain model could intuitively include the packet losses as well. However, the

packet losses actually change the structure of the model. When a packet is lost, the

sensor output or control input will be unavailable in all sense, whereas for the time-delay

case, the sensor output or control input arrives at its destination node eventually with a

certain amount of delays. Hence, the Markov-chain-based packet-loss model assumes

that the packet-loss information can be included by the same probability transition from

the time-delay perspective will not closely catch the nature of the NCS. Also in these

aforementioned references, the stability analysis only considered the integer time-delay

states. However, in the practical world, the time delays are non-integer numbers. In this

dissertation, the random time delays and packet losses are treated with separate models

*Reprinted with permission from “Markov-chain-based output feedback control for
stabilization of networked control systems with random time delays and packet losses”
by J. Dong and W.-J. Kim, International Journal of Control, Automation and Systems,
vol. 10, no. 5, pp. 1013–1322, Oct. 2012. Copyright 2012 by ICROS, KIEE and
Springer.

79

 that reveal the nature of the NCS in a closer manner. The proposed models for the time

delays and packet losses are based on stochastic processes in the discrete-time domain so

that the proposed method can be implemented on a practical NCS without much

modification. The proposed method considers both integer and non-integer time delays.

4.1 SYSTEM MODELING
A typical NCS has a closed-loop structure as shown in Fig. 38. As indicated in

the dashed boxes, Server represents the controller on one end of the communication

network whereas Client represents the plant including sensors and actuators on the other

end of the communication network.

Controller Plant
y(k)r(k) e(k) u(k)

ỹ(k)

ũ(k)+
- τca

τsc δsc

δca

Network

Server Client

Fig. 38. A representative NCS block diagram

Assuming the entire NCS is a linear discrete-time system. caτ and scτ represent

the random time delays, and caδ and scδ , the packet losses in the controller-to-actuator

and sensor-to-controller links, respectively. The state-space model of the plant is

(1) () ()p p p pk k k+ = +x A x B u (15)

80

() ()p pk k=y C x , (16)

where () n
p k ∈x  , () mk ∈u  , and () pk ∈y  are state, control-input, and plant-output

vectors, respectively. () mk ∈u  and () pk ∈y  are delayed control-input and plant-

output vectors. pA , pB , and pC are the known matrices with appropriated dimensions.

Similarly, the controller has a state-space model as

(1) () ()c c c ck k k+ = +x A x B e (17)

() () ()c c ck k k= +u C x D e , (18)

where () () ()k k k= −e r y is error and () pk ∈r  is reference command. cA , cB , cC , and

cD are to be determined to compensate for the random time delays and packet losses,

which will be discussed in Section 4.1.4 with details that include the stability criterion

and algorithm. An experimental example of how to design the controller matrices will be

given in Section 3.3.

4.1.1. Markov Chain
A Markov chain is a mathematical system that undergoes transitions from one

state to another that belongs to a set of finite or countable number of possible states. It is

a random process characterized as memoryless so that the next state depends only on the

current state and not on the sequence of events that preceded it.

Let Ψ be a sample space that contains finite states. Consider a stochastic process

{ N 0, 1,; }nX X n= ∈ =  within the countable state space Ψ . Then “the process is at

81

http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Memorylessness

state i at time n” means that , , NnX i i n∈ Ψ ∈= . The definition of a Markov chain is

then given as follows.

Definition 1 [72]: The stochastic process { N 0, 1,; }nX X n= ∈ =  is called a

Markov chain provided that 1 0 1 1Pr{ | , , , } Pr{ | }n n n nX i X X X X i X+ += = = for all

i ∈ Ψ and Nn∈ . A Markov chain is then a sequence of random variables so that the

next state 1nX + of the process is independent of the past states 0 1 1, , , nX X X −

provided that the present state nX is known.

Definition 2 [72]: The probabilities Pr(,)i j are called the transition probabilities

for the Markov chain X with 1Pr{ } r(,)| Pn nX X i jj i+ = = = where ,i j ∈ Ψ . And a

Markov chain X satisfying this definition is said to be time-homogeneous if emphasis is

needed.

Definition 3 [72]: The transition-probability matrix of a Markov chain X is

Pr(0,0) Pr(0,1) Pr(0,2)
Pr(1,0) Pr(1,1) Pr(1,2)
Pr(2,0) Pr(2,1) Pr(2,2)

 TP

 
 
 =
 
 
 







   

if {0, 1, }Ψ =  .

 Figure 39 shows an example of the Markov Chain with its transition-probability

matrix. This Markov chain contains three states {0, 1, 2}Ψ = and has a transition-

probability matrix
0.5 0.25 0.25

 0.025 0.9 0.075
0.05 0.15 0.8

TP
 
 =  
  

.

82

4.1.2. Time-Delay Modeling
In general, time delays can be categorized as deterministic delays and stochastic

delays. Due to the stochastic nature of the network, a stochastic method is adopted to

model the random time delays in the communication links since it can model the random

processes of the network condition more realistically compared to a deterministic

method. We assume that the status of the time delays mainly depends on the previous

status so that the random time delays caτ and scτ can be modeled with finite-state time-

homogeneous Markov chains.

State 2

State 0

State 1

0.9

0.5

0.8

0.05

0.250.025

0.25

0.15

0.075

Fig. 39. An example of Markov Chain with three states

83

In this section, caτ and scτ in Fig. 38 are modeled with two time-homogeneous

Markov chains with finite Markov states and take values in the sets

{ ; 1, , }ca
i i pτ= ∈ =   and { ; 1, , }sc

m m qτ= ∈ = ;  , respectively. Their

transition-probability matrices are { }ijς=Λ and { }mnξ=Γ , respectively. These

transition-probability matrices represent the probabilities that caτ and scτ jump from the

state i to j and the state m to n, respectively. The definitions of ijς and mnξ are

Pr((1) | ())ca ca ca ca
ij j ik kς τ τ τ τ= + = = , (19)

Pr((1) | ())sc sc sc sc
mn n mk kξ τ τ τ τ= + = = , (20)

where 0ijς ≥ , 0mnξ ≥ , and
1

1
p

ij
j

ς
=

=∑ ,
1

1
q

mn
n

ξ
=

=∑ , for all ,i j ∈  and ,m n∈ .

4.1.3. Packet-Loss Modeling
The packet loss in an NCS is another challenge induced by the network. Packet

losses could take place when the network is congested or the queues of routers and

servers are overflown. NCS does not monitor the network conditions, so explicit packet-

loss information is unavailable to either Server or Client in the sense of real time.

A simplest stochastic model treats packet losses as a Bernoulli process [5]. It can

also be modeled with a Markov chain [73] or a Poisson process [74]. Normally, packet

losses share no common probabilistic characteristics with the random time delays since

their causes are usually different and not always coupled. In general, for the case of

packet losses, the system will require extensive control input to guarantee the stability

and system performance. Whenever a packet is lost, time-delay information is irrelevant
84

and unavailable. Therefore, assuming that a packet loss can be intuitively modeled with

a Markov chain together with the time delays cannot represent their independence in a

communication network. In this section, a separate packet-loss model is introduced.

As illustrated in Fig. 38, the network backbone can be treated as a jump system.

In this case, when a packet is lost, the current output packet or the control input packet

will be unavailable to either Server or Client, so that the plant output or control input

from the previous sampling period will be held for current period. The time-delay

information from the previous period will also be inherited.

The notations of the packet losses in Fig. 38 are as below.

1 if no packet is lost
0 if a packet is l

(
ost

)ca kδ


= 


 (21)

1 if no packet is lost
0 if a packet is l

(
ost

)sc kδ


= 


 (22)

Unlike [5], however, we do not assign Bernoulli probabilities to caδ and scδ .

Packet losses can be stochastic so that a pre-assigned fixed probability Pr(() 1)ca kδ =

would not represent the nature of the packet losses realistically. That is, if either caδ and

scδ takes the value 0, there is a packet lost in the corresponding links. Otherwise, only

random time delays exist in the links.

4.1.4. Controller Design

As in Fig. 40, consider caτ and scτ , we introduce a ceiling function

0()f
h

τ τ
τ

+ =   
, (23)

85

where 0τ is time threshold, and h is the sampling period. The time threshold 0τ includes

summation of the data sampling time, data-packet generating time, packet-processing

time, queuing time, etc. In each sampling period, these times may not be exactly the

same, but can be quite deterministic. Therefore, an upper bound 0τ can be set as a time

threshold. Then the plant-output packet arriving at Server is () ((()))sck k f kτ= −y y .

This can also be applied to the control input, so that () ((()))cak k f kτ= −u u . Note that

for caτ and
scτ , the threshold 0τ may take different values.

Figure 40 illustrates an example of packet exchanges between Server and Client.

The horizontal length of each line indicates the random time delays of each packet in the

links. Several possible scenarios are shown in Fig. 40. The first case is that both the caτ

and scτ are shorter than h as shown in h1. Another case is that scτ is shorter than h and

caτ is longer than h as shown in h2. For instance, if 0
sc hτ τ+ < , then () 0scf τ = . Thus,

when the plant-output packet arrives at Server, it is indicated as ()ky in the k-th

sampling period. Likewise, if 0 2sch hτ τ+< < , then () 1scf τ = . Thus the plant-output

packet arrives at Server will be (1)k −y in the k-th sampling period. Figure 40 also

illustrates other possible data-packet-loss scenarios. As shown in h3 and h5, the plant

outputs and the control inputs are lost in data transmission, respectively. Hence, the

estimated or predicted data will be applied to calculate the corresponding data packets.

Now consider the NCS in Fig. 38 with both the random time delays and the

packet losses. The delayed plant outputs ()ky and control inputs ()ku are

86

() () ((())) () (1 ((1)))sc sc sc sck k k f k k k f kδ τ δ τ= − + − − −y y y (24)

() () ((())) () (1 ((1)))ca ca ca cak k k f k k k f kδ τ δ τ= − + − − −u u u , (25)

where () 1 ()sc sck kδ δ= − and () 1 ()ca cak kδ δ= − . By Eqs. (24) and (25), if packet

losses take place in the links, the previous data packets will be used. This provision can

compensate for one packet loss.

SERVER

CLIENT

PLANT

Sensor feedback
Control inputs
Updated actuator info

Delayed data

Lost data

Calculated data

Estimated data

h1 h2 h3 h4 h5

y1 y2 y3
y4

y5

u1

u1 u2 û3 u4 u5

û2 û3 u4

u1

û5

Fig. 40. An example timing diagram of the NCS communication

 For consecutive packets losses, an autoregressive (AR) model will be applied to

predict future plant outputs and control inputs of an NCS.

 Definition 4 [75]: A simple input-output relationship is obtained by describing it

as a linear difference equation:

87

1 1() (1) () (1) ()
a bn a n by t a y t a y t n b u t b u t n+ − + + − = − + + −  ,

or

() () () ()A q y t B q u t= ,

where 1 2
1 2() 1 a

a
n

nA q a q a q a q−− −= + + + + and 1 2
1 2() b

b
n

nB q b q b q b q−− −= + + + , an is

the order of ()A q and bn is the order of ()B q . The above model is called an autoregressive

exogenous (ARX) model, where AR refers to the autoregressive part () ()A q y t and X to the extra

exogenous input () ()B q u t .

 The AR model will be applied to predict the future data packets. The extra input

term is dropped off from the ARX model bacause when the packet losses exist in the

network, the input information is unavilable to its destination node. Therefore, to either

Sever or Client, the plant outputs or control inputs are unavilable in the present of packet

losses. Then the plant outputs to the controller ()ky and the control inputs to the plant

()ku are as follows for the case of consecutive packets losses

ˆ() () ((())) () ()sc sc sck k k f k k kδ τ δ= − +y y y (26)

ˆ() () ((())) () ()ca ca cak k k f k k kδ τ δ= − +u u u , (27)

where ˆ()ky and ˆ()ku are the predicted data packets generated by the AR model with

1 2
1 2

1

ˆ() () ((()))

(1 ((1))) ((()))

a
a

a

n sc
y y yn

sc sc
y yn a a

k a q a q a q k f k

a k f k a k yn f k yn

τ

τ τ

−− −= − − − − −

= − − − − − − − − −

y y

y y



 , (28)

1 2
1 2

1

ˆ() () ((()))

(1 ((1))) ((()))

a
a

a

n ca
u u un

ca ca
u un a a

k a q a q a q k f k

a k f k a k un f k un

τ

τ τ

−− −= − − − − −

= − − − − − − − − −

u u

u u



 , (29)

88

where ayn and aun are orders of the predicted plant outputs and control inputs,

respectively. Based on the time-delay states of the NCS, we have ayn q≤ and aun p≤ .

Augment the plant’s states as follows with all the possible Markov states of scτ

() () (1) (2) (1)
TT T T T

p pk k k k k q = − − − − x y y yx  .

Then the plant’s model can be written as

 (1) () ()p p p pk k k+ = +x A x B u (30)

() ()p pk k=y C x , (31)

where

p

p

p

 
 
 
 

=  
 
 
 
  

A

A

C

I

I

 

 

 

  

     

 

0 0 0

0 0 0

0 0 0
0 0 0

0 0 0

,

p

p

 
 
 
 

=  
 
 
 
  

B

B



0
0
0

0

,

() ()sc sc
p k kδδ =  C  0 1 1 0 with the (())scf kτ -th entry equals to ()sc kδ 1

where 1 is the unit matrix with all elements equal to 1. For the case of consecutive

packet losses, 1() () ()
a

a

y y
sc sc sc

p n

yn

k ka kaδ δ δ
 
 =  
 

− −

 

C 0 1 1 1 0

((((((((((







.

Similarly, the augmented controller state vector with all the possible Markov

states of caτ is () () (1) (2) (1)
TT T T T

c ck k k k k p = − − − − x u u ux  , and the

corresponding controller model is

 (1) () () ()c c c c ck k k k+ = − +x A x B y B r (32)
89

() ()c ck k=u C x , (33)

where

c

c

c

 
 
 
 

=  
 
 
 
 

A
C

I

I

A

 

 

 

  

     

 

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0

,

c

c

c

 
 
 
 

=  
 
 
 
  

B
D

B



0
0

0

,

() ()ca cc
c k kδδ =  C  0 1 1 0 with the (())caf kτ -th entry equals to ()ca kδ 1 .

Similarly, for the case of consecutive packets losses,

1() () ()
a

a

u un

un

ca ca ca
c k k ka aδ δδ

 
 =  
 

−



−



C 0 1 1 1 0

(((((((((



(((



.

Augment the new plant and controller model with T T T
p c =  x x x , and the

closed-loop dynamics will be

(1) () ()k k+ = +x A BKC x , (34)

where p 
=  

  

A
A

0

0 0
, p 

=  
  

B
B

I

0

0
, c c

c

 −
=  

 

A B
K

C 0
, and

p

 
=  

 

I
C

C
0

0
.

For the stability analysis, Definition 4 in [76] and Theorem 1 in [77] are adopted.

Definition 5 [76]: Consider a jump linear system dJ

(1) (()) () (()) ()
:

() (()) () (()) ()d
k k k k k

J
k k k k k

η η
η η

+ = +
 = +

x A x B u
y C x D u

,

where ()kη is a discrete homogeneous Markov chain with states 1 2(, ,)NS S S S= ,  .

The system dJ with ()k =u 0 is said to be asymptotic mean-square stable if

90

2{ () } 0E k →x as k → ∞ ,

for any initial condition 0(0) =x x and initial distribution 0(0)η η= .

Theorem 1 [77]: Let there exist a nonnegative functional (, ,)i h iV V i x x−= ,  ,

i ∈ for which the conditions

2{ } { }i iE V cE x∆ ≤ − ,

where 1 i i iV V V+∆ = − and 0c > hold. Then system Jd is asymptotic mean-square stable.

With Theorem 1, the necessary and sufficient conditions of the asymptotic mean-

square stability of the closed-loop system Eq. (34) can be derived as follows.

Theorem 2: The closed-loop NCS in Eq. (34) is asymptotic mean-square stable if

and only if there exists (,) (,) 0Ti m i m = >P P so that the following matrix inequality

1 1
(,) () ((,))() (,) 0

p q
T

ij mn
j n

i m j n i mλ m
= =

 = + + − <∑∑H A BKC P A BKC P (35)

holds for all i ∈  and m∈ .

Proof: Sufficiency: for the closed-loop NCS in Eq. (34), construct a Lyapunov

function as

((),) () ((), ()) ()T ca scV k k k k k kτ τ = x x P x . (36)

Then

((),) ((1), 1) ((),)

(1) ((1), (1)) (1) () ((), ()) ().T ca sc T ca sc

V k k V k k V k k

k k k k k k k kτ τ τ τ

∆ = + + −

= + + + + −

x x x

x P x x P x (37)

91

Assume caτ is at the Markov state i in the k-th sampling period and will be at the

Markov state j in the next sampling period. Similarly, scτ is at the Markov state m in the

k-th sampling period and will be at the Markov state n in the next sampling period. For

the simplicity, we denote ((), ())ca sck kτ τ P as (,)i m P hereafter. Note that (,)i m is not

the corresponding entry of matrix P, but the corresponding Markov states of the time

delays.

Then Eq. (37) can be reformulated as

((),) (1) (,) (1) () (,) ()

()[() (,)() (,)] ()

T T

T T

V k k k j n k k i m k

k j n i m k

∆ = + + −

= + + −

x x P x x P x

x A BKC P A BKC P x . (38)

The next time-delay state will depend on the current one, and the conditional

expectation of Eq. (38) is as follows.

1 1

{ ((),)} { ()[() ((,) | (,))() (,)] ()}

{ ()() ((,))() (,) ()}

{ () (,) ()}.

T T

p q
T T

ij mn
j n

T

E V k k E k j n i m i m k

E k j n i m k

E k i m k

λ m
= =

∆ = + + −

= + + −

=

∑∑

x x A BKC P P A BKC P x

x A BKC P A BKC P x

x H x (39)

If (,) 0i m <H , then

min

2

{ ((),)} { () (,) ()}

{ (,) () ()}

{ () },

T

T

E V k k E k i m k

E i m k k

E k

σ

σ

∆ =

≤ −

≤ −

x x H x

x x

x (40)

where min min(,) ((,))i m i mσ σ = − H is the minimum eigenvalue of (,)i m− H and

mininf{ (,), , } 0i m i mσ σ= ∈ ∈ >  is the infimum of these minimum eigenvalues.

92

According to Theorem 1, if (,) 0i m <H , then the closed-loop system Eq. (34) is

asymptotic mean-square stable.

Necessity: Under the assumption that Eq. (34) is asymptotic mean-square stable

and Theorem 1, with a constant 0α > , one has

2

{ ((),)} { () (,) ()}

{ () }

{ ()() ()}

T

T

E V k k E k i m k

E k

E k k

α

α

∆ =

≤ −

= −

x x H x

x

x I x (41)

so that { () (,) ()} { ()() ()} { ()[(,)] ()} 0T T TE k i m k E k k E k i m kα α − − = + ≤x H x x I x x H I x ,

and (,) 0.i m α + ≤H I Then 0β α+ ≤ , where

max maxsup{ (,) ((,)), , }i m i m i mβ β β= = ∈ ∈H   is the supremum of the maximum

eigenvalues of (,)i mH . Since 0α > , so that 0β < , and (,) 0i m <H . Hence, the closed-

loop system Eq. (30) is asymptotic mean-square stable, and (,) 0i m <H .

The aforementioned asymptotic mean-square stability condition, Eq. (35) is

nonlinear and difficult to be implemented in real time. A linear criterion will be

introduced based on the LMIs with Schur complement.

