

MODELING AND DETECTION OF CONTENT AND PACKET FLOW

ANOMALIES AT ENTERPRISE NETWORK GATEWAY

A Dissertation

by

SHENG-YA LIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jyh-Charn (Steve) Liu
Committee Members, Rabi N. Mahapatra
 Dezhen Song
 Yu Ding
Head of Department, Duncan M. (Hank) Walker

May 2013

Major Subject: Computer Engineering

Copyright 2013 Sheng-Ya Lin

ii

ABSTRACT

This dissertation investigates modeling techniques and computing algorithms for

detection of anomalous contents and traffic flows of ingress Internet traffic at an

enterprise network gateway. Anomalous contents refer to a large volume of ingress

packets whose contents are not wanted by enterprise users, such as unsolicited electronic

messages (UNE). UNE are often sent by Botnet farms for network resource exploitation,

information stealing, and they incur high costs in bandwidth waste. Many products have

been designed to block UNE, but most of them rely on signature database(s) for

matching, and they cannot recognize unknown attacks. To address this limitation, in this

dissertation I propose a Progressive E-Message Classifier (PEC) to timely classify

message patterns that are commonly associated with UNE. On the basis of a scoring and

aging engine, a real-time scoreboard keeps track of detected feature instances of the

detection features until they are considered either as UNE or normal messages. A

mathematical model has been designed to precisely depict system behaviors and then set

detection parameters. The PEC performance is widely studied using different parameters

based on several experiments.

The objective of anomalous traffic flow detection is to detect selfish

Transmission Control Protocol, TCP, flows which do not conform to one of the handful

of congestion control protocols in adjusting their packet transmission rates in the face of

network congestion. Given that none of the operational parameters in congestion control

are carried in the transmitted packets, a gateway can only use packet arrival times to

iii

recover states of end to end congestion control rules, if any. We develop new techniques

to estimate round trip time (RTT) using EWMA Lomb-Scargle periodogram, detect

change of congestion windows by the CUSUM algorithm, and then finally predict

detected congestion flow states using a prioritized decision chain. A high level finite

state machine (FSM) takes the predictions as inputs to determine if a TCP flow follows a

particular congestion control protocol. Multiple experiments show promising outcomes

of classifying flows of different protocols based on the ratio of the aberrant transition

count to normal transition count generated by FSM.

iv

DEDICATION

To My Wife and Parents

v

ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Jyh-Charn Liu for his guidance, support and

patience throughout my graduate study. He has been a constant source of inspiration and

help. His suggestions and deep insight on academic domain knowledge contributed

greatly to the completion of this dissertation, as well as to my academic achievements.

I am immensely grateful to my committee members: Dr. Rabi N. Mahapatra, Dr.

Dezhen Song, and Dr. Yu Ding. They gave me very helpful suggestions on improving

the quality of this dissertation. I really appreciate their time spent with me on my

research.

I would like to express my appreciation to all of my colleagues, and in particular

to Mr. Cheng-Chung Tan and Mr. Christopher Bodden. Mr. Tan helped generate

important experiment outcomes, which are presented in parts of this dissertation. Mr.

Bodden helped proofread and provided comments to improve the readability of the

dissertation which I greatly appreciated. I also thank all of the members of the RTDS

Lab at Texas A&M University for their research support during my Ph.D. study.

Finally, thanks to my wife and parents for their encouragement, patience and

love. Without their support, I would not have finished my Ph.D. degree.

vi

TABLE OF CONTENTS

 Page

ABSTRACT .. ii

DEDICATION ..iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS ..vi

LIST OF FIGURES .. viii

LIST OF TABLES ..xi

CHAPTER I INTRODUCTION AND OVERVIEW OF TECHNICAL
CHALLENGES ... 1

CHAPTER II DETECTION OF CONTENT ANOMALY .. 5

2.1 Background ... 5
2.2 Existing Solutions ... 7
2.3 PEC System Architecture ... 12
2.4 Low Computing Cost Algorithm .. 16

2.4.1 Scoring Function ... 16
2.4.2 Aging Function ... 17

2.5 Modeling of the PEC Behavior ... 20

CHAPTER III PERFORMANCE OF CONTENT ANOMALY DETECTION 29

3.1 Experiment Configuration .. 29
3.2 Performance Evaluation .. 34

3.2.1 Detection Latency ... 34
3.2.2 Throughput of Feature Parser ... 36
3.2.3 Throughput of Blacklist Checking .. 37
3.2.4 Scoreboard Throughput .. 38
3.2.5 Collision Ratio of Black List .. 40

CHAPTER IV DETECTION OF PACKET FLOW ANOMALY (ROUND TRIP
TIME ESTIMATION) .. 44

4.1 Background ... 44

vii

4.2 Existing Solution... 48
4.3 Limitation of Statistical Models to Detect Non-cooperative Flows 50
4.4 Round Trip Time (RTT) Estimation ... 53
4.5 DFT-based RTT Estimation.. 55
4.6 EWMA Lomb-based RTT Estimation .. 60

CHAPTER V DETECTION OF PACKET FLOW ANOMALY (BEHAVIOR
IDENTIFICATION) ... 70

5.1 Non-deterministic Periods for Cwnd Adjustments ... 70
5.2 Low Pass Filter Approach to Reduce Estimation Errors 71
5.3 Dilemma between Detection Sensitivity and Robustness................................... 73
5.4 Concurrent CUSUM Banks for Cwnd Behavior Detection 74
5.5 Lossy Finite State Machine of Detecting Unknown Protocols 83

CHAPTER VI PERFORMANCE OF PACKET FLOW ANOMALY DETECTION ... 86

6.1 Experiment Configuration .. 86
6.2 Performance Evaluation .. 87

6.2.1 Cwnd Estimation... 87
6.2.2 Differentiation of TCP-Reno from CBR .. 90
6.2.3 Differentiation of TCP-Reno from TCP-Vegas 92
6.2.4 Classification of Mixing Flows Using TCP-Reno FSM.......................... 95
6.2.5 Classification of Mixing Flows Using TCP-Vegas FSM........................ 98

CHAPTER VII CONCLUSION ... 102

REFERENCES ... 106

viii

LIST OF FIGURES

 Page

Figure 1: PEC architecture. .. 13

Figure 2: Score table and age table. ... 17

Figure 3: The spinning wheel algorithm in a CQ. .. 18

Figure 4: An illustration of aging-scoring processes in CASS. 20

Figure 5: The incomplete Γ mapping between λM and 1 − 𝛼. .. 23

Figure 6: Detection latency based on S=24, M=55. ... 26

Figure 7: Variation of the detection rate based on M=55 .. 27

Figure 8: Variation of the detection rate based on S=24. ... 28

Figure 9: Experimental set up of UNE Detection. ... 30

Figure 10: A snapshot of the PEC status on the control console. 32

Figure 11: Scoreboard operation. ... 33

Figure 12: Detection latency of a single UNE source. ... 35

Figure 13: Detection latency for multiple UNE sources. ... 36

Figure 14: Throughput of feature parser. ... 37

Figure 15: Throughput of the blacklist checking. .. 38

Figure 16: Scoreboard throughput vs. queue sizes ... 39

Figure 17: The collision ratio in blacklist. ... 40

Figure 18: Challenges and solutions of anomalous flow detection. 47

Figure 19: Congestion window behaviors. ... 53

Figure 20: Incorrect window estimates based on incorrect RTT boundary. 54

Figure 21: RTT estimator – uniform sampling .. 56

ix

Figure 22: Network topology of RTT estimation. .. 58

Figure 23: Spectrum of two TCP flows. .. 59

Figure 24: RTT estimates and real RTTs. .. 60

Figure 25: A prototype architecture of the Lomb-based RTT estimation system. 63

Figure 26: Lomb periodgrams. ... 65

Figure 27: Lomb-based RTT estimates for a trace. .. 67

Figure 28: RMSE of RTT for 10 of 50 simulated TCP flows. ... 69

Figure 29: Perr for 10 of 50 simulated TCP flows. .. 69

Figure 30: Two types of cwnd estimation errors .. 70

Figure 31: Cwnd estimation based on sliding window .. 72

Figure 32: Detection of the flow behavior based on CUSUM banks 81

Figure 33: TCP-Reno finite state machine ... 84

Figure 34: Network topology of experiments .. 86

Figure 35: Cwnd estimates of TCP Reno flows ... 87

Figure 36: State transition diagram .. 88

Figure 37: Count of ATC and NTC ... 89

Figure 38: Ratio of ATC to NTC ... 89

Figure 39: Detection rate versus ratio threshold. ... 90

Figure 40: Virtual congestion window estimates of UDP .. 91

Figure 41: Classification of TCP-Reno and non-Reno flows based on the ratio of ETC
to RTC. ... 92

Figure 42: Congestion windows of 5 TCP-Vegas flows: (a) estimated states, and (b)
actual states. ... 94

Figure 43: Classification of two different TCP flavors .. 95

Figure 44: Estimates of congestion windows. .. 97

x

Figure 45: Classification in mixed flow types ... 98

Figure 46: Cwnd dynamics of different flow types .. 99

Figure 47: Simple TCP-Vegas FSM .. 101

Figure 48: Detection outcome based on Vegas FSM ... 101

xi

LIST OF TABLES

 Page

Table 1: The relationship between 𝐻𝐹𝐼
𝐴 , M, and linked lists. .. 42

Table 2: Hit ratio increased by handling different prefixes. .. 43

Table 3: Equation symbols. .. 51

Table 4: State definition ... 78

Table 5: Gradient-based behavior metrics.. 80

Table 6: Behavior metrics of CUSUM detectors ... 82

Table 7: Parameters of CUSUM banks .. 83

Table 8: Mean and variance of ratio of ATC to NTC .. 96

Table 9: Ratio of ATC to NTC for 50 flows .. 100

1

CHAPTER I

INTRODUCTION AND OVERVIEW OF TECHNICAL CHALLENGES

The Internet is a globally shared resource; its quality of service relies on

voluntary cooperation of users. Non-cooperative access of the Internet can cause serious

degradation of service quality to some or whole user communities. This dissertation

addresses some of the key issues that affect the operations of an enterprise network,

which is defined as a network whose users share certain common goals and the network

manager has the authority to care for the wellbeing of users. This dissertation aims to

address two issues: (a) how to detect voluminous packet contents sent into the enterprise

network, and (b) how to detect selfish users who aggressively consume bandwidth, even

in the face of network congestion. Both issues are related to capturing the dynamics of

network traffic, where the former is at the level of message contents, and the latter is at

packet flows. Both are involved with labeling network connections as being “normal” or

“anomalous”, as their packets flow through. To attack this problem, it is necessary to

explore the complex relationship between the computing complexity of the problem,

resource constraints, underlying characteristics of the normal vs. anomalous traffic, and

eventually the computing and architectural designs. These key issues are highlighted

next.

An enterprise gateway is a converging point of both ingress and egress Internet

traffic. It is an ideal location to perform enterprise wide management of Internet traffic,

especially the proposed network security solutions for detection of anomalous contents

2

and anomalous traffic flows. Given that a gateway does not have access to hosts, it does

not have access to most operational parameters of Internet traffic. As such, several

fundamental challenges need to be addressed for detection of anomalous contents and

anomalous traffic flows. These challenges are summarized below.

Four key challenges for real-time sensing and detection of UNE:

(1) Memory size and processing costs:

It takes tens or hundreds times more cycles and memory space to process a

packet than to transmit the packet. The situation worsens as the transmission

bandwidth continues to grow, yet no significant breakthrough is at sight for

processor speed or memory density. Decreasing the computing complexity of the

processing algorithm is the first and foremost important requirement for content

analysis.

(2) Signature based solutions are ineffective for new UNE:

Signature-based detection approach requires generation of the detection signature

extracted from confirmed attacks. The long delay in this model makes traditional

detection tools ineffective in capturing new UNE.

(3) Computing complexity of the detection system:

Any clues being used for detection of UNE need to be buffered, until a decision

can be made to confirm or reject the presence of UNE. The time and storage

complexity of algorithms to update those clues are critical to detection

performance.

(4) UNE behavior modeling:

3

Given a fixed amount of resources, an UNE detection system needs allocate

resources to detect current UNE while releasing resources allocated to handling

of stale UNE. The goal is to maximize the detection rate given an acceptable

false alarm.

Major challenges for the detection of non-cooperative packet flows are

summarized as follows:

(1) Determining the behavior that can represent different flows:

The flow behavior can be represented by various forms. It is important to define

effective features to distinguish well-defined and anomalous TCP flows.

(2) Detecting non-cooperative flows in transient states:

A steady state based modeling technique cannot timely identify anomalous

flows. In addition, parameters of these models cannot be easily measured.

(3) Low/high pass filters have limited effects:

Behavior states have different characteristics. Some change slowly, while others

change rapidly. When a large number of these hidden behavioral processes are

interleaved at a gateway the decision process of detecting non-cooperative flows

based on classical filters can become intractable.

(4) Rapid flow parameter changes with noisy background traffic:

Parameters of TCP flows such as RTT and Cwnd change dynamically in

response to the level of network congestion. How to determine these parameters

that are not explicit parts of packets is very challenging. The challenge is further

escalated with loss and retransmission of packets.

4

All of these problems listed above have not been fully solved in the literature. As

it will become clear later in the rest of this dissertation, none of these problems can be

effectively solved by straightforward, intuitive techniques. Rather, sound system

modeling and efficient algorithms are required to characterize their patterns, and on-line

algorithms to capture them.

5

CHAPTER II

DETECTION OF CONTENT ANOMALY

2.1 Background

For enterprise networks, the ingress Network Access Point (NAP) is a

concentration point of unsolicited electronic messages (UNE) before they are dispersed

to users. A major advantage of detecting UNE at the NAP is that it provides the largest

number of UNE samples at a single point. Real-time filtering of the UNE must avoid

adding significant delay to delivery of regular messages. False positive alarms should be

minimized to avoid dropping legitimate messages. The memory and computing time

requirement need to be bounded in order to handle the large volume of messages.

The anomalous contents not only consume enterprise resources but also

jeopardize personal data. Rapid, frequent changes of message contents are a highly

effective way for attackers to evade security software, regardless of their sophisticated

designs based on information theory, machine learning, and statistics. Driven by profit

making, anomalous message distributors continue to launch enormous amounts of

malicious messages that flood enterprise networks, consuming network resources and

posing a severe threat to the credibility of legitimate message communications. Taking a

hit and run, highly mobile message delivery and (victim) harvesting strategy, educated

anomalous message distributors routinely defeat message filters that rely on trained

signatures. We argue that a critical missing link of existing network security

management tools is their ability in real-time sensing and classifying of UNE signatures,

6

so that the countermeasures can be deployed proactively before the attack spreads too

widely to be manageable.

In this dissertation, we propose a real-time anomaly detector called Progressive

Electronic-Message Classifier (PEC) [1] for early detection of UNE before they spread

into the local networks. To meet the performance challenges, an O(1) spinning wheel

algorithm is developed for the aging-scoring function. In addition, a mathematical model

is created to derive system parameters such as the score threshold and age table size

given the specific detection latency and successful probability.

PEC detects UNE based on their self-similarity property, which refers to an

unusually large number of identical/similar message structures and/or contents such as

the URL links, message structures, or the last few SMTP relay hops, etc. that can

effectively identify the onset of a wave of UNE that were freshly crafted in a new format

and sent from some unknown sources. PEC can be used as a behavior based filter alone,

or as needed, it can be interfaced to existing anti-spamming tools so that message

samples that trigger the anomaly detectors could be further examined.

Unlike most commercial spamming filters based on statistics or pattern training,

PEC detects surging of feature instances in predefined features without prior training. A

feature can be any data type, e.g., html statements like URL links or IMG sources,

sender sources, etc., that represent invariant characteristics of UNE. Message

components not defined by the detection features are considered variants of the UNE

that would be ignored by PEC. On the basis of an O(1) spinning wheel algorithm to keep

7

track of feature instances, the core detection engine of PEC can also be used in other

protocol layers for real-time anomaly detection without prior training.

An experimental prototype of PEC integrated to sendmail is implemented for

detection of URL links of UNE, albeit the system can be easily expanded to filter other

features. URL links extracted from the corpus of spamming-phishing messages are used

to generate UNE, which are then mixed with regular messages to test the prototype. To

meet the performance challenges, an O(1) spinning wheel algorithm is developed for the

aging-scoring function. Experimental results on a Xeon based server show that PEC can

handle 1.2M score updates, hashing and matching of 7k URL links, and parsing of 200

messages bodies of average size 1.5kB. The lossy detection system can be easily scaled

up and down by progressive selection of detection features and detection thresholds. It

can be used alone or as an early screening tool for existing infrastructure to defeat major

UNE flooding.

2.2 Existing Solutions

Significant progress has been made in the areas of host or local message server

protection: virus protection (McAfee, Trend, Symantec), host intrusion detection

systems [2][3], system quarantine efforts, user-agent spam filtering, and even policy

requirements for system matches [4]. Admittedly, there are a number of techniques

designed to detect UNE, but the adversary has a broad spectrum of tricks and means to

deceive. The adversary is always a step ahead.

8

Some of the most noted systems include intrusion detection systems (IDS),

antivirus and anti-spammer software systems that rely on string matching and parsing to

capture known attack patterns. Popular IDS software, such as L7-filter [5], Snort, and

Bro, parse and match patterns (attack vectors) as a component of their finite state

machines (DFA or NFA) to represent patterns. Thus, they require accelerated parsing, an

active research area, e.g., grouping of patterns [6], and multiple regular expressions

matching [7]. The exponential growth in memory space consumption in these classical

algorithms suggests that they are more suitable for detailed inspection of messages.

Commercial tools can be used sparsely for detailed analysis of a small number of

messages, but the computing cost is too high to use them for inspection of every

message at wire speed. We will focus on algorithm aspects for an overall system solution

in the current study. Hardware solutions [8][9] will not be considered.

