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ABSTRACT 

Land-atmosphere interactions are an important component of climate, especially 

in semi-arid regions such as the Southern Great Plains. Interactions between soil 

moisture and vegetation modulate land-atmosphere coupling and thus represent a crucial, 

but not well understood climate factor. This study examines soil moisture-vegetation 

health interactions using both in situ observations and land surface model simulations. 

For the observational study, soil moisture is taken from 20 in situ Oklahoma Mesonet 

soil moisture observation sites, and vegetation health is represented by MODIS-derived 

normalized difference vegetation index (NDVI). For the modeling study, the variable 

infiltration capacity (VIC) hydrologic model is employed with two different vegetation 

parameterizations. The first is the model default vegetation parameter which is 

interannually-invariant leaf area index (LAI). This parameter is referred to as the control 

parameter. The second is MODIS-derived LAI, which captures interannual differences 

in vegetation health. Soil moisture simulations from both vegetation parameterizations 

are compared and the VIC-simulated soil moisture’s sensitivity to the vegetation 

parameters is also examined.  

Correlation results from the observation study suggest that soil moisture-

vegetation interactions in Oklahoma are inconsistent, varying both in space and time. 

The modeling results show that using a vegetation parameterization that does not capture 

interannual vegetation health variability could potentially result in dry or wet biased soil 

moisture simulations.   



 

iii 

 

DEDICATION 

This work is dedicated to my fiancé Molly for enduring my stress and 

complaints, and for moving to a very hot place for me. Also to my parents for always 

pushing me to follow my dreams and work hard to be able to do what I love. Lastly to 

my Grandmother who used board games to teach me Geography, and initiated my 

interest in Geographic ideas and thinking.  

 

 



 

iv 

 

ACKNOWLEDGEMENTS 

I would like to thank my committee chair, Dr. Quiring, and my committee 

members Dr. Frauenfeld and Dr. Nielsen-Gammon for their guidance and support 

throughout the course of this research.  

Thank you also to my friends and colleagues in the Geography Department, 

whose support and sharing of $2 pints on Thursdays were invaluable to my completion 

of this work.  

Finally, thanks to my mother and father for their encouragement and to my fiancé 

for her patience and love.  



 

v 

 

NOMENCLATURE 

AGCM Atmospheric General Circulation Model 

d Degree of Agreement 

E Coefficient of Efficiency 

LAI Leaf Area Index 

LSM Land Surface Model 

MAE Mean Absolute Error 

MBE Mean Bias Error 

MODIS Moderate Resolution Imaging Spectroradiometer 

NASMD North American Soil Moisture Database 

NCDC National Climate Data Center 

NDVI Normalized Difference Vegetation Index 

NLCD National Land Cover Database 

RMSE Root Mean Square Error 

SCAN Soil Climate Analysis Network 

SST Sea Surface Temperatures 

SVAT Soil-Vegetation-Atmosphere Transfer Scheme 

USGS United States Geological Survey 

VCI Vegetation Condition Index 

VIC Variable Infiltration Capacity (model) 
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CHAPTER I  

INTRODUCTION  

1.1. Background 

1.1.1 Soil Moisture and Land-Atmosphere Interactions 

Soil moisture is vital to land-atmosphere interactions, and has been shown to 

modulate drought conditions, especially in semi-arid environments such as the North 

American Great Plains (Koster et al. 2004). However, few soil moisture monitoring 

networks exist globally relative to networks observing temperature and precipitation, 

impeding research and elucidation of land-atmosphere feedbacks critical to drought 

prediction and mitigation. Remote sensing imagery and land surface models (LSMs) are 

commonly employed for estimation of mesoscale hydrologic and climatologic 

conditions; however, the spatial variability of soil moisture and the factors that influence 

the magnitude of soil moisture (soil texture, overlying vegetation), are not consistently 

well represented (Xia et al. 2008). The influence of local soil moisture on near-surface 

atmospheric moisture variability and related precipitation variability has been widely 

examined; however, the spatial inconsistency of this relationship is not well understood 

(Meng and Quiring, 2010a).  

Soil moisture significantly influences land-atmosphere interactions as soil 

moisture modifies energy and wetness fluxes in the boundary layer through evaporation 

and transpiration (Pal and Eltahir, 2001). Dry soil can induce and amplify warm and dry 

conditions, especially during the summer, by reducing local evaporation and modifying 

patterns of moisture convergence/divergence and atmospheric circulation (Namias, 
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1991). Thus soil moisture can have a strong impact on the Bowen ratio (Basara and 

Crawford, 2002), convective available potential energy (Pal and Eltahir, 2001), 

convective inhibition (Myoung and Nielsen-Gammon, 2010), and the persistence of 

precipitation, which can correspond to an intensification of anomalous soil moisture 

conditions. Koster et al. (2004) identified regions of strong land-atmosphere interactions 

through sixteen ensemble simulations of a dozen climate models. The results showed 

these ―hot spot‖ regions are typically located in transition zones between wet and dry 

climates, where potential evapotranspiration is consistently high, while actual 

evapotranspiration is sensitive to soil moisture availability, such as the North American 

Great Plains. Similarly Taylor et al. (2011) examined the frequency of Sahelian 

convective storms and the mesoscale soil moisture patterns underlying convective 

initiation. They found that horizontal gradients in soil moisture at the mesoscale can 

have a significant impact on convective rainfall initiation in Sahel, and potentially 

several other semi-arid regions. 

1.1.2 Vegetation – Soil Moisture Interactions  

Schubert et al. (2004) examined the causes of droughts in the Great Plains using 

ensembles of a long-term general circulation model forced with observed sea surface 

temperatures and found that two-thirds of low frequency rainfall variance can be 

explained by land-atmosphere interactions. In contrast the observational study of Findell 

and Eltahir (1997) only attributed 16% of summer precipitation variance to spring soil 

moisture conditions. The inconsistencies of soil moisture-atmosphere coupling strength 

are due in part to spatial variability of influential variables such as vegetation and soil 
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texture. Discrepancies in the estimates of land-atmosphere coupling strength have 

implications for accurate modeling and drought predictability.  

Vegetation is a primary conduit through which soil moisture influences near-

surface atmospheric conditions. Therefore variations in vegetation density and health 

have significant influences on transpiration (McPherson, 2007) and corresponding soil 

moisture-atmosphere interactions (Pielke, 2001). Dekker et al. (2007) found that the 

inclusion of microscale vegetation-soil feedback increased evapotranspiration, which in 

turn increased simulated mesoscale precipitation feedback up to 35%. Although 

vegetation-soil moisture interactions have been shown to significantly alter near-surface 

atmospheric moisture at the mesoscale, these interactions have not been thoroughly 

investigated or quantified. Therefore this research proposes to examine the interactions 

between soil moisture and vegetation using both observations and LSMs.  

1.1.3 Objectives  

The objectives are twofold for this research. The first objective is to investigate 

the interactions between soil moisture and vegetation during the growing season (May-

October) using soil moisture observations and remote sensing-derived vegetation health. 

This will provide an observation-based assessment of soil moisture-vegetation 

relationship variability as well as elucidation of the factors which have the most 

influence on land-atmosphere interactions in Oklahoma.  

The second objective will examine the sensitivity of the Variable Infiltration 

Capacity (VIC) LSM when simulating soil moisture using two different vegetation 

parameterizations. Many LSMs including VIC use an interannually-invariant vegetation 
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health parameter, which will be converted to a dynamic vegetation parameter. Soil 

moisture will be simulated for several sites in Oklahoma under both control and variable 

vegetation parameters. Soil moisture simulations from both vegetation parameterizations 

will be compared and the accuracy of each will be assessed using in situ soil moisture 

observations.  
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CHAPTER II  

OBSERVATION-BASED VEGETATION-SOIL MOISTURE INTERACTIONS 

2.1. Introduction 

2.1.1 Background   

 Soil moisture controls land-atmosphere interactions by modifying energy and 

moisture fluxes in the boundary layer. Soil water content influences evapotranspiration 

and corresponding near-surface atmospheric moisture availability (Pal and Eltahir, 

2001). Dry soil can induce and amplify warm and dry conditions, especially during the 

summer, by reducing local evaporation and modifying patterns of moisture 

convergence/divergence (Namias, 1991). Overlying vegetation is a key pathway through 

which soil moisture influences atmospheric moisture. Therefore variations in vegetation 

density and health modify transpiration rates and corresponding near-surface 

atmospheric moisture availability (Pielke, 2001). Myoung and Nielsen-Gammon (2010) 

found that summer precipitation variability in the southern Great Plains is primarily 

explained by convective inhibition, a strong function of near-surface moisture. Their 

results suggest soil moisture and vegetation are significantly related to convective 

precipitation. Fig. 2.1 shows a simple schematic representing moisture related 

interactions between vegetation and soil.   
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Figure 2.1. Schematic of moisture-related interactions between vegetation and soil. 

 

2.1.2 Previous Research 

Gu et al. (2008) examined the relationship between vegetation health and soil 

moisture at several sites in Oklahoma. Their correlation analysis suggested that 

vegetation-soil moisture relations varied as a function of soil texture and land cover 

heterogeneity, also that soil moisture-vegetation correlations tended to be highest at a 7-

8 day lag. Méndez-Barroso et al. (2009) investigated the relationship between vegetation 

greenness, precipitation and soil moisture in the North American Monsoon Region. 

Their results suggested that vegetation greenness responded best to concurrent soil 

moisture conditions, as lagged correlations were generally smaller. Their results also 

showed that soil moisture-vegetation correlation strength was dependent on the 

vegetation type, as thorn-scrub greenness was consistently highest correlated with 
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immediate soil moisture observations. The results of the limited number of past 

investigations suggest that vegetation-soil moisture interactions vary considerably both 

in space and time. It also suggests that pedosphere-biosphere coupling is dependent both 

on vegetation type and soil texture.  

In order to appropriately evaluate land surface model output for drought 

prediction, observed land-atmosphere interactions must be well documented and 

understood. The objective of this study is to document the observed relationship between 

soil moisture and overlying vegetation health. Simultaneous and lagged correlations are 

used to measure the strength of the relationships. Spatial and temporal patterns are 

observed, and potential sources of such variability are identified.  

