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ABSTRACT 

 Sustainable fusion power is within reach; however, more research is needed in 

the field of material science and engineering.  One critical component of a fusion reactor 

is the plasma facing material.  Very little literature exists on the sustainability of 

tungsten as a plasma facing material (PFM).  During operation, PFM must withstand 

harsh conditions with combined effects from high temperature, mechanical stress, 

irradiation, transmutation, and the production of hydrogen (H) and helium (He) from 

nuclear reactions. Therefore, this thesis will focus on co-implantation of H and He into 

tungsten to investigate the mechanical and microstructural material response. 

 For the first part of this study, Molecular Dynamics (MD) was used to 

qualitatively understand defect migration and mechanical property changes in tungsten.  

A Brinell hardness test was simulated using MD in tungsten to study the dependence on 

void size and void density hardness. It was found that hardness changes vary as the 

square root of the void size and void density. Also the movement of dislocations and its 

interaction with voids were investigated. 

 For the second part of the study, H and He were co-implanted into tungsten to 

look at the mechanical and microstructural changes. Hardness changes were measured 

using a nano-indenter ex-situ on post-irradiated specimen. Results show that the 

hardness of tungsten after co-implantation is proportional to the square root of the 

fluence. Additionally, the microstructure of irradiated tungsten samples was investigated 

by using a Transmission Electron Microscope (TEM).  It was observed that the defect 

microstructure in tungsten, after co-implantation, is quite complex, with a number of 
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intriguing features, such as the presence of the nano-bubbles and dislocation loops. Also 

it was observed that there was an effect that H has on the nucleation of He nano-bubbles.  

The results from this work suggest that the effect of co-implanting H and He into 

tungsten is crucial to fully understand its viability as a PFM. 
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NOMENCLATURE 

b Burgers Vector 

BCC Body-Centered Cubic 

Be Beryllium  

CFC Carbon Fiber Reinforced Composite 

E Energy 

EAM Embedded-atom Method 

eV Electron Volt 

FIB Focused Ion Beam 

He Helium 

H Hydrogen 

Hb Brinell Hardness 

Hv Vickers Hardness 

INLO In-situ Lift Out 

ITER International Thermonuclear Experiment Reactor 

LAMMPS Large-scale Atomic/Molecular Massive Parallel Simulator 

m Meter 

MD Molecular Dynamics 

Pa Pascal 

PFM Plasma Facing Material 

PKA Primary Knock-on Atom 

ps Picoseconds 
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R Range 

Rp Projected Range 

SEM Scanning Electron Microscope 

TEM Transmission Electron Microscope 

V Vacancy  

 

 



 

viii 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT ..............................................................................................................  ii 

DEDICATION ..........................................................................................................  iv 

ACKNOWLEDGEMENTS ......................................................................................  v 

NOMENCLATURE ..................................................................................................  vi 

TABLE OF CONTENTS ..........................................................................................  viii 

LIST OF FIGURES ...................................................................................................  x 

LIST OF TABLES ....................................................................................................  xiii 

1.  INTRODUCTION ..............................................................................................  1 

2. BACKGROUND THEROY ...............................................................................  5 

2.1. Ion Solid Interaction  ....................................................................................  5 
 2.1.1. Interatomic Potentials ........................................................................ 5 

2.1.2. Binary Elastic Collision ..................................................................... 7 
2.1.3. Ion Range ........................................................................................... 8 
2.1.4. Stopping Power .................................................................................. 10 
2.1.5. Displacement Spike ........................................................................... 12 

2.2. Mechanical Properties ..................................................................................  14 

3. MOLECULAR DYNAMICS SIMULATIONS ..................................................  21 

3.1. Molecular Dynamics ....................................................................................  21 
3.2. Method of MD Simulation ...........................................................................  24 
3.3. MD Simulation Results and Discussion .......................................................  28 

4. MICROSTRUCTURAL AND MECHANICAL CHANGES IN ION  
IRRADIATED TUNGSTEN ..............................................................................  34 
 
4.1. Introduction to Irradiated Tungsten .............................................................  34 
4.2. Experimental Instruments ............................................................................  35 

   4.2.1. 140KV Ion Accelerator ......................................................................  36 
   4.2.2. Nanoindenter ......................................................................................  41 



 

ix 

 

   4.2.3. Imaging Instruments ..........................................................................  43 
4.3. Experimental Setup and Procedure  .............................................................  44 
4.4. Results and Discussion of Mechanical and Microstructural Changes .........  48 

 
5. CONCLUSION ...................................................................................................  62 

REFERENCES ..........................................................................................................  64 

 

 

 



 

x 

 

LIST OF FIGURES 

FIGURE                                                                                                                        Page 

1.1 An illustration of the proposed materials used for the PFM of the ITER 
 reactor design .............................................................................................   2 

 
 2.1 An illustration of a binary elastic collision governed by the kinematic  
  Eqn. 2.4, 2.5, and 2.6.     and     is the new energy of the projectile and 
  target after the collision, respectively.........................................................  8 
 
 2.2 An ion traveling through a solid, as it illustrates the difference between  
  the range of an ion verses the projected range. ..........................................  9 
  
 2.3  Illustrates the different regions for nuclear and electronic stopping  
  power as a function of velocity ..................................................................  11 
 
 2.4 Illustrates when an ion interacts with one of the lattice atoms and creates  
  a displacement spike ...................................................................................  13 
 
 2.5 An example of two line defects, (a) an edge dislocation and (b) a screw 
  dislocation. .................................................................................................  15 
 

2.6   (a) An illustration of an edge dislocation as it moves along the slip plane 
 and cuts an obstacle. (b) a slip plan with several obstacles randomly  
 dispersed, as an edge dislocation migrates though it, (c) Represents the  
 Vickers hardness as a square root function of the density and diameter  

  of obstacles in a solid .................................................................................  18 
 

 3.1 The simulation proceeds of molecular dynamics simulations....................  22 
 
 3.2 Illustrates the parameters used for the Brinell hardness test ......................  25 
 
 3.3  The parameters of each of the simulations, (a) where the dependency of 
  diameter was investigated (b) where the dependency of density was  
  investigated .................................................................................................  27 
 
 3.4 Results from the MD simulations where the dependency of density was 
  investigated. (a) an illustration of the time evolution of the simulations,  
  and (b) is the Hb verses the void radius ......................................................  29 
 
  
 



 

xi 

 

 
 

3.5 Results from the MD simulation where the dependency of the density 

 
 was investigated. (a) an illustration of the time evolution of simulations,  

 
 and (b) the Hb verses the number of voids in the system ...........................  32 

 
 

4.1 A 3D model of the 140KV ion accelerator at Texas A&M University.   

 
 From the ion source the ion travels through the acceleration column,  
  gains energy and then passes through the analyzing magnet, where it 
    could bend to one of the two beam lines present. For this experiment the 
  ion travels to the implant chamber .............................................................  38 

 
 

4.2 A close up 3D model of the implant chamber and the scanning magnets..  41 

 
 

4.3 A photograph of the nanoindenter used for this experiment at Texas  

 
 A&M University. .......................................................................................  43 

 
 

4.4 The ion ranges calculated by SRIM, (a) the ion range of 140KeV He+  

 
 and (b) the ion range of 75KeV H2

+ ...........................................................  46 

 
 

4.5 The data extracted from the nanoindenter, (a) is the force verse 

 
 displacement curve of a nano-indent from a sample that was irradiated  

 
 (b) the raster scanned image using the indenter tip of the indent at (a), 

 
 and (c) a graphical representation of table 4.2, with the associated error  

 
 bars. ............................................................................................................  49 

 
 

4.6 The surface morphology of the various samples that were irradiated. (a) 

 
 was irradiated with 1x1015 He+cm-2, (b) was irradiated with 1x1015He+ 

 
 cm-2 and 1 x 1015 H2

+cm-2,(c) was irradiated with 3 x 1016 He+ cm-2,(d) 

 

 was irradiated with 3 x 1016 He+cm-2and 1 x 1015 H2
+cm-2, and (e) was 

 
 unirradiated.. ...............................................................................................  52 

 
 

4.7 Cross-sectional TEM micrographs of tungsten,(a) a micrograph of the 

 
 unirradiated region from sample of that was irradiated by 7 x 1016 He+ 

 

 cm-2 and 1 x 1015 H2
+cm-2, and (b) a micrograph of the unirradiated 

 
 region from sample that was irradiated by 7 x 1016 He+cm-2. ....................   54 

 
 
4.8 Cross-sectional TEM micrographs of 7 x 1016 He+cm-2of irradiated  

 
 tungsten at the implanted region, where brown arrow signify dislocation 

 
 loop and bright blue arrow signify He nano-bubble. (a) micrograph at the 

 
 implanted region, (b) a close up micrograph of Fig. 4.8(a) at a grain  

 
 boundary, (c) a micrograph of the interface between the surface and the 

 
 implanted region, and (d) an overview of the area where these  

 
 micrographs were taken. ............................................................................   56 
 



 

xii 

 

 
 