Definition 6 [78]: Schur complements of a strict LMI M are defined as follows

()
() ()

 0
()T

x x

x x
 

= > 
  

Q S
M

S R
,

where () ()Tx x=Q Q , () ()Tx x=R R , and ()xS depend affinely on x and ()xR is

invertible, is equivalent to

1() () () () 0Tx x x x−− >Q S R S , and () 0x >R .

93

Theorem 3: There exists a controller that has the form as in Eqs. (17) and (18) so

that the closed-loop system Eq. (34) is asymptotic mean-square stable if and only if there

exists (,) (,) 0Ti m i m = >P P satisfying

(,) (,)
 0

(,) (,)T

i m i m

i m j n

  
> 

  

P N

N G
 (42)

with
1 1
2 2

1 1
(,) ()

p q
T

ij mn
j n

i m ς ξ
= =

 = +∑∑N A BKC .

Proof: The proof is obtained by Schur complement with (,) (,)j n j n =G P I and

Theorem 2.

The conditions in Theorem 3 are in fact a set of LMIs with non-convex

constraints that can be solved by several existing algorithms with reasonable calculation

efforts. However, the on-line calculation of such LMI problem with defined the

coefficient matrices may require long computational time and induce more time delays

to the data processing and control-law generation. Hence, an off-line calculation is

adopted in this research, and experiments are conducted for its effectiveness to the NCS

in the real-time sense. The control law with various levels of time delays and packet

losses will be computed off-line and be tabulated for looking up during the

implementation.

4.2 ALGORITHM IMPLEMENTATION
Practical NCS normally has no clock synchronization mechanism over the entire

communication network. Therefore, no explicit time-delay information is available to

Server and Client in real time. Similarly, no explicit packet-loss information can be

94

detected in real time either. All the information can be obtained by the next sampling

period based on the assumption in the dissertation. Due to the stochastic nature of the

communication network, the packets containing the control inputs of each loop that

arrive at Client may not be in the same sequence as they were initially sent by Server. All

these possibilities make it challenging to implement the controller in the practical NCSs.

By setting up a timestamp segment in the packets traveling through the

communication network, the total time delays and packet losses can be detected by

Client at the end of each sampling period. The total time delays can be inferred by

calculating the difference between the time instance that Client sends plant-output

packets to Server and the time instance that Client receives control-input packets from

Server. The structure of the total time delays has the following form.

() () () ()ca sctimestamp k k k kttt ∆ = + + , (43)

where ()kτ includes the packet-processing time, queuing time, other calculating time,

etc., on both Server and Client. Note that, in general, caτ and scτ are not necessarily the

same. From Eq. (9), one can have

1() () ()
2

ca sck k timestamp ktt ≈ ≈ ∆ (44)

in the controller design and implementation to be presented in Section 4.3.3. Compared

to the time delays over the communication network, the packet-processing time, queuing

time, or calculating time can be much smaller or neglected under certain circumstances.

If Client receives no updated control signal within a certain time period, it may assume

the packet has been lost.

95

Note that the time delays calculated by tracking the timestamps can only be

accessed by the end of each sampling period, so the current time-delay information will

only be able to be applied to the NCS by the next sampling period. Packet losses can be

handled similarly. Server will use the time-delay information carried from the previous

data packet to compensate for the effect of the time delays and packet losses a sampling

period later.

An algorithm that implements the proposed output feedback controller is as

follows. The implemented algorithm is illustrated in Fig. 41. The solid lines represent

independent control flows on Server and Client. The dashed lines represent

chronological data-packet exchanges between Server and Client. This flow chart

explains the control flow in one control iteration of the NCS.

Algorithm 1: The algorithm describes the control flow in one sampling period.

(1) At the beginning of the current sampling period, Server waits for the plant-output

data packet arriving from Client. The details of the data-packet structures will be

given in Section 4.3.

(2) When the data packet arrives, Server first checks the corresponding data segment

in the packet to verify whether a packet is lost in the previous sampling period.

(3) Server checks the time-delay states. The time-delay information is contained in

the corresponding data segment. Then Server calculates the control input based

on the time-delay states. Note that all the control laws for various time-delay

states and packet losses are calculated off-line and tabulated on Server.

96

SERVER CLIENT

StartStart

Packet
losses?

EndEnd

Wait for
packets from

Client
Send sensor

packet to
Server

Wait for
Server’s
response

Calculate control
input with packet-

loss infoCalculate control
input with

time-delay info

Encapsulate
control input
into packet

Send
packet to

Client

Sense
output

Check
time-delay

states

NO YES

Check delay/
loss info

Receive
packet

Receive
control
input

Actuate
plant

Fig. 41. Flow chart of the output feedback algorithm implementation

97

(4) Server sends the control-input data packet back to Client to actuate the plant. If

the newly updated control-input packet is lost in the link, Client will use previous

control-input data to actuate the plant.

4.3 CONTROLLER IMPLEMENTATION AND EXPERIMENTS
In this section, key experimental results are provided to verify the effectiveness

of the Markov-chain-based output feedback method. The DC motor speed-control

system in Fig. 13 was set up as the test bed.

4.3.1 Experimental Setup Review
Recall that Linux Redhat 7.3 with RTAI 3.4 is the OS running on Server, and

Linux Ubuntu 6.10 with RTAI 3.4, on Client. Comedi is used as the drivers and libraries

of data acquisition on Client. A NI PCI-6221 DAQ card enables the DC motor test bed to

send out plant-output data packets and receive control-input data packets through the

LAN. The speed control is achieved by controlling the output voltage of a PWM

amplifier. Figure 42 shows the block diagram of the entire experimental setup.

Server

Controller PWMEthernet

Ethernet

Reference
speed +

-

PCI-6221

Control
circuit

Encoder

Motor

Client

Actual
speed

Fig. 42. Block diagram of the DC motor speed-control system

98

The communication network in the experiment is a 100-Mbps Ethernet with

unblocked UDP sockets. The data-packet structures for both Server and Client are as

follows. As shown in Fig. 43, a new segment that indicates the time-delay and packet-

loss information is added to the end of the original data packet structure of Client

defined in Fig. 16. The segment is used to track the random time delays and packet

losses during the date packet transmission. If a packet is lost, this segment contains

negative value to notify Server. If not, it contains the total time delays information.

Client

UDP Header
(8 Bytes)

Control Data
(16 Bytes)

Timestamp
(8 Bytes)

Identifier
(8 Bytes)Server IP Header

(20 Bytes)
802.3 Header

(14 bytes)

UDP Header
(8 Bytes)

Sensor Data
(56 Bytes)

Timestamp
(8 Bytes)

Identifier
(8 Bytes)

IP Header
(20 Bytes)

802.3 Header
(14 bytes)

Delay/loss info
(8 Bytes)

Type
(1 Bytes)

BU
(8 Bytes)

SP
(8 Bytes)

Fig. 43. Output-feedback controller data-packet structures

4.3.2 Experimental System Modeling
Based on DC motor datasheet [79], its state-space model can be represented as

1) 0.26(() 2.04 ()p px k x k u k+ = − + (45)

(())py k x k= , (46)

where ()u k ∈ is the input voltage, and ()y k ∈y is the angular velocity, respectively.

The network-induced time delays were measured to determine the key statistical

characteristics of the test bed. Recall the time-delay experiments in Fig. 24. A same

random time-delay experiment was performed for 10,000 iterations. As aforementioned

99

in Section 4.2, the time delays attained by the experiment are the total delays in the NCS.

The average of the time delays is between 0.45 and 0.5 ms, and some jitters with the

average of 0.8 ms. We took these two cases as two time-delay states for the Markov-

chain-based model. According to the algorithm in Section 4.2, caτ and scτ in this

experiment will be one half of the total time delays as indicated in Eq. (44) so that the

time-delay Markov states of caτ and scτ will be

{0.23, 0.4}= =   . (47)

Equation (47) gives the Markov states of the experiments. The first Markov state

of 0.23 ms represents the average of the time delays, and the second Markov state of 0.4

ms represents the jitters in either the controller-to-actuator link or sensor-to-controller

link. caτ and scτ will take one of the values in the set. As mentioned in Section 4.2, caτ

and scτ are not necessarily the same, but we assume they are since the explicit time-

delay information is unavailable in the experiment. Note that the random time delays

may not be exactly the same for each sampling period, and each state in the set actually

represents certain time intervals. A time delay shorter than 0.35 ms represents the first

Markov state, and any time delay longer than 0.35 ms, the second Markov state.

By fixing the current Markov state, the transition-probability matrix can be

constructed by counting the number of the next Markov state that falls into either the

first Markov state or the second Markov state in Eq. (47). The transition-probability

matrices of the two Markov states are determined experimentally as

0.93 0.07
0.75 0.25

 
= =  

 
Λ Γ . (48)

100

Equation (48) gives the probability that the time delays jump from the current

Markov state to the next Markov state. (i.e., if the current time delay is 0.23 ms, then the

next time delay will be 0.23 ms at 93% probability, and be 0.4 ms, 7%).

4.3.3 Controller Design and Implementation
The LMI stability criterion developed in Section 4.1 has been applied in the

Matlab with the LMI Toolbox, and the V-K iteration algorithm in [34] with the following

initial P matrix. The matrix (,)i m P depends on the Markov states of caτ and scτ . For

instance, if caτ is at the first Markov state of 0.23 ms, and scτ is at the second Markov

state of 0.4 ms, (,)i m P will be denoted as (1, 2) P . Set a state vector 12 [0.23 0.4]T=w

for (1, 2) P , and define 12 12(1, 2) ()Tdiagg ⋅ ⊗P w w I , where γ is a weight coefficient for

the optimization and ⊗ is the Kronecker product. The dimension of I depends on the

problems, where I is 4×4 identity matrix in our experiments. All the other (,)i m P can be

constructed in the same way. These initial (,)i m P will be applied to start the LMI solver

and V-K iteration algorithm, which will converge to the final states at the end of all the

iterations or when the errors satisfy a pre-set error bound. The choice of initial (,)i m P

may vary. The convergence of the V-K iteration algorithm can be referred to [34]. Then

with solving Eq. (42) using the Matlab LMI Toolbox and V-K iteration algorithm with

the corresponding constraints, the controller can be designed.

The controllers are designed as presented in Table 7. The 4-tuple

, , }{ ,ca sc ca scτ τ δ δ in Table 7 represents different Markov states of the random time

delays and packet losses as defined in Section 4.1. The order of the controller can be set
101

as needed. A higher-order controller may promise more robust system performance but

require more computational efforts and bring more complexity to the system. In our

experiments, the plant represented with Eqs. (45) and (46) is a first-order system. We

design the controller to be first-order, so the whole closed-loop system is second-order.

Table 7. Output feedback controller parameters

, , }{ ,ca sc ca scτ τ δ δ Ac Bc Cc Dc

{0.23, 0.23, 1, 1} 1.0102 0.9687 0.0396 1.7621

{0.23, 0.4, 1, 1} 1.0155 0.9879 0.0408 1.7889

{0.4, 0.23, 1, 1} 1.0155 0.9879 0.0408 1.7889

{0.4, 0.4, 1, 1} 1.0412 1.0030 0.0421 1.8162

{–, –, 0, 0} 1.1974 1.1534 0.0557 2.0886

As mentioned in Section 4.2, when the packet is lost, no time-delay information

will be available. The 4-tuple {–, –, 0, 0} represents the case that both the controller-to-

actuator and the sensor-to-controller packets are lost. The sensor-to-controller packet

loss is represented by {–, –, 1, 0}. However, Server will not be able to calculate the

updated control input since it has not received any newly updated output information.

The other case of the controller-to-actuator packet loss is represented by {–, –, 0, 1}.

When this happens, the updated control input is calculated by Server but cannot arrive at

Client. Therefore, all these cases can be grouped into the case {–, –, 0, 0} in the

experiments since Client will not receive any updated control input for these three cases.

102

For the three consecutive packets losses case, two second-order AR models are

applied to predict the lost plant outputs and control inputs so that

ˆ () 0.6621 (1) 0.3377 (2)k k k= − + −y y y , (49)

ˆ (1) 0.6867 (1) 0.3132 (2)k k k+ = − + −y y y , (50)

ˆ (2) 0.7151 (1) 0.2848 (2)k k k+ = − + −y y y , (51)

ˆ() 0.5094 (1) 0.4094 (2)k k k= − + −u u u , (52)

ˆ(1) 0.6136 (1) 0.3862 (2)k k k+ = − + −u u u , (53)

ˆ(2) 0.6849 (1) 0.3151 (2)k k k+ = − + −u u u . (54)

As discussed earlier, the order of the AR model depends on the number of the states of

the Markov chain. Here, in the experiments, the time-delay Markov chain has two

independent states as in Eq. (47). Therefore, the order of the AR model will be two in the

experiments. The AR models are calculated in Matlab. The best-fit values of the above

AR models are 83.3220 and 83.6391, respectively.

4.3.4 Experimental Results
The system performance with the proposed method is used to compare the

performance with that of the PI controller in [64]. The difference equation of the PI

controller is defined in Eq. (14).

All experiments were executed with a 3-ms sampling period for 500 iterations.

The reference speed of the DC motor in all the experiments was set to be 10 rps. Three

separate experiments, without packet losses, with 10% single packet losses, and with

20% consecutive packet losses, were conducted to evaluate the effectiveness of the

103

proposed method. All the experiments were executed under the same network condition

as the time-delay experiment as measured in Eq. (47). The Ethernet LAN in the lab was

robust so that no packet losses occurred even with UDP. Therefore artificial packet

losses were introduced to the NCS with an approximate 10% and 20% loss rate,

respectively. For instance, for 10% loss rate, a random function that takes value from 0

to 1 was introduced, and a threshold of 0.1 (10% loss rate) was set for the comparison. If

the random number was less than the threshold, the packet would be dropped from the

NCS. Note that the random modulo operation does not generate a truly uniformly

distributed random number in [0, 1], but it is generally a good approximation. Since we

run the experiments with a large number of iterations, we assume that the packet-loss

rate is about 10%. Similarly, for the consecutive-packet-loss case, a 20% three

consecutive packets losses were artificially introduced in to the NCS. To clearly see the

effects of the 20% three consecutive packets losses, the packet losses were introduced to

the NCS at 500 ms.

The step responses of the NCS are shown in Figs. 44–46. Figure 44 shows the

results of the PI controller and the proposed controller without artificial packet losses.

Without packet losses, the steady-state errors of the conventional PI control and the

method proposed in this section are almost the same. Figure 45 shows the experimental

results with 10% random artificial packet losses. Figure 46 shows the experimental

results with 20% three consecutive packets losses. As shown in Figs. 45 and 46, even

when packets were lost in the communication network, our approach could track the

reference command faithfully whereas the PI controller could not compensate for the

104

random time delays and packet losses. The proposed method not only uses predictive

control data but also compensates for the effect of packet losses. Hence the system

performance can be enhanced.

Figures 47–49 show the DIAE of all the experiments with the proposed method

and the PI controller. Each figure shows the DIAE of the experimental data without

packet losses, with 10% single packet losses, and 20% consecutive three-packet losses,

respectively. From these figures, one can see that system errors of the NCS dramatically

increase when packets are lost in the communication network. From Figs. 47–49, the

proposed method reduced the DIAE by about 13% without packet losses. For the single

packet losses case, the proposed method reduced the DIAE by as much as 30%

compared to the PI controller. The three consecutive packets losses case, the proposed

method could still reduce the DIAE of the NCS by about 40%. In all these results, the

Markov-chain-based method proposed in this research exhibited satisfactory system

performance.

4.4 SUMMARY
This section proposed an output feedback method for the stabilization and control

of the NCS with random time delays and packet losses. By modeling the random time

delays with time-homogeneous Markov chains and packet losses with Dirac delta

functions, the closed-loop system was stabilized, and the performance was much

enhanced compared to a conventional control method. An asymptotic mean-square

stability criterion for the NCS was obtained in terms of a Lyapunov function and a set of

LMIs with matrix constraints. An algorithm implementation of the stability criterion was

105

Fig. 44. Step responses of Client 2 without packet losses

Fig. 45. Step responses of Client 2 with 10% single packet losses

0 500 1000 1500
0

2

4

6

8

10

12

Time (ms)

D
C

 m
ot

or
 s

pe
ed

 (r
ps

)

Proposed method
PI controller

0 500 1000 1500
0

2

4

6

8

10

12

Time (ms)

D
C

 m
ot

or
 s

pe
ed

 (r
ps

)

Proposed method
PI controller

106

Fig. 46. Step responses of Client 2 with 20% three consecutive packets losses

Fig. 47. DIAE of the proposed method vs. PI controller without packet losses

0 500 1000 1500
0

2

4

6

8

10

12

Time (ms)

D
C

 m
ot

or
 s

pe
ed

 (r
ps

)

Proposed method
PI controller

0 500 1000 1500
0

20

40

60

80

100

120

140

160

180

200

Time (ms)

D
IA

E
 (r

ps
)

Proposed method
PI controller

107

Fig. 48. DIAE of the proposed method vs. PI controller with 10% single packet losses

Fig. 49. DIAE of the proposed method vs. PI controller with 20% three consecutive

packets losses

0 500 1000 1500
0

50

100

150

200

250

300

Time (ms)

D
IA

E
 (r

ps
)

Proposed method
PI controller

0 500 1000 1500
0

100

200

300

400

500

600

700

Time (ms)

D
IA

E
 (r

ps
)

Proposed method
PI controller

108

also presented in this section. The experimental results demonstrated the feasibility and

effectiveness of the proposed method. The proposed method enhanced the system

performance with and without packet losses compared to a conventional control

algorithm. The DIAE without packet losses was reduced by 13% with the proposed

method. The DIAE with 10% single packet losses was reduced by about 30%, and the

DIAE with 20% three consecutive packets losses, by about 40%. The NCS could track

the reference command faithfully with the proposed method when random time delays

and packet losses existed in the links whereas the NCS failed to track the reference

command with a conventional control algorithm.

109

5. OPTIMAL BANDWIDTH ALLOCATION AND SCHEDULING OF THE NCS

raditionally, a controller design problem is separated from software design and

implementation. This separation allows control and computer communities to focus on

their specific problems. Controller designers disregard the characteristics of the

computational and communication resources but mainly focus on the controller and

system stability and performance. On the other hand, real-time OS designers consider

the control loops as periodic tasks with hard deadlines. They focus more on how to

schedule all the tasks and guarantee that the tasks do not miss the deadlines [37]. In the

NCS, however, these two fields are correlated in a closer way so that their separation

will lead to poor system performances. The ideal linear relation between the system

performance and the sampling frequency is no longer the case for the NCS design

because of the existence of the network. A larger sampling frequency will increase the

number of data packets in the network, which will bring longer time delays and might

even overload and destabilize the network.

In general, multiple controllers or multiple clients can coexist in the same NCS.

A representative framework of an NCS was shown in Fig. 3. In this framework, the NCS

includes several operation scenarios—a single controller controls a single client, a single

controller controls multiple clients, and multiple controllers collaboratively control a

single client. All the clients will compete for the limited resources in the NCS to

maintain the stability and performance. Therefore, the communicational and

computational resource allocation and scheduling plays a crucial role in an NCS. Guan

T

110

et al. considered additive colored white Gaussian noise when optimizing the

performance of the NCS with limited bandwidth [80]. A dynamic bandwidth allocation

algorithm based on captured visual content information was presented to raise the

bandwidth utilization of an NCS [81]. Heemels et al. presented a general framework that

incorporated communication constraints, varying transmission intervals and varying

delays. Based on a newly developed NCS model including all these above network

phenomena, the authors provided an explicit construction of a continuum of Lyapunov

functions [82]. Xu et al. formulated a bandwidth optimization and scheduling algorithm

of the NCS based on a non-cooperative game model in [83]. The existence and

uniqueness of Nash equilibrium point are proved.