2.2. Data and Methods 

2.2.1 Study Region 

Oklahoma experiences a significant west-east precipitation gradient and north-

south temperature gradient (Meng and Quiring, 2010b). Vegetation and soil conditions 

exhibit great spatial variability across the state, thus providing the potential for soil 

moisture-vegetation interactions to vary spatially and temporally. This study utilizes in 

situ soil moisture observations from 20 stations in Oklahoma (Fig. 2.2). These sites are 

part of the Oklahoma Mesonet Observation Network, www.mesonet.org. Volumetric soil 

water content (θ) is estimated using a heat dissipation sensor at 5, 25, 60 and 75 cm 

depths (Illston et al. 2008). The soil moisture data have been compiled and quality 

controlled by the North American Soil Moisture Database (NASMD) at Texas A&M 

University. The stations were chosen because of the length and completeness of their 

http://www.mesonet.org/
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data. Table 2.1 displays soil and land cover characteristics from each site. Soil textures 

range from sandy loam to silt and overlying land cover includes grassland, pasture, scrub 

and cultivated crops.  

 

 

Figure 2.2. Site map of 20 Oklahoma Mesonet observing sites used in the study. 

 

 

2.2.2  Vegetation and Soil Moisture Data 

 Vegetation health is estimated using the Normalized Difference Vegetation Index 

(NDVI). NDVI is derived from reflectance values that are calculated separately in 

wavelength bands in the visible (0.5 – 0.7 μm) and near infrared (0.7 – 0.9 μm) regions 

of the spectrum (Carlson and Ripley, 1997). NDVI data are calculated from eMODIS 

surface reflectance, a product of the Moderate Resolution Imaging Spectroradiometer 

(MODIS) remote sensing tool. eMODIS is derived from real-time 250 m Modis L1B 

data over the contiguous United States. The United States Geological Survey process the 

data, correct for atmospheric noise and calculate NDVI from the surface reflectance 
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product. eMODIS images are then reprojected into a Lambert Azimuthal projection and 

converted to the GeoTIFF format for ease of distribution. eMODIS data are provided at 

7-day rolling composites over the contiguous United States (Gu et al., 2012). The data 

were downloaded for each growing season (May – October) between 2000 and 2009.  

 

Table 2.1. Study site land cover and soil characteristics. 

Site 

Dominant 

Land Cover 

5 cm Soil 

Texture 

25 cm Soil 

Texture 

60 cm Soil 

Texture 

75 cm Soil 

Texture 

Acme Grassland Sandy Loam Sandy Loam Sandy Loam Sandy Loam 

Marena Grassland Sandy Loam Loam Sandy Loam Sandy Loam 

Wister Pasture/Hay Silt Loam Silt Loam Silt Loam Clay 

Durant Deciduous Sandy Loam Sandy Loam Clay Clay 

Cheyenne Grassland Sandy Loam Sandy Loam Loam Loam 

Apache Cropland Sandy Loam Sandy Loam Clay Clay 

Stillwater Cropland Silt Loam Loam Loam Clay Loam 

Pawnee Grassland Silt Loam Silt Loam Clay Loam Silt Loam 

Waurika Cropland Sandy Loam Sandy Loam Sandy Loam Sandy Loam 

Miami Grassland Silt Loam Silt Loam Clay  Clay 

Hollis Cropland Silt Loam Clay Clay Clay 

Watonga Grassland Loam Loam Loam Loam 

Boise City Grassland Loam Clay Loam Silt Loam Silt Loam 

Walters Developed Silt Loam Clay Clay Clay Loam 

Centrahoma Grassland Sandy Loam Loam Clay Loam Clay Loam 

Beaver Grassland Loam Clay Loam Loam Loam 

Woodward Evergreen Sandy Loam Loam Loam Loam 

Butler Grassland Silt Loam Silt Loam Silt Loam Silt Loam 

Lahoma Grassland Silt Loam Clay Loam Silt Loam Silt Loam 

Perkins Grassland Loam Loam Loam Loam 

 

 

 Because NDVI varies seasonally as vegetation ―greens‖ during the growing 

season, weekly NDVI values had to be standardized in order to remove seasonal bias. 

Vegetation Condition Index (VCI) was calculated and used to represent vegetation 
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health condition. VCI has been previously employed in land-atmosphere interaction 

studies (Quiring and Ganesh, 2010). The VCI is calculated as 

      
             

             
  (1) 

 where       is the NDVI value of the current week and         and 

        represent the minimum and maximum NDVI values measured during that 

week at that site over the 10 year period. Daily soil moisture observations were averaged 

into 7-day composites for compatibility with the VCI data.     

2.2.3 Methods 

 Soil moisture-vegetation interactions were evaluated using simultaneous and 

lagged correlations. Pearson correlation coefficients (R) are used to indicate whether the 

relationship is positive or negative and the coefficient of determination (R²) is used to 

represent the relationship magnitude/strength. Data were subdivided and correlations 

were calculated to assess whether the soil moisture-vegetation health strength varies both 

spatially (between sites) and temporally (between growing seasons).  

2.3. Results and Discussion 

2.3.1 Soil Moisture – VCI Correlations 

Soil moisture - vegetation interaction strength varied significantly between 

growing seasons. Figures 2.3a and 2.3b show correlation coefficients and the coefficient 

of determination representing the sign and strength, respectively of the soil moisture-

vegetation health relationship at each depth averaged over all sites by growing season. 

As shown, the correlations exhibit considerable interannual variability, even changing 
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sign from one growing season to the next. Correlations at all depths are positive in 2000, 

2002, 2003, 2005 and 2006 and they are negative in 2001 and 2009. Soil moisture – VCI 

correlations are not noticeably higher at any depth than any other. None of the reported 

correlation values in Fig. 2.3a are significant at the alpha < 0.05 level suggesting that 

high correlation variability between growing seasons and between sites degrades any 

significant relationship signal. It is worth mentioning here that the same analysis was 

conducted using range-based standardized soil moisture instead of raw volumetric soil 

water content. This was done as soil moisture can exhibit a seasonal magnitude pattern, 

typically less dramatic than that of vegetation health. Correlations between standardized 

soil moisture and VCI (not shown) were similarly varied and not statistically significant.   

Similarly the coefficient of determination reported in Fig. 2.3b shows high 

interannual variability. For example the site-averaged coefficient of determination 

between 60 cm soil moisture and VCI in 2003 is 0.19 and significant at the alpha < 0.05 

confidence level, while the coefficient of determination at the same soil depth just a year 

later in 2004 is less than 0.1.  
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a.  

b.  

Figure 2.3. Growing season (May-October) correlations between soil moisture and VCI 

(a) and coefficient of determination (b) at each depth in the soil averaged across all 20 

sites. Blue line represents significance threshold at the alpha < 0.05 level. 

 

2.3.2 Lagged Correlations 

Soil moisture can exhibit a memory in which anomalously dry or wet conditions 

will persist for several weeks (Wu and Dickinson, 2004). Gu et al. (2008) found that soil 

moisture – vegetation interactions were strongest at a one-week lag, attributable to the 
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soil moisture memory. In this study, soil moisture was lagged 1 – 8 weeks and lagged 

correlations were calculated between soil moisture and VCI. Figs. 2.4 and 2.5 display 

bar graphs of lagged correlations at each soil depth. Similar to the simultaneous 

correlations, lagged correlations averaged over all sites vary in sign. For example, Fig. 

2.5b shows that 75 cm soil moisture – VCI correlations in 2001 at the 7 – 8 week lag 

exceed 0.3, while correlations at a 1 – 2 week lag are actually negative (-0.14). However, 

in 2003, correlations at the same depth with a 7 – 8 week lag are slightly negative (-

0.06), while 1 – 2 week lag correlations are positive (0.18). Furthermore, 1-week lagged 

correlations were not consistently stronger than simultaneous correlations, suggesting 

that the time interval at which soil moisture and vegetation most strongly interact varies 

spatially and temporally.  

Because of the high level of variability in both simultaneous and lag correlations, 

precipitation, land cover and soil texture characteristics were examined to explain the 

variability in the soil moisture-vegetation relationships.  
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a.  

b.  

Figure 2.4. Bar graphs of soil moisture-VCI lag correlation coefficients. Correlations 

were averaged overall all 20 sites and reported by individual growing seasons. Plots are 

shown at (a) 5 cm and (b) 25 cm. 
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a.  

b.  

Figure 2.5. Bar graphs of soil moisture-VCI lag correlation coefficients. Correlations 

were averaged overall all 20 sites and reported by individual growing seasons. Plots are 

shown at (a) 60 cm and (b) 75 cm. 

 

  

2.3.3 Precipitation Influence on Soil Moisture-Vegetation Interactions 

Precipitation is widely accepted as the principal forcing of soil moisture, and 

several studies have shown that precipitation variability influences vegetation health 

(Wang et al., 2001; Ji and Peters, 2004). Thus the timing and quantity of growing season 

precipitation has the potential to influence the interaction between soil moisture and 

vegetation. Wang et al. (2001) correlated precipitation with NDVI to quantify the 
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influence of precipitation variability on vegetation health. They found that the strongest 

precipitation-NDVI correlations were seen during and immediately after a prolonged 

drying period. This was attributed to plant response to relatively low soil moisture 

caused by below normal precipitation. Thus when there is little precipitation, soil 

moisture will limit plant health and correlations between soil moisture and vegetation 

health will be stronger.  

To quantify how variable growing season precipitation influences vegetation-soil 

interactions, daily growing season (May – October) precipitation data was acquired from 

the Oklahoma Mesonet at each of the 20 study sites. Each year’s percent departure from 

the 1994 – 2010 mean total growing season precipitation was calculated and related to 

the soil moisture-VCI correlation coefficient during that particular growing season. Fig. 

2.6 shows scatter plots of precipitation departure and 5 cm soil moisture-VCI correlation 

coefficients at each site. Plots are presented by growing season; each point represents 

one study site. The coefficient of determination is also calculated for each growing 

season.  