4.9 Cross-section TEM micrographs of 7 x 1016 He+cm-2 and 1 x 1015 H2
+  

 
 cm-2 of irradiated tungsten at the implanted region, brown arrow signify 

 
 a dislocation loop and bright blue arrow signify a He nano-bubble, (a) a 

 
 micrograph at the implanted regions of He and H,(b) an overview of the 

 
 sample where these micrographs were taken, (c) a micrograph from  

 
 surface to the He implanted region. ...........................................................  58 

 
 

4.10 Magnified micrographs to accentuate the location of He nano-bubbles  

 
 for the blob detector, (a) was irradiated by He, (b) was co-irradiated by  

 
 both He and H, (c) post image processing of the He irradiated sample,  

 
 and (d) post image processing of co-irradiated He + H. ............................   60 

 
 



 

xiii 

 

LIST OF TABLES 

TABLE                                                                                                                          Page 
 
 4.1 Represents the sample matrix that will be used for the following  
  experiment ..................................................................................................  45 
 

 4.2 Represents the fluence of He3 and H2
+ ions that each sample received and 

  its corresponding hardness after irradiation. ..............................................   48 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

 

1. INTRODUCTION  

The promise of a sustainable fusion power plant has captivated the human race 

for decades. However, to make this vision a reality, a substantial amount of engineering 

and research must be performed, especially in the field of material science. For example, 

one of the most critical components for a fusion reactor is the PFM. Such materials must 

withstand incredibly harsh conditions, with combined effects from high temperatures, 

mechanical stresses, and large doses of radiation over an extended period of time. These 

components must maintain their structural integrity, and, thus, the development of 

materials which can tolerate this environment is essential. 

The International Thermonuclear Experimental Reactor (ITER) announced the 

use of tungsten for portions of the reactor “first-wall” [1].  Figure 1.1 is an illustration of 

the ITER showing along with material selections for major components. The main PFM 

will be comprised of Beryllium (Be), tungsten, and carbon fiber-reinforced carbon 

composite (CFC).  Beryllium will be used for the main wall coating, and tungsten and 

CFC will be used for the divertor.  The divertor shown at the bottom of Fig 1.1 in the 

ITER fusion reactor design is a critical component due because of its purpose to remove 

and control the build of the transmutation of fusion by-products.  This means that the 

divertor will be exposed to the highest flux of plasma, and, thus, have the highest levels 

of radiation and heat [2].  Safe reactor operation requires complete knowledge of 

divertor properties under extreme conditions. Therefore, this study will focus on the 

viability of tungsten as a PFM. 
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Figure 1.1: An illustration of the proposed materials used for the PFM of the ITER 
reactor design. 

 

 Over the past decade, various researchers from around the world have studied 

tungsten’s viability as a PFM.  Tungsten is a strong PFM candidate due to its high 

melting point and low sputtering yield.  A large body of work exists on the diffusion of 

H and He in tungsten, as well as the effect of H and He irradiation individually on the 
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near surface region. A few studies have examined the effect of implanting H and He into 

tungsten [3-8]; however, to our knowledge, none have investigated the mechanical 

properties and/or microstructural changes due to co-implantation. 

Therefore, this thesis will focus on expanding this body of knowledge and 

examine the change in mechanical properties of tungsten under the co-implantation of 

He + H and implantation of He. This study has been broken into two distinct sections to 

better illustrate and characterize this phenomenon. 

The first part of this study will observe the changes in mechanical properties of 

tungsten by utilizing Molecular Dynamics (MD) simulations.  By examining the results 

of these simulations, one can gain a better understanding of what mechanisms cause the 

change in the mechanical properties of tungsten. The simulation will recreate a nano-

indent into tungsten for which the hardness can be extracted. The next step is to place 

voids in the simulation, and look at the dependency of void size and void density, and 

how these two parameters affect the hardness of tungsten. Also to understand the 

movement of dislocations and interaction it has with voids. 

The second part of this study will examine the experimental results of H and He 

co-implanted tungsten and measure its mechanical properties. Next, identify the 

microstructural changes that may have occurred in the ion irradiation process and tries to 

relate that back to the mechanical property changes.  Initially, for this experiment, the 

samples will be bombarded with H and He, the most common ion species in fusion 

plasma.  After the ion irradiation process, these samples will be mechanically tested by 
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using a nanoindenter. Then look at the cross-sectional TEM of these samples, where the 

microstructural changes can be analyzed. 
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2.   BACKGROUND THEORY 

 This section presents fundamental principles, of ion-solid interactions, such 

concepts are interatomic potentials, binary elastic collisions, ion stopping, electronic and 

nuclear stopping, damage cascades, and radiation damage.  Also presented are macro-

level principles of mechanical properties and the impact of dislocations, radiation 

damage, and the presence of foreign species, and their effect on the hardness of the 

material.  Such concepts are necessary to understand the data presented herein.   The 

aforementioned topics will be discussed in the following sub-sections. 

 

2.1   Ion Solid Interaction 

 An ion-solid interaction is the physical processes that are a result from the 

collision of energetic ions with matter.  To understand this concept, one must understand 

the principles of interatomic potentials, binary elastic collision, range, ion stopping, and 

displacement spike.   

2.1.1   Interatomic Potential 

The interatomic potential between two atoms gives rise to almost all physical 

phenomena, such as the heat capacity, pressure, the strength of a solid, and the viscosity 

of a liquid.  Most importantly, it greatly affects the scattering probability of an ion solid 

interaction.  The simplest way of understanding interatomic potentials is to first look at 

the electrostatic potential V(r) between two point charges with a charge   separated by a 

distance  , given by 
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.                                                       (2.1) 

The potential from Eqn. 2.1, is related to the force F(r) by Eqn. 2.2, given by 

      
 

  
                                                          (2.2) 

One way of conceptualizing the interatomic potential of a pair of atoms is by bringing 

the atoms, from an infinite separation distance, to their equilibrium. The total amount of 

work required to assemble such a configuration is the interatomic potential energy. 

 There are more sophisticated interatomic potentials which provide more accurate 

explanations for complex systems, such as hard-sphere, square-well, inverse power, and 

the Lennar-Jones potentials. These different models provide varying levels of detail 

about how atoms interact with one other.  

Previously, it was stated that many physical properties such as elastic properties 

and thermal properties arise as a result of the interatomic potential between atoms.  The 

modulus of elasticity is a function of the strength of the interatomic potentials between 

the atoms in a lattice.  If an external force is exerted on a crystal, bond breaking will 

only occur if the potential barrier between atoms is overcome.  The strength of these 

bonds is determined by the interatomic potential, and, thus, if the force exerted is less 

than the amount of energy needed to displace an atom from its original lattice site, the 

binding energies have not been exceeded.  In other words, binding energy is the amount 

of energy needed for an atom to overcome the potential barrier and become mobile.  The 

melting temperature of a material is a function of the depth of the potential well and 

directly related to the binding energy.  It is generally known that, there is a linear 

relationship between the binding energy, the melting point, and the modulus of elasticity. 
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2.1.2   Binary Elastic Collision 

For the following discussion, consider a two body collision, where the energy is 

conserved between the projectile and target. This type of collision is known as a binary 

elastic collision.  The energy transfer between the two particles is a direct result of the 

conservation of energy and momentum.  The collision is termed “elastic” since no 

energy is lost from the reaction.  The governing kinematic given by Eqn. 2.4, 2.5, and 

2.6, and illustrated in Fig. 2.1. 

    
 

 
    

  
 

 
    

  
 

 
    

                                        (2.4) 

                                                            (2.5) 

                   .                                         (2.6) 

   is the initial energy of the projectile,    is the mass of the projectile,    is the 

mass of the target,    is the initial velocity of the projectile,    is the velocity of the 

projectile,    is the velocity of the target, and     and   are the scattering angles of the 

projectile and the target, respectively.  

This model assumes that only two particles interact and that the excitation or 

ionization of electrons does not influence the collision dynamics. These assumptions are 

largely valid for the interactions discussed in this section.   
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Figure 2.1  An illustration of a binary elastic collision governed by the kinematic Eqn. 

2.4, 2.5, and 2.6.     and     is the new energy of the projectile and target 
after the collision, respectively. 

 

2.1.3   Ion Range 

As an ion travels through a solid, the atoms in that solid interact with the 

traveling ion through multiple collisions.  For every collision, the ion is perturbed from 

its original course and sent off at a new trajectory.  Through this collision, it parts some 

of the ion’s energy to the target material.  The path of the ion depends on several 

variables, such as the initial energy of the ion, the angle of incidence, and the target 

material.  The total distance traveled by an ion is known as the range, R, which is given 

by Eqn. 2.7 
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.                                                 (2.7) 

In the equation, Eo is the initial energy of the ion, and   

  
 represents the energy loss over 

the distance traveled into the material.  The   

  
 term is often referred to as the stopping 

power of an ion traveling through the target material. However,   

  
 is constantly 

changing based on the energy of the ion travelling through the target material. 

 The average distance perpendicular to the surface an ion travels is known as the 

projected range, Rp.  Figure 2.2 illustrates the differences between of the range, R, and 

the projected range, Rp. Computer programs, such as, Stopping and Range of Ion in 

Matter (SRIM) can calculate the Rp of certain ions with a discrete energy into most 

materials.  