A myriad of solutions have been crafted to filter messages. Approaches range

from a simple policy to only accept messages from known senders, to those based on

Bayesian inference based on statistical key word matching. Black/white lists are based

on sharing of the databases of known good and bad sources. The computationally

feasible puzzles technique developed decades ago is being revisited as a rate limiting

technique to deter spam [10]. Black lists (SpamCop, Sorbs, etc.) of spamming sources

and phishing web sites are being tracked by organizations [11][12]. Among other

measures, global message providers adopt source authentication. Gmail and Yahoo both

adopted the DomainKeys technology, which aims to detect spoofing senders by using

9

encrypted tags to be compared with a shared or public database of active spamming

Internet addresses [13].

Spamassassin [14] filters spamming messages based on a compound scoring

system calculated from Bayesian statistics, DNS and URL black lists, and various spam

databases. Implemented in Perl, [15] it is not designed for line-speed inspection. PILFER

[16] uses ten features e.g., IP-based URLs, non-matching URLs, JavaScript, etc. to

detect phishing frauds. The features were generated using off-line SVM. Spamato [17] is

another popular spam filter, which provides an extendable interface to support plug-ins

of third-party filters and makes score decisions using the filter outcomes. Currently it

supports Vipul’s Razor Filter [18] (blacklisted domain name look up), Earl Grey Filter

[19], etc. Dominator [20] is also a URL-based filter, which uses “URL+spam” or

“URL+blacklist” as the keyword to inquire Google for the likelihood of spamming.

SpamGuru [21] supports user voting through Lotus Notes mail clients to handle

black/white lists. A pipelined-based architecture allows multiple filers cascaded together

to perform analysis of a message until it can be declared a spam or otherwise.

The sophisticated computations in content analysis based filters limit them to non

real-time environments. On the other hand, PEC is designed as a line-speed detector to

capture surges of new feature instances in messages. It should not come as a surprise to

see integration of the two classes of detectors in different ways. For instance, PEC can

use existing tools to determine the likelihood of spamming by a newly detected surge of

a feature instances at the ingress of the enterprise network. Or, PEC can publish the

10

score results so that existing spam filters can use the published list to adjust their score

weights at servers or desktops.

Behavior profiling is a viable technique to differentiate normal vs. anomalous

patterns of messages [22] and other general usage [23][24][25] based on usage

frequency, social cliques, and interactions. Selection of the distance function needs to be

done based on the nature of detection features [26]. The n-gram analysis technique has

been used to detect malicious code execution and anomalous message generation

patterns. Behavior patterns could be measured by distance functions. They can range

from simple bit by bit comparison (Hamming distance) to information theoretic

measures (e.g., Kullback-Leibler test). A general distance function is ‖𝐱 − 𝐲‖𝐩/𝐫 =

�∑ |𝐱𝐢 − 𝐲𝐢|𝐩𝐃
𝐢=𝟏 �

𝟏/𝐫
 [27], where x and y are feature vectors, p-weight on dimension

dissimilarity, and r the distance growth of patterns. Selection of the distance function

needs to be done based on the nature of detection features (numerical vs. string, point

observations vs. multivariate inputs, time window size and sampling methods, etc.) The

ultimate judgment on selection of detection features and their distance functions needs to

be based on their detection performance on the real data.

Spamming messages can also be viewed as a type of heavy hitters of network

traffic. However, despite the similar nature between PEC and these network heavy hitter

detectors, they operate on entirely different premises because PEC is a point detector but

its counterparts are for Internet wide analysis. Hierarchical aggregation and computation

of multi-dimensional data (IP address, port number, and protocol fields of IP flows, etc)

have been extensively investigated, e.g., [28][29], where a heavy hitter is essentially

11

traffic flow whose volume, which is computed from the hierarchical data structure,

exceeds a certain threshold. Once detected, one could even locate the source via a high

dimensional key space. A deterministic sampling technique called lossy counting (LC)

[30] was proposed to detect heavy hitters with bounded errors. The sketch-based

approach [31] used a small amount of memory to detect anomalous traffic. Based on it, a

reverse hash method [32] is used to identify the keys of culprit flows without extra

recording memory.

Intrusion detection systems (IDS) and antivirus software systems also rely on

string matching and parsing to capture known attack patterns. Popular IDS software,

such as L7-filter [5], Snort [1], and Bro [3], parse and match patterns (attack vectors) as

a component of their finite state machines (DFA or NFA) to represent patterns.

Hardware and software based parsing acceleration [6][7][8][9][27] is a highly active

research area.

Yet, there is no solution to address UNE at the entrance points of an enterprise

network. It is likely that these approaches and other statistical similarity functions, in

their original forms, would have limited use for on-line detection because of their high

computing complexity. Thus, the motivation behind this research is to devise a new form

of computer network defense to protect military networks from threats posed by

seemingly innocent UNE. We will focus on fast algorithms tailored for detecting the

onset of structural or content similarity (word count and number of URL links, image

rendering sources, etc) of buffered messages in a time window, so that the content

12

similarity can be extracted by a higher-level of analysis and can configure UNE

detectors on the fly.

2.3 PEC System Architecture

PEC is designed to detect anomalous surges of feature instances (FI) of major

UNE flooding. An FI is a particular realization of the UNE feature F, which is any

message construct that is likely to be used by spammers. From the viewpoint of system

event management, each detected FI represents one feature clock (FC) that drives all

state updates. To operate in a broadband environment, the detection process in PEC is

made dynamic and lossy, i.e., some messages may pass the (overloaded) detector

without being checked in order to avoid adverse performance effects due to any type of

resource contention.

Let F = { α1, α2, α3 …, } represent a set of binary strings which can be

expressed and parsed by a finite automata, and αi of F is an FI of F. A message construct

is not a viable UNE feature if it cannot be effectively used to discriminate regular

messages from UNE, e.g., the greeting words, subject line, etc. As of the writing of this

dissertation, key words/phrases (“click here”, “getting rich”), deceptive URL links, or

remotely rendered images are the most prevalent UNE features. The detection features

can be added/removed (“progressive”) based on resource constraints and user

requirements.

Let γ denote a newly identified FI by PEC, γ is assigned one of three states: Xγ

← G/B/W, i.e., Gray (unchecked), Black (UNE), or White (not UNE), until it is removed

13

from the system. Xγ (v) ← G, where v is the current FC value. γ will be retained for a

certain time period before its state changes, i.e., Xγ←W/B. Xγ ← B (from G) if the

number of its occurrences, called score, Rγ exceeds a score threshold, S, but Xγ ← W if

its age, Aγ, exceeds an age threshold, M, the age of γ is the time elapsed before its score

is increased. S and M are two major design parameters that decide the detection

sensitivity and false alarm rates of the system.

Hotlist

Graylist
Cache

UNE
Database

New UNE
Addition

Expired UNE
Removal

Parser

Hash

Blacklist
Checking

Scoring Aging

Spinning Wheel Algorithm

Score Table Age Table

Report
Queue UNE

Reporting

Graylist
Queue

Inspection
Queue

X-mark
Queue

SMTP
Receiver

SMTP
Sender

Message
Queue

 Blacklist Scoreboard

Figure 1: PEC architecture.

Referring to Figure 1, we propose a cascaded filter architecture consisting of a

blacklist and scoreboard to track FIs. Messages being filtered are parsed for FIs by the

feature parser(s) in the blacklist module. After an FI γ is extracted and hashed to Hγ, Hγ

is checked against the hotlist, which is the hash vector of currently active FIs in some

14

UNE. If a hit occurs to Hγ on the hotlist, it means that γ is an UNE instance, and the

SMTP server could take countermeasure action, e.g., X-mark the (UNE) message

through the X-mark queue, or simply increase its hit count. Otherwise, (γ, Hγ) is placed

on the graylist cache, and Hγ is placed on the graylist queue of the scoreboard for further

tracking.

The hotlist is a single bit array with all or a part of Hγ as its table address. The

graylist cache serves as a temporary lookup table between FI and HFI. (γ, Hγ) is moved

into the UNE database once it appears on the report queue, i.e., Rγ was found to exceed

S by the scoreboard. Or, (γ, Hγ) is simply removed from the cache when Aγ exceeds M.

The average life span of UNE feature instances is short. As such, a background thread

periodically examines the UNE database so that the FI can be removed when it becomes

cold.

Hγ passed from the blacklist to the scoreboard is tracked by scoring and aging

functions based on a competitive aging-scoring scheme (CASS). Each FI that does not

hit the blacklist but enters the scoreboard generates a virtual clock (VC) which triggers

all of the state transitions. In the rest of the discussions we will use v to denote the

current VC value, unless explicitly defined otherwise.

If Hγ is new, it is placed into the score table (ST) and its score Rγ ← 1, and age

Aγ ← 0 (in the age table (AT)). Otherwise, if Hγ is already in ST, Rγ is incremented and

Aγ ← 0. Three types of operations are interlocked in each VC: increase of Rγ, rest of

Aγ, and increase of Aβ, β ≠ γ. An FI that does not have its score increased for a

15

consecutive number of VCs is eliminated from the ST, i.e., XFI ←W and FI is not an

UNE feature. CASS is summarized as follows.

R1. If Hγ (or equivalently γ), is already in the scoreboard, then Rγ increments,

and Aγ ← 0. Otherwise, insert it into the ST with Rγ ← 1, and also into the AT with Aγ

← 0. An old entry Hτ in ST and AT may need to be removed from the scoreboard, i.e.

Xτ ← W, if Aγ > M happens to occur at the same VC.

R2. Aβ increments and Rβ unchanged, where β ≠ γ,

R3. Report Hγ to blacklist if Rγ > S; remove Hγ from scoreboard after reporting.

A critical design goal of CASS is to reduce the O(N) computing cost in age

increment of a naïve implementation to O(1). To solve this problem, we propose a

spinning wheel algorithm to keep track of ages of entries by modeling AT into a cyclic

queue, and using the queue location of an entry to represent its age. This way, the

scoring (of γ) and aging operations, i.e., steps R1-R3, of all entries in AT can be

collapsed into a few fixed computing cycles, independent of the sizes of AT and ST.

Different hash functions can be used for H. For simplicity and computing speed,

we adopt the SDBM hash function [33] for PEC. Hash collision is inevitable, but this

problem can be remedied by adding a further step of exact string matching or additional

hashing. To keep our current discussion focused on the system architecture, we will

address the hash management issue in the future.

16

2.4 Low Computing Cost Algorithm

2.4.1 Scoring Function

Similar to the hotlist, the score table (ST) could use the hash values of FIs as its

address directly when a large number of FIs need to be tracked. Given that FIs would

only stay in the scoreboard for a relatively short time before they are classified as UNE

(B) or normal (W), we propose to only use a fraction of the hash value to implement ST

based on a pointer table and linked lists, such as the data structure illustrated in Figure 2.

Here, each linked node consists of a score, AT-index, and stamp. The score field keeps

track of Rγ. The AT-index field points to the AT location of Hγ in the AT, L, and ATL

← Hγ if Hγ is a new FI so that a reverse look up can be made from any AT location of

its associated linked node through the pointer table. The stamp is derived from a fraction

of Hγ bits as follows.

When an entry Hγ in the graylist queue is being processed by the scoreboard, Hγ

is divided into two parts, 𝐇𝛄
𝐀 and 𝐇𝛄

𝐂, respectively, where 𝐇𝛄
𝐀 serves as the address of a

pointer table entry, which points to a linked node N, and then 𝐇𝛄
𝐂, is checked against the

stamp field of N. If a hit in ST occurs to Hγ, its score Rγ is incremented, and if Rγ

becomes larger than S, Hγ is sent to the report queue (to the blacklist), and its entries in

both AT and ST are nullified. All nodes linked to N may need to be checked until a hit

occurs, or a new node will be created for Hγ. By passing L to the aging function, we can

adjust the ages of all entries in the AT. We note that any of the k bits in Hγ can be

assigned to 𝐇𝛄
𝐀 , but experiments show that using the lowest order bits tends to have

lower collision ratios (or shallower linked lists).

17

Gray List Queue Pointer Table AT Index Linked Node

AT

L

L L+1L-1

ST

FIH

A
FIH : Address hash value
C
FIH : Content hash value

Hγ

Hγ

CHγ

AHγ RγAHγ

CHγ

Stamp Score

Figure 2: Score table and age table.

2.4.2 Aging Function

The aging function manages the ages of FIs in the scoreboard by modeling AT

into a cyclic queue (CQ), where the CQ position of Hγ represents its relative age among

all entries in the scoreboard: Let the head and tail of CQ be denoted as 𝐂𝐐𝐃 and 𝐂𝐐𝐓,

respectively. The age of Hγ is smaller than that of Hβ if it is positioned closer to 𝐂𝐐𝐃

than 𝐇𝛃 is. For a CQ entry placed at the 𝐀𝐓𝐢, its (next) adjacent queue entry is located at

𝐀𝐓(𝐢+𝟏 𝐦𝐨𝐝 𝐌), where M is the table size, and 𝐀𝐓𝟎 is the first array location.

Recall that scoring of one FI also implies aging of all other entries. To age all

other FIs in the scoreboard at the lowest cost, first we make the age threshold M, also the

size of AT, and we move 𝐂𝐐𝐃 from its current location in AT to that of 𝐂𝐐𝐓 at each VC.

The notion of “spinning wheel” is attributed to shifting of the new 𝐂𝐐𝐃 to that of the

existing 𝐂𝐐𝐓, as illustrated in Figure 3.

18

L

M-1

0

1
2

L-1
VC

3

L+1

4

AFI

M-1

0

Index

0

1

M-1

head

L

1

2

tail
HFI

AHγ

AT Index

ST

CHγ Rγ

Hγ
removal

C
FIH FIR

L+1

Figure 3: The spinning wheel algorithm in a CQ.

The entry Hγ retrieved from the graylist queue into the scoreboard is placed at

the new 𝐂𝐐𝐃 position (in addition to proper ST updates) because it is made the

“youngest” entry in scoreboard by CASS rules. Now that M is both the size of AT and

the age threshold, a non-null 𝐇𝛃, 𝐇𝛃 ≠ 𝐇𝛄, located at the (existing) 𝐂𝐐𝐓 is the only

entry whose age is to exceed M. As a result, these few actions required to realize R1, R2

and R3 can be computed in a few fixed steps, regardless of the value of M. Of course,

entries of ST and AT for both 𝐇𝛃 and 𝐇𝛄 need to be updated to maintain the overall

consistency. It is trivial to prove that the computing complexity of the spinning

algorithm is O(1).

In summary, AT entries need to be adjusted in the current VC after the aging

function receives a request from the scoring function to handle Hγ based on three cases:

(1) Rγ = 1, (2) 1< Rγ ≤S, (3) Rγ = S+1. In case (1), γ is a brand new FI and therefore ,

shift the AT location of the new CQD to that of the existing CQT. Then write Hγ into the

new CQD location. In case (2), γ is already in the scoreboard, but Rγ is not high enough

19

to be considered UNE. Four steps are needed for this case: Step (a) use the AT-index of

𝐇𝛄 in ST to locate the AT table address of 𝐇𝛄 and nullify its content. Step (b) change the

AT location of the new 𝐂𝐐𝐃 to that of the existing 𝐂𝐐𝐓. Step (c) copy 𝐇𝛄 into the new

𝐂𝐐𝐃 location. Step (d) copy the new 𝐂𝐐𝐃 location back to the AT-index field of the 𝐇𝛄

node in the ST. In case (3), 𝐑𝛄 exceeds the score threshold and needs to be passed to the

blacklist. We nullify the AT entry of 𝐇𝛄, (erase the 𝐇𝛄 node in ST), and shift and move

the location of the new 𝐂𝐐𝐃 to that of the existing 𝐂𝐐𝐓 as usual. Of course, any non-null

entry 𝐇𝛃 in the existing 𝐂𝐐𝐓 needs to be purged from the scoreboard.

The interlocked operations between the scoring and aging functions are

illustrated through Figure 4 consisting of three FIs: α, β and γ. The states of each FI are

tracked by its score and age. Its state (W/G/B) is marked by very light, gray and solid

black horizontal line segments. The event that triggers the state of an FI to change is

marked by the arrowed curves. The arrival of an FI represents one VC tick. For ease of

presentation, we draw the 𝐑𝐅𝐈 and 𝐀𝐅𝐈 in positive and negative Y directions,

respectively. Note that VCs are not uniformly distributed on the real time line in this

example.

20

VC

α arrivals

Rα

Aα

S=4, M=5

M

Xα

β arrivals

γ arrivals

S

Real Time

S

Figure 4: An illustration of aging-scoring processes in CASS.

2.5 Modeling of the PEC Behavior

Any FI will stay in the scoreboard for a finite amount of time before it is purged

with its state labeled as B/W. The sojourn time for a normal FI is simply M counts of

VCs, but it is not as obvious in determining that of an UNE FI, i.e., the detection latency.

Instead of full assessment of detection, sensitivity and selectivity in the classical sense

which would require extensive field experiments, we propose to investigate the

relationship between the detection latency (time elapsed before UNE are placed in the

21

blacklist) and the two key parameters M and S. That is, our goal is to answer the

following two questions.

Q1: “What is the minimum value of M to detect an UNE attack (of known density)

with a success probability of higher than α?”

Q2: “For a given M, what is the maximum value of S to guarantee that a probability

measure P(detection latency < ς) > α ?”

Scoring and aging of FIs in the CASS constitute a competition process among

FIs in the scoreboard. To answer the aforementioned questions, we only consider a

single UNE source condition here. It will become clear from simulations that this

represents a worse case scenario than multi-UNE source cases when input rates are

fixed.