The relationship between precipitation departures and soil moisture-VCI 

correlations is variable in sign. However, the relationship is not statistically significant 

during any growing season. The relationship sign does not show any pattern between 

anomalously dry and wet growing seasons. The scatter plots of 25, 60 and 75 cm soil 

moisture-VCI correlations (not shown) demonstrate similar results. These plots suggest 

that the data used here does not show any relationship between the amount of 
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precipitation that falls during a growing season and the coupling strength between soil 

moisture and vegetation health in Oklahoma.  

 

 

Figure 2.6. Scatter plots of growing season (May-Oct) precipitation departures (%) and 

soil moisture-VCI correlation coefficients. Each point represents one site. Plots are 

shown for 5 cm. 

 

Results from previous studies suggest that soil moisture-VCI relationships should 

be generally stronger under drier conditions. Dirmeyer et al. (2000) performed a 
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sensitivity analysis using several land surface models to investigate the relationship 

between evaporative fraction and soil moisture. They found that evaporative fraction, a 

strong function of overlying vegetation production (McPherson, 2007), was strongly, 

linearly correlated with soil moisture under anomalously dry conditions. Similarly 

Méndez-Barroso et al. (2009) evaluated the soil moisture-vegetation coupling under 

varying conditions and found that generally stronger interactions occurred under dry or 

drying conditions. The results shown here do not corroborate these previous findings. 

One possible explanation is that precipitation does not influence vegetation health 

directly, but instead through soil moisture. Thus the magnitude of the soil moisture 

should be more strongly related to the coupling strength between soil moisture and 

vegetation health.  

Koster et al. (2009) describe two idealized ―evaporative regimes‖ in which 

evaporation is characterized from the land surface. The drier or moisture-limited regime 

is associated with strong land-atmosphere interactions. In the moisture-limited regime, 

soil moisture exerts strong control on evaporation. The wetter or energy-limited regime 

is distinguished by evaporation variability that is independent of soil moisture 

conditions. Koster et al. (2009) use AGCM simulations corroborated by observations of 

precipitation and temperature to examine the manifestation of the two regimes. Their 

results show that these evaporative control regimes are evident in the observations; 

however, they are much stronger in the AGCM simulations (Koster et al., 2009).  

The physical explanation for the observed phenomena is that relatively dry soil 

moisture provides a moisture-limited circumstance for vegetation, constricting the 
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stomata apertures and reducing transpiration. In this situation, increases (decreases) in 

soil moisture will lead to increased (decreased) stomata expansion and increased 

(decreased) transpiration (Koster et al. 2009). However, as soil moisture increases 

beyond the threshold of the moisture-limited regime, stomata no longer respond as 

markedly to soil moisture changes, and thus transpiration is essentially decoupled from 

soil moisture conditions. Thus anomalously dry soils, forced by below normal 

precipitation, has a stronger influence on vegetation health than if moisture for 

vegetative root uptake was not limited. These results suggest that under anomalously dry 

conditions (i.e., moisture-limited regime) we should see stronger land-atmosphere 

interactions, a phenomenon that is generally corroborated by the results seen here.  

2.3.4 Soil Moisture-VCI Interactions Under Varying Moisture Conditions 

 Several studies have suggested that soil moisture is coupled to surface and near-

surface atmospheric processes only under specific energy and moisture conditions. 

Seneviratne (2010) describes three climate/soil moisture regimes related to the impact of 

soil moisture on evapotranspiration, a variable strongly related to NDVI (Nemani and 

Running, 1989). The wet and dry regimes describe soil moisture conditions that are 

greater than a critical soil moisture value and conditions less than the soil wilting point, 

respectively. Under these two regimes, soil moisture is generally decoupled from 

evapotranspiration. However, when soil moisture is between the critical value and 

wilting point, strong land-atmosphere coupling is observed (Seneviratne, 2010). Thus it 

is during this transition period that soil moisture-vegetation interactions should be 

strongest (Koster et al., 2004).   
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To test the hypothesis that soil moisture-VCI interactions are strongest during the 

transition regime (when soil moisture is between the critical value and wilting point), 

soil moisture-VCI correlations were computed using all of the observations associated 

with the transition regime during each growing season. Soil moisture conditions that fall 

between the soil wilting point and the critical value, approximately 80% of field capacity 

(Seneviratne, 2010), are considered ideal for strong surface-subsurface coupling. The 

Oklahoma Mesonet provides soil texture, but not wilting point or field capacity for any 

of their observation sites, and thus these parameters had to be estimated. Instead of using 

pedotransfer functions or other generalized physically-based methods, field capacity and 

wilting point were estimated by examination of the soil moisture data. Field capacity 

(wilting point) was estimated by first sub-setting the top 98% (bottom 2%) of soil 

moisture values for each station at each depth. Histograms of the top and bottom 2% of 

data were drawn and field capacity (wilting point) was estimated as the average of the 

respective histogram bins with the greatest frequency of occurrence. Thus both 

parameters are an approximation of the points at which the soil moisture data most 

frequently peaks and troughs, respectively. The soil moisture critical value was set as 

80% of the estimated soil field capacity.  

Fig. 2.7 shows the percent of growing season soil moisture observations which 

fell in the transition regime and the corresponding soil moisture-VCI correlation. Each 

point represents one growing season at one site and so each plot contains 10 points from 

each site (200 points total). The coefficient of determination was calculated to evaluate 

the relationship between the number of transition regime days and the soil moisture-
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vegetation relationship during that period. The soil moisture-VCI correlations do not 

vary as a function of the number of observations in the transition regime. The slopes of 

the linear fits between the two variables at each depth are positive, however, the 

relationship is not statistically significant. Fig. 2.8 shows the same relationship averaged 

over all sites. Thus each point represents one growing season at one of the four depths, 

thus accounting for 40 points (10 years X 4 depths). Although the overall fit is positive 

(R² of 0.07), the relationship is not statistically significant.  

 

 

Figure 2.7. Scatter plots of the percent of growing season daily soil moisture 

observations in the transition regime and the soil moisture-VCI correlation coefficients. 

Each point represents one growing season at one site. 
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Figure 2.8. Scatter plot of percent transition days and soil moisture-VCI correlation 

coefficient. Each point represents one growing season at one soil depth. 

 

These results suggest that although soil moisture conditions within the transition 

regime defined by Seneviratne (2010) can lead to stronger soil moisture-vegetation 

interactions, the influence is not consistent nor statistically significant when averaged 

over all sites. These results are surprising because vegetation health should be influenced 

by soil moisture, especially when soil moisture is between the critical value and the 

wilting point. Findell and Eltahir (2003) evaluated soil moisture-convection feedbacks 

over the contiguous United States, and found that the Southern Great Plains exhibited 

both positive and negative land-atmosphere feedbacks during the summer. Regions with 

strong positive feedbacks were observed in the eastern Great Plains and strong negative 

feedbacks were found in the western Great Plains. Thus the strength and sign of land-

atmosphere interactions in the Southern Great Plains were characterized by high 
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variability, potentially explaining the variability in R² values in this study. Although 

land-atmosphere interactions do respond to transitional moisture conditions, other 

factors also influence the strength of soil moisture-VCI relationships.  

2.3.5  Soil Moisture – VCI Correlation Spatial Variability 

 Spatial variability is also observed within soil moisture-VCI correlations, 

although not nearly as pronounced as the temporal variability. Figure 2.9 shows maps of 

station-averaged soil moisture-VCI coefficient of determination (R²) at 4 soil depths 

across the study region. No consistent spatial patterns are noticeable in the maps, 

suggesting that the influence of spatially-heterogeneous variables (soil texture, land 

cover, etc.) are site specific.  

a. b.    

c. d.  

Figure 2.9. Contour maps of soil moisture-VCI correlation coefficients (R) at (a) 5 cm, 

(b) 25 cm, (c) 60 cm and (d) 75 cm. 
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To test the influence of land cover and soil texture on soil moisture-VCI 

interactions, data were composited according to their dominant land cover and soil 

porosity at each depth. Fig. 2.10 displays bar graphs of soil moisture-VCI correlations by 

growing season averaged over all sites of similar land cover. This suggests that sites 

dominated by grassland as well as grassland-mixed land cover exhibit more frequent 

positive correlations.   

 

Figure 2.10. Bar graphs of soil moisture-VCI correlation coefficients averaged by 

growing season over all sites of similar overlying land cover. Correlations are provided 

at each of the 4 soil depths. 

 

Boxplots of soil moisture-VCI correlations were created for each group of sites, 

classified by their land cover. Fig. 2.11 displays these boxplots, which show that the 

mean correlations of sites with forest, grassland and grassland-mix land cover are higher 

than those with cropland cover. However, a student’s paired t-test (results not shown) 

shows that the mean soil moisture-VCI correlations for sites with grassland and 
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grassland-mix land cover types are not significantly higher than those with cropland 

cover types. This suggests that although sites with native grassland cover do tend to have 

more positive soil moisture-vegetation interactions, the overall differences between land 

cover classes are not statistically significant.  

 

 

Figure 2.11. Box plot of soil moisture-VCI correlation coefficients averaged over all 

sites with similar land cover. 

 

 Soil texture, specifically the porosity of a soil, influences the water retention 

abilities of the soil and thus can affect the interactions between soil moisture and 

vegetation. Fig. 2.12 displays scatter plots of soil porosity and the site averaged soil 

moisture-VCI correlation at each site. The results indicate that at 3 out of the 4 depths 

there is a negative relationship between soil porosity and the strength of the soil 

moisture-vegetation relationship. This suggests less porous soils retain more moisture in 

the upper soil layers. Although this makes sense physically, none of the relationships 
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between porosity and soil moisture-VCI correlations are statistically significant. 

Therefore, although both land cover and soil texture seem to influence soil moisture-

vegetation interactions, these effects are not strong.  

 

 

Figure 2.12. Scatter plots of soil porosity and soil moisture-VCI correlations. Each point 

represents one study site. 