Traditionally, digital control assumes that the system performance can be

reflected by a monotonically decreasing linear or exponential function of the sampling

frequency. However, this is no longer the case for the design of an NCS as discussed in

Section 1. A higher sampling frequency will increase the number of data packets in the

network, which will cause longer time delays and might even overload and destabilize

the network. Therefore, the linear models of the system performance proposed in the

aforementioned literatures could not completely represent the system dynamics in an

NCS. The effects on the system performance from the possible longer time delays

brought by a high sampling frequency should be considered when formulating the

performance index function (PIF) of an NCS. To better discuss the system performance

and achieve the bandwidth allocation of an NCS, approximations of the PIF which can

fully reveal the characteristics of an NCS are necessary. These approximations should

111

include the effects of the time delays brought by high sampling frequencies as an

essential part when setting the system PIF of an NCS. Not only the time delays but also

the scheduling sequences of controlled plants can affect the PIF of an NCS. Hence, two

system approximations, exponential and quadratic, which consider the effects of time

delays as a crucial part of the system PIF, are proposed to achieve the optimal bandwidth

allocation and scheduling of an NCS. The proposed approximations and the optimal

solutions are expected to exhaust the entire network bandwidth available to the NCS to

maximize the BU and the system performance. Note that although the proposed

approximations and scheduling algorithms are mainly for an NCS with SSMC

framework, they can be applied to an NCS with MSMC framework easily with proper

adjustments.

5.1. SYSTEM PERFORMANCE APPROXIMATIONS
Consider an NCS of a framework that contains one server and multiple clients.

To guarantee the stability and enhance the system performance, all the clients are

assumed to compete for the CPU time and the network bandwidth to calculate control

inputs and transmit data packets. Accordingly, the most common objective in the

resource allocation of an NCS is to optimize the overall quality of control subjected to

certain resource limitations.

Recall Fig. 3 in Section 1, the system performance of an NCS is no longer a

linear function of the sampling frequency. As the sampling frequency increases, the

system performance will be degraded due to large amount of data packets transmitted in

the network. To be consistent with simulation and experiments in this section, Fig. 50

112

gives an intuitive idea about trends of the system performance of an NCS regarding to

the sampling frequency. Note that Fig. 50 reflects the generic illustration of Fig. 3. In

Fig. 50, fg is the optimal sampling frequency that yields the optimal system

performance of an NCS. fα and fβ are the sampling frequency boundaries of the

acceptable performance range. The acceptable performance depends on the users’

requirements. It is not necessary the stable region of the NCS. Therefore, fα and fβ

may not necessary be the minimum and maximum sampling frequencies of the NCS,

respectively.

Optimal performance

Acceptable performance

Sampling frequency

Sy
st

em
 p

er
fo

rm
an

ce
 in

de
x

B
et

te
r

W
or

se

Lower Higher

α β

γ

fγfα fβ

Fig. 50. NCS performance index vs. sampling frequency

113

5.1.1. Network Bandwidth of the NCS
To achieve the optimal resource-allocation objective, a system PIF in terms of

various resources is set up. Based on the definition of the network bandwidth in [26], the

relation between the sampling frequency and the BU can be indicated by the following

equation,

 k k k
i i ib fτ= , (55)

where k
ib is the BU, k

if is the sampling frequency, and k
iτ is the total time delay in the

NCS that includes the propagation delay from the network and the data processing time.

The subscript i indicates the index of the clients in the NCS, and the superscript k

indicates the control iterations.

Note that given a certain amount of time delay, Eq. (55) gives a means to

evaluate the clients’ sampling frequencies and represents the portion of network

bandwidth assigned to each plant. Since k
iτ includes the data processing time on

Server’s CPU, this bandwidth definition also implicitly indicates the CPU resource

allocation on Server. In control system design, the sampling frequency directly relates to

the system stability and performance. Equation (55) also gives an implicit means to

measure a client’s stability and performance. A large BU implies a high sampling

frequency so that a client will have a better performance. However, an upper bound

exists on the NCS bandwidth. If the BU reaches the network bandwidth saturation

threshold, the network will be overloaded and induce more time delays or packet losses,

and the performance of an NCS will be degraded.

114

5.1.2. Performance Index Function
Recall that the DIAE is adopted to be the performance index formulated in

Section 3. For each individual plant, at various sampling frequency, the DIAE will take a

different value. Hence, a set of accumulated DIAEs of a client over a stability range of

sampling frequencies will imply the performance of an NCS and can be applied to find

the optimal sampling frequency of the client. Hereafter, the practical PIF will be defined

as a piecewise function of the sampling frequency as follows,

0

() ()
fk

i
k k

i i
k
ief fJ

=

= ∑ . (56)

Two approximations will be proposed to capture the trends of the practical PIF as in Eq.

(56) so that the analytical optimal bandwidth allocation can be achieved.

5.1.3. Exponential Approximation Modeling
The NCS system performance without considering time delays can be

approximated as an exponential function [84–85]. However, the negligence of the time

delay in the approximation would not reveal the characteristics of the NCS. Hence, a PIF

considering the effects of the time delays is necessary and can be defined as

 (,) exp()k k k
i

k
i i i iJ f gfd a b cτ τ= + + + , (57)

where a, b, c, d, and g are approximation coefficients. The time delays depend on many

aspects such as the data-packet size, number of packets in the network, network

conditions, router’s capacity, unpredictable uncertainties, etc. Although the time delays

affect the system performance, they are not directly controllable variables in a design of

an NCS. However, by controlling the sampling frequency of each client in an NCS, the

115

number of data packets in the network can be maintained at a certain level so that the

average of time delays can be controlled within a certain range. Therefore, for

simplicity, we assume that the effects of the time delays can be reflected by an

increasing function of the sampling frequencies of the plants in an NCS. The details of

system performance versus the time delays can refer to [59, 86–87]. Hence, from an

NCS design perspective, the PIF that reveals the effects of the time delays brought by a

high sampling frequency can be revised as an increasing exponential function of the

sampling frequency. Hereafter, from a traditional digital design perspective, ,() k
i iE f t

defines an approximated PIF of Client i as a decreasing exponential function of the

sampling frequency. Similarly, from an NCS design perspective, ,() k
i iF f t defines an

approximated PIF of Plant i as an increasing exponential function of the sampling

frequency. Therefore,

(),

k
i ifk

i iE f t e β−= , (58)

and

, ()
k

iik
i

f
iF f t eδ= , (59)

where iβ and iδ are the approximation coefficients. These parameters can be obtained

from simulation or experiments by a LSM approach. Refer to Eqs. (101) and (103) in

Section 5.3 as examples. Therefore, for each individual client, the PIF can be defined as

0

1
((,) (,))k k

i i i i i i i
k

M

iJ J E f t F tf dtα g
=

−

≅ = +∑ , (60)

116

where M is the maximum control iteration. The coefficients iα and ig balance the

impacts of the errors and time delays in the PIF of the corresponding client.

For the NCS, the purpose of optimal bandwidth allocation is to minimize the PIF

1

1

1 0

1

1 0

min min

min (((),) ,)

min () ,
k k

i i i i

i

N
k
i if f i

N M
k k k
i i i i i if i k

N M
f fk

i i if i k

J J

E b b dt

e e

t

t

t

d

F

β δ

ω

ω

α g

gα

ω

∈Ω ∈Ω =

−

∈Ω = =

−
−

∈Ω = =

+

+

=

=

=

∑

∑∑

∑∑ (61)

subject to

1

N
k k
i i

i
f Bτ

=

≤∑ , 1, ,k M∀ = 
 (62)

where 0 1B≤ ≤ is the network bandwidth saturation threshold in the NCS, N is the

number of clients, k
iω is the weight for Client i at control iteration k, and Ω is the set of

sampling frequencies that maintains the stability of the clients. The selection of k
iω can

be based on the system requirements. For example, the client with the largest sampling

frequency may indicate the difficulties in maintaining the stability and system

performance and wins the largest weight. Furthermore, the PIF is a convex function of

sampling frequencies, and it is this convexity that allows for the optimal sampling

frequency for a set of clients with appropriate convex optimization methodologies.

5.1.4. Quadratic Approximation Modeling
In Section 5.3, one can see that the exponential approximation can closely

approximate the practical system performance, but a closed-form optimal solution of

Eqs. (61–62) is not easy to obtain in real time. Therefore, a quadratic approximation is
117

proposed as a replacement of the exponential approximation. The quadratic

approximation has a simple closed-form optimal solution to Eqs. (64–65) in the below.

For each individual plant, the PIF can be defined as

2

0

1
 (())k k

i i i i i i
k

M

iJ J a f f c tb d
−

=

≅ + += ∑ , (63)

where ia , ib , and ic are the approximation coefficients. Refer to Eqs. (102) and (104) in

Section 5.3 as examples.

For the entire NCS, the objective function and constraints could be formulated as

1

 2

1 0

1

min min

min (())

N
k
i if f i

N
k k k
i i i i i if i

M

k

J J

a f b f c dt

ω

ω

∈Ω ∈Ω =

∈Ω

−

= =

=

= + +

∑

∑∑ , (64)

subject to

1

N
k k
i i

i
f Bτ

=

≤∑ , 1, ,k M∀ = 
 (65)

Note that this quadratic PIF is also a convex function of the sampling frequency.

5.2. OPTIMAL BANDWIDTH ALLOCATION AND SCHEDULING
In this section, the optimal solution of the proposed exponential and quadratic

approximations and the scheduling of the bandwidth assignment sequence of the clients

are given. To facilitate the development, the following assumptions are made.

Assumption 1: The total time delay k
iτ in Eq. (55) is a random variable by the

nature of the network. For the simplicity of analysis and optimization, however, it is

assumed to be a constant at each different sampling frequency if of Client i, and an

118

average value is used. Then the superscript k in all the approximations can be dropped,

and iτ is the average time delay for Client i.

Assumption 2: All the clients can be scheduled at their minimum sampling

frequency. That is, when min i if f= , we have m n

1

i
N

i i
i

f Bτ
=

≤∑ , where min
if is the minimum

sampling frequency of the Client i. When all the clients are at their maximum BU or

maximum sampling frequency, the total BU of the entire NCS may or may not exceed

the network bandwidth saturation threshold B.

An NCS could contain various clients that have different system specifications

and requirements. These clients can be categorized into two groups, the one with variant

sampling frequencies, and the one with fixed sampling frequencies. If an NCS includes

both groups of clients, the bandwidth threshold B needs to be modified as

ˆ
j j

j
B B fτ

∈

= − ∑


, where  is the set of the indices of the clients with fixed sampling

frequencies. Then, for the rest of the clients with variant sampling frequencies, the new

bandwidth threshold B̂ will be used for the optimization purpose so that the objective

function of Eq. (61) or (64) can still be applied. Or if a certain percentage of the network

bandwidth should be reserved for other functionalities, the newly defined B̂ can also be

applied so that B̂ B B= −  , where B is a reserved network bandwidth.

5.2.1. Optimal Solution of Exponential Approximation
The two approximations discussed in the previous sections are both convex

functions. Note that the constraints of the objective PIF approximations are also convex

119

functions. Hence, the convex optimization techniques can be applied to solve for optimal

solutions of each approximation. Note that the exponential and quadratic approximations

proposed in this section are nonlinear functions. Therefore, the KKT condition will be

applied to solve the optimization approximations in Eqs. (61–62) and (64–65).

Theorem 4 [88]: Let * n∈x  be a minimum solution of the problem

minimize ()f x

subject to () =h x 0

() ≤g x 0 ,

and suppose n∈x  is a regular point for the constraints. Then there is a vector m∈λ 

and a vector p∈μ  with ≥μ 0 such that

* * *)() (()T Tf∇ + ∇ + ∇ =x λ h x μ g x 0 ,

*()T =μ g x 0 .

For the exponential approximation defined in Eqs. (60–61), the optimal solution

will be given by the following theorem.

Theorem 5: Given an NCS with N clients, and with the PIF approximated in Eqs.

(61–62), an optimal solution, is given by

mi* n
i iff = , 1, , i l= 

 (66)

* ()j jf g λ= , 1, , j l N= +  (67)

where l is the smallest index so that

min *

1 1

N

i i j j
i j

l

l
f f Bτ τ

= = +

≥+∑ ∑ , (68)

120

and ()jg λ is the solution to

– 0i i i if f
i i ie eβ δ λτΞ + Φ + = , (69)

where i i i iω α βΞ = − and i i i iω g δΦ = .

Proof: The KKT condition and the Lagrange multipliers λ, λi1, and λi2 will be

introduced. Then define the Lagrange equation as

1 2
1 1 1 1

min max() () () ()i i i i
N N N N

f f
i i i i i i i i i i i

i i i i
BL e e f f f ffβ δω α λ τ λ λg−

= = = =

+ − −+ + −= +∑ ∑ ∑ ∑ (70)

Then from the KKT condition, the dual feasibility is

–
1 2) 0(i i i if f

i i i i i i i i i ie e f fβ δω α β g δ λτ λλ+ + −− + = , (71)

and the complementary slackness are

1
() 0

N

i i
i

f Bλ τ
=

− =∑ (72)

min
1() 0i i if fλ − = (73)

m x
2

a() 0i i if fλ =− , (74)

0λ ≥ (75)

1 0iλ ≥ (76)

2 0iλ ≥ , (77)

where 1, 2, , i N=  .

Based on Assumption 2, min

1

N

i i
i

f Bτ
=

≤∑ , all the clients are given initially the

minimum frequencies, min i if f= , and there will be idle network bandwidth available. If

121

min

1

N

i i
i

f Bτ
=

=∑ , then the optimal solution of the objective and exponential approximation

Eqs. (61–62) is mi* n
i if f= . If m n

1

i
N

i i
i

f Bτ
=

<∑ , then some or all sampling frequencies of the

clients must be increased from their minimum values. For those clients that have

increased sampling frequencies, their constraints are inactive so that 1 0iλ = and 2 0iλ =

based on the KKT conditions. Therefore from Eq. (71), we have

– 0i i i if f
i i ie eβ δ λτΞ + Φ + = , 1, , i l N= + 

 (78)

where i i i iω α βΞ = − and i i i iω g δΦ = . Solve if from Eq. (78) in terms of λ, assume that λ

is given at the moment and is a constant during the calculation. Multiple – i ife β on both

sides of Eq. (78), and let – ifu e= , then we will have

 0i i i
i i iu uδ β βλτ+Φ + + Ξ = , 1, , i l N= + 

. (79)

Note that Eq. (79) is a higher-order polynomial function. If the order of Eq. (79) is

higher than 5, there is no closed-form solution. The Newton-Raphson Method [84] can

be applied to find roots of Eq. (79).

Let *u be the solution of Eq. (78) and define * *ln)(if u= , then

1

i *

1

m n ln)(
N

i i j
i j l

l
f u Bτ τ

= = +

+ ≥∑ ∑ . (80)

And solve for λ from Eq. (79) with *u solved from Eq. (80), which yields the optimal

solution of the exponential approximation.

122

Note that Eq. (78) is a transcendental equation, and a closed-form solution for if

may not be easily obtained. Compared to solving the transcendental equation Eq. (78),

solving of the polynomial function Eq. (79) requires less computational effort.

5.2.2. Optimal Solution of Quadratic Approximation
For the quadratic approximation defined in Eqs. (64–65), the optimal solution

will be given as follows.

Theorem 6: Given an NCS with N clients, and with the PIF in Eqs. (64–65), an

optimal solution, is given by

mi* n
i if f= , 1, , i l=  (81)

* –
 2

j j j
j

j j

b
f

λτ ω
ω α

−
= , 1, , j l N= +  (82)

where l is the same as in Theorem 4 and

m

1 1
2

i

1

n
2

 2

l N
j j

i i
ji j l

N
j

j jj l

b
f B

a

a

τ
τ

λ
τ
ω

= = +

= +

− −

=
∑∑

∑
. (83)

Proof: The KKT condition and the Lagrange multipliers λ, λi1, and λi2 will be

introduced. Then define the Lagrange equation as

2 min max
1 2

1 1 1 1
() () () ()

N N N N

i i i i i i i i i i i i i
i i i

i
i

f bL a f c f f f f fBω λ τ λ λ
= = = =

+ + −= +− −+ +∑ ∑ ∑ ∑ (84)

From the KKT condition, the dual feasibility of Eq. (84) is

1 2(2) 0i i i i i i i i ia f b f fω λτ λ λ+ − ++ = , (85)

123

and the complementary slackness are

1
() 0

N

i i
i

f Bλ τ
=

− =∑ (86)

min
1() 0i i if fλ − = (87)

m x
2

a() 0i i if fλ =− , (88)

0λ ≥ (89)

1 0iλ ≥ (90)

2 0iλ ≥ , (91)

where 1, 2, , i N=  .

Similarly, based on Assumption 2, all the clients are given initially the minimum

frequencies, min i if f= , and there will be idle network bandwidth available. Similar, for

those clients, which have sampling frequencies other than their minimum values, 1 0iλ =

and 2 0iλ = based on the KKT conditions. Therefore from Eq. (85), we have

2 0i i i i i ia f bω ω λτ+ + = , 1, , i l N= +  (92)

so that

* –
 2

i i i
i

i i

bf
a

λτ ω
ω

−
= , 1, , i l N= +  (93)

Substitute Eq. (93) into Eq. (86), and solve for λ.

m n

1

i

1 2

l N
j j j

i i j
j ji j l

b
f B

a
λτ ω

τ τ
ω= = +

− −
+ =∑ ∑ , (94)

and

124

m

1 1
2

i

1

n
2

 2

l N
j j

i i
ji j l

N
j

j jj l

b
f B

a

a

τ
τ

λ
τ
ω

= = +

= +

− −

=
∑∑

∑
. (95)

Note that the solutions to Eqs. (61–62) and (64–65) may vary depending on the

selection of the weights ωi
k and the approximation coefficients. Finding optimal

solutions with the chosen weights and approximation coefficients may not be feasible.

Then new weights and approximation coefficients need to be chosen to fulfill the

feasibility of the optimization.

5.2.3. Unique Global Optimal Solution
Note that the exponential and quadratic functions are convex functions. The

additional operation preserves the convexity of functions. Hence, the two proposed

approximations defined in Eqs. (61–62) and (64–65) are convex approximation. With the

convexity of the proposed approximations, the following theorem exists.

Theorem 7: Given the two approximations in Eqs. (61–62) and (64–65), the

optimal solutions in Eqs. (66–67) and (81–82) will be the unique global optimal

solutions if the solutions exist.

Proof: Consider a convex optimization problem as follows

minimize ()f x

subject to () =h x 0

() ≤g x 0 ,

125

and let * n∈x  be an existing local optimal solution. Assuming that the given convex

optimization problem ()f x is feasible, then there exists ε such that

* *() inf{ () : () 0, 1, , ; () 0, 1, , ; }i jf f g i m h j p ε= ≤ = = = − ≤x x x x x x  . (96)

Suppose that *x is not globally optimal. Then there exists a feasible y so that

*() ()f f<y x , which implies that * ε− >y x . Consider that a point z is given by

*(1)θ θ= − +z x y ,
*

0 1
2

εθ< = <
−y x

.

Then * 2ε ε− ≤ <z x and by convexity of the objective function ()f x ,

* *() (1) () () ()f f f fθ θ≤ − + ≤z x y x ,

which contradicts Eq. (95). Therefore, if local optimal solutions of Eqs. (60–61) and

(63–64) exist, they are also the unique global optimal solutions of the optimization

problems, respectively.