 

 

Figure 2.2: An ion traveling through a solid, as it illustrates the difference between the 
range of an ion verses the projected range. 
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2.1.4   Stopping Power 

As an ion travels through a material, it deposits energy into the material through 

different interaction with the target material’s electrons and nuclei. These two 

interactions are known as electronic stopping power and nuclear stopping power, 

respectfully.  Electronic stopping is prevalent when the ion is traveling at high velocities 

and after each electronic interaction the ion transfers small amounts of energy into the 

target material.  Nuclear stopping is prevalent when the ion is traveling at low velocities 

and the ion transfers large amount of energy.  Each interaction depends on variables such 

as the ions mass, energy, and target material.  The stopping power,   

  
, is split between 

two components,   

         
, for interactions with the target nucleus, and   

           
,for 

interactions with the target electrons.  Equation 2.8 is the stopping power split between 

the two components of nuclear stopping and electronic stopping.     

  

  
 

  

         
 

  

           
                                          (2.8) 

Figure 2.3 illustrates the regions of dominate of nuclear stopping and electronic 

stopping as a function of the ion’s velocity.  Bohr suggested that based on the velocity 

and atomic number of the ion; there was a correlation to the number of ionizations as an 

ion travels through the target material.  The correlation represents the effective ion 

charge fraction of the traveling ion,  , seen from Eqn. 2.9, 

   
 

   
 

  
.                                                (2.9) 
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Figure 2.3: Illustrates the different regions for nuclear and electronic stopping 
power as a function of velocity. 
 

 
In Eqn. 2.9,   is the velocity, Z is the atomic number of the ion and    is the Bohr 

velocity (2.2 x 106 m/s), the speed at which an electron orbits a nucleus. This correlation 

shows that for velocities of an ion greater than    
 

  , the ion is then considered to be 

stripped from all of its electrons, and all interaction of the traveling ion must occur 

through the electron clouds of the target material. For ion velocities less then    
 

  , the 

ion has all of its electrons and has a probability to interact with the target’s nuclei. 
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Thereby, there exists a natural boundary between electronic stopping and nuclear 

stopping.  

In the intermediate energies, seen in Fig.2.3 as region II, electronic stopping is 

the dominate interaction.  For ion velocities greater than    
 

  , energy is transferred 

from the ion to the target atom from inelastic collisions with the target electrons.  The 

electronic interaction that occurs transfers small amounts of energy from the ion to the 

target atoms, resulting in a slight perturbation of the original ion’s path and a slight 

decrease in the ion’s energy.   

In the low energies, seen in Fig. 2.3 as region I, nuclear stopping is the dominate 

interaction. For ion velocities less then    
 

  , the ion is neutral and carries all of its 

electrons. The ion then has a high probability of interacting with the nuclei of the target 

material.  By interacting with the nucleus, a large amount of energy is lost by a binary 

elastic collision and there is a significant angular deflection from the ion’s original 

trajectory. 

2.1.5   Displacement Spike 

The amount of energy transferred to the target atom through elastic collisions is 

often enough to displace the target atom from its lattice site. The displaced atom now 

becomes a travelling particle through the medium and is often referred to as a Primary 

Knock-on (PKA).  The PKA, if it has enough energy, could interact with the other target 

atoms in its vicinity, and “knock” those atoms from their lattice site. The displacement 

of the “knocked” atoms creates a cascade of displaced atoms in the target material. This 
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event is often referred to as damage cascades or displacement spikes. Figure 2.4 

illustrates this idea of a displacement spike.  

From the displacement spike, these atoms are originally displaced from their 

original spot, and create interstitials (when an atom occupies a site in a crystal structure 

where no atom is usually present), and vacancies (when no atom occupies a site in a 

crystal structure).  These displacement spikes put the crystal lattice at an elevated energy 

state. In order to relax the crystal lattice to a lower energy state, the knocked atoms will 

migrate back towards the vacancies created by the PKA and subsequent knocked atoms. 

 

Figure 2.4: Illustrates when an ion interacts with one of the lattice atoms and creates a 
displacement spike. 
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However, since the atoms that were displaced might not have enough energy to 

go back to its original position, they will remain as an interstitial, thereby also creating a 

vacancy. Displacement spikes behind several interstitials and vacancies in the crystal 

lattice.  These types of disturbances can lead to the production of defects. These defects 

have an effect on the mechanical properties of the material and will be discussed in the 

next section.   

 

2.2   Mechanical Properties 

 In order to understand the effects that radiation has on materials, it is important to 

have a macro level understanding of mechanical properties.  In this section, dislocations, 

dislocation migration, radiation damage, and the effects it has on the materials hardness 

will be discussed.  

The hardness of a material is best described as the resistance to change in its 

shape when a force is applied on it. The hardness of a material is largely determined by 

the strength of the atomic bonds, or the interatomic potential.  However, the crystal 

structure might contain irregularities such as point defects and line defects.  These 

defects put a strain on the atomic bonds, thus changing the hardness of the material.  A 

point defect is either a vacancy or an interstitial atom in the crystal structure.  A line 

defect is an irregularity that exists in a misalignment of a plane of atoms in the crystal 

structure. Line defects are also known as dislocations. 
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 (a) (b)  

Figure 2.5:  An example of two line defects, (a) an edge dislocation and (b) a screw 
dislocation. 

 
 

A dislocation is a crystallographic defect within a crystal structure, and it many 

influences many properties of the material.  Some of the commonly known dislocations 

that are present in a crystal structure are edge and screw dislocations, which are both 

shown in Fig. 2.5.   An edge dislocation, Fig. 2.5(a) is a defect where an extra half-plane 

of atoms is inserted into the crystal structure.  For a screw dislocation, Fig. 2.5(b) the 

crystal structure is sheared one-half the atomic distance without breaking any of the 

atomic bonds, creating a distortion in the crystal plane.   

The magnitude and direction of the lattice distortion of the dislocation is often 

referred as the burgers vector, b.  For an edge dislocation, the burgers vector is 

perpendicular to the lattice distortion, whereas for a screw dislocation, the burgers vector 

is parallel to the lattice distortion. The movement of dislocations through the crystal 

lattice is governed by two mechanisms known as either glide or climb.   When a 

dislocation glides, the dislocation moves in the sample plane as burgers vector, often 
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referred as the slip plane.  When a dislocation climbs, it moves out of the slip plane, 

normal to the direction of the burgers vector. For a dislocation to climb, the crystal 

lattice must be thermally activated to promote diffusion of an extra plane of atoms into 

the dislocation.  At high temperatures, dislocations will have the ability to climb. At low 

temperatures where diffusion is unlikely, the movement of dislocations is primarily 

limited to glide.  

These dislocations also provide a mechanism for atoms to move and allow for 

permanent and/or plastic deformation.  The ease with which a dislocation migrates in a 

crystal structure also affects the hardness of a material. A large number of defects, 

however, will interact and prevent movement of the dislocations. An example is a line 

defect traveling through the material that stops because of a point defect. That point 

defect will prohibit the line defect from continuing its movement, acting as a pinning 

site. This will stop the material from plastically deforming, which in turn makes the 

material harder.    

The number of point defects present in a crystal lattice influences the hardness of 

a material.  This technique is widely used for many metal modifications. One of the most 

common is carbon steel. By adding carbon to iron, the carbon migrates into the iron 

crystal lattice as an interstitial and changes the hardness of the iron.  

Similar to interstitials, voids, bubbles, and precipitates also have similar effects 

on the hardness of a material. A void is a collection of vacancies in the crystal structure, 

and bubbles are voids filled with a substitution gas.  A precipitate is a void filled with a 

cluster of substitutional atoms different from the crystal lattice.   Voids and bubbles can 
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cause the material to visibly swell due to the interior volume displaced.  Voids, bubbles 

and precipitates, if in the path of a moving dislocation, make it hard for dislocations to 

traverse the material, thereby making it harder.  

A grain boundary is often referred to as an interface between to misoriented 

single crystals in a polycrystalline solid.  The grain boundary has properties that 

correspond to the hardness of a material.  Grain boundaries make it difficult for a 

dislocation to move from on grain to another.  In order for the dislocation to continue its 

path in the other grain, more energy is needed to initialize the dislocation at the new 

crystal orientation.  By increasing the density of grains in a material, it has the ability to 

make the material harder. 

Ion irradiation affects the numbers of defects that can be introduced into the 

material. These defects change the hardness of the material; this is known as irradiation 

hardening.  In irradiation hardening, there are two mechanisms, source hardening and 

friction hardening.  Source hardening is when the radiation damage locks an existing 

dislocation into place. Friction hardening is when the radiation damage creates several 

defects in the material and these defects impede the dislocation from moving.  The only 

way for the dislocation to overcome the defect is by cutting through it or climbing over 

it. Fig. 2.6(a) illustrates an edge dislocation cutting though an obstacle; an obstacle is 

any type of defect that is in the path of a moving dislocation.   
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(a)  

 

(b) (c)  
Figure 2.6: (a) Illustration of an edge dislocation as it moves along the slip plan and cuts 

an obstacle. (b) Slip plan with several obstacles randomly dispersed, as an 
edge dislocation migrates though it. (c) Represents the Vickers hardness as a 
square root function of the density and diameter of obstacles in a solid. 
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To better understand the effect of obstacles have on the hardness a relationship 

must be established to relate the hardness of a material to the density and diameter of an 

obstacle. These obstacles are considered to be spherical with a diameter, d, which are 

randomly distributed throughout the solid at a density of N cm-3.  The dependence of the 

diameter and the density of obstacles can be related to the hardness of a material given 

by Eqn. 2.10, where H is the hardness and   is a constant that represents variables 

specific to the material. 