 

Gu et al. (2008) found that soil moisture-vegetation correlations varied according 

to land cover and soil texture and sites with homogeneous land cover and silt loam soil 

texture exhibited the highest soil moisture-vegetation correlations. To test whether 

similar results could be attained here, study sites were selected based on land cover 

homogeneity and soil texture class. Land cover homogeneity was assessed using the 

National Land Cover Database 2006 land cover classification data. Land cover 

homogeneity was computed as the percent of each land cover class represented in a 1 km 
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box surrounding each Mesonet site. Six sites were identified as having homogeneous 

land cover. Following the results from Gu et al. (2008) these sites should have stronger 

soil moisture-VCI correlations than sites with more heterogeneous land cover. The 

average correlation of the six homogeneous land cover sites was evaluated against the 

average correlation of six randomly chosen sites. A bootstrapping method (Efron and 

Tibshirani, 1993) was used to repeat this procedure 10,000 times to ensure that the 

comparison is robust. Fig. 2.13 displays histograms of average correlation coefficients 

generated by the bootstrapping procedure. The mean correlation for the six sites with 

homogeneous land cover is not statistically significantly different from the mean of 

10,000 iterations, contrasting the results of Gu et al. (2008).  

 

 

Figure 2.13. Histograms of soil moisture-VCI correlations generated using a 

bootstrapping procedure with 10,000 iterations. The average correlation of all 6 

homogeneous land cover sites is shown with the thick black line. 
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A similar approach was taken to evaluate the potential increase in soil moisture-

VCI correlations at sites with silt loam soils. For this test, 8 sites had silt loam soils at 

the 5 cm, while only 4 had silt loam soils at the 3 deeper depths. Thus the bootstrapping 

method randomly chose 8 sites for comparison at the 5 cm depth, and 4 sites for 

comparison at the remaining depths. Fig. 2.14 displays the resulting histograms, similar 

to those in Fig. 2.13. The results at the 60 and 75 cm depths are similar to those from 

Fig. 2.13, as the mean correlation from silt loam sites is not different from the overall 

mean. However, the silt loam-site correlation mean at the 5 and 25 cm depths is 

considerably higher than the mean of the 10,000 iterations. In fact the mean from the 

silt-loam sites at the 5 and 25 cm depths represent the 90
th

 and 80
th

 percentiles, 

respectively, based on the 10,000 iterations.  

The explanation provided in Gu et al. (2008) for why sites with silt loam soils 

exhibited significantly higher correlations than those with loam or sandy loam soils is 

that the heat dissipation sensors used to estimate volumetric soil water content do not 

perform well in soils with high sand contents and may not accurately reflect soil 

moisture variations. In this study, sites with silt loam soils at the 5 and 25 cm depths 

exhibited generally higher correlations; however, sites with silt loam soils at the 60 and 

75 cm depths did not. This is possibly due to the time interval used, as only simultaneous 

correlations were analyzed.  
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Figure 2.14. Histograms of soil moisture-VCI correlations generated using a 

bootstrapping procedure with 10,000 iterations. The average correlation of all silt loam 

soil texture sites is shown with the thick black lines. 

 

 

Previous literature is in general consensus that land cover and soil characteristics 

greatly influence soil moisture magnitude and variability (Mahmood and Hubbard, 2003; 

Vicente-Serrano, 2007; DeLiberty and Legates, 2008). In fact, Mahmood and Hubbard 

(2003) found that under certain precipitation conditions, land use land cover is the most 

influential factor for soil moisture variability. Thus it is surprising that soil moisture-VCI 

correlations are not influenced by land cover and soil texture in this study. Vegetation 

response to soil moisture is site specific due to differences in vegetation type, soil 

characteristics, overall climate and ecosystem health and diversity. These complicating 

factors could potentially explain the inconsistent behavior of soil moisture-VCI 

correlations as well as the lack of strong influence from land cover, soil texture and 

moisture conditions.  



 

30 

 

2.4. Potential Study Limitations 

The results from this study suggest that soil moisture-vegetation coupling is far 

more complicated than a simple, linear relationship. Some of the potential limitations of 

this work include the use of VCI to represent vegetation health. One potential 

consequence of using VCI is that the influence of land cover on the relationship strength 

could be diluted due to either erroneously high VCI variability and/or the relatively short 

(> 10 years) time series of NDVI used to calculate VCI. Another limitation is the use of 

linear correlations when evaluating the interactions between soil moisture and 

vegetation. Because correlations evaluate the absolute influence of soil moisture on 

vegetation, the inconsistent results are not surprising. Vegetation health is influenced by 

several, non-soil related factor. These influential factors include temperature, 

precipitation amount and precipitation variability (Pielke, 2001) as well as 

biogeographical factors such as the diversity and health of the biome (Symstad and 

Jonas, 2011), and fire and grazing management practices (Fuhlendorf and Smeins, 

2009). Because of the numerous variables influencing vegetation health, a measurement 

of the relative influence of soil moisture on vegetation health would be more insightful; 

however requiring far more complexity than linear correlations can provide.   

Lastly the time period defined as the growing season (May – October) is a study 

limitation. Vegetation phenology timing is a strong function of the regional climate 

(Stöckli and Vidale, 2004; Badeck et al. 2004; Zhang et al. 2004) and thus peak 

vegetation greening occurs at different times based on the climate of the vegetation’s 

biome. Fig. 2.15 shows two-week composites of leaf area index (LAI) derived from 1-
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km MODIS imagery over Wister and Boise City sites between 2000 and 2009. The plots 

show that vegetation greening at Boise City (primarily scrub) is typical of the central 

Great Plains. Peak vegetation health occurs between May and September, followed by a 

decrease in health which continues throughout the winter season. However the LAI plot 

at Wister (primarily grassland) shows that vegetation health consistently peaks between 

March and April. This suggests that even within the domain of Oklahoma, vegetation in 

climatologically diverse areas experience greening at noticeably different times. Thus a 

May – October study period does not capture the peak vegetation health at Wister and 

may not be the time period in which vegetation most strongly interacts with soil 

moisture. The static study time period is a study limitation because of this.  

2.5. Conclusions 

Interactions between soil moisture and vegetation were evaluated using simple 

linear correlation analysis at 20 Oklahoma Mesonet sites throughout Oklahoma. 

Temporal variability was observed in the soil moisture-VCI relationship. Moisture 

condition analysis suggests that the soil moisture-VCI correlation strength does not vary 

as a function of the amount of precipitation nor the soil moisture magnitude.  

The impacts of land cover and soil characteristics on correlation coefficients 

were also examined. The results suggested that soil moisture-VCI interactions exhibited 

noticeable spatial variability. Sites with grassland cover exhibited more frequent positive 

soil moisture-VCI correlations; however, the differences between the mean correlations 

of each land cover group were not statistically significant. Soil texture analysis 

suggested that soil moisture-VCI coupling strength did not vary as a function of the 



 

32 

 

underlying soil texture at any depth. However, the results from the bootstrapping 

procedure suggest that sites with silt loam soils at the 5 and 25 cm generally have higher 

correlations than other soil textures.  

 

a.  

b.  

Figure 2.15. Two week composites of leaf area index between 2000 and 2009 at (a) 

Wister and (b) Boise City.   
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CHAPTER III  

INFLUENCE OF REMOTELY-SENSED VEGETATION CONDITIONS ON THE 

VIC HYDROLOGIC MODEL 

3.1. Introduction 

3.1.1 Background 

Land-atmosphere coupling is an important component of Great Plains 

hydroclimate variability; however, local interactions between land and atmosphere 

exhibit strong spatiotemporal variability. Schubert et al. (2004) examined the causes of 

droughts in the Great Plains using ensembles of a general circulation model forced with 

observed sea surface temperatures (SST) and found that two-thirds of low frequency 

rainfall variance can be explained by land-atmosphere interactions. In contrast the 

observational study of Findell and Eltahir (1997) attributed only 16% of summer 

precipitation variance to spring soil moisture conditions. The inconsistency between 

studies is due in part to strength and sign variability of land-atmosphere forcings over 

the central United States (Meng and Quiring, 2010b). Land surface and subsurface 

heterogeneity impose pronounced land-atmosphere modeling and prediction 

implications.  

Overlying vegetation is a primary conduit through which soil moisture influences 

partitioning of surface energy flux. Therefore variations in vegetation density and health 

modify transpiration rates (McPherson, 2007) and corresponding near-surface 

atmospheric moisture availability (Pielke, 2001). Vegetation-soil moisture interactions at 

all scales have been shown to significantly alter near-surface atmospheric moisture. 
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However, our concept of pedosphere-biosphere-atmosphere interactions must appreciate 

the innate spatiotemporal variability of the factors which influence land-atmosphere 

coupling.  

In situ soil moisture measurements are not globally extensive, and soil moisture 

impacts on regional climate are difficult to attain with such limited observations. Land 

surface models (LSMs) are used instead to estimate mesoscale and macroscale 

hydrologic and climatologic conditions, employing temperature and precipitation 

parameters to estimate soil moisture. Despite the large temporal variability of vegetation 

health, most LSMs represent vegetation as a pre-determined, interannually invariant 

parameter (Tang et al. 2012). Studies have suggested that the estimation of vegetation 

health and soil moisture do not always well represent land surface and subsurface 

variability (Xia et al. 2012). Thus expressing vegetation health with temporally dynamic 

parameters should result in a better representation of vegetation conditions and provide 

more detailed insight as to the impact of vegetation on land-atmosphere interactions.  

This research proposes to examine soil moisture-vegetation interactions 

simulated by an LSM using both interannually-variant and invariant vegetation 

parameters. Model simulations are compared and contrasted, and model-derived soil 

moisture is evaluated against in situ soil moisture observations.  

3.1.2 Previous Research 

Dekker et al. (2007) developed a microscale vegetation-hydrology feedback 

model coupled with a mesoscale precipitation model to investigate the impact of 

infiltration on land-atmosphere feedback. Their results showed that accounting for 
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microscale infiltration as a vegetation parameter, mesoscale precipitation increased 35% 

over the coupled system which did not account for infiltration. Jiang et al. (2009) used 

the Noah LSM forced with observed vegetation conditions, represented by the 

Normalized Difference Vegetation Index (NDVI), to assess how seasonal and 

intraseasonal precipitation are influenced by vegetation parameter modification over the 

Central United States. Their results showed that accurate depictions of vegetation growth 

patterns play a significant role in enhancing the persistence of intraseasonal precipitation 

in regional climate models. These results suggest that accurate representation of micro-

to-mesoscale vegetation properties in LSMs is necessary for analyzing land-atmosphere 

interactions and that the persistence of drought in LSMs may be a function of 

temporally-invariant vegetation properties such as leaf area index (LAI).  