Answer to Q1:

Let foreground and background events, 𝐄𝐟 and 𝐄𝐛 denote UNE and normal

traffic, whose average rates are 𝛍𝐟 and 𝛍𝐛, respectively. Without loss of generality, we

assume that 𝛍𝐛 > 𝛍𝐟. Recall that the arrival of each FI represents a VC tick; let λ denote

the mean rate measured by instances of 𝐄𝐟/𝐕𝐂, then

𝝀 =
𝝁𝒇

𝝁𝒃 + 𝝁𝒇
. (1)

Given λ , we are interested in determining the relationship between M and α, the

probability that the instance of 𝐄𝐟 occurs more than once in M VCs. Consider the more

challenging case of low density UNE detection, i.e., 𝛍𝐟 ≪ 𝛍𝐛, λ can be approximated as

the rate of a Poisson process {𝐍𝐟(𝛕), 𝛕 ≥ 𝟎}, where 𝐍𝐟(𝛕) is is the number of 𝐄𝐟

22

happening prior to τ VCs. Since an 𝐄𝐟 instance will be purged from the scoreboard if and

only if 𝐍𝐟(𝐭 + 𝐌) − 𝐍𝐟(𝐭) ≤ 𝟏, then

𝑷(𝑵𝒇(𝒕 + 𝑴) − 𝑵𝒇(𝒕) ≤ 𝟏) (2)

is the probability of an 𝑬𝒇 instance expiring in M VCs, i.e.,1−α, where P is the

probability density function of the Poisson distribution [34], expressed by

𝑷�𝑵𝒇(𝒕 + 𝑴) − 𝑵𝒇(𝒕) = 𝒏� = 𝒆−𝝀𝒕(𝝀𝚫𝒕)𝒏/𝒏!. (3)

In addition, the cumulative density function, CDF, of the Poisson distribution is

𝑷�𝑵𝒇(𝒕 + 𝑴) − 𝑵𝒇(𝒕) = 𝒏� = 𝚪(𝒏 + 𝟏, 𝝀𝚫𝒕)/𝒏! (4)

where 𝚪 is the incomplete gamma function defined as 𝚪(𝒙, 𝒚) = ∫ 𝒕𝒙−𝟏∞
𝒚 𝒆−𝒕𝒅𝒕. Thereby

given the survival probability α of an 𝑬𝒇 instance and a known λ, M can be computed

using

𝚪(𝟐, 𝝀𝑴) = 𝟏 − 𝜶 (5)

Figure 5 shows a pivoting point located at λM = 5 of the Γ mapping curve. It means that

the survival probability of an 𝑬𝒇 instance only has a marginal increase after the size of

AT exceeds 5/λ .

23

Figure 5: The incomplete Γ mapping between λM and 𝟏 − 𝜶.

Answer to Q2:

Next, we discuss the setting of S in Q2. First, we consider the expected number

of 𝐄𝐟 instances before it is declared UNE for a given probability value α and S. Let 𝐇𝐤

denote the number of hits of 𝐄𝐟 until k consecutive effective hits (CEH) occurs, where an

effective hit of 𝐄𝐟 denotes the scenario that Δt ≤ M, when a new 𝐄𝐟 instance occurs,

where Δt represents the time interval between two adjacent 𝐄𝐟 instances. That is, the

score of 𝐄𝐟 does increase for this hit, and it is not kicked out due to aging. If it takes

𝐇𝐬−𝟏 VCs to obtain S-1 CEH, then either the next time is an effective hit and we have S

CEH, or it is not an effective hit and the scoring procedure of the 𝐄𝐟 instance must begin

24

anew. For an 𝐄𝐟 instance, its effective hit probability is α, otherwise, 1−α. The expected

value of 𝐇𝐬 can be expressed as

𝐄(𝑯𝒔|𝑯𝒔−𝟏) = 𝜶(𝑯𝒔−𝟏 + 𝟏) + (𝟏 − 𝜶)(𝑯𝒔−𝟏 + 𝟏 + 𝐄[𝑯𝒔]) (6)

i.e.

𝐄(𝑯𝒔|𝑯𝒔−𝟏) = 𝑯𝒔−𝟏 + 𝟏 + (𝟏 − 𝜶)𝐄[𝑯𝒔] (7)

Taking expectations on both sides of the preceding yields

𝐄(𝑯𝒔) = 𝑬(𝑯𝒔−𝟏)/𝜶 + 𝟏/𝜶 (8)

Since H1, the number of 𝑬𝒇 until the first effective hit, is equal to one, we see that

𝐄(𝑯𝟏)=1, and recursively

𝑬(𝑯𝟐) =
𝟐
𝜶

,

𝐄(𝑯𝟑) =
𝟏
𝜶

+
𝟐

𝜶𝟐 ,

𝐄(𝑯𝟒) =
𝟏
𝜶

+
𝟏

𝜶𝟐 +
𝟐

𝜶𝟑,

(9)

and in general,

𝐄(𝑯𝒔) =
𝟏
𝜶

 +
𝟏

𝜶𝟐 +
𝟏

𝜶𝟑 + ⋯ +
𝟏

𝜶(𝑺−𝟏) +
𝟐

𝜶𝑺

= (𝟏 − 𝟐𝜶−𝑺 + 𝜶−𝑺+𝟏)/(𝜶 − 𝟏)

(10)

where 𝐄(𝐇𝐬+𝟏) implies the expected number of 𝑬𝒇 instances before it is declared an

UNE. With this result, we can determine the detection latency of 𝑬𝒇 in terms of

physical time. With the probability α, the average detection latency ς expressed in

terms of VC is

25

𝛓 = 𝑬(𝑯𝒔+𝟏)/𝝀 (11)

Or, when expressed in terms of physical time (seconds),

𝛓 = 𝑬(𝑯𝒔+𝟏)/𝝁𝒇 (12)

Example:

We use the following simple example to demonstrate the setting of M and S

values for a target detection rate and latency. Here, the average rate of 𝐄𝐟 is 1.5, and that

of 𝐄𝐛 15.0. Our design goal is to detect 𝐄𝐟 in 520 VCs given the timely detection rate

(TR) α = 0.96, i.e., the percentage that the actual detection latency is no more than the

expected latency.

Since 𝐄𝐟 = 1.5 and 𝐄𝐛 = 15.0, we can thereby get λ = 0.091 using Equation (1). M

= 55 can be derived by plugging λ = 0.091 and α = 0.96 into Equation (2) such that

Γ(2,0.091*M) = 0.04. To detect the 𝐄𝐟 instance in 520 VCs, it means that we have

𝐄(𝐇𝐬+𝟏) = 47.320 by using ς = 520 in Equation (11). To meet the detection latency goal,

a larger S value is preferred over a smaller one, so that the false positive alarms would

be lower. By plugging S = 23, 24, and 25 respectively into Equation (10), we can obtain

𝐄(𝐇𝟐𝟒) = 44.257, 𝐄(𝐇𝟐𝟓) = 47.143, and 𝐄(𝐇𝟐𝟔) = 50.149. As a result, we choose S = 24

among the three choices because it is the largest S value which can meet the detection

latency requirement.

To evaluate the accuracy of the model, we made three major experiments to

examine (i) the actual detection latency using the model-derived parameters, i.e., S = 24

and M = 55 , (ii) the TR by varying S while M = 55, and (iii) the TR by varying M but

bounding S to 24. For each major experiment, we have 10 samples, numbered from 1 to

26

10; each sample is based on 100 runs, and the overall experimental results are plotted in

Figure 6.

Figure 6: Detection latency based on S=24, M=55.

From Figure 6 it shows that the average detection latency for each sample is

around 300 VCs, which is much lower than the model based estimation, 520 VCs. This

means that in most cases the 𝐄𝐟 instance can be detected in 520 VCs, but in some cases

the 𝐄𝐟 instance is detected in more than 520 VCs, and it is called the tardy detection rate

(RR), RR=1-TR.

Next, we measured the effects of S on TR with the change of S, and the results

are plotted in Figure 7. Among the different parameter settings, pair (S, M) = (24, 55)

gives the best experimental fit to the model based estimation of TR, which is 0.96. When

27

S is reduced to 22, TR increases to [0.96, 0.99], and when S is increased to 26, the

median of its TR becomes 0.94, which is lower than 0.96.

Figure 7: Variation of the detection rate based on M=55

Finally, we measured the effect of M on TR, and the results are plotted in Figure

8. Both the sojourn time of the 𝐄𝐟 and the detection probability increase with M. When

M is increased to 57, the mean value of TR (line marked with circle icons) is increased

to 0.97. When M is reduced to 53, the mean value of TR (line marked with diamond

icons) is decreased to 0.95.

28

Figure 8: Variation of the detection rate based on S=24.

29

CHAPTER III

PERFORMANCE OF CONTENT ANOMALY DETECTION

3.1 Experiment Configuration

A prototype of PEC was developed to evaluate its performance in a 100 Mbps

local network. The prototype has four elements, as illustrated in Figure 9. PEC and the

sendmail daemon run on a Dell PowerEdge 1420 with a Xeon 3.0 GHz CPU and 2GB

memory. The control console and message senders run in Windows XP based PCs.

The first prototype element is the message generator together with a SMTP client

to generate regular and UNE messages following the experiment instructions sent from

the control console. The control console accepts user commands (in XML) to set up

experiment parameters. It also accepts user commands to set the sizes of the blacklist,

ST, and AT. The control console also has a graphical interface to display the runtime

status of PEC, such as the detected UNE, normal messages, utilization ratio of the AT,

and the full contents of the detected UNE. The third element is the sendmail 8.14.1

SMTP daemon [35] which runs on a dedicated machine with standard port setup.

Sendmail can handle up to 20 messages per second in our experiments.

30

Figure 9: Experimental set up of UNE Detection.

The fourth element is the PEC, which is interfaced to the sendmail daemon

through its standard registration process, so that a set of callback functions are exposed

to sendmail. Sendmail can also expose basic message structures, i.e., header, message

body, end of file, etc. to PEC. PEC is implemented in the blacklist and scoreboard

threads, along with another background thread for UNE retirement of the blacklist. The

blacklist is interfaced to the Berkeley DB [36] for high level management purposes. The

table size of the (single bit) hotlist is set at 232 bits, or 512 MB. The sizes of ST, AT, the

graylist queue and the report queue were changed based on experimental goals. In all

experiments, the sizes of AT and the graylist cache are set to be M, the age threshold.

31

In this experiment, only URL links are checked by PEC. An X-mark flag is

inserted to the message header of a message if it has a URL on the blacklist of PEC. An

UNE batch is generated using a mixture of random text files downloaded from Internet,

and a spamming URL list (SUL) extracted from the spamming corpus [37]. Subject lines

and sender names were randomly generated. An UNE specification for an experiment

run includes the total number of messages and a list of URLs that would be selected

from SUL to be put into the message body. The user can specify an exact number of

times that each URL should be used and the range of the message size.

The main performance criteria include: (1) detection latency (which measures the

number of messages that passes the system since onset of an UNE wave). (2) The peak

throughput of the feature parser, blacklist, and scoreboard. (3) The performance impact

of the queue size between the blacklist and scoreboard. (4) Finally, the impacts of the

hash function on hotlist collisions, and the tradeoff between detection sensitivity,

memory size and computing cycles in the scoreboard.

Figure 10 is a snapshot showing the runtime status of PEC. The four plots

(starting from left upper corner, clockwise) represent UNE (red, upper half plot)/ regular

(green, lower half plot) mixture of a sender source, PEC detection states, average score

of all entries in ST, and AT utilization rate. The time series runs from left to right on the

screen, i.e., an event at the right side of another occurred at an earlier time instance.

32

Figure 10: A snapshot of the PEC status on the control console.

Figure 11 shows the content of the AT changed when a new FI arrives at the

scoreboard. In the left part of the figure, the header points to the youngest entry,

[414738, 3724]. The right part shows that after a new FI [124489, 176] arrives, it

becomes the youngest one, and the oldest FI [862, 1822] expires and is purged from AT

and ST.

33

Figure 11: Scoreboard operation.

Next, we measured the detection latencies under different conditions. Let d

denote the number of UNE messages divided by the number of total messages in one

experiment observation bin. The expected detection latency is equal to S/d, where

detection latency is the number of VCs elapsed from the first appearance of an FI until it

is marked as UNE. Given a d specified by the user, UNE and regular messages are

randomly placed in the bin. To eliminate potential effects of small age table size, it was

always set larger than that of the observation bin, so that the relationship between

34

detection latency and other parameters can be characterized. In all experiments, the

observation bin size was set as 2000, and every reported point was made by taking the

average of 10 different runs.

3.2 Performance Evaluation

3.2.1 Detection Latency

The first experimental result is the relationship between detection latency vs.

UNE density. The two curves in Figure 12 depict respectively the expected and

experimental values of detection latencies of a single UNE source at six different

densities (50, 100, 150, 200 …, 300 UNE/bin). The score threshold is set at 100. As

expected the detection latency decreases with the UNE density. When only one UNE

source is considered, a linear relationship between the scoreboard threshold and

detection latency was observed.

The scoreboard is designed to detect one UNE instance at a time, and the age of

every entry is affected by the densities and number of UNE sources. In the next

experiment, we examined the impact of multiple UNE sources on the detection latency,

where S=50. Given an UNE source A, six tests were made where one additional UNE

source is added to the experiment at a time. That is, at test i, UNE A is generated with i

additional UNE sources. The density of A is fixed at 100 instances per bin, where the bin

size = 2000, and the density of every remaining UNE source is increased from 50 to 300

instances/bin. We observe the change of the detection latency of UNE A in the tests, and

35

the results are plotted in Figure 13. The last curve marked as “other sources” is the

average detection latency of other non-A UNE sources.

Figure 12: Detection latency of a single UNE source.

The experimental results suggest that in general, the detection latency decreases

with the number of concurrent UNE sources. When A has the same density as other

sources, they have the same detection latency. When A has higher or equal density as

other sources, i.e., 100 vs. 50 in the first observation point, the detection latency of A is

close to its expected value, i.e., 1000. The detection latency of A becomes smaller than

its (single source) expected detection latency with increasing densities of other UNE

sources. This is because of the vacuum effect of the VCs caused by a detected UNE.

Once an UNE source is removed from the scoreboard; it will be blocked by the blacklist

0

500

1000

1500

2000

2500

50 100 150 200 250 300

Number of messages in a bin

D
et

ec
tio

n
La

te
nc

y

Experimental Value
Expected Value

36

indefinitely. As a result, densities of all other UNE remaining in the scoreboard are

increased, and therefore detection latencies are reduced. When the density of non-A

UNEs is 200 instances/bin, their measured detection latencies are 714 and 496,

respectively, close to the expected values 700 and 500.

UNE

Figure 13: Detection latency for multiple UNE sources.

In addition to the detection performance, computing cost is another critical issue

for PEC. For this purpose, we first evaluated different modules (feature parser, blacklist

checker, and scoreboard) in isolation, and then tested the whole system with all modules

integrated together.

3.2.2 Throughput of Feature Parser

The feature parser is benchmarked by message bodies embedded with randomly

generated URLs. The URL parser is implemented by a light-weight deterministic finite

37

automaton (DFA). The input of the feature parser is the message bodies, whose average

size is from 1.5 KB to 7.5 KB containing 2 URLs on average. From Figure 14 it shows

that the processing capability decreases as the size of a message body increases. We did

not consider MIME parsing because sendmail can separate the header and body from a

message.

Figure 14: Throughput of feature parser.

3.2.3 Throughput of Blacklist Checking

Nowadays, URL links can contain much more than a simple domain name

followed by some path. Therefore it is necessary to evaluate the sustained throughput

when long and complex scripts are included in the URL. The blacklist is benchmarked

by randomly generated URLs of a wide range of lengths, and the results are plotted in

Figure 15. The main operations include the SDBM hash value generation, hotlist lookup,

and the graylist cache update. The UNE database access is not considered in the

0

5

10

15

20

25

30

1.5K 3.0K 4.5K 6.0K 7.5K

Size of Mial Body (K Bytes)

Th
ro

ug
hp

ut
 (1

00
0

Bo
dy

s/
se

c

38

benchmark. The results suggest that high speed URL parsing, e.g., 300k to nearly 1M

links can be parsed by commodity hardware.

Figure 15: Throughput of the blacklist checking.

3.2.4 Scoreboard Throughput

The last, but not least throughput measure is that of the scoreboard. The

scoreboard is benchmarked by randomly generated 32-bit unsigned integers, and

experimental results show that it can process 1.2 M requests per second.

The two threads for blacklist and scoreboard communicate through the graylist

queue and the report queue. The two threads use the mutex primitive to make mutually

exclusive access to the graylist queue. As a stress test, one million hash values are

directly generated by a random number generator and then fed to the blacklist and

scoreboard to simulate the extreme condition that the STMP, URL parsing and hashing

0

100

200

300

400

500

600

700

800

900

1000

30 60 90 120 150

URL length (bytes)

Th
ro

ug
hp

ut
 (

K
UR

Ls
/s

ec

39

were done in negligible time. Figure 16 depicts the time needed for handling 1 million

hash values with change of the queue size. The results suggest that when the queue size

is smaller than a threshold, the processing time would grow rapidly because of rapidly

increasing overhead for the mutex operations because of inadequate queue sizes. Beyond

the threshold, the queue length has minimal impact on the throughput.

Figure 16: Scoreboard throughput vs. queue sizes

Increasing the hash length will reduce collisions but it comes at the cost of

increased memory sizes. In this part of experiments, we investigated the relationship

between the collisions and table sizes for the hotlist, and the relationship between

detection sensitivity, sizes of ST and AT tables, and the depths of link lists in the

scoreboard.

212.898

98.95

11.8 7.77 5.28 3.83 2.930

50

100

150

200

250

5 10 50 100 200 400 600

queue size (K bytes)

ex
ec

ut
io

n
tim

e
(s

ec
s)

40

3.2.5 Collision Ratio of Black List

The hotlist is a single-bit table, so that when the hash length is 32 bits long, 512

MB of memory space suffices. Experimental results show that the collision ratio is very

close to zero after 1M randomly generated URLs are hashed. The same cannot be said

when we reduce the hash length, and the experimental results are given in Figure 17.

Figure 17: The collision ratio in blacklist.

There exists a more complex relationship between detection sensitivity, the sizes

of AT and ST, score threshold S, and the depths of the linked lists in the ST. For

simplicity, we consider S a fixed constant in this experiment. In general, we observed

that increasing of M would increase UNE detection sensitivity because of longer staying

of an FI in the scoreboard. As a result, the chance of hash collisions with other FIs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

65 13
1

19
6

26
2

32
7

39
3

45
8

52
4

58
9

65
5

72
0

78
6

85
1

91
7

98
3

10
48

of issued strings (1000)

C
ol

lis
io

n
ra

tio

20-bit
22-bit
24-bit
26-bit
28-bit
30-bit
32-bit

41

increases. This will lead to longer linked lists in ST. Similarly, increasing of 𝑯𝑭𝑰
𝑨 (for

the pointer table addressing) should reduce the depths of linked lists in ST.