        .                                                  (2.10) 

To derive the relationship in Eqn. 2.10, first relate the line tension from an edge 

dislocation, given by Eqn. 2.11 to the sheer stress, Eqn. 2.12, 

  
   

  
    

 

  
                                                 (2.11) 

   
    .                                                   (2.12) 

From Eqn. 2.11 and Eqn.2.12, R, is the grain radius, rc is the dislocation core radius and 

dislocation core energy, b is the burgers vector, and µ is the shear modulus. To relate 

Eqn. 2.11 and 2.12 to the density and diameter of an obstacle, one must set to R=   /2. 

Where the product of the number of intersections per unit area, Nd and the square of the 

distance between obstacles,  2 is unity, yielding the distance between obstacles   =   

   
   

Then by substituting Eqn. 2.11 into Eqn. 2.12, is then be simplified to Eqn. 2.13, where 

α is a constant equal to   
 

  
    

 

   
 .  

                                                            (2.13) 
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From equation 2.13, the sheer stress then is related to the yield stress,    of the material 

by a Taylor factor, M such that,       , thus yielding equation 2.14, 

          .                                                (2.14) 

Then from observations reported by P.Zhang et al.[9], yield stress is proportional to the 

hardness and, thus, creating the relationship between         . 

From this derivation, there exists a model where there is a dependence on the 

density and diameter of obstacles and its relation to the hardness of the material, by a 

square root function.  Figure 2.6(b) is an illustration of several obstacles in a slip plane. 

Figure 2.6(c) represents the Vickers hardness of a material as its dependence of the 

square root of the diameter and density of obstacles. 
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3. MOLECULAR DYNAMICS SIMULATION 

3.1   Molecular Dynamics  

 Molecular Dynamics (MD) is a computer simulation method with the ability to 

model the physical movement of atoms under various different potentials for time scales 

on the order of pico to nanoseconds.   The movement and trajectories of atoms are done 

by numerically solving Newtonian equations for interacting particles with a given 

potential energy. The scale of the simulation of an MD simulation in both time and 

volume allowed is limited by the computing power available. To run a simulation with 

millions of atoms, super computers are needed. Each individual atom is indexed and 

calculated during each iterate.  This technique is computationally expensive; however, it 

results in an accurate movement and behavior for each individual atom. MD simulation 

has been widely used for work in chemical physics, material science and modeling for 

bimolecular studies.   

 Figure 3.1 is a flow chart that shows the MD simulation procedure.  Initially, all 

the positions, velocities, and boundary conditions are defined.  Next, the forces are 

calculated with parameters set by the simulation, and then the particles move according 

to the set of forces over a time step.  This process will loop until the simulation reaches 

the end time.  
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Figure 3.1: The simulation proceeds of molecular dynamics simulations. 
 
 

 A critical component of MD is the accuracy of interatomic potentials. The 

accuracy of the MD simulation is heavily determined by the accuracy of these potentials.   

Most potential values come from either quantum mechanics or empirical methods, 

however, there are also semi-empirical methods which combine elements of empirical 

and quantum calculations.   Such potentials are used to determine the forces acting on 

pairs, or even large numbers, of particles on each other.   

Quantum mechanics and ab-initio methods are used to calculate potentials.  

These potentials are created by solving multi-body Schrödinger equations.  The 

advantage of using ab-initio methods is its accuracy. This method is based on first 

principles and usually gives the most accurate representations of inter-atomic potentials, 

however, it is very computationally expensive.  

Empirical potentials represent quantum mechanical effects without solving the 

Schrödinger equations. The interatomic potentials are calculated using previous known 

data from either experiments or computations. This method is computationally 
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favorable, but is less accurate.  Because semi-empirical potentials are a mixture of 

quantum mechanics calculations and empirical representations, semi-empirical potentials 

can offer a more accurate potential than a purely empirical method without the 

computational cost of the ab-initio calculations.  

One of the critical potentials calculated from any of the methods above is the pair 

potential. Pair potentials describe the total potential energy between two atoms.  A good 

example of a pair potential is the Lennard-Jones potential, which is mostly used to 

calculate Van der Waals forces.  For some simulations, the pair potential of two 

interacting particles is not enough to give an accurate depiction of the forces acting on 

the atom, and the forces of other atoms need to be taken into account.  In this case a 

Multi-body potential must be used. Multi-body potentials occur when the potential 

energy is a function of multiple atoms interacting with each other. A good example of a 

multi-body potential would be the Tersoff potential. This potential gives the total 

potential over groups of three atoms, where the angle between atoms is taken into 

account. 

 LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a 

classical molecular dynamics code.  It can model atomic, polymeric, biological, metallic, 

granular, and coarse systems by using an assortment of different potentials and boundary 

conditions.  LAMMPS was developed to make MD simulations simpler to setup and run. 

The US Department of energy under the Cooperative Research and Development 

Agreement developed this code which is now distributed by Sandia National Labs.  The 
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current version of LAMMPS is written in C++ and designed to run on single or parallel 

processors.   

The core mechanics of LAAMPS integrate the forces given by Newton’s 

equations of motion over the simulated set of atoms.  LAAMPS calculates this, while 

taking into account boundary and initial conditions set by the simulation.  LAMMPS 

specialized in parallel computing, by using spatial-decomposition techniques to allocate 

different parts of the simulation into small sub-domains. These sub-domains then get 

assigned to an individual processor.  Each processor has a specific output that 

corresponds to the simulation, where the final output can be easily constructed.  By 

using this parallel method, LAAMPS is able to efficiently run the simulation and 

decrease computational time drastically by being able to use as many processors as are 

available. 

 

3.2   Method of MD Simulation 

 The effect of ion implantation on tungsten is important to understand due to its 

proposed use as a PFM.  For this study, MD was used to create a computational model to 

understand the basic principles of the dependence of void density and void diameter to 

the hardness.  Ion implantation changes the hardness of a material by introducing defects 

into the crystal lattice [10,11].  For the purpose of this study, the defects introduced into 

the simulations were voids.  By varying the void size and the void density, this gave a 

qualitative understanding on how these voids changed the hardness of tungsten.  
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The basis of this simulation was to recreate the Brinell hardness test.  The size of 

the simulation was 12.6nm x 12.6nm x 9.5nm, which gave a test sample of 96000 atoms.  

An Embedded-Atom Method (EAM) potential was used. EAM is an approximation 

describing all energies between two atoms and all of its neighbor’s potentials, and 

specifically designed for metals with a simple close packed structure.  The system was 

heated up to 300K under the NVT ensemble, in which moles (N), volume (V), and 

temperature (T) were conserved. The time step for the simulations was 0.02 picoseconds 

(ps).  The speed of the indenter was 0.02 angstroms ps-1 into the surface, until the 

indenter tip reached 2nm.  Then, the indenter was pulled out at 0.02 angstroms ps-1.  In 

order to calculate the hardness of the material, Eqn. 3.1 was used. 

   
  

            
                                                   (3.1) 

Where D, is the diameter of the indenter, d is the diameter of the indent, and P is the 

force on the indenter.  Figure 3.2 is an illustration of the parameters used to calculate the, 

Brinell hardness, Hb. 

 

Figure 3.2:  Illustrates the parameters used for the Brinell hardness test. 
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For the first simulation, a nano-indent in defect free tungsten was created in order 

to understand the basic properties of the tungsten, and to have a comparison to the other 

simulations.  The next simulation was used to look at the dependence of void diameter 

on the hardness of tungsten.  The void density was held constant, by creating a 

simulation that varies the void diameter, while holding the total volume of constant.   All 

the voids were all placed on the atomic plane 4.5 nm away from the surface. This was 

done in order to create enough distance for the indenter tip to come in and not interact 

directly with the voids. This simulation is illustrated in Fig. 3.3(a).  

The next simulation was used to look at the dependence of void density on the 

hardness of tungsten.  The voids were randomly dispersed in the volume at a distance of 

4.5 - 6.5 nm away from this surface.  The void diameter for the simulation was set to 1 

nm.  The overall void density was then controlled by the number of voids created. This 

simulation is illustrated in Fig. 3.3(b).  