Chapter II results show that soil moisture-vegetation health relationships are 

highly variable both over space and time. Thus analyses of soil moisture-vegetation 

interactions and their representation in LSMs are necessary to better understand the sign 

and strength of land-atmosphere coupling in semi-arid regions. Zhang and Wegehenkel 

(2006) developed a soil water balance model in which remotely sensed vegetation data 

were used to estimate spatial distributions of daily soil moisture and evapotranspiration. 

They found that by using long-term, remotely-sensed vegetation data, the model was 

able to accurately simulate daily soil water balance in Northeastern Germany. Similarly, 

Tang et al. (2012) used an LSM with interannually varying LAI to better represent 

vegetation greening in the North American Monsoon region. Their results show that 

inclusion of the LAI resulted in more accurate calculations of soil moisture and 
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evapotranspiration over the region. These results suggest that the current LSM 

representation of vegetation health as an interannually-invariant parameter may lead to 

inaccurate LSM simulations.  

3.2. Data and Methods 

3.2.1 Study Region 

Similar to Chapter II, the study region is Oklahoma. This analysis employs 

hourly in situ soil moisture, precipitation, temperature and wind speed observations from 

20 Oklahoma Mesonet stations (Fig. 2.2). Volumetric soil water content is observed at 

each site between 2000 and 2009 at 5, 25, 60 and 75 cm. The soil moisture data has been 

compiled and quality controlled by the North American Soil Moisture Database 

(NASMD) at Texas A&M University. The data were also previously subject to a 

rigorous quality control procedure by the Oklahoma Mesonet. The 20 stations were 

chosen because of the length and completeness of their data. Soil textures at the sites 

range from sandy loam to silt and overlying vegetation includes grassland, pasture, 

scrub, cultivated crops, and forest. Table 3.1 displays land cover characteristics for each 

site. Soil data were provided by the Oklahoma Mesonet, land use/land cover was taken 

from the National Land Cover Database (NLCD) 2006 dataset.  
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Table 3.1. Study site predominant land cover, as reported by NLCD 2006 dataset. 

Site Immediate LULC Predominant LULC 

Acme Grassland Grassland 

Apache Grassland Grassland 

Beaver Grassland Grassland 

Boise City Grassland Grassland 

Butler Grassland Grassland 

Centrahoma Grassland Deciduous Forest 

Cheyenne Scrub/Shrub Grassland/Shrub 

Durant Grassland Deciduous Forest 

Hollis Pasture/Hay Scrub/Cultivated Crop 

Lahoma Pasture/Hay Cultivated Crop 

Marena Grassland Grassland 

Miami Grassland Grassland 

Pawnee Pasture/Hay Grassland 

Perkins Grassland Deciduous Forest/Grassland 

Stillwater Pasture/Hay Cultivated Crop 

Walters Scrub/Shrub Mix 

Watonga Grassland Grassland/Evergreen Forest 

Waurika Grassland Grassland 

Wister Grassland Pasture/Hay 

Woodward Grassland Grassland 

 

3.2.2 VIC Model 

The variable infiltration capacity (VIC) hydrologic model (Liang et al. 1994) is a 

macroscale model that balances both surface energy and water over a grid. A soil-

vegetation-atmosphere transfer scheme (SVAT) represents controls of vegetation on 

land-atmosphere moisture and energy fluxes. VIC is unique in that the model allows for 

subgrid parameterization of soil, topography and vegetation characteristics. The VIC 

model allows for multiple soil layers, three were used in this study (0 to 10 cm, 10 to 40 

cm, and 40 to 95 cm). The three soil layer depths were chosen in order for the top three 

Oklahoma Mesonet soil moisture observation depths to represent the middle point of the 
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VIC soil layer. Soil characteristics and subgrid land cover parameters were taken from 

the gridded 1/8° resolution dataset compiled by Maurer et al. (2002). This dataset 

provides land surface characteristics for the entire contiguous United States. VIC was 

forced with daily observations of precipitation, minimum and maximum temperature and 

wind speed from the Oklahoma Mesonet. These data are recorded directly above the soil 

moisture observations and thus are most representative of the synoptic conditions at each 

site.  

3.2.3 MODIS Data 

LAI is the vegetation parameter that most influences VIC-simulated hydrologic 

fluxes and soil moisture (Maurer et al. 2002). LAI data used in this study were computed 

using daily global spectral reflectance from the NASA Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument at a 1 km resolution 

(http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php). These data are available as 

8-day composite products, and have been used in several studies to represent vegetation 

conditions. Fensholt et al. (2004) evaluated the MODIS LAI product with in situ sites in 

semi-arid Senegal, West Africa. Their results showed that MODIS LAI captured 

seasonal dynamics of grassland vegetation accurately. MODIS LAI is used to represent 

observed vegetation conditions in this study.  

3.2.4 Experiment Design 

VIC model representation of vegetation health change consists of monthly-

varying LAI which is interannually-invariant (Maurer et al., 2002). Thus the VIC model 

should be able to capture seasonal variability and vegetation green up; however, lack of 

http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php
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interannual LAI variability could be a source of error during years of anomalously 

high/low vegetation greenness. Significant differences between model and actual LAI 

magnitude could introduce error in model soil moisture and evaporative flux output data. 

To test this, VIC was employed in two separate model simulations, one in which LAI 

remains interannually-invariant (control) and the second in which the model utilizes 

monthly average MODIS-derived LAI (Modis). The model input parameters for both 

simulations were the station-based Oklahoma Mesonet observations of minimum and 

maximum temperature, precipitation and near-surface wind speed. Simulations were run 

on a daily time step and model output was volumetric soil water content in the 0 to 10 

cm, 10 to 40 cm and 40 to 95 cm layers. For convenience, the VIC soil layers will be 

referred to by their bottom point (10, 40 and 95 cm). The results section is organized as 

follows: section 3.1 examines the differences between the interannually-invariant LAI 

used in the control VIC simulation and the observed LAI used in the Modis simulation. 

Section 3.2 describes the influence of dissimilar LAI datasets on model soil moisture 

simulations and examines the sensitivity of soil moisture to LAI perturbations. Section 

3.3 evaluates soil moisture from each model simulation with in situ soil moisture 

observations to assess whether the model simulates soil moisture more accurately using 

remotely-sensed LAI or the interannually-invariant LAI.  

3.3. Results 

3.3.1 LAI Dataset Differences 

Differences between the two LAI datasets were documented to better understand 

the parameters influencing model output soil moisture. Fig. 3.1 shows the relationship 
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between the VIC control LAI and MODIS LAI datasets. The plot displays the control 

LAI data on the x-axis and corresponding Modis LAI data on the y-axis. Each point 

represents one month during one growing season at one site. When the control LAI data 

is between 0 and 1 there is good correspondence between the two LAI parameters; 

however, beyond an LAI of 1, the control parameter is frequently higher than the Modis 

parameter. Part of this is due to drier than normal growing seasons, when the Modis LAI 

responds to less than normal vegetation health and the control LAI does not. However 

some of the points beyond a control LAI value of 1 represent the LAI parameter over the 

Wister, Oklahoma site.  

 

Figure 3.1. Scatter plot of control LAI and Modis LAI parameters. Each point represents 

one month during one growing season at one site. 
 

Wister is located in East-Central Oklahoma and the mesonet site is surrounded 

by prairie grassland, which is reflected in both the Modis imagery and the Maurer et al. 
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(2002) model calibration data. Fig. 3.2 shows a plot of the control LAI and Modis LAI 

over Wister during the study period. The Modis LAI parameter frequently peaks 

between February and March, while the control LAI parameter peaks in June. This 

suggests that although the control land cover parameterization is good and the control 

LAI parameter magnitude is accurate during meteorological ―average‖ years, the time 

period during which the two LAI parameters peak is much different, driving differences 

in soil moisture simulations. These results are similar to those from Tang et al. (2012) 

who found that timing of peak vegetation greening in the North American Monsoon 

region was more accurate in a Modis-derived LAI parameter than the VIC control 

parameter.  

 

 

Figure 3.2. Plot of (blue) Modis LAI parameter and (black) control LAI parameter 

during the study period. 
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To further examine the differences between the two LAI parameters, a paired 

student’s t-test was employed. The t-test results show whether the Modis LAI parameter 

at a specific site is significantly (alpha < 0.05) higher or lower than the control LAI 

parameter. The results (not shown) demonstrate that the control LAI parameter mean is 

significantly higher than the Modis parameter mean at 7 sites (Centrahoma, Marena, 

Miami, Pawnee, Perkins, Stillwater and Wister), while the Modis parameter mean is 

significantly higher than the control parameter mean at 2 sites (Durant and Boise City). 

Fig. 3.3 displays LAI plots from 2 of the sites at which the control LAI parameter was 

significantly higher than the Modis parameter, Centrahoma and Miami. These sites are 

representative of the other 7 sites at which the control LAI parameter is significantly 

higher. The plots show that the control LAI parameter is systematically higher than the 

Modis LAI parameter. This suggests that the land cover classification of the Maurer et 

al. (2002) calibration data does not accurately reflect the land cover type captured in the 

MODIS imagery.  
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a.  

b.  

Figure 3.3. Plots of (blue) Modis LAI and (black) control LAI parameter values. The 

plots are shown for (a) Centrahoma and (b) Miami between January 2000 and January 

2010. 

 

Fig. 3.4 shows LAI plots from the 2 sites at which the Modis parameter is 

significantly higher than the control parameter. The plots show that the vegetation peaks 

are similar temporally, but the magnitude of the Modis LAI is consistently higher than 

that of the control LAI parameter.  
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a.  

b.  

Figure 3.4. Plots of (blue) Modis LAI and (black) control LAI parameter values. The 

plots are shown for (a) Boise City and (b) Durant between January 2000 and January 

2010. 