To gain a sense of the relationships between these parameters, we conducted a

series of experiments, where S is fixed at 50. The pointer table size is changed in

different experimental runs to observe the relationship between M and the depths of

linked lists. That is, given a pointer table size, the maximum depths of linked lists are

measured against different M values, and the results are reported in Table 1. In this table,

the most left column is the bit length of 𝑯𝑭𝑰
𝑨 , which also represents the size of the pointer

table. For instance, when 𝑯𝑭𝑰
𝑨 = 𝟐𝟎 bits, it means the pointer table has 1M entries. The

top most rows represents the maximum depth of linked lists in ST, and a table entry

indexed by the (table size, depth) represents the smallest M value (measured in

thousands, or k) necessary to observe the said depth in ten experimental runs. For

instance, if 𝐻𝑭𝑰
𝑨 = 𝟐𝟐 bits, and M = 40k, one can expect the depth of linked lists in ST to

be one most of the time. But if M = 50k, then the depth of some linked lists would likely

be 2 or less.

42

Table 1: The relationship between 𝑯𝑭𝑰
𝑨 , M, and linked lists.

(depth)

2 3 4 5 6 7

20 20k 70k 167k 297k 582k 657k

22 45k 165k 337k

24 145k 515k

26 375k

28 520k

30 650k

It is observed that spammers often used different URL expressions that point to

the same web page, e.g., replacing the last string followed by the last “/” by another one.

Tracking domain names is also a good way to differentiate UNE sources and it can

significantly increase the hit ratio in the blacklist. However, when two users operate

within the same domain name such as http://www.geocities.com/user1 and

http://www.geocities.com/user2, using domain name alone for filtering could lead to

significant false positive rates. A white list of domain names is needed to solve this

problem. In this test sample, the number of tested Spammer URLs is 66501, and those

are all different. Table 2 shows the result of testing how the three ways increase the hit

ratio.

43

Table 2: Hit ratio increased by handling different prefixes.

Method Hit Ratio

Increased

Example

Remove the last

character

11.9% (1) and (2)

Remove the string

after the last “/”

27.3% (3) and (4)

Use domain name 61.2% (5) and (6)

(1)mailshere.biz/profile/41991

(2)mailshere.biz/profile/41996

(3)appliancekiosk.geappliances.com/NASApp/ClickThru/ClickThru?q=df-

1kkhQLEGhj6FEsKyiWNXKsRR

(4)appliancekiosk.geappliances.com/NASApp/ClickThru/ClickThru?q=9b-7-

XFQSIs_-MZdLePIxf09dRR

(5)www.slammer7piggy.com/?0gQF6VyMLeif0QXXZ

(6)www.slammer7piggy.com/?dXKwf0tqXJMLeiZ

44

CHAPTER IV

DETECTION OF PACKET FLOW ANOMALY (ROUND TRIP TIME ESTIMATION)

4.1 Background

In networks, not all anomalies result from the content. Instead, the anomalies can

exist in the rate behavior, which is not compliant to specific protocols. For flows

attempting to gain more bandwidth than others, they do not necessarily follow a well-

defined congestion control protocol. Flows that consume a large fraction of available

bandwidth could endanger the stability of the Internet, as they frequently give a

bandwidth load that is inelastic. Therefore it is a serious topic for us to minimize

potential congestion collapse due to uncontrolled, high rate traffic loads. To maintain

fair access of the network bandwidth, some techniques such as packet queuing and

dropping can be applied to filter inelastic flows. However, no matter what kind of filter

is employed, we still need to know when anomalous flows occur before they can be

controlled.

The detection of flows with uncontrolled bandwidth consumption is important to

cloud service providers such as Amazon EC2 and Microsoft Azure as well as content

providers who are charged by the amount of the data transfer. Malicious bandwidth

consumption will result in service providers and operators increasing costs to enhance

network infrastructure and maintain the certain quality of service of networks.

In this chapter, I focus on detecting flows not complying with well-defined TCP

protocols. TCP is a popular protocol in networks to ensure data can be delivered

45

correctly from client to server and avoid traffic congestion. Flows driven by unknown

TCP protocols may be too aggressive in consuming the bandwidth, and thus endanger

the stability of the Internet. In an enterprise gateway, two parameters that can be

observed are the number of packets and inter-packet time. Unlike the TCP source, the

middle point of networks is unable to know the congestion window (cwnd) size, which

controls the behavior of flow rates, exactly. Since the cwnd changes every round trip

time (RTT), accurate RTT estimation is an important step to infer the cwnd by counting

the number of packets within a RTT. The network environment is noisy, as packets can

be lost, delayed and retransmitted. It is challenging to obtain the accurate estimates of

RTT and cwnd, because estimation errors can build up rapidly.

Several approaches are studied for obtaining accurate RTT estimates. I proposed

the EWMA-Lomb-periodogram method to increase the accuracy of RTT estimation. The

experiment outcomes show that EWMA-Lomb-periodogram is more accurate than the

DFT filter bank and genuine Lomb-periodogram. EWMA-Lomb-periodogram takes

unevenly spaced inter packet time as samples and applies the exponential weighted

moving average to samples to reduce noises before they are fed into Lomb-periodogram.

Due to the self-clocking property, the frequency resulting from RTT’s will be one of the

major components in the spectrum. Thus, RTT and cwnd can be estimated later.

We treat the change of the flow rate as states of the protocol behavior, which can

be secured through the change of cwnd, i.e. the first order of the cwnd difference. In the

regular TCP protocol, additive increase (AI) and multiplicative decrease (MD) are two

major behavior states. Typically, AI is a gradual behavior, but MD occurs instantly.

46

Applying the low-pass filter to cwnd changes increases the risk of not detecting the

occurrence of MD. On the other hand, the high-pass filter cannot reduce the noise when

the flow is in the AI state. I defined 8 different behavior states and proposed using

CUSUM banks to detect the flow behavior. CUSUM is not influenced by a sudden noise

and its detection sensitivity can be set by the CUSUM parameters. By properly setting

CUSUM parameters, we can make the CUSUM detection system not only responsive to

changes but also robust to noises.

Because TCP protocols define their own state transitions, the states identified by

CUSUM banks will be fed into the finite state machine (FSM), constructed based on the

well defined TCP protocol to check whether a transition is legal or not. Recognizing that

no estimation and detection is perfect, the FSM proposed in this dissertation is lossy and

an anomaly threshold is used as a reference to count the number of aberrant transitions

and that of normal transitions. Let R denotes the ratio of the number of aberrant

transitions to that of normal transitions, experiment outcomes show the flows of

undefined protocols can be identified based on the R-pattern. Figure 18 lists the

challenges, solutions and performance criteria of detecting non-cooperative flows in

networks.

47

Figure 18: Challenges and solutions of anomalous flow detection.

48

4.2 Existing Solution

Traffic anomalies such as failures and attacks are viewed as commonplace in

today's computer networks. It is a fundamental part of day-to-day network operations to

identify, diagnose and treat anomalies in a timely fashion. Without this kind of

capability, networks are not able to operate efficiently or reliably. [38] utilized wavelet

filters, a pseudo-spline filter tuned at specific aggregation levels will expose distinct

characteristics of each class of anomaly to expose the details of both ambient and

anomalous traffic. [39] adopted an unsupervised machine learning technique to automate

traffic classification and application identification. Because any node can send any type

of traffic at any time, [40] dynamically produced hybrid traffic definitions for traffic

characterization and automatically groups traffic into minimal clusters of conspicuous

consumption. [41] classified Internet traffic through utilizing supervised machine

learning based on a Bayesian trained neural network. [42] used the technique of

observing and identifying patterns of the host behavior at the transport layer with no

access to packet payload. [43] proposed adaptive NetFlow, to address many

shortcomings of NetFlow by dynamically adapting the sampling rate to achieve

robustness without sacrificing accuracy. [44] presented the first large-scale exploration

of the power of the subspace method which characterizes network-wide anomalies by

fusing information from flow measurements taken throughout a network. For anomaly

detection for large scale networks, a Kalman filter can be used to filter out the “normal”

traffic [45]. Principal component analysis was used to diagnose traffic anomalies [46], to

accurately detect when a volume anomaly is occurring, and correctly identified the

49

underlying origin-destination flow which is the source of the anomaly. Two

unsupervised clustering algorithms, namely K-Means and DBSCAN [47] were proposed

for network traffic classification. The experimental results indicated that DBSCAN

produces better clusters; although, DBSCAN has lower accuracy compared to K-Means.

[48] fed hand-classified network data to a supervised Naive Bayes estimator and showed

it is able to achieve about 65% accuracy on per flow classification.

Several methods were proposed to deal with bandwidth consumption issues.

Stabilized RED, SRED [49] was proposed to maintain the flow fairness and also

identified flows that may be misbehaving, i.e. taking more than their fair share of

bandwidth. A game theoretic framework [50] was used to detect distributed bandwidth

attacks with needed sampling rates. Different from above approaches, our goal is to

classify flows of different protocols based on their elasticity, which is the critical

concept of this dissertation, with the minimum false rate.

[51] showed that using feature distributions, anomalies naturally fall into distinct

and meaningful clusters. These clusters can be used to automatically classify anomalies

and to uncover new anomaly types. A simple architecture called P4P was proposed in

[52] to allow more effective cooperative traffic control between applications and

network providers and thus achieve efficient and fair utilization of Internet network

resources. [53] proposed a way to detect abrupt changes in the network traffic based on

change-point detection theory and utilized a threshold of test statistics to achieve a fixed

rate of false alarms.

50

4.3 Limitation of Statistical Models to Detect Non-cooperative Flows

Non-cooperative TCP flows can be modeled from different aspects. One option

is to model abnormal TCP flows as being selfish, where they do not reduce their flow

rate when the network is congested.. To translate this seemingly simple observation into

quantified, measurement based assessments for on-line traffic, we first give some basic

insights on the relationship between different parameters in a well know traffic model

[54]. Here, given a time interval 𝛕 seconds and normal TCP flow throughput 𝝀� pkts/sec,

a TCP flow is regarded anomalous if its throughput λ>𝝀�+ 𝛋, where 𝛋 is the excessive

throughput and 𝝀� as shown in (13) is the long-term steady-state TCP throughput of the

regular TCP flow.

𝝀� = 𝐦𝐢𝐧

⎝

⎜
⎛𝐖𝐦𝐚𝐱

𝐑𝐓𝐓
,

𝟏

𝐑𝐓𝐓�𝟐𝐛𝐩
𝟑 + 𝐓𝟎 𝐦𝐢𝐧 �𝟏, 𝟑 �𝟑𝐛𝐩

𝟖 � 𝐩(𝟏 + 𝟑𝟐𝐩𝟐)
⎠

⎟
⎞

 (13)

It is straightforward to observe that when TCP flows unfairly consume the

network bandwidth, 𝛋 is proportional to 𝛕. However, equation (13) is the mathematical

model of the TCP throughput in the steady state, but most of its variable values, i.e.,

maximum window size 𝐖𝐦𝐚𝐱, the round trip time 𝐑𝐓𝐓, the bottleneck bandwidth 𝐛 and

the packet loss probability 𝐩, cannot be measured at an enterprise gateway for a large

number of flows. In addition, the steady state model is incapable of detecting the change

of transient behaviors timely. Due to aforementioned reasons, the statistical model has

its limitation for identifying anomalous packet flows.

51

 A good indicator to show the TCP transient behavior is the congestion window,

cwnd, the parameter that TCP utilizes to avoid the network congestion. Unfortunately,

this parameter cannot obtained from throughput based measurements of TCP flows at a

measure point, because it is not any part of Equation (13). To attack this problem, we

will divide the traffic flow analysis problem into multiple stages, each of which is

responsible for acquiring certain parameters, in order to infer TCP flows’ behaviors. To

facilitate the discussion, we first summarize major terminologies and their symbols in

Table 3 below.

Table 3: Equation symbols.

Symbol Definition

𝐅𝐢 the i-th flow

𝐖𝐢(𝐭) congestion window of 𝐅𝐢 at time t

𝐪(𝐭) bottleneck queue length at time t

L upper bound of 𝐥(𝐭)

𝐑𝐓𝐓𝐢(t) round trip time of the flow 𝐅𝐢 at time t

𝐑𝐢(𝐭) rate of the flow 𝐅𝐢 at time t

𝐑(𝐭) total incoming packet rate at time t

𝐍𝐋(t) total number of packets lost at a location.

𝐏𝐢(𝐭) probability of the packet lose of 𝑭𝒊 at time t

Next, we observe basic challenges in modeling of TCP flow behaviors based on

packet losses. Mathematically, the number of output packets is equal to that of input

52

packets plus the number of lost packets and remaining usable queue capacity. That is,

one can have

𝑵𝑳(𝐭) = 𝐦𝐚𝐱 (𝟎, ∫ (𝐑(𝛕) − 𝐁)𝐝𝛕𝐭+𝚫𝐭
𝛕=𝐭 -(L-q(t))) (14)

By substituting 𝐑(𝛕) = ∑ (𝟏 − 𝐏𝐢(𝛕))𝐖𝐢(𝛕)/𝐑𝐓𝐓𝐢(𝛕)𝐢 into Equation (14), we obtain

𝑵𝑳(𝐭) = 𝐦𝐚𝐱 (𝟎, ∑ ∫ (𝟏 − 𝑷𝒊(𝝉))𝑾𝒊(𝝉)/𝑹𝑻𝑻𝒊(𝝉) − 𝐁)𝐝𝛕𝐭+𝚫𝐭
𝛕=𝐭𝐢 -(L-

q(t))).
(15)

To obtain ∑ 𝐖𝐢(𝐭)𝐢 , we need to know the parameters: 𝐑𝐓𝐓𝐢 as well as the number of

packets lost at the bottleneck and during the transmission. From the aforementioned

discussion, we conclude that how to make precise, robust estimation on RTT for TCP

flows at a gateway is the foundation to classification of congestion control behaviors. In

this discussion, we mainly focus on congestion control behaviors depicted in Figure 19;

They are AIAD (additive increase, additive decrease), MIMD (multiplicative increase,

multiplicative decrease), AIMD (additive increase, multiplicative decrease), and

MIAD(multiplicative increase, additive decrease).

53

AI
MD

cwnd

time

AIMD

AI AD

cwnd

time

AIAD

MI MD

cwnd

time

MIMD

cwnd

time

CICD
CI

CD

Figure 19: Congestion window behaviors.

4.4 Round Trip Time (RTT) Estimation

To infer 𝐜𝐰𝐧𝐝𝐢(𝐭) of 𝐅𝐢, one is able to count the number of packets every fixed

interval. Let 𝐂𝐂 denote the cumulative counter. Then the AI behavior can be identified

by checking if 𝐂𝐂[𝐧 + 𝟏] − 𝐂𝐂[𝐧] = 𝐍𝟐 assuming the sampling time is exactly equal to

the N RTTs, where n indexes the sample number. However, this assumption is not true

because RTTs are variable and the boundary of two RTTs should be identified clearly.

Hence, if the sampling interval is less than one RTT, then the difference between

54

𝐂𝐂[𝐧 + 𝟏] 𝐚𝐧𝐝 𝐂𝐂[𝐧] can be negative. In addition, 𝐂𝐂[𝐧 + 𝟏] − 𝐂𝐂[𝐧] = 𝐍𝟐 cannot

hold if the sampling period cannot correctly respond to the physical 𝐑𝐓𝐓𝐢(t).

Furthermore, the RTTs of all flows are not identical. It is infeasible to identify all

packets within the same window just by counting packets in a fixed time interval.

Figure 20 is an example showing that the incorrect boundary of RTTs can lead to

incorrect cwnd estimates. In an AI state, the cwnd value will increase by 1 every other

RTT, i.e. 𝐜𝐰𝐧𝐝(𝐑𝐓𝐓𝐢+𝟏) − 𝐜𝐰𝐧𝐝(𝐑𝐓𝐓𝐢) = 1 . However, 𝐂𝐂[𝐧 + 𝟏] − 𝐂𝐂[𝐧] ≠ 𝟏 if

the burst size is overestimated or underestimated in the AI state. Hence, the ituitive

packet counting without the RTT knowledge will lead to the wrong inference of the TCP

behavior.

Underestimated
burst size 2 pkts3 pkts

5 pkts5 pkts

CC[n+1]-CC[n]=-1≠1

CC[n+1]-CC[n]=0≠1

(i+1) th
burst

i -th
burst

timep4p3p2p1

(i+2) th
burst

RTTi RTTi+1 RTTi+2Actual RTT

Overestimated
burst size

AI flow state

Figure 20: Incorrect window estimates based on incorrect RTT boundary.

55

In order to obtain the cwnd value, acceptable RTT estimation plays the critical

role. In the following sections, both DFT and Lomb periodgram are studied to verify the

accuracy of RTT estimates.

4.5 DFT-based RTT Estimation

Rather than the CC method, the discrete Fourier transform, DFT, is one of the

options to capture the frequency of the self-clocking property of TCP flows. The above

diagram shows a system is designed to obtain the major frequency components and

derive the round trip time dynamically. L denotes the window size, which is set to 256

by default. The i-th sampling frequency 𝑭𝒔 is derived by Equation (16), where 𝐈𝐏𝐓𝐤

means the k-th inter packet time.

𝑭𝒔(𝒊) = 𝑳/ � 𝑰𝑷𝑻𝒌

𝒊+𝑳−𝟏

𝒌=𝒊
 (16)

Here the sampling intervals in DFT are assumed even though no such of a sampler is

used to capture IPTs. Based on Equation (16), the average inter packet time X(n) is

expressed as

𝑿(𝒏) = 𝟏/𝑭𝒔(𝒏) (17)

Figure 21 shows that L samples are fed into the uniform DFT filter banks, of

which the decimation coefficient is M. If M=2m, then DFT can be performed by fast

Fourier Transform (FFT). Given 𝐇(𝐳) is the transfer function of the casual low-pass

digital filter, then 𝐇𝟎(𝐳) = 𝐇(𝐳) denotes the prototype filter and 𝐇𝐤(𝐳) the k-th band

filter. Then we have 𝐇𝐤(𝐳)= 𝐇𝟎(𝐳)(𝐳𝐖𝐤), where 𝐖 = 𝐞−𝐣𝟐𝛑/𝐌.