As soon as the indenter comes in contact with the surface, a force was applied to 

the system of atoms in the simulation.  The indenter will continue to apply a force until 

the tip of the indenter reaches 2nm into surface, and then the indenter will withdraw 

itself from the surface.  For these simulations the tip of the indenter will take 1ns for it to 

reach 2nm.   
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 (a)  

 

(b)  

Figure 3.3: The parameters of each of the simulations, (a) where the dependency of  
diameter was investigated (b) where the dependency of density was 
investigated. 
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 As the indenter applies a force into the system of atoms, the atoms experience a 

strong shear stress, and in order for the indenter to penetrate deeper into the system, 

several atoms will be displaced.  The displacement of these atoms creates point and line 

defects within the system. The atoms near these defects experience a difference in their 

interatomic potential due to the stress field that surrounds the defect.  From this data it is 

possible to look at the change of the interatomic potential and understand what types of 

defects are created in the simulation. By visually watching the simulation, the 

movements of potentials indicate the movements of line defects.  This visualization will 

lend an understanding of how the defects will move and interact with the void region in 

each of the simulations.   

      To be able to calculate the hardness from these simulations, the force applied 

on the indenter, and the diameter of indent was extracted.  From this knowledge, Hb can 

be calculated.  From these calculations, a trend then could be discovered. 

 

3.3   MD Simulation Results and Discussion 

 In this section, the data from the two simulations are presented. From the 

relationship that was in Section 2.2, where the dependence on the density and diameter 

of the obstacles was a square root function to the hardness. The hardness data extracted 

from these simulations should both follow that function. 
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Figure 3.4: Results from MD simulation where the dependency of density was 
investigated. (a) an illustration of the time evolution of the simulations, and 
(b) is the Hb verses the void radius. 
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Figure 3.4 was the results from the first MD simulation, where the dependency of 

the void diameter was investigated.  When examining Fig. 3.4(a), it is clear that defects 

are being created from the indenter and these defects migrate parallel to the force from 

the indenter tip. When observing the defect free simulation in Fig. 3.4(a), the defects that 

were created migrated from the indenter, and at the end of the simulation these defects 

were still present.  In the other two simulations, the migrating defects interacted with the 

voids, causing the defects and voids to be partially removed through re-combination.  

This was explained from the theory proposed back in Section 2.2, where an edge 

dislocation would travel along the slip plane, and interacts with an obstacle.  If the edge 

dislocation were to have enough energy, it would cut the obstacle. From this simulation, 

such obstacles were voids, and if an edge dislocation where to come in contact with the 

void with enough energy to cut through the void.  Then extra half plane of atoms from 

the dislocation would then be injected to volume of the void. Depending on the size of 

the void, injection of atoms from the extra half plane could then remove this defect.   

This becomes more evident under close examination of this simulation. 

In Figure 3.4(b), the plot of the Hb verses the void radius; it becomes evident 

when looking at the last four points of the plot that it follows a square root function.  

This result was expected, due to the relationship between obstacle density and diameter 

in Section 2.2.  However, when looking at the second point from the plot, when then 

radius of the void was 0.385nm; it seems as if there was a slight decrease in hardness.  

This behavior is not expected, but could be explained by the constraints of the 

simulation.  



 

31 

 

 

 From this simulation, the total void volume was kept constant to preserve the 

overall void density of the simulation. If the void radius was too small, several voids are 

created in order to preserve the density of voids. However, there becomes a critical point 

where too many voids are created and for the simulation, and all these small voids are 

placed on a single plane.  Thereby, increasing the localized density of voids to a point 

where the voids interconnect and form a porous structure.  The mechanics for line defect 

interaction with porous structures are completely different than that of an independent 

obstacle.  A line defect will preferentially migrate toward a porous structure since it is an 

easy pathway to release the energy in a line defect. This, in turn promotes defect 

mobility, decreasing the hardness of the material. Also there is some irrelevance to 

compare a system that tests the dependence of void diameter to a system of no voids. 

There is a fundamental difference between the mechanics of the two systems. This 

constraint to the simulation explains the slight decrease in hardness shown in Fig. 3.4(b).    

 Figure 3.5 was the result from the second set of MD simulations, where the 

relationship between hardness and void density of tungsten was investigated.  Fig. 3.5(a) 

and 3.4(a), shows the same properties of defect creation and defect migration from the 

indenter. It was clear to see that by increasing the total number of voids, the systems 

total void density could be controlled.  
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Figure 3.5: Results from the MD simulation where the dependency of the density was 
investigated. (a) an illustration of the time evolution of simulations, and (b) 
the Hb verses the number of voids in the system. 
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By observing Fig. 3.5(b), the first five points in the plot; there is a positive 

correlation between void density and hardness, which resembles a square root function. 

The result that was expected to follow a square root of because of the dependence stated 

in Section 2.2. For last two points in Fig. 3.5(b), the hardness decreased with the 

increase increasing void density, which doesn’t fit the expected trend.  This could be 

explained by the constraints of the system.  It was mentioned prior that, there was a 

critical point where if the localized void density was too high in a certain region, the 

void region will act as a porous structure rather than an obstacle.  This becomes more 

apparent when comparing the localized void density for the simulation with 30 and 40 

voids present. For these two simulations the overall void density was high and acted as a 

porous structure  

When looking at the fourth point in Fig. 3.5(b), it becomes clear that there is a 

slight inflection to the trend.  This could be explained by how the voids were introduced 

into the simulation.  The voids in the simulation were randomly placed in a region 

between 4.5 - 6.5nm, the configuration of how these voids were placed have an effect on 

line defects that are interacting with it.  If two obstacles were placed close together the 

dislocation would have a harder time to cut through both of them due to the close 

proximity of the obstacle and the associated forces that surround it.  For these regions 

with a close proximity of obstacles, the localized hardness value would be much higher 

than the surrounding regions. For this simulation, the voids were all randomly placed; 

therefore, the hardness value could vary even with the same number of voids present due 

to variance in the localized hardness.  
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4. MICROSTRUCTURAL AND MECHANICAL CHANGES IN ION 

IRRADIATED TUNGSTEN 

4.1   Introduction to Irradiated Tungsten 

 To understand the effect of irradiated tungsten it is important to know the basic 

properties of pure tungsten.  In raw form, tungsten is a brittle, but very hard metal with a 

steel gray appearance.  It has a high melting point (3,422 oC), an exceptional tensile 

strength of 1501 MPa, and its atomic crystal structure is body-centered cubic (BCC), it 

has a low sputtering yield, and high thermal conductivity. These properties make it an 

ideal candidate as a PFM in a fusion reactor. 

  The effect of radiation on tungsten has been mostly focused on characterizing its 

ability to withstand the harsh environments of a fusion reactor.  Copious amount of 

research has been conducted to understand the effects of individual irradiation of H and 

He [12-32], and the resulting changes of the surface morphology [5,20,28]. Also, many 

have individually studied the individual diffusion of He and H in tungsten 

[14,17,22,29,31].  However, there has been little research undertaking to understand the 

mechanical property changes that are associated with any ion irradiation.  The key part 

of this study was to be able to co-implant He and H at a deep enough level where 

accurate measurements of the mechanical properties could be recorded.   

 Though the focus of this thesis is different from past studies, the previous work 

offers a preliminary understanding of how tungsten will react to ion irradiation and the 

diffusion of He and H [7,9].  From previous studies it is seen that He will cause major 

changes in surface morphology, including blisters, as well as extensive nano-bubble 
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formation [24,26,30]. H, on the other hand, will migrate deep into the material, and 

preferentially exists in the tetrahedral interstitial site and at grain boundaries [15,18]. 

Some studies have also has offered insight on how both H and He affect each other’s 

retention and migration in the material [3,5].  From these previous works, it gives a 

predicted behavior of what could be expected in a H and He co-implantation of tungsten, 

and could offer an explanation of some of the mechanisms seen in this experiment.     

 

4.2   Experiment Instruments 

Use of a linear particle accelerator was pivotal in this experiment. A particle 

accelerator is a complex machine used to produce, accelerate, manipulate, and finally 

implant energetic ions into a given sample.  There are many different methods for 

producing ions, for example: electron and chemical ionization, gas discharge ion 

sources, desorption ionization, and spray ionization to name only a few of the techniques 

used to produce the charged particles needed for the ion beam. Each source type has its 

own unique strengths and weaknesses. The source simply has to be chosen so the 

desirable ion species can be produced at the necessary rate.   The ion beam is then 

accelerated and steered by electrostatic and electromagnetic forces to the sample 

implantation stage.   

The amount of energy an ion beam has is determined by two factors: the charge 

state of the ion and the electric potential of the acceleration column.  The amount of 

energy is described in terms of electron volts (eV), which is defined as the kinetic energy 

of a single elementary charge as it moves across an electric potential difference of one 
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volt.    For example, an ion with a single elementary charge passing through an electric 

potential field of 100 volts, gains 100eV of energy. Since the eV energy unit is relatively 

easy to calculate from known machine parameters, it is used frequently in this field to 

refer to the energy of an ion. 

Another important aspect of ion acceleration is the total number of ions deposited 

per area, known as fluence.  By knowing the beam current, which is directly proportional 

to the number of ions that are interacting with the sample per second, the fluence can be 

measured by integrating the beam current over a period of time.  The ion fluence in the 

sample is a critical quantity since it is directly proportional to the total amount of energy 

deposited. Another critical requirement to ion acceleration is that the entire accelerator 

system must be kept at high vacuum conditions, typically around 10-7 torr. In order to 

maintain such vacuum conditions, a combination of turbo, diffusion and ion pumps are 

placed throughout the accelerator system.   If a high vacuum environment is not 

maintained, the ions could never reach the target due to interactions with the gas atoms 

in the beam line. 