5.2.4. Scheduling Algorithm
Scheduling of the NCS consists of two parts: (1) priority assignment and client

arrangement in the NCS, and (2) scheduling algorithm implementation in the

programming or protocol of the NCSs. In general, the second part can be achieved by

introducing the existing scheduling algorithms in the real-time system to the NCS.

For the purposes of the priority assignment and plant arrangement, we assume

under Assumption 2 that there will be an idle bandwidth available for the initial

bandwidth allocation. The rate of change of the system PIF in terms of the sampling

126

frequency can be obtained as () /)(i i i i iU f J fτ= ∂ ∂ . Initially, the controlled plants will be

arranged by the following sequence,

min min
1 1 2

in
2

m() () ()N NU f U f U f≤ ≤ ≤ . (97)

In this preferred sequence, by changing the same amount of sampling frequency

of each plant, Client N will yield the largest change in PIF so that the performance of the

NCS can be improved in the fastest rate. The rate of change of the sampling frequency

can be linear or constant. Consequently, Client N should be first given the idle network

bandwidth if available. And as long as sufficient bandwidth is available in the NCS, the

increment of BU for Client N will continue until the moment either that

 min
1 1() ()N N N NU f U f− −= , or ma x

N Nf f= , or *
N Nf f= . Then BU of Plant N and N–1 will

increase by maintaining
1 1() ()N N N NU f U f− −= until the moment either that (1)

1 1 2

n
2

mi() () ()N N N N N NU f U f U f− − − −= = , (2) ma x
N Nf f= and m x

1 1
a

N Nf f− −= , or (3) *
N Nf f=

and *
1 1N Nf f− −= . This bandwidth allocation process will continue until the idle network

bandwidth in the NCS is exhausted.

Note that the ()i iU f consists of two parts, iΞ and iΦ in the exponential

approximation. Here, iΞ represents the decrement in the PIF per unit increment of the

BU from the traditional digital design perspective, and iΦ , the increment in the PIF per

unit increment of the BU from the NCS design perspective, respectively. From Section

5.1.1, Eq. (58) is a monotonically decreasing function of if , and Eq. (59) is a

monotonically increasing function of if . Recall Eq. (78) so that we have

127

– 0i i i if f
i i ie eβ δ λτΞ + Φ + = , 1, , i l N= +  . (98)

For each iteration, λ and iτ are given from Eq. (79) and the timestamp calculation of

Client, respectively. Hence, we can consider iλτ as an offset of Eq. (98). If the offset is

being eliminate from Eq. (98), one can have

– 0i i i if f
i ie eβ δΞ + Φ = , 1, , i l N= +  . (99)

From the properties of exponential functions, – 1i ife β < and 1i ifeδ > , respectively.

Therefore, for non-trivial sampling frequency 0if ≠ ,

–
 1

i i

i i

f
i

f
i

e
e

δ

β
Ξ

= >
Φ

, 1, , i l N= +  . (100)

From Eq. (95), we will have i iΞ > Φ to balance the exponential functions in Eqs. (71)

and (78) for each client in general. This indicates that the NCS is more sensitive with

respect to iΞ than iΦ . In Section 5.3, we will see that i iΞ Φ in simulation and

experiments. Therefore, we will apply iΞ as the primary parameter and iΦ as the

complementary parameter for the scheduling.

The calculation of the network bandwidth saturation threshold B of an NCS

depends on the scheduling algorithms. There exist several scheduling algorithms for

real-time systems that could also be implemented in the NCS [62]. However, there is a

significant difference between real-time system scheduling and NCS scheduling. Real-

time system scheduling is able to put the tasks into a pre-emptive status based on their

priority decided by the scheduling algorithms. But when a data packet is transmitted in

the network, the controller will be unable to suspend the data packet although there
128

might be higher-priority tasks in the NCS. Therefore, only real-time non-preemptive

scheduling algorithms can be applied to the NCS such as non-preemptive RM and EDF.

The flow chart of the scheduling algorithm of the NCS is illustrated in Fig. 51.

The network bandwidth saturation threshold B of an RM scheduling defined in Fig. 51 is

the ratio of the smallest task period over the largest task period in the system [89]. In an

NCS, the task period can be assumed equal to the sampling period of Client. For

instance, arranging the sampling period of a Client in an ascending order as

1 2 Nh h h≤ ≤ ≤ , then 1 / NB h h= . With above analysis and discussions, the scheduling

algorithm with the proposed NCS PIF approximations is as follows.

Algorithm 2: The scheduling algorithm of the proposed PIF approximations is

(1) Decides which scheduling algorithm will be implemented on the NCS. If RM is

chosen, then 1 / NB h h= ; if EDF is chosen, then 1B = .

(2) Choose the approximations for the NCS. Based on the network bandwidth

saturation threshold B from step (1), the optimal sampling frequencies of the

given NCS are calculated from Eqs. (66–67) and (81–82) for the exponential and

quadratic approximations, respectively.

(3) Arrange the clients in the order of Eq. (97) for the sampling frequencies update.

(4) Update the sampling frequency of each client until the optimal sampling

frequency is achieved or the idle network bandwidth is exhausted.

5.3. SIMULATION AND EXPERIMENTS
In this section, the simulation and experimental results are presented to

demonstrate the effectiveness of the proposed approximation methods and their
129

scheduling performances. Four DC-motor speed-control systems were set up as the test

bed for experimental verification as shown in Fig. 13.

Start

RM/EDF?

End

B = 1

Arrange the
clients by (97).

Increase the sampling
frequencies of clients

until the optimal
solutions in (66–67) or
(81–82) are achieved.

B = h1/hN

RM EDF

Calculate the
coefficients of the

approximation.

Fig. 51. A flow chart of the proposed optimal bandwidth allocation and scheduling

algorithm of the NCS

130

The objective of this experiment is to control the speed of a DC motor over the

LAN. The transfer functions of the DC motor and the PI controller are defined by Eqs.

(10–11). Again, the reference speed was set to be 10 rps. The minimum sampling

frequency without causing instability of each DC motor is 65 Hz. The average of total

time delay of the DC motor speed-control system is measured to be 1.360 ms. The

network protocol is UDP.

5.3.1. Simulation Results
In order to verify the scheduling algorithm proposed in Section 5.2, the

simulation result is presented here first. The simulation setup contains four independent

DC motor speed-control systems as given in Eqs. (10–11). To make this simulation

closer to practice, the network-induced time delays are also considered. A time-delay

experiment was performed for 20,000 iterations with Client 2 with a 3-ms sampling

period as before. The average and the standard deviation of the time delays in the

network are 0.5034 ms and 0.0414 ms, respectively. The data-packet processing time is

not included here. The simulation in this section was conducted by the TrueTime

toolbox in Matlab [84]. Ethernet is chosen as the network protocol and its transmission

rate is 100 Mbps.

When all the DC motors are operated at the minimum sampling frequency of 65

Hz, the BU of each DC motor is 0.0884, and the total BU of the NCS is 35.36%. With

either the EDF or RM scheduling algorithm, B = 1, and Assumption 2 is justified. Figure

52 shows the simulation of a single DC motor and its PIFs with the exponential and

quadratic approximations are as follows

131

–0.0315 0.02809 030.9 .006i if f
iJ e e= + , (101)

20.0288 16.0297 2776.6i i iJ f f += − . (102)

The sampling periods of the simulation were varied from 2.2 to 15.2 ms with a step of

0.2 ms. In each individual sampling period, the simulation ran for 20,000 control

iterations.

Fig. 52. DIAE vs. sampling frequencies of the simulation, exponential approximation,

and quadratic approximation

For the exponential approximation, we have l = 1 from Eq. (68), where l is the

smallest number of the controlled plants that have the minimum sampling frequency as

defined in Eq. (68). Similarly, for the quadratic approximation, l = 1. Based on

50 100 150 200 250 300 350 400 450 500
400

600

800

1000

1200

1400

1600

1800

2000

2200

Sampling frequency (Hz)

In
te

gr
al

 a
bs

ol
ut

e
er

ro
r (

rp
s)

simulation
exponential approximation
quadratic approxiamtion

132

Theorems 5 and 6, the optimal sampling frequency of each DC motor is given in Table

8. Note that the different selection of the weights will lead to different optimal solutions

listed in Table 8. Here, for the four identical DC motors, we chose the weights based on

the priority that we expected.

Table 8. Optimal sampling frequencies of the simulation

Client # of DC motors iω Exponential
Approximation [Hz]

Quadratic
Approximation [Hz]

2 1 1 65 65

4 2 2 124.4 121.2

5 3 4 240.2 233.4

6 4 5 304.8 298.6

Figure 53 shows the profile of the sampling-frequency and BU changes for each

DC motor during the simulation. Here, we adopted a linear changing rate for the

sampling frequencies. Under Assumption 1, the time delay of each sampling frequency

is assumed to be a constant. Hence, the BU changes can also be illustrated in the figure

as the sampling frequency in Fig. 53.

From Table 8 and Eq. (55), the total BUs of the exponential and quadratic

approximations are 99.87% and 97.67%, respectively. The parameters in the digital

controller depended on the sampling frequency and were adjusted automatically as the

sampling frequency changed.

133

Fig. 53. Profile of the sampling-frequency and BU changes for each DC motor during

the simulation

In Fig. 53, as the control iteration increased, the sampling frequency of each DC

motor approached their optimal values listed in Table 8. After the optimal sampling

frequencies were achieved, the DC motors kept the sampling frequencies for the rest of

the simulations. Therefore, the total BU of the simulation may not be exactly the same as

the ones calculated from Table 8, however, it will be very close to the optimal value

eventually. From Fig. 53, the final total BU is 98.75%. Note that the sampling

frequencies of DC motor 2, 3, and 4 in Fig. 53 are not changed in the beginning of the

program. These delays are caused by the scheduling algorithm in Eq. (95). The clients

will run at their minimum sampling frequencies until the scheduling condition in Eq.

(95) is satisfied. Figure 54 shows the accumulated total cost of performance J of the

simulation, the exponential approximation, and the quadratic approximation,

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

350

S
am

pl
in

g
fre

qu
en

ci
es

 (H
z)

Control iterations

0 100 200 300 400 500 600 700 800 900 1000
6.8

13.6

20.4

27.2

34

40.8

47.6

B
an

dw
id

th
 u

ni
til

iz
at

io
n

(%
)

DC motor 4
DC motor 3
DC motor 2
DC motor 1

134

respectively. As the control iteration increases, the sampling frequency of each DC

motor is approaching their optimal values listed in Table 8 and the total cost of the

performance J is decreasing.

Fig. 54. Accumulated total cost of performance J of the simulation, exponential

approximation, and quadratic approximation

5.3.2. Experimental Results without Reserved Bandwidth
The relation of the DIAE versus the sampling frequency and the time delay in

experiments and with the exponential approximation are given in Figs. 55 and 56. Five

sets of experiments were conducted under the same network conditions. In each

individual sampling period, the experiments ran for 20,000 control iterations.

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Control iterations

A
cc

um
ul

at
ed

 to
ta

l c
os

t o
f p

er
fo

rm
an

ce
 J

simulation
exponential approximation
quadratic approximation

135

Fig. 55. DIAE vs. sampling period and time delay in experiments

Fig. 56. DIAE vs. sampling period and time delay with the exponential approximation

3
6

9
12

15

0.4863
0.7906

1.0949

1.3993
1.7036

x 10
6

0

2000

4000

6000

8000

Sampling period (ms)Time delay (ns)

P
er

fo
rm

an
ce

 in
de

x
(rp

m
)

3
6

9
12

15

0.4863
0.7906

1.0949

1.3993
1.7036

x 10
6

0

1000

2000

3000

4000

5000

6000

Sampling period (ms)Time delay (ns)

P
er

fo
rm

an
ce

 in
de

x
(rp

m
)

136

Note that the time delays induced by the network in an NCS are not directly

controllable variables. Extra time delays are manually inserted to the experiments. The

curves of Fig. 55 are not smooth along either the sampling-period axis or the time-delay

axis. This non-smoothness results from the uncertainties of the NCS, which makes the

design of an NCS a challenge. Figure 56 shows the approximated exponential PIF

generated by curve fitting. Compare Figs. 55 and 56, the trend of the performance of an

NCS can be faithfully approximated by the exponential PIF.

The relation of the DIAE versus the sampling frequencies of the experiments and

exponential/quadratic approximations is given in Fig. 57. Figure 57 shows the

experimental results of a single DC motor and its exponential and quadratic

approximations. From Fig. 57, the DIAE of the DC motor was quite large in the lower

sampling-frequency range because the DC motor could not have adequately frequent

control inputs from the controller to maintain the system performance. As the sampling

frequency increased, the DIAE of the DC motor decreased. In the higher sampling-

frequency range, the DIAE of the DC motor increased again because the number of data

packets in the network increased as the sampling frequency kept increasing. The large

number of the data packets would bring longer time delays into the NCS or even packet

losses so that the performance of the DC motor could be degraded. Note that there are a

few discrepancies among the five sets of experiments in the high sampling-frequency

range. Because of the large number of the data packets in the network in the high

sampling-frequency range, any possible disturbances or irrelevant data-packet

137

transmissions from other network users may cause the NCS performance to be degraded.

Therefore, the NCS is more sensitive at high sampling frequencies.

Fig. 57. DIAE vs. sampling frequencies of the experiments and exponential and

quadratic approximations

Similarly, the PIFs with exponential and quadratic approximations are as follows

–0.05 0.05568781 10.00i if f
iJ e e+= , (103)

20.1316 67.1258 7941.49i i iJ f f= − + . (104)

Although the simulations and the experiments were conducted based on the same system

dynamics of the DC motors and the controller, the approximations of the simulation and

experiments are different. This is because the experiments were conducted under a

complicated network environment and had more uncertainties than the simulations. Our

100 150 200 250 300 350 400 450
0

1000

2000

3000

4000

5000

6000

Sampling frequency (Hz)

In
te

gr
al

 a
bs

ol
ut

e
er

ro
rs

 (r
ps

)

exponential approximation
quadratic approximation
experiment set 1
experiment set 2
experiment set 3
experiment set 4
experiment set 5

138

LAN is shared with other non-NCS users when the experiments were conducted. Longer

time delays and packet losses might have existed in the network in experiments.

Similarly as in Section 5.3.2, we have l = 1 for both the exponential and quadratic

approximations, respectively. Therefore, based on Theorems 5 and 6, the optimal

sampling frequency of each DC motor is given in Table 9.

Table 9. Optimal sampling frequencies of the experiments

Client DC motor iω Exponential
Approximation [Hz]

Quadratic
Approximation [Hz]

2 1 1 65 65

4 2 2 173.5 162.7

5 3 4 237.1 225.8

6 4 5 252.2 249.9

Figure 58 shows the profile of the sampling-frequency and BU changes for each

DC motor during the experiments. Here, we adopted a linear changing rate for the

sampling frequencies. From Table 9 and Eq. (55), the total BUs of the exponential and

quadratic approximations are 98.98% and 95.66%, respectively. Similarly as the

simulation, the sampling frequency were adjusted automatically by 1i if cf+ = where c is

a constant rate of change. In Fig. 58, as the control iteration increased, the sampling

frequency of each DC motor approached their optimal values listed in Table 9. The total

BU of the experiments may not be exactly the same as the ones calculated from Table 9,

however, it will be close to the optimal value eventually.
139

Fig. 58. Profile of the sampling-frequency and BU changes for each DC motor during

the experiments

Fig. 59. Accumulated total cost of performance J of the experiments, exponential

approximation, and quadratic approximation

0 100 200 300 400 500 600 700 800 900 1000
50

100

150

200

250

300

S
am

pl
in

g
fre

qu
en

ci
es

 (H
z)

Control iterations

0 100 200 300 400 500 600 700 800 900 1000
6.8

13.6

20.4

27.2

34

40.8

B
an

dw
id

th
 u

ni
til

iz
at

io
n

(%
)

DC motor 4
DC motor 3
DC motor 2
DC motor 1

0 100 200 300 400 500 600 700 800 900 1000
2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75
x 10

5

Control iterations

A
cc

um
ul

at
ed

 to
ta

l c
os

t o
f p

er
fo

rm
an

ce
 J

experimental results
exponential approximation
quadratic approximation

140

From Fig. 58, the final total BU is 98.26%. Figure 59 shows the accumulated

total cost of performance J of the experiment, the exponential approximation, and the

quadratic approximation, respectively. As the control iteration increases, the sampling

frequency of each DC motor is approaching their optimal values listed in Table 9 and the

total cost of the performance J is decreasing.

5.3.3. Experimental Results with Reserved Bandwidth
In next experiment, Client 1, the ball maglev system, is introduced in to this

experiment. As mention earlier in Section 3, it is an open-loop unstable system that has a

fixed sampling frequency of 333 Hz. The average of total time delay 1τ is measured to

be 1.350 ms from the experiments. By Eq. (55), the BU of Client 1 is

1 1 1 –3(1.350 10 s) (333 Hz) 44.96%b fτ= = × × = . The total time delay of the ball maglev

system and the DC motor speed-control system are very close because they are tested

under the same network conditions and have the same size of data packets. With the

reserved network bandwidth of Client 1, the available network bandwidth

ˆ 1 0.4496 55.04%j j
j

B B fτ
∈

= − − ==∑


, where {1}= , we have l = 2 for the exponential

approximation and the quadratic approximation, respectively. The optimal sampling

frequency of each DC motor with the reserved network bandwidth in the NCS is given in

Table 10.

Figure 60 shows the profile of the sampling-frequency and BU changes for each

DC motor during the experiments with the ball maglev system as a controlled plant that

had a fixed sampling frequency. From Table 10 and Eq. (55), the total BUs of the

141

exponential and quadratic approximations are 54.26% and 54.04%, respectively, with

the ball maglev system taking approximately 45% of the total BU. Similarly, the total

BU of the experiments may not be exactly the same as the ones calculated from Table

10, however, it will get close to the optimal value eventually. From Fig. 60, the final

total BU is 53.45%. Note that DC motors 1 and 2 have the same optimal sampling

frequencies as in Table 10, so they are overlapped in Fig. 60.

Table 10. Optimal sampling frequencies of the experiments with the ball maglev system

Client DC motor iω Exponential
Approximation [Hz]

Quadratic
Approximation [Hz]

2 1 1 65 65

4 2 2 65 65

5 3 4 117.68 119.35

6 4 5 151.35 148.02

Figure 61 shows the accumulated total cost of performance J of the experiment

with the ball maglev system, the exponential approximation, and the quadratic

approximation, respectively. As the control iteration increases, the sampling frequency

of each DC motor is approaching their optimal values listed in Table 10 and the total

cost of the performance J is decreasing.

From the simulation and experiments, we can see the exponential approximation

represents the practices more closely compared to the quadratic approximation in the

sense of the system performance. However, the quadratic approximation takes less

142

computational efforts to solve the optimization objective function and has a closed-form

optimal solution. Both the exponential and quadratic approximations could find the

optimal sampling frequencies that exhaust about 98% of the total network bandwidth

available to the NCS with or without the fixed sampling-frequency plant, the ball maglev

system in our experiments.