 

Fig. 3.5 shows percent mean absolute difference between the two LAI datasets 

by month. The largest percent difference occurs during the winter (November, 

December, and January) and spring (April - May) months. The large deviation between 

LAI datasets in the beginning of the growing season makes sense, as anomalously 
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dry/wet growing season conditions can cause significant differences in vegetation health 

from normal conditions. Thus we should expect the largest deviations during the early 

summer months. The most dominant land cover type is native prairie grassland, which is 

typically dormant during the winter season. Suyker and Verma (2008) show that native 

prairie grasses in Oklahoma and Kansas exhibit LAI and net ecosystem CO2 exchange 

values near 0 during the Northern Hemisphere winter. Thus the relatively large 

difference between the LAI datasets in winter is most likely due to the relatively small 

LAI magnitudes during the winter season.  

 

Figure 3.5. Monthly LAI percent mean absolute difference averaged between all sites 

and growing seasons. 

 

Fig. 3.6 provides a more in depth look at LAI differences, as it displays monthly 

LAI percent mean difference separated by the dominant land cover at each site. The 

dominant land cover type was identified as the NLCD 2001 land cover class which 

represented > 60% of a 1 km radius surrounding the observation site. If no one land 
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cover type represented over this threshold, the site was considered a mix land cover. Fig. 

3.6 shows that the land cover types in which the LAI datasets diverge the most are 

prairie grassland, pasture/hay and the mix types. LAI difference over these sites is 

greatest during the early growing season (April – July) as well as December and 

November.  

 

 

Figure 3.6. Monthly LAI percent mean differences separated by dominant land cover. 

Values are averaged between 2000 and 2010. 

 

Overall results show that differences between VIC control and MODIS LAI 

datasets vary by land cover and soil moisture magnitudes. Modis LAI over several 

grassland sites frequently peaks during the early spring while the control LAI peaks in 

early – mid-summer. At some sites, the control LAI parameter is systematically higher 

than the Modis LAI parameter; and at fewer sites the Modis LAI parameter is 

systematically higher than the control parameter. One would expect these differences to 
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noticeably influence model-simulated soil moisture, for example consistently higher 

vegetation health during the spring should equate to more root uptake of subsurface 

moisture and overall lower root zone soil moisture values. The following section 

explores the differences between VIC-simulated soil moisture using the control LAI and 

the MODIS LAI data.  

3.3.2 Model-Simulated Soil Moisture Differences 

 Table 3.2 displays evaluation results comparing VIC-simulated soil moisture 

generated using VIC control LAI and MODIS LAI. The metrics used to examine the 

differences between the datasets include the coefficient of determination (R²) and the 

percent mean absolute difference. The average coefficient of determination between the 

two datasets is 0.96, 0.94 and 0.87 for the 10, 40 and 95 cm depths respectively. 

Coefficient of determination values ranged from 0.68 – 0.97, all significant at the alpha 

< 0.05 level. This suggests that although noticeable differences in LAI data exist, the two 

simulated soil moisture datasets correlated strongly. The average percent mean absolute 

difference was 4, 6 and 14 for the 10, 40 and 95 cm depths respectively. Percent mean 

absolute difference values ranged from less than 1 to 32; however, variability at the 95 

cm level is much more pronounced than the 10 cm depth. The percent mean absolute 

difference coefficient of variation at the 95 cm depth is 0.57 compared to 0.38 at 10 cm. 

Similarly the R² coefficient of variation at 95 cm is 0.08 compared to only 0.01 at the 10 

cm level. Although slight, the variability difference suggests that the use of different LAI 

datasets influences the simulated soil moisture more at the deeper soil depths than the 

surface.  
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Table 3.2. Comparison metrics between VIC simulated soil moisture using control and 

Modis LAI. 

 Coefficient of Determination (R²) Percent Mean Absolute Difference 

Site 10 cm 40 cm 95 cm 10 cm 40 cm 95 cm 

Acme 0.95 0.87 0.91 4 9 13 

Marena 0.96 0.95 0.80 3 4 18 

Wister 0.96 0.98 0.93 4 2 7 

Cheyenne 0.96 0.98 0.92 2 3 8 

Apache 0.96 0.87 0.93 4 11 13 

Stillwater 0.96 0.98 0.91 4 2 8 

Pawnee 0.96 0.97 0.89 2 4 13 

Waurika 0.96 0.97 0.87 3 4 14 

Miami 0.96 0.95 0.86 7 10 27 

Hollis 0.98 0.98 0.97 1 2 3 

Watonga 0.96 0.96 0.86 3 5 18 

Boise City 0.97 0.96 0.78 4 12 11 

Walters 0.95 0.94 0.82 4 9 27 

Centrahoma 0.95 0.94 0.81 7 9 32 

Beaver 0.96 0.96 0.80 3 7 8 

Woodward 0.96 0.94 0.88 5 5 14 

Butler 0.97 0.96 0.96 2 4 7 

Lahoma 0.93 0.78 0.68 4 9 27 

Perkins 0.96 0.98 0.90 4 2 7 

Average 0.96 0.94 0.87 4 6 14 

 

Fig. 3.7 shows VIC control LAI and MODIS LAI as well as the resulting 

simulated soil moisture at Boise City, Oklahoma between 2000 and 2003. Boise City is 

shown here as the Modis LAI is consistently higher than the control LAI parameter.  

This results in systematically lower soil moisture generated from MODIS VIC 

simulations. Differences between the LAI parameters corresponded to differences in 

simulated soil moisture; however, differences between the soil moisture simulations 

varied by depth. For example, the percent mean difference between VIC control and 

MODIS LAI over Boise City between 2000 and 2010 is 0.31, meaning that the MODIS 
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LAI is on average 31% higher than the VIC control LAI. This difference results in a 

percent mean soil moisture difference of -3%, -10% and -12% at the 10, 40 and 95 cm 

levels respectively. These results mean that a 31% higher input LAI parameter resulted 

in a 3% decrease in VIC-simulated soil moisture at the 10 cm level, compared to a nearly 

12% decrease in 95 cm soil moisture.  

 

Figure 3.7. Bottom plot shows Modis (blue) and control (black) LAI over Boise City, 

Oklahoma between 2000 and 2003. Top figures show corresponding soil moisture from 

the two simulations at the 10, 40 and 95 cm depths. 

 

At all sites where MODIS LAI consistently exceeds VIC control LAI, the 

average percent mean difference is 17.6%. The 18% LAI increase results in a 1.1%, 

3.1% and 4.8% decrease of soil moisture at the 10, 40 and 95 cm depths respectively. 

Similarly, at all sites in which VIC control LAI exceeds MODIS data, the average 
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percent mean difference is -36.6%. The nearly 37% decrease in LAI leads to a 1.4%, 

0.9% and 2.5% increase of soil moisture at the 10, 40 and 95 cm depths respectively.  

These results show that LAI parameter has the greatest influence on VIC-

simulated soil moisture in the deep soil layers. Sheffield et al. (2004) simulated soil 

moisture using the VIC model for drought analysis and showed that soil moisture in the 

root zone layer is the most responsive to agricultural drought and root uptake of water, 

thus we should expect LAI changes to influence deeper-layer simulated soil moisture 

more than near surface layers. Sheffield et al. (2004) also showed that deep (> 50 cm) 

layer soil moisture anomalies are quite persistent. Wu et al. (2002) performed a soil 

moisture power spectrum analysis and found that deeper layer (> 90 cm) soil moisture 

varies with a frequency of several months, implying significant persistence of deep layer 

soil moisture anomalies. Because deep soil moisture anomalies are persistent, VIC-

simulated soil moisture sensitivity to the LAI parameter could potentially lead to added 

or diminished anomaly persistence. For example, when the control LAI is higher than 

the MODIS LAI, this results in decreased soil water content, especially in the 10 to 40 

cm and 40 to 95 cm layers.  

Added anomaly persistence caused by VIC vegetation parameterization was 

tested by marking points in the daily soil moisture simulations in which both datasets 

exhibited equal soil moisture conditions. Persistence of LAI-forced anomalies was 

measured as the amount of time that elapsed while the soil water content from the two 

different LAI parameterizations differed by greater than 10%. Fig. 3.8 shows an example 

of how persistence is measured. Because MODIS LAI over the majority of study sites is 
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consistently less than the VIC control, only these instances are considered. Persistence 

was averaged by site and the mean LAI difference between VIC control and MODIS 

was calculated and averaged over each persistence period. Table 3.3 shows average soil 

moisture persistence (memory) forced by LAI differences. Soil moisture persistence is 

reported in days.  

 

Figure 3.8. Example of how LAI-forced soil moisture persistence period is calculated 

 

The average soil moisture anomaly persistence due to increased VIC control LAI 

over MODIS data is 29, 74 and 169 days at the 10, 40 and 95 cm depths respectively. 

Average persistence ranges from 10 to 67 days at 10 cm, 24 to 137 days at 40 cm and 

108 to 295 days at 95 cm. Results show that higher LAI values in the VIC control lead to 

drier soils, than if MODIS LAI is employed. This effect is amplified at deeper soil 

layers, as the average persistence was well over 5 months. These results corroborate the 

findings of Wu et al. (2002) in that soil moisture persistence, forced by anomalous 

moisture and/or vegetation conditions are much longer at deeper layers than near surface 
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layers. Our results are also in agreement with Sheffield et al. (2004) since we found that 

when conditions near the surface were drier than normal, these conditions persisted for a 

significantly shorter period of time than in deeper layers. This is partly due to the 

sensitivity of VIC-simulated deep layer soil moisture to the LAI parameter. However, 

because VIC bottom layer soil is not as responsive to precipitation events as the top 

layers, the influence of LAI on 95 cm soil moisture is primarily modulated by the soil 

column root distribution (Liang et al. 2004).  