56

Figure 21: RTT estimator – uniform sampling

Let N denote the order of the low pass filter. Given

𝑯(𝒛) = � 𝒛−𝒌𝑬𝒌(𝒛𝑴)
𝑴−𝟏

𝒌=𝟎
 (18)

where 𝑬𝒌(z) is the k-th polyphase component of H(z). The decimated DFT filter bank

needs 𝐌
𝟐

𝐥𝐨𝐠𝐌 + 𝐍 multiplers which is much less than NM multipliers for computation.

The higher order of 𝐄𝐤(𝐳) will lead to the sharper cutoff frequency and higher stopband

attenuation

57

⎣
⎢
⎢
⎢
⎡

𝑯𝟎(𝒁)
𝑯𝟏(𝒁)
𝑯𝟐(𝒁)

⋮
𝑯𝑴−𝟏(𝒁)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

𝟏 𝟏 𝟏

𝟏 𝑾−𝟏 𝑾−𝟐
⋯ 𝟏
⋯ 𝑾−(𝑴−𝟏)

𝟏 𝑾−𝟐 𝑾−𝟒

⋮ ⋮ ⋮
𝟏 𝑾−(𝑴−𝟏) 𝑾−𝟐(𝑴−𝟏)

⋯ 𝑾−𝟐(𝑴−𝟏)

⋱
…

⋮
𝑾−(𝑴−𝟏)𝟐 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡ 𝑬𝟎(𝒁𝑴)

𝒛−𝟏𝑬𝟏(𝒁𝑴)
𝒛−𝟐𝑬𝟐(𝒁𝑴)

⋮
𝒛−(𝑴−𝟏)𝑬𝑴−𝟏(𝒁𝑴)⎦

⎥
⎥
⎥
⎥
⎤

,

(19)

Equation (19) shows the transfer function of the DFT filter bank is equal to the inverse

DFT matrix multiplying delayed input signals. The output of the transfer function is the

spectrum that represents the amplitudes of all frequency components.

To verify the RTT estimation outcome from DFT, an experiment based on NS2

is configured as shown in Figure 22, where 50 TCP-Reno flows are set to run in 60

seconds. The bandwidth and delay for the link 𝐒𝐢 − 𝐎𝟏 and 𝐎𝟐 − 𝐑𝐣 are 10 Mb/s and 10

ms respectively. For the link 𝐎𝟏 − 𝐎𝟐, its bandwidth is 100Mb/s and delay is 20 ms.

The sampling frequency is derived based on Eq. (16). The DFT obtains a sequence of

RTTs by computing the spectrum every 256 input samples.

58

S2

S1

Sn

R1

R2

Rn

O1 O2

Spectrum
Analyzer

10 Mbps, 10 ms

20 Mbps, 20 ms

Figure 22: Network topology of RTT estimation.

Figure 23 shows the spectrum of two TCP flows using DFT. In this dissertation,

the k major frequency components are defined as those with the largest k amplitudes.

Among major frequencies, the lowest one is selected to compute the estimated RTT

because the frequency of the TCP self-clocking is lower than that of network noises. In

the experiment, k is set 3.

59

Figure 23: Spectrum of two TCP flows.

Figure 24 plots the RTT estimates, which are the inverse of the lowest major

frequency and the real RTTs, which are obtained from the NS2 trace variable rtt_. The

real RTTs expressed by the green star dynamically change in the range [80 90] ms,

However, most of RTT estimates represented by the red square are much larger than real

ones.

60

Figure 24: RTT estimates and real RTTs.

4.6 EWMA Lomb-based RTT Estimation

Since the inter packet time is not evenly spaced and the boundary of packets of

two adjacent congestion windows is influenced by network uncertainties such as packet

loss, queuing dynamics and packet retransmission, it is almost infeasible to identify each

𝐑𝐢(𝐭) with 100% accuracy to estimate the congestion window size 𝐜𝐰𝐧𝐝𝐢(𝐭) as the

reference of the flow behavior.

Instead of counting the number of burst packets using the fixed sampling period,

we recognize the time-varying property of RTT, which is regarded as a constant in most

TCP models. We employ the Lomb periodogram [54][55][56] to obtain the power

61

spectral density (PSD) estimates directly from irregularly sampled time series such as

the inter packet time, without resampling, to dynamically estimate uncertain RTT values,

which are key factors to distinguish two adjacent bursts in the measure point. Packets are

grouped to a burst if they are sent within the same congestion window.

Lomb periodogram is an approach used to analyze data with highly irregular

sampling, especially if there are long stretches without data. Lomb periodogram is better

than the power spectrum for bottleneck links where there would be a retransmission

timeout such that the sender has no data to transmit before the timer expires. Given the

time series {𝐱𝐢} measured at times 𝐭𝐢, 𝐢 = 𝟏, 𝟐 … 𝐧, with mean 𝐱� and standard deviation

𝛔𝐱,

𝐋(𝛚) = 𝟏/𝟐𝝈𝒙
𝟐 �

�∑ (𝒙𝒊 − 𝒙�)𝒄𝒐𝒔𝒊 𝝎�𝒕𝒊 − 𝝉(𝝎)��
𝟐

∑ 𝒄𝒐𝒔𝟐
𝒊 𝝎�𝒕𝒊 − 𝝉(𝝎)�

+
�∑ (𝒙𝒊 − 𝒙�) 𝒔𝒊𝒏 𝝎�𝒕𝒊 − 𝝉(𝝎)�𝒊 �

𝟐

∑ 𝒔𝒊𝒏𝟐
𝒊 𝝎�𝒕𝒊 − 𝝉(𝝎)�

�

(20)

and

𝛕(𝛚) =
𝟏

𝟐𝛚
𝐭𝐚𝐧−𝟏 ∑ 𝐬𝐢𝐧 𝟐𝛚𝐭𝐢𝐢

∑ 𝐜𝐨𝐬 𝟐𝛚𝐭𝐢𝐢
. (21)

Here 𝛕(𝛚) is an offset that makes 𝐋(𝛚) invariant to time translation. Therefore, we can

consider the Lomb periodogram as a method to fit a sinusoid of angular frequency 𝛚 to

the data [57] based on linear least squares. Hence, for each 𝛚, Equation (20) is

equivalent to fitting data into the mode

62

𝐱(𝐭) = 𝐚 𝐜𝐨𝐬(𝛚𝐭) + 𝐛 𝐬𝐢𝐧(𝛚𝐭), (22)

based on the least-square criteria and 𝐋(𝐰) = 𝐚𝟐 + 𝐛𝟐. The algorithm to compute the

Lomb periodogram makes indirect use of the FFT and requires O(n log n) operations.

Let 𝐰∗ be the angular frequency that maximizes 𝐋(𝐰) on a suitable grid over the

interval, then the estimate 𝛉� of the RTT is defined by

𝛉� =
𝟐𝛑
𝐰∗, (23)

It is common that the measured data points are the sum of a periodic signal and

independent Gaussian noise. If we are trying to determine the presence of such a

periodic signal, we want to be able to understand “How significant is a peak in the

spectrum𝐋(𝛚)?” The null hypothesis in the question is that the data values are

independent and follow the Gaussian distribution. In other words, null hypothesis here

means the significance level of any peak in 𝐋(𝐰) that we can see.

Another nice property of the Lomb normalized periodogram is that the viability

of the null hypothesis can be tested fairly rigorously [55]. In the case of the null

hypothesis, 𝐋(𝛚) has an exponential probability distribution with unit mean. Given 𝛚

and 𝐋(𝛚) = 𝐳 in M independent frequencies, the probability of none values greater than

z is (𝟏 − 𝐞−𝐳)𝐌 such that

𝐏(> 𝒛) = 𝟏 − (𝟏 − 𝐞−𝐳)𝑴, (24)

is the false-alarm probability of the null hypothesis [55]. A small value of P for the false-

alarm probability indicates a highly significant periodic signal. In general M depends on

the number of frequencies sampled, the number of data points N, and their detailed

63

spacing. If the data points are approximately equally spaced, M is very nearly equal to

N.

Figure 25 is the Lomb-based RTT estimation system consisting of several

components as follows: (1) Sample feeding, (2) EWMA IPT smoothing, (3) Enough

number of samples, (4) Flow ID dispatching and threshold signaling, (5) Block data

copy into ring buffer, (6) Run Lomb periodgram algorithm, (7) Retrieve the major

frequency components and (8) Obtain RTT estimates of each flow.

Compute the IPT for each flow ID

Smooth IPT’s by EWMA

Lomb Thread N

Lomb Thread 2The number of samples reach the
threshold

Assign the fid and samples to the task
queue

Lomb Thread 1

Circular
buffer

Signal a thread

Block data copy buffer_write buffer_read

Lomb FFT
Algorithm

Blocked
thread

RTT
Estimates

Figure 25: A prototype architecture of the Lomb-based RTT estimation system.

64

Two key parameters of the Lomb periodogram are oversampling frequency, ofac,

and high frequency, hifac, are set as 4 and 2, respectively. The number of different

frequencies 𝐍𝐩 returned by the program is then given by

𝑵𝒑 =
𝒐𝒇𝒂𝒄 ∗ 𝒉𝒊𝒇𝒂𝒄

𝟐
∗ 𝑵, (25)

where N is the number of data samples.

The experimental topology, which consists of 50 source nodes, 2 router nodes,

and 50 receiver nodes, is the same as in Figure 22. The transmission delay is 10 ms

between 𝐒𝐢 and 𝐎𝟏, 20 ms between 𝐎𝟏 and 𝐎𝟐, as well as 10 ms between 𝐎𝟐 and 𝐑𝐢,

where 𝐢 = 𝟏, 𝟐, … , 𝟏𝟎. The bandwidth of all links is set to 5 Mbps except that the link

𝐎𝟏 − 𝐎𝟐 is 100 Mbps. Each 𝐒𝐢 delivers a TCP-Reno flow to the destination 𝐑𝐢 over the

patch of 𝐒𝐢 − 𝐎𝟏 − 𝐎𝟐 − 𝐑𝐢. IPT’s of all flows are collected at 𝐎𝟐.

There exist a large number of noises in the IPT sequence such that the amplitudes

of noise frequencies are non-neglected in the Lomb-periodogram. To eliminate noises in

the IPT sequence, an exponentially weighted moving average, EWMA, 𝐈𝐏𝐓𝐞𝐰𝐦𝐚(𝐭 +

𝟏) = (𝟏 − 𝛂) ∗ 𝐈𝐏𝐓𝐞𝐰𝐦𝐚(𝐭) + 𝛂 ∗ 𝐈𝐏𝐓(𝐭) is proposed in this work to filter signals of

each flow. The EWMA approach is widely adopted in the network congestion control,

e.g. RFC2988 applies EWMA to compute the smooth RTT. The EWMA-Lomb

approach leads to more accurate and stable RTT estimation compared to the regular

Lomb approach.

65

Figure 26: Lomb periodgrams.

Figure 26 shows the snapshot of Lomb periodogram of one of 50 simulated TCP

flows based on the regular Lomb periodogram and EWMA Lomb periodogram with

different weighting factors from 𝛂 = 𝟎. 𝟓, 𝛂 = 𝟎. 𝟐𝟓 to 𝛂 = 𝟎. 𝟏𝟐𝟓. In the diagram, the

regular Lomb plot cannot generate strong amplitude of the self-clocking frequency,

12.37 Hz, compared to those of noises. However, EWMA Lomb periodogram tends to

enhance the major frequency components and suppress noisy components when 𝛂

becomes smaller. Once the self-clocking frequency is obtained, the estimated RTT is

therefore equal to the inverse of the self-clocking frequency. Given a Lomb

66

periodogram, the major frequency components are defined as those with largest k

amplitudes and their false alarm probability is less than a predefined value p. In this

dissertation, k is set to 3 and p 0.01%. Among major components, the one with the

lowest frequency is considered related to RTT due to the TCP self-clocking property,

while other high frequency ones are due to network noises such as packet loss, packet

retransmission and queuing delay.

Figure 27 shows RTT estimates of a NS2 trace using Lomb and EWMA Lomb

approaches respectively. The green marks are real time RTT’s recorded in NS2 and red

marks are RTT estimates based on the estimation. The real RTT’s are mostly between 80

ms or 90 ms, except for the simulation time between 0.69 seconds and 2.15 seconds for

which RTT’s are in between 0.11 and 0.14 seconds.

67

Figure 27: Lomb-based RTT estimates for a trace.

Figure 27 also shows that RTT estimates based on the EWMA-Lomb are

resistant to the noises and close to the real RTT values. However, the regular Lomb

method may generate RTT estimates far away from the real one due to the influence of

high frequency noises. Based on the diagram, most of EWMA Lomb based RTT

estimates are very close to the real RTTs although a few outliers can still be observed.

Because no estimation is 100% perfect, we wonder the error rate of RTT estimates based

on Lomb and EWMA Lomb respectively.

To understand the estimation error, let root-mean-square error, RMSE, be

defined as follows

68

𝐑𝐌𝐒𝐄(𝛉�) = �𝐄[(𝛉� − 𝜽(𝒕))𝟐], (26)

where 𝛉� is the estimator with respect to the estimated parameter 𝛉. Since the real RTT

changes dynamically and the number of real RTTs from the trace files is more than that

of RTT estimates, 𝜽�, the mean of real parameters between two parameter estimates, is

used instead of 𝜽 in Equation (26). Let 𝐑𝐓𝐓� denote the RTT estimator, 𝐑𝐓𝐓𝐢 denote the

i-th RTT estimate at time 𝐭𝐢, and 𝐑𝐓𝐓(𝐭𝐣) the real RTT at time 𝐭𝐣 then

𝐑𝐌𝐒𝐄�𝐑𝐓𝐓�� = �𝐄 ��𝐑𝐓𝐓𝐢 − �
𝐑𝐓𝐓(𝐭)

(𝐭𝐢 − 𝐭𝐢−𝟏) 𝐝𝐭
𝐭𝐢

𝐭=𝐭𝐢−𝟏

�
𝟐

�, (27)

In Figure 28, RMSE’s of 10 flows based on EWMA Lomb are smaller than those of pure

Lomb for the same trace.

Let 𝐏𝐞𝐫𝐫 denote the error percentage such that

𝑷𝒆𝒓𝒓 = 𝐄 �
𝐚𝐛𝐬(𝛉� − 𝜽�(𝒕))

𝜽�(𝒕)
� ∗ 𝟏𝟎𝟎, (28)

Figure 29 shows the 𝐏𝐞𝐫𝐫 of Lomb-based RTT estimates and that of EWMA-Lomb RTT

estimates for 10 out of 50 TCP flows. The mean of 𝐏𝐞𝐫𝐫 of TCP Reno flows is 24% and

10% for regular Lomb and EWMA Lomb respectively. Hence the RTT estimation based

on the EWMA IPTs can result in acceptable RTT estimation errors.

69

Figure 28: RMSE of RTT for 10 of 50 simulated TCP flows.

Figure 29: 𝐏𝐞𝐫𝐫 for 10 of 50 simulated TCP flows.

70

CHAPTER V

DETECTION OF PACKET FLOW ANOMALY (BEHAVIOR IDENTIFICATION)

5.1 Non-deterministic Periods for Cwnd Adjustments

If RTTs of a TCP flow 𝐟𝐢 are estimated using the EWMA Lomb periodogram,

then, in theory, its corresponding ∆𝐜𝐰𝐧𝐝(𝐭) can be inferred by counting the number of

arrival packets during 𝐑𝐓𝐓𝐢. In realty, packets can be lost and retransmitted in any RTT.

Additionally, there exist RTT estimation errors and unaligned RTT boundaries. There

are two types of errors that can be regarded as the offset error and the scale error. These

two errors are sometimes correlated because the accumulated scale error will also lead to

the offset error.

time

Cwnd

Real RTT Real RTT

RTT
EstimateOffset

Error

RTT
Estimate

Scale
Error

packets

Figure 30: Two types of cwnd estimation errors

71

Recognizing that the error cannot be completly eliminated, we propose several

approaches to decrease the influence of errors when we are detecting ∆𝐜𝐰𝐧𝐝(𝐭), which

is an important parameter to determine the protocol behavior. In this chapter, all possible

behaviors are classified into one of following states, i.e. constant rate (CR), zero rate

(ZR), additive increase (AI), additive decrease (AD), multiplicative increase (MI),

multiplicative decrease (MD), and unknown. In fact, a TCP protocol may not only show

one behavior, but different behaviors according to the network condition, e.g. TCP-Reno

utilizes the AIMD in the congestion avoidance stage, while MI in the slow start phase.

The goal is to detect the unknown TCP protocols if a specific behavior pattern is given

as the ground truth, e.g. if TCP-Reno is used as the ground truth, then all non TCP-Reno

flows are regarded as unknown.

5.2 Low Pass Filter Approach to Reduce Estimation Errors

Given a sequence of RTT estimates {θ�j, j=1,2,3,…} and that of IPT time stamps

{ τk, k=1,2,3,…}, where τk is the time stamp corresponding to IPTk, then the estimate of

the j-th congestion window

𝛏𝐣 = 𝐤−𝛏𝐣−𝟏, 𝛏𝟎 = 𝟎 , (29)

where 𝐤 = 𝐚𝐫𝐠𝐦𝐚𝐱(𝛕𝐤) < ∑ 𝛉�𝐢
𝐣
𝐢=𝟏 .

The error of the change of the j-th congestion window estimate ∆𝛏𝐣 = 𝛏𝐣 − 𝛏𝐣−𝟏,

is strongly related to 𝛉�𝐣 and 𝛉�𝐣−𝟏. Let 𝛉𝐣 denote the real RTT and follow the lognormal

distribution, i.e. 𝛉𝐣~𝐋𝐨𝐠𝐍(𝛍, 𝛔𝟐). Assume that 𝛉� is not biased significantly to the

72

expectation of a set of real RTTs, i.e. 𝑬[𝛉�] − 𝐞𝛍+𝛔𝟐 ≈ 𝟎, in a short time interval [

∑ 𝛉�𝐢, ∑ 𝛉�𝐢]
𝐣+𝐍
𝐢=𝟏

𝐣
𝐢=𝟏 . Let ∆𝛏���(𝐣, 𝐍) = ∑ ∆𝛏𝐢

𝐍
𝐣+𝐍
𝐢=𝐣 = (𝛏𝐣+𝐍−𝟏 − 𝛏𝐣−𝟏)/𝐍 denote the mean of N

adjacent estimates of the windows change in [𝐭𝐣, 𝐭𝐣+𝐍], where 𝐭𝐣 = ∑ 𝛉�𝐢
𝐣
𝐢=𝟏 and 𝐍 ≥ 𝟐.