Statistic comparisons of the exponential and quadratic approximations are given

in Table 11. These statistical values are based on the simulation and experimental results

in Figs. 52 and 57. From Table 11, the accuracy of the exponential approximation is

about 30% and 60% better than the quadratic approximation for simulation and

experiments, respectively. Although the exponential approximation is more accurate

when capturing the system performance of an NCS, it does not have an analytic closed-

form optimal solution that can be implemented on line. In contrast to the exponential

approximation, the quadratic one has a closed-form optimal solution to the objective PIF

that can be implemented on line. Hence, the algorithm of bandwidth allocation and

scheduling with quadratic approximation has a better efficiency in real-time operation.

However, the accuracy of the quadratic approximation is less than the exponential

approximation. Moreover, the exponential approximation gives an explicit measurement

of the effects of high sampling frequency on the NCS whereas the quadratic

approximation only indicates a coupled performance measurement of the NCS.

143

Fig. 60. Profile of the sampling-frequency and BU changes for each DC motor during

the experiments with the ball maglev system

Fig. 61. Accumulated total cost of performance J of the experiments with the ball

maglev system, exponential approximation, and quadratic approximation

0 50 100 150 200 250 300 350 400 450
60

80

100

120

140

160

S
am

pl
in

g
fre

qu
en

ci
es

 (H
z)

Control iterations

0 50 100 150 200 250 300 350 400 450
8.16

10.88

13.6

16.32

19.04

21.76

B
an

dw
id

th
 u

ni
til

iz
at

io
n

(%
)

DC motor 4
DC motor 3
DC motor 2
DC motor 1

0 50 100 150 200 250 300 350 400 450
5.4

5.6

5.8

6

6.2

6.4

6.6
x 10

4

Control iterations

A
cc

um
ul

at
ed

 to
ta

l c
os

t o
f p

er
fo

rm
an

ce
 J

experimental results
exponential approximation
quadratic approximation

144

Table 11. Statistic comparison of the exponential and quadratic approximations

 Exponential
Approximation (rps)

Quadratic
Approximation (rps)

Simulation
Mean 87.09 110.22

Stdev 60.12 75.48

Experiments
Mean 395.42 1004.5

Stdev 125.33 526.96

5.3.4. Experimental Results without Chosen Client Sequences
Note that the proposed approximations and algorithms are intend to minimize the

system error while exhaust all the available network resources of an NCS. The

approximations can also be applied to minimize the BU to obtain an optimal system

performance. This can be achieved by removing the pre-set client sequence defined in

Eq. (99). Then the optimal solution to the proposed PIF approximations from the KKT

conditions will be optimal BU that leads to the minimum system errors. The following

experiments show the optimal results of this case.

As in Section 5.3.2, when all the DC motors are operated at their minimum

sampling frequency of 65 Hz, the BU of each DC motor is 8.84%, and the total BU of

the NCS is 35.36%. The optimal sampling frequency of each DC motor with the EDF

scheduling algorithm is given in Table 12 indicated by Case 1. The total BU is 78.24%.

Table 12 also gives the sampling frequencies of each DC motor of various BU

145

combination cases. Cases 2 and 3 evenly distribute the 79% and 100% bandwidths to

each DC motor. Note that Case 2 has the same total BU as Case 1.

Figure 62 shows the DIAE of the BU cases as given in Table 12. Note that Cases

1 and 2 have nearly same total bandwidths of the entire NCS. However, from Fig. 10,

the DIAE of Case 1 is reduced by about 25% than that of Case 2. Although both Cases 2

and 3 evenly distribute the bandwidth to each DC motor, the DIAE of Case 3 is larger

than that of Case 2. In these two cases, each DC motor has the same sampling frequency,

so they send data packets to the controller simultaneously. Case 3 has nearly 100%

bandwidth, so the scheduler and the controller are busy with data transmission and data

calculation. It may induce longer waiting time to each data packet in the network, and its

system performance is worse than Case 2. From the experiments, one can see that the

exponential approximation could represent the practice closely in terms of the system

performance and yield the optimal sampling frequency of the NCS.

Table 12. Sampling frequencies [Hz] of Cases

DC motor iω Case 1 (*
if) Case 2 Case 3

1 1 116.27 145.22 183.82

2 2 132.55 145.22 183.82

3 4 145.10 145.22 183.82

4 5 181.37 145.22 183.82

146

Fig. 62. DIAE in the experiments given in Table 12

5.4. SUMMARY
In this section, the optimal bandwidth allocation and scheduling of the NCS with

nonlinear-programming techniques were investigated. The BU of each controlled plant

was defined in terms of its sampling frequency. Two nonlinear approximations,

exponential and quadratic, were formulated to describe the system performance

governed by the DIAE versus the sampling frequencies. Based on the convexity of the

proposed approximations, the optimal solution could be obtained from the nonlinear-

programming perspective. The optimal sampling frequencies were obtained by solving

the approximations with the KKT conditions. Within various network bandwidth

saturation thresholds based on different real-time scheduling algorithms, the proposed

approximations could find the optimal BU for each controlled plant in the NCS. Later in

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

4

Control interation

D
IA

E
 (r

pm
)

Case 1
Case 2
Case 3

147

the section, simulation and experimental results verified the effectiveness of the

proposed approximation models. In both simulation and experiments, the total BU of the

NCS could approach up to 98% of the total available network bandwidth. Therefore, the

proposed approximations and the scheduling algorithms can maximize the BU so that

the controlled plants can be scheduled along with the system PIFs being optimized.

Experimental results also verified the effectiveness of the proposed approximation

method to solve the NCS bandwidth allocation without chosen client sequences.

Therefore, the proposed approximation can minimize the BU so that the plants can be

scheduled along with the system PIFs being optimized.

148

6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

This dissertation presented the output feedback control and optimal bandwidth

allocation of an NCS. This section will provide the conclusions of current research and

several suggestions for future work.

6.1. CONCLUSIONS
An NCS is a control system that has sensors, actuators, and controllers

geographically distributed and connected by communication media. The NCS has

advantages of low cost, reduced system weight, easy installation and maintenance, high

flexibility, etc. However, the communication media bring several challenges such as the

network-induced time delays, packet losses, resource allocation, scheduling, etc. This

dissertation mainly focused on the output feedback control and optimal bandwidth

allocation of an NCS. It covered the design issues of the NCS including network-

induced time delays, packet losses, resource allocation, and scheduling and could be

used as guidance in the design of an NCS.

The NCS discussed in this dissertation included three different types of clients,

the ball maglev system, the DC motor-speed control system, and the wireless robotic

wheelchair system. These three systems represented the fast, medium, and slow

dynamics in the entire NCS. We briefly discussed the capability and system performance

of an NCS that has both wired and wireless clients, and also the capability of the NCS

controlling various dynamic systems.

149

Later, this dissertation proposed an output feedback method for the stabilization

and control of the NCS with random time delays and packet losses. This output feedback

control considered the time delays and packet losses in both the sensor-to-controller and

controller-to-actuator links. The random time delays were modeled with two time-

homogeneous Markov chains, and the packet losses with Dirac delta functions,

respectively. Then an asymptotic mean-square stability criterion for the NCS was

obtained in terms of a Lyapunov function and a set of LMIs with matrix constraints

based on the time-delay and packet-loss models. An algorithm implementation of the

stability criterion was also presented later to verify the effectiveness of the proposed

output feedback controller design method. The experimental results collected from

Client 2 demonstrated the feasibility and effectiveness of the proposed method. It

enhanced the system performance with and without packet losses compared to a

conventional control algorithm. The NCS could track the reference command faithfully

with the proposed method when random time delays and packet losses existed in the

links whereas the NCS failed to track the reference command with a conventional

control algorithm.

Lastly, this dissertation investigated the optimal bandwidth allocation and

scheduling of the NCS with the nonlinear-programming techniques. The BU of each

client was defined in terms of its sampling frequency. Two nonlinear approximations,

exponential and quadratic approximations, were formulated to describe the system

performance governed by the DIAE versus the sampling frequencies. The optimal

sampling frequencies were obtained by solving the approximations with the KKT

150

conditions. A simple scheduling algorithm was proposed to perform the optimal

bandwidth allocation calculated from the two approximations. The scheduling algorithm

was based on the changing rate of the PIFs versus the changing rate of the sampling

frequencies of each client. Later, simulation and experimental results verified the

effectiveness of the proposed approximations and the bandwidth allocation and

scheduling algorithms. In both the simulation and experiments, the two approximations

could maximize the total BU of the NCS up to about 98% of the total available network

bandwidth.

6.2. SUGGESTIONS FOR FUTURE WORK
This dissertation provides theoretical foundations for the future research efforts

in the NCS design and performance analysis. In this section, a few possible further

research directions are explored.

For the NCS, the network-induced time delays include the data processing time is

a significant factor that affects the total time delays. So are the possible data-packet

losses in the network. This dissertation modeled the time delays with Markov chains and

the packet losses with Dirac Delta models. However, the NCS designer needs to have a

good knowledge of the statistics of the time delays and packet losses prior to performing

the controller design procedure. In this dissertation, several experiments were conducted

to measure the statistics of the time delays to set up the Markov chain probability

transition matrix before fully designing the controller. From the computer science

perspective, the behaviors of the data packets in the network can be modeled a with

Bernoulli or Poison process. Doing such, the NCS designer may not have to measure the

151

statistics of the time delays from the experiments but calculate them from the Bernoulli

or Poison process. Therefore, the output feedback design process could be further

developed by including the Bernoulli or Poison process.

The packet-loss model presented in this dissertation considered both the single

packet losses and consecutive packets losses during data-packet transmission. An AR

model was applied to predict the lost data packet in the network. An AR model is the

simplest prediction model in the NCS design. However, a more robust prediction model

could be applied to enhance the performance.

Optimal network scheduling of the NCS also deserves more efforts. The

scheduling algorithm proposed in this dissertation based on the system performance

changing rate versus the sampling frequency. The scheduling depended on a certain

sequence of the clients set up prior to the experiments based on the various PIFs.

However, a more advanced dynamic scheduling algorithm may enhance the NCS

performance. This dynamic scheduling algorithm should consider the system

performance on a real-time basis and be able to assign different scheduling schemes to

different clients.

152

REFERENCES

[1] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative control of mobile sensor

networks: Adaptive gradient climbing in a distributed environment,” IEEE Trans.

on Automatic Control, vol. 49, no. 8, pp. 1292–1302, Aug. 2004.

[2] C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang, and Z. Tian, “Remote surgery

case: Robot-assisted teleneurosurgery,” in Proc. IEEE Int. Conf. of Robot and

Automation, vol. 1, pp. 819–823, Apr. 2004.

[3] J. P. Hespanha, M. L. McLaughlin, and G. Sukhatme, “Haptic collaboration over

the Internet,” in Proc. 5th Phantom Users Group Workshop, pp. 9–13, Oct. 2000.

[4] K. Hikichi, H. Morino, I. Arimoto, K. Sezaki, and Y. Yasuda, “The evaluation of

delay jitter for haptics collaboration over the Internet,” in Proc. IEEE Global

Telecomm Conference, vol. 2, pp. 1492–1496, Nov. 2000.

[5] P. Seiler and R. Sengupta, “Analysis of communication losses in vehicle control

problems,” in Proc. American Control Conf., vol. 2, pp. 1491–1496, Jun. 2001.

[6] P. Seiler and R. Sengupta, “An H∞ approach to networked control,” IEEE Trans.

on Automatic Control, vol. 50, no. 3, pp. 356–364, Mar. 2005.

[7] R. A. Gupta and M.-Y. Chow, “Networked control system: Overview and

research trends,” IEEE Trans. on Industrial Electronics, vol. 57, no. 7, pp. 2527–

2535, Jul. 2010.

[8] Y. Halevi and A. Ray, “Integrated communication and control systems: Part I–

Analysis,” J. Dyn. Syst. Meas. Cont., vol. 110, no. 4, pp. 367–373, Dec. 1988.

153

[9] Y. Halevi and A. Ray, “Integrated communication and control systems: Part II–

Design consideration,” J. Dyn. Syst. Meas. Cont., vol. 110, no. 4, Dec., pp. 374–

381, Dec. 1988.

[10] S. Lichiardopol, “A survey on teleoperation,” DCT report, Dec. 2007.

[11] M. K. Habib, “Collaborative teleoperation design requirements and development

issues,” in Proc. 26th Annual Conf. of IEEE on Industrial Electronics Society

(IECON'00), vol. 1, pp. 19–27. Oct. 2000.

[12] G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl, “ROTEX – The first

remotely controlled robot in space,” in Proc. IEEE Int. Conf. on Robotics and

Automation, vol. 3, pp.2604–2611, May 1994.

[13] K. Goldberg, “The Mercury project: A feasibility study for Internet robots,”

IEEE Robotics and Automation Magazine, vol. 7, no. 1, pp. 35–40, Mar. 2000.

[14] R. C. Luo, J. H. Tzou, and Y. C. Chang, “Desktop rapid prototyping system with

supervisory control and monitoring through Internet,” IEEE/ASME Trans. on

Mechatronics, vol. 6, no. 4, pp. 399–409, Dec. 2001.

[15] C. E. Garcia, R. Carelli, J. F. Postigo, and C. Soria, “Supervisory control for a

telerobotic System: A hybrid control approach,” Control Engineering Practice,

vol. 11, no. 7, pp. 805–817, Jul. 2003.

[16] P. G. Backes, K. S. Tso, and G. K. Tharp, “Mars pathfinder mission Internet

based operations using WITS,” in Proc. IEEE Int. Conf. on Robotics and

Automation, vol. 1, pp. 284−291, May 1998.

154

[17] K. Brady and T. J. Tarn, “Internet-based remote teleoperation,” in Proc. IEEE

Int. Conf. on Robotics and Automation, vol. 1, pp. 65−70, May 1998.

[18] A. Srivatsava, Distributed Real-time Control via Internet, M.S. Thesis, Texas

A&M University, May 2003.

[19] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in

networked control systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 138–

162, Jan. 2007.

[20] Y. Tipsuwan and M.-Y. Chow, “Control methodologies in networked control

systems,” Control Engineering Practice, vol. 11, no. 10, pp. 1099–1111, Nov.

2003.

[21] J. W. Overstreet and A. Tzes, “An Internet-based real-time control engineering

laboratory,” IEEE Control System Magazine, vol. 19, no. 5, pp. 19–34, Oct.

1999.

[22] Y. Tipsuwan and M.-Y. Chow, “Network-based controller adaptation based on

QoS negotiation and deterioration,” in Proc. 27th Annual Conf. of IEEE on

Industrial Electronics Society (IECON'01), vol. 3, pp. 1094–1099, Nov. 2001.

[23] Y. Tipsuwan and M.-Y. Chow, “Gain adaptation of networked mobile robot to

compensate QoS deterioration,” in Proc. 28th Annual Conf. of IEEE on Industrial

Electronics Society (IECON'02), vol. 4, pp. 3146–3151, Nov. 2002.

[24] T.-J. Tarn and N. Xi, “Planning and control of Internet-based teleoperation,” in

Proc. of SPIE: Telemanipulator and telepresence technologies V, vol. 3524, pp.

189–193, Dec. 1998.

155

[25] F.-L. Lian, Analysis, Design, Modeling, and Control of Networked Control

Systems, Ph.D. Dissertation, University of Michigan, 2001.

[26] K. Ji and W.-J. Kim, “Optimal bandwidth allocation and QoS-adaptive control

co-design for networked control systems,” Int. Journal of Control, Automation,

and Systems, vol. 6, no. 4, pp. 596–606, Aug. 2008.

[27] F.-L. Lian, J. Moyne, and D. Tilbury, “Network design consideration for

distributed control systems,” IEEE Trans. on Control Systems Technology, vol.

10, no. 2, pp. 297–306, Mar. 2002.

[28] K. Ji and W.-J. Kim, “Real-time control of networked control systems via

Internet,” Int. Journal of Control, Automation, and Systems, vol. 3, no. 4, pp.

591–600, Dec. 2005.

[29] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control

system,” IEEE Control Systems Magazine, vol. 21, no. 2, pp. 84–99, Feb. 2001.

[30] H. Lin, G. Zhai, and P. J. Antsaklis, “Robust stability and disturbance attenuation

analysis of a class of networked control systems,” in Proc. 42nd IEEE Conf. on

Decision and Control, vol. 2, pp. 1182–1187, Dec. 2003.

[31] J. Nilsson, Real-time Control Systems with Delays, Ph.D. Dissertation, Lund

Institute of Technology, Sweden, 1998.

[32] J. Nilsson, B. Bernhardsson, and B. Wittenmark, “Stochastic analysis and control

of real-time systems with random time delays,” Automatica, vol. 34, no. 1, pp.

57–64, Jan. 1998.

156

[33] S. Hu and W. Zhu, “Stochastic optimal control and analysis of stability of

networked control system with long delay,” Automatica, vol. 39, pp. 1877–1884,

Nov. 2003.

[34] L. Xiao, A. Hassibi, and J. P. How, “Control with random communication delays

via a discrete-time jump system approach,” in Proc. American Control

Conference, vol. 3, pp. 2199–2204, Jun. 2000.

[35] L. Zhang, Y. Shi, T. Chen, and B. Huang, “A new method for stabilization of

networked control systems with random delays,” IEEE Trans. on Automatic

Control, vol. 50, no. 8, pp. 1177–1181, Aug. 2005.

[36] Y. Shi and B. Yu, “Output feedback stabilization of networked control systems

with random delays modeled by Markov chains,” IEEE Trans. on Automatic

Control, vol. 54, no. 7, pp. 1668–1674, Jul. 2009.

[37] Y. Shi and B. Yu, “Robust mixed H2/H∞ control of networked control systems

with random time delays in both forward and backward communication links,”

Automatica, vol. 47, no. 4, pp. 754–760, Apr. 2011.

[38] S.-L. Hu, J.-L. Liu, and Z.-P. Du, “Stabilization of discrete-time networked

control systems with partly known transmission delay: a new augmentation

approach,” Int. Journal of Control, Automation, and Systems, vol. 9, no. 6, pp.

1080–1085, Dec. 2011.

[39] F. Yang, W. Wang, Y. Niu, and Y. Li, “Observer-based H∞ control for

networked systems with consecutive packet delays and losses,” Int. Journal of

Control, Automation, and Systems, vol. 8, no. 4, pp. 769–775, Aug. 2010.

157

[40] T. Jia, Y. Niu, and X. Wang, “H∞ control for networked systems with data packet

dropout,” Int. Journal of Control, Automation, and Systems, vol. 8, no. 2, pp.

198–203, Apr. 2010.

[41] R. Krtolica, U. Ozguner, H. Chan, H. Goktas, J. Winkelman, and M. Liubakka,

“Stability of linear feedback systems with random communication delays,” Int.

Journal of Control, vol. 59, no. 4, pp. 925–953, Apr. 1994.

[42] X. Ye, S. Liu, and P. X. Liu, “Modeling and stabilisation of networked control

system with packet loss and time-varying delays,” IET Control Theory and

Application, vol. 6, no. 6, pp. 1094–1100, Jun. 2010.

[43] J. Xiong and J. Lam, “Stabilization of linear systems over networks with

bounded packet loss,” Automatica, vol. 43, no. 1, pp. 80–87, Jan. 2007.

[44] G. P. Liu, J. X. Mu, D. Rees, and S. C. Chai, “Design and stability analysis of

networked control systems with random communication time delay using the

modified MPC,” Int. Journal of Control, vol. 79, no. 4, pp. 288–297, Apr. 2006.

[45] L. Schenato, “Optimal estimation in networked control systems subject to

random delay and packet drop,” IEEE Trans. on Automatic Control, vol. 53, no.

5, pp. 1311–1317, Jun. 2008.

[46] K. E. Arzen, A. Cervin, J. Eker, and L. Sha, “An introduction to control and

scheduling co-design,” in Proc. 39th IEEE Conf. on Decision and Control, vol. 5,

pp 4865–4870, Dec. 2000.