 

Table 3.3. Persistence of soil moisture divergence at each depth for every site. Also 

shown is the average percent difference between control and Modis LAI parameters 

during the persistence period 

Site 10 cm Persistence 

(days) 

40 cm Persistence 

(days) 

95 cm Persistence 

(days) 

Acme 18 96 177 

Marena 67 129 131 

Wister 19 36 219 

Cheyenne 10 30 133 

Apache 37 137 204 

Stillwater 27 61 155 

Pawnee 14 68 151 

Waurika 18 46 136 

Miami 54 117 118 

Hollis 29 66 210 

Watonga 14 86 194 

Boise City 43 84 172 

Walters 45 101 151 

Beaver 64 60 164 

Woodward 12 40 208 

Butler 12 92 295 

Lahoma 19 65 108 

Perkins 21 24 115 

Average 29 74 169 
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3.3.3 Model Evaluation 

 Section 3.2 results show considerable differences in VIC-simulated soil moisture 

when the VIC control and MODIS LAI data differ. This section examines which 

simulated soil moisture dataset is most accurate compared to in situ soil moisture 

observations. Model accuracy is most commonly evaluated with root mean square error 

(RMSE) and the coefficient of determination (R²); however, studies have shown that the 

RMSE parameter is biased when the distribution of errors is variable, regardless of the 

total error (Wilmott and Matsurra, 2005). Therefore the simulated soil moisture data will 

be evaluated using multiple, complementary metrics. These include mean absolute error 

and percent mean absolute error (MAE), root mean square error, mean bias error (MBE), 

coefficient of determination, degree of agreement (d) and the coefficient of efficiency 

(E). The evaluation metric formulas are each described and applied in Legates and 

McCabe (1999). Several model evaluation metrics are employed because each has its 

own bias and assumptions, thus making model accuracy evaluation based on a single 

metric inadequate.  

3.3.3.1  Influence of Land Cover on Model Performance 

 Table 3.4 displays model accuracy evaluation results averaged between all 20 

sites. Overall the VIC-simulated soil moisture at 10 and 95 cm under MODIS LAI 

conditions is more accurate according to MAE, MBE, d and E. The VIC-simulated soil 

moisture at 40 cm under control LAI conditions are more accurate according to MAE, 

MBE, R², d and E. However, the general interpretation of the model evaluation results is 

that neither of the datasets is noticeably more accurate than the other according to any 



 

54 

 

evaluation metric. This is surprising as one would expect that a more accurate depiction 

of vegetation conditions should lead to a more accurate soil moisture simulation. 

Mahmood and Hubbard (2003) suggest that simulated soil moisture is sensitive to the 

overlying land cover, thus potentially explaining the inconsistent accuracy evaluation 

results. One possible explanation is that one of the LAI parameters was consistently 

higher than the other at only 9 out of the 20 study sites. This means that at the other 11 

sites, the control LAI parameter was sometimes higher than the Modis and sometimes 

lower, resulting in inconsistent soil moisture simulations. Averaging model performance 

across the entire study period could potentially dilute accuracy differences between the 

two vegetation parameters at these 11 sites.  

Table 3.4. Model accuracy evaluation. Numbers in bold represent the more accurate 

evaluation score. 

 MODIS Control 

Metric 10 cm 40 cm 95 cm 10 cm 40 cm 95 cm 

Mean 0.252 0.242 0.230 0.250 0.242 0.229 

Standard Deviation 0.058 0.059 0.076 0.057 0.057 0.074 

RMSE 0.068 0.072 0.087 0.068 0.072 0.091 

MAE 0.055 0.058 0.071 0.056 0.057 0.075 

Percent MAE 0.199 0.198 0.241 0.020 0.195 0.254 

MBE -0.024 -0.050 -0.065 -0.026 -0.050 -0.067 

R² 0.233 0.363 0.421 0.237 0.372 0.325 

Degree of Agreement (d) 0.668 0.685 0.641 0.667 0.688 0.598 

Coefficient of Efficiency ( E ) -0.043 -0.481 -1.480 -0.053 -0.452 -1.710  

To explore the impact of land cover on model accuracy, results were summarized 

by the dominant land cover. Fig. 3.9 shows the how percent mean absolute error varies 

as a function of land cover. Percent mean absolute error differs very little between 

simulated soil moisture under MODIS and control LAI parameters. A paired student’s t-
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test showed that neither was significantly different (alpha = 0.05) under any land cover. 

These results suggest that although land use/land cover strongly influences underlying 

soil moisture, it does not significantly influence differences in model performance when 

using simulated and observed LAI parameters.  

 

Figure 3.9. Bar plots of percent mean absolute error separated by the dominant land 

cover. 
 

3.3.3.2  Influence of Moisture Conditions on Model Performance 

 This research was motivated by the lack of interannual variability in LAI in the 

VIC model. Vegetation health is the same during both anomalously wet and dry periods. 

Thus one would expect that VIC would more accurately simulate soil moisture using 

observed vegetation conditions under anomalously dry conditions, reflecting the limited 

moisture availability in the subsurface. To test this, precipitation conditions between 

May and September of each study period year were categorized with respect to total 
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precipitation deviation from the 1895-2011 mean. Growing seasons were then separated 

by total precipitation deviation from mean and only seasons exhibiting a > 20% 

precipitation decrease remained for analysis. Mean absolute difference was calculated 

during the anomalously dry periods by comparing the simulated and observed soil 

moisture. The results show that even under these conditions, there was no significant 

difference in model performance. The average MODIS – VIC control LAI difference 

was -1.08, demonstrating the decreased vegetation health reflected in MODIS is not 

captured in the control LAI. Despite more accurate vegetation depictions, the mean 

absolute error for MODIS LAI at 10, 40 and 95 cm (0.05, 0.04, and 0.04) was not 

significantly less than the control LAI (0.05, 0.03, and 0.06).  

 The lack of considerable improvement in model accuracy when using MODIS 

LAI is thought to be due to a combination of complicating factors. The first of which is 

that VIC-simulated soil moisture is overly sensitive to changes in LAI. Small decreases 

in the LAI parameter will sometimes cause erroneously large increases in underlying soil 

moisture. Similarly small increases in LAI can correspond with large decreases in VIC-

simulated soil moisture. Fig. 3.10 shows two examples of this phenomenon particularly 

that VIC-simulated soil moisture responds much more strongly to LAI changes than the 

in situ observations. The top plot in Fig. 3.10 shows both simulated soil moisture data 

with the observations as well as both MODIS and VIC control LAI data. Apache, 

Oklahoma experienced relatively normal growing season precipitation (-0.2 mm 

departure) in 2004; however, the VIC control LAI significantly underestimated 

vegetation health between June and September. This underestimation lead to relatively 
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higher soil moisture conditions because of decreased root uptake compared to soil 

moisture under MODIS LAI conditions, and a more accurate soil moisture simulation 

using the MODIS data.  

 

 

Figure 3.10. Plots of VIC-simulated soil moisture and observed soil moisture at 40 cm 

with corresponding VIC control and MODIS LAI plots.  
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However, the second plot shows the same data only for Boise City, Oklahoma 

during the 2005 growing season. This period of time corresponds with higher than 

normal precipitation over Boise City (+68.5 mm departure), demonstrated by the 

significantly higher MODIS LAI compared to the control LAI. Despite the more 

accurate depiction of vegetation conditions, the simulated soil moisture conditions were 

less accurate because the increased LAI lead to an overestimate of evapotranspiration 

(and therefore a decrease in soil water content). The control LAI did not capture the 

increased vegetation health (and increased evapotranspiration) and therefore simulated 

soil moisture was higher and more representative of actual soil moisture conditions. This 

is an example of the model getting it right, but for the wrong reasons. This suggests that 

soil moisture magnitude response to changes in LAI are overly sensitive compared to the 

response of in situ soil moisture observations.  

3.3.3.3  VIC-simulated Soil Moisture Sensitivity to LAI 

Robock et al. (2003) evaluated soil moisture simulations from several land 

surface models, including VIC, with in situ observations from the Oklahoma Mesonet. 

Their results showed that although VIC simulations were relatively close to the 

observations, the seasonal variation and simulated soil moisture during dry periods were 

not as accurate. Robock et al. (2003) attributed some of these issues to model sensitivity 

to soil texture differences and hydraulic parameters. Meng and Quiring (2008) evaluated 

simulated soil moisture form three models including VIC with in situ observations from 

three Soil Climate Analysis Network (SCAN) sites. Their results showed that while VIC 

accurately simulated the annual cycle of soil moisture, model sensitivity to soil 
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parameters was a function of climatic gradients, and not necessarily soil properties. 

These studies reported the sensitivity of VIC-simulated soil moisture to soil-related 

parameter changes; however, neither effectively quantified the influence of LAI 

variability on the soil moisture simulations. Thus the ±20% parameter variation 

approach was adopted from Meng and Quiring (2008) to test the sensitivity of VIC soil 

moisture to 20% increases and decreases to LAI.  

The sensitivity analysis was performed by generating soil moisture from VIC 

over the same 1994-2010 period using the control LAI data, only increasing (Plus20) 

and decreasing (Minus20) each month’s LAI by 20%. Thus the only different model 

parameter is the ±20% LAI values. As expected, increasing LAI by 20% leads to an 

overall decrease in soil moisture with respect to the ―normal‖ LAI conditions, and vice 

versa when decreasing LAI. The change in LAI influenced the deep (95 cm) layer soil 

more than the shallower layers. The average soil moisture percent differences 

corresponding to a 20% increase in LAI are -0.6, -1.4 and -5.7% at the 10, 40 and 95 cm 

layers respectively. Similarly the average soil moisture percent differences 

corresponding to a 20% decrease in LAI are 0.07, 1.5 and 7.4% at the 10, 40 and 95 cm 

layers respectively. These results show that VIC-simulated soil moisture in the deeper 

soil layers is more sensitive to changes in LAI than the near-surface soil layers. Fig. 3.11 

shows monthly percent differences in soil moisture corresponding to Plus20 and 

Minus20 simulations. Soil moisture at the 95 cm depth responds more strongly to 

changes in LAI; however, Fig. 3.11 shows that soil moisture sensitivity to LAI is 

heightened during the late growing season (June – October). In addition, it is evident that 
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VIC is slightly more sensitive to increases in LAI than it is to decreases. The sensitivity 

of VIC-simulated soil moisture to LAI perturbations, along with sensitivity to soil 

parameters explains some of the differences between the simulated and observed soil 

moisture.  