We also denote ∆𝐜𝐰𝐧𝐝�𝐭𝐣� = 𝐜𝐰𝐧𝐝�𝐭𝐣� − 𝐜𝐰𝐧𝐝�𝐭𝐣−𝟏� the change of the congestion

window in two RTTs and ∆𝐜𝐰𝐧𝐝����������(𝐣, 𝐍) = ∑ ∆𝐜𝐰𝐧𝐝(𝐭𝐢)
𝐍

𝐣+𝐍
𝐢=𝐣 the average change of

congestion windows in N RTTs. Assuming that the flow is in the additive increase or

decrease state, the variance of the error between ∆𝛏���(𝐣, 𝐍) and ∆𝐜𝐰𝐧𝐝����������(𝐣, 𝐍) will be less

than that between ∆𝛏𝐣 and ∆𝐜𝐰𝐧𝐝�𝐭𝐣� as proved as follows.

time

θj-1 θj θj+1

ξj-1 ξj ξj+1

τk

IPTk
τk-1 τk+1 τk+2

ξjξ1 ξ2 ξj+2ξj+1 ξj+N ξj+N+1 ξj+2N

jumping window

sliding window

RTT Estimation based on IPT measurements

Cwnd Estimation based on Sliding Window

Figure 31: Cwnd estimation based on sliding window

73

Let 𝛜𝐣 = ∆𝛏𝐣 − ∆𝐜𝐰𝐧𝐝�𝐭𝐣� denote the error of the j-th window change estimate,

we further define

𝛜�𝐣,𝐍 =
∑ �∆𝛏𝐢 − ∆𝐜𝐰𝐧𝐝(𝐭𝐢)�𝐣+𝐍

𝐢=𝐣

𝐍
. (30)

Assume that 𝛜 = {𝛜𝟏, 𝛜𝟐, … , 𝛜𝐣, … } is the i.i.d process and follows the normal distribution

𝐍(𝟎, 𝛔𝛆
𝟐), where 𝛔𝛆

𝟐 is finite, then 𝐄�𝛜�𝐣,𝐍� =
∑ (𝐄[∆𝛏𝐢]−𝐄[∆𝐜𝐰𝐧𝐝(𝐭𝐢)])𝐣+𝐍

𝐢=𝐣

𝐍
= 𝟎 and

𝒗𝒂𝒓�𝛜�𝐣,𝐍� = �
𝟏
𝐍

�
𝟐

𝒗𝒂𝒓 �� 𝛆𝐢

𝒋+𝑵

𝒊=𝒋
� =

𝛔𝛆
𝟐

𝑵
 , (31)

Equation (31) indicates that the probability distribution of 𝛜�𝐣,𝐍 is more concentrated

around its mean than 𝛆𝐣 and the variance of 𝛜�𝐣,𝐍 can be further lower by increasing N.

5.3 Dilemma between Detection Sensitivity and Robustness

The sliding window method is suitable for the detection of the long term steady

behavior such as AI state, thus minimizing the influence of noises. On the other hand, it

may be unable to detect the short-term and abrupt change signals such as the MD state.

For the multiplicative change, its duration has to not be long for maintaining the proper

network stability and network utilization.

If the behavior of the multiplicative change does not occur consecutively, there

will be no sufficient samples to determine multiplicative change by two adjacent

congestion windows. Since multiple behavior states may exist in a TCP flow, employing

the sliding window to an estimated cwnd sequence will smooth the change of the

74

congestion window and thus decrease the probability due to the property of the low-pass

filter, which is good at detecting the slow change and stable signals.

Instead of analyzing the flow behavior based on a single smoothed curve,

multiple state detection modules are proposed to execute simultaneously to provide data

for a decision-making algorithm to identify the current state. For each state, a dedicated

detection module is used to track if an anomaly occurs for this state. Then the detection

outcomes of all detection modules are aggregated and sent to the decision maker such

that not only the detection capability can be increased based on the competitive scheme,

but also the noise can be reduced if each state detector also behaves like a low-pass

filter.

To consider both detection sensitivity and stability, a system consisting of a set

of CUSUM banks is proposed to detect the state transition of the flow behaviors.

5.4 Concurrent CUSUM Banks for Cwnd Behavior Detection

Let 𝐌𝐤 denote the behavior metric indexed by k for the N-jumping window

sampling, 𝐌𝐤 = 𝐟(𝛏𝐤+𝐍−𝟏, 𝛏𝐤−𝟏). For 𝐌𝐤, it has an expectation value 𝛈 to determine if a

flow is in a specific behavior state. Consider to detect an AI behavior, we have 𝐌𝐤 =

∆𝛏���(𝐣, 𝐍) = (𝛏𝐤+𝐍−𝟏 − 𝛏𝐤−𝟏)/𝐍 and 𝛈 = 𝟏 ideally.

As the sampling window moves, a series of 𝐌𝐤 can be obtained as

{𝐌𝟏, 𝐌𝟐, 𝐌𝟑, … , 𝐌𝛕…}. Our goal is to find a time point 𝛕 such that a flow can be

determined to be or not to be in the state X. To detect the change point of {𝐌𝐤}, the

cumulative sum (CUSUM) [58][59][60] algorithm will be employed online. We first

75

assume the flow is in the behavior state X and define 𝐌𝐤 of state X. If the change point

occurs, we say the flow is not in state X. However, we are unable to say the flow is in

state X if no change point is detected. Therefore, CUSUM here is used to reject the

behavior state hypothesis rather than recognizing the initial assumption.

Let {𝐌𝐤, 𝐤 = 𝟎, 𝟏, 𝟐 ⋯} denote the sequence of behavior measures at time 0, 1,

2… then we define

𝐗𝐤 = 𝐌𝐤 − 𝛈, (32)

as the behavior change measurement. Here {𝐗𝐤} is considered as the stationary random

process since it is independent of the sampling period and size of the sampling subset.

To make CUSUM asymptotically optimal for a wide range of Change Point Detection

problems, {𝐗𝐤} has to satisfy the following two conditions [59]:

(1) {𝐗𝐤} is 𝛙-mixing, meaning that

𝛙(𝐬) ≝
𝐬𝐮𝐩

𝐭 ≥ 𝟏

𝐬𝐮𝐩
𝐀 ∈ 𝐅𝟏

𝐭 , 𝐁 ∈ 𝐅𝐭+𝐬
∞

𝐩(𝐀)𝐩(𝐁) ≠ 𝟎
�

𝐏(𝐀𝐁)
𝐏(𝐀)𝐏(𝐁)

− 𝟏�,

where 𝐅𝟏
𝐭 is the 𝛔-algebra generated by {𝐗𝟏, 𝐗𝟐, ⋯ 𝐗𝐭} and 𝐅𝐭+𝐬

∞ is the 𝛔-algebra

generated by{𝐗𝐭+𝐬, 𝐗𝐭+𝐬+𝟏, ⋯ }. 𝛙(𝐬) approaches 0 as 𝐬 → ∞ , and

(2) The marginal distribution of {𝐗𝐤} satisfies 𝐄(𝐞𝐭𝐗𝐤) < ∞, ∃𝐭 > 0.

In practice, the above two conditions are very mild and easily satisfied [60] even by long

range dependent arrival processes. In the normal condition, we have

𝐄(𝐗𝐤) = 𝒄 ≪ 𝟏, (33)

i.e. 𝒄 is much less than 1 and close to 0. Given 𝒂 the upperbound of 𝒄, let us denote

76

𝑿𝒏� = 𝑿𝒏 − 𝒂, (34)

then 𝑿𝒏� will be slightly negative during the normal state and increase significantly when

an abrupt change takes place.

If the increase of the mean of 𝐗𝐧� is lower-bounded by 𝐡 in a specific state, the algorithm

of detecting the change from the specific state to another state is described as follows

Let 𝐒𝐧 denote the cumulative sum of 𝐗𝐧� such that

𝐒𝐧 = ∑ 𝑿𝒊�𝒏
𝒊=𝟏 with 𝐒𝟎 = 𝟎, (35)

we can denote 𝛍𝐧 the maximum continuous increment of 𝑺𝒏 until time 𝒏 and then

obtain

𝛍𝐧 = 𝑺𝒏 − 𝐦𝐢𝐧
𝟏≤𝐤≤𝐧

𝐒𝐤. (36)

It turns out that 𝛍𝐧 can be expressed as

�𝛍𝐧 = �𝛍𝐧−𝟏 + 𝑿𝒏� �
+

𝛍𝟎 = 𝟎
�. (37)

A large {𝛍𝐧} is a strong indication of the non expected behavior. Since Equation (37) is

recurrent and much easier to compute than Equation (36), it will be used to make

detection decisions.

Therefore, given a threshold 𝐍, a decision function 𝐝𝐍(𝛍𝐧) can be used to detect

the state change such that ‘0 ’ means the original state and ‘1’ the change of state occurs

as follows

𝐝𝐍(𝛍𝐧) = � 𝟎 𝐢𝐟 𝛍𝐧 < 𝑵
𝟏 𝐢𝐟 𝛍𝐧 ≥ 𝑵

�. (38)

77

Since the detection time is dependent on the threshold 𝐍, we are also interested

in their relationships. Let 𝛒𝐍 denote the normalized detection time and 𝐡 the actual

increase in the mean of {𝐗𝐧�} in an anomaly, we have

𝛒𝐍 =
(𝛕𝐍 − 𝐰)+

𝐍
→

𝟏
𝐡 − |𝐜 − 𝐚|

 , (39)

where 𝛕𝐍 = 𝐢𝐧𝐟 {𝐧: 𝐝𝐍(.) = 𝟏}, 𝐰 is the time index that the abrupt change actually

occurs. To ensure the longest time without false alarm and make detection independent

of network traffic pattern, 𝐡 is suggested to be 𝟐𝐚 [60]. However, since 𝐡 is a bound

rather than a true value, the above is a conservative estimation (upper bound) of the

actual detection time.

If AI is set as the normal state, the significant positive change in CUSUM implies

the burst size is increasing when the state changes from AI to non-AI. It holds for the

𝐀𝐈 → 𝐌𝐈 transition and 𝐀𝐈 → 𝐂𝐑 constant rate transition, while may not be true for non-

AI states whose burst size is decreased, e.g. 𝐀𝐈 → 𝐀𝐃, 𝐀𝐈 → 𝐌𝐃, and 𝐀𝐈 → 𝐂𝐑. To

detect the abrupt negative change, the behavior detector is required expanded from one-

way to two-way. Let 𝐗�𝐦 = 𝐗𝐦 + 𝐚 and

𝐒�𝐤 = � 𝐗�𝐢

𝒌

𝒊=𝛕𝐍

 , (40)

i-th 𝐒�𝛕𝐍 = 𝟎 and 𝛎𝐧 denote the maximum continuous decrement of 𝐒�𝐧 until time 𝒏, then

we have

𝛎𝐦 = 𝐒�𝐦 − 𝐦𝐚𝐱
𝛕𝐍≤𝐤≤𝐦

𝐒�𝐤 , (41)

and

78

�
𝛎𝐦 = �𝛎𝐦−𝟏 + 𝐗�𝐦 �

−

𝛎𝛕𝐍 = 𝟎
�. (42)

Therefore, given a negative threshold 𝐍�, a decision function 𝐝𝐍(𝛎𝐦) can be used

to detect the negative change such that ‘0’ means the original state is unchanged and ‘1’

the change of state occurs as follows

𝐝𝐍(𝛎𝐦) = � 𝟎 𝐢𝐟 𝛎𝐦 > 𝐍�
𝟏 𝐢𝐟 𝛎𝐦 ≤ 𝐍�

� (43)

Table 4 lists possible behavior states of a flow. A traditional TCP-Reno protocol

has the MI state for the slow start phase, AI state for the congestion avoidance phase and

MD state corresponding to packet loss. Opposite to AI state, we have the AD, which

exists in TCP-Vegas to decrease its rate if the bottleneck queue length exceeds a

threshold. CR is a major state of Vegas so that the TCP-Vegas flow can keep a constant

rate for a longer time. Compared to CR, ZR means the zero rates, which can occur in

some on-off flows. For flows neither showing the strong multiplicative change nor the

additive change, their states are regarded as unknown, which means flows are affected

by strong noises in networks.

Table 4: State definition
State Definition
AI Additive Increase

AD Additive Decrease

MI Multiplicative Increase

MD Multiplicative Decrease

CR Constant Rate

ZR Zero Rate

Unknown Unknown State

79

AIMD is a typical behavior of TCP flows. Recall that 𝛏𝐢 represents the i-th

estimated cwnd, the equation 𝛏𝐤 − 𝛏𝐤−𝟏 = 𝟏 holds for the AI behavior if no noise is

introduced to the measurement. Therefore the linear gradient of 𝛏𝐤, e.g. 𝛏𝐤 − 𝛏𝐤−𝟏, is a

good behavior metric for AI. The same reason is also applied to AD. Hence the behavior

metric 𝐌𝐤 = 𝛏𝐤 − 𝛏𝐤−𝟏 will be defined as the linear gradient indicator to detect the

additive change of cwnd in the CUSUM algorithm.

For the MD behavior, the size of the congestion window doubles every RTT, i.e.

the cwnd grows exponentially. The linear gradient is no longer suitable to detect the MI

behavior because 𝐌𝐤 has to be a stationary random process to meet the requirement of

CUSUM. If the multiplicative change occurs at 𝐑𝐓𝐓𝐢, then the following equation

𝛏𝐢
𝛏𝐢−𝟏

= 𝐤 holds, where k is the multiplicative factor. By taking the logarithm of the ratio,

we can transform the exponential change into the linear one as shown in Equation (44).

𝐌𝐤 = 𝐥𝐨𝐠 �
𝛏𝐢

𝛏𝐣−𝟏
� = 𝐥𝐨𝐠(𝛏𝐢) − 𝐥𝐨𝐠(𝛏𝐢−𝟏). (44)

The log gradient based on Equation (44) is therefore used as the metric of detecting the

multiplicative change of the cwnd.

Different from the linear and log gradient metrics, zero gradients is not based on

the difference of two adjacent cwnds, but the cwnd only. For some ON-OFF flows, the

zero gradient can be employed to identify the zero rate in the OFF period. Table 5 shows

𝐌𝐤 of different gradients expressed in terms of 𝛏𝐢.

80

Table 5: Gradient-based behavior metrics

𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭 Definition

Linear gradient 𝐌𝐤 = 𝛏𝐤 − 𝛏𝐤−𝟏

Log gradient 𝐌𝐤 = 𝐥𝐨𝐠 (𝛏𝐤) − 𝐥𝐨𝐠 (𝛏𝐤−𝟏)

Zero gradient 𝐌𝐤 = 𝛏𝐤

Figure 32 shows the flow state is detected based on a set of CUSUM banks. The

cwnd estimates are fed into each of the banks simultaneously. Then the decision system

will ask CUSUM detectors if they think their predefined state changed. Based on the

answers of all CUSUM detectors, the system will determine the current state of the flow.

For AI, 𝐗𝐤 is denoted as 𝐌𝐤 − 𝛈 as shown in Equation (32), where 𝐌𝐤 = 𝛏𝐤 −

𝛏𝐤−𝟏 and 𝛈 = 𝟏 since cwnd increases by 1 after one RTT such that 𝐄(𝐗𝐤) = 𝐜 ≪ 𝟏

holds in Equation (33). In practice, due to network noises, 𝐚, the upper bound of 𝐜 in

Equation (34) is set to 1. Therefore 𝐗𝐧� = 𝐗𝐧 − 𝐚 is equivalent to 𝐗𝐧� = 𝐌𝐤 − 𝛃, where

𝛃 = 𝟐, for the AI detection. Since 𝐡 = 𝟐𝐚 is suggested in [60] and the shortest detection

delay is required, then (𝛕𝐍 − 𝐰)+ is set to 1 and the Non-AI CUSM threshold 𝐍 in

Equation (38) is equal to 1 based on Equation (39).

81

Report MI

Report
Unknown

Report AI

Report CR

Report ZE

MD State
Detection

Non-AD
State

Detection

Non-CRN
State

Detection

Non-ZEN
State

Detection

MI State
Detection

Non-AI State
Detection

Non-CRP
State

Detection

Non-ZEP
State

Detection

YES

NO

YES

NO

YES

NO

YES

NO

Report MD

Report AD

YES

YES

YES

YES

NO

NO

NO

NO

Samples
Cwnd Increase Detection Cwnd Decrease Detection

Figure 32: Detection of the flow behavior based on CUSUM banks

To detect CRP, the CR with the positive change of cwnd, we have 𝛈 = 𝟎 in

Equation (32) and set 𝐚 = 𝟏 in Equation (34). Then 𝐗𝐧� = 𝐌𝐤 − 𝛃, where 𝐌𝐤 is the

linear gradient metric and 𝛃 = 𝟏 such that non-CR occurs if 𝛍𝐧 > 𝑵 as shown in

Equation (38), where N=1, given the shortest detection delay. For the detection of ZEP,

zero rate with the positive change, we have 𝐌𝐤 = 𝛏𝐤 and 𝐚 = 𝟏.

Multiplicative change is significant in the congestion window size. Hence,

multiplicative changes occur less frequently compared to additive changes. To detect the

82

MI behavior, different from the AI, CR and ZR detection, the CUSUM detector regards

the non-MI the normal state and MI the abnormal state. Once the alarm flags, we say the

flow is in the MI state. 𝐋𝐞𝐭

𝛏𝐤

𝛏𝐤−𝟏
≤ 𝟐(𝟏 − 𝒑) (45)

indicate a non MI state, where 𝐩 is the percentage of the noise tolerance for the MI state.