[47] A. T. Al-Hammouri, M. S. Branicky, V. Liberatore, and S. M. Phillips,

“Decentralized and dynamic bandwidth allocation in networked control

158

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Arzen,%20K.-E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Cervin,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Eker,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Sha,%20L..QT.&newsearch=partialPref

systems,” in Proc. 20th Int. Parallel and Distributed Processing Symposium,

(IPDPS’06), pp. 25–29, Apr. 2006.

[48] M. Velasco, J. M. Fuertes, C. Lin, P. Martí, and S. Brandt, “A control approach

to bandwidth management in networked control systems,” in Proc. 30th Annual

Conf. of IEEE on Industrial Electronics Society (IECON’04), vol. 3, pp. 2343–

2348, Nov. 2004.

[49] W. S. Wong and R. W. Brockett, “Systems with finite communication bandwidth

constraints – Part I: State estimation problems,” IEEE Trans. on Automatic

Control, vol. 42, no. 9, pp. 1294–1299, Sep. 1997.

[50] W. S. Wong and R. W. Brockett, “Systems with finite communication bandwidth

constraints – Part II: Stabilization with Limited Information Feedback,” IEEE

Trans. on Automatic Control, vol. 44, no. 5, pp. 1049–1053, May 1999.

[51] P. Martí, C. Lin, S. Brandt, M. Velasco, and J. M. Fuertes, “Optimal state

feedback based resources allocation for resources-constrained control tasks,” in

Proc. 25th IEEE Real-Time Operating Systems Symposium, pp. 161–172, Dec.

2004.

[52] R. Castané, P. Martí, M. Velasco, A. Cervin, and D. Henriksson, “Resources

management for control tasks based on the transient dynamics closed-loop

systems,” in Proc. 18th Euro. Conf. on Real-Time Operating Systems

(ECRTS’06), pp. 172–182, Jul. 2006.

159

[53] P. Belzarena, A. Ferragut, and F. Paganini, “Network bandwidth allocation via

distributed auctions with time reservations,” in Proc. IEEE INFOCOM’09, pp.

2816–2820, Apr. 2009.

[54] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability in real-

time control systems,” in Proc. 17th IEEE Real-Time Operating Systems

Symposium, pp. 13–21, Dec. 1996.

[55] H. S. Park, Y. H. Kim, D.-S. Kim, and W. H. Kwon, “A scheduling method for

network-based control systems,” IEEE Trans. on Control Systems Technology,

vol. 10, no. 3, pp. 318–330, May 2002.

[56] M. S. Branicky, S. M. Phillips, and W. Zhang, “Scheduling and feedback co-

design for networked control systems,” in Proc. 41st IEEE Conf. on Decision and

Control, vol. 2, pp. 1211–1217, Dec. 2002.

[57] G. C. Walsh and H. Ye, “Scheduling of networked control systems,” IEEE

Control Systems Magazine, vol. 21, no. 1, pp. 57–65, Feb. 2001.

[58] G. Weiss, S. Fischmeister, M. Anand, and R. Alur, “Specification and analysis of

network resources requirements of control systems,” in Proc. 12th Int. Conf. on

Hybrid Systems: Computation and Control (HSCC), pp. 381–395, Apr. 2009.

[59] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “Trade-off analysis of real-time

control performance and schedulability,” Real-Time Systems, vol. 21, no. 3, pp.

199–217, Nov. 2001.

160

[60] D.-S. Kim, D.-H. Choi, and P. Mohapatra, “Real-time scheduling method for

networked discrete control systems,” Control Engineering Practice, vol. 17, no.

5, pp. 564–570, May 2009.

[61] D.-S. Kim, J. Jeon, and P. Mohapatra, “Scheduling of wireless control networks

based on IEEE 802.15.4 networks: Mixed traffic environment,” Control

Engineering Practice, vol. 19, no. 10, pp. 1223–1230, Oct. 2011.

[62] J. W. S. Liu, Real-Time Systems, Prentice Hall, Upper Saddle River, NJ, 2000.

[63] S. C. Paschall II, Design, Fabrication, and Control of A Single Actuator

Magnetic Levitation System, Senior Honors Thesis, Texas A&M University,

College Station, TX, May 2002.

[64] M. H. Lee, Real-Time Networked Control with Multiple Clients, M.S. Thesis,

Texas A&M University, College Station, TX, Aug. 2009.

[65] P. Hsieh, Autonomous Robotic Wheelchair with Collision-Avoidance Navigation,

M.S. Thesis, Texas A&M University, College Station, TX, Aug. 2008.

[66] P. Mantegazza, DIAPM RTAI – Real-time application, [Online] Available:

http://www.rtai.org.

[67] D. Schleef, Linux control and measurement device interface, [Online] Available:

http://www.comedi.org.

[68] Samba, [Online] Available: http://www.samba.org.

[69] N. J. Ploplys, P. A. Kawka, and A. G. Alleyne, “Closed-loop control over

wireless network,” IEEE Control System Magazine, vol. 24, no. 3, pp. 57–71,

Jun. 2004.

161

[70] I. Lopez, J. L. Piovesan, C. T. Abdallah, D. Lee, O. Martinez, and M. Spong,

“Practical issues in networked control systems,” in Proc. of American Control

Conf., pp. 4201–4206, Jun. 2006.

[71] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic

Systems, 6th Ed., Prentice Hall, Upper Saddle River, NJ, 2009.

[72] E. Çinlar, Introduction to Stochastic Process, Prentice Hall, Upper Saddle River,

NJ, 1997.

[73] S. C. Smith and P. Seiler, “Estimation with lossy measurements: Jump estimators

for jump system,” IEEE Trans. on Automatic Control, vol. 48, no. 22, pp. 2163–

2171, Dec. 2003.

[74] J. Xu and J. P. Hespanha, “Estimation under uncontrolled and controlled

communications in networked control systems,” in Proc. 43th IEEE Conf. on

Decision and Control, pp. 3527–3532, Dec. 2005.

[75] L. Ljung, System Identification: Theory for the User, Prentice Hall, Upper Saddle

River, NJ, 1987.

[76] L. Zhang, B. Huang, and J. Lam, “H∞ model reduction of Markovian jump linear

systems,” Systems & Control Letters, vol. 50, no. 2, pp. 103–118, Oct. 2003.

[77] L. E. Shaikhet, “Necessary and sufficient conditions of asymptotic mean-square

stability for stochastic linear difference equations,” Applied Mathematics Letters,

vol. 10, no. 3, pp. 111–115, May 1997.

162

[78] S. Boyd, L. E. Chaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities

in System and Control Theory, Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1997.

[79] A-max 26, maxon DC motor datasheet, [Online] Available:

http://www.maxonmotorusa.com.

[80] Z.-H. Guan, C.-Y. Chen, G. Feng, and T. Li, “Optimal tracking performance

limitation of networked control system with limited bandwidth and additive

colored white Gaussian noise,” IEEE Trans. on Circuits and Systems–I: Regular

Papers, vol. 60, no. 1, pp. 189–198, Feb. 2013.

[81] Y.-C. Lin and F.-L. Lian, “Data reduction and bandwidth allocation for video-

based network system,” in Proc. of IEEE International Conference on

Information and Automation, pp. 116–121, Jun. 2012.

[82] W. P. M. H. Heemels, A. R. Teel, N. V. D. Wouw, and D. Nešić, “Networked

control systems with communication constraints: tradeoffs between transmission

intervals, delays and performance,” IEEE Trans. on Automatic Control, vol. 55,

no. 8, pp. 1781–1796, Aug. 2010.

[83] L. Xu, M. Fei, T. Jia, and T. C. Yang, “Bandwidth scheduling and optimization

using non-cooperative game model-based shuffled frog leaping algorithm in a

networked learning control system,” Neural Comput. & Applic., vol. 21, no. 6,

pp. 1117–1128, Sep. 2012.

[84] Q. Lin, Dynamic Scheduling of Real-Time Control Systems, M.S thesis, National

University of Singapore, Singapore, 2004.

163

http://www.maxonmotorusa.com/

[85] C. Peng, D. Yue, Z. Gu, and F. Xia, “Sampling period scheduling of networked

control systems with multiple-control loops,” Mathematics and Computer in

Simulation, vol. 79, no. 5, pp. 1502–1511, Jan. 2009.

[86] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen, “How does control

timing affect performance? Analysis and simulation of timing using Jitterbug and

Truetime,” IEEE Control Systems Magazine, vol. 23, no. 3, pp. 16–30, Jun. 2003.

[87] B. K. Kim, “Task scheduling with feedback latency for real-time control

systems,” in Proc. of 5th Int. Conf. on Real-Time Computing Systems and

Applications (RTCAS), pp. 37–41, Oct. 1998.

[88] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization, Society

for Industrial and Applied Mathematics, Philadelphia, PA, 2008.

[89] M. Park, “Non-preemptive fixed priority scheduling of hard real-time periodic

tasks,” in Proc. 7th Int. Conf. on Computational Science, pp. 882–888, May 2007.

164

APPENDIX A

C/C++ CODES FOR THE NCS

A.1. C CODE FOR SERVER
#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <signal.h>

#include <string.h>

#include <asm/errno.h>

#include <sys/types.h>

#include <sys/user.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sched.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <errno.h>

#include <inttypes.h>

#include "defines.h"

#define KEEP_STATIC_INLINE

#include <rtai_lxrt_user.h>

#include <rtai_lxrt.h>
165

RTIME time_stamp;

double u0, u1e, u2e, u3e, u4e, u5e, u6e, u7e, u8e;

double y0, y_1, y_2, y_3, y_4, y_5, y_6, y_7;

char y_8[6]="00000";

double u_1, u_2;

double y_hat_1, y_hat_2, y_hat_3, y_hat_4, y_hat_5, y_hat_6, y_hat_7, y_hat_8;

doube delay;

FILE *fp;

// DC-motor (m5)

double y_dot_desi = 10.0;

double e0 = 0, e1 = 0, u0 = 0, u1 = 0, u2 = 0;

// A Ball Maglev

double y_hat_desi = 0.005; //* User input (desired set point)

double v_hat_err = 0.0;

double k = 0.083;

double c = 0.0; //* Controller constant

double v = 0.975; //current setting

double er0 = 0.0, er1 = 0.0, er2 = 0.0;

int i=0, p1 = 0, p2 = 0, p3 = 0, p4 = 0;

//rtai declarations

unsigned long mtsk_name;

RT_TASK *mtsk;

struct sched_param mysched;

void terminate_normally(int signo)

{

 fflush(stdin);

 if(signo==SIGINT || signo==SIGTERM)

 {

 printf("Terminating the program normally\n");

166

 rt_make_soft_real_time();

 printf("MASTER TASK YIELDS ITSELF\n");

 rt_task_yield();

 printf("MASTER TASK STOPS THE PERIODIC TIMER\n");

 stop_rt_timer();

 printf("MASTER TASK DELETES ITSELF\n");

 rt_task_delete(mtsk);

 printf("END MASTER TASK\n");

 }

 exit(0);

}

main(int argc, char *argv[])

{

int sockid, nread, addrlen;

 struct sockaddr_in my_addr, client_addr;

 int nw, nr;

 int send_buffer_size, recv_buffer_size;

 unsigned short server_port = 0;

 struct send_data *send_buffer = NULL;

 struct recv_data *recv_buffer = NULL;

 RTIME start_time = 0, end_time = 0, actual_period = 0, difference = 0;

 size_t iRet = 0;

 int esti_count = 0;

 double vhaterr_prev[5] = {0.0, 0.0, 0.0, 0.0, 0.0};

 int j=0;

 double h2=0.005, h3=0.05;

 float hh=1.0;

 double delay2=0, delay3=0;

 struct sigaction sa;

167

 sa.sa_handler = terminate_normally;

 sa.sa_flags = 0;

 sigemptyset(&sa.sa_mask);

 if(sigaction(SIGINT, &sa, NULL)) {

 perror("sigaction");

 }

 if(sigaction(SIGTERM, &sa, NULL)) {

 perror("sigaction");

 }

 fprintf(stderr, "creating socket\n");

 if ((sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

 perror("socket() failed ");

 fprintf(stderr, "%s: socket error: %d\n", argv[0], errno);

 exit(2);

 }

 fprintf(stderr, "binding my local socket\n");

 server_port = 4444;

 memset((void *) &my_addr, (char) 0, sizeof(my_addr));

 my_addr.sin_family = AF_INET;

 my_addr.sin_addr.s_addr = htons(INADDR_ANY);

 my_addr.sin_port = htons(server_port);

 if ((bind(sockid, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0)) {

 perror("bind() failed ");

 fprintf(stderr, "bind() errno = %d\n", errno);

 exit(4);

 }

 recv_buffer_size = sizeof(struct recv_data);

 if((recv_buffer = (struct recv_data *)calloc(1, sizeof(struct recv_data)))

==NULL) {

168

 fprintf(stderr, "cannot allocate memory for buffer!\n");

 exit(4);

 }

 send_buffer_size = sizeof(struct send_data);

 if((send_buffer = (struct send_data *)calloc(1, sizeof(struct send_data)))

==NULL) {

 fprintf(stderr, "cannot allocate memory for buffer!\n");

 exit(4);

 }

 addrlen = sizeof(client_addr);

 fprintf(stderr, "%s: starting blocking message read\n", argv[0]);

 mysched.sched_priority = 99;

 if(sched_setscheduler(0, SCHED_FIFO, &mysched) == -1) {

 puts(" ERROR IN SETTING THE SCHEDULER UP");

 perror("errno");

 exit(0);

 }

 mlockall(MCL_CURRENT | MCL_FUTURE);

 mtsk_name = nam2num("MTSK");

 if (!(mtsk = rt_task_init(mtsk_name, 0, 0, 0))) {

 printf("CANNOT INIT MASTER TASK\n");

 exit(1);

 }

 start_time = rt_get_cpu_time_ns();

 printf("main: start_time = %lld\n", start_time);

 printf("MASTER TASK STARTS THE ONESHOT TIMER\n");

 actual_period = start_rt_timer(nano2count(25000));

 printf("actual_period = %lld\n", actual_period);

 printf("MASTER TASK MAKES ITSELF PERIODIC \n");

169

 rt_task_make_periodic(mtsk, rt_get_time()+ nano2count(1000000),

nano2count(1000000));

 while(1)

 {

 nr = recvfrom(sockid, (void *)recv_buffer, recv_buffer_size, 0, (struct

sockaddr *) &client_addr, &addrlen);

 if(nr <= -1) {

 fprintf(stderr, "recvfrom() errno = %d\n", errno);

 exit(10);

 }

 start_time = rt_get_cpu_time_ns();

 y0 = recv_buffer->y_0;

 y_1 = recv_buffer->y_1;

 y_2 = recv_buffer->y_2;

 y_3 = recv_buffer->y_3;

 y_4 = recv_buffer->y_4;

 y_5 = recv_buffer->y_5;

 y_6 = recv_buffer->y_6;

 y_7 = recv_buffer->y_7;

 y_8[0] = recv_buffer->y_8[0];

 y_8[1] = recv_buffer->y_8[1];

 y_8[2] = recv_buffer->y_8[2];

 y_8[3] = recv_buffer->y_8[3];

 y_8[4] = recv_buffer->y_8[4];

 u_1 = recv_buffer->u_1;

 u_2 = recv_buffer->u_2;

 delay = recv_buffer->delay;

 if (delay2/h2 + delay3/h3 > 0.545) {

 h2 = h2*1.05;

170

 h3 = h3*1.05;

 }

 if(y_7 == 1) {

 er0 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k;

 er1 = (y_hat_desi - (-0.0010108*y_1+0.0114970))*k;

 er2 = (y_hat_desi - (-0.0010108*y_2+0.0114970))*k;

 u0 = ((0.782*(u_1-v)) + (0.13*(u_2-v)) - (41500.0*er0) +

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v;

 send_buffer->u0 = hh*u0;

 y_hat_1 = 0.8122*y0 - 0.3479*y_1 - 0.0294*y_2 + 0.4605*y_3 +

0.0742*y_4 + 0.1042*y_5 + 0.1117*y_6;// - 0.3561*y_7;

 er0 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k;

 er1 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k;

 er2 = (y_hat_desi - (-0.0010108*y_1+0.0114970))*k;

 u1e = ((0.782*(u0-v)) + (0.13*(u_1-v)) - (41500.0*er0) +

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v;

 send_buffer->u1e = hh*u1e;

 y_hat_2 = 0.3117*y0 - 0.3119*y_1 + 0.4366*y_2 + 0.4482*y_3 +

0.1645*y_4 + 0.1964*y_5 - 0.2653*y_6;// - 0.2892*y_7;

 er0 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k;

 er1 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k;

 er2 = (y_hat_desi - (-0.0010108*y0+0.0114970))*k;

 u2e = ((0.782*(u1e-v)) + (0.13*(u0-v)) - (41500.0*er0) +

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v;

 send_buffer->u2e = hh*u2e;

 y_hat_3 = -0.0587*y0 + 0.3281*y_1 + 0.4390*y_2 + 0.3080*y_3

+ 0.2195*y_4 - 0.2329*y_5 - 0.2544*y_6;// - 0.1110*y_7;

 er0 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k;

 er1 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k;

171

 er2 = (y_hat_desi - (-0.0010108*y_hat_1+0.0114970))*k;

 u3e = ((0.782*(u2e-v)) + (0.13*(u1e-v)) - (41500.0*er0) +

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v;

 send_buffer->u3e = hh*u3e;

 y_hat_4 = 0.2804*y0 + 0.4594*y_1 + 0.3097*y_2 + 0.1925*y_3 -

0.2372*y_4 - 0.2605*y_5 - 0.1176*y_6;// + 0.0209*y_7;

 er0 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k;

 er1 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k;

 er2 = (y_hat_desi - (-0.0010108*y_hat_2+0.0114970))*k;

 u4e = ((0.782*(u3e-v)) + (0.13*(u2e-v)) - (41500.0*er0) +

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v;

 send_buffer->u4e = hh*u4e;

 y_hat_5 = 0.6872*y0 + 0.2122*y_1 + 0.1842*y_2 - 0.1081*y_3 -

0.2397*y_4 - 0.0884*y_5 + 0.0523*y_6;// - 0.0999*y_7;

 er0 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k;

 er1 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k;

 er2 = (y_hat_desi - (-0.0010108*y_hat_3+0.0114970))*k;

 u5e = ((0.782*(u4e-v)) + (0.13*(u3e-v)) - (41500.0*er0) +

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v;

 send_buffer->u5e = hh*u5e;

 y_hat_6 = 0.7703*y0 - 0.0548*y_1 - 0.1283*y_2 + 0.0767*y_3 -

0.0374*y_4 + 0.1239*y_5 - 0.0231*y_6;// - 0.2447*y_7;

 er0 = (y_hat_desi - (-0.0010108*y_hat_6+0.0114970))*k;

 er1 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k;

 er2 = (y_hat_desi - (-0.0010108*y_hat_4+0.0114970))*k;

 u6e = ((0.782*(u5e-v)) + (0.13*(u4e-v)) - (41500.0*er0) +

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v;

 send_buffer->u6e = hh*u6e;