 

 

Figure 3.11. Monthly soil moisture percent difference between control LAI and LAI 

increased/decreased by 20%. 

 

3.3.3.4  VIC-simulated Soil Moisture-LAI Interactions 

The sensitivity of VIC-simulated soil moisture to LAI has potential impacts for 

drought modeling and drought monitoring. Section 3.1 discusses the difference between 

the interannually-invariant control LAI parameter used by VIC and the MODIS-derived 

LAI. Specifically, the control LAI does not capture actual vegetation conditions. This 

systematic overestimation of LAI leads to an overestimation of root uptake and this 

further decreases soil moisture levels.  
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To test the impact of changes in LAI to VIC-simulated soil moisture, model 

simulations were generated from 1994-2001 using a spinup period of 1994-1999. The 

VIC control (interannually-invariant) LAI parameter was used during the spinup period. 

Beginning in 2000 five separate simulations was generated, each with a different LAI 

parameter. Four of the simulations used a different three month period (Jan-Mar, Apr-

Jun, Jul-Sep, Oct-Dec) in which LAI was increased by 20% over the control values; 

these are the variable simulations. The final simulation continued to use the same 

interannually-invarying control LAI parameter; the control simulation. Changes in soil 

moisture corresponding to the varied LAI parameter were recorded; particularly the 

elapsed time during which the control and variable simulated datasets diverged by more 

than 1%. As expected, the 20% increase in LAI lead to the greatest change at the deep 

(95 cm) layer. The average time through which the soil moisture datasets diverged by 

more than 1% when LAI was increased in January-March were 3, 13 and 110 days at the 

10, 40 and 95 cm levels respectively. Also as anticipated, the greatest soil memory 

corresponded with increased LAI during the late growing season (July-September), the 

average length of time during which soil moisture diverged by more than 1% during this 

period were 68, 96 and 243 days at the 10, 40 and 95 cm levels respectively.  

During the period of divergence, the average percent difference in soil moisture 

ranged from < 1% to nearly 5%. At some sites the percent difference between the 

variable and control soil moisture data simulations exceeded 15%, representing a strong 

response to LAI perturbations. Fig. 3.12 shows percent mean absolute error averaged by 

depth for each 3-month analysis period, demonstrating that the greatest response to 
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changes in LAI occurred growing season soil moisture. Changes in growing season LAI 

influence soil moisture more strongly than during the winter season. 

 

 

Figure 3.12. Percent mean absolute error between variable and control soil moisture 

data 

 

 

3.4. Discussion 

Land surface models such as VIC are frequently employed for drought 

monitoring. Wood (2008) describes the University of Washington Surface Water 

Monitor, a useful drought monitoring tool which employs land surface moisture 

conditions, including soil moisture from land surface model simulations. Andreadis et al. 

(2005) used the VIC hydrologic model to construct a United States 20
th

 century drought 

history. Wang et al. (2009) used six land surface models to simulate soil moisture during 
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the 20
th

 century over the United States. Their results showed that soil moisture at the 

deepest soil column had the longest memory.  

The results presented here suggest that static vegetation parameters in the VIC 

model cannot capture interannual and interseasonal vegetation dynamics. At 9 of the 20 

study sites, the control LAI parameter systematically overestimated LAI with respect to 

the dynamic, Modis LAI parameter. This was primarily due to two factors: 1) differences 

in land cover classes between the model calibration data and the MODIS surface 

reflectance data and 2) the inability of the control LAI to accurately represent peak LAI. 

The peak LAI (as derived from Modis) at these 9 sites occurred at least 2 months before 

the peak occurred in the control LAI parameter. The Modis LAI parameter was 

systematically higher than the control parameter at 2 of the 20 sites. This is likely caused 

by differences between the magnitude of LAI for each land cover class between the 

control LAI parameter and what is captured by the MODIS imagery.  

However, with respect to drought monitoring, the 9 sites at which there were 

systematic differences in LAI parameters and corresponding soil moisture simulations 

are not as problematic as the other 11. Systematic soil moisture simulation bias forced by 

the control LAI parameter can be accounted for, but inconsistent differences between the 

two LAI parameters at the other 11 sites cannot be accounted for. Therefore, using a land 

surface model which does not accurately represent vegetation conditions dynamically 

could introduce error in soil moisture simulations. This has implications for drought 

monitoring as well as for studies that examine land-atmosphere interactions and soil 

moisture memory.   
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3.5. Summary and Conclusions 

The VIC hydrologic model was used to simulate soil moisture conditions at three 

depths over several sites in Oklahoma between 1994 and 2010. Two simulations were 

generated, one using the standard, interannually-invariant control LAI parameter as 

described in Maurer et al. (2002) and the other using MODIS LAI. Soil moisture from 

each simulation was evaluated using in situ soil moisture observations provided by the 

Oklahoma Mesonet and quality controlled by the North American Soil Moisture 

Database. The primary conclusions of the study are:  

1) VIC-simulated soil moisture using MODIS LAI was not consistently more 

accurate than soil moisture simulated with the control LAI. However, the 

simulations using MODIS LAI were generally more accurate at the 0 to 10 

cm and 40 to 95 cm depths and the control LAI was generally more accurate 

at the 10 to 40 cm depth.  

2) The control LAI parameter systematically overestimated vegetation health at 

9 sites. This overestimation was exacerbated during anomalously dry 

growing seasons and cause significant differences in simulated soil moisture 

during these periods.  

3) A sensitivity analysis showed that VIC-simulated soil moisture is quite 

sensitive to perturbations in LAI. A 20% increase and a 20% decrease in LAI 

resulted in a ~6% decrease and 7% increase in soil moisture, respectively.  

4) Control LAI is independent of soil moisture availability and this can result in 

drier soil moisture conditions than those actually observed. A sensitivity test 
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showed that this phenomenon could cause differences between actual soil 

moisture conditions and those simulated by VIC exceeding 15%.  

5) The results of this study suggest that accurate parameterization of vegetation 

health, both seasonally and interannually, are essential for accurately 

simulating soil moisture. 
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CHAPTER IV  

SUMMARY & CONCLUSIONS 

4.1. Objective 1 Summary 

Chapter 2 documented the observed interactions between soil moisture and 

vegetation health using data from 20 sites in Oklahoma. The relationship between soil 

moisture and remote sensing-derived vegetation health varied in sign. Three site-specific 

factors expected to influence soil moisture-vegetation coupling strength were examined 

in depth: precipitation, land cover and soil texture. The data showed no relationship 

between any of these three variables and correlation strength. This suggests that linear 

correlations cannot capture the influence of soil moisture on vegetation with respect to 

the multitude of other factors influential to the growth and health of vegetation.  

The most important finding is that soil moisture-vegetation coupling strength 

varies as a function of space and of time. Under anomalously wet conditions, particularly 

those in which moisture is not a limiting factor, vegetation health is essentially 

decoupled from soil moisture variations (Dirmeyer et al. 2000). The use of agricultural 

drought indices derived from remotely-sensed vegetation health accounts for temporal 

variability in soil moisture-vegetation coupling. For example under soil moisture 

conditions below the permanent wilting point, vegetation health may not respond as 

strongly to soil moisture variations. The strength and timing (lagged versus 

simultaneous) of vegetation response to soil moisture is controlled by vegetation type 

and soil texture. Thus drought indices derived from vegetation health may include 



 

67 

 

inherent biases and error due to spatial variability of soil texture and vegetation type, a 

phenomenon which necessitates further investigation.  

4.2. Objective 2 Summary 

Chapter 3 evaluated the influence of remote sensing-derived vegetation 

parameters on VIC-simulated soil moisture at 20 Oklahoma Mesonet sites. Model 

simulations were generated from 2000-2010 using both the standard, interannually-

invariant LAI as well as the MODIS-derived LAI. An accuracy assessment based on in 

situ soil moisture observations showed that the MODIS LAI did not consistently 

improve the accuracy of the soil moisture simulations. This was attributed to the 

sensitivity of VIC to changes in LAI.  

Large differences between VIC-simulated soil moisture using the control versus 

the MODIS LAI parameters were found during anomalously dry conditions. Using the 

invariant LAI can accentuate and elongate drought conditions because vegetation health 

does not change during drought conditions and therefore evapotranspiration is over-

estimated. During anomalously dry periods, MODIS LAI decreases; however, the 

control LAI cannot respond to decreased moisture availability and continues at the 

―climatological‖ or average vegetation production. Essentially with the VIC control LAI 

parameter, root uptake remains steady despite continuously decreasing soil moisture 

availability, which reduces soil moisture even further, intensifying dry conditions.  

The control LAI was also not able to account for spatial variability in peak 

―greening‖ times. Spatially-variable factors such as vegetation type, general climate an 

synoptic conditions influence the timing of peak vegetation health, thus making this peak 
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variable over space. Because the control LAI parameter has one greening timeline for 

each vegetation class, regardless of the factors listed above, it could not account for the 

spatially-dynamic peak greenness variability.  

Land surface models such as VIC typically employ these interannually-invariant 

vegetation parameters (http://ldas.gsfc.nasa.gov/nldas/, 

http://www.hydro.washington.edu/forecast/monitor/index.shtml). These LSMs are 

commonly used for a variety of drought monitoring/drought modeling applications. 

However, the ability of these models to accurately simulate soil moisture is hindered by 

invariant vegetation parameters, potentially resulting in biased estimates of agricultural 

and hydrological drought.  

Soil moisture-vegetation interactions are vital to land-atmosphere coupling and 

the precipitation recycling; however, these interactions exhibit considerable spatial and 

temporal variability. These aspects are not accurately simulated in land surface models, 

resulting in biased soil moisture estimates. In order to understand and properly model 

land-atmosphere interactions, variations in soil moisture-vegetation coupling have to be 

documented and examined. Clearly further research utilizing both in situ observations 

and models is necessary to increase our ability to understand and simulate land-

atmosphere interactions.    

 

http://ldas.gsfc.nasa.gov/nldas/
http://www.hydro.washington.edu/forecast/monitor/index.shtml
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