4.2.1   140KV Ion Accelerator 

The H and He implants were performed using a 140KV single-ended accelerator, at 

the Ion Material Faculty at Texas A&M University. A 3-D computer model of the 

complete accelerator system is represented in Figure 4.1. The accelerator is equipped 

with a Danfsick ion source with the capability of producing ions from both gaseous and 

solid material. 
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During operation, the filament must reach a critical temperature in order to ionize 

the input gas and create plasma.  Inside the source there is a tungsten filament that is 

heated by passing a high electric current through it; at a high enough temperature, 

thermal electrons are emitted from the filament.  The filament is surrounded by an 

anode; this anode is positively biased so that the electrons that are being emitted from 

the filament are drawn towards it.  Once the gas enters the source, through an operator-

controlled leak valve, it interacts with the electrons being emitted from the filament. The 

electron knocks off one of the orbital electrons from the gas atom, making it positively 

charged. The knocked off electron is then pulled by the potential gradient toward the 

anode where it has the possibility to interact other gas atoms. This process, if started 

relatively far from the anode, can create a cascade of electrons and ionized gas particles 

atoms.  The gas atoms that have interacted with the electrons create positively charged 

plasma.  
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Figure 4.1: A 3D model of the 140KV ion accelerator at Texas A&M University.  From the ion source the ion travels through 
the acceleration column, gains energy and then passes through the analyzing magnet, where it could bend to one of 
the two beam lines present. For this experiment the ion travels to the implant chamber. 
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To extract the plasma a voltage bias is placed across the plasma, creating a 

potential gradient to drive the ionized atoms out of the source.  Once the plasma is 

extracted, it passes through an Einzel lens where an applied voltage is used to focus the 

plasma into a beam.  After the ion beam leaves the lens it then passes through the 

acceleration column.  The acceleration column consists of several chevron shaped plates 

in series. The accelerating voltage potential is applied across the column creating a 

voltage gradient which will determine the energy of the exiting particle. After the beam 

leaves the acceleration column it reaches the glass cross.   On the bottom leg of the four-

way cross, a diffusion pump is used to keep the source and magnet volumes at a high 

vacuum level. The system base pressure is around 1x10-7torr, which is read by an ion 

gauge located near the glass cross.   

The ion beam then enters the analyzing magnet.  The analyzing magnet is used to 

filter out any unwanted ion species or charge states that may exists in the ion beam.  The 

analyzing magnet is an electromagnet, where a power supply finely controls the current, 

which, in turn, controls the magnetic field strength of the magnet.  Once the magnet is 

tuned to the proper magnetic field strength, the ion beam will then bend accordingly to 

the mass to charge ratio.  If there were any unwanted ion species in the ion beam, these 

species would bend at a different rate due to a difference mass to charge ratio compared 

to the desired ion species.  The ion beam under the proper settings has to bend at a 15o 

angle to travel toward the implant chamber. 

After the 15o bend, the ion beam then passes through another set of magnets, 

known as steering magnets.  These magnets are controlled by a bipolar operational 
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power supply and which gives the ability to steer the beam vertically and horizontally. 

This allows the operator to place the beam precisely onto the target in the implant 

chamber.  In order to implant an area, the magnets that were used to steer the beam onto 

the target are connected to a wave function generator to scan the beam across a desired 

area.  These wave generators control the power supplies for the steering magnets, 

causing the ion beam to move from left to right and bottom to top in a random pattern, 

thereby taking the ion beam with a beam spot of about 5mm in diameter, and scanning it 

over an area about 1-2cm2. In this chamber, the sample is placed and irradiated.  A 

turbomolecular pump, pumps down the pressure to about 1x10-7 torr, and the vacuum 

pressure is read by an ion gauge.  

The sample is attached to an electrically isolated target holder that has a bias of 

+135V for electron suppression.  A small lead is connected to the target holder where it 

is able to read beam current, and fed to a current integrator which allows for the total 

charge collection to be accurately measured in-situ.    Figure 4.2 is a 3D computer model 

representation of the scanning magnets and implant chamber.  
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Figure 4.2:  Close up 3D model of the implant chamber and the scanning magnets. 

 

4.2.2   Nanoindenter 

A nanoindenter was used to measure the mechanical property changes induced 

by the irradiation.  The nanoindenter that was used was for this experiment was a 

Hysitron TI 900 TriboIndenter, which is a low-load nanomechanical test system.  This 

indenter is primarily used to test the hardness and the elastic modulus of thin films and 

coatings.  Some key features of this machine are: automated testing, in-situ imaging, 

acoustic and thermal enclosure, top down optics, sub-micron resolution staging, and an 

active vibration dampening system.  The various test methods it offers are quasistatic 

nanoindentation, scratch testing, and SPM imaging. Figure 4.3 is a picture of the 

nanoindenter used for the material testing for this experiment.  
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Figure 4.3: Photograph of the nanoindenter used for this experiment at Texas A&M 
University. 

 
 

One of the major features of this nanoindenter is environmental isolation from 

such things as ambient acoustic noise, and air currents.  Another key component of this 

system is the transducer, which gives the system very accurate readings of displacement. 

The displacement is measured by the change in capacitance of the transducer. As the 

indenter tip approaches the sample and pushes down with a small amount of force, the 

small inflection in capacitance is correlated to the depth of the tip into the material.  

These electrical signals are then sent to a program, where the data is analyzed and 

represented in terms of the mechanical properties.   
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The tip used for this experiment was a Berkovich tip. This tip is a short, but wide 

three-sided pyramid made of diamond. The Berkovich tip is mad out of diamond which 

is used for its hardness properties since the tip used must be harder than that of the 

material it is testing. This Berkovich tip is commonly used for measuring the properties 

of materials that have a thickness greater than 100 nm.  

4.2.3   Imaging Instruments 

TEM is tool used to take a micrograph of a high resolution sample on the atomic 

scale.  This microscope uses an electron beam that passes through an electron 

transparent sample.  The micrograph is formed by the interaction of the electrons that get 

transmitted through the sample. The electron beams interacts based on the density of the 

sample, the transmitted beam then gets magnified, and focused on a phosphorus screen. 

An image is then created on the phosphorus screen, based on the intensity of the electron 

beam. The contrast of this image is based the relative density of the sample, where 

lighter area indicate low density and darker areas high density. A TEM was used to 

observe the microstructural changes in tungsten. 

A Scanning Electron Microscope (SEM) is a tool used to take a high-resolution 

micrograph of sample surface topography. SEM uses a bulk sample and an electron 

beam that raster scans the sample and then analyzes the secondary electrons that are 

coming from the surface.   These secondary electrons are generated when the electron 

beam comes in contact with the surface of the material. As electron beam raster scans 

across the sample, and the position of the electron beam is mapped to the output of the 

secondary electron detector.   The intensity of the signal from the secondary electron 
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detector and the position is known, and from this output, an image of the surface 

topography can be constructed. This was used for this experiment to characterize the 

surface morphology of the tungsten samples. 

A Focused Ion Beam (FIB) is a tool that is used for understanding the site-

specific analysis, deposition, and ablation of materials.  A FIB has the ability to finely 

focus a beam of ions onto the sample. Low ion beam currents are used for imaging and 

at high beam currents the FIB can be used for sputtering or milling.  This system gives 

the ability to cut electron transparent sample, which then can be analyzed by using a 

TEM.  A FIB was used to create cross-sectional TEM samples. 

 

4.3   Experimental Setup and Procedure 

 This section will outline the experimental procedures and setup for this study.  

The tungsten samples used for this experiment were 99.95% pure tungsten, purchased 

from Alfa Aesar.  These tungsten samples were cut into 1mm thick discs, and then 

mechanically polished to a mirror finish to remove any surface defects.  The samples 

were irradiated at the Ion Materials Facility (IMF) at Texas A&M using the 140 KV 

particle accelerator described previously.  Table 4.1 contains the sample matrix and the 

corresponding fluence that each sample received. 
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Table 4.1:  Represents the sample matrix that will be used for the following experiment. 
 

Sample  Fluence  Fluence 

# (He ions/cm2)  (H ions/cm2) 

1 1.00E+15 0 
2 1.00E+16 0 
3 3.00E+16 0 
4 7.00E+16 0 
5 1.00E+17 0 
6 1.00E+15 1.00E+15 
7 1.00E+16 1.00E+15 
8 3.00E+16 1.00E+15 
9 7.00E+16 1.00E+15 
10 1.00E+17 1.00E+15 
11 0 0 

 

From Table 4.1 samples 1-5 were only irradiated by He, and samples 6-10 irradiated 

with He with a small fluence of H. The He implants were irradiated with 140KeV He+ 

ions, and the H implants were irradiated with 75KeV H2
+ , both irradiations were at room 

temperature.  SRIM has predicted that a 140KeV He+ ion will have an Rp of about 

270nm, and the 75KeV H2
+ ion will have an Rp of about 150nm. Figure 4.4 shows the 

range distribution for the He and H implants, Fig. 4.4(a) and 4.4(b), respectfully. During 

every irradiation session, the vacuum pressure was near 1 x 10-6 torr, and the scanned ion 

beam area was approximately 1cm2.   
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(a) (b)  

Figure 4.4: The ion ranges calculated by SRIM, (a) the ion range of 140KeV He+ and (b) 
the ion range of 75KeV H2

+.. 
 