By taking the logarithm of Equation (45), we have 𝐌𝐤 = 𝐥𝐨𝐠𝟐(𝛏𝐤) − 𝐥𝐨𝐠𝟐 (𝛏𝐤−𝟏) with

𝛈 = 𝟏 + 𝐥𝐨𝐠𝟐 (𝟏 − 𝐩) such that 𝐗𝐤 = 𝐌𝐤 − 𝛈. By setting the upperbound 𝐚 of mean of

{𝐗𝐤} to 0, then we have 𝐗𝐧� = 𝐥𝐨𝐠𝟐(𝛏𝐤) − 𝐥𝐨𝐠𝟐(𝛏𝐤−𝟏) − 𝟏 − 𝐥𝐨𝐠𝟐 (𝟏 − 𝐩) and N is set

to 𝐥𝐨𝐠𝟐(𝟏−𝟎.𝟓𝐩
𝟏−𝐩

) if 𝐄(𝐌𝐤) = 𝐥𝐨𝐠𝟐(𝟐 ∗ (𝟏 − 𝟎. 𝟓𝐩)) is regarded as the occurance of MI,

where 𝐩 is set to 0.25.

For the detection of the decrease change of the cwnd value, the same logic can be

applied to set CUSUM parameters for MD, AD, CRN and ZEN. Table 6 shows behavior

metrics for distinct CUSUM banks and Table 7 defines the detection sequence and

CUSUM threshold for each CUSUM bank.

Table 6: Behavior metrics of CUSUM detectors
Detector Behavior Metric

MI 𝐌𝐤 = 𝐥𝐨𝐠 (𝛏𝐤) − 𝐥𝐨𝐠 (𝛏𝐤−𝟏)
MD 𝐌𝐤 = 𝐥𝐨𝐠 (𝛏𝐤) − 𝐥𝐨𝐠 (𝛏𝐤−𝟏)
Non-AI 𝐌𝐤 = 𝛏𝐤 − 𝛏𝐤−𝟏
Non-AD 𝐌𝐤 = 𝛏𝐤 − 𝛏𝐤−𝟏
Non-ZEP 𝐌𝐤 = 𝛏𝐤
Non-ZEN 𝐌𝐤 = 𝛏𝐤
Non-CRP 𝐌𝐤 = 𝛏𝐤 − 𝛏𝐤−𝟏
Non-CRN 𝐌𝐤 = 𝛏𝐤 − 𝛏𝐤−𝟏

83

Table 7: Parameters of CUSUM banks

Detector Detection Sequence CUSUM Threshold
Non-ZEP 𝐗𝐧� = 𝐌𝐤 − 𝟏 𝐍 = 𝟏
Non-ZEN 𝐗𝐧� = 𝐌𝐤 + 𝟏 𝐍 = −𝟏
Non-CRP 𝐗𝐧� = 𝐌𝐤 − 𝟏 𝐍 = 𝟏
Non-CRN 𝐗𝐧� = 𝐌𝐤 + 𝟏 𝐍 = −𝟏

Non-AI 𝐗𝐧� = 𝐌𝐤 − 𝟐 𝐍 = 𝟏
Non-AD 𝐗𝐧� = 𝐌𝐤 + 𝟐 𝐍 = −𝟏

MI 𝐗𝐧� = 𝐌𝐤 − 𝐥𝐨𝐠𝟐(𝟏. 𝟓) 𝐍 = 𝐥𝐨𝐠𝟐(𝟏. 𝟏𝟔)
MD 𝐗𝐧� = 𝐌𝐤 + 𝐥𝐨𝐠𝟐(𝟏. 𝟓) 𝐍 = −𝐥𝐨𝐠𝟐(𝟏. 𝟏𝟔)

Since the behavior state changes frequently, the CUSUM has to be reset to make

the state detection work properly based on following rules:

1. Each CUSUM bank is assigned a priority.

2. Priority orders of increase detection: MI > Non-AI > Non-CRP > Non-ZEP.

3. Priority orders of decrease detection: MD > Non-AD > Non-CRN > Non-

ZEN.

4. When a state is detected, all CUSUM banks with the priority less than equal

to the detected one are reset to 0.

Again, the operation workflow of the behavior detection system is shown in Figure 32.

5.5 Lossy Finite State Machine of Detecting Unknown Protocols

Each TCP protocol has its own pattern of state transitions. The abnormal state

transition is an indication of unknown protocols. Given a 5-tuple deterministic finite

automata (DFA) 𝐌 = (𝐐, 𝚺, 𝛅, 𝐪𝟎, 𝐅) is defined as follows:

84

1. a finite set of states (𝐐)

2. a finite set of input symbols called the alphabet (𝚺)

3. a transition function (𝛅 : 𝐐 × 𝚺 → 𝐐)

4. a start state (𝐪𝟎 ∈ 𝐐)

5. a set of accept states (𝐅 ⊆ 𝐐)

Transitions between states in the finite state machine are based on the RTT

estimates and cwnd estimates. The behavior of well-known protocols can be defined by

𝐌 and used as the ground truth to detect other protocols. No estimation can be 100%

correct. Packet loss, excessive delay or retransmission, and any other traffic disruptions,

may lead to false state identification. To cope with these conditions, additional states to

account for these disruptions are added to the congestion control states. In Figure 33, the

solid circle at the right side shows the finite state machine of TCP-Reno. The dashed

circle contains aberrant states at the left side.

q3MI

AI

MD

AD

CR

Unknown

Aberrant Transition Count

Normal Transition Count

Anmaly Threshold

Figure 33: TCP-Reno finite state machine

http://en.wikipedia.org/wiki/Alphabet_(computer_science)�
http://en.wikipedia.org/wiki/Function_(mathematics)�
http://en.wikipedia.org/wiki/Finite_state_machine#Start_state�

85

The aberrant transition count (ATC) will be increased by 1 when an illegal state

transition occurs; the error transition will be ignored if ATC is less than the anomaly

threshold. The ATC will be reset to 0 if a normal transition occurs in the FSM. When

ATC is updated and its value exceeds the anomaly threshold, the aberrant transition

count (ATC) will be increased by 1. On the other hand, the normal transition count

(NTC) represents how many times the state transition of a flow follows the protocol

DFA. NTC is increased by 1 for each well-defined transition.

Given a detection ratio threshold 𝐑𝐭𝐡 and a specific number N of samples, we say

a flow belongs to the TCP protocol defined by the DFA if

𝐑 =
𝐀𝐓𝐂
𝐍𝐓𝐂

< 𝐑𝐭𝐡

 (46)

based on N samples. Then flows of different protocols will be identified using the R-

based pattern.

86

CHAPTER VI

PERFORMANCE OF PACKET FLOW ANOMALY DETECTION

6.1 Experiment Configuration

To verify the detection rate of the packet flow anomaly detection system, we use

NS2 to generate flows and set the dumbbell as the topology as shown in Figure 34. For

the link of Si to O1, where i is an integer, its bandwidth is 10 Mbps and propagation

delay is 10 ms. The bottleneck between O1 and O2 has the bandwidth 10 Mbps and

transmission delay 20 ms. For links of O2 to Rj, where j is an arbitrary integer, its

bandwidth and propagation delay are the same as the links of Si to O1.

Based on the configuration of Figure 34, five different experiments are

performed to evaluate the feasibility and performance of the flow anomaly detection

system.

S2

S1

Sn

R1

R2

Rn

O1 O2

10 Mb, 10ms

10 Mb, 20ms

Figure 34: Network topology of experiments

87

6.2 Performance Evaluation

6.2.1 Cwnd Estimation

Figure 35 shows the dynamic change of cwnd using the approach of Lomb-based

packet counting. From the diagram, the proposed cwnd estimation method does capture

the characteristic of the slow start and AIMD of TCP-Reno flows.

Figure 35: Cwnd estimates of TCP Reno flows

Figure 36 shows the outcome of state detection of one of 10 TCP Reno flows,

unknown states are the change of congestion windows between additive change and

multiplicative change. Because of the high noise environment, the additive change can

88

be easily detected as the constant rate. For TCP Reno, AI, MI and MD are three possible

states. Figure 37 shows the count of the normal transitions and that of aberrant

transitions for each flow. The number of right transitions is higher than its counterpart.

Figure 38 represents the ratio of the right transitions to the error transitions for each

flow. The ratios of the 10 flows are 0.209, 0.168, 0.129, 0.140, 0.126, 0.171, 0.119,

0.221, 0.172, and 0.114 respectively. Among all these ratios, the maximum one is 0.221.

If the ratio threshold is set to be higher than 0.221, then the detection rate will be 100%.

Figure 36: State transition diagram

89

Figure 37: Count of ATC and NTC

Figure 38: Ratio of ATC to NTC

90

Because the detection rate is dependent on the ratio threshold, Figure 39 shows

the detection rate in different ratio thresholds. Although the higher threshold leads to the

higher detection rate, it may also cause more false positives. In the following

experiments 2 and 3, we will show its impact to false positives.

Figure 39: Detection rate versus ratio threshold.

6.2.2 Differentiation of TCP-Reno from CBR

Based on the same topology as shown in experiment one. Experiment two aims

to investigate the detection rate and false alarm rate among different flows. Therefore, 5

more CBR, constant bit rate, flows with 1Mb/sec each are added into the simulation.

91

Since the Lomb-periodogram is applied to compute RTTs and cwnds of each

flow, CBR flows also have “virtual” cwnds measured at the access point as shown in

Figure 40. Due to network buffer overflow and packet loss, the estimated cwnds of CBR

flows are not always constant, but influenced by the network congestion conditions.

Figure 40: Virtual congestion window estimates of UDP

By feeding the estimated cwnds into the CUSUM-based FSM, the ratio of ETC

to RTC is a good indicator to classify TCP-Reno flows and CBR flows into two areas as

shown in Figure 41. The ratios of 10 TCP-Reno flows are 0.178, 0.195, 0.234, 0.148,

92

0.129, 0.227, 0.165, 0.158, 0.181, and 0.209 respectively. On the other hand, the ratios

of 5 CBR flows are 7.653, 6.859, 8.458, 9.155 and 10.268 respectively. Therefore, by

properly setting the 𝐑𝐭𝐡 between 0.234 and 6.859, two flow types can be identified

correctly.

Figure 41: Classification of TCP-Reno and non-Reno flows based on the ratio of ETC to
RTC.

6.2.3 Differentiation of TCP-Reno from TCP-Vegas

This experiment is the same as experiment two except that 5 TCP-Vegas flows

are used instead of 5 CBR flows. In the network area, the two most popular TCP

protocols for investigation are TCP-Reno and TCP-Vegas. For Vegas, its congestion

control protocol is depicted as follows. In the slow start phase, TCP-Vegas doubles

93

 𝐜𝐰𝐧𝐝𝐢 every two RTTs to detect and prevent the packet loss. When the network queue

length is greater than 𝛄, Vegas will enter the congestion avoidance phase and reduce

 𝐜𝐰𝐧𝐝𝐢 by 1/8. In congestion avoidance, Vegas infers the expected rate as 𝐜𝐰𝐧𝐝𝐢
𝐁𝐚𝐬𝐞𝐑T𝐓

,

where 𝐁𝐚𝐬𝐞𝐑𝐓𝐓 is the minimum of all measured RTT, and physical rate as

𝐭𝐫𝐚𝐧𝐬𝐦𝐢𝐭𝐭𝐞𝐝 𝐛𝐲𝐭𝐞𝐬
𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝 𝐑𝐓𝐓

, then it adjusts the window size as follows

 𝒄𝒘𝒏𝒅𝒊(𝒏 + 𝟏) = �
 𝒄𝒘𝒏𝒅𝒊(𝒏) + 𝟏 , 𝐝𝐢𝐟𝐟 < 𝜶
 𝒄𝒘𝒏𝒅𝒊(𝒏) , 𝛂 ≤ 𝐝𝐢𝐟𝐟 ≤ 𝛃,
 𝒄𝒘𝒏𝒅𝒊(𝒏) − 𝟏 , 𝐝𝐢𝐟𝐟 > 𝜷

� (47)

where 𝐝𝐢𝐟𝐟 = 𝒄𝒘𝒏𝒅𝒊
𝐁𝐚𝐬𝐞𝐑𝐓𝐓

− 𝐭𝐫𝐚𝐧𝐬𝐦𝐢𝐭𝐭𝐞𝐝 𝐛𝐲𝐭𝐞𝐬
𝐦𝐞𝐚𝐬𝐮𝐫𝐞𝐝 𝐑𝐓𝐓

 is an estimate of the number of packets of the

flow that are backlogged in the network.

Figure 42 (a) shows that the congestion windows of TCP-Vegas flows tend to

stay at a constant level longer compared to the AIMD property of TCP-Reno flows.

Therefore TCP-Vegas behaves conservatively corresponding to the network congestion.

Figure 42 (b) is the ground truth of congestion windows of 5 TCP Vegas flows. Figure

43 shows TCP-Reno flows and TCP-Vegas flows can be properly distinguished if Rth is

set between 0.262 and 5.714 given that the anomaly threshold is set to 1.

94

(a)

(b)

Figure 42: Congestion windows of 5 TCP-Vegas flows: (a) estimated states, and (b)
actual states.

95

Figure 43: Classification of two different TCP flavors

6.2.4 Classification of Mixing Flows Using TCP-Reno FSM

To study the influence of different flows on the detection rate, 50 flows

consisting of 15 TCP-Reno flows, 15 TCP-Vegas flows, 10 CBR flows of 1 Mb/sec and

10 CBR flows of 2 Mb/sec are sent into the dumbbell topology, where the bandwidth of

the o1-o2 link is set to 50 Mb/sec and other configurations are unchanged.

The goal of this experiment is to verify if the TCP-Reno FSM is able to

distinguish TCP-Reno flows from others. Figure 44 shows the estimated cwnd size for

flows of different protocols. In the diagram, TCP-Reno shows the saw-tooth shape;

TCP-Vegas is adaptive to the congestion condition using AI and AD and tends to have

an unchanged cwnd if the network traffic does not change significantly. In addition,

96

CBR flows have the stronger constant rate property compared to TCP-Vegas because

they are not responding to the traffic congestion.

Figure 45 shows that the ratio of ATC to NTC is between 0.14 and 0.59 for TCP-

Reno flows, between 0.79 and 4.13 for TCP-Vegas, between 5.95 and 15.24 for 1MBps

CBR flows and between 4.95 and 8.74 for 2Mbps CBR flows. Therefore, TCP-Reno

flows and Non-Reno ones can be distinguished if 𝐑𝐭𝐡 is properly set between 0.59 and

0.79. Table 8 lists the mean and variance of R of 50 flows. That being said, it is difficult

to differentiate the two classes when their R values have much smaller differences than

in earlier cases due to the sharply diminished mean and variance values. This situation

was caused by significant presence of CBR flows, which significantly increases

congestion conditions, so that estimation of the RTT for both Reno and Vegas flows

tends to be disrupted, which then translates into erroneous predictions of congestion

control states. The gradually converged behaviors between Reno and Vegas can be

visualized in Figure 44, where the sharply distinct dynamics of their congestion window

changes diminished.

Table 8: Mean and variance of ratio of ATC to NTC
Flow ID Protocol Mean Variance

1-15 Reno 0.264 0.011

16-30 Vegas 1.109 0.709

31-40 CBR(1Mbps) 11.609 10.681

41-50 CBR(2Mbps) 6.644 1.6246

97

Figure 44: Estimates of congestion windows.

98

Figure 45: Classification in mixed flow types

6.2.5 Classification of Mixing Flows Using TCP-Vegas FSM

In this experiment, we show that a FSM based on TCP-Vegas can detect non-

TCP-Vegas flows with 100% detection rate and one false alarm among 50 flows.

Figure 46 shows the state transitions of flows of three different protocols.

Compared with Reno, Vegas has a lower transition frequency and prefers to stay at the

CR state (state 1). In addition, Vegas is a conservative protocol so that its rate

adjustment is not drastic and therefore the probability it enters the MD state (state 6) is

99

lower than that of Reno. CBR flows stay longer in the CR state as expected because

CBR flows are not controlled by the congestion protocol and only influenced by the

queue delay and overflow. For CBR flows, the one with the higher rate has a more

frequent state transition than that with the lower rate. This is because the higher rate

CBR has more packets in the network, thus increasing the probability of packet loss and

delay, which will respond to the state change later.

Figure 46: Cwnd dynamics of different flow types

Since the major property of TCP-Vegas is the constant rate, we construct a

simple FSM, as shown in Table 9 based on this major feature and observe the

100

performance of its detection outcome. Figure 47 shows the ratio of 50 flows plotted in

Figure 48.

Table 9: Ratio of ATC to NTC for 50 flows
Flow ID Protocol Ratio

1-15 Reno 0.74-1.26

16-30 Vegas 0.39-0.54 with an outlier 0.11

31-40 CBR(1Mbps) 0.002-0.073

41-50 CBR(2Mbps) 0.085-0.241

The CR FSM can distinguish Reno from Vegas with 100% detection rate if 𝐑𝐭𝐡

is set between 0.54 and 0.74. The mean of R of 15 Reno flows is 1.034 and its

corresponding variance is 0.031. On the other hand, the mean of R of 15 Vegas flows is

0.430 and its corresponding variance is 0.009.

Although Reno and Vegas can be distinguished, one 𝐑𝐭𝐡 cannot classify Vegas

and CBR because the R of CBR flows is lower than that of TCP-Vegas flows. The

reason is that Vegas is adaptive to the network congestion and therefore cannot stay at

the CR state as long as CBR flows do. However, if another 𝐑𝐭𝐡 regarded as the lower-

bound threshold is set between 0.54 and 0.241, then Vegas flows and CBR flows can be

classified into two groups with only one false alarm, which is an outlier of Vegas flows,

among 50 simulated flows in the noisy and dynamic networks. Furthermore, CBR flows

with two different rates are able to be classified with 100% correct rate if 𝐑𝐭𝐡 is set

between 0.073 and 0.085.

101

q3

MI

AI

MD

AD

CRUnknown

Aberrent Transition Count
Normal Transition Count

Anomaly Threshold

Figure 47: Simple TCP-Vegas FSM

Figure 48: Detection outcome based on Vegas FSM

102

CHAPTER VII

CONCLUSION

Content and packet flow anomaly detections are important to cloud computing,

which relies on networks to cope with the big data from different types of devices. To

deal with content and packet flow anomalies, multiple approaches have been proposed,

studied and verified in this dissertation.