172

 y_hat_7 = 0.5708*y0 - 0.3963*y_1 + 0.0541*y_2 + 0.3173*y_3 +

0.1810*y_4 + 0.0572*y_5 - 0.1586*y_6;// - 0.2743*y_7;

 er0 = (y_hat_desi - (-0.0010108*y_hat_7+0.0114970))*k;

 er1 = (y_hat_desi - (-0.0010108*y_hat_6+0.0114970))*k;

 er2 = (y_hat_desi - (-0.0010108*y_hat_5+0.0114970))*k;

 u7e = ((0.782*(u6e-v)) + (0.13*(u5e-v)) - (41500.0*er0) +

(41500.0*1.754*er1) - (41500.0*0.769*er2)) + v;

 send_buffer->u7e = hh*u7e;

 send_buffer->u8e = 1;

 p1 = p1+1;

 printf("m02 %d\n",p1);

 }

 if(y_7 == 2) {

 delay2 = delay;

 e1 = y_dot_desi - y0;

 if (delay2 <=0.00046)

 u0 = 1.0102*u1 +1.7621 *e1 - 1.7417*e0;

 else if (delay2 <=0.00063)

 u0 = 1.0155*u1 + 1.7889*e1 - 1.7762 *e0;

 else if (delay2 <=0.0008)

 u0 = 1.0412*u1 +1.8162*e1 - 1.8488*e0;

 else

 u0 = 1.1974*u1 + 2.0866*e1 – 2.4366*e0;

 send_buffer->u0 = u0;

 u1e= 0.5094*u0 + 0.4094*u2;

 send_buffer->u1e = u1e;

 u2e = 0.6136*u1 + 0.3862*u2;

 send_buffer->u2e = u2e;

 u3e = 0;

173

 send_buffer->u3e = u3e;

 u4e = 0;

 send_buffer->u4e = u4e;

 u5e = 0;

 send_buffer->u5e = u5e;

 u6e = 0;

 send_buffer->u6e = u6e;

 u7e = 0;

 send_buffer->u7e = u7e;

 u8e = 2;

 send_buffer->u8e = u8e;

 send_buffer->h = h2;

 p2 = p2+1;

 printf(" m05 %d\n", p2);

 u1 = u0;

 u2 = u1;

 e0 = e1;

 }

 if(y_7 == 3) {

 delay3 = delay;

 if(strcmp(y_8,"00010")==0){

 send_buffer->u0 = 2.0;

 }

 else if(strcmp(y_8,"00011")==0){

 send_buffer->u0 = 2.0;

 }

 else if(strcmp(y_8,"00100")==0){

 send_buffer->u0 = 2.0;

 }

174

 else if(strcmp(y_8,"00101")==0){

 send_buffer->u0 = 2.0;

 }

 else if(strcmp(y_8,"00110")==0){

 send_buffer->u0 = 2.0;

 }

 else if(strcmp(y_8,"00111")==0){

 send_buffer->u0 = 2.0;

 }

 else if(strcmp(y_8,"01000")==0){

 send_buffer->u0 = 7.0;

 }

 else if(strcmp(y_8,"01001")==0){

 send_buffer->u0 = 7.0;

 }

 else if(strcmp(y_8,"01010")==0){

 send_buffer->u0 = 10.0;

 }

 else if(strcmp(y_8,"01100")==0){

 send_buffer->u0 = 10.0;

 }

 else if(strcmp(y_8,"01110")==0){

 send_buffer->u0 = 2.0;

 }

 else if(strcmp(y_8,"10000")==0){

 send_buffer->u0 = 7.0;

 }

 else if(strcmp(y_8,"10001")==0){

 send_buffer->u0 = 7.0;

175

 }

 else if(strcmp(y_8,"10010")==0){

 send_buffer->u0 = 10.0;

 }

 else if(strcmp(y_8,"10100")==0){

 send_buffer->u0 = 10.0;

 }

 else if(strcmp(y_8,"10110")==0){

 send_buffer->u0 = 10.0;

 }

 else if(strcmp(y_8,"11000")==0){

 send_buffer->u0 = 7.0;

 }

 else if(strcmp(y_8,"11001")==0){

 send_buffer->u0 = 7.0;

 }

 else if(strcmp(y_8,"11010")==0){

 send_buffer->u0 = 10.0;

 }

 else if(strcmp(y_8,"11100")==0){

 send_buffer->u0 = 7.0;

 }

 else if(strcmp(y_8,"11110")==0){

 send_buffer->u0 = 10.0;

 }

 else if(strcmp(y_8,"00000")==0){

 send_buffer->u0 = 10.0;

 }

 else{

176

 send_buffer->u0 = 5.0;

 }

 u1e = 0;

 send_buffer->u1e = u1e;

 u2e = 0;

 send_buffer->u2e = u2e;

 u3e = 0;

 send_buffer->u3e = u3e;

 u4e = 0;

 send_buffer->u4e = u4e;

 u5e = 0;

 send_buffer->u5e = u5e;

 u6e = 0;

 send_buffer->u6e = u6e;

 u7e = 0;

 send_buffer->u7e = u7e;

 u8e = 2;

 send_buffer->u8e = u8e;

 send_buffer->h = h3;

 p3 = p3+1;

 printf(" _wheelchair %d_\n",p3);

 u1 = u0;

 e0 = e1;

 }

 end_time = rt_get_cpu_time_ns();

 send_buffer->time_stamp = recv_buffer->time_stamp;

 nw = sendto(sockid, (const void *)send_buffer, send_buffer_size, 0,

(struct sockaddr *) &client_addr, addrlen);

 if(nw <= -1) {

177

 perror("sendto failed ");

 fprintf(stderr, "sendto() errno = %d \n", errno);

 exit(12);

 }

} // END of while

 fclose(fp);

 printf("MASTER TASK YIELDS ITSELF\n");

 rt_task_yield();

 printf("MASTER TASK STOPS THE PERIODIC TIMER\n");

 stop_rt_timer();

 printf("MASTER TASK DELETES ITSELF\n");

 rt_task_delete(mtsk);

 close(sockid);

 free(send_buffer);

 free(recv_buffer);

 }

A.2. C CODE FOR CLIENT (DC MOTORS)
#include <stdio.h>

… //* here is an identical code block as the one in Appendix A.1

#define PERIOD 1000000

#define LOOPS 20000

#define NTASKS 2

#define taskname(x) (1000 + (x))

… //* here is an identical code block as the one in Appendix A.1

double y_7=2;

double u_1, u_2;

float h = 3;

RTIME current_time_stamp;

int j = 0, m = 0, b0 = 0, b1 = 0, cnt = 0, p = 0;

178

double speed = 0;

pthread_t task[NTASKS];

int ntasks = NTASKS;

RT_TASK *mytask;

SEM *sem; //added static

static int cpus_allowed;

SEM *sock_sem; //socket semaphoere, used by all the threads.

int sockid;

RTIME start_instant;

int server_sock_size = 0;

struct sockaddr_in my_addr, server_addr;

comedi_t *it;

int in_subdev = 2; //digital input

int out_subdev = 1; //analog output

int in_chan = 0, out_chan = 0, in_range = 0, out_range = 0;

int aref = AREF_GROUND;

int i=0;

//comedi declarations

lsampl_t in_data;

lsampl_t out_data;

float volts = 0.0;

int in_maxdata = 0, out_maxdata = 0;

comedi_range *in_range_ptr, *out_range_ptr;

int endme_int = 0;

void terminate_normally(int signo);

void endme(int sig)

{

 printf("You want to kill me?\n");

 endme_int = 1;

179

 rt_sem_delete(sem);

 comedi_close(it);

 stop_rt_timer();

 rt_task_delete(mytask);

 signal(SIGINT, SIG_DFL);

 exit(1);

}

void *send_thread_fun(void *arg)

{

 RTIME start_time, period, end_time, difference;

 RTIME t0;

 SEM *sem;

 RT_TASK *mytask;

 unsigned long mytask_name;

 int mytask_indx;

 int iRet = 0;

 struct recv_data *send_msg = NULL;

 int send_msg_size;

 FILE *fp = NULL;

 float print_data[LOOPS];

 int loop_count = 0;

 fp = fopen("result.txt","w");

 if(fp == NULL)

 {

 printf("could not open file");

 exit(0);

 }

 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

 mytask_indx = 0;

180

 mytask_name = taskname(mytask_indx);

 cpus_allowed = 1 - cpus_allowed;

 if (!(mytask = rt_task_init_schmod(mytask_name, 1, 0, 0, SCHED_FIFO, 1 <<

cpus_allowed))) {

 printf("CANNOT INIT send_thread TASK\n");

 exit(1);

 }

 printf("send thread pid = %d\t master pid = %d\n", getpid(), getppid());

 mlockall(MCL_CURRENT | MCL_FUTURE);

 rt_receive(0, (unsigned int*)&sem);

 send_msg_size = sizeof(struct recv_data);

 if((send_msg = (struct recv_data *)calloc(1, sizeof(struct recv_data))) ==

NULL){

 printf("cannot allocate message memory\n");

 exit(4);

 }

 period = nano2count(PERIOD);

 start_time = rt_get_time() + nano2count(10000000);

 t0 = start_instant;

 printf("send: t0 = %lld\t", t0);

 printf("This period = %lld\t", rt_get_time());

 printf("actual start = %lld\n", t0 + nano2count(500000000));

 rt_task_make_periodic(mytask, (t0 + nano2count(500000000)),

nano2count(h*1000000));

 printf("starting the send_thread while loop\n");

 // DC motor speed measure

 while(1){

 if(endme_int == 1){

 break;

181

 }

 // Counting encoder pulses

 start_time = rt_get_cpu_time_ns();

 comedi_dio_config(it, in_subdev, in_chan, COMEDI_INPUT);

 for(j=0;j<500;j++) {

 m = comedi_data_read(it, in_subdev, in_chan, in_range, aref,

&in_data);

 if(in_data == 1) //* high or low?

 {b1 = 1;}

 else

 {b1 = 0;}

 if(b1 != b0) //* count turn-over (H to L or L to H)

 {cnt++;}

 b0 = b1;

 }

 end_time = rt_get_cpu_time_ns(); //* End of the FOR loop

 current_time_stamp = rt_get_cpu_time_ns();

 speed = (cnt*0.214)+1.322; //* DI counting w/ j=1000, PCI-6025E

 y_0 = speed;

 send_msg->y_0 = y_0;

 send_msg->y_1 = y_1;

 send_msg->y_2 = y_2;

 send_msg->y_3 = y_3;

 send_msg->y_4 = y_4;

 send_msg->y_5 = y_5;

 send_msg->y_6 = y_6;

 send_msg->y_7 = y_7;

 send_msg->u_1 = u_1;

 send_msg->u_2 = u_2;

182

 send_msg->time_stamp = current_time_stamp;

 send_msg->delay = time_diff[loop_count]

 rt_sem_wait(sock_sem);

 iRet = sendto(sockid, (const void *)send_msg, send_msg_size, 0, (struct

sockaddr*)&server_addr, server_sock_size);

 rt_sem_signal(sock_sem);

 if(iRet <= -1) {

 perror("sendto() failed\n");

 break;

 }

 //y_7 = y_6;

 y_6 = y_5;

 y_5 = y_4;

 y_4 = y_3;

 y_3 = 0.7151*y_2+0.2848*y_1;

 y_2 = 0.6867*y_1+0.3182*y_0;

 y_1 = y_0;

 cnt = 0;

 loop_count++;

 if(loop_count == LOOPS) {

 break;

 }

 rt_task_wait_period();

 print_data[loop_count] = y_0;

 }

 end_time = rt_get_cpu_time_ns();

 difference = end_time - start_time;

 printf("difference = %lld\n", difference);

 endme_int++;

183

 rt_sem_signal(sem);

 rt_make_soft_real_time();

 for(i=0;i<LOOPS;i++) {

 fprintf(fp, "%f\n", print_data[i]);

 }

 fclose(fp);

 free(send_msg);

 rt_task_delete(mytask);

 printf("send_thread ENDS\n");

 return 0;

}

void *recv_thread_fun(void *arg)

{

 RTIME start_time, period, end_time, difference = 0;

 RTIME t0;

 RTIME re_time_stamp, current_cpu_time;

 SEM *sem;

 RT_TASK *mytask;

 unsigned long mytask_name;

 int mytask_indx;

 int iRet = 0;

 int recv_msg_size;

 struct send_data *recv_msg = NULL;

 int loop_count = 0;

 float control_data[LOOPS];

 RTIME time_diff[LOOPS];

 FILE *tdiff = NULL;

 FILE *control = NULL;

 tdiff = fopen("timediff.txt","w");

184

 if(tdiff == NULL){

 printf("could not open tdiff file");

 exit(0);

 }

 control = fopen("control.txt","w");

 if(control == NULL) {

 printf("could not open control file");

 exit(0);

 }

 recv_msg_size = sizeof(struct send_data);

 if((recv_msg = (struct send_data *)calloc(1, sizeof(struct send_data))) ==

NULL) {

 printf("cannot allocate message memory\n");

 exit(4);

 }

 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

 mytask_indx = 1;

 mytask_name = taskname(mytask_indx);

 cpus_allowed = 1 - cpus_allowed;

 if (!(mytask = rt_task_init_schmod(mytask_name, 1, 0, 0, SCHED_FIFO, 1 <<

cpus_allowed))) {

 printf("CANNOT INIT recv_thread TASK\n");

 exit(1);

 }

 printf("recv thread pid = %d\t master pid = %d\n", getpid(), getppid());

 mlockall(MCL_CURRENT | MCL_FUTURE);

 rt_receive(0, (unsigned int*)&sem);

 period = nano2count(PERIOD);

 start_time = rt_get_time() + nano2count(10000000);

185

 t0 = start_instant;

 printf("recv: t0 = %lld\t", count2nano(t0));

 printf("This period = %lld\t", count2nano(rt_get_time()));

 printf("actual start = %lld\n", count2nano(t0 + nano2count(500500000)));

 rt_task_make_periodic(mytask, (t0 + nano2count(500500000)),

nano2count(h*1000000));

 start_time = rt_get_time();

 printf("starting the recv_thread while loop\n");

 for(;;) {

 if(endme_int == 1) {

 break;

 }

 rt_sem_wait(sock_sem);

 iRet = recvfrom(sockid, (void *)recv_msg, recv_msg_size, 0, (struct

sockaddr *)&server_addr, &server_sock_size);

 rt_sem_signal(sock_sem);

 if(iRet <= -1) {

 endme_int = 1;

 printf("difference = %lld\n", difference);

 perror("recvfrom() failed\n");

 break;

 }

 if(loop_count < LOOPS) {

 u0 = recv_msg->u0;

 u1e = recv_msg->u1e;

 u2e = recv_msg->u2e;

 u3e = recv_msg->u3e;

 u4e = recv_msg->u4e;

 u5e = recv_msg->u5e;

186

 u6e = recv_msg->u6e;

 u7e = recv_msg->u7e;

 u8e = recv_msg->u8e;

 h = recv_msg->h;

 re_time_stamp = recv_msg->time_stamp;

 current_cpu_time = rt_get_cpu_time_ns();

 time_diff[loop_count] = current_cpu_time-re_time_stamp;

 control_data[loop_count] = u0;

 }

 if(loop_count < (LOOPS-2)){

 volts = u0*1.014-0.005;

 }

 else if(loop_count == (LOOPS-2)) {

 volts = 0.0;

 }

 if(volts > 5.0) {

 volts = 4.99999;

 }

 if(volts < 0.0) {

 volts = 0.0;

 }

 out_data = comedi_from_phys(volts, out_range_ptr, out_maxdata);

 comedi_data_write(it, out_subdev, out_chan, out_range, aref, out_data);

 u_1 = u0;

 if(loop_count == LOOPS) {

 loop_count = 0;

 }

 else {

 loop_count++;

187

 }

 rt_task_wait_period();

 }

 end_time = rt_get_cpu_time_ns();

 difference = end_time - start_time;

 printf("difference = %lld\n", difference);

 endme_int++;

 rt_make_soft_real_time();

 for(i=0;i<LOOPS;i++) {

 fprintf(tdiff, "%lld\n", time_diff[i]);

 fprintf(control, "%f\n", control_data[i]);

 }

 fclose(tdiff);

 fclose(control);

 free(recv_msg);

 rt_task_delete(mytask);

 printf("recv_thread ENDS\n");

 return 0;

}//End of Recv Thread

int main(void)

{

 int i;

 unsigned long mytask_name = nam2num("MASTER");

 struct sigaction sa;

char * server_ip = "165.91.95.40"; //maglev1

 unsigned short my_port, server_port;

 my_port = 4445;

 server_port = 4444;

 printf("creating socket\n");

188

 if((sockid = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {

perror("socket() failed ");

 exit(2);

 }

 memset((void *) &my_addr, (char) 0, sizeof(my_addr));

 my_addr.sin_family = AF_INET;

 my_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 my_addr.sin_port = htons(my_port);

 if ((bind(sockid, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0)) {

 perror("bind() failed ");

 exit(3);

 }

 server_sock_size = sizeof(server_addr);

 memset((void *) &server_addr, (char) 0, server_sock_size);

 server_addr.sin_family = AF_INET;

 server_addr.sin_addr.s_addr = inet_addr(server_ip);

 server_addr.sin_port = htons(server_port);

 sa.sa_handler = endme;

 sa.sa_flags = 0;

 sigemptyset(&sa.sa_mask);

 if(sigaction(SIGINT, &sa, NULL)) {

 perror("sigaction");

 }

 if(sigaction(SIGTERM, &sa, NULL)) {

 perror("sigaction");

 }

 it = comedi_open("/dev/comedi0");

 if(it == NULL) {

 printf("Could not open comedi\n");

189

 exit(1);

 }

 in_maxdata = comedi_get_maxdata(it, in_subdev, in_chan);

 out_maxdata = comedi_get_maxdata(it, out_subdev, out_chan);

 in_range_ptr = comedi_get_range(it, in_subdev, in_chan, in_range);

 out_range_ptr = comedi_get_range(it, out_subdev, out_chan, out_range);

 if (!(mytask = rt_task_init(mytask_name, 1, 0, 0))) {

 printf("CANNOT INIT main TASK \n");

 exit(1);

 }

 printf("MASTER INIT: name = %lu, address = %p.\n", mytask_name, mytask);

 sem = rt_sem_init(10000, 0);

 sock_sem = rt_sem_init(nam2num("SOCK"), 1);

 rt_set_periodic_mode();

 start_rt_timer(nano2count(25000));

 start_instant = rt_get_time();

 printf("main: start_instant = %lld\n", start_instant);

 if (pthread_create(&task[0], NULL, send_thread_fun, &start_instant)) {

 printf("ERROR IN CREATING send_thread\n");

 exit(1);

 }

 if (pthread_create(&task[1], NULL, recv_thread_fun, &start_instant)) {

 printf("ERROR IN CREATING recv_thread\n");

 exit(1);

 }

 for (i = 0; i < ntasks; i++) {

 while (!rt_get_adr(taskname(i))) {

 rt_sleep(nano2count(20000000));

 }

190

 }

 for (i = 0; i < ntasks; i++) {

 rt_send(rt_get_adr(taskname(i)), (unsigned int)sem);

 }

 printf("Start waiting for sem\n");

 while(endme_int == 0) {

 rt_sem_wait_timed(sem, nano2count(50000000));

 }

 printf("Stop waiting for sem\n");

 for (i = 0; i < ntasks; i++) {

 while (rt_get_adr(taskname(i))) {

 rt_sleep(nano2count(20000000));

 }

 }

 rt_sem_delete(sem);

 rt_sem_delete(sock_sem);

 stop_rt_timer();

 comedi_close(it);

 rt_task_delete(mytask);

 printf("MASTER %lu %p ENDS\n", mytask_name, mytask);

 for (i = 0; i < ntasks; i++) {

 pthread_join(task[i], NULL);

 }

 return 0;