The first feature about the implant depth noticed, is that the peak implant regions do not 

line up. This was done intentionally so the different effects on microstructure due to H 

and He effects could be observed separately.  If the two ions were at the same Rp, the H 

will preferentially be trapped in the heavily damaged region of the He implant [16], and 

it will difficult for the H to diffuse into the bulk and have other interactions.  By having 

an interface, the two different species have the opportunity to diffuse into the interface 

and demonstrate the interaction H and He have.   

 After the irradiation, micrographs of the surface morphology were taken by using 

a JEOL JSM-6300 at the Microscopy & Imaging Center (MIC) at Texas A&M 

University.  Micrographs were taken pre and post irradiation to observe the changes in 

the surface morphology of the samples. A 15 KeV electron beam was used with a 

working distance of 25mm.  The samples were tilted away from the secondary electron 
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detector about 30o degrees, in order to accentuate the surface morphology.  From these 

settings, micrographs were taken of each sample. Then these samples were brought to 

the Materials Characterization Facility (MCF) at Texas A&M University, for 

nanoindentation.  Each sample was tested on the Hysitron TI 900 Triboindenter and the 

mechanical properties where then recorded.     

 Two samples were then sent to Idaho National Laboratory (INL). The chosen 

samples were:  the sample which received a fluence of 7 x 1016 of He+ ions and the 

sample which received a fluence of 7 x 1016 of He+ ions plus 1 x 1015 of H2
+ ions.  There 

a Focused Ion Beam (FIB) was used to create a cross-sectional TEM sample.  The 

process used to create the cross-sectional TEM sample was an in situ lift-out (INLO) 

technique.  This technique cut two trenches, one on each side of the sample, thereby 

leaving a thin electron-transparent portion.  This electron-transparent portion was then 

removed from the bulk sample and placed on a TEM grid. Once both of the tungsten 

samples were placed on TEM grids, they were shipped back to Texas A&M University 

for further characterization. 

 The two samples were then examined using the FEI TECNAI G2 F20 ST FE-

TEM at the MIC at Texas A&M University.  Using a 200KeV electron beam, 

micrographs were taken at the implanted region at various magnifications to look for 

changes in microstructure. 
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4.4   Results and Discussion of Mechanical and Microstructural Changes 

 The first results from the co-implantation of H and He into tungsten, was the 

dependence of fluence to the hardness of tungsten.  Table 4.2 shows the matrix of the 

samples that were irradiated with the corresponding fluence to the hardness data from 

the nanoindentation.  

 
Table 4.2: Represents the fluence of He3 and H2

+ ions that each sample received and its 
corresponding hardness after irradiation. 

 

Sample Fluence Fluence Hardness 

# (He3 ions/cm^2) (H2
+ ions/cm^2) (GPa) 

1 1.00E+15 0 8.35 

2 1.00E+16 0 9.54 

3 3.00E+16 0 10.28 

4 7.00E+16 0 10.28 

5 1.00E+17 0 10.23 

6 1.00E+15 1.00E+15 8.75 

7 1.00E+16 1.00E+15 9.81 

8 3.00E+16 1.00E+15 11.18 

9 7.00E+16 1.00E+15 11.18 

10 1.00E+17 1.00E+15 11.48 

11 0 0 7.6 
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Figure 4.5: The data extracted from the nanoindenter, (a) the force verse displacement 
curve of a nano-indent of a sample that was irradiated, (b) the raster scanned 
image using the indenter tip of the indent at (a), and (c) a graphical 
representation of Table 4.2, with the associated error bars. 
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From Table 4.2 and Fig. 4.5(c) it was observed to see there was an overall 

increase in the hardness of the tungsten with an increase of fluence. The overall trend for 

this plot seems to accurately predict what was expected from Section 2.2, a square root 

function, as well as from the MD simulations performed.  As the fluence increases, the 

amount of radiation damage in the material is proportional to the fluence, and the 

amount of radiation damage is related to the number of defects present in the material.  

Thereby increasing the fluence also increases such parameters that influence the 

material’s hardness. However, the one observation is that the samples that were 

irradiated with H and He have a higher hardness value when compared to just a He 

irradiated sample. 

The data from this experiment seems to suggest that the mechanism for 

increasing the hardness in tungsten is different for the co-implantation of He and H. 

Studies looking at He showed that the He tends to migrate towards vacancies and these 

vacancies are nucleation sites for He nano-bubbles [26,28,31].Thus there is an increase 

in the number of He nano-bubbles that are created in the material.  These nano-bubbles, 

as mentioned in Section 2.2, will form obstacles for defect migration, increasing the 

hardness of the material. It should be noted that this effect is separate from the other 

point defects, also created by He, from implantation.  

  From previous studies irradiation using H, it showed that H atoms tend to prefer 

the tetrahedral interstitial site in a BCC crystal lattice [15,17].   Also H has the ability to 

stabilize the movement of vacancies in the material [17].   It is important to observe, that 

even with a small fluence of H compared to that of He, there was an increase in the 
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hardness value.  This could be a result from nanoindentation testing method and two 

suspected mechanisms for hardening. The data from the nanoindentation suggest that the 

indenter tip penetrated about 200nm into the surface.  The H implanted region was 

150nm from the surface, and it the effect from the indenter tip coming in contact with 

the H implanted region could of affected the hardness. From the two distinct implanted 

regions in co-implantation of H plus He, there exists two regions that might affect the 

hardness property. H preferentially exists as an interstitial, from what was discussed in 

Section 2.2; interstitials affect the hardness of the material. These two mechanisms could 

explain why, there was a difference in the hardness between the He irradiated samples 

and the He plus H irradiated samples. 

 It was known that He irradiation causes a formation of bubbles and blisters at the 

surface [26-29].  Most studies observe these effects of tungsten at shallow implants of 

He or H [4,20,25].  These shallow implants only impacted the first few nanometers of 

material.  Figure 4.6, shows SEM micrographs of the surface morphology of tungsten at 

various different at fluencies from this experiment. 
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Figure 4.6: The surface morphology of the various samples that were irradiated. (a) was 
irradiated with 1 x 1015 He+cm-2, (b) was irradiated with 1 x 1015He+cm-2 and 
1 x 1015H2

+cm-2,(c) was irradiated with 3 x 1016 He+cm-2, (d) was irradiated 
with 3 x 1016 He+cm-2and 1 x 1015 H2

+cm-2, and (e) was unirradiated. 
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When observing Fig. 4.6, it becomes apparent that the unirradiated sample Fig. 

4.6(e) and comparing it to the others micrographs in Fig 4.6, that there are major 

differences in the surface morphology.  When comparing the differences between the 

surface morphology and the fluence, it was evident that with increasing fluence, more 

defects were created on surface [4].  However, when comparing the surfaces of the Fig. 

4.6(a) and 4.6(c) to Fig. 4.6(b) and 4.6(d), there are vast differences in the surface 

morphology to a small fluence of H. From previous studies that studied shallow 

implants, the closer the implant was to the surface, the more the drastic the change in the 

surface morphology.  This drastic change was mainly due to the shallow depth of bubble 

formation in those studies [28].  For this experiment, H was implanted much closer to 

the surface than He, and this resulted for there to be more surface defects.  This because 

more apparent when observing Fig. 4.6(b) and 4.6(d).  In these two figures the surface 

morphology is approximately equal since the H fluence is about the same, even though 

the He fluence was drastically different.  

Figure 4.7(a) shows a micrograph of the unirradiated region of the tungsten 

sample that was co-implanted with H and He, it is clear from that micrograph that it is 

polycrystalline tungsten. This region is microns away from the implanted region and has 

no radiation induced defects. Fig. 4.7(b), shows a micrograph of the unirradiated region 

in tungsten only irradiated with He.   From Fig. 4.7(a), the crystal structure is exactly 

what was expected for the observation of unirradiated region [30]. From figure 4.7(b), 

this distinctly shows a different structure.  For this sample the parallel lines that are 

present in the grains, is an artifact from mechanically polishing. These lines are edge 
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dislocations moving down the grain, in order to relieve the stress from the surface from 

the mechanical polishing.  However, this artifact did not have any influence on the 

irradiated region or interfered with the results from the nanoindentation.  

(a)  

(b)  

Figure 4.7: Cross-sectional TEM micrographs of tungsten,(a) a micrograph of the 
unirradiated region from sample of that was irradiated by 7 x 1016 He+cm-2 
and 1 x 1015 H2

+cm-2, and (b) a micrograph of the unirradiated region from 
sample that was irradiated by 7 x 1016 He+cm-2. 
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Fig. 4.8 represents a series of micrographs taken from the He irradiated sample.  