For the detection of content-based anomalies, I proposed the PEC framework

utilizing the competitive aging-scoring scheme to identify suspicious and bulk feature

instances, which are later stored into the blacklist to detect the UNE. Considering the

large amount of packets passing through the gateway, PEC takes O(1) time to update the

score and age of onset feature instances given the limited memory. The birth of a feature

instance starts from its first time arrival at the system, and the death of an instance

occurs when its score is not updated and other instances come to occupy the whole age

table. A probability model based on the Poisson process is built to derive PEC

parameters consisting of the score threshold and age table size given the specified

detection rate and latency. Multiple simulations have shown the accuracy of the model

by collecting multiple samples of the detection rate and latency based on the model-

derived S and M, where each sample is the mean of 100 runs.

To further verify the feasibility of PEC, the prototype of PEC is integrated with

the sendmail application to detect URL links of UNE, albeit the system can be easily

expanded to filter other features. URL links extracted from the corpus of spamming-

103

phishing messages are used to generate UNE messages, which are then mixed with

regular messages to test the prototype. To meet the performance challenges, an O(1)

spinning wheel algorithm is developed for the aging-scoring function. Experimental

results on a Xeon based server show that PEC can handle 1.2M score updates, hashing

and matching 7k URL links, and parsing of 200 messages bodies of average size 1.5kB.

The lossy PEC detection system can be easily scaled up and down by progressive

selection of detection features and detection thresholds. It can be used alone or as an

early screening tool for existing infrastructure to defeat major UNE flooding.

For the packet flow anomaly detection, my goal is to detect the anomalous and

undefined protocols using the inter-packet time as the input sample. The detection

process consists of several important steps, which are RTT estimation, cwnd estimation,

behavior state identification, and protocol detection. The method I proposed is based on

the signal processing and different from model-driven methods, which depict the long-

term behavior of flows from the perspective of statistics and probabilities. Due to quick

changing of the congestion window, the dynamics of flow rates are the signal to

determine the protocol. The model based on the average concept cannot capture and

detect the transient change of the flow rate.

Because the flow rate is the congestion window size divided by the round trip,

the estimation of RTT is the first step to infer the flow rate. By the study, we found that

the traditional DFT method is incapable of estimating RTT within a reasonable error

range. To reduce the estimation error, I proposed the EWMA Lomb periodogram

approach, which considers the input noise reduction and unevenly spaced sampling

104

simultaneously. NS2 simulations have shown EWMA Lomb periodogram has more

accurate RTT estimates than the DFT filter bank and genuine Lomb periodogram.

Recognizing that no estimation is perfect and errors can be accumulated from the

RTT estimates to the cwnd estimates, several methods are studied in this dissertation. A

low-pass filter is one of the widely used approaches to reduce the signal noises. If the

estimation window is based on N RTTs, the variance of the estimation error can be

decreased by 1/N. However, the low-pass filter is incapable of detecting the instant cwnd

change such as MD, which typically occurs very shortly compared to AI. On the other

hand, the high-pass filter cannot reduce the noise when the flow is in the AI state.

I proposed the approach using CUSUM banks to detect the behavior state of

flows, where CUSUM is typically used to detect the change point of a signal sequence.

CUSUM itself can filter the noise, and its algorithm parameters determine the detection

sensitivity. By cascading a set of CUSUM banks, the relationship between different

behavior states is created, where each CUSUM bank is in charge of one of the behavior

states. Totally, eight CUSUM banks are created; four of them are for the cwnd increase

detection and the residual four for cwnd decrease detection. A control policy is

developed to reset different CUSUM banks and determine the current state.

Since the protocol behavior can be expressed by its behavior state change, e.g.

TCP-Reno is designed to transit from MI to AI, but not AI to MI, the protocol-based

FSM is created to detect if a transition is legal or not. By defining the anomaly threshold

and the ratio R, the number of aberrant transitions over that of normal transitions, flows

of undefined protocols can be identified in the R-based pattern. Multiple NS2

105

simulations based on the dumbbell topology have shown that (1) TCP-Reno flows and

CBR flows can be classified using the R-based pattern, (2) TCP-Reno flows and TCP-

Vegas flows can be differentiated, (3) TCP-Reno, TCP-Vegas, CBR1 and CBR2 can be

differentiated using the Reno-based FSM, where the rate of CBR1 flows is different

from that of CBR2, and (4) TCP-Reno, TCP-Vegas, CBR1 and CBR2 can be classified

using the Vegas-based FSM, i.e. the proposed approach in this dissertation can be

applied to different TCP flavors.

106

REFERENCES

[1] S. Y. Lin, C.C. Tan, J. C. Liu and M. Oehler, “High Speed Detection of Unsolicited

Bulk Emails”, in Proceedings of the ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, Orlando, FL, USA, December 3-4,

2007.

[2] “Snort Network Intrusion Detection System”, http://www.snort.org.

[3] “Bro Intrusion Detection System”, http://bro-ids.org./Overview.html.

[4] Defense Information Systems Agency, “DISA IAVA Process Handbook”, Version

2.1. Washington, DC, USA, June 11 2002.

http://www.tricare.osd.mil/contracting/healthcare/solicitations/TDP/0000/00_Attach

ment_16.pdf.

[5] “Application Layer Packet Classifier for Linux”, http://l7-filter.sourceforge.net.

[6] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R.H. Katz, “Fast and Memory-

Efficient Regular Expression Matching for Deep Packet Inspection”, in Proceedings

of the 2nd Symposium on Architectures for Networking and Communications

Systems, San Jose, California, USA, December 3-5, 2006.

[7] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, J. Turner. “Algorithms to

Accelerate Multiple Regular Expressions for Deep Packet Inspection”, in

Proceedings of the ACM SIGCOMM Conference, Pisa, Italy, September 12-15,

2006.

107

[8] J. Moscola, J. W. Lockwood, R. P. Loui, M. Pachos, “Implementation of a Content-

Scanning Module for an Internet Firewall”, in Proceedings of the IEEE Symposium

on Field Programmable Custom Computing Machines, Napa Valley, CA, April 8 -

11, 2003.

[9] B. C. Brodie, R. K. Cytron, and D. E. Taylor, “A Scalable Architecture for High-

Throughput Regular Expression Pattern Matching”, in Proceedings of International

Symposium on Computer Architecture, Boston, MA, USA, June 17-21, 2006.

[10] C. Dwork, A. Goldberg, and Moni Naor, “On Memory-Bound Functions for

Fighting Spam”. in Proceedings of the 23rd Annual International Cryptology

Conference, Santa Barbara, CA, USA, August 17 - 21, 2003.

[11] “The Spamhaus Project”, http://www.spamhaus.org/index.lasso

[12] “Know Your Enemy: Tracking Botnets”, http://www.honeynet.org/

[13] “Domainkeys: Proving and Protecting Message Sender Identity”, retrieved at Jan. 8,

2007, http://antispam.yahoo.com/domainkeys.

[14] “The Apache SpamAssassin Project”, retrieved at Feb. 08, 2007,

http://spamassassin.apache.org/

[15] “SpamAssassin Benchmark”, retrieved at Feb. 14, 2007,

http://www.isode.com/whitedissertations/spamassassinbenchmark.html

[16] I. Fette, N. Sadeh, A Tomasic, “Learning to Detect Phishing Emails”, in

Proceedings of the International World Wide Web Conference, Alberta, Canada,

May 8-12, 2007.

108

[17] “Spamato Spam Filter System”, retrieved at Mar. 22, 2007,

http://www.spamato.net/

[18] “Vipul’s Razor”, retrieved at Mar. 22, 2007, http://razor.sourceforge.net/

[19] “Earl Grey Filter”, retrieved at Mar. 22, 2007, http://www.spamato.net/

[20] “Domainator”, retrieved at Mar. 22, 2007, http://www.spamato.net/

[21] R. Segal, J. Crawford, J. Kephart, and B. Leiba, “SpamGuru:An Enterprise Anti-

Spam Filtering System”, in Proceedings of the Conference on Email and Anti-

Spam, Mountain View, CA, July 30-31, 2004.

[22] S. J. Stolfo, et al, “Behavior-based Modeling and Its Application to Email

Analysis”, in Proceedings of ACM Transactions on Internet Technology, Volume 6,

Issue 2, Pages 187-221, 2006.

[23] K. Wang, J. J. Parekh, S. J. Stolfo "Anagram: A Content Anomaly Detector

Resistant to Mimicry Attacks", in Proceedings of International Symposium on

Research in Attacks, Intrusions and Defenses, Hamburg, Germany, September 20-

22, 2006.

[24] S. Venkataraman, et al, "New Streaming Algorithms for Superspreader Detection”,

in Proceedings of the Network and Distributed System Security Symposium, San

Diego, CA, February 3-4, 2005.

[25] F. Li, M. H. Hsieh, “An Empirical Study of Clustering Behavior of Spammers and

Group-based Anti-Spam Strategies”, in Proceedings of the Conference on Email and

Anti-Spam, July 27-28, 2006, Mountain View, CA, USA.

109

[26] D. Gao, M. Reiter and D. Song, "Behavioral Distance for Intrusion Detection", in

Proceedings of the International Symposium on Recent Advances in Intrusion

Detection, Seattle, WA, USA, September 7-9, 2005.

[27] S. Dharmapurikar, M. Attig, and J. Lockwood, “Deep Packet Inspection using

Parallel Bloom Filters”, in Proceedings of the IEEE Symposium on High

Performance Interconnects, Palo Alto, CA, USA, August 20-22, 2003.

[28] Y. Zhang, S. Singh, S. Sen, N. Duffield and C. Lund, “Online Identification of

Hierarchical Heavy Hitters: Algorithms, Evaluations, and Applications", in

Proceedings of the Internet Measurement Conference, Taormina, Sicily, Italy,

October 25-27, 2004.

[29] G. Cormode et al., “Finding Hierarchical Heavy Hitters in Data Streams”, in

Proceedings of the International Conference on Very Large Data Bases, Berlin,

Germany, September 9, 2003.

[30] G. S. Manku, R. Motwami, “Approximate Frequency Counts over Data Stream”, in

Proceedings of the International Conference on Very Large Data Bases, Hong

Kong, China, August 20-23, 2002.

[31] B. Krishnamurthy, et al, “Sketch-based change detection: Methods, evaluation, and

applications”, in Proceedings of the Internet Measurement Conference, Miami, FL,

USA, October 27-29, 2003.

[32] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible Sketches for

Efficient and Accurate Change Detection over Network Data Streams”, in

110

Proceedings of the Internet Measurement Conference, Taormina, Sicily, Italy,

October 25-27, 2004.

[33] “SDBM”, retrieved at Mar. 03, 2007, http://search.cpan.org/src/NWCLARK/perl-

5.8.8/ext/SDBM_File/sdbm/README.

[34] Sheldon M. Ross, “Introduction to Probability Models”, Academic Press, San

Diego, USA. 2003.

[35] “Sendmail.org”, retrieved at Mar. 17, 2007, http://www.sendmail.org/.

[36] “Berkeley DB”, retrieved at Feb. 11, 2007,

http://www.oracle.com/technology/products/berkeleydb/db/index.html.

[37] “2005 TREC Public Spam Corpus”, retrieved at Jan. 16, 2007,

http://plg.uwaterloo.ca/~gvcormac/treccorpus/about.html.

[38] P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal Analysis of Network Traffic

Anomalies”, in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet

measurment, New York, NY, USA, November 2002.

[39] C. Estan, S. Savage, and G. Varghese, “Automatically Inferring Patterns of

Resource Consumption in Network Traffic”, in Proceedings of the ACM

SIGCOMM Conference, Karlsruhe, Germany, August 25-29, 2003.

[40] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian Neural Networks for Internet

Traffic Classification”, in Proceedings of IEEE Transactions on Neural Networks,

Volume 18, Issue 1, Pages 223–239, January 2007.

111

[41] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multi-level Traffic

Classification in the Dark”, in Proceedings of the ACM SIGCOMM Conference,

Philadelphia, PA, USA, August 2005.

[42] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better NetFlow”, in

Proceedings of the ACM SIGCOMM Conference, Portland, OR, USA, August 30 –

September 3, 2004.

[43] A. Lakhina, M. Crovella, and C. Diot, “Characterization of Network-Wide

Anomalies in Traffic Flows (Short Dissertation)”, in Proceedings of the Internet

Measurement Conference, Taormina, Sicily, Italy, October 25-27, 2004.

[44] A. Soule, K. Salamatian, and N. Taft. “Combining Filtering and Statistical Methods

for Anomaly Detection”, in Proceedings of the Internet Measurement Conference,

Berkeley, CA, USA, October 19-21, 2005.

[45] T. J. Ott, T. V. Lakshman, and L. Wong, “SRED: Stabilized RED”, in Proceedings

of the Eighteenth Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM’99), New York, NY, USA, March 21-25,

1999.

[46] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-Wide Traffic

Anomalies”, in Proceedings of the ACM SIGCOMM Conference, Portland, OR,

USA, August 30 – September 3, 2004.

[47] M. Kodialam and T. V. Lakshman, “Detecting network intrusions via sampling: A

game theoretic approach,” in Proceedings of the 22nd Annual Joint Conference of

112

the IEEE Computer and Communications Societies (INFOCOM’03), Piscataway,

NJ, USA, Apr. 1-3, 2003.

[48] J. Erman, M. Arlitt, and A. Mahanti, “Traffic Classification Using Clustering

Algorithms”, in Proceedings of the ACM SIGCOMM Minenet Workshop, Pisa,

Italy, September 11-15, 2006.

[49] A. W. Moore and D. Zuev, “Internet Traffic Classification Using Bayesian Analysis

Techniques”, in Proceedings of the International Conference on Measurements and

Modeling of Computer Systems, Banff, Alberta, Canada, June 6-10, 2005.

[50] A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies using Traffic Feature

Distributions,” in Proceedings of the ACM SIGCOMM Conference, Philadelphia,

PA, USA, August 22-26, 2005.

[51] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service Mapping

for QoS: A Statistical Signature-based Approach to IP Traffic Classification”, in

Proceedings of the Internet Measurement Conference, Taormina, Sicily, Italy,

October 25-27, 2004.

[52] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz, “P4P: Provider

Portal for Applications,” in Proceedings of ACM SIGCOMM Computer

Communication Review, Volume 38, Issue 4, Pages 351-362, 2008.

[53] B. Rozovskii, A. Tartakovsky, R. Blazek and H. Kim ,“A Novel Approach to

Detection of Intrusions in Computer Networks via Adaptive Sequential and Batch-

Sequential Change-Point Detection Methods”, in Proceedings of IEEE Transactions

on Signal Processing, Volume 54, Issue 9, Pages 3372-3382, 2006.

113

[54] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP Throughput: A

Simple Model and Its Empirical Validation”, in Proceedings of ACM SIGCOMM

Computer Communication Review, Volume 28, Issue 4, Pages 303-314, 1998.

[55] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Numerical Recipes in C”,

Cambridge University Press, New York, NY, 1992.

[56] Ryan Lance, Ian Frommer. “Round Trip Time Inference Via Passive Monitoring”,

in Proceedings of ACM Sigmetrics Performance Evaluation Review - Special Issue

on the First ACM SIGMETRICS Workshop on Large Scale Network Inference,

Volume 33, Issue 3, Pages 32-38, ACM New York, NY, USA, December 2005.

[57] H. P. Van Dongen, et al, "A procedure of multiple period searching in unequally

spaced time-series with the Lomb-Scargle method", Biological Rhythm Research,

Volume 30, Issue 2, Pages 149-177, 1999.

[58] M. Basseville and I. V. Nikiforov, “Detection of Abrupt Changes: Theory and

Application”, Prentice Hall, Upper Saddle River, NJ, USA, 1993.

[59] B. E. Brodsky and B. S. Darkhovsky, “Nonparametric Methods in Change-point

Problems”, Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[60] H. Wang, D. Zhang, and K. G. Shin. “Detecting SYN Flooding Attacks”, in

Proceedings of the 21st International Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2002), New York, NY, USA,

June 2002.

	Modeling AND detection of Content AND Packet Flow anomalies at enterprise Network gateway
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter I INTRODUCTION AND Overview of technical challenges
	Chapter II Detection of content anomaly
	2.1 Background
	2.2 Existing Solutions
	2.3 PEC System Architecture
	2.4 Low Computing Cost Algorithm
	2.4.1 Scoring Function
	2.4.2 Aging Function

	2.5 Modeling of the PEC Behavior

	Chapter III Performance of content anomaly Detection
	3.1 Experiment Configuration
	3.2 Performance Evaluation
	3.2.1 Detection Latency
	3.2.2 Throughput of Feature Parser
	3.2.3 Throughput of Blacklist Checking
	3.2.4 Scoreboard Throughput
	3.2.5 Collision Ratio of Black List

	Chapter IV Detection of packet flow anomaly (Round Trip Time Estimation)
	4.1 Background
	4.2 Existing Solution
	4.3 Limitation of Statistical Models to Detect Non-cooperative Flows
	4.4 Round Trip Time (RTT) Estimation
	4.5 DFT-based RTT Estimation
	4.6 EWMA Lomb-based RTT Estimation

	Chapter V Detection of packet flow anomaly (Behavior Identification)
	5.1 Non-deterministic Periods for Cwnd Adjustments
	5.2 Low Pass Filter Approach to Reduce Estimation Errors
	5.3 Dilemma between Detection Sensitivity and Robustness
	5.4 Concurrent CUSUM Banks for Cwnd Behavior Detection
	(1) {,𝐗-𝐤.} is 𝛙-mixing, meaning that
	(2) The marginal distribution of {,𝐗-𝐤.} satisfies 𝐄(,𝐞-𝐭,𝐗-𝐤..)<∞, ∃𝐭>0.

	5.5 Lossy Finite State Machine of Detecting Unknown Protocols

	Chapter VI Performance of packet flow anomaly Detection
	6.1 Experiment Configuration
	6.2 Performance Evaluation
	6.2.1 Cwnd Estimation
	6.2.2 Differentiation of TCP-Reno from CBR
	6.2.3 Differentiation of TCP-Reno from TCP-Vegas
	6.2.4 Classification of Mixing Flows using TCP-Reno FSM
	6.2.5 Classification of Mixing Flows using TCP-Vegas FSM

	Chapter VII Conclusion
	References