}

A.3. C CODE FOR INTEROPERABILITY SUITE
#include <stdio.h>

… //*here is an identical code block as the one in Appendix A.1

double u0, u1e, u2e, u3e, u4e, u5e, u6e, u7e, u8e;

191

char y_8[6]="000000";

double y_0, y_1, y_2, y_3, y_4, y_5, y_6;

double y_7=3;

double u_1, u_2;

double delay, h;

//rtai declarations

… //* here is an identical code block as the one in Appendix A.1

void terminate_normally(int signo)

{

… //* here is an identical code block as the one in Appendix A.1

}

int main(int argc, char *argv[])

{

… //* here is an identical code block as the one in Appendix A.1

char recv_msg[6] = "000000"; //Client to Interoperability Suite

 char fwd[10] = "front";

 char back[10] = "back";

 char stop[10] = "stop";

 char left[10] = "left";

 char right[10] = "right";

 char *server_ip= "165.91.95.40";

 FILE *fp = NULL;

 fp = fopen("result.txt","w");

if (fp==NULL) {

 printf("could not open file\n");

 exit(0);

}

 RTIME start_time = 0, end_time = 0, actual_period = 0;

 … //* here is an identical code block as the one in Appendix A.1

192

fprintf(stderr, "binding sockets\n");

 server_port = 4444;

 second_port = 3333;

 addrlen = sizeof(server_addr);

 clilen = sizeof(my_addr);

 memset((void *) &server_addr, (char) 0, addrlen);

 server_addr.sin_family = AF_INET;

 server_addr.sin_addr.s_addr = inet_addr(server_ip);

 server_addr.sin_port = htons(server_port);

memset((void *) &my_addr, (char) 0, clilen);

 my_addr.sin_family = AF_INET;

 my_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 my_addr.sin_port = htons(second_port);

 if ((bind(sd, (struct sockaddr *) &my_addr,sizeof(my_addr)) < 0)){

 perror("2bind() failed ");

 fprintf(stderr, "bind() errno = %d\n", errno);

 exit(4);

 }

 recv_buffer_size = sizeof(struct recv_data);

 if((recv_buffer = (struct recv_data *)calloc(1, sizeof(struct recv_data)))

==NULL){

 fprintf(stderr, "cannot allocate memory for buffer!\n");

 exit(4);

 }

 send_buffer_size = sizeof(struct send_data);

 if((send_buffer = (struct send_data *)calloc(1, sizeof(struct send_data)))

==NULL){

 fprintf(stderr, "cannot allocate memory for buffer!\n");

 exit(4);

193

 }

 fprintf(stderr, "%s: starting blocking message read\n", argv[0]);

 … //* here is an identical code block as the one in Appendix A.1

 start_time = rt_get_cpu_time_ns();

 printf("main: start_time = %lld\n", start_time);

 printf("MASTER TASK STARTS THE ONESHOT TIMER\n");

 //rt_set_oneshot_mode();

 actual_period = start_rt_timer(nano2count(25000));

 printf("actual_period = %lld\n", actual_period);

 printf("MASTER TASK MAKES ITSELF PERIODIC \n");

 rt_task_make_periodic(mtsk, rt_get_time()+ nano2count(3000000),

nano2count(3000000));

while(1) {

 cr = recvfrom(sd, recv_msg, 10, 0, (struct sockaddr *) &client_addr,

&clilen);

 if(cr <= -1){

 fprintf(stderr, "2recvfrom() errno = %d\n", errno);

 exit(10);

 }

 start_time = rt_get_cpu_time_ns();

 y_1 = 0;

 y_2 = 0;

 y_3 = 0;

 y_4 = 0;

 y_5 = 0;

 y_6 = 0;

 y_7 = 3;

 y_8[0] = recv_msg[0];

 y_8[1] = recv_msg[1];

194

 y_8[2] = recv_msg[2];

 y_8[3] = recv_msg[3];

 y_8[4] = recv_msg[4];

 y_8[5] = recv_msg[5];

 u_1 = 0;

 u_2 = 0;

 … //* here is an identical code block as the one in Appendix A.2

 send_buffer->time_stamp = current_time_stamp;

 send_buffer->delay = delay;

 nw=sendto(sockid, (const void *)send_buffer, send_buffer_size, 0,(struct

sockaddr *) &server_addr, addrlen);

 if(nw <= -1){

 perror("1sendto failed ");

 fprintf(stderr, "sendto() errno = %d \n", errno);

 exit(12);

 }

 nr = recvfrom(sockid, (void *)recv_buffer, recv_buffer_size, 0, (struct

sockaddr *) &server_addr, &addrlen);

 if(nr <= -1){

 fprintf(stderr, "1recvfrom() errno = %d\n", errno);

 exit(10);

 }

 … //* here is an identical code block as the one in Appendix A.1

 printf("recv: %s u0: %f" ,y_8, u0);

 if(u0 == 10.0){

 cw = sendto(sd, fwd, 6, 0, (struct sockaddr *) &client_addr,

clilen);

 }

 else if(u0 == 7.0){

195

 cw = sendto(sd, right, 6, 0, (struct sockaddr *) &client_addr,

clilen);

 }

 else if(u0 == 2.0){

 cw = sendto(sd, left, 6, 0, (struct sockaddr *) &client_addr,

clilen);

 }

 else if(u0 == 0.0){

 cw = sendto(sd, back, 6, 0, (struct sockaddr *) &client_addr,

clilen);

 }

 else if(u0 == 5.0){

 cw = sendto(sd, stop, 6, 0, (struct sockaddr *) &client_addr,

clilen);

 }

 end_time = rt_get_cpu_time_ns();

 send_buffer->time_stamp = recv_buffer->time_stamp;

 printf("end_time - start_time = %lld\n", (end_time - start_time));

 cnt = cnt +1;

 } //end while

… //* here is an identical code block as the one in Appendix A.1

}

A.4. C++ CODE FOR CLIENT (WHEELCHAIR)
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <NIDAQmx.h>

#include <winsock2.h>

#include <ws2tcpip.h>

196

#include <windows.h>

#pragma comment(lib, "winmm.lib")

#define MAXLOOP 200

#define DAQmxErrChk(functionCall) if(DAQmxFailed(error=(functionCall))) goto

Error; else

void move(uInt8 direction[8]);

void sensors();

int LIFR, LIFRS, RIFR, RIFRS, IFR;

void main(void)

{

 WSADATA w; /* Used to open Windows connection */

 SOCKET sd; /* The socket descriptor */

 int server_length; /* Length of server struct */

 struct sockaddr_in server; /* Information about the server */

 struct sockaddr_in client; /* Information about the client */

 char *server_ip = "165.91.95.119";

 unsigned short server_port = 3333;

 char recv_data[6]="wheel", send_data[6]="00000";

 uInt8 forward[8]={0,1,1,0,0,1,1,0};

 uInt8 backward[8]={1,0,1,0,1,0,1,0};

 uInt8 left[8]={0,1,1,0,1,0,1,0};

 uInt8 right[8]={1,0,1,0,0,1,1,0};

 uInt8 stop[8]={0,0,0,0,0,0,0,0};

 int counter=0;

 int32 error=0;

 TaskHandle taskHandle=0;

 uInt8 data[8];

 char errBuff[2048]={'\0'};

 int32 read,bytesPerSamp;

197

 unsigned long starttime, endtime, timediff;

 int pos[2];

 int left_cnt=0, right_cnt=0, ileft=0, iright=0, h = 80;

 FILE *fp;

 errno_t err;

 if ((err = fopen_s(&fp,"result.txt","w"))!=0) {

 printf("Can not open file! \n");

 exit(0);

 }

 timeBeginPeriod(1);

 if (WSAStartup(0x0101, &w) != 0) {

 printf("Could not open Windows connection.\n");

 exit(0);

 }

 sd = socket(AF_INET, SOCK_DGRAM, 0);

 if (sd == INVALID_SOCKET) {

 printf("Could not create socket.\n");

 WSACleanup();

 exit(0);

 }

 memset((void *)&server, '\0', sizeof(struct sockaddr_in));

 server.sin_family = AF_INET;

 server.sin_port = htons(server_port);

 server.sin_addr.S_un.S_addr = inet_addr(server_ip);

 memset((void *)&client, '\0', sizeof(struct sockaddr_in));

 client.sin_family = AF_INET;

 client.sin_port = htons(0);

 client.sin_addr.S_un.S_addr = htonl(INADDR_ANY);

 if (bind(sd, (struct sockaddr *)&client, sizeof(struct sockaddr_in)) == -1)

198

 {

 printf("Cannot bind address to socket.\n");

 closesocket(sd);

 WSACleanup();

 exit(0);

 }

 printf("Wheelchair is ready.\n");

 printf("Wheelchair is running.\n");

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle));

 DAQmxErrChk

(DAQmxCreateDIChan(taskHandle,"Dev1/port0/line0:7","",DAQmx_Val_ChanForAllL

ines));

 DAQmxErrChk (DAQmxStartTask(taskHandle));

 while (counter<MAXLOOP)

 {

 Sleep(200);

 DAQmxErrChk

(DAQmxReadDigitalLines(taskHandle,1,10.0,DAQmx_Val_GroupByChannel,data,8,&r

ead,&bytesPerSamp,NULL));

 starttime = timeGetTime();

 left_cnt = 1 * data[0] + 2 * data[1] + 4 * data[2] + 8 * data[3];

 right_cnt = 1 * data[4] + 2 * data[5] + 4 * data[6] + 8 * data[7];

 if (left_cnt < 8)

 ileft++;

 if (right_cnt < 8)

 iright++;

 pos[0] = ileft * 15 + left_cnt;

 pos[1] = iright * 15 + right_cnt;

 sensors();

199

 send_data[0] = (char)(((int)'0')+LIFR);

 send_data[1] = (char)(((int)'0')+LIFRS);

 send_data[2] = (char)(((int)'0')+RIFR);

 send_data[3] = (char)(((int)'0')+RIFRS);

 send_data[4] = (char)(((int)'0')+IFR);

 server_length = sizeof(struct sockaddr_in);

 if (sendto(sd, (char *)&send_data, (int)strlen(send_data) + 1, 0, (struct

sockaddr *)&server, server_length) == -1) {

 printf("Error transmitting data.\n");

 closesocket(sd);

 WSACleanup();

 exit(0);

 }

 if (recvfrom(sd, (char *)&recv_data, (int)sizeof(recv_data), 0, (struct

sockaddr *)&server, &server_length) < 0) {

 printf("Error receiving data.\n");

 closesocket(sd);

 WSACleanup();

 exit(0);

 }

 if (strcmp(recv_data,"stop")==0)

 move(stop);

 else if (strcmp(recv_data,"back")==0)

 move(backward);

 else if (strcmp(recv_data,"left")==0)

 move(left);

 else if (strcmp(recv_data,"right")==0)

 move(right);

 else move(forward);

200

 endtime = timeGetTime();

 timediff = endtime - starttime;

 fprintf(fp,"%d, %d\n",pos[0],pos[1]);

 Sleep(h);

 counter++;

 printf("Current loop: %d. Command from the server: %s \n", counter,

recv_data);

 }

 move(stop);

 printf("Wheelchair stops. \n");

 closesocket(sd);

 WSACleanup();

 printf("To quit and close the console window, press any key! \n");

 timeEndPeriod(1);

 getchar();

 fclose(fp);

Error:

 if(DAQmxFailed(error))

 DAQmxGetExtendedErrorInfo(errBuff,2048);

 if(taskHandle!=0) {

 DAQmxStopTask(taskHandle);

 DAQmxClearTask(taskHandle);

 }

 if(DAQmxFailed(error))

 printf("DAQmx Error: %s\n",errBuff);

}

void sensors(void)

{

 int32 error=0;

201

 TaskHandle taskHandle=0;

 uInt8 data[8];

 char errBuff[2048]={'\0'};

 int32 read, bytesPerSamp;

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle));

 DAQmxErrChk

(DAQmxCreateDIChan(taskHandle,"Dev1/port1/line0:7","",DAQmx_Val_ChanForAllL

ines));

 DAQmxErrChk (DAQmxStartTask(taskHandle));

 DAQmxErrChk

(DAQmxReadDigitalLines(taskHandle,1,10.0,DAQmx_Val_GroupByChannel,data,8,&r

ead,&bytesPerSamp,NULL));

 LIFR = data[0];

 LIFRS = data[1];

 RIFR = data[2];

 RIFRS = data[3];

 IFR = data[4];

 photocell[0] = data[5];

 photocell[1] = data[6];

 photocell[2] = data[7];

Error:

 if(DAQmxFailed(error))

 DAQmxGetExtendedErrorInfo(errBuff,2048);

 if(taskHandle!=0) {

 DAQmxStopTask(taskHandle);

 DAQmxClearTask(taskHandle);

 }

 if(DAQmxFailed(error))

 printf("DAQmx Error: %s\n",errBuff);

202

}

void move(uInt8 direction[8])

{

 double error=0;

 TaskHandle taskHandle=0;

 char errBuff[2048]={'\0'};

 DAQmxErrChk (DAQmxCreateTask("",&taskHandle));

 DAQmxErrChk

(DAQmxCreateDOChan(taskHandle,"Dev1/port2/line0:7","",DAQmx_Val_ChanForAll

Lines));

 DAQmxErrChk (DAQmxStartTask(taskHandle));

 DAQmxErrChk

(DAQmxWriteDigitalLines(taskHandle,1,1,10.0,DAQmx_Val_GroupByChannel,directi

on,NULL,NULL));

Error:

 if(DAQmxFailed(error))

 DAQmxGetExtendedErrorInfo(errBuff,2048);

 if(taskHandle!=0) {

 DAQmxStopTask(taskHandle);

 DAQmxClearTask(taskHandle);

 }

 if(DAQmxFailed(error))

 printf("DAQmx Error: %s\n",errBuff);

}

203

APPENDIX B

MATLAB® CODES AND SIMULINK® BLOCK DIAGRAMS

B.1. MATLAB® CODES FOR THE OUTPUT FEEDBACK CONTROLLER
A = -0.26; B = 2.04; C = 1;

Q = 1; R = 1;

[K, S, e] = LQR(A, B, Q, R);

K0 = K; K1 = K;

 P = [0.97 0.07; 0.75 0.25];

P0 = [0.969 0.068; 0.73 0.26];

delta = [0.001 -0.002; -0.02 0.01];

AA = [A 0; 1 0]; BB = [B; 0]; CC0 = [0 0]; CC1 = [0 1];

 for iter = 1:1:2

CG0(iter, :) = K0;

CG1(iter, :) = K1;

%V-steps

A0 = AA + BB*K0*CC0;

A1 = AA + BB*K1*CC1;

Q0 = sdpvar(2,2); Q1 = sdpvar(2,2);

H0 = [Q0 A0'*Q0 A1'*Q1; Q0*A0 inv(P0(1,1))*Q0 zeros(2); Q1*A1 zeros(2)

inv(P0(2,1))*Q1];

H1 = [Q1 A0'*Q0 A1'*Q1; Q0*A0 inv(P0(1,2))*Q0 zeros(2); Q1*A1 zeros(2)

inv(P0(2,2))*Q1];

lmisysV = [H0 > 0, H1 > 0, Q0 > 0, Q1 > 0];

solvesdp(lmisysV);

Q0 = double(Q0);

Q1 = double(Q1);

%K-steps

204

a = sdpvar(1, 1);

K0 = sdpvar(1, 1);

K1 = sdpvar(1, 1);

A0 = AA + BB*K0*CC0;

A1 = AA + BB*K1*CC1;

M0 = [Q0 A0'*Q0 A1'*Q1; Q0*A0 inv(P0(1,1))*Q0 zeros(2); Q1*A1 zeros(2)

inv(P0(2,1))*Q1];

M1 = [Q1 A0'*Q0 A1'*Q1; Q0*A0 inv(P0(1,2))*Q0 zeros(2); Q1*A1 zeros(2)

inv(P0(2,2))*Q1];

lmisysK = [M0 > 0, M1 > 0];

c = [1 0 0];

x = [a; K0; K1];

h = c*x;

solvesdp(lmisysK,h);

K0 = double(K0);

K1 = double(K1);

%delta-steps

P0 = P0 + delta;

if (isequal(P0, P) == 1)

break;

end

end

205

B.2. SIMULINK® BLOCK DIAGRAMS FOR THE BANDWIDTH
ALLOCATION

Fig. B.1. A Simulink® block diagram for the bandwidth allocation simulation with single

DC motor

Zero -Pole 1

1.5(s+5/1.5)

s

Zero -Pole

20 .2/9.92

(s+12 .57 /9.92)

White noise

TrueTime Send 1

Data

Trigger
1: 3

TrueTime Send

Data

Trigger

1: 1

TrueTime Receive 1

Data

Trigger

1: 4

TrueTime Receive

Data

Trigger
1: 2

TrueTime Network

Schedule1

To Workspace1

IAE

To Workspace

simout

Terminator

Step

Scope 2

Scope

Pulse
Generator 1

Integrator

1
s

DisplayClock

Abs

|u|

206

Fig. B.2. A Simulink® block diagram for the bandwidth allocation simulation with four

DC motors

Zero -Pole 8

10 (s+2)

(s+10)

Zero -Pole 7

10 (s+2)

(s+10)

Zero -Pole 6

10 (s+2)

(s+10)

Zero -Pole 5

10 (s+2)

(s+10)

Zero -Pole 3

1

s(s+1)

Zero -Pole 2

1

s(s+1)

Zero -Pole 1

1

s(s+1)

Zero -Pole

1

s(s+1)

TrueTime Send 7

Data

Trigger
1: 15

TrueTime Send 6

Data

Trigger

1: 13

TrueTime Send 5

Data

Trigger
1: 11

TrueTime Send 4

Data

Trigger

1: 9

TrueTime Send 3

Data

Trigger
1: 7

TrueTime Send 2

Data

Trigger

1: 5

TrueTime Send 1

Data

Trigger
1: 3

TrueTime Send

Data

Trigger

1: 1

TrueTime Receive 7

Data

Trigger

1: 16

TrueTime Receive 6

Data

Trigger
1: 14

TrueTime Receive 5

Data

Trigger

1: 12

TrueTime Receive 4

Data

Trigger
1: 10

TrueTime Receive 3

Data

Trigger

1: 8

TrueTime Receive 2

Data

Trigger
1: 6

TrueTime Receive 1

Data

Trigger

1: 4

TrueTime Receive

Data

Trigger
1: 2

TrueTime Network

Schedule1

To Workspace5

scheduler

To Workspace3

simout 3

To Workspace2

simout 2

To Workspace1

simout 1

To Workspace

simout

Terminator 3

Terminator 2

Terminator 1

Terminator

Step3

Step2

Step1

Step

Scope 4

Scope 3

Scope 1

Scope

Pulse
Generator 7

Pulse
Generator 5

Pulse
Generator 3

Pulse
Generator 1

DisplayClock

207

	OUTPUT FEEDBACK CONTROL AND OPTIMAL BANDWIDTH ALLOCATION OF NETWORKED CONTROL SYSTEMS
	Abstract
	Acknowledgements
	Nomenclature
	Table of Contents
	List of FIGUres
	1. Introduction
	2. LITERATURE REVIEW AND RESEASECH MOTIVATION
	3. KEY ELEMENTS, EXPERIMENTAL SETUPS, AND ANALYTICAL RESULTS OF THE NCS
	4. MARKOV-CHAIN-BASED OUTPUT FEEDBACK CONTROL OF THE NCS
	5. OPTIMAL BANDWIDTH ALLOCATION AND SCHEDULING OF THE NCS
	6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