The implanted region for H is about 270nm from the surface. The micrographs Fig. 

4.8(a) and 4.8(b) were both taken from this region, and Fig. 4.8(c) was taken at the 

interface between the sample surface and the implanted region.  From the observations 

of the implanted region in Fig. 4.8(a), there are He nano-bubbles present in the grain 

boundary and scattered throughout the region.  This type of formation was expected 

from the results from many different experiments [15,22,33].  Also it is clear to see that 

the implanted region is heavily decorated with a high density of defects, these defects 

consist of dislocation loops, and a high density of other dislocations. Fig. 4.8(b) would 

suggest that not only He preferentially migrates towards vacancies; it also preferentially 

migrates to grain boundaries and is a nucleation site for He nano-bubbles [33].  When 

observing Fig. 4.8(c), the interface between the sample surface and the irradiated region, 

that there is a gradient of radiation damage that progress toward the irradiated region.  

Figure 4.8(d), captures the overview of where these micrographs where taken.  The 

radiation damaged area seen is roughly 270nm from the surface, exactly where the 

SRIM predicted the Rp of the 140KeV He+ ion would be.  
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Figure 4.8:  Cross-sectional TEM micrographs of 7 x 1016 He+cm-2of irradiated tungsten 

at the implanted region, where brown arrow signify dislocation loop and 
bright blue arrow signify He nano-bubble. (a) a micrograph at the implanted 
region, (b) a close up micrograph of Fig 4.8(a) at a grain boundary,(c) a 
micrograph of the interface between the surface and the implanted region, 
and (d) an overview of the area where these micrographs were taken. 
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When comparing to the unirradiated tungsten, Fig. 4.7(a) to Fig 4.8(d), the 

microstructure between the two are vastly different. These defects from radiation 

damage and He nano-bubbles are the obstacles that block the movement of dislocation 

which was discussed in Section 2.2. From these changes in the microstructure, the 

creation of He nano-bubbles and the radiation damage present, are the mechanisms that 

leads to the changes in the mechanical properties of tungsten. 

Figure 4.9 are micrographs taken from the TEM cross-section of the sample that 

was co-implanted by He and H into tungsten.  Fig. 4.9(a) captures the two distinct 

regions of the radiation damage from both implants.  The damaged region on the left 

hand side was from the H irradiation, and the damaged region on the right was from the 

He irradiation. 

Figure 4.9(b), is an overview of the cross-section sample, this region was where 

the other micrographs were taken. Under further investigation the He irradiated region 

seems to disappear.  The reason for this was because that there were uniformity issues in 

the creation of the cross-sectional TEM sample.   
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Figure 4.9: Cross-section TEM micrographs of 7 x 1016 He+cm-2 and 1 x 1015 H2

+cm-2 of 
irradiated tungsten at the implanted region, brown arrow signify a 
dislocation loop and bright blue arrow signify a He nano-bubble.(a) a 
micrograph at the implanted regions of He and H, (b) an overview of the 
sample where these micrographs were taken, (c) a micrograph from surface 
to the He implanted region. 
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During the process to make the cross-sectional TEM electron transparent, sample 

was aggressively thinned in this region, supplying sufficient energy for the irradiated 

region to re-crystalize.  Also another artifact to support that the sample was incorrectly 

prepared was that when observing Fig. 4.9(b), the first 100nm away from the surface has 

a very bright contrast from the rest of the material, indicating an uneven thickness 

throughout the sample.  The presence of holes near the surface, not produced by ion 

implantation also lends evidence to this theory. Another artifact was the presence of 

dislocation loops and radiation induced defects artifacts that at the He implanted region, 

but it does not correspond to the appropriate radiation damage seen in the other areas of 

the sample.  

Under close inspection, it would seem apparent that there are some He nano-

bubbles formed were formed in the interface region in Fig. 4.9(a).  However, when 

comparing it to Fig.  4.8(c), the density of He nano-bubbles was greater. This becomes 

more apparent when looking at Fig. 4.10 (a) and (b) which are magnified versions of the 

micrographs from Fig. 4.8(c) and 4.9(a) respectively. After post image processing of Fig. 

4.10(a) and 4.10(b), using a blob detector, it identified the suspected He nano-bubbles 

and indicates their presence by putting a box over it.  Figure 4.10(c) and 4.10(d) are the 

respected Fig. of 4.10(a) and 4.10(b).  From these images it becomes apparent that there 

are different mechanisms that govern the formation of He nano-bubbles in a H and He 

co-implanted tungsten.  
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(a) (b)  

(c) (d)  
 
Figure 4.10: Magnified micrographs to accentuate the location of He nano-bubbles for 

the blob detector, (a) was irradiated by He, (b) was co-irradiated by both He 
and H, (c) post image processing of the He irradiated sample, and (d) post 
image processing of co-irradiated He + H. 
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The lack of He nano-bubbles in the co-implanted H + He sample could be 

explained by a mechanism proposed by Kirsanov and Musina [34]. In this paper, 

computer simulations showed that, the permeability of He is crucial to the formation of 

He nano-bubbles. In the crystal, He will migrate and fill a vacancy (V) and form (He + 

V) cluster.  The permeability of He is now dependent on the (He + V) cluster and 

subsequent He and vacancy clusters. The (He + V) cluster is relatively immobile, but 

with the addition of another vacancy, this can initialized the movement of He.  Thus the 

(He + V) + V cluster becomes mobile within the crystal.  From this mobility of the (He + 

V) + V cluster, it migrates in the crystal, traps more He, and, thus, creating a nucleation 

site for He nano-bubbles. The mobility of the (He + V) + V cluster is the driving 

mechanism for the nucleation of He nano-bubbles.  

However, if H is present, it will fill the other vacancy, thus creating (He + H + 

2V) cluster.  This cluster then becomes immobile, however the dissociation energy to 

remove H from the (He + H + 2V) cluster is relatively low.  Once the energy of the 

system is high enough, the H will be knocked out and (He + V) + V cluster will be 

formed, and, thus, the mobility of (He + V) + V through the crystal is regained. From H 

interaction, it plays a major role in the permeability of He through the crystal.  

From their work, it becomes clear that with the interaction of H and He in 

tungsten is an important factor, and that this mechanism greatly affects the nucleation of 

He nano-bubbles. Their work clearly defines a mechanism that could explain the 

differences in the number of He nano-bubbles created in the He irradiated sample and 

the H + He co-implanted sample.   
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5. CONCLUSION 

 The work that was presented in this thesis has offered valuable information 

where there has been no previous investigation.  Through the MD simulations and the 

co-implantation of H and He on tungsten, it has offered a basic model to explain the 

relative changes of hardness from such effects that are present as a PFM. 

In Section 3, an MD simulation was used to simulate the characteristic changes 

of hardness in tungsten.   The simulation recreated a Brinell hardness test on tungsten.  

Once the simulation was created, voids where then introduced into the system to look at 

the dependency of the void radius and void density to hardness.  These results predicted 

that both of these factors would follow a square root function to the change of hardness.  

Also the movement of dislocations and its interaction with voids were investigated, and 

it was observed that edge dislocations had the ability to remove voids from the system. 

When interpreting the data from the simulations, it becomes apparent that it follows 

predictions.   

In Section 4, the co-implantation of H and He into tungsten was conducted.  The 

characterization of the post irradiated samples was studied, focusing on the changes of 

mechanical properties and microstructure of the post irradiated samples.  The 

mechanical property that was investigated for this study was the hardness.  The results 

match what was predicted; fluence was dependent on the relative hardness of tungsten, 

which followed a square root function.  Also, the data suggested that with a small 

fluence of H, it has the ability to slightly increase relative hardness of tungsten.  This 

was explained by the conditions of the experiment, where there exist two irradiated 
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regions in this sample, and that the H region came in contact with the nanoindenter tip 

and could have perturbed the results.  

 The changes in microstructure after irradiation were then characterized by 

looking at cross-sectional TEM images of the post irradiated tungsten.  One sample was 

irradiated only by He and the other sample was irradiated with the same fluence of He 

with an additional small fluence of H.  Some features were seen in both samples, such as 

a dense region of defects from the subsequent irradiation and the creation of He nano-

bubbles.  However, under close inspection, it becomes apparent that there were more He 

nano-bubbles present in the sample that was only irradiated by He. The cause for such 

differences was the interaction that H has with the mobility of He as it moves though a 

solid.  H has the ability to decrease the permeability of He in a solid, and as the 

nucleation of He nano-bubbles in tungsten is highly depended on the permeability of He. 

As a result, this lead to the difference in the number of He nano-bubbles observed 

between the samples. 

The observations of MD simulations and results of the co-implantation of H and 

He into tungsten reflect the dependency of the defects in a material to the hardness of 

tungsten.   However, the model presented is a basic way to explain such changes, and 

more work is needed to understand the governing principles for each mechanism. The 

work present in this thesis provides the first step into exploring the changes of 

mechanical properties regarding a co-implantation of H and He into tungsten, and 

suggest that the co-implantation of H and He must not be neglected when understanding 

the behavior of tungsten as a PFM.    
